
Minimizing the Long-tail Problem in Collaborative Filtering Based Recommender
Systems Using Clustering

Yash Mundhra
Supervisor(s): Aleksander Czechowski, Frans Oliehoek, Oussama Azizi, Davide

Mambelli
EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

24-6-2022

Abstract

Recommender systems are an essential part of on-
line businesses in today’s day and age. They pro-
vide users with meaningful recommendations for
items and products. A frequently occurring prob-
lem in recommender systems is known as the long-
tail problem. It refers to a situation in which a ma-
jority of the items in the data set have limited rat-
ings due to which many recommender systems, es-
pecially collaborative filtering based methods, are
not able to recommend these items, also known as
long-tail items. Although popular items are eas-
ier to recommend, it has been noticed that long-
tail items often generate a significant fraction of the
revenue and therefore should also be recommended
to users. This paper proposes a modified version
of a collaborative filtering based recommender sys-
tem aimed to reduce the effects of the long-tail rec-
ommendation problem (LTRP). The algorithm first
splits the data set into the head H and the tail T
and clusters the items from the tail. The average
rating avg for each cluster is calculated and for
all users and their unrated long-tail items, the rat-
ing for that item is set to avg with a probability of
p. Now the standard collaborative filtering algo-
rithm is run with the newly inserted ratings. The
inserted ratings reduce the sparsity of the data set
and therefore make it easier to recommend long-tail
items. Empirical experiments on the 100K Movie-
Lens data set indicate that the proposed algorithm
recommends more long-tail items than the standard
collaborative filtering algorithm, thus reducing the
effects of the LTRP while maintaining the same or
a slightly lower accuracy of the recommender sys-
tem.

1 Introduction
With the rapid growth of technology and the increased use of
e-commerce platforms the need to recommend relevant items
to users has never been as important. Recommender systems
cater to this exact need of user recommendations. The pur-
pose of a recommender system is to generate attractive rec-
ommendations for items and products to users. Movie rec-
ommendations on Netflix, personalized playlist recommen-
dations on Spotify, and product recommendations on Ama-
zon are examples of recommender systems being used in our
daily lives. Although the definition of recommender systems
has evolved since it was first proposed by Goldberg et al. in
1992 [10] it can be broadly defined as “a system that has the
effect of guiding the user in a personalized way to interesting
or useful objects in a large space of possible options” [9].

Over the years, several different algorithms for recom-
mender systems have been developed. The content-based and
collaborative filtering (CF) based recommendation methods
are the two traditional methods used for producing recom-
mendations. In the past few years, several machine learn-
ing and deep learning based adaptations have also been made

to these classical methods. An underlying problem that is
faced by a majority of the algorithms is known as the ‘long-
tail problem’. The long-tail problem refers to a situation in
which “recommender systems ignore unpopular or newly in-
troduced items having only a few ratings and focus only on
those items having enough ratings to be of real use in the rec-
ommendation algorithms” [17].

Items that are found in the long-tail of the data set are
known as long-tail items while all other popular items that
are not in the long-tail are known as the short-head items.
Long-tail recommendations can increase the diversity, cover-
age, and serendipity of a set of recommendations while still
being relevant or even more relevant for users than short-
head items. Additionally, for businesses, long-tail items of-
ten have large marginal profits in comparison to short-head
items, which means that long-tail recommendations can also
be more profitable for companies [13].

Several studies have been conducted on how to reduce the
effect of the long-tail problem in the context of recommender
systems. Various graph based methods were proposed that
represent interactive data between users and items in the form
of a graph. Yin et al. [20] discussed a method involving a
‘bipartite graph’. Johnson and Ng [12] proposed an exten-
sion of the ‘bipartite graph method’ known as the ‘tripartite
graph method’. Luke et al. [14] combined the two methods
and created an ‘extended tripartite graph method’. Various
research papers have also considered the use of deep learning
for long-tail item recommendations. Bai et al. [8] proposed a
deep learning framework for long-tail item recommendations
known as the DLTSR. Sreepada and Patra [18] used few-shot
learning techniques to solve the long-tail problem.

The use of clustering to alleviate the long-tail of recom-
mender systems has also been explored in several research pa-
pers. Park and Tuzhilin [17] proposed the EI (Each Item), TC
(Total Clustering), and CT (Clustered Tail) long-tail recom-
mendation methods in the context of machine learning based
recommender systems. Park [16] also introduced the idea of
AC (Adaptive Clustering) in which the degree of clustering is
based on how often an item is rated.

The long-tail problem is a problem that occurs mainly in
collaborative filtering based recommender systems [20]. The
paper by Park and Tuzhilin mentions that a possible exten-
sion to their research would be to incorporate the CT (Clus-
tered Tail) method in a collaborative filtering based recom-
mendation system. This research will therefore investigate
whether the CT method can be applied to collaborative filter-
ing based recommender systems and what influence this has
on the performance of the recommender system. Addition-
ally, the research will investigate how the number of clusters
and the cutting point impacts the performance of the recom-
mender system. As a consequence, the research question can
be defined as follows ‘To what extent can clustering be ap-
plied to the long-tail of collaborative filtering recommender
systems such that more long-tail items are included in the set
of recommendations while not affecting the accuracy of the
recommender system and how do the number of clusters and
the cutting point have an influence on this?’

The remainder of the paper is organized as follows. Section
2 provides the background of the collaborative filtering based

recommender system and the long-tail recommendation prob-
lem. Section 3 takes a more detailed look at the solution that
is being proposed and describes how the experiments are con-
ducted. Next, section 4 describes the experimental setup and
the results gathered through the experiments. The analysis of
the results, a discussion about the difficulties and future ex-
tensions of the work are presented in section 5. A summary
of the study is given in section 6. Finally, section 7 discusses
the responsible research practices that were followed during
this study.

2 Background
The following section dives deeper into the topics covered in
this study. Section 2.1 describes the working behind a col-
laborative filtering based recommender system. Section 2.2
dives deeper into the long-tail recommendation problem that
is being tackled in this research paper.

2.1 Collaborative Filtering Based Recommender
System

The recommendation problem can be formulated as a maxi-
mization problem that maximizes the user’s utility u. Let u
be a function that measures the usefulness of an item s to a
user c, i.e u : C × S ⇒ R. Within this formal notation, C is
the set of all users, S is the set of all possible items that can
be recommended and R is a totally ordered set such as non-
negative numbers or real numbers within a range. The goal of
a recommender system is to choose an item s′ ∈ S for each
user c′ ∈ C such that the users utility is maximized [2].

Collaborative filtering is one of the most prominent and
popular algorithm used for recommender systems. The main
idea behind collaborative filtering is that users who have had
similar preferences in the past will continue to behave simi-
larly in the future. Therefore the algorithm tries to find users
who have similar preferences or ideas, and make recommen-
dations based on this knowledge. The algorithm can be cat-
egorized into memory-based CF and model-based CF. The
model-based algorithm learns a predictive model from the rat-
ing data to make predictions about rankings of items to each
user. The memory-based algorithm generates recommenda-
tions using the rating data directly [19].

The memory-based collaborative filtering algorithm starts
off with finding the pairwise similarities between all users.
The similarity between users is measured in terms of the rat-
ings given by them on the movies. Several different similarity
metrics can be used to find the similarity between two users
such as the Pearson correlation coefficient, Jaccard similar-
ity, Euclidean distance, and Manhattan distance. The simi-
larity metric used in this study is cosine similarity since it
is the most used metric for collaborative filtering based rec-
ommender systems [3]. Mathematically, the cosine similarity
calculates the cosine of the angle between two vectors in a
multi-dimensional space. It is defined as follows:

r =
x⃗ · y⃗

||x⃗| | ||y⃗| |
(1)

where:
x⃗ = rating vector for user x

y⃗ = rating vector for user y

Once the pairwise similarity between all users has been cal-
culated, the unknown ratings of an item by a user can be pre-
dicted using a weighted average of the ratings given by sim-
ilar neighbors. The formula for predicting the ratings [4] is
defined as follows:

RU =

∑n
i=1 Ru ∗ Su∑n

i=1 Su
(2)

where:
RU = Predicted rating by user U
n = Number of nearest neighbour
Ru = Rating of item by neighbour u
Su = Similarity factor between neighbour u and user U

The number of neighbors n that is included in the calcula-
tion depends on how the neighborhood set is selected. Neigh-
borhood selection can have a significant impact on the per-
formance of the collaborative filtering recommender system.
There are several different approaches that can be followed
to determine which neighbors to include when calculating
the predicted rating. If the data set is small enough it can
be chosen to include all users in the set of neighbors. This
increases the computational time of the algorithm for larger
data sets and was therefore not chosen. With the threshold
approach, a user is added to the neighborhood set when the
similarity score between the two users is greater than a pre-
defined threshold T . A disadvantage of this method is that
some predictions may have a larger neighborhood set than
others making some predictions more accurate than others.
The approach used in this study is known as Top-N where the
n most similar users are added to the set of neighbors. In a
paper by Bahadorpour et al. [7] the optimal number of neigh-
bors on which the recommender system would perform well
on the MovieLens data set was between 10 and 15. Therefore
the value of n chosen for the conducted experiments is 10.

2.2 Long-Tail Recommendation Problem
The long-tail is a concept that has been studied by statisti-
cians and scientists for a long time and refers to a set of prod-
ucts not commonly used by consumers. By Pareto’s prin-
ciple, it can be said that 80% of the sale comes from only
20% of the stock. The term “long-tail” was popularized by
Chris Anderson through a magazine article in 2004 [6]. In
his book “The Long Tail: Why the Future of Business Is Sell-
ing Less of More” he discusses how the rise in technological
advancement and unlimited shelf space has made it easier for
consumers to buy niche products instead of popular products
which resulted in the shift from the hit market into the niche
market. Figure 1 shows the transformation from the hit mar-
ket to the niche market.

Anderson theorized that products in low demand (long-tail
items) can collectively make up a market share that rivals or
exceeds the few best-selling items. To create a successful
long-tail business, however, a recommender system must be
able to recommend long-tail items to users. Unfortunately,
traditional recommender systems tend to recommend only

Figure 1: Hit vs Niche Markets [20]

popular items, this is known as the long tail recommendation
problem (LTRP).

To reduce the effects of the LTRP, Park and Tuzhilin [17]
proposed two new recommendation methods for machine
learning based recommender systems. The total clustering
(TC) method “clusters the whole item-set S into different sets
and builds rating predictive models for each resulting group”.
The clustered tail (CT) method splits the data into the head
H and tail T . Clustering is applied to the tail T while the
items in the head are left un-clustered. Predictive models are
built for each cluster in the tail and the individual items in
the head. A few years later Park introduced a new way of
clustering items to reduce the effects of the LTRP known as
adaptive clustering (AC). The AC method clusters the items
based on their rating frequency. If an item has a low rating
frequency it is clustered more whereas items with a higher
cluster frequency are clustered less [16].

There are several different clustering algorithms that can be
used for clustering the items in the tail together. The method
used in this study is the centroid based k-means algorithm.
The algorithm selects k different centroids and groups items
based on their proximity to the centroids such that the sum of
squares within a cluster is minimized [5].

3 Methodology
This study investigates how a variation of the clustered tail
(CT) method proposed by Park and Tuzhilin [17] can be ap-
plied to collaborative filtering based recommender systems
and whether this could improve the performance of recom-
mender systems and reduce the effect of the LTRP. The mod-
ified version of the clustered tail recommender system will be
referred to as the clustered tail collaborative filtering recom-
mender system (CTCF-RS)

The algorithm starts by splitting the set of items into two
sets the head H and the tail T . A value for the cutting-point c
is chosen which dictates in which one of the two sets an item
gets placed. Items with a rating frequency (number of times
it has been rated) of more than c belong to the head H and
items with a rating frequency less than c belong to the tail T .
The rating frequency of an item refers to the number of times
an item has been rated. Items from the tail T are clustered
using a clustering method. Items from the head H do not get
clustered at all.

Given that the items from the tail T have been clustered, the
average rating avg for all items in each cluster is computed.
For each user in the data set and all of their unrated long tail,
the rating for that item is set to the avg rating of the cluster it
belongs to with a probability of p. With a probability of 1−p,
the movie remains unrated.

Once all users have been considered and the new ratings
have been inserted the standard collaborative filtering algo-
rithm is executed on the data set with the newly inserted rat-
ings. The insertion of new ratings reduces the sparsity of the
data set allowing the CF algorithm to be more balanced. In-
stead of only focusing on the popular items the algorithm now
considers long-tail items as well.

4 Experiment
In order to validate the proposed solution, several experi-
ments were conducted. The following section details the
experimental settings and presents the results of the exper-
iments. Section 4.1 includes an overview of the data used,
performance measurements, statistical tests, and the variables
from the experiment. Section 4.2 visualizes and describes the
results that were found from the conducted experiments.

4.1 Experimental Setup
Data Set
The data set that was chosen for the experiments is the Movie-
Lens 100K dataset 1 [11]. The data set consists of 100,000
ratings from 1000 users on 1700 movies collected in a period
from September 19th, 1997 through April 22nd, 1998. For
each movie, the title, release date, IMDb URL, and genre are
given. For each user, the age, gender, occupation, and zip
code is given. Every user in the data set has rated at least 20
movies. The ratings are given on a scale from 1 to 5. The
data set has a density of 6.30% meaning that a majority of
users have not rated most movies. Figure 2 illustrates the dis-
tribution of the number of ratings received for all the movies,
a clear long tail distribution can be seen making it an ideal
choice to perform experiments on.

Figure 2: Rating frequency (number of times a movie has been rated)
of movies in the MovieLens 100K data set.

Performance Metrics
The effect of the proposed solution and the influence of the
hyper parameters on the CTCF recommender system was
measured using four different performance metrics. The
performance was measured using the Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), Diversity, and

1https://grouplens.org/datasets/movielens/100k/

Coverage. The RMSE and MAE measure the accuracy of the
recommender system to predict unknown ratings whereas
the diversity and coverage are metrics specifically geared
towards the long-tail problem.

RMSE: The root mean squared error measures the error
of a model in predicting quantitative data. It can be formally
defined as follows

RMSE =

√√√√(
1

n
)

n∑
i=1

(yi − xi)2 (3)

where:
n = total number of items that need to be predicted
yi = actual rating for the item
xi = predicted rating for the item

MAE: The mean absolute error measures the average mag-
nitude between the measured value and the ‘true value’. It can
be formally defined as follows

MAE = (
1

n
)

n∑
i=1

|yi − xi| (4)

where:
n = total number of items that need to be predicted
yi = actual rating for the item
xi = predicted rating for the item

Diversity: Diversity is a measure of how different the rec-
ommended items are from each other. A higher diversity is
often beneficial for a recommender system as long as it does
not impact the accuracy of the predictions. A recommender
system that recommends more long-tail items does not always
have a higher diversity since the items in the long tail could
be similar to the ones in the short head. There are several
ways for measuring diversity. The method that is followed in
this research is as follows

diversity = 1−
∑n

u=1 sim25

n
(5)

where:
sim25 = similarity between the top 25 recommended items
n = total number of users

The similarity between the top 25 recommended items
sim25 is calculated using the cosine similarity with the
formula given in section 2.1

Coverage: Coverage refers to the percentage of items rec-
ommended by the recommender system from all possible
items. The goal is to maximize the coverage since a higher
coverage indicates that more items from the long-tail of the
data set are predicted. The formula is given as follows

coverage =
is
i

(6)

where:
is = number of distinct items recommended by the system

from the top 25 recommended items per user
i = total number of items in the inventory

Clustering Items in the Tail
The movies from the tail T were clustered using an unsuper-
vised machine learning algorithm known as K-Means clus-
tering. The movies were clustered based on the genre as pro-
vided in the data set. It was considered to use additional vari-
ables such as release year, actor, and director to cluster the
movies however, this would require the parameters to be en-
coded which would expand the dimensionality of the data set
significantly. Six different values for the number of clusters
were chosen and experimented with; 5, 10, 15, 20, 25, and
30.

Cutting Point c
The cutting point in the clustered tail algorithm determines
whether an item belongs to the head H or the tail T . If the
rating frequency of an item is greater than or equal to the cut-
ting point value then it is classified as a ‘head item’, otherwise
it is classified as a ‘tail item’. The value of the cutting point
could influence the performance of the recommender system
as it dictates which items are clustered using the algorithm
and which items are left out. Five different values for the
cutting point have been chosen; 30, 50, 70, 90, and 110.

Probability for Inserting a Rating p
As mentioned in the methodology (section 3), for each user
and all their unrated long-tail items, with a probability of p
the rating for that item is set to the average rating avg of the
cluster to which that item belongs to. With a probability of
1− p, the item is left unrated. The chosen value for p is 0.15.
A low value is chosen to ensure that the data set does not get
too populated with these ratings, as they are not an accurate
representation of the ratings of the user. However, they do
help with reducing the sparsity within the data set.

4.2 Experimental Results
To verify the robustness, generalizability, and accuracy of the
gathered data, a 5-fold cross-validation was performed in the
experiments. Cross-validation divides the data into two seg-
ments; a training set and a validation set. For each fold of the
5-fold cross-validation, a disjoint validation set was chosen.
The final data was gathered by averaging the results from all
five experiments. Since data was gathered for five different
cutting points and six cluster values the total number of ex-
periments grew to 150 for each performance metric.

Table 1 below shows the lowest root mean squared error
that was observed for each cutting point and the baseline rec-
ommender system.

CuttingPoint NumberOfClusters
BaseLine 30 15 50 25 70 20 90 25 110 30
1,0333 1,0187 1,0207 1,0236 1,0252 1,0287

Table 1: Minimum RMSE for all five cutting points in CTCF-RS
and baseline recommender system

As seen from table 1, the RMSE of the baseline collabo-
rative filtering recommender system was higher than all iter-
ations of the CTCF-RS suggesting that the CTCF-RS always
has a better accuracy than the baseline recommender system.
The lowest RMSE that was observed for the CTCF-RS was

where the cutting point was 30 and the number of clusters was
15. At cutting point 110 and number of clusters 5 the RMSE
was the highest amongst all other experiments. The number
of clusters that yielded the lowest RMSE for the cutting points
50, 70, 90, and 110 was 25, 20, 25, and 30 respectively.

Figure 3 displays a heat map with the root mean squared
errors of the CTCF-RS with varying values for the cutting
point and numbers of clusters. An increasing trend in terms
of the RMSE can be seen in the heat map. As the value for the
cutting point increases the RMSE value also increases and the
accuracy of the recommender system decreases. Overall the
lowest value for the cutting point (i.e 30) performs the best
regardless of the number of clusters. Appendix A visualizes
the RMSE of the baseline and CTCF recommender system in
a bar graph.

Figure 3: RMSE of CTCF recommender system with varying values
for cut point and number of clusters.

Table 2 below shows the minimum mean absolute error for
each cutting point and the baseline recommender system.

CuttingPoint NumberOfClusters
BaseLine 30 25 50 25 70 20 90 25 110 15
0,8161 0,8106 0,8136 0,8164 0,8178 0,8204

Table 2: Minimum MAE for all five cutting points in CTCF-RS and
baseline recommender system

Unlike the RMSE, the MAE of the baseline recommender
system is lower than the CTCF-RS for cutting points 70, 90,
and 110. The MAE lies approximately in the middle of all
values found. The lowest MAE that was observed from all
iterations of the experiment was where the cutting point was
30 and the number of clusters was 25. This is in contrast to
the findings from the RMSE which suggested that 15 is the
optimal number of clusters when the cutting point was set at
30. At cutting point 110 and number of clusters 5 the MAE
was the highest amongst all other experiments, the same ob-
servation was made for the RMSE. In the scenarios where
the cutting point was set at 50, 70, and 90 the optimal num-
ber of clusters remained the same as was derived from the
RMSE results, namely 25, 20, and 25. Finally, when the cut-
ting point was set at 110 the number of clusters at which the

MAE was minimal was found to be 15 unlike the findings
from the RMSE.

Figure 4 displays the accuracy of the CTCF recommender
system in terms of MAE for varying values of cutting point
and number of clusters in a heat map. Similar to the RMSE an
increasing trend in terms of the MAE is seen when the cutting
point value increases. The heat maps of the two metrics are
almost identical. Appendix B also visualizes the MAE of the
baseline and CTCF recommender system together in a bar
graph.

Figure 4: MAE of CTCF recommender system with varying values
for cutpoint and number of clusters.

While the goal for the root mean squared error and the
mean absolute error was to minimize the value, the goal for
the diversity and coverage is to maximize it. Table 3 shows
the maximum diversity that was found for the baseline rec-
ommender system and the CTCF-RS at each cutting point.

CuttingPoint NumberOfClusters
BaseLine 30 30 50 30 70 30 90 25 110 10
0,7279 0,7607 0,7347 0,7165 0,7038 0,6924

Table 3: Highest diversity for all five cutting points in CTCF-RS and
baseline recommender system

It is seen from table 3 that the diversity tends to decrease
as the cutting point value increases. The maximum value was
observed in the scenario where both the cutting point and the
number of clusters is 30. The minimum diversity was noted in
the scenario where the cutting point is 110 and the number of
clusters is 5. The number of clusters that gave the highest di-
versity for the cutting points 50, 70, 90, and 110 were 30, 30,
25, and 10 respectively. The diversity of the baseline recom-
mender system was already quite good and therefore only the
CTCF-RS with cutting point values of 30 and 50 were able
to outperform the baseline recommender system in terms of
diversity.

Figure 5 graphically displays the diversity of the CTCF rec-
ommender system for multiple values of the cutting point and
number of clusters. As noted earlier a decreasing trend can be
seen in the heat map where the diversity of the recommender
system drops as the cutting point value increases. Appendix

Figure 5: Diversity of CTCF recommender system with varying val-
ues for cutpoint and number of clusters

C also includes a bar chart visualizing the collected data of
the baseline recommender system and the CTCF-RS.

Table 4 shows the maximum coverage value that was found
for the baseline recommender system and the CTCF-RS at
each cutting point value.

CuttingPoint NumberOfClusters
BaseLine 30 15 50 15 70 20 90 10 110 15
0,4013 0,4328 0,4382 0,4637 0,4751 0,5314

Table 4: Highest coverage for all five cutting points in CTCF-RS
and baseline recommender system

The data from table 4 indicates that there is a sharp in-
crease in the coverage of the recommender system as the cut-
ting point value increases. The maximum coverage that was
observed was in the scenario where the cutting point is 110
and the number of clusters is 5. The coverage was lowest in
the situation where both the value for the cutting point and the
number of clusters is 30. The coverage of the baseline recom-
mender system stands out immediately as it is the lowest in
comparison to the CTCF-RS.

Figure 6: Coverage of CTCF recommender system with varying val-
ues for cutpoint and number of clusters

Figure 6 presents the coverage data for the CTCF recom-

mender system in a heat map. Unlike the diversity, a positive
trend can be seen in the coverage graph where the coverage
increases upon an increase in the cutting point value. The
increase is gradual for the first few cutting point values how-
ever the jump between the cutting point value of 90 and 110 is
quite big. Appendix D visualizes the coverage data associated
with the baseline recommender system and the CTCF-RS in
a bar chart.

5 Discussion
The following section performs an analysis of the experimen-
tal results that were presented in section 4.2. Additionally, the
difficulties that were encountered during the experimentation,
limitations of these experiments, and future work that can be
done on this topic will also be discussed in Section 5.1.

The accuracy of the recommender system in terms of the
root mean squared error was improved by the CTCF-RS. The
data suggests that there is a negative correlation between the
accuracy of the recommender system and the cutting point.
An increase in the cutting point value resulted in a decrease
in the accuracy of the system. The accuracy was the high-
est when the cutting point was set at 30. This suggests that
movies that have a rating frequency greater than 30 can be
predicted accurately by the baseline recommender system
however movies with a rating frequency lower than 30 benefit
from the CTCF algorithm. As the cutting point increases the
algorithm includes movies that have been rated often in the
tail and the performance of the algorithm decreases.

It was also observed that the optimal number of clusters for
all values of the cutting point lies between 15 and 30. This
suggests that a lower number of clusters is unfavorable for
the accuracy of the recommender system. This is likely be-
cause a lower number of clusters will tend to cluster dissimi-
lar movies together making the injected rating inaccurate and
thereby reducing the accuracy of the system. If the number
of clusters would be too high then the number of movies in
each cluster would be too low which would also be disadvan-
tageous to the accuracy of the recommender system. There-
fore it is important to find the optimal value for the number
of clusters.

The mean absolute error showed a similar pattern to the
RMSE of the CTCF-RS. As the value for the cutting point
would increase the MAE would increase i.e the accuracy of
the system would decrease. The optimal number of clusters
was narrowed down even further by the MAE being between
15 and 25. In contrast to the RMSE, the MAE of the base-
line recommender system was also fairly good and even better
than the CTCF-RS for cutting points higher than or equal to
70. It can be hypothesized that the RMSE of the baseline rec-
ommender system was higher than the CTCF-RS unlike the
MAE because the RMSE penalizes more for larger mistakes
that may have occurred in the baseline predictions.

Similar to the RMSE and the MAE, the diversity graph
showed a decreasing trend suggesting a negative correlation
between the diversity and the cutting point. As the cutting
point value increased the diversity of the recommender sys-
tem decreased. The diversity of the baseline recommender
system was quite good already and therefore outperformed

the CTCF-RS when the cutting point was greater than or
equal to 70. In the scenario where the cutting point value
was 30 the diversity of the CTCF recommender system was
always greater than the baseline recommender system regard-
less of the number of clusters. For the cutting point value of
50, the CTCF-RS outperformed the baseline recommender
system occasionally depending on the number of clusters.

It is seen from the experimental data that the diversity is
highest for larger values of the number of clusters. The neg-
ative correlation between the diversity and cutting point is
likely caused because too many movies are placed in the long
tail due to which ratings are injected for a large number of
movies. This results in many of the same movies being rec-
ommended and thereby reducing the diversity of the recom-
mended items.

The CTCF recommender system shows a significant im-
provement in the coverage in comparison to the baseline rec-
ommender system (approximately 13% higher coverage). For
any combination of cutting points and number of clusters, the
CTCF-RS outperforms the baseline recommender system. In
contrast to the previous three performance metrics, the ex-
perimental results suggest a positive correlation between the
coverage and the cutting point. An increase in the cutting
point value results in an increase in the coverage of the rec-
ommender system. A point to be noted from the data is that
there is a significant jump in the coverage between cutting
points 90 and 110.

The positive correlation between the cutting point and the
coverage is because an increase in the cutting point value
results in more movies being part of the long tail item set.
Therefore the number of movies for which ratings are injected
increases and as a result, the recommender system is able to
recommend more items from the long tail rather than recom-
mending items only from the short head. This also explains
the big jump in coverage between cutting points 90 and 110,
a lot of movies were included in the long tail when the cutting
point was shifted to 110.

The CTCF recommender system performed best in terms
of the RMSE, MAE, and diversity when the value of the cut-
ting point was set at 30. However, the coverage of the CTCF
recommender system was highest at a value of 110 for the
cutting point. Therefore, to accommodate for all four perfor-
mance metrics a trade-off must be made. Figure 7 is a scatter
plot showing the relationship between RMSE and Coverage
of the CTCF-RS. The scatter plot visualizes the trade-off be-
tween the accuracy and coverage more clearly. The coverage
of the recommender system increases upon a decrease in ac-
curacy.

As observed earlier and confirmed by the scatter plot in
figure 7 the improvement in coverage between cutting points
90 and 110 is quite significant. All data points with cutting
point 110 are separated from the rest of the data points. To
find the optimal parameters for the recommender system a
data point on the Pareto front must be chosen. All points on
the Pareto frontier are such that an improvement in one metric
will always result in a decrease in the other metric. Therefore
the points on the Pareto frontier are the most optimal points.

Overall, the CTCF-RS managed to outperform the perfor-
mance of the baseline recommender system in all metrics.

Figure 7: Scatter Plot of RMSE against Coverage of CTCF-RS

Additionally, the algorithm ensures that more items from the
long tail are recommended, thereby reducing the effects of
the LTRP.

5.1 Difficulties, Limitations and Future Extensions
While conducting the experiments several difficulties and
limitations were encountered. Firstly it was noticed that the
run-time of the CTCF-RS was significantly longer than that
of the baseline recommender system. This was because the
CTCF-RS iterates over all products for all users making the
run time of the algorithm O(n2). It is therefore an important
consideration to make whether the improvement in accuracy,
diversity, and coverage are worth the trade-off that is made to
the run-time. Future work can explore whether there is a way
to reduce the run time of this algorithm.

Although the CTCF-RS performs better than the baseline
recommender system for all performance metrics, it has only
been tested on a single data set making it harder to draw
definitive conclusions. A future extension to this research
would therefore be to test the proposed solution on other data
sets such as the BookCrossing [21], AmazonReview [15], and
MovieLens 1M [11] data set allowing us to make more con-
structive conclusions on the generalizability of the proposed
solution.

Another aspect that can be explored in the future is how
different similarity metrics and/or clustering algorithms af-
fect the performance of the CTCF recommender system. The
probability of injecting the ratings into the data set p is likely
to also have an impact on the performance of the algorithm
and the impact of this variable can also be tested.

It was observed that the optimal number of clusters for the
CTCF-RS lies somewhere between 15 and 30. Since the in-
tervals in the experiments were quite large it is hard to pin-
point an exact value for the optimal number of clusters, there-
fore, another possible extension to this research would be to
conduct the experiments again with smaller intervals for the
number of clusters. Similarly, the experiments showed that
the accuracy of the recommender system was highest when
the cutting point was 30 and the coverage was highest when
the cutting point was 110 however cutting point values be-
yond that range were not experimented with and therefore
can be considered for future extensions.

The current implementation of the CTCF-RS clusters the
movies in the tail solely based on the genre of the movies
which is provided in the data set. However a potential im-
provement to the algorithm would be to include other vari-
ables such as actors, release year, and directors to cluster
the movies together. It can also be considered to cluster the
movies based on derived variables such as the average rating,
popularity, and likability as was done in the research by Park
and Tuzhilin [17].

6 Conclusion
This paper introduces a modified version of the clustered
tail recommendation method proposed by Park and Tuzhlilin
[17], for collaborative filtering based recommender systems
named CTCF-RS. The research question being investigated in
this paper is ‘To what extent can clustering be applied to the
long-tail of collaborative filtering recommender systems such
that more long-tail items are included in the set of recommen-
dations while not affecting the accuracy of the recommender
system and how do the number of clusters and the cutting
point have an influence on this?’ Based on empirical results
gathered through experimentation on the 100K MovieLens
data set [11] it can be concluded that clustering can be ap-
plied to a collaborative filtering based recommender system
to reduce the effects of the long tail recommendation problem
(LTRP).

A negative correlation was observed between the cutting
point value and the accuracy and diversity of the recom-
mender system, i.e a lower cutting point value improved the
accuracy of the predicted ratings and the diversity of the rec-
ommended items. The cutting point value of 30 performed
best for the RMSE, MAE, and diversity whereas a value of
110 performed the worst. The contrary however was observed
when the coverage of the recommended items was consid-
ered. A higher cutting point value resulted in an improve-
ment in the coverage of the recommended items suggesting
a positive correlation between the two parameters. A value
of 110 gave the highest coverage whereas a value of 30 gave
the lowest. The CTCF-RS outperformed the baseline CF rec-
ommender system in terms of RMSE and coverage regardless
of the cutting point and the number of clusters, however, the
CTCF-RS only outperformed the baseline CF recommender
system in terms of the MAE and diversity when the cutting
point value was lower than 70.

The optimal number of clusters that yields a high value for
all performance metrics was found to be somewhere between
15 and 30 regardless of the value of the cutting point. It is
clear that a value for the number of clusters lower than 15 is
not good for the recommender system with respect to all per-
formance metrics because a lower number of clusters forces
movies that are not similar to be placed in the same cluster.
This makes the injected ratings more inaccurate and thereby
reducing the performance of the system.

The increase in coverage of the CTCF recommender sys-
tem suggests that more long-tail items are included in the rec-
ommendation set, however, this comes at a cost of reduced
accuracy and diversity of the recommended items. A trade-
off between the two values must therefore be made and an

optimal value for the cutting point would have to be chosen
that performs well at both ends of the spectrum.

Several directions for further extensions to this research
have been identified. Firstly, the scalability of the algorithm
can be addressed. The algorithm takes significantly longer
than the baseline collaborative filtering recommender system
and can therefore be improved. Secondly, the generalizabil-
ity of the proposed solution can be investigated by conducting
experiments on other data sets such as BookCrossing [21] or
AmazonReview [15]. So far it has only been experimented
with, on a single data set making it hard to make conclu-
sions about the generalizability. Another extension that can
be made to the algorithm would be to explore the effects of
other hyper parameters of the algorithms such as the similar-
ity metric, clustering algorithm, or the probability of injecting
a rating p. Next, it can be considered to reduce the intervals
of the number of clusters and the range of cutting point val-
ues can be extended beyond 30 and 110. Finally, the cluster-
ing algorithm can be extended to use other variables such as
the release year, actors and directors of the movies, or even
derived variables such as the average rating, popularity, and
likability of a movie.

7 Responsible Research
According to the International Science Council “Scientists
are responsible for conducting and communicating scientific
work with integrity, respect, fairness, trustworthiness, and
transparency” [1]. This section focuses on the responsible
research practices followed while conducting this research.
Section 7.1 discusses how the research follows the guiding
principles of scientific integrity such as honesty, responsibil-
ity, and transparency. Section 7.2 demonstrates how the con-
ducted experiments/research can be reproduced by all read-
ers.

7.1 Scientific Integrity
This research uses information from several studies, articles,
and journals that were relevant to the topic of recommender
systems. To give credit to the author of those works and to
avoid plagiarism all sources have been referenced using the
IEEE citation style.

The MovieLens 100K [11] data set used in this research is
a publicly available data set that is free to be used by all users
given that certain conditions are met. This research meets all
of the listed conditions and can therefore safely use the data
set.

7.2 Reproducibility
Scientific research is considered to be reproducible if the
reader can produce the same results as are claimed in the re-
search. To ensure reproducibility of this research the used
code base has been made available on a GitLab repository2.
The code base has been documented thoroughly to ensure that
readers are easily able to understand the written code. Addi-
tionally, the repository also contains a README.md that pro-
vides clear instructions on how to run the project and replicate
the experiments if required.

2https://gitlab.com/yashmundhra/recommender-system-rp-final

In addition to the code base, the methodology in section 3
and experimental setup in section 4.1 provide an extremely
detailed description of how the experiments have been con-
ducted and what parameters were used. Together with the
code base, and the description any reader should be able to
conduct the same experiments as conducted in this research.

It is important to note that it is extremely likely that the
findings from a reproduced experiment may not be the exact
same as the ones presented in this research. The reason for
this is that the algorithm uses a clustering algorithm that as-
signs items to multiple clusters. The clustering is different in
every iteration of the experiment.

References
[1] Responsible science. International Science Council,

Apr 2021.
[2] Gediminas Adomavicius and Alexander Tuzhilin. To-

ward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineer-
ing, 17(6):734–749, 2005.

[3] Ajay Agarwal, Minakshi Chauhan, and Ghaziabad.
Similarity measures used in recommender systems : A
study. 2017.

[4] Abhinav Ajitsaria. Build a recommendation engine with
collaborative filtering, Jun 2021.

[5] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. An
efficient k-means clustering algorithm. Proc First Work-
shop High Performance Data Mining, 04 2000.

[6] Chrish Anderson. The long tail. Wired, Oct 2004.
[7] Mojdeh Bahadorpour, Behzad Soleimani Neysiani, and

Mohammad H. Nadimi-Shahraki. Determining optimal
number of neighbors in item-based knn collaborative fil-
tering algorithm for learning preferences of new users.
Journal of Telecommunication, 9:163–167, 07 2017.

[8] Bing Bai, Yushun Fan, Wei Tan, and Jia Zhang. Dltsr: A
deep learning framework for recommendations of long-
tail web services. IEEE Transactions on Services Com-
puting, 13(1):73–85, 2020.

[9] Robin Burke. Hybrid recommender systems: Survey
and experiments. User Modeling and User-Adapted In-
teraction, 12, 11 2002.

[10] David Goldberg, David Nichols, Brian M. Oki, and
Douglas Terry. Using collaborative filtering to weave
an information tapestry. Commun. ACM, 35(12):61–70,
dec 1992.

[11] F. Maxwell Harper and Joseph A. Konstan. The movie-
lens datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4), dec 2015.

[12] Joseph Johnson and Yiu-Kai Ng. Using tripartite graphs
to make long tail recommendations. In 2017 8th Inter-
national Conference on Information, Intelligence, Sys-
tems Applications (IISA), pages 1–6, 2017.

[13] Siyi Liu and Yujia Zheng. Long-tail session-based rec-
ommendation. CoRR, abs/2007.12329, 2020.

[14] Andrew Luke, Joseph Johnson, and Yiu-Kai Ng. Rec-
ommending long-tail items using extended tripartite
graphs. pages 123–130, 11 2018.

[15] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justi-
fying recommendations using distantly-labeled reviews
and fine-grained aspects. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 188–197, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[16] Yoon-Joo Park. The adaptive clustering method for the
long tail problem of recommender systems. IEEE Trans.
Knowl. Data Eng., 25(8):1904–1915, 2013.

[17] Yoon-Joo Park and Alexander Tuzhilin. The long tail of
recommender systems and how to leverage it. In Pro-
ceedings of the 2008 ACM Conference on Recommender
Systems, RecSys ’08, page 11–18, New York, NY, USA,
2008. Association for Computing Machinery.

[18] Rama Syamala Sreepada and Bidyut Kr. Patra. Mitigat-
ing long tail effect in recommendations using few shot
learning technique. Expert Syst. Appl., 140, 2020.

[19] Daniel Valcarce, Alfonso Landin, Javier Parapar, and
Álvaro Barreiro. Collaborative filtering embeddings
for memory-based recommender systems. Engineering
Applications of Artificial Intelligence, 85:347–356, 10
2019.

[20] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen
Chen. Challenging the long tail recommendation.
CoRR, abs/1205.6700, 2012.

[21] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Kon-
stan, and Georg Lausen. Improving recommendation
lists through topic diversification. In Proceedings of
the 14th International Conference on World Wide Web,
WWW ’05, page 22–32, New York, NY, USA, 2005.
Association for Computing Machinery.

A Root Mean Squared Error Bar Graph

Figure 8: Root Mean Squared Error of recommender system with varying values for cutpoint and number of clusters. The bars are color
coded based on the cutting point.

B Mean Absolute Error Bar Graph

Figure 9: Mean Abosolute Error of recommender system with varying values for cutpoint and number of clusters. The bars are color coded
based on the cutting point.

C Diversity Bar Graph

Figure 10: Diversity of recommender system with varying values for cutpoint and number of clusters. The bars are color coded based on the
cutting point.

D Coverage Bar Graph

Figure 11: Coverage of recommender system with varying values for cutpoint and number of clusters. The bars are color coded based on the
cutting point.

	Introduction
	Background
	Collaborative Filtering Based Recommender System
	Long-Tail Recommendation Problem

	Methodology
	Experiment
	Experimental Setup
	Data Set
	Performance Metrics
	Clustering Items in the Tail
	Cutting Point c
	Probability for Inserting a Rating p

	Experimental Results

	Discussion
	Difficulties, Limitations and Future Extensions

	Conclusion
	Responsible Research
	Scientific Integrity
	Reproducibility

	Root Mean Squared Error Bar Graph
	Mean Absolute Error Bar Graph
	Diversity Bar Graph
	Coverage Bar Graph

