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Abstract

Global warming causes coral bleaching which threatens
the health and existence of coral reefs and therefore also the
future of a lot of species, including human beings. Efforts to
automate coral reef monitoring using annotated coral im-
ages to detect coral bleaching are hindered by the lack of
a complete dataset that specifies the health and bleaching
status of corals. We propose to combine publicly available
data into a dataset and train a CNN for coral bleaching de-
tection. This model performs surprisingly well. However,
combining data from different sources gives rise to dataset
biases which helps classifiers perform better and make them
unreliable for unseen data. We try to detect such biases and
document themsing several bias detection methods.

1. Introduction
Coral reefs are important ecosystems on which a lot of

species rely, such as human beings for food, coastal pro-
tection, income and new medicine. Yet, coral reefs are
increasingly threatened by external factors such as global
warming which causes coral bleaching. Coral bleaching
is the process caused by stress in which corals turn white
when the aglae living inside the coral’s tissue are expelled,
making the coral more subject to mortality. Since mas-
sive coral bleaching events have occurred with increasingly
frequency and intensity since the late 1970s [9, 19, 20], it
has become an important ecological problem. This wor-
ries marine biologists alike. Coral reef managers work hard
to observe, conserve, protect and manage coral reefs but
they are facing challenges monitoring coral reefs as this
is a time-consuming and expensive endeavour. Coral con-
servationists use benthic survey imagery to monitor coral
health by, among other things, coral classification for ben-
thic cover and biodiversity estimation, and coral bleaching
detection to gain insights into the percentage of bleached
corals throughout coral reefs. To assist coral reef man-
agers by speeding up this process and making it more cost-
effective, scientists are exploring methods to automate these

tasks. For example, supervised learning methods in com-
puter vision have been applied to labelled benthic survey
images [5] for coral classification. However, this is not a
trivial task as there is a scarcity of (consistently) labelled
data and the data is difficult to work with [17], due to the
complexity of underwater images and within class varia-
tions . Therefore there is a need for large datasets of labelled
benthic survey images.

The annotation process is very time-consuming because
taxonomists have to manually annotate between 50 to 200
random points in an image which is a tediously repetitive
task and requires well-trained taxonomists, as coral reefs
are home to thousands of species that can exhibit great
intra-class variations [3]. For some groups of benthic or-
ganisms, identification from visual imagery is difficult even
when done by experts [4, 35]. Additionally, creators of
datasets can basically choose their own interpretation of a
label, and so the use may not be consistent across sources.
Furthermore, long-term datasets are often scattered or spa-
tially constrained and the field data is far from standard-
ised [17] which results in big inter-dataset variations (e.g.
image quality, viewpoint and lighting). Figure 1 shows two
example patches with different labels that come from differ-
ent sources that resulted in apparent variations. Imperfec-
tions and artefacts in benthic survey images (such as blur-
ring, colour change and nekton scattering effects) [10, 37]
may not only be due to inter-dataset variations but also due
to intra-dataset variations. These problems do not only re-
sult in a bottleneck in the flow of information from monitor-
ing programs to managers, which delays conservation deci-
sions [16, 17], but also makes the application of computer
vision techniques for this data more challenging. Thus,
there is a need for a globally defined standardised protocol
for benthic surveys, a benchmark dataset that can be used
by researchers to report the performance of their models
and modern deep learning models to tackle the classifica-
tion tasks.

There are several coral reef imagery datasets pub-
licly available. However, only a small selection of
these datasets include labels such as ’bleached’ and ’un-
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Figure 1. Example of non-bleached vs bleached coral image
patches (Source: CoralNet [3]). The image on the left is a healthy
Acropora coral and the image on the right is a bleached Montipora
coral from a different source. These images illustrate the difficul-
ties with the data as the image on the right has (i) a measuring tape
covering part of the image, (ii) a dominant colour mask and (iii)
more blur and less texture than the other image. These might form
biases in the data.

bleached’/’healthy’, which are necessary for to classify
coral bleaching. Two of these are publicly available on
Kaggle1, a community Machine Learning and Data Sci-
ence community where many datasets can be found. Both
datasets are used in the same paper [22]. However, these
datasets are not suitable for our research as they are quite
small, containing only 720 images of bleached corals and
712 of healthy ones, and they hardly contain top view ben-
thic survey images.

Only the CoralNet2 project [2–4, 7, 53] contains enough
desired labelled data. This project contains an abundant
amount of underwater monitoring data from many differ-
ent sources. Thus, to address the lack of datasets with coral
bleaching being labelled, we put together a dataset. A selec-
tion of the CoralNet public data has been processed to get
this dataset suitable for coral bleaching detection. To per-
form baseline performance, a modern Convolutional Neural
Network (CNN) [25] is tested on this data. However, we ob-
served biases in the data. This is not surprising, given the
wide variation of sources from which this data comes.

We deploy several bias detection methods on this data
to examine the viability of this dataset for coral bleach-
ing detection using computer vision methods. Using these
methods, we verify that biases are indeed present. Data
bias detection and mitigation is an important prerequisite
for robust and reliable automation of coral bleaching detec-
tion. Biases in data might translate to biased algorithmic
outcomes when used to train machine learning algorithms
(i.e. the bias becomes encoded in the model’s weights) [39].
Such biases might affect the behaviour of users and rein-

1https://www.kaggle.com/datasets/sonainjamil/
bleached-corals-detection and https://www.kaggle.
com/datasets/sonainjamil/bhd-corals

2https://coralnet.ucsd.edu/

force biases [31]. The detection of biases in data is, there-
fore, paramount for the effective use of most machine learn-
ing models, and in this specific case, for further research in
coral bleaching detection. Hereto we set out to answer the
following research question: How can we detect dataset bi-
ases and what biases exist in the coral bleaching dataset?

The contributions of this paper are threefold: (i) We pro-
pose the composition of a benthic survey imagery dataset
using publically available CoralNet data for coral bleaching
detection; (ii) We evaluate a state of the art CNN model on
this data; and (iii) We perform bias detection on this dataset
and document the biases.

2. Related Work
2.1. Preprocessing of underwater imagery

Benthic survey datasets can suffer from issues such
as blurring, noise, colour diminishing and light attenua-
tion that are caused by varying conditions such as depth,
water temperature, turbidity and current [11]. To min-
imise these artefacts and improve image quality, image
enhancement and restoration techniques have been devel-
oped. These methods can be divided among three cate-
gories; model-free, model-based and data-driven [26, 52].
Where model-free methods perform simple pixel value
adjustments, model-based or prior-based methods require
prior assumptions to model the physical formation process
of underwater images. Data-driven methods use deep learn-
ing models in combination with a lot of data to learn how
to restore underwater images. Most of these methods im-
prove the visual image quality by performing at least one
of the following; edge enhancement, colour or illumination
correction and image dehazing [3, 11, 12, 21, 36, 42]. Even
though the methods of both the model-free and model-based
category often improve the visual quality of most underwa-
ter images [26], experimental research has shown that us-
ing most model-free image enhancement algorithms to pre-
process the images does not necessarily improve the accu-
racy of a CNN that tries to label these images [11]. To this
day, there is no method that can effectively be used to en-
hance underwater images that come from a range of diverse
sources [52].

We use a model-free method to preprocess underwater
images because a model-based method would not be pos-
sible given the wide variety of sources of which we do not
know the priors. Moreover, the method possibly reduces the
possible effects of biases in the dataset since it normalises
the data.

2.2. Classification problems on coral images

There is quite some research on classification of corals
using coral images since the early 2000s [30,32,48]. These
started out by using manually engineered image features in
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combination with simple classifiers to classifying a limited
number of benthic substrates (e.g. sand, dead coral, liv-
ing coral), the results were promising but the output is con-
strained to monitoring coral cover. Since then, advance-
ments have been made in this research field, especially
once more modern deep learning methods such as CNNs
were trained to classify corals on various taxonomic levels
(mostly on genus level) [15, 16, 28]. A CNN, for example,
can learn feature maps that extract different features at dif-
ferent depths of the network. Low-level layers capture low-
level features (i.e. corners and edges) and high-level layers
capture high-level features (i.e. shape and texture) and are
generally more class-specific [55]. To effectively train these
complex deep learning models, a large amount of training
data is necessary. Thus, transfer learning is commonly used
in coral classification tasks [15, 16, 28]. This means that
the picked CNN architecture is first pre-trained on a large
dataset (e.g. ImageNet [8], containing millions of images
and thousands of classes). Then, the CNN is fine-tuned by
training the CNN on the context-specific dataset. Unlike
these methods that use transfer learning, we propose to not
use transfer learning, but to train the models from scratch,
as biases can be transferred too [41].

Regarding the classification of a coral’s health status
(e.g. dead or healthy), several attempts have been made to
classify corals including the ’alive’ status of these corals
[37, 45]. But the classification is limited to whether the
coral is alive or dead and does not include any informa-
tion on whether the corals are bleaching or not. Similar to
these works, we also focus on the classification task of coral
bleaching detection.

2.3. Bias detection in image datasets

In recent years, research efforts in deep learning have
focused on explaining the decisions made by CNNs. Due
to the complexity and flexibility of CNNs, CNNs are able
to capture meaningful representations of images (complex
high-dimensional data) for classification tasks which makes
it challenging to deduce the reasoning behind the decisions
of these models. To increase the explainability of CNNs,
methods have been developed that try to explain the predic-
tions by highlighting parts of the image deemed important
by the model using saliency maps [55] or class activation
maps [13, 43, 56]. These methods have been used to expose
biases learned by a model from an image dataset. But using
these methods to detect biases remains, however, a tedious
endeavour because it requires a lot of manual work look-
ing at the results to find prediction biases [50]. Moreover,
the bias may not be explicitly present in the image but hid-
den in a latent representation of the input data [39], making
it harder to use these methods for bias detection in image
datasets. We do not use these methods as it is a very time
consuming task to analyse the results and they are hard to

interpret, especially given the context because we are no ex-
perts in the field of marine biology.

Influential prior work is limited for (semi-)automated
bias detection as it is quite a new approach in the field. One
such method proposed a step-by-step framework for bias
detection based on heatmaps and clustering [33]. The orig-
inal image and attribution map pairs are reduced in dimen-
sionality and concatenated into one vector. Spectral cluster-
ing is then performed to find clusters that each should repre-
sent a cluster. This method successfully detected and elim-
inated biases that affected the model’s classification perfor-
mance. Similar to these works, we focus on automatic bias
detection.

3. Bias analysis for coral bleaching detection

3.1. Data collection and preprocessing

Data collection. The CoralNet3 project [3] contains an
abundant amount of underwater monitoring data from many
different locations, labelled by marine biology experts.
However, there is no option to simply download all images
from this project. Therefore, we build a web scraper to ac-
quire a dataset. A selection of the public CoralNet data is
processed to get a dataset suitable for coral bleaching de-
tection. This entails that image patches of which the la-
bels contain information on the health/bleaching status of
the labelled coral are extracted from CoralNet. Semantic
labels containing less than a thousand samples are ignored.
The resulting data collection consists of 46,214 images of
which 10,000 images are used to create the CoralNet Class
Balanced Bleaching (CCBB) dataset that we use for our ex-
periments in Section 4. We only use a selection of the data
because we want to create a balanced dataset where every
label is equally represented, where the label with the least
amount of samples forms the limiting factor. These im-
ages are from 161 sources from all over the world. The
oceans and seas from which these sources come are the
Pacific Ocean, Indian Ocean, Red Sea, Caribbean Sea and
the Persian Gulf. The semantic labels from CoralNet are
merged together to obtain only two classes; ’bleaching’ and
’healthy’. In the process, a preference is given to the seman-
tic labels of a coral where the genus (or any other taxonomic
level) exists in both the ’healthy’ and the ’bleaching’ coun-
terparts. The CCBB dataset that we use for the experiments
exists of 5,000 images of bleaching corals and 5,000 images
of healthy corals, resulting in a total of 10,000 images. Each
class is composed of 5 CoralNet labels of which 1,000 im-
ages are randomly picked to get a total of 5,000 images for
each class. This is done to mitigate the possibility of a bias
caused by a class imbalance. The exact composition of the
dataset can be reviewed in Table 1.

3https://coralnet.ucsd.edu/
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Taxonomy* Class Label Label name Sources
(public)

Annotations
(downloaded)**

Labels that shares sources

Acropora
Healthy 5877 ACROPORA BRANCHING HEALTHY 5 (2) 12382 (3124) 203, 5881, 5869, 5897

5881 ACROPORA NONBRANCHING HEALTHY 5 (2) 9039 (5731) 203, 5877, 5869, 5897

Bleaching 203 BLEACHED ACROPORA BRANCHING 41 (4) 6228 (6149) 5897, 5869, 5877, 1764, 2060, 2485, 5881

2485 BLEACHED ACROPORA 72 (9) 14390 (14212) 1764, 203, 2060

Platygyra Healthy 5897 PLATYGYRA HEALTHY 5 (2) 1086 (1076) 203, 5881, 5869, 5877

Bleaching 1764 BLEACHED PLATYGYRA 46 (3) 2912 (2807) 2485, 2060, 203

Montipora Healthy 5869 MONTIPORA ENCRUSTING HEALTHY 5 (2) 10774 (6344) 203, 5881, 5877, 5897

Bleaching 2060 BLEACHING ENCRUSTING MONTIPORA 13 (0) 1340 (1336) 2485, 1764, 203

Porites Lobata*** Healthy 2245 PORITES LOBATA HEALTHY 2 (0) 1414 (1414) -

Bleaching 2217 PORITES LOBATA BLEACHED 101 (28) 4967 (4021) -

Table 1. The CCBB dataset composition by using CoralNet labels.
*All of these corals are scleractinian (stony/hard) corals.
**Not all annotated image patches from each label were downloaded due to the nature of the CoralNet website. The CCBB dataset contains
1,000 random image patches of each label.
***Porites Lobata is a species whereas the other labels are coral genera.
The CCBB dataset is large, especially for the classification task of coral bleaching, uses commonly annotated coral genera, and is well-
balanced and diverse in terms of coral genera. Despite Acropora being over-represented, it is divisible into branching and non-branching.
But Porites is only represented by a specific species which makes it more specific than the others.

Image patches retrieved from a CoralNet label come
from sources that use this label. Sources have images of
which a certain amount of random points (pixels) are se-
lected for annotation. To annotate these points, context in-
formation is necessary, being the surrounding pixels, which
results in an image patch of 150x150 pixels. The image
patches that are labelled are either annotated by humans
or by a deep learning model where each source can spec-
ify their own model to be used. Image patches labelled by
the CoralNet AI will only be considered annotated when
the label is predicted with a confidence level higher than
the source’s alleviate confidence threshold. Each source’s
admin sets their own threshold (ranging from 0%, auto-
confirming everything, to 100%, auto-confirming nothing)
depending on whether they want more automation or more
human confirmation. Each source is either public or private.
In the case of it being private, no information is available to
those that do not have access to the source other than the
returned image patches leaving no metadata for such image
patches.
Data preprocessing. Several pre-processing steps are ap-
plied to the data to prepare it for coral bleaching detection.
The samples in the CCBB dataset come from image patches
of 150x150 pixels that are extracted using random point an-
notations. This means that whenever a random point is se-
lected that is closer than 150/2 = 75 pixels to the border of
the image, the image patch will be padded with black pix-
els. Roughly 10% of the images are cropped and resized
as these images have black borders within the predefined
threshold of 30% of the image being black borders. The
class distribution for this 10% is very close to 50% which

means that this pre-processing step should not be a possible
source of bias (i.e. blur imposed by resizing the image).

Another preprocessing step that we perform on the sam-
ples in the CCBB dataset is Contrast-Limited Adaptive
Histogram Equalization (CLAHE) [36]. This method re-
duces the problem of noise amplification that can be expe-
rienced when only performing adaptive histogram equalisa-
tion without the limitation on contrast amplification. The
contrast in the images is improved by distributing the most
frequent intensity values more evenly across the whole in-
tensity value range as seen in Figure 2. To perform CLAHE,
the RGB images are first converted to the HSV (Hue Satu-
ration Value) space where only the Value (or brightness) di-
mension is used to perform CLAHE after which we convert
it back to RGB. We use this preprocessing step to minimise
the possible effects of a bias caused by the variability in
the brightness of the images as these values are normalised
across the whole range of values after applying CLAHE.
Bias hypothesis. When we visually explore and observe the
data and run some initial bias detection experiments as de-
scribed in Section 4.2, some seemingly (sub-) class-specific
artefacts stand out to us. We hypothesise that these can be
potential biases. The possible biases are (i) a colour bias,
(ii) an intrusive objects bias and (iii) a frequency bias. The
colour bias is defined by certain prominent colour masks
among samples of certain classes. The intrusive objects bias
is defined by samples that have objects in the forefront of
the image (e.g. a grid of lines, measurement tape and tubes).
The frequency bias is defined by samples that have mostly
high frequencies (sharp image) or a lack thereof (blurred
image).
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Figure 2. Contrast-Limited Adaptive Histogram Equalization
(CLAHE) is applied to an image patch where the x-axis represents
the intensity values of a HSV image and the y-axis represents the
frequency count. The input image (first column) is preprocessed
using CLAHE (second column). The resulting image shows an
improved contrast that increases the amount of detail in the image.
The histograms (second row) of the images show the values of the
Value dimension in the HSV space. The Value distribution for the
preprocessed image is bit more spread out and the maximum is
smaller.

3.2. Bias detection methods

t-distributed Stochastic Neighbor Embedding (t-SNE).
t-SNE [51] is a method to visualise high-dimensional data
on a two or three-dimensional space using non-linear di-
mensionality reduction. This method is especially effective
to visualise the structure of large datasets of images using
feature embeddings from a CNN, making it an effective tool
to analyse the relations between images fed to the network.
The output, a two or three-dimensional mapping of the ex-
tracted features, displays how the network groups images
based on similarities as interpreted by the network.

In our experiments in Section 4, we use this method to
visualise the relation between samples using the extracted
feature embeddings. We quantify the hypothesised biases
with measures (see Section 3.3) to highlight samples in the
t-SNE plots (e.g. average colour to paint data points). The
results should help us interpret how the trained CNN uses
these biases to group samples.

Learning to Split for Automatic Bias Detection (LS).
LS [1] is a recently published method in the field of au-
tomatic bias detection where the source of bias is unknown
during training and validation. This meta-learning method

tries to maximise a generalisation gap between a training
and testing split. It does so by training a Predictor on a clas-
sification task. The predictions from the converged model
will be used to train a Splitter model that learns to place
correctly predicted samples in the training set which cannot
generalise on the test split while adhering to two constraints.
These constraints are defined to avoid finding a split with
(i) a shortage of training samples and (ii) a class imbalance
among the splits. Thus, the method involves a bi-level opti-
misation problem in which the Splitter plays an adversarial
game with the Predictor that is trained until convergence in
every iteration of training the Splitter.

When using this method in our experiments in Section
4, the idea is to detect biases in the dataset by analysing
the training and testing split found by this method. If
this method is able to find splits for the CCBB dataset
on which the Predictor cannot generalise well, underrep-
resented groups might be identified that are a cause of one
or more of the hypothesised biases.

3.3. Bias quantification methods

Colour bias: quantifying colour To quantify the colour of
an image, images are converted from RGB to the HSV [47]
colour space to obtain the Hue value using Eq. (1 - 3). The
Hue value is the colour portion of the HSV model that is
able to encode information on the colour of images in just a
single value. This is necessary to visualise the distributions
of the colours of the images in the experiments in Section
4.3.1.

Given an RGB image I rgb = (I r, Ig, Ib), we convert it to
HSV as in [47]:

V = max(I r, Ig, Ib) (1)

S =

{
V−min(I r,Ig,Ib)

V , if V ̸= 0

0, otherwise
(2)

H =


60(Ig−Ib)

V−min(I r,Ig,Ib)
, if V = I r

120 + 60(Ib−I r)
V−min(I r,Ig,Ib)

, if V = Ig

240 + 60(I r−Ig)
V−min(I r,Ig,Ib)

, if V = Ib

0, if I r = Ig = Ib

(3)

Intrusive objects bias: quantifying lines An auto-
matic line detection method (LinE segment TRansformers
(LETR)) [54] is used to identify image patches with line-
shaped objects. LETR uses a backbone network that gen-
erates two feature maps that are fed to the coarse and the
fine encoders. The line entities are refined by the coarse
and the fine decoders respectively after which the final line
segments are detected by feed-forward networks. We opt
for this deep learning method because a more traditional
computer vision algorithm for line detection using colour
masks is unreliable due to the varying colours of objects in

6



the images. Straight lines in an image strongly suggest the
presence of such an intrusive object, but since the method
is not flawless and might find lines in reefs that are not ac-
tually from objects, a threshold of two lines is selected with
a prediction confidence threshold of 0.7. The ResNet-101
architecture is used for LETR and the images are re-scaled
to 256x256 pixels. These are the default settings used by
the authors of LETR and work for our use case.

Frequency bias: quantifying frequencies Given an RGB
image I rgb = (I r, Ig, Ib), we convert it to grayscale us-
ing the ITU-R 601-2 luma transform [44] with the weights
(wr, wg, wb) = (0.299, 0.587, 0.114).

gray(I rgb) =

N−1∑
x=0

N−1∑
y=0

wrI
r(x, y) + wgI

g(x, y) (4)

+wbI
b(x, y)

To quantify the number of low and high frequencies, we
use the focus measure which is obtained by taking the vari-
ance of the Laplacian of a grayscale image using Eq. (5-7).
The Laplacian of the source image is calculated by adding
up the second x and y derivatives which results in a convo-
luted image. By taking the variance of this response, you
obtain a degree of focus. We compute its Laplacian and
then extract the focus measure as in [38]:

Igray = gray
(
I rgb) (5)

L = L(Igray) =
∂2Igray

∂x2
+

∂2Igray

∂y2
(6)

Focus(L) =
∑N−1

x=0

∑N−1
x=0 (L(x, y)− µ)2

N2
(7)

where N is the size of the image, x and y go over the width
and height of the image, and L(·) is the image Laplacian,
where µ is the mean of the L.

Another method to quantify the amount of low and high
frequencies in an image is by using the discrete variant of
the Fast Fourier Transform (FFT) [6] using Eq. ( 8-10).

We calculate the FFT of the mean grayscale image as
in [6].

Vsplit, class =


I rgb
0

.

.

I rgb
V

 (8)

Īgray =

V∑
n=0

(
gray

(
I rgb
n

))
(9)

FFT(Īgray)(k, l) =

N−1∑
x=0

N−1∑
y=0

Īgray(x, y)e−i2π( kx
N + ly

N )

(10)

where Vsplit,class are all images of one of the two classes be-
longing to Dsplit, N is the size of the image, x and y go over
the width and height of the image and FFT(·) is the discrete
Fourier transform of the average grayscale image Īgray.

Note that only the magnitude (real numbers) of the FFT
has been used to display the FFT and that the average FFT
has been calculated using the average grayscale image of
each split and class. Since the calculation of a grayscale
image, the FFT and the average are all linear equations, it
does not matter in which order these are applied.

4. Coral bleaching dataset analysis

Model architecture. The specific architecture that we use
for the experiments is the Residual Network (ResNet) [18]
architecture. This architecture shows a superior perfor-
mance on coral classification tasks when training a model
from scratch or fine-tuning a model [14, 15, 27, 29, 34, 37],
is well suited for smaller datasets [49] and is deeper yet
smaller than some other architectures like VVGNet [46].
The experiments that required the use of a CNN are adjusted
to use the ResNet-18 model.
Model setup. For the ResNet-18 model, we use the
Stochastic Gradient Descent (SGD) [40] optimiser with a
learning rate of 0.001 and a momentum of 0.9. This opti-
miser shows superior performance compared to Adam [24]
in our experiments that can be found in the Appendix. For
the learning rate we use a scheduler that would decay the
learning rate by 0.1 every 7 epochs with a gamma of 0.1.
As criterion we used the cross-entropy loss. Each experi-
ment runs for 20 epochs with batches of 128 samples. To
cross validate the results we use a 10-fold cross validation
which amounts to a 90/10 training/validation split for each
fold.
Resources. The experiments are all executed on the High
Performance Computing (HPC) cluster of the Delft Univer-
sity of Technology 4. The jobs on this cluster use one of the
following GPUs: NVIDIA Quadro K2200, NVIDIA Tesla
P100, NVIDIA GeForce GTX 1080 Ti or NVIDIA GeForce
RTX 2080 Ti with CUDA enabled. The average time to run
1 epoch, in a 10-fold cross validation setting as explained
above, is 12.4 seconds of which training takes 10.7 seconds
and validation takes 1.7 seconds.

4.1. Initial analysis for bleaching detection

To get an indication of how well the task of coral bleach-
ing can be learned by a CNN, ResNet-18 is trained from
scratch without any data augmentations. The results were
surprising, as the model shows exceptional performance as
seen in Table 2. The high out-of-the-box performance of
coral bleaching detection of the model on the CCBB dataset

4https://wiki.tudelft.nl/bin/view/Research/
InsyCluster/
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suggests the presence of biases (as we hypothesise at the
end of Section 3.1) in the dataset which makes it easier for
the model to discriminate classes.

Data Accuracy Loss ROC AUC score

Training 0.9380 0.1655 0.9142
Validation 0.9078 0.2274 0.8285

Table 2. Training ResNet-18 on the CCBB dataset for coral
bleaching detection. The performance metrics (accuracy, loss and
ROC AUC score) are obtained from averaging the values at the
last epoch, of the 10 folds when the model converged, on the train-
ing and validation sets. The performance gap of the model on the
training and validation data are quite small, indicating no under- or
overfitting. The high out-of-the-box performance on coral bleach-
ing detection of the model on the CCCBB dataset suggests the
presence of biases in the dataset which makes it easier for the
model to discriminate classes.

4.2. Bias analysis for bleaching detection

We use several manual and automatic bias detection
methods to detect the possible biases in the CCBB dataset
(see Section 3.2). For each experiment we use the Predic-
tor, a trained ResNet-18 model, and the train and test split
as returned by the Learning to Split (LS) method.

The result from the LS method that we use in these ex-
periments is selected among several runs, of which the LS
learning curves are depicted in Figure 3, by picking the re-
sult with the biggest generalisation gap found. The biggest
generalisation gap found is 29.81%. This is supposedly the
most interesting split to analyse as the biases should be sep-
arated the most between these splits among all the LS runs.

The random split, that will be referred to as Drandom, is a
random 75/25 (train/test) dataset split with a minimal gener-
alisation gap of 0.19%. The worst split, that will be referred
to as Dworst, is the split with the biggest generalisation gap
(29.81%) found by running the LS method several times.
The data from these splits will be referred to as Dsplit

type where
split is either random or worst and type is either train, test
or not specified in case it refers to all the data of the split.
More detailed information on Drandom and Dworst and the
corresponding Predictors can be found in Figure 3.

4.3. Bias hypothesis testing

We test the hypothesised biases (as stated in Section 3.1)
for their validity. To do so, Figure 4 show a t-SNE plot
that shows the data distributions of Drandom and Dworst when
extracted by the corresponding Predictor.

4.3.1 The colour bias hypothesis

For the colour bias experiment, the images are converted
from RGB to the HSV colour space to obtain the Hue value
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Figure 3. The average learning curve of three LS runs to obtain
the maximum generalisation gap, of 29.81%, among these runs.
The grey learning curves are the min and max for the runs. The
generalisation gap is from Dworst

train (the validation accuracy) to Dworst
test

(the test accuracy). The picked LS run, Dworst, converged after 20
outer loop iterations when it found the maximum generalisation
gap. The other runs converged earlier and therefore terminated
earlier (at outer loop iterations 15 and 19). The LS bias detection
finds a split on which the model highly overfits the training data,
as indicated in the accuracy gap between training and test. We call
this split the worst split.

Split Gap Train Test

Acc* Count Ratio** Acc* Count Ratio**

Random 0.19 93.10 74.5 50.01
49.99 92.91 25.5 49.96

50.04
Worst 29.81 98.85 76.4 53.29

46.71 69.04 23.6 39.38
60.62

Table 3. LS output for Drandom and Dworst where each value is
a percentage. Dworst has a significantly bigger generalisation gap
than Drandom, thus the Predictor performs considerably less well on
Dworst

test . Even though the split sizes and ratios are relatively similar,
there is a little bit of a class imbalance for Dworst

test .
*Accuracy of the Predictor on the corresponding data.
**Class ratio of healthy vs bleaching.

using Eq. (1 - 3). This is necessary to visualise the distribu-
tions of the colours of the images in this experiment.

The t-SNE of Drandom using the corresponding trained
model can be observed in Figure 5 which shows no signif-
icant difference between Drandom

train and Drandom
test for the distri-

bution of the colours among samples. The model seems to
cluster the samples based on colours and this happens for
both the Drandom

train and Drandom
test . However, when comparing

this to Dworst in Figure 5, it shows that the average HSV
(colour) value only plays a role in the feature extraction
of the model for Dworst

train as Dworst
test does not contain specific

colour clusters. This strongly suggests that the colour of
images does form a bias for the classes.
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Figure 4. The t-SNE plots for Drandom and Dworst, both using fea-
tures extracted by the corresponding trained ResNet-18 models.
The distribution of Drandom

test is quite similar to Drandom
train as the data

is just randomly split. However, the distribution of Dworst
test is not

similar to Dworst
train . The Splitter obtained Dworst

train and Dworst
test as the

Predictor correctly classified samples from Dworst
train and misclassi-

fied samples from Dworst
test . This is supported by the distribution

of the Predictor’s extracted features as those are well divided for
Dworst

train and more overlapping for Dworst
test , thus it is more prone to

misclassify Dworst
test . The Predictor learned to extract features from

the Dworst
train samples such that these discriminate well for only Dworst

train

samples for the given classification task. Thus, this suggests that
the Dworst

train contains biases that are less prevalent in Dworst
test such that

the learned biases do not help with the classification of Dworst
test sam-

ples.

To quantify this, we use histograms to see the distribu-
tions of the hue values between and among splits, in Figure
6. The distributions of Drandom are very similar, as expected
for a random split as the samples are randomly distributed
among the split. However, for Dworst, there is a clear dif-
ference in the distribution of hue values among Dworst

train and
Dworst

test . This means that the hue plays an important role as
a bias as the Splitter found that the Predictor would not be
able to generalise well when the hue distributions would not
be that similar between Dworst

train and Dworst
test . These quantita-

tive results verify the colour hypothesis.

Colour bias conclusion: The colour forms a bias in the
CCBB dataset. We show this using clusters formed by the
average colour of samples in the t-SNE plots for Drandom
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Figure 5. Colour hypothesis. The t-SNE plots for Drandom and
Dworst highlighting the average colour of samples, both using fea-
tures extracted by the corresponding trained ResNet-18 models.
The average colours of the samples seems to play an important
role for models when extracting features. Samples with similar
colours are clustered together, especially samples with more un-
usual colours (e.g. yellow, green or blue). The distributions of
Drandom

train and Drandom
test are very similar whereas the distribution of

Dworst
test is very different from that of Dworst

train , just like in Figure 4.
Dworst

test is just one cluster of very similar colours and does not con-
tain any cluster of a specific colour. From these t-SNE plots it
appears that the biased healthy samples have greenish and yellow-
ish colours (forming clusters in the lower left corner of the t-SNE
plot) and a blueish colour for the biased bleaching samples (form-
ing a cluster in the centre/lower right corner).

and Dworst which points to the lack of a colour bias in Dworst
test .

Moreover, a quantification of the average hue value of sam-
ples among and between splits verifies the existence of this
bias in the CCBB dataset.

4.3.2 The intrusive objects bias hypothesis

For the intrusive objects bias there should be some kind of
method to detect whether there are such objects in a sample.
To achieve the detection of line-shaped objects, we use the
line detection method LETR (see Section 3.3).

The t-SNE of Drandom using the corresponding trained
model can be observed in Figure 7 which shows no vis-
ible difference for the distribution of the amount of lines
detected among samples in Drandom

train and Drandom
test . The model

seems to form some clusters based on the amount of de-
tected lines and this happens for both Drandom

train and Drandom
test .
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Figure 6. Colour hypothesis. Average hue histograms for Drandom

and Dworst. The hue distributions of Drandom are very similar
whereas the distributions of Dworst are very different. The hue
distributions of Dworst

train shows two very different mode values for
the two classes whereas the distributions of these two classes in
Dworst

test are overlapping much more, especially the distribution of
the hue of the bleaching class in Dworst

test is very different from the
other splits but more similar to the distribution of the healthy class
in Dworst

test . These differences indicate that the Splitter from Dworst

learned to find a split where the hue is important to fool the Pre-
dictor. As Dworst

train contains the hue biases and Dworst
test does not, the

Predictor is more likely to misclassify the samples from Dworst
test as

these do not contain the hue bias. Thus, the hue forms a bias in the
dataset.

However, when comparing this to distributions of Dworst in
Figure 7, it shows that the number of lines detected only
plays a role for formed clusters in the feature extraction of
the model for Dworst

train as Dworst
test does not contain specific de-

tected lines clusters based on classes. This strongly suggests
that the amount of detected lines in images does form a bias
when classifying coral bleaching images.

To quantify this effect, Table 4 shows the ratio of intru-
sive objects (samples where LETR detected two or more
lines) and no intrusive objects for the classes in Drandom

and Dworst. The ratio is very similar between Drandom
train and

Drandom
test , however, this ratio is quite different for Dworst. The

samples of Dworst
train have a high ratio of non-intrusive object

samples for the healthy class and a high ratio of intrusive
object samples for the bleaching class. These proportions
are somewhat flipped when looking at Dworst

test . This indi-
cates that the Splitter learned to split the data such that the
model would learn the invasive objects bias in Dworst

train which
does not hold in Dworst

test . Thus, the Predictor is not able to
classify the Dworst

test samples as accurately. Healthy samples
have, in general, only a few samples with invasive objects
(12.5%) whereas bleaching samples have more (26.5%).
When looking at these ratios in Dworst

train , they are larger,
forming a stronger bias (11.1% for healthy and 29.5% for
bleaching). However, these ratios are very similar for Dworst

test
(17.3% for healthy and 16.9% for bleaching), which makes
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Figure 7. Intrusive objects hypothesis. The t-SNE plots for
Drandom and Dworst highlighting the number of detected lines for
each sample, both using features extracted by the corresponding
trained ResNet-18 models. The number of detected lines of the
samples seems to play some role for models when extracting fea-
tures. Samples with similar amount of detected lines are clustered
together, especially samples with several detected lines are clus-
tered together. The distributions of Drandom

train and Drandom
test are very

similar whereas the distribution of Dworst
test is very different from

that of Dworst
train , just like in Figure 4. The distribution of Dworst

test is
just one cluster of very different amounts of detected lines that do
not belong to a specific class based on the number of lines de-
tected. Whereas the bleaching class in all but Dworst

test seems to form
a cluster for the number of detected lines. Thus, from these t-SNE
plots it appears that the invasive objects seems to form a bias, es-
pecially for some of the bleaching samples that have many lines
detected (forming clusters in the centre/lower right corner).

it harder for the Predictor to correctly classify these samples
because of the learned bias.

Intrusive objects bias conclusion: The invasive objects
form a bias in the CCBB dataset. We show this using clus-
ters formed by the number of detected lines for each sample
in the t-SNE plots for Drandom and Dworst, in combination
with a quantitative analysis of the amount of lines detected
in splits, points to the presence of the intrusive objects bias
in the dataset.

4.3.3 The frequency bias hypothesis

Since we expect the type of camera setup used to acquire
benthic survey images to bias the resulting images, we test
whether there is a bias towards the amount of low and high
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Figure 8. Frequency hypothesis. Average FFT for each class for Drandom and Dworst. The difference between Drandom and Dworst in terms
of high frequencies indicates that the Splitter learned to find a split where the amount of high frequencies is important to fool the Predictor.
The Predictor performs well on Dworst

train which has samples that lack high-frequencies, while it performs poorly on Dworst
test which does have

samples with more high-frequencies. Thus, the amount of high-frequencies forms a bias in the dataset.

Split Train Test

Healthy Bleaching Healthy Bleaching

Random 12.2 25.0 12.6 29.4
Worst 11.1 29.4 17.3 16.9

Table 4. Intrusive objects hypothesis. Table comparing the ra-
tio of detected lines (related to intrusive objects) for Drandom and
Dworst. The ratio for the classes in Drandom

train and Drandom
test is simi-

lar whereas that of Dworst the ratio is inverted between Dworst
train and

Dworst
test . The differences between the distributions of Drandom com-

pared to that of Dworst indicates that the Splitter of Dworst learned
to find a split where the number of detected lines (presence or ab-
sence of intrusive objects) is important to fool the Predictor, thus
forming a bias in the dataset.

frequencies in an image as a result from different noise lev-
els in cameras. Hereto we calculate the focus measure using
Eq. (5-7). This measure is used to encode information on
the frequencies in an image as a single value for the gener-
ation of the t-SNE plots that highlights the frequency bias.
It can determine the amount of focus in an image, where
a lower value means less focus and more blur, whereas
a higher value means less blur and thus a sharper image.
Blurred images generally lack high-frequencies whereas
sharp images do not.

The t-SNE of Drandom using the corresponding trained
model can be observed in Figure 9 which shows no visible
difference for the distribution of the focus measure among
samples of Drandom

train and Drandom
test . The model seems to cluster

the samples based on focus measure and this happens for
both Drandom

train and Drandom
test . However, when comparing this

to Dworst in Figure 5, it shows that the focus measure only
plays a role in the feature extraction of the model for Dworst

train
as Dworst

test does not contain specific focus measure clusters
based on the classes. This strongly suggest that the amount
of low and high frequencies in images does form a bias
when classifying coral bleaching images.

To quantify the distribution of the focus measure among
splits and classes, we create histograms, as seen in Figure
10. The distributions of the focus measure point to a bias in
the dataset because only the focus measure distributions in
Dworst

test of the classes are very similar. This indicates that the
Splitter of Dworst learned that the focus measure forms a bias
that helps the Predictor in the classification of the classes as
healthy samples tend to have a lower focus measure but this
does not hold for samples in Dworst

test .
Besides using the focus measure in the t-SNE plots and

the histograms, we also use the discrete variant of the Fast
Fourier Transform (FFT), implemented using using Eq. (
8-10), to display the average FT of each split and class for
further analysis of the relation between classes, splits and
frequencies. The result can be seen in Figure 8 which shows
a clear difference between Dworst

train and Dworst
test compared to

Drandom which inhibits almost no visible difference between
Drandom

train and Drandom
test .

Figure 11 shows the average amount of frequencies for
the classes among and between splits. The differentiation
between low, mid and high frequencies is defined by ranges
(as circles) drawn from the centre of the FFT of each image
to count the amount of frequencies within the given range.
Low frequencies are within 20% of the centre of the image,
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Figure 9. Frequency hypothesis. The t-SNE plots for Drandom and
Dworst highlighting the focus measure for each sample, both using
features extracted by the corresponding trained ResNet-18 models.
The focus measure of the samples seems to play a role for models
when extracting features. Samples with similar focus measures are
clustered together, especially samples with very low or high focus
measures are clustered together. The distributions of Drandom

train and
Drandom

test are very similar whereas the distribution of Dworst
test is very

different from that of Dworst
train , just like in Figure 4. The distribution

of Dworst
test is just one cluster of very different focus measures that

do not belong to a specific class based on the focus measure. From
these t-SNE plots it appears that the biased healthy samples have
either very low focus measures (forming clusters in the lower left
corner of the t-SNE plots) or very high focus measures (forming
clusters in the upper left corner) and an average focus measure for
the biased bleaching samples (forming a cluster in the centre/lower
right corner).

mid frequencies are within 30% of the centre of the image
surrounding the low frequencies and high frequencies are
the remainder 50% of the image. Also with this quantita-
tive analysis, a bias is observed in the dataset as exposed by
Dworst

test when comparing it with Dworst
train and Drandom.

Frequency bias conclusion: The high-frequencies form a
bias in the CCBB dataset. We show this using clusters
formed by the focus measure of samples in the t-SNE plots
for Drandom and Dworst, in combination with a quantitative
analysis of the focus measure and the FFT of the splits,
points to the presence of the low- and high-frequencies bias
in the dataset.
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Figure 10. Frequency hypothesis. Focus measure histograms for
Drandom and Dworst. The focus measure distributions of Drandom are
very similar whereas the distributions of Dworst are quite differ-
ent. The focus measure distributions of Dworst

train shows two different
mode values for the two classes whereas the distributions of these
two classes in Dworst

test are much more overlapping. But more obvi-
ous is the difference in the amount of low focus measures for the
classes in every split but Dworst

test . These differences indicate that the
Splitter from Dworst learned to find a split where the focus measure
is important to fool the Predictor. As Dworst

train contains the focus
measure bias and Dworst

test does not, the Predictor is more likely to
misclassify the samples from Dworst

test as these do not contain this
bias. Thus, the focus measure forms a bias in the dataset.

5. Discussion

Bleaching and non-bleaching can accurately be classi-
fied when training a CNN on the CCBB dataset, but we
suspect that data biases ease this task. We find that the
hypothesised colour, intrusive objects and frequency biases
are present in the CCBB dataset. However, this does not
mean that the biases in the CCBB dataset are limited to
these three biases.

The biases are a problem with the dataset but this is not
exclusive to this dataset. Anyone that collects a coral dataset
from different sources will encounter biases. The coral im-
ages are highly biased because of the differences between
data acquisition methods used by the sources. They use dif-
ferent cameras, images are taken under inconstant and vary-
ing conditions, and some images will contain measuring
tools (measuring tape, grid, colour card, etc). This is, how-
ever, also possible for other datasets that are acquired from
combining data from different sources. Thus, when using
any combined dataset that will be used to train a model, it
is important to pay attention to possible dataset biases.
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Figure 11. Frequency hypothesis. FFT frequencies boxplot for
Drandom and Dworst. The distributions of low, mid and high fre-
quencies, defined by the average amount of frequencies found in
the FFT of each image, are quite similar for Drandom. However,
the distributions of Dworst are quite different. The amount of fre-
quencies for the healthy class is very constant throughout each
split but this does not hold for the bleaching class in Dworst

test (high-
lighted in red). These differences indicate that the Splitter from
Dworst learned to find a split where the amount of frequencies is
important to fool the Predictor. As Dworst

train contains the frequency
bias and Dworst

test does not, or only to a lesser extend, the Predictor is
more likely to misclassify the samples from Dworst

test as these do not
contain this bias. Thus, the amount of frequency of images forms
a bias in the dataset.

5.1. Limitations

A first limitation relates to the possible effect of the num-
ber of sources from which CoralNet labels come from. Take
the label ‘Porites Lobata healthy’, for example, this label is
only used in two sources which is a very low source count
compared to most other labels (the labels used in this dataset
on average come from 21.7 sources). This has an impact on
the variability (which comes from the sources) of the image
patches. Moreover, there exists a source imbalance for the
classes ‘healthy’ and ‘bleaching’ of which the first has an
average of 39.8 sources whereas the latter has an average of
3.6 sources. This could mean that a model trained on this
dataset will generalise better on images of healthy corals as
the model has seen more varied data of this class.

A second limitation is that the sources of image patches
are mostly untraceable. As CoralNet is a hub for benthic
survey projects (read sources) and each has a set of labels
to which labelled image patches belong. Most sources are
private, which means it is not possible to trace the source of
image patches unless you have access to the private sources
or the sources are public. Using a combination of sources,
however, most likely introduces biases as each source uses

different setups to acquire the data. This can, however, not
be verified without the traceability of the sources of image
patches.

A third limitation comes from the lack of information
from image patches that come from private sources. All
image patches of any CoralNet label come from sources
that can define a confidence threshold to the annotation pro-
cess of the prediction models linked to that source. For the
private sources it is not possible to know this confidence
threshold which could imply that the proposed dataset in
this paper contains misclassified image patches. To counter
the noise in the labelled data, the information from the pub-
lic sources could be used as the confidence threshold for
these labelled images are known. Whether the confidence
threshold is often set lower than a 100% is questionable
though, because only 1 out of the 40 public sources that
we use in our dataset has a threshold lower than the default
100% (85% to be precise).

The limitations due to private sources can not be solved
by only using public sources as this would result in a dataset
with too few samples. Requesting access to all the relevant
sources could solve these issues.

5.2. Future work

Future research could attempt to further research the ro-
bustness and reliability of coral bleaching detection using
the proposed dataset provided in this work in combination
with research to mitigate the found biases.

Continuing this line of work would be more encouraging
if the CCBB dataset could actually be published, however,
this is not possible due to copyright regulations.

Since this study is limited to only use image patches of
CoralNet labels that explicitly mention the coral’s health or
bleaching status, the number of samples is drastically re-
duced. However, there are a lot more CoralNet labels that
do not contain such information. Having this data available
for coral bleaching detection would immensely increase the
sample size.

A machine learning approach to be able to use these sam-
ples is Multiple Instance Learning (MIL) [23]. This is a
method that assumes that there are bags of samples of which
you do not know the individual label except for at least one
sample in the bag or all labels are known in the bag. In the
specific case of coral bleaching detection using the dataset
from this paper, there are M healthy labels, N bleaching
labels (with N < M ) and K unknown samples (could be
either class). Instead of discarding all K samples, bags can
be formed to contain unknown samples with at least one
bleaching sample and bags with only healthy labels. The
power of MIL in this case is that it allows us to use samples
of which we do not know the labels and therefore increase
the amount of samples available. Something that should not
be overlooked is that CoralNet labels without the additional
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status information might include corals that are dead, which
could be solved by adding another class.

6. Conclusion

We collect and assemble a dataset with healthy and
bleached images and perform coral bleaching detection by
training a CNN. The model accurately learns to classify
coral bleaching. But we find, using bias detection methods,
that this dataset contains biases. These biases have mani-
fested themselves in the shape of undesired model predic-
tions, the misclassification of bleached and healthy corals
in this case. These biases have been introduced due to,
among other things, the wide variety of sources where the
images come from, the complexity of underwater imagery
and the complicated nature of corals. It is important to iden-
tify dataset biases and to design methods to mitigate them
because anyone that will collect a dataset is bound to en-
counter dataset bias problems. Particularly when collecting
a dataset from a wide variety of sources that do not use the
same protocols and measuring devices to acquire the data.

The code for the experiments described in this work
and to reproduce the results and figures can be found
at https : / / github . com / theangryhobbit /
coral-bleaching-detection.

References
[1] Yujia Bao and Regina Barzilay. Learning to split for auto-

matic bias detection. NeurIPS, 2022. 6
[2] Oscar Beijbom. Automated annotation of coral reef survey

images. University of California, San Diego, 2015. 3
[3] Oscar Beijbom, Peter J Edmunds, David I Kline, B Greg

Mitchell, and David Kriegman. Automated annotation of
coral reef survey images. In 2012 IEEE conference on
computer vision and pattern recognition, pages 1170–1177.
IEEE, 2012. 2, 3, 4

[4] Oscar Beijbom, Peter J Edmunds, Chris Roelfsema, Jennifer
Smith, David I Kline, Benjamin P Neal, Matthew J Dunlap,
Vincent Moriarty, Tung-Yung Fan, Chih-Jui Tan, et al. To-
wards automated annotation of benthic survey images: Vari-
ability of human experts and operational modes of automa-
tion. PloS one, 10(7):e0130312, 2015. 2, 3

[5] Elena Bollati, Cecilia D’Angelo, David I Kline, B Greg
Mitchell, and Jörg Wiedenmann. Development of a multi-
excitation fluorescence (mef) imaging method to improve
the information content of benthic coral reef surveys. Coral
Reefs, 40(6):1831–1847, 2021. 2

[6] E. O. Brigham and R. E. Morrow. The fast fourier transform.
IEEE Spectrum, 4(12):63–70, 1967. 7

[7] Qimin Chen, Oscar Beijbom, Stephen Chan, Jessica
Bouwmeester, and David Kriegman. A new deep learning
engine for coralnet. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3693–3702,
2021. 3

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 4

[9] C Mark Eakin, Hugh PA Sweatman, and Russel E Brainard.
The 2014–2017 global-scale coral bleaching event: insights
and impacts. Coral Reefs, 38(4):539–545, 2019. 2

[10] Mohamed Elawady. Sparse coral classification using
deep convolutional neural networks. arXiv preprint
arXiv:1511.09067, 2015. 2

[11] Redouane Es-sadaoui, Imad El Bouazzaoui, Lahoucine Az-
ergui, and Jamal Khallaayoune. Underwater image process-
ing: Technical study and experiments. vol, 2:20–29, 2017.
3

[12] Kristofor B Gibson. Preliminary results in using a joint
contrast enhancement and turbulence mitigation method for
underwater optical imaging. In OCEANS 2015-MTS/IEEE
Washington, pages 1–5. IEEE, 2015. 3

[13] Loris Giulivi, Mark James Carman, and Giacomo Boracchi.
Perception visualization: Seeing through the eyes of a dnn.
arXiv preprint arXiv:2204.09920, 2022. 4
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2
Appendix

2.1. Introduction
The world ocean covers approximately 71% of Earth’s surface and contains 97% of our planet’s available water
[44]. It is not just a huge mass of water, it is also known as the main ’lung’ of our planet as it produces at least
50% of the planet’s oxygen which is more than all forests in the world combined [2]. Moreover, it absorbs
roughly 30% of the carbon dioxide produced by humans. Coral reefs, also known as the tropical forests of the
world ocean, play an important role in the ecosystems of the oceans. Coral reefs are essential for the regula-
tion of the carbon dioxide levels in the oceans, keeping them balanced, which is vital for marine ecosystems.
They are also the most densely populated marine environment and support many marine species by supply-
ing a nutrient-rich habitat and a safe shelter. But coral reefs also have an indirect and direct impact on us,
human beings. Most of us indirectly rely on coral reefs for food, coastal protection and as a source for new
medicine. And, it is estimated that over half a billion people worldwide directly depend on coral reefs for,
among other things, food, income and protection [1].

Coral reefs are threatened by, inter alia, coral bleaching, diseases, storms and human activity such as
habitat destruction, over-fishing, pollution and the introduction of invasive species. Marine biologists are
very concerned about the destruction of coral reefs [18] and the diminishing of coral reefs as they are one of
the most productive and species-rich ecosystems in the world and play an important role on this planet.

2.1.1. Corals
Corals are marine invertebrates that typically live in compact colonies of many genetically identical individ-
ual polyps. Each polyp in these corals secretes a calcium-carbonate endoskeleton. This endoskeleton is left
behind long after the polyp dies. Every new generation of polyps builds on the secreted endoskeleton of its
predecessors. Thus, the large and hard physical structure of a coral is formed through numerous generations
of endoskeleton secreting polyps. Coral growth is, therefore, not very fast. In general, a coral does not grow
more than several millimetres per year [15]. These corals are called hard corals, but, there are also soft corals,
these corals lack a skeleton and look similar to underwater plants. Corals can be divided into two main cat-
egories: hard and soft corals. Hard corals are, in general, the best indicator for a healthy reef. Both hard and
soft corals are, taxonomically speaking, part of the class Anathozoa which falls under the phylum Cnidaria.
Corals share the class Anathozoa with sea anemones. In total there are around 119 coral genera and over
6,000 coral species [53].

Coral reefs, found in tropical oceans and seas, are underwater structures that are primarily composed
of colonies of corals. Most of these corals are so-called reef builders, which means that they are involved
in building reefs, making them essential to coral reefs. Coral reefs are an important member of the benthic
community. The benthos is the assemblage of organisms inhabiting the seafloor.

2.1.2. Coral bleaching
The primary food supply of almost all corals depends on protists and microscopic algae that live in the coral’s
tissues [18]. The symbiotic relationship between these algae and corals is known as mutualism since both
species benefit from their symbiotic relationship [25]. These algae, the symbionts, thrive in warm, shallow
and clear waters with enough nutrients. Coral reefs with corals that depend on such algae are therefore only

17
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found in oceans and seas where these conditions are met. However, whenever these conditions change due to
external factors, such as global warming, ocean acidification and pollution, a process called coral bleaching
might occur. Due to the changing conditions, the symbionts that live in the corals die or become stressed
and leave the corals. As corals get their colour from the algae that live within them, once these algae have left
their host, the corals lose their colour and turn white or very pale, hence the term coral bleaching. The effect
of coral bleaching on a coral can be seen in figure 2.1. Bleached corals are vulnerable as they have lost their
primary source of energy and nutrients. Only a few bleached corals will manage to survive and recover, but
most will eventually die.

Figure 2.1: Coral bleaching. The usual brown colouration of this Acropora coral (left) is lost under environmental stress when the zoox-
anthellae (inset) are expelled from its tissue, leaving the white coral skeleton visible through the translucent tissue (right). Reprintend
from [48].

Coral bleaching can occur on a global scale, in which massive amounts of corals bleach. Such mass global
coral bleaching events greatly impact coral reefs, these events occur with increasing frequency and intensity
since the late 1970s [26, 16, 27]. It is predicted that these events will occur annually from the year 2030 [13].
This would mean that the affected corals would only have a short recovery time. Such a high frequency of
coral bleaching events would be destructive for many coral reefs. The diminishing of coral reefs would greatly
impact a lot of species, as corals form the essential habitat of more than 25% of the world’s marine species [4].
Though, also our species would be impacted by the diminishing of coral reefs. Some of the main benefits that
we have from coral reefs include the following; they are a source of food and (new) medicine, provide jobs for
local communities, protect coastlines from erosion and storms and provide opportunities for recreation [3].

2.1.3. Coral reef monitoring
Because of growing concerns, such as coral bleaching, institutions and organisations are conserving, protect-
ing and managing coral reefs by monitoring them on a local and global scale. The main objective of moni-
toring coral reefs is to investigate how corals change over time, in which coral bleaching plays a huge role.
Monitoring helps to understand coral reefs by gathering data. Typically, several types of data are collected,
which includes; site surveying (information about the site), coral species surveying (information about coral
species and possibly their status) and substrate surveying (information about non-coral species). Effective
long-term monitoring of reefs establishes a baseline and is important for coral reef managers to shape, im-
plement and reflect on successful policies that are required to protect and conserve the reefs [21, 23, 10].
To monitor coral reefs, divers would, in the early days, manually collect data from the reef during the dive.
This quickly changed to image- and video-based surveying methods that require less in-water time (which is
physically demanding [39]) and fewer operations. Moreover, the images and videos are re-analysable as they
are permanent visual records of the surveyed site. Even though the time to conduct the survey decreases, the
time needed to analyse the data generally increases for visual imagery-based surveying methods as the data
still has to be annotated [29]. The data acquisition became more automated, Remotely Operated Vehicles
(ROVs) or Autonomous Underwater Vehicles (AUVs) are used to quickly and accurately collect a lot of visual
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data [34]. This also resulted in an exponential increase in the size of coral reef monitoring datasets, of which
the data still needs to be annotated for it to be of significant use. Annotated datasets can be used by marine
biologists to measure a range of interesting and important metrics such as the reef’s biodiversity (benthic
cover) and conservation status using indices such as the Shannon index [33].

Annotating the data is, however, time-consuming as taxonomists have to manually annotate the imagery
which is a tediously repetitive task and demands a lot of time. Moreover, it requires well-trained taxonomists,
as coral reefs are home to thousands of species. Yet, for some groups of benthic organisms, identification
from visual imagery is difficult even when done by experts [8, 43]. Moreover, long-term datasets are often
scattered or spatially constrained and the field data is far from standardised. This all results in a bottleneck in
the flow of information from monitoring programs to managers, which delays conservation decisions [21, 22].

2.1.4. Benthic survey imagery
Coral reef visual imagery data is often gathered in the form of benthic survey images. These are images ac-
quired by divers or AUVs. There exist several techniques to collect this data, the most commonly used tech-
nique for coral reef monitoring datasets is that of the classical photographic quadrat survey. This technique
involves a transect line of a certain distance that is laid out across a coral reef, the diver follows this transect
line and every time places a quadrat of a certain size (often 1 m2) on the benthos and takes a picture of this
quadrat from a fixed distance [29]. The result is a set of images from a coral reef that should more-or-less have
the same dimensions.

To annotate these images, random point annotations are used. Software is used to randomly select a
predefined number of points, each point representing a pixel in the image, that need to be labelled by an
expert. Figure 2.2 shows how random point annotations are extracted from a benthic survey image.

Figure 2.2: Random point annotations. A 100 random points (in red) are placed on the benthic survey image of which each point will
be annotated. To train a classifier, the random points will be extracted from the image as image patches of 150 by 150 pixels. The
surrounding pixels act as context for the classifier to extract information from. This results in a 100 annotated image patches. The
images are from the publicly available ‘Norfolk_isl_Apr_2022’ source on CoralNet.

The camera setup used for these surveys is often specific to the survey. Most camera setups only use regu-
lar reflectance cameras that capture images from the visible light spectrum in the RGB colour space, however,
some surveys use additional cameras that capture other wavelengths and different colour spaces [12, 9]. Cap-
turing wide-band fluorescence photographs is a method that might add information to the content of benthic
coral reef surveys [10].

2.1.5. Automating coral reef monitoring
The process of annotating benthic survey imagery was in dire need of modernisation as these datasets can
be so large that the analysis would take years of manual annotating. So, to automate the annotation process,
computer vision and machine learning methods have been applied to these datasets [10]. The first of these
computer vision-based methods included the use of hand-crafted features in combination with a classifier
[38, 41, 45, 37, 50, 7, 8].

More recently, the field of deep learning has gotten more promising results for the analysis of visual data.
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Therefore, researchers in coral reef monitoring began to implement deep learning methods to improve au-
tomation of benthic survey data analysis. These methods include the use of Convolutions Neural Networks
(CNNs) [30]. The use of CNNs for coral bleaching detection will be briefly expanded upon in this thesis.

2.1.6. Dataset biases

It is important to critically analyse datasets before using them to automate tasks, such as coral bleaching de-
tection in the case of this thesis. Datasets may contain biases which might be learned by a model. These
biased algorithmic outcomes might affect the behaviour of the users of these biased results. As an outcome,
the users might introduce biases again into the acquisition of additional data [40]. This is a feedback loop
that could become a vicious circle, which should be avoided. The detection of biases in data is, therefore,
paramount for the effective use of most machine learning models, and in this specific case, for further re-
search in coral bleaching detection. The detection of biases in a coral bleaching dataset and the detection of
biases in the dataset is exactly what we will explore in this thesis.

2.2. Related Work

2.2.1. Preprocessing of underwater imagery

Benthic survey datasets are obtained through underwater photography. When waterproof cameras are used
underwater, they can suffer from many issues that translate to artefacts in the obtained images. These is-
sues include blurring, noise, colour diminishing and light attenuation that are caused by varying conditions
such as depth, water temperature, turbidity and current [17]. To minimise these artefacts and improve image
quality, image enhancement and restoration techniques have been developed. These methods can be divided
among three categories; model-free, model-based and data-driven [54, 31]. The major drawback of model-
free methods is that these only rely on the observed information which is hardly enough to enhance under-
water images due to their complexity, especially with degraded underwater images. Model-based methods,
on the other hand, may also not be enough to enhance underwater images because the priors are not always
transferable from one scenario to the other and these priors may not even be available [31]. Even though the
methods of both the model-free and model-based category often improve the visual quality of most underwa-
ter images [31], experimental research has shown that using most model-free image enhancement algorithms
to preprocess the images does not necessarily improve the accuracy of a CNN that tries to label these images
[17].

2.2.2. Classification problems on coral images using transfer learning

To effectively train these complex deep learning models, a large amount of training data is necessary. How-
ever, one of the main problems with coral reef monitoring data is that only a small portion of the data is
actually labelled. Thus, most of the datasets used in literature do not have many samples. Transfer-learning
is used to increase the model’s performance when there is a shortage of data as this tends to be more effec-
tive than training a small network from scratch [56]. A CNN, for example, can learn feature maps that extract
different features at different depths of the network. Low-level layers capture low-level features (i.e. corners
and edges) and high-level layers capture high-level features (i.e. shape and texture) and are generally more
class-specific [57]. That is partly why CNNs perform so well across different domains. Allowing features to
be transferred from one domain to another whilst maintaining their discriminating power. This is especially
useful in the case of coral reef classification where there is not a lot of labelled data available. Thus, a com-
mon solution in research is to use a pre-trained CNN as a generalised feature detector that is pre-trained on a
dataset from a different domain containing a large variety of objects and backgrounds. The pre-trained CNN,
therefore, learns to extract unique information such as colour, texture and shape. The model is then fine-
tuned on context-specific data, coral reef images in the case of coral reef classification. However, pre-training
is only a form of transfer learning if the data on which the model is pre-trained comes from a different domain
than the data on which the model is fine-tuned and evaluated. Transfer learning is therefore also commonly
used in coral classification tasks [21, 35, 20]. Thus, this means that the picked CNN architecture is first pre-
trained on a large dataset (e.g. ImageNet [14], containing millions of images and thousands of classes). Then,
the CNN is fine-tuned by training the CNN on the context-specific dataset.
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2.3. Bias analysis for coral bleaching detection
2.3.1. Bias detection methods
t-distributed Stochastic Neighbor Embedding (t-SNE). t-SNE [52] is a method to visualise high-dimensional
data on a (low) two or three-dimensional space using non-linear dimensionality reduction. This means that
the iterative algorithm is able to separate data that is not linearly separable, thus a straight line. It mod-
els the probability distribution of neighbours around each point based on the Cauchy kernel (Student’s t-
distribution with 1 degree of freedom) to most accurately reconstruct the high-dimensional feature space.
The student’s t-distribution, as opposed to the Gaussian distribution, has a fatter tail that does not heavily pe-
nalise less similar data pairs in the low-dimensional projection. This helps the algorithm avoid the crowding
problem, thus it spreads the data points more evenly in the low-dimensional feature space. The perplexity, a
parameter that has to be set by the user to control the fitting, defines whether to mainly focus on the nearest
neighbours (low perplexity) or to also take the further away neighbours into account (high perplexity). We

use a perplexity value of N
1
2 where N is the number of samples and the perplexity value is capped between 5

and 50 (as suggested by the authors of t-SNE).
This method is especially effective to visualise the structure of large imagery datasets using feature em-

beddings from a CNN, making it an effective tool to analyse the relations between images fed to the network.
The output, a two or three-dimensional mapping of the extracted features, displays how the network clusters
extracted features. Where neighbouring images share similarities as interpreted by the network.

Gradient-weighted Class Activation Mapping (Grad-CAM). Figure 2.3 shows how Grad-CAM [47] uses a class
activation map to generate a heatmap on top of the input image that highlights regions in the image that are
important for the classification of the image. The class activation map is obtained by using the gradients of
the classification score (before softmax) with respect to the feature map activations of the selected convolu-
tional layer (after which ReLu has been applied) to localise the regions of the image that influence the clas-
sification score the most. This boils down to a linear combination of matrix products of the weight matrices
and the gradient with respect to activation functions till the target convolutional layer, the layer to which the
gradients are being propagated to. ReLu is applied on the resulting linear combination because the heatmap
should only highlight the positive influence of a class, thus the pixels that positively influence the prediction
probability of the target class.

Figure 2.3: Grad-CAM overview. Given an image and a class of interest as input, the image is forward propagated through the CNN
part of the model and then through task-specific computations to obtain a raw score for the category. The gradients are set to zero for
all classes except the desired class, which is set to 1. The signal is then backpropagated to the rectified convolutional feature maps of
interest, which we combine to compute the coarse Grad-CAM localisation (blue heatmap) which represents where the model has to look
to make the particular decision. Finally, the heatmap is pointwise multiplied with guided backpropagation to get the Guided Grad-CAM
visualisations which are both high-resolution and concept-specific. Reprintend from [47].

Learning to Split for Automatic Bias Detection (LS). LS [5] is a recently published method in the field of
automatic bias detection where the source of bias is unknown during training and validation. This meta
learning method involves a bi-level optimisation problem where the inner- and outer-loop have to cooperate
with each other to maximise a generalisation gap between a training and testing split. In the inner-loop it
trains a Predictor on a classification task. Once converged, the predictions from the converged model will be
used in the outer-loop by a Splitter model that learns to place correctly predicted samples in the training set,
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which cannot generalise on the test split, while adhering to two constraints. These constraints are defined to
avoid finding a split with (i) a shortage of training samples and (ii) a class imbalance among the splits. This
amounts to a Splitter playing an adversarial game with the Predictor that is trained until convergence in every
iteration of training the Splitter.

The LS algorithm (see Algorithm 1) uses Eq. 2.1 to calculate the regularity constraints and Eq. (2.2 - 2.3)
to calculate the losses. The algorithm is able to find challenging splits by refining the Predictor based on the
iteratively updated Splitter.

Algorithm 1 Learning to Split (LS). Reprinted from [5].

Input: dataset Dtotal.
Output: data splits Dtrain, Dtest.

Initialize Spl i t ter as random splitting.
repeat ▷Outer-loop

Apply Spl i t ter to split Dtotal into Dtrain and Dtest.
Initialise Pr edi ctor and train Pr edi ctor on Dtrain using emperical risk minimisation.
Eveluate Pr edi ctor on Dtest and compute its generalisation gap.
repeat ▷ Inner-loop

Sample a mini-batch from Dtotal to compute the regularity constraintsΩ1,Ω2 (Eq. 2.1).
Sample another mini-batch from Dtest to compute L gap (Eq. 2.2).
Update Spl i t ter to minimise the overall objective L total (Eq. 2.3).

until L total stops decreasing.
until gap stops increasing.

The regularity constraints from LS are defined as:

Ω1 = DK L(IP(z)||Bernoulli(δ)), (2.1)

Ω2 = DK L(IP(y |z = 1)||IP(y))+DK L(IP(y |z = 0)||IP(y)).

where Ω1 avoids finding a split with a shortage of training samples where the marginal distribution IP(z)
represents the ratio of the train and test split. The Splitter is penalised when this distribution moves too far
away from the prior distribution Bernoulli(δ)) with δ which is the user defined split ratio, this amounts to
train / (train + test). Ω2 avoids finding an imbalanced split. The Splitter is penalised when the label marginals
in the training split IP(y |z = 1) and the test split IP(y |z = 0) move too far away from the original label marginal
IP(y).

The gap loss from LS is defined by:

L gap = 1

|Dtest|
∑

(xi ,yi )∈Dtest

L CE(IPSpl i t ter (zi |xi , yi ),1yi (ŷi )). (2.2)

where xi is the input, yi is the label, ŷi is the Predictor’s prediction for which the cross entropy loss between
ŷi and the Splitter’s prediction correctness over the testing split is minimised.

The total loss from LS is defined by the sum of the regularity constraints and the gap loss:

L total =L gap +Ω1 +Ω2. (2.3)

2.4. Coral bleaching dataset analysis
2.4.1. CoralNet Class Balanced Bleaching (CCBB) dataset
We introduce the CCBB dataset using images scraped from the CoralNet1 project [7, 6, 8, 11, 55]. Figure 2.4
shows the pipeline for the data acquisition and preprocessing of the data. Reference the scientific paper for a
table with an extensive overview of the dataset composition.

Data augmentations. To artificially increase the variability of the distribution of the training samples, we
augment training data during training time. The aim of these augmentations is to avoid overfitting the model
on the training data. The augmentations that we use do not change the spatial pattern of the target class
and are inspired by augmentations proposed in previous research on coral classification using benthic survey

1https://coralnet.ucsd.edu/

https://coralnet.ucsd.edu/
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Figure 2.4: Pipeline for the data acquisition from CoralNet and for the for creation of the experimental datasets including the preprocess-
ing steps. We scrape publicly available data from CoralNet to obtain a large dataset of healty and bleaching coral images. The assembly
of the final dataset depends on the parameters defined in the preprocessing pipeline.

Input                  Rotated by 103°                Cropped                       Resized

150x150                      150x150                     125x125                      150x150

Figure 2.5: The custom random rotate data augmentation. The input image of 150x150 pixels is first rotated by a random angle, then
cropped (at the centre) to remove the black corners after which the image is resized to the original size of 150x150 pixels.

imagery [20, 19]. The augmentations, if used in any experiment, are (i) a random rotation followed by a centre
crop to remove the possibly added black corners due to rotation, as seen in Figure 2.5, and (ii) a random
centre crop. Both augmentations do not change the centre of the image patch, as this represents that which
is actually annotated. And both augmentations finish with a re-scale to resize the augmented images to the
original dimensions. Another augmentation used on the training data but also on the validation data is a
normalisation using the mean and standard deviation of the training samples.

2.4.2. Experimental setup
Model architecture. The architecture that we use for the experiments is the Residual Network (ResNet) [24]
architecture. The specific version that we use is the ResNet-18 architecture, depicted in Figure 2.6, which
shows superior performance on coral classification tasks when training a model from scratch or fine-tuning a
model [42, 36, 20, 19, 46, 32], it is well suited for smaller datasets [51], it is deeper yet smaller than some other
architectures like VVGNet [49], outperforms SqueezeNet [28] (see Table 2.1), and the on ImageNet [14] pre-
trained model is available for PyTorch2. The experiments that required the use of a CNN have been adjusted
to use the ResNet-18 model.

The authors of ResNet introduced the concept of an ‘identity shortcut connection’ which allows the model
to skip layers. Stacking these residual blocks makes it possible to train much deeper networks by solving the
degradation problem. Figure 2.7 shows such a residual skip connection.

Model setup. For the ResNet-18 model, we used the Stochastic Gradient Descent (SGD) optimiser with a

2https://pytorch.org/hub/pytorch_vision_resnet/

https://pytorch.org/hub/pytorch_vision_resnet/
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Figure 2.6: ResNet architecture. We use the 18-layer ResNet architecture in our experiments. Reprinted from [24].

Figure 2.7: Residual learning: a building block. The ‘identity shortcut connection’ allows for information to flow from one layer to a
deeper layer by skipping the layers in between. Reprinted from [24].

learning rate of 0.001 and a momentum of 0.9. This optimiser has shown superior performance compared
to Adam in our experiments (see Table 2.1). For the learning rate, we used a scheduler that would decay the
learning rate by 0.1 every 7 epochs with a gamma of 0.1. As a criterion, we used the cross-entropy loss. Each
experiment ran for 20 epochs with batches of 128 samples. To cross-validate the results we used a 10-fold
cross-validation which amounts to a 90/10 training/validation split for each fold.

Hyperparameter optimisation
Accuracy Loss

Importance Correlation Importance Correlation

Model
ResNet-18 0.129 0.248 0.084 -0.029

SqueezeNet 0.056 -0.248 0.052 0.029

Optimiser
SGD 0.243 0.204 0.072 -0.236

Adam 0.151 -0.204 0.09 0.236

Table 2.1: Hyperparameter tuning for the model and the optimiser when training and validating a CNN on the CCBB dataset. Correlation
is the linear correlation between the hyperparameter and the chosen metric (accuracy or loss on the validation set in this case). So a high
correlation means that when the hyperparameter has a higher value, the metric also has higher values and vice versa. Importance†

is calculated using a random forest trained on hyperparameters as input and the metric as the target output. To obtain the accuracy
and loss of the validation split, the model has been trained using a 5-fold cross-validation scheme, thus the results are averaged across
these 5 runs. The accuracy should be maximised (more positive correlation is better) and the loss should be minimised (more negative
correlation is better). The results indicate that the combination of the ResNet-18 model with the SGD optimiser performs the best for

coral bleaching detection on the CCBB dataset. †https://docs.wandb.ai/ref/app/features/panels/parameter-importance/

2.4.3. Initial analysis for bleaching detection
To get an indication of how well the task of coral bleaching can be learned by a CNN, we train ResNet-18,
both from scratch and fine-tuned, without and with data augmentations (as described above). When fine-

https://docs.wandb.ai/ref/app/features/panels/parameter-importance/
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Figure 2.8: Learning curves of training ResNet-18 models on the CCBB dataset for coral bleaching detection. The x-axis represents the
amount of epochs and the y-axis is shared, representing the accuracy (where 1 = 100%) and the loss. None of these models seem to
overfit on the data since there are no big gaps between the training and validation curves, they are quite similar. The models seem to
converge quite fast, some models need a bit more time for the performance on the validation set to improve and converge. But generally
after 10 epochs the model is converged. The validation accuracy of the models is never lower than 80% for a converged model. From
these learning curves it is clear that the fine-tuned models outperform the models trained from scratch. And that the data augmentations
decrease the performance gap between the training and validation sets.

tuning the model, we refer to fine-tuning the CNN by initialising the model using the pre-trained ResNet-18
model before training it. Thus we do not freeze the weights of ResNet-18 as typically done when perform-
ing transfer learning with the pre-trained network as a feature extractor where only the last fully-connected
layer is replaced and trained. The results are surprising, as the model showed exceptional performance, es-
pecially when using transfer learning by fine-tuning the model, as seen in Figure 2.8 and Table 2.2. Besides
the surprisingly accurate models, the difference between the performances given the different setups are pre-
dictable. It is expected from a fine-tuned model to perform better than training a model from scratch. Just as
it is explainable that data augmentations close the performance gap between the training and validation set
because the augmentations (performed during training) help the model learn from a bigger data distribution,
helping it generalise better for unseen data, the validation samples.

Training method Augmentations ROC AUC score

Training from scratch
Yes 0.8285

No 0.8947

Fine-tuning
Yes 0.9448

No 0.9579

Table 2.2: Training ResNet-18 on the CCBB dataset for coral bleaching detection. The ROC AUC score is obtained from the last epoch,
when the model converged, on the validation set and averaged across the 10 runs using the 10-fold cross-validation scheme. The fine-
tuned models outperforms the models trained from scratch, despite using augmentations or not, because it has already been trained on
a lot of images and therefore knows how to extract useful image features. The augmentations make it harder for the model to learn the
exact data distribution as the samples are augmented during training time, increasing the variety of the samples.

2.4.4. Manual bias analysis for bleaching detection
Here we use Grad-CAM to explore possible biases in the CCBB dataset. The idea using this method is to
perform an exploratory analysis on the biases in the predictions of a CNN trained on the CCBB dataset. The
expectation is that the output of Grad-CAM for biased images is a heatmap that indicates that regions, such as
intrusive objects, are important for the classification of coral bleaching such that these regions are highlighted
in the heatmaps. This would then support the intrusive object hypothesis (as hypothesised in the scientific
paper) and might even help us formulate new bias hypothesis. We use the fourth convolutional layer from a
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[Healthy] predicted: Healthy [Healthy] predicted: Healthy [Healthy] predicted: Healthy [Bleaching]predicted:Bleaching[Bleaching] predicted: Bleaching[Bleaching] predicted: Bleaching

Healthy correctly classified Bleaching correctly classified[Healthy] predicted: Bleaching[Healthy] predicted: Bleaching [Healthy] predicted: Bleaching [Bleaching] predicted: Healthy [Bleaching] predicted: Healthy [Bleaching] predicted: Healthy

Healthy misclassified Bleaching misclassified

Figure 2.9: Image patches with their Grad-CAM activation maps stacked on top of each other. The class activations are highlighted using
a heatmap with a gradient from blue to red where blue means little to no positive class activations and red means strong positive class
activations. No clear conclusion can be drawn from these heatmaps, other than that the model is often able to focus on corals in the
images to classify whether the image contains a bleached or healthy coral.

ResNet-18 model, trained (without transfer learning) on the CCBB dataset without any data augmentations,
to get the class activations from. Some of these heatmaps are depicted in Figure 2.9. The results show that
the model is able to focus on corals from time to time. However, it also occurs that the model does not really
activate on any particular part of the image. Some of these images have invasive objects (such as a measuring
tape or some lines) but the model often does not seem to activate based on these objects. The model only
seems to activate based on an object for one such images in Figure 2.9 (first bleaching misclassified image).
There also seems to be no visual relationship between the heatmaps, classes and whether these are correctly
classified or not. We conclude that the Grad-CAM method to manually find biases in the CCBB dataset is a
difficult task and the results show no clear biases.

2.4.5. Automatic bias analysis for bleaching detection
The result from the LS method that is used in these experiments is selected among several runs. By picking
the result with the biggest generalisation gap, being 29.81%, we select the most interesting split to analyse as
the biases should be separated the most between these splits among all the LS runs.

The random split, that will be referred to as Drandom, is a random 75/25 (train/test) dataset split with a
minimal generalisation gap of 0.19%. The worst split, that will be referred to as Dworst, is the split with the
biggest generalisation gap (29.81%) found by running the LS method several times. The data from these splits

will be referred to as D
split
type where split is either random or worst and type is either train, test or not specified

in case it refers to all the data of the split.

Figure 2.10 shows a t-SNE plot that shows the data distributions of Drandom and Dworst when extracted
by the corresponding Predictor. The data points are represented by the actual image patches which helps us
interpret the data distribution and the possible formed clusters. There are several clusters formed that shows
the importance of features extracted from the images. These include the colour mask of an image forming
clusters of green, yellow, grey or blue images. Also the sharpness of an image plays a role in the grouping of
images, as well as the presence of objects (e.g. a grid of red lines or white tubes).
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Figure 2.10: The t-SNE plots for Drandom and Dworst, both using features extracted by the corresponding trained ResNet-18 models. The
images are clustered together based on visual features such as colour, sharpness and whether there are some objects in the image (e.g.
a grid of red lines). The distribution of Drandom

test is quite similar to Drandom
train as the data is just randomly split. However, the distribution

of Dworst
test is not similar to Dworst

train . The Splitter obtained Dworst
train and Dworst

test as the Predictor correctly classified samples from Dworst
train and

misclassified samples from Dworst
test . This is supported by the distribution of the Predictor’s extracted features as those are well divided for

Dworst
train and more overlapping for Dworst

test , thus it is more prone to misclassify Dworst
test . The Predictor learned to extract features from the

Dworst
train samples such that these discriminate well for only Dworst

train samples for the given classification task. Thus, this suggests that the

Dworst
train contains biases that are less prevalent in Dworst

test such that the learned biases do not help with the classification of Dworst
test samples.
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The CoralNet label bias hypothesis. The t-SNE of Drandom using the corresponding trained model can be
observed in Figure 2.11 which shows no significant difference between Drandom

train and Drandom
test for the distri-

bution of the samples based on the CoralNet label they come from. The model seems to cluster the samples
based on the CoralNet label they come from and this happens for both the Drandom

train and Drandom
test . However,

when comparing this to Dworst in Figure 2.11, it shows that this only plays a role in the feature extraction of
the model for Dworst

train as Dworst
test does not contain such specific clusters. This strongly suggest that the CoralNet

label from which images come from does form a bias for classes when classifying coral bleaching images.
Figure shows pie charts in which we quantify the ratio of samples from CoralNet labels between and

among splits. From this quantification we see that the CoralNet label forms a bias in the CCBB dataset. Most
noticeable is the lack of the samples from CoralNet labels 1764 and 2060 in the Dworst

test split, these are samples
from the bleaching class. This suggests that these samples might be very biased.

CoralNet label bias conclusion: The CoralNet labels of which samples come from forms a bias in the CCBB
dataset. We show this using t-SNE plots of samples by colouring the samples according to the CoralNet label.
The difference in the distributions of Drandom and Dworst in the t-SNE plots and in the qualitative analysis verify
the CoralNet label bias.

The saturation and value bias hypothesis. We use histograms to see and quantify the distributions of the sat-
uration and value from the HSV image domain between and among splits (see Figure 2.13). The distributions
of Drandom are very similar, as expected for a random split as the samples are randomly distributed among
the split. For Dworst, there is also no difference in the distribution of saturation or value values among Dworst

train
and Dworst

test . Since the images are all preprocessed using CLAHE, the saturation distribution of the images is
more normalised which explains that this potential bias has been mitigated. And for the value distribution of
the images, there also seems to be no bias.

Saturation and value bias conclusion: The saturation and value of the images do not form biases in the CCBB
dataset as shown using the histograms to quantify the distributions of the saturation and value among and
between LS splits.

2.5. Discussion
The manual bias detection Grad-CAM is hard to interpret for this type of data, especially when the class acti-
vations are not focused on any objecst at all. Despite generating and analysing a huge amount of Grad-CAM
results, we can not find any relation between heatmaps, specific regions in images, classes and predictions.
Therefore, we conclude that the manual detection method is insufficient to detect biases in the CCBB dataset.
However, when combining this method with other methods proposed in literature, such as to cluster the
heatmaps, it might unlock the potential to use the Grad-CAM results more effectively.

The automatic bias detection method, in combination with some visualisation techniques, helps find bi-
ases. The CoralNet label seems to play an important role when LS tries to find a maximum generalisation gap.
Despite verifying this bias, it most likely is not a bias on its own but rather a source of multiple biases. Coral-
Net labels come from specific sources and these differ for most labels. Given that the sources use different
camera setups and acquire their data from different places using different protocols, source specific artefacts
will appear. Thus, actually the sources of images cause biases and since the data is distributed among labels
with from different sources, labels will have different biases. Based on which class these labels belong to,
healthy or bleaching, the biases might become class specific causing dataset biases. Discovering which labels
contain most biases does help identify sources that cause biases by limiting the search space. Yet, it would
still require the coupling of image patches to specific sources which is only possible for a small part of the
data that we use from CoralNet to obtain the CCBB dataset.
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Figure 2.11: CoralNet label hypothesis. The t-SNE plots for Drandom and Dworst highlighting the CoralNet label by colouring the sam-
ples, both using features extracted by the corresponding trained ResNet-18 models. The CoralNet label to play an important role for
models when extracting features. Samples of the same CoralNet label are clustered together, this holds for almost all CoralNet labels,
except for samples from the CoralNet labels 5877, 5869, 5881 and 5897. The distributions of Drandom

train and Drandom
test are very similar

whereas the distribution of Dworst
test is very different from that of Dworst

train , just like in Figure 2.10. Dworst
test is just one cluster of samples from

all different CoralNet labels and it does not contain any cluster of specific CoralNet labels.
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Figure 2.12: CoralNet label hypothesis. Pie charts for Drandom (a) and Dworst (b) comparing the ratio of samples from CoralNet labels
represented in the splits. The ratio for the classes in Drandom

train and Drandom
test is similar whereas that of Dworst the ratio of Dworst
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quite balanced yet that of Dworst
test is very unbalanced. The difference between the distributions of Drandom compared to that of Dworst

indicates that the Splitter of Dworst learned to find a split where the CoralNet label of image patches helps to fool the Predictor, thus
forming a bias in the dataset.
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Figure 2.13: Saturation and Value hypothesis. Histograms for saturation (a) and value (b) for Drandom and Dworst. The saturation and
value distributions of Drandom and Dworst are very similar. This indicates that the saturation nor the value of the images form a bias in
the CCBB dataset.
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