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598 HANS F. BURCHARTH

1 Introduction

Conventional design practice for coastal structures is deterministic in nature and is based
on the concept of a design load, which should not exceed the resistance (carrying capacity)
of the structure. The design load is usually defined on a probabilistic basis as a charac-
teristic value of the load, e.g. the expectation (mean) value of the 100-year return period
event, however, often without consideration of the involved uncertainties. The resistance is
in most cases defined in terms of the load which causes a certain design impact or damage
to the structure and is not given as an ultimate force or deformation. This is because most
of the available design formulae only give the relationship between wave characteristics
and structural response, e.g. in terms of run-up, overtopping, armour layer damage etc.
An example is the Hudson formula for armour layer stability. Almost all such design for-
mulae are semi-empirical being based mainly on central fitting to model test results. The
often considerable scatter in test results is not considered in general because the formulae
normally express only the mean values. Consequently, the applied characteristic value of
the resistance is then the mean value and not a lower fractile as is usually the case in other
civil engineering fields. The only contribution to a safety margin in the design is then the
one inherent in the choice of the return period for the design load. It is now more common
to choose the return period with due consideration of the encounter probability, i.e. the
probability that the design load value is exceeded during the structure lifetime. This is an
important step towards a consistent probabilistic approach.

A safety factor or a conventional partial coefficient (as given in some national standards)
might be applied too, in which cases the methods are classified as Level I (deterministic/quasi
probabilistic) methods. However, such approaches do not allow the determination of the
reliability (or the failure probability) of the design, and consequently it is neither possible
to optimize, nor to avoid over-design of a structure. In order to overcome this prob-
lem more advanced probabilistic methods must be applied where the uncertainties (the
stochastic properties) of the involved loading and strength variables are considered. Meth-
ods where the actual distribution functions for the variables are taken into account are
denoted Level III methods. Level II methods comprise a number of methods in which
a transformation of the generally correlated and non-normally distributed variables into
uncorrelated and standard normal distributed variables is performed and reliability in-
dices are used as measures of the structural reliability. Both Level II and III methods
are discussed in the following. Described is also an advanced partial coefficient system
which takes into account the stochastic properties of the variables and makes it possible
to design to a specific failure probability level.

2 Failure modes and failure functions

Evaluation of structural safety is always related to the structural response as defined by
the failure modes. Neglect of an important failure mode will bias the estimation of the
safety of the structure.



RELIABILITY EVALUATION OF A STRUCTURE AT SEA 599

Fig. 1 illustrates the failure modes for a conventional rubble mound breakwater with a
capping wall.
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FIG. 1. Failure modes for a rubble mound breakwater.

Each failure mode must be described by a formula and the interaction (correlation) between
the failure modes must be known. As an illustrative example let us consider only one failure
mode, “hydraulic stability of the main armour layer”, described by the Hudson formula

I
"= K p A3 cota o)
where D,, is the nominal block diameter, A = £~ —1, where f: is the ratio of the block
and water densities, a is the slope angle, Hs is the significant wave height and Kp is the
coefficient signifying the degree of damage (movements of the blocks).

The formula can be split into load variables X/°*? and resistance variables, X7**. Whether
a parameter is a load or a resistance parameter can be seen from the failure function. If
a larger value results in a safer structure it is a resistance parameter and if a larger value
results in a less safe structure it is a load parameter.

According to this definition one specific parameter can in one formula act as a load pa-
rameter while in another it can act as a resistance parameter. An example is the wave
steepness in the van der Meer formulae for rock, which is a load parameter in the case of
surging waves but a resistance parameter in the case of plunging waves. The only load
variable in eq. (1) is H, while the others are resistance variables.

Eq. (1) is formulated as a failure function (performance function)

< 0 failure
g=A-A-D,(Kpcota)'* — H,{ =0 limit state (failure) (2)
> 0 no failure (safe region)

All the involved parameters are regarded as stochastic variables, X;, except Kp, which
signifies the “failure”, i.e. a specific damage level chosen by the designer. The factor A in
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600 HANS F. BURCHARTH

eq. (2) is also a stochastic variable signifying the uncertainty of the formula. In this case
the mean value of A is 1.0.

In general eq. (2) is formulated as
g= R-S (3)

where R stands for resistance and S for loading. Usually R and S are functions of many
random variables, i.e.

R ROET* , X2 ¢ v0e o X2 vl §=S(X0% ; uivna , X4) or g=g(X)

The limit state is given by
g=0 (4)

which’is denoted the limit state equation and defines the so-called failure surface which
separates the safe region from the failure region.

In principle R is a variable representing the variations in resistance between nominally
identical structures, whereas S represents the maximum load effects within a period of
time, say successive T years. The distributions of R and S are both assumed independent
of time. The probability of failure P; during any reference period of duration T years is
then given by

Py = Prob [g < 0] (5)
The reliability R is defined as
R=1-P (6)

3 Single failure mode probability analysis

3.1 Level III methods

A simple method - in principle — of estimation of P; is the Monte Carlo method where a
very large number of realisations = of the variables X are simulated. Py is then approxi-
mated by the proportion of the simulations where g < 0.

The reliability of the method depends of course on a realistic assessment of the distribution
functions for the variables X and their correlations.

Given fg as the joint probability density function (jpdf) of the vector X = (X; , X3, ... ,
X,) then eq. (5) can be expressed by

Py = / [z (2) dz (7
R<S

214




RELIABILITY EVALUATION OF A STRUCTURE AT SEA 601

Note that the symbol z is used for values of the random variable X.
If only two variables R and S are considered then eq. (7) reduces to
Py = [ finsr,s)dr ds (8)
R<S :

which can be illustrated as shown in Fig. 2. If more than two variables are involved it is
not possible to describe the jpdf as a surface but requires an imaginary multi-dimensional
description.

Failure surface
r-s=0
RN

Safe region

Design point

Contours of
constant fgs

—— > r

FIG. 2. [Illustration of the two-dimensional joint probability density function for load-
ing and strength.

Fig. 2 also shows the so-called design point which is the design point on failure surface
where the joint probability density function attains the maximum value, i.e. the most
probable point of failure.

Unfortunately, the jpdf is seldom known. However, the variables can often be assumed
independent (non-correlated) in which case eq. (7) is given by the n-fold integral

P,=//RS/S.../fx,(z,)...fx,(z,.)dz,...dz.. ©)

where fx; are the marginal probability density function of the variables X;. The amount
of calculations involved in the multi-dimensional integration eq. (9) is enormous if the
number of variables, n, is larger than say 5.

If only two variables are considered, say R and S, then eq. (9) simplifies to

Py = [ [ fa(r) fs(s) dr ds (10)

RS

which by partial integration can be reduced to a single integral

Py = [ Fu(a) fs(z) dz (11)
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A fs(s). Fa(r)

e S,rM,X
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o
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x

FIG. 3. [Ilustration of failure probability in case of two independent variables,
S and R.

where FR is the cumulative distribution function for R. Formally the lower integration limit
should be —oo but is replaced by 0 since, in general, negative strength is not meaningful.

Eq. (11) can be explained as the product of the probabilities of two independent events,
namely the probability that S lies in the range z, z+dz (i.e. fs(z)dz) and the probability
that R < z (i.e. Fgr(z)), cf. Fig. 3.

3.2 Level II methods
3.2.1 Linear failure functions of normal-distributed random variables

In the following is given a short introduction to calculations at level II. For a more detailed
description see Hallam et al. (1977) and Thoft-Christensen and Baker (1982). Only the
so-called first-order reliability method (FORM) where the failure surface is approximated
by a tangent hyberplane at some point will be discussed. A more accurate method is
the second-order reliability method (SORM) which uses a quadratic approximation to the
failure surface.

Assume the loading S(z) and the resistance R(z) for a single failure mode to be statistically
independent and with density functions as illustrated in Fig. 3. The failure function is
given by eq. (3) and the probability of failure by eq. (10) or eq. (11).

However, these functions are in many cases not known but might be estimated only by
their mean values and standard deviations. If we assume S and R to be independent
normally distributed variables with known means and standard deviations, then the linear
failure function ¢ = R — S is normally distributed with mean value,

Hg = BR — Bs (12)
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and

standard deviation, o, = (a,’; + a§)°’5 (13)

The quantity (g — p,) /o, will be unit standard normal and consequently

0
Py =problg < 0] = [ fy(z)de =@ (0;_*‘) = 3(-5) (14)
where
_ b
p=te (15)

is a measure of the probability of failure and is denoted the reliability indez (Cornell 1969),
cf. Fig. 4 for illustration of 8. Note that £ is the inverse of the coefficient of variation and
is the distance in terms of number of standard deviations from the most probable value of
g (in this case the mean) to the failure surface, g = 0.

o 00)

A
g<o0 g>0
Failure Sofe domaine
+—1—>

Area = P,;
0 Hy X

lepoe ]

FIG. 4. Dlustration of the reliability index.

Some corresponding values of # and Py are given in Table 1.

Table 1. Corresponding values of f and P;.

B Py = ®(-p)
0.0 0.50

0.5 0.31

1.0 0.16

1.5 0.067

2.0 0.023

3.0 0.0013

4.0 0.32-1074
5.0 0.29-10
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If R and S are normally distributed and “correlated” then eq. (14) still holds but g, is
given by

0.5
0y = (0';1 - U_zg + 2prsor Us) (16)

where pgs is the correlation coefficient

Cw[Ry S] - E[(R -”R) (S_ /‘S)]

OROSs OROs

PRs = (17)

R and S are said to be uncorrelated if prs = 0.

In general, if the failure function g = ¢ (X’ ) is a linear function of the normally distributed
basic variables X, X3, ... X,, i.e.

g=a,+a1X1+ang+...+a,.X,. (18)

then g = £4 and P, can be found from eq. (14) using

By = Go+ G1p + G2z + ... + Gnpin (19)
and
0’3 = a;d? +...% aia: + Z Z Pijaia;00; (20)
=1 j=1
J#

where p;; expresses the correlation coefficient between any pair of variables, cf. eq. (17).

Besides the illustration of 8 in Fig. 4 a simple geometrical interpretation of 3 can be
given in case of a linear failure function ¢ = R — S of the independent variables R and
S by a transformation into a normalized coordinate system of the random variables R’ =
(R—pr) /or and S’ = (S — us) /os, cf. Fig. 5.

g=r—-s=0

\j

FIG. 5. Dlustration of B in normalized coordinate system.
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With these variables the failure surface g = 0 is linear and given by
Rop—S'os+pr—ps =0 (21)

By geometrical considerations it can be shown that the shortest distance from the origin
to this linear failure surface is equal to

g=Fts _ _BR™Us
9 (okh+03)™*

in which eqs. (12) and (13) are used.

3.2.2 Non-linear failure functions of normal-distributed random variables

If the failure function g = g (X ) is non-linear then approximate values for y, and o, can
be obtained by using a linearized failure function.

Linearization is generally performed by Taylor-series expansion about some point re-
taining only the linear terms. If the expansion is performed around the mean values
(X1, ... ,Xa) =1, ... ,pn then

LN
EXICHSED 316 Em (22)
=1 s
where 9g/0X; is evaluated at (p1, ... ,p,). The approximate values of #y and o, are
then
B = g(p1y oy pin) (23)
<~ 99 99

< 9X; 9X, Cov[X;, X;] (24)

If the random variables X are “uncorrelated”, i.e. px.x; =0, then e.g. (24) reduces to
n ag 2
=% (%) e
because Cov [X;, X;] = 0%, and Cov[X;, X;] =0 for all i and j, i # j.

When linearization is performed around the expected mean values the method is often
called a first-order mean value approach (FMA).

The values of y, and o,, and thereby also the value of 3, depend on the choice of lin-
earization point. Moreover, the value of 3 defined by eq. (15) will change when different
but equivalent non-linear failure functions are used. For example an equivalent failure
function to eq. (2) would be

g=A3A°D;"_KDcota—Hf (26)
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which expresses the Hudson formula as does eq. (2), but will result in different S-values.

In order to overcome these problems a transformation of the basic variables X =
(X1, Xa, ... ,X,) into a new set of normalized variables Z =(%, 2y, ... ,2y,) is per-
formed. For uncorrelated normal distributed basic variables X the transformation is
Xi—px:

Z; = o (27)
in which case uz;, = 0 and oz, = 1. By this linear transformation the failure surface g = 0
in the z-coordinate system is mapped into a failure surface in the z-coordinate system
which also divides the space into a safe region and a failure region, cf. Fig. 6.

Mapping into normalized coordinate system

VR

A X2 AZI
Failure region Linearized \ i
1 tailute \ Failure region
surface p ~Design point
Foilur(o )surfucc
g(x)=0
Safe region i Safe rogion’/
>‘ BuL Z2
~ >
Failure_ surface
g(z)=0

FIG. 6. Definition of the Hasofer and Lind reliability index, Sg L.

Fig. 6 introduces the Hasofer and Lind reliability index By, which is defined as the
distance from origo to the nearest point, D, of the failure surface in the z-coordinate
system. This point is called the design point. The coordinates of the design point in the
original z-coordinate system are the most probable values of the variables X at failure,
BuL can be formulated as

,, 05
BruL = min (Z z,’) (28)
9(¥)=0 \i=1 .

The special feature of Sy, as opposed to 3 is that By is related to the failure “surface”
g(2) = 0 which is invariant to the failure function because equivalent failure functions
result in the same failure surface.

The two reliability indices # and By will coincide when the failure surfaces are linear,
cf. Figs. 5 and 6. Obviously, this will also be the case if non-linear failure functions are
linearized by Taylor Series expansion around the design point.

Linearization around the design point instead of mean values is therefore very much to

21-10
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be preferred, also because the design point is the most probable point of failure, cf. Fig.
2. Linearization around mean values can lead to quite erroneous results but due to the
simplicity of the method it might be used to get a first order-of-magnitude impression of
the failure probability.

The method where linearization is performed around the design point is often called a
first-order design point approach (FDA).

The calculation of By and the design point coordinates can be undertaken in a number
of different ways. An iterative method must be used when the failure surface is non-linear.
In the following a simple method is introduced.

Let @ denote the distance from the origin to any point at the failure surface given in the
normalized coordinate system

n 13

0= z?]

> (9)
g(z1,22y ... y2,) =0

Construct the multiple function (Lagrange function)

[z,’+z§+ +z:]§+K,g(zl,zz, wn 1 Zig) (30)
where K is an unknown constant (multiplier).

Maximum or minimum of # occurs when

oF 2-4 . dg -
o =[f+23+ ... +2277 5+ Ky == o =0 i=12, ... ,n (31)
9(z1,22, ... ,2) =0

Assume that only one minimum exists and the coordinates of the design point D are given
by

(zf,zgv eee 12) (ﬂlILal) ﬂHLah e ’ﬂHLan) (32)

Then

Omin = BuL = Z (ﬂm,a.) and consequently

i=1

Za?=l (33)

i=1
Eq. (31) becomes
ﬂ”t (ﬂﬂLO.)+K|'aa—=0 i=12 ...,n (34)
9(BuLen, Buraa, .. ,Buras) =0
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or
) %
a; = % _ 8z;
i ¥ (35)
K ‘
9 (Buren, Brraz, ... \Buran) =0

Inserting eq. (35) into eq. (33) gives

n (8g)? H
The a-values defined by (32) are often called sensitivity factors (or influence factors)
because a? provides an indication of the relative importance on the reliability index By, of
the random variable X;. If o? is small it might be considered to model X; as a deterministic

quantity equal to the median value of X;. In such case the relative change in the reliability
index by assuming X; deterministic can be approximated by

BuL(X; : deterministic) - 1
Bur(X: : random) ~ /] _ 2

(37)

The corresponding change in failure probability can be found from eq. (14) or from Table
1. Eq. (37) is used for the evaluation of a simplification of a failure function by reducing
the number of random variables.

Tile sensitivity of By to change in the value of a deterministic parameter b; can be
expressed by
dfur _ 1 dg
db; ~ K 0b;

(38)

where K is given by eq. (36) and the partial derivative of g with respect to b; is taken in
the design point.

Eq. (38) is useful when it is considered to change a deterministic parameter (e.g. the
height of wave wall) into a stochastic variable.

EXAMPLE 1

Consider the hydraulic stability of a rock armour layer given by the Hudson equation
formulated as the failure function, cf. eqs. (1) and (2)

9=AAD, (Kpcota)} — H, (39)

all the parameters are regarded uncorrelated random variables X;, except Kp which sig-
nifies the failure criterion, i.e. a certain damage level here chosen as 5% displacement
corresponding to Kp ~ 4. The factor A is also a random variable signifying the uncer-
tainty of the formula.

21-12




RELIABILITY EVALUATION OF A STRUCTURE AT SEA 609

All random variables are assumed normal distributed with known mean values and stan-
dard deviations, cf. Table 2. The normal distribution can be a bad approximation for
H, which is usually much better approximated by an extreme distribution, e.g. a Weibull
or Gumbel distribution as will be discussed later. The normal distribution of Hs is used
here due to the simplicity involved but might be reasonable in case of depth limited wave
conditions. ’

Table 2. Basic variables.

1 X; BX; ox; coefficient of variation
ox;/px;

1 A 1 0.18 18%

2 D, 1.5m 0.10 m 6.7%

3 H, 44 m 0.70 m 16%

4 A 1.6 0.06 3.8%

5 cota 2 0.10 5.0%

The failure surface corresponding to the failure function (39) reads for Kp = 4
AA D, (cota)} 1.59 — H, = 0
or
X1 Xe X2 X3 159 — X5 =0 (40)

By use of the transformation eq. (27) the failure surface in the normalized coordinate
system is given by

(140.18 ) (1.6 4+ 0.06 z,) (1.5 + 0.10 2;) (2 4 0.10 z5)% 1.59 — (4.4 +0.70 25) = 0

In order to make the calculations in this illustrative example more simple we neglect the
small variational coefficients of A and coia and obtain

(140.18 z;)- 1.6 - (1.5+ 0.10 25) - 25 - 1.59 — (4.4 + 0.70 z3) = 0 (41)

or
0.864 z; + 0.32 23 + 0.058 2,29 — 0.70 23+ 0.40 = 0 (42)
0.864 Bura; + 0.32 Byras + 0.058 ﬂ},Lalag —0.70 Byraz +0.40 =0

—0.40
- 0.864 a; +0.32; +0.058 a1 a2y — 0.70 a3

BHL
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By use of eq. (35)

_% (0.864 + 0.058 By Laz)

o =
1
Q; = —-E (032 + 0.058 ﬂHL(!l)
a ——3 ﬂ
T K
By eq. (36)

K =1/(0.864 + 0.058 Buraz)® + (0.32 + 0.058 Brzas)? + (0.7)?

The iteration is now performed by choosing starting values for By, a1, a; and a3 and
calculating new values until small modifications are obtained. This is shown in Table 3.
The convergence is faster if a positive sign is used for a-values related to loading variables
and a negative sign is used for a-values related to resistance variables.

Table 3.
Iteration No.
start 1 2 3
BuL 30| 0438| 0.342]| 0.341
K 1.144 1.149 1.149
a) —0.50 | —0.744 | —0.747 | —-0.747
aj —0.50 | —0.263 | —0.266 | —0.266
asz 0.50 0.612 0.609 0.609

The probability of failure is then
Py = ®(—BuL) = ®(-0.341) = 0.367
cf. Table 1 for some corresponding values of # and P;.

The design point coordinates in the normalized z coordinate system are

(#f, 28, 28) = (Buren, Burea, Buias)

= (—0.255, —0.091, 0.208)

3 3
Expression (33) fyL = (Z (zf') 2) provides a check on the design point coordinates.

=1

Using the transformation

X{ = px, + ox,2!
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and the values of ux;, ox, given in Table 2 the design point coordinates in the original z
coordinate system are found to be

(24, =3, z3) = (0.954, 1.491, 4.546)

The relative importance of the random variables to the failure probability is evaluated
through the a?-values. Table 4 shows that the uncertainty related to D, is of minor
importance compared to the uncertainties on A and H,.

Table 4.
: ) ) 2 Bur(Xi : deterministic)  P,(X, : deterministic)
' X % af (%) Bur(X: : random) P;(X; : random)
= 1-aj
1 A -0.747 55.8 1.50 %) 0.831*)
2 D, —0.266 7.1 1.04 0.989
3 H, 0.609 37.1 1.26 *) 0.899 *

100.0
*) The assumption of validity only for small a-values is not fulfilled

If all 5 parameters in the Hudson formula was kept as random variables with mean values
and standard deviations as given in Table 2 then the corresponding values would be as
shown in Table 5.

Table 5.
) ' 2 Bur(Xi : deterministic)  Py(X : deterministic)
¢ Xi o a; (%) Buo(X: : random) Py(X; : random)
= 1-af

1 A -0.705 49.7 1.41°) 0.857 %)

2 D, -0.275 7.6 1.04 0.986

3 H, 0.631 39.8 1.29 % 0.896 *)

4 A -0.154 2.3 1.01 0.999

5 cota -0.068 0.5 1.00 1.000

100.0

*) The assumption of validity only for small a-values is not fulfilled

It is clearly seen why A and cota can be regarded as constants.

If the normally distributed basic variables X are correlated the procedure given above can
be used if a transformation into non-correlated variables Y is performed before normalizing
the variables.

21-15



612 HANS F. BURCHARTH

The correlation between any pair of the random variables X is expressed by the covariance
matrix

Var X)) Cov[X,, X3] --+ Cov[Xi, X,]
= Cov[X2, X Var (X
- ov| '2 1] ar [X3] (43)
Cov([Xn, Xi] Var [X,]
If (=7y is a diagonal matrix
Var[Y;] . “ee 0 oy 0
= : Var[Y; : : 2 :
CY - ' ar [ 2] ' - . ayz (44)
0 Var[Y,] 0 oy,
then no correlation between any pair og random variables Y exists.
A set of uncorrelated variabels Y can be obtained by the transformation
= =T _
Y=4 X (45)

where A is an orthogonal matrix with column vectors equal to the orthonormal eigenvalues

of E’ x-
The diagonal elements of Cy, i.e. oy, -+ of,, are equal to the eigenvalues of Cx.

After determination of Y and oy the following transformation, analog to (27), into uncor-
related and normalized variables Z is performed
_Yi—upy
z = = (46)
The reliability index By, defined in the z-coordinate system as given in Fig. 6 and eq.
(28), can be determined by the described iterative procedure of egs. (35) and (36).

3.2.3 Non-linear failure functions containing non-normal distributed random
variables

It is not always a reasonable assumption to consider the random variables normally dis-
tributed. This is for example the case for parameters such as H, characterizing the sea state
in long-term wave statistics. H, will in general follow extreme distributions (e.g. Gumbel
and Weibull) quite different from the normal distribution, and cannot be described only
by the mean value and the standard deviation.
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For such cases it is still possible to use the reliability index By but an extra transfor-
mation of the non-normal basic variables into normal basic variables must be performed
before By can be determined as described above.

A commonly used transformation is based on the substitution of the non-normal distribu-
tion of the basic variable X; by a normal distribution in such a way that the density and
distribution functions fx, and FYx, are unchanged at the design point.

If the design point is given by 1‘,‘, z;‘, ,1:;‘. then the transformation reads
d _ 1
Fx(zf) = @ (’—"—X)
ak.
d ’ (47)
(o) = oe(F2
A W

where p'y, and o'y, are the mean and standard deviation of the approximate (fitted) normal
distribution.

From eq. (47) is obtained

R Gl G A CH)))

g =
x. fx. ()
(48)
py, = z¢—&" (Fx, (zf)) ok,
Eq. (47) can also be written
d ’
d\ _ Ti —Hx, ) _ d\ _ )
Fx,(zf) = ® (_ax_) = & (=f) = # (Buza)
Solving with respect to z¢ gives
z{ = Fx! [® (Bura)] (49)

The iterative method presented above for calculation of By can still be used if for each
step of iteration the values of oy, and uy, given by eq. (48) are calculated for those vari-
ables where the transformation (47) has been used.

For correlated random variables the transformation given by eq. (45) is used before nor-
malization.

EXAMPLE 2

The same failure function and non-correlated nermal-distributed variable as in Example
1 are considered except that H, now follows a Gumbel distribution but with the same
average and standard deviation as given in Table 2.
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The Gumbel distribution function and density function are

FG (13)

e_C—A(S'a—B)

(50)
d Fg (z3) — Ac[—e"‘('3“3)—A(:3-B)]
d13

fa (z3)

The distribution parameters A and B can be determined by the following expressions for
the mean and the standard deviation

b = B+ 0.5:14722
(51)
T 1
Oz = A
Using the Table 2 values y;, = 4.4 m amd o,, = 0.7 m gives A = 1.83 m~! and B = 4.08

m.

In the normalized coordinate system the failure surface is then (compared with eq. (41))

(140.182) - 1.6 (1.5 +0.125) - 24 - 1.59 — (4l + 0%, 23) = 0

0.8642, +0.322; + 0.058223 — 0l 25+ (4.8 — il ) =0

B = - (4.8 - ;4;3)
k= 0.864a; + 0.32a3 + 0.058 281 — 0} 03
By eq. (35)
o = —% (0.864 + 0.0588xa3)
1
o = —(0.32+0.058Buz0n)
ol
= =
Qaj K
By eq. (36)
K = /(0864 + 0.0588,,02)" + (032 + 0.0588z0n)’ + (o1,
By eq. (49)
23 = Fg' [® (Buras)]
By eq. (48)
L e (e ()
” fo (=9)

Wey = 23 —07! (FG (zg)) - oy,

21-18




RELIABILITY EVALUATION OF A STRUCTURE AT SEA 615

The results from each step of iteration are shown in Table 6.

Table 6.

Iteration No.
start 1 2 3 4 5 6 7

Bur| 3.0| 1.717| 0.553| 0.569 | 0.463 | 0.461 | 0.457 | 0.457
K 1.295 | 1.363| 1.165| 1.155| 1.144| 1.143| 1.143
a; | —0.5| —0.629 | —0.629 | —0.735 | —0.742 | —0.749 | —0.749 | —0.750
a; | —0.5| —0.199 | —0.220 | —0.254 | —0.260 | —0.262 | —0.262 | —0.263
as 05| 0.772| 0.754| 0.627| 0.619| 0.609 | 0.608 | 0.607
4 5.359 | 4.568 | 4.525 | 4.475| 4.471| 4.469 | 4.469
o 1.0 1.027| 0.731| 0.715| 0.697 | 0.695| 0.694 | 0.694

3

sy 3.0 4.033| 4.139| 4.264| 4.270 | 4.275| 4.276 | 4.276

The probability of failure is then
Py = ®(—puL) = $(—0.457) = 0.324
The coordinates of the design point D in the normalized z-coordinate system are

(Zf s B s Zg) = (BuLow, Buraz , Buras)

(—0.342 , —0.12, 0.277)

1
Note that By = (23: (2:1)2) i

z=1

The coordinates of the design point D in the original z-coordinate system are calculated
by the transformation

2} = pg 0528 = 1;'2 (cf. Table 2 for p,, and o,)
x5 = pl, +o. 2 (cf. Table 6 for u;, and o7 )
to be

(24, =5, 28) = (0.934 , 1.474 , 4.468)

The reliability index is now By = 0.457 which is larger than Sy = 0.341 from Example 1.
However, the failure probability does not change so much (from 36.7% in Example 1 to
32.4% in this example).

A more widely used method of calculating By is

1. Select some trial coordinates of the design point in the z-coordinate system

5d d ,d d
z =(z1 523 3 wem 3 zn)
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2. Calculate a; 1=1,2, ... ,nby
9g
ai = 3—2'_|i=i‘

3. Determine a better estimate of 7 by

Zn: (a; Z?) =95z

n

> (a)

i=1

[

. Repeat 2) and 3) to achieve convergence

o

. Evaluate By by

Bt = [E (z:‘)’]*

<
[
-

The method is based on the assumption of the existence of only one minimum. However,
several “local” minima might exist. In order to avoid convergence against such local
minima (and thereby overestimation of By and the reliability) several different sets of
trial coordinates might be tried.

3.2.4 Time-variant random variables

The failure functions within breakwater engineering are generally of the form
9=h({F)-f(H,, W, T,) (52)

where R represents the resistance variables and H,, W and T,, are the load variables
signifying the wave height, the water level and the wave period. The random variables are
in general time-variant. '

Discussion of Load Variables:

The most important load parameter in breakwater engineering is the wave height. It is a
time-varying quantity which is best modelled as a stochastic process. Distinction is made
between short-tem and long-term statistics of the wave heights. The first one deals with
the distribution of the wave height H during a stationary sequence of a storm, i.e. during
a period of constant H, (or any other characteristic wave height). The short term wave
height distribution follows the Rayleigh distribution in case of deep-water waves and some
truncated distribution in case of shallow water waves.

The long term statistics deals with the distribution of the storms which are then char-
acterized by the max value of H, occurring in each storm. The storm history is given
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as the sample (H,;, H,3, ... , H,,) covering a period of observation Y. Extreme value
distributions like the Gumbel and Weibull distributions are then fitted to the sample.
For strongly depth limited wave conditions a normal distribution with mean value as a
function of water depth might be considered.

The distribution of H, can be substituted by the distribution of the maximum value within
T years, i.e. the distribution of HT. The calculated failure probability then refers to the
period T' (which in practice might be the lifetime of the structure) if distribution functions
of the other variables in (52) are assumed unchanged during the period T'.

As an example consider a sample of n independent storms, i.e. H,;, H,, ... , Hyn,
obtained within Y years of observation. Assume that H, follows a Gumbel distribution
F(H,) = exp [—~ezp(—a(H, - B))] (53)

i.e. the distribution of H, within a period of average length between the observations Y /n.

The distribution parameters a and f can be estimated e.g. by the maximum likelihood
method or the methods of moments. Moreover, the standard deviations of a and 8 signi-
fying the statistical uncertainty due to limited sample size can be estimated too.

The sampling intensity is A = n/Y. Within a T-years reference period the number of data
will be AT. The probability of the maximum value of H, within the period T is then

F(HT) = (F (H,))"" = [ezp|-ezp(—a(H, — B))]T (54)

The expectation (mean) value of HY is given by

_ﬂ——ln[ In( ,\l:r)] | (55)

and the standard deviation of HT - in case of maximum likelihood estimates - is

! ' 1
0 = (ZCF [1.109 +0.514 (—In (-p; (1 _ ﬁ)))
. 0.5

+0.608 (—In (—In (1 - %)))2]) ' (56)

This expression includes the statistical uncertainty due to limited sample size. Some
uncertainty is related to the estimation of the sample values H,;, H,;, ... ,H,, due
to measurement errors, errors in hindcast models etc. This uncertainty oorresponds toa

coefficient of variation —2* in the order of 5- 20%. The effect of this might be implemented

H,
in the calculations by consrdermg a total standard deviation of

) , \0*
o= (aur + am) _ (57)
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In the level II calculation eq. (54) is normalized around the design point and eqgs. (55) and
(56) or (57) are used for the mean and the standard deviation, cf. the procedure given in
Example 2.

Instead of substituting H, in eq. (52) with HT the following procedure might be used:
Consider T in eqgs. (54) to (56) to be 1 year.

The outcome of the calculations will then be the probability of failure in a 1 year period,
Py (1 year). If the failure events of each year are assumed independent for all variables
then the failure probability in T years is

Py(T years) =1 —[1 = Py(1 year)|” (58)

However, for typical resistance variables such as concrete strength it is not realistic to
assume the events of each year to be independent. The calculated values of the failure
probability in T-years using H! ¥**" and H[ will be different. The difference will be very
small if the variability of H, is much larger than the variability of other variables.

The water level W is also an important parameter as it influences the structural freeboard
and limits the wave heights in shallow water situations. Consequently, for the general case
it is necessary to consider the joint distribution of H,, W and T,,. However, in case of
deep-water waves W is often almost independent (except for barometric effects) of H, and
T.. and might therefore be taken as a non-correlated variable and might be approximated
by a normal distribution with a certain standard deviation. The distribution of W is
assumed independent of the length of the reference period T.

The “wave period” T, is correlated to H,. As a minimum the mean value and the standard
deviation of T, and the correlation of T, with H, should be known in order to perform a
level Il analysis. However, the linear correlation coefficient is not very meaningful as it gives
an insufficient description when the parameters are non-normal distributed. Alternatively
the following approach might be used: From a scatter diagram of H, and T, a relationship
of the form T, = Af (H,) is established in which the parameter A is normal distributed
(or some other distribution) with mean value u4 = 1 and a standard deviation o4 which
signifies the scatter. Ty, can then be substituted by the variable A in (52). A is assumed
non-correlated to all other parameters. Generally, the best procedure to cope with the
correlations between H,, W and T, is to work on the conditional distributions. Assume
the distribution of the maximum value of H, within the period T given as F; (H,T)

Further, assume the conditional distributions F3 (WlH;r) and F3 (T,,.IH,T) to be known.
Let Z;, Z, and Z; be independent standard normal variables and

®(z) = F(HT)

®(z) = F(W[H))

®(23) = Fs(TwlHT)
The inverse relationships are given by
H = F'[®(2)]
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w

F;' [® () |HT)

T

F5' [® (25) |HT]

Let the resistance variables R converted into standard normal variable Z,. The resistance
term is written f, (F) = fa(2,). Then the failure function eq. (52) becomes

9= ()~ i (F[@ (), Fi* [®(20) IHT], F5 [8(2)|HT]) = 0

because g now comprises only independent standard normal variables the usual iteration
methods for calculating By, can be applied.

Discussion of Resistance Parameters

The service life of coastal structures is in most cases a span of years, say 20 to 100 years.
During periods of that length a decrease in the structural resistance is to be expected due
to various types of material deterioration. Chemical reaction, thermal effect, and repeated
loads (fatigue load) can cause deterioration of concrete and natural stone leading to disin-
tegration and rounding of elements. Also the resistance against displacements of armour
layers made of randomly placed armour units will decrease with the number of waves (i.e.
with time) due to the stochastic nature of the resistance. Consequently, for armour layers
it means a reduction of D, and Kp with time, cf. the Hudson equation.

Although of great importance in some cases, it is not easy to account for the material
effects in reliability calculations. The main problem is the assessment of the variation
with time which depends a lot on the intrinsic characteristics of the applied rock and con-
crete. However, only fairly primitive methods are available for assessment of the relevant
characteristics. Moreover, the variation with time depends very much on the load-history
which can be difficult to estimate for the relevant period of structural life.

Tensile strength R(t), tensile stress S(t)

R(t)

s(1) Failure

—

FIG. 7. Ilustration of a first-passage problem.

Fig. 7 illustrates a situation where a resistance parameter R(t), e.g. signifying the tensile
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strength of concrete armour units, decreases with time t. R(t) is assumed to be a deter-
ministic function. The load S(t), e.g. the tensile stress caused by wave action, is assumed
to be a stationary process. The probability of failure, i.e. P(S > R), within a period T' is

Py(T)~1—ezp [— /OT v* (R(t)) dt] (59)

where v* (R(t)) is the mean-upcrossing rate (number of up-crossings per unit time) of the
level R(t) by the process S(t) at time t. v* can be computed by Rice’s formula

v* (R(t)) = /R  ($ - R) fss (R(),8) dS

in which fgs is the joint density function for S(t) and S(t).

Implementation of time-variant variables into level II analyses is rather complicated. For
explanation reference is given to Wen and Chen, 1987.

4 Failure probability analysis of failure mode sys-
tems

It is clear from Fig. 1 that a breakwater can be regarded as a system of components
which can either fail or function. Due to interactions between the components, failure
of one component may impose failure of another component and even lead to failure of
the system. A so-called fault tree is often used to clarify the relations between the failure
modes.

A fault tree describes the relations between the failure of the system (e.g. excessive wave
transmission over a breakwater protecting a harbour) and the events leading to this fail-
ure. Fig. 8 shows a simplified example based on some of the failure modes indicated in
Fig. 1. .

A fault tree is a simplification and a systematization of the more complete so-called cause-
consequence diagram which indicates the causes of partial failures as well as the interac-
tions between the failure modes. An example is shown in Fig. 9.

The failure probability of the system, e.g. the probability of excessive wave transmission in
Fig. 8, depends on the failure probability of the single failure modes and on the correlation
and linking of the failure modes.

21-24




RELIABILITY EVALUATION OF A STRUCTURE AT SEA 621
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FIG. 8. Example of simplified fault tree for a breakwater.

Hydraulic boundary conditions (waves, water levels, eic.)
Venting Slip circle Cors, subsoll] | |Siip circles Froni berm Tos, 3scbed
slide reor setlement slide front @ erosion erosion
slope siope
[
Reor slope Overtopping Caop wall Front siope
ormour g 4| foilure ¢ ormour
domage domage
[ &
N 4
Domage fo berths, Domage fo ships, Do fo In— Deterioration
bridges, crones moorings, elc. sicilotions, roaods, of materiols
recloimed orecs due to wave eslc. on super-
on leeword side disturbance structure
[ Down time 1
T
]

Cost beneflt onclysis

Only hydroulic locds ore shown. Other fypes of loods ore for exomple: SHIP COLLISION - SEISMIC ACTMITY -
AGGRESSIVE HUMAN ACTION (SABOTAGE, WAR, Eic.)

FIG. 9. Example of cause-consequence diagram for a rubble mound breakwater.
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The failure probability of a single failure mode can be estimated by the methods described
in chapter 3. Two factors contribute to the correlation, namely physical interaction, such
as sliding of main armour caused by erosion of a supporting toe berm, and correlation
through common parameters like H,. The correlations caused by physical interactions are
not yet quantified. Consequently, only the common-parameter-correlation can be dealt
with in a quantitative way. However, it is possible to calculate upper and lower bounds
for the failure probability of the system.

A system can be split into two types of fundamental systems, namely series systems and
parallel systems, Fig. 10.

Series system —E—E]— _E_

Porallel system  ——— —

FIG. 10. Series and parallel systems.

Series systems

In a series system failure occurs if any of the elementsi =1, 2, ... , n fails.
The upper and lower bounds of the failure probability of the system, P;s are
Upper bound Pfs=1—(1=Pn) (1= Pp2) ... (1= Pyn) (60)
Lower bound Pf’s = max Py; (61)

where max Py; is the largest failure probability among all elements. The upper
bound correponds to no correlation between the failure modes and the lower
bound to full correlation. Eq. (60) is sometimes approximated by P}’ =Y Pj

. =1
which is applicable only for small Py; because Pfs should not be larger than
one.

The OR-gates in a fault tree corresponds to series components. Series components are
dominating in breakwater fault trees. Really, the AND-gate in Fig. 8 is included for
illustration purpose and is better substituted by an OR-gate.
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Parallel systems
A parallel system fails only if all the elements fail.

Upper bound  P{s = min Py; (62)

Lower bound Pfs =Py - Py ... Py, (63)

The upper bound corresponds to full correlation between the failure modes
and the lower bound to no correlation.

The AND-gates in a fault tree correspond to parallel components.

In order to calculate upper and lower failure probability bounds for a system it is convenient
to decompose it into series and parallel systems. Fig. 11 shows a decomposition of the
fault tree, Fig. 8.

Erosion of toe

berm @
Breakoge of Sliding/tilting of Rear slope Displacement of
porapet woll supersiruciure erosion @ main armour

Sec bed scour @

FIG. 11. Decomposition of the fault tree Fig. 8 into series and parallel systems.

EXAMPLE 3

The level II analysis of the single failure modes for a specific breakwater
schematized in Figs. 8 and 11 revealed the following probabilities of failure
in a l-year period

i |1 234 5 6

Pi%|3 6 4 3 05 1

Note that these Pj;-values cannot be used in general because they relate to
a specific structure. However, they are typical for conventionally designed
breakwaters with respect to order of magnitude and large variations.

The simple failure probability bounds for the system are, cf. egs. (60), (61),
(62) and (63):
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Upper bound (no correlation):

Pfs =1—=(1- Pys)(1 - Pp1)(1 = Pys)(1 = Pya)(1 - min. of [Py3, Pya]) = 12.9%
or for small values of Py;

Pfs = Ptg + Pj1 + Pys + Pyz + min. of [Pys, Pyq] = 13.5%

Lower bound (full correlation):

Pfs = max of [Pss, Pp1, Pys, Ppa, Pys- Pra] = 6%

The simple bounds corresponding to T-years structural life might be approxi-
mated by the use of eq. (58) *)

Structure life in years

20 50 100
Pfs% 94 100 100
*) Pfs% 71 95 100

*) It is very important to notice that the use of eq. (58), which assumes
independent failure events from one year to another, can be misleading. This
will be the case if some of the parameters which contribute significantly to the
failure probability are time-invariant, i.e. are not changed from year to year.
An example would be the parameter signifying a large uncertainty of a failure
mode formula, e.g. A in eq. (2). If all parameters were time-invariant then
the correct lower bound would be Pfs = max [Py;] independent of T, i.e.

t=1l-n
6% for all T in the example. It follows that use of eq. (58) leads to too large
values of P,"s for T > 1 year.

In order to obtain correct Pyg-values it is very important that the fault tree represents
precisely the real physics of the failure development. This is illustrated by Example 4
where a fault tree alternative to Fig. 8 is analysed, however, containing the same failure
mode probabilities as given in Example 3.

EXAMPLE 4

Fig. 12 shows the fault tree which differs from the fault tree in Fig. 8 in that
in Fig. 12 only failure mode 6 can directly cause system failure, while in Fig.
8 each of the failure modes 6, 5, 1, 2 and (3+4) can cause system failure.
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| o |
l Sliding /tilting of ] Breckoge of parapel l
supersiracturs (D) wall
[ ]
?;l::a‘c'lmom of moln@l [.“r slope erosion @l
l
AND ]

Ebr:':“lono'bo@] [Mhdw @]

FIG. 12. Example of simplified fault tree for a breakwater.

The decomposition of the fault tree is shown in two steps in Fig. 13. Note that
the same failure mode can appear more than once in the decomposed system.

Sliding/tilting of

supersiructurs (1)
Displocement of main
armour [©)

Breakage of parapet

Recr siope

srosion ®

Sliding /tiltling of
superstructure (D

Displocement of main

armour @

Sea bed scour @

Sliding /tiling of
superstructure (1)

FIG. 13. Decomposition of the fault tree Fig. 12 into series and parallel systems.
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The simpel bounds for the system are, cf. eqs. (60), (61), (62) and (63):

Upper bound:

Pfs=1-(1- Pse)(1 - min. of [Py, Pys]) (1~ min. of [Py1, P2, Py3, Pya]) = 4.5%

or for smaller values of Py; ‘
Pfs = Pjg + min. of [Py1, Pys]+ min. of [Pyy, Pz, Py, Ppa] = 4.5%

Lower bound:

Pfs = max. of [Pss, Pp1- Pys, Py« Ppa- Pys- Prg] = 1%

Using the same Py;-values and procedure as given in Example 3 the following
system failure probabilities are obtained

Structure life in years
20 50 100
PYs% 60 90 99
*) Pfs% 18 39 63

These values are quite different from the values of Example 3 which underlines
the importance of a correct fault tree. *) see note on page 28.

The real failure probability of the system Pss will always be in between PIUS and Pf‘s
because some correlation exists between the failure modes due to the common sea state
parameters, e.g. H,.

It would be possible to estimate Pyg if the physical interactions between the various failure
modes were known and described by formulae and if the correlations between the involved
parameters were known. However, the procedure for such correlations are very complicated
and are in fact not yet fully developed for practical use.

The probability of failure cannot in itself be used as the basis for an optimization of a
design. This is because an optimization must be related to a kind of measure (scale) which
for most structures is the economy, but other measures such as loss of human life (without
considering some cost of a life) are also used.
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The so-called risk, defined as the product of the probability of failure and the economic
consequences is used in optimization considerations. The economic consequences must
cover all kind of expenses related to the failure in question, i.e. cost of replacement,
down-time costs etc.

5 Uncertainties related to parameters determining
the reliability of the structure

Calculation of reliability or failure probability of a structure is based on formulae describing
its response to loads and on information about the uncertainties related to the formulae
and the involved parameters. #

Basically, uncertainty is best given by a probability distribution. Because the distribution
is rarely known it is common to assume a normal distribution and a related coefficient of
variation

standard deviation

= (64)

, o
[ mean value

g =

as the measure of the uncertainty.

The word uncertainty is here used as a general term referring both to errors, to randomness
and to lack of knowledge.

5.1 Uncertainty related to failure mode formulae

The uncertainty of a formula can be considerable. This is clearly seen from many dia-
grams presenting the formula as a nice curve shrouded in a wide scattered cloud of data
points (usually from experiments) which are the basis for the curve fitting. Coefficients of
variation of 15-20% or even larger are quite normal.

The range of validity and the related coefficient of variation should always be considered
when using a formula.

5.2 Uncertainty related to environmental parameters

The sources of uncertainty contributing to the total uncertainties in environmental design
values are categorized as:

1. Errors related to instrument response (e.g. from accelerometer buoy and visual
observations)

2. Variability and errors due to different and imperfect calculations methods (e.g. wave
hindcast models, algorithms for timeseries analysis)

3. Statistical sampling uncertainties due to short-term randomness of the variables
(variability within a stochastic process, e.g. two 20 min. records from a stationary
storm will give two different values of the significant wave height)
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. Choise of theoretical distribution as a representative of the unknown long-term dis-

tribution (e.g. a Weibull and a Gumbel distribution might fit a data set equally well
but can provide quite different values of a 200-year event).

. Statistical uncertainties related to extrapolation from short samples of data sets to

events of low probability of occurrence.

. Statistical vagaries of the elements

Distinction is to be made between short-term sea state statistics and long-term (extreme)
sea statistics. Short-term statistics is related to the stationary conditions during a sea
state, e.g. wave height distribution within a storm of constant significant wave height, H,.
Long-term statistics deals with the extreme events, e.g. the distribution of H,.

Related to the short-term sea state statistics the following aspects must be considered:

o The distribution for individual wave heights in a record in deep water and shallow

water conditions, i.e Rayleigh distribution and some truncated distributions, respec-
tively. :

Variability due to short samples of single peak spectra waves in deep and shallow
water based on theory and physical simulations.

Variability due to different spectral analysis techniques, i.e. different algorithms,
smoothing and filter limits.

Errors in instrument response and influence of location of measurement. Floating
accelerometer buoys tend to underestimate the height of steep waves. Character-
istics of shallow water waves can vary considerably in areas with complex sea bed
topography. Wave recordings at positions with depth limited breaking waves cannot
produce reliable estimates of the deep water waves.

Imperfection of deep and shallow water numerical hindcast models and quality of
wind input.

Estimates on overall uncertainties for short-term sea state parameters covering items 1 - 3
given above, are presented in Table 7 for use when no more precise site specific information
is available.
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Table 7. Typical variational coefficients o’ = o/u (standard deviation
over mean value) for measured and calculated sea state parameters (Bur-

charth, 1989).

Estimated
typical values
Parameter Methods of determination o' Bias C
ignificant Accelerometer buoy, 0.05-0.1 ~0
wave height, pressure cell,
OFFSHORE vertical radar
Horizontal radar 0.15 ~0
Hindcast, num. models 0.1-0.2 0-0.1 Very dependent
on quality of
weather maps.
Hindcast, SMB method -0.15-0.2 ? Valid only for
storm conditions
in restricted
sea basins.
Visual observations 0.2 0.05
from ships
Significant
wave height Numerical models 0.1-0.20 0.1 o' can be much
NEARSHORE larger in some
determined from Manual calculations 0.15-0.35 cases
offshore significant
waveheight taking
into account typical
shallow water effects
(refraction, diffraction,
shoaling, ...)
Mean wave Accel ter buoy d 0.02-0.05 ~0
period off-
shore on Estimates from amplitude
condition of spectra 0.15 ~0
fixed signi-
ficant wave Hindcast, num. models 0.1-0.2 ~0
height
" Duration of Direct measurements 0.02 ~0
sea state with
significant Hindcast, num. models 0.05-0.1 ~0
wave height
exceeding a
specific
level
Spectral peak Measurements 0.05-0.15 ~0
frequency
offshore Hindcast, num. models 0.1-0.2 ~0
Spectral Measurements and
peakedness hindcast, num. models 0.4 ~0
offshore
Degrees
Mean direction Pitch - roll buoy 8¢
of wave
propagation Measurements 0, u, v
offshore orp,u,v *) 10°
Hindcast, num. models 15 - 30°
’I
Astro tides Prediction from constants 0.001-0.07 ~0
Storm surge Numerical models 0.1-0.25 40.1

*) two horizontal velocity components and water level elevation or pressure.
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Evaluation of the uncertainties related to the long-term sea state statistics and its use for
design involves considerations of the following aspects:

e The encounter probability

e Estimation of the standard deviation of a return-period event for a given extreme
distribution

e Estimation of extreme distributions by fitting to data sets consisting of uncorrelated
values of H, from

— frequent measurements of H, equally spaced in time
— identification of the largest H, in each year (annual series)

— maximum values of H, for a number of storms exceeding a certain threshold
value of H, (POT, peak over threshold, analysis)

The methods of fitting are the maximum likelihood method, the method of moments,
the least square method and visual graphical fit.

e Uncertainty on extreme distribution parameters due to limited data sample size.

e Influence on the extreme value of H, of the choise of threshold value in the POT
analysis. (The threshold level should exclude all waves which do not belong to the
statistical population of interest.)

"o Errors due to lack of knowledge about the true extreme distribution. Different
theoretical distributions might fit a data set equally well, but might provide quite
different return period values of H,. (The error can be estimated only empirically
by comparing results from fits to different theoretical distributions.)

e Errors due to applied plotting formulae in case of graphical fitting. Dependent on
the applied plotting formulae quite different extreme estimates can be obtained. The
error can only be empirically estimated.

¢ Climatological changes.

e Physical limitations in extrapolation to events of low probability. The most impor-
tant example might be limitations in wave heights due to limited water depths and
fetch restrictions.

o The effect of measurement error on the uncertainty related to an extreme event.

It is beyond the scope of this contribution to discuss in more detail the mentioned uncer-
tainty aspects related to the environmental parameters. Reference is given to Burcharth
(1989).
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5.3 Uncertainty related to structural parameters

The uncertainties related to material parameters (like density) and geometrical parameters
(like slope angle and size of structural elements) are generally much smaller than the
uncertainties related to the environmental parameters and to the design formulae.

6 Introduction of a partial coefficient system for im-
plementation of a given reliability in the design

The following presentation explains in short the partial coefficient system developed and
proposed by Subgroup-F under the PIANC PTC Il Working Group 12 on Rubble Mound

Breakwaters. For more details reference is made to Burcharth (1991).

6.1 Introduction to partial coefficients

The objective of the use of partial coefficients is to assure a certain reliability of the struc-
tures.

The partial coefficients, 4;, are related to characteristic values of the stochastic variables,
X, ch- In conventional civil engineering codes the characteristic values of loads and other
action parameters are often chosen to be an upper fractile (e.g. 5%), while the character-
istic values of material strength parameters are chosen to be the mean values. The values
of the partial coefficients are uniquely related to the applied definition of the characteristic
values.

The partial coefficients, 4; are usually larger than or equal to one. Consequently, if we
define the variables as either load variables X/**¢ (as for example H,) or resistance vari-
ables X[** (as for example the block volume) then the related partial coefficients should
be applied as follows to obtain the design values

design  __ load load
X; = Y Ak
(65)
desi i\ ch
esign 1,C
X I

The magnitude of 4; reflects both the uncertainty on the related parameter X; and the
relative importance of X; in the failure function. A large value, e.g. vy, = 1.4, indicates
a relatively large sensitivity of the failure probability to the significant wave height, Hs.
On the other hand, 4; ~ 1 indicates no or negligible sensitivity in which case the partial
coefficient should be omitted. It is to be stressed that the magnitude of 4; is not - in a
mathematical sense - a stringent measure of the sensitivity of the failure probability to
the parameter, X;.

When the paitial coefficients are applied to the characteristic values of the parameters in
eq. (2) we obtain the design equation, i.e. the definition of how to apply the coefficients.
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The partial coefficients can be related either to each parameter or to combinations of the
parameters (overall coefficients). In the first case we obtain the design equation

Zi N D cotay '/ ;
G:_ﬂ._d' Bich (KD Ch) —YHsHs,cn 2 0
Y= YA YDn Yeota
N (66)
H
D S 1/3 ————
n,ch = 7'7A7D"‘7c°‘a‘yy' Zch AchKD Cotach

In the second case we could for example have only vy, and an overall coefficient 7, related
to the first term on the right hand side of eq. (2). The design equation would then be

G = i"‘ Den Do or (Kpcota)'’® = vy H, > 0

z

or (67)

H,
D, > 2
ich = s Vi Zeh Ach Kp cotay

Eqgs. (66) and (67) express two different “code formats”. By comparing the two
equations it is seen that the product of the partial coefficients is independent of the chosen
format, other things equal. It is desirable to have a system which is as simple as possible,
i.e. as few partial coefficients as possible, but without invalidating the accuracy of the
design equation beyond acceptable limits.

Fortunately, it is very often possible to use overall coefficients, like 4, in eq. (67), without
loosing significant accuracy within the realistic range of combinations of parameter values.
This is the case for the system proposed in this paper where only two partial coefficients,
~H, and 7, are used in each design formula.

Usually several failure modes are relevant to a design. The relationship between the failure
modes are characterized either as series systems or parallel systems. A fault tree can be
used to illustrate the complete system. The partial coefficients for failure modes being
in a system with failure probability, P; are different from the partial coefficients for the
single failure modes with the same failure probability, P;. Therefore, partial coefficients
for single failure modes and multi failure mode systems are treated separately.

6.2 Overall concept of the proposed partial coefficient system

In existing civil engineering codes of practise, e.g. for steel and concrete structures, it is a
characteristic of them that

e partial coefficients are related to combinations of basic variables rather than to each
of them in order to reduce the number of coefficients.

o the partial coefficients reflect the safety level inherent in a large number of well proven
designs. Two sets of coefficients covering permanent and preliminary structures are
usually given, but the related average probabilities of failure are not specified. In
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other words, it is not possible by means of the normal structural codes to design a
structure to a predetermined failure probability.

However, it is not advisable to copy this concept in safety recommendations for rubble
mound breakwaters for the following reasons:

¢ For coastal structures and breakwaters there is no generally accepted tradition which
reflects one or more levels of failure probability. On the contrary it is certain that the
safety level of existing structures varies considerably and is often very low. Besides,
it is very difficult to evaluate the safety level of existing coastal structures and break-
waters because of lack of information, especially on the environmental conditions,
e.g. the water level variations and the wave climate. Consequently, it is not possi-
ble to produce sets of partial coefficients which, in a meaningful way, are calibrated
against existing designs. .

¢ Due to the very nature of coastal engineering where design optimization dictates
considerable variations in the safety level of the various structures it is necessary
(advisable) to have sets of partial coefficients which correspond to various failure
probabilities. In other words the designer and the client decide on the basis of
optimization and cost benefit analyses that the structure should be designed for
a specific safety level (for example 20% probability of failure (P; = 20%) within
a structural lifetime of 7' = 80 years, where failure is defined as a certain degree
damage). The code should then contain a set of partial coefficients corresponding to
this failure probability.

¢ Because the quality of information about the long term wave climate (the domi-
nating load) varies from very unreliable (uncertain) wave statistics based on few
uncertain data sets to very reliable statistics based on many years of high quality
wave recordings and hindcast values it is necessary that the partial coefficients must
be a function of the quality of the available information on the wave climate. This
means that the statistical uncertainty due to limited number of wave data and errors
in the wave data should be implemented.

Extensive calculations, performed at University of Aalborg, of partial coefficients for ar-
mour layer stability formulae demonstrated that it was possible to develop a concept which
satisfies these demands.

6.3 Method of determining the partial coefficient

The overall procedure for the development of a partial coefficient system was as follows

o Define the failure modes and the failure element structure
(single element analysis and /or system analysis)

o Select the code format (design equations)
¢ Define tervals of the parameters, their statistical properties and combinations

e Select target probabilities of failure
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e Calculate the partial coefficients
e Optimize and calibrate the system

o Verify the partial coefficient system against the observed behaviour of existing struc-
tures.

The partial coefficients 4; are determined from a so-called level II reliability analysis.
The applied computer programmes BWREL (Break Water RELiability programme) and
BWCODE (Break Water CODE) were developed at the University of Aalborg by Dr.
John Dalsgaard Sgrensen especially for the reliability analysis of breakwaters. For further
explanation reference is made to the Sub-group F report.

6.4 Breakwater Types and Failure Modes

The Working Group set out to study five different types of breakwaters and considered
a wide range of failure modes. During the work it became clear that sufficiently well
documented failure formulae were only available to justify recommendations of partial
coefficients for conventional multi-layer rubble mound breakwaters with armour carried
over the crest — and for the following Failure modes:

o Hydraulic instability of front face armour
o Instability of low crested rock breakwaters
e Hydraulic instability of rock toe berm
e Run-up on rock armoured slopes
The formulae for these failure modes are given in section 6.8 in the form of design equations,

which shows how to apply the partial coefficients.

6.5 Partial Coefficient System Format for Single Failure Modes

For each failure mode only two partial coefficients yg, and «, are used, cf. the example
given by eq. (67). The partial coefficient are determined from formulae. Three different
concepts for these formulae have been evaluated and the following were chosen as being
acceptable with respect to deviations from the target probability of failure.

g3T
..TPI 1+ —}.{?—l kﬂpf

~ + o 4 (68)
WS R

He =TT TOFH JP;N

Yo =1—kuln Py (69)

where
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HT  is the central estimate of the T-year return period value of H,,
where T is the structural lifetime (7' = 20, 50 and 100 years
were used for the code calibration). vy, is applied to HY (the
characteristic value of H,, cf. the design equations).

flfT is the central estimate of the 37-year return period value of H,.

- T,

.7 is the central estimate of H, corresponding to an equivalent re-

turn period Tp, defined as the return period corresponding to a

probability P; that IAJ.T "1 will be exceeded during the structural
lifetime T'. Tp, is calculated from the encounter probability for-

mula Tp, = (1- (1= P))¥)” , of. Fig. 14.

0Fy, 18 the variational coefficient of a function Fy, modelled as a
factor on H,. Fpy, signifies the measurement errors and short
term variability of H, and has the mean value 1.0. a;.". is equal
to o’ for H, in Table 7. The statistical uncertainty on H, is not
included in Fy,. .

N  is the number of H, data, used for fitting the extreme distribu-
tions. The statistical uncertainty depends on this parameter.

ko, kp and k, are coefficients which are determined by optimization.
k, ~ 0.05 for all failure modes. The k, and the kg values are
given in Tables 9-12.

The first term in eq. (68) gives the correct vy, provided no statistical uncertainty and
measurement errors related to H, are present. The middle term in eq. (68) signifies the
measurement errors and the short term variability related to the wave data. The last term
in eq. (68) signifies the statistical uncertainty of the estimated extreme distribution of H,.
The statistical uncertainty depends on the total number of wave data, N, but not on the
length of the period of observation, as might be expected. The 10 largest values of H, over
a 15 years period provides a much more reliable estimate of the extreme distribution than
the 10 largest values of H, over 1 year. However, in the statistical analysis it is assumed
that the data samples are equally representative of the true distribution. In other words
it is assumed that the data, besides being non-correlated, are sampled with a frequency
and over a length of time which ensures that periodic variations (e.g. seasonal) are not
biasing the sample. The designer must be aware of these restrictions.

If the extreme wave statistics is not based on N wave data, but for example on estimates
of H, from information about water level variations in shallow water, then the last term in
eq. (68) disappears and instead the value of 0, Must account for the inherent uncertainty.
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Years A Return period, R

104 — 1%
3 // 5%
10° k7 5//____: 0% p. Encounter probability
- 0%
102 6///"': ég; 1\T
T P = l-(l-‘)
/ 1 R
10! %
Structural lifetime, T
1 [} A I

0 20 40 60 80 100 Years

FIG. 14. Encounter probability, i.e. the probability p that the R-year return period
event will be exceeded during a T-year structural life.

6.6 Format for Multi Failure Modes

A simple series system is considered, cf. chapter 4. The reliability of the system depends
on the correlation between the failure modes. Two factors contribute to the correlation,
namely the physical interaction, e.g. the erosion of a toe berm triggering a slide in the
main armour layer, and the correlation through common parameters like H,. The physical
correlations are not yet generally known. Consequently, only the common parameter
correlations have been implemented in the present work.

A simple system is to treat each failure mode, ¢t = 1,2,3,...,n separately using the single
failure mode models. The upper and lower bounds of probabxhty of the system, P{ could
then be estimated as

Upper bound P} =1—(1— P})(1-P?)...(1-P}) (70)

Lower bound Pj = max P} (1)

Max P} is the largest of the failure probabilities of the failure modes.

Eqgs. (70) and (71) correspond to no correlation and full correlation, respectively. Due to
the common parameters there will always be a correlation of some size. However, closer
bounds must await further work on correlation between failure modes.

6.7 Investigated Ranges of Parameter Variations

The optimization of the partial coefficients is based on calculations where all combinations
of realistic values of the failure formula parameters are considered.
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The resistance parameters are modelled as normally distributed stochastic variables given
by mean values and standard deviations. An example of these values and the related range
of parameter variations is given below for the Hudson equation applied to rock armour

Hn _ 1/3
Hudson formula AD. - (Kpcota)

. 1 oaos . -
Design equation :G = ’_’—ZAD,.(KDcotOt)‘/3 —u HT >0
z
Notation

D(p) indicates a deterministic value, p.

N(zy,z;) indicates a normally distributed parameter with mean
value z; and standard deviation, z,.

z is the design parameter

P defines the rénges of application of the code for this failure
mode.

X expected value (mean value) of X.

Fy, error function on H,.

A

BT central estimate of the significant wave height which on
average is exceeded once every T years.
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Parameters for the stochastic variables:

parameter distribution variation of p
A N(p1,p2) (p1,p2) = (1.4,0.03), (1.6, 0.06)
D; N(z, pz) p = 0.01, 0.05
cota N(p,0.1) p=1.5,2,3
Kp D
FH' N(l,p) P=0FH, = (0, 0.10, 020)
Z N(1.0, 0.18)
H, Extreme distribution fitted to local wave data

The statistical model for the load parameteer H, was described by three of the commonly
used theoretical extreme distributions: Weibull, Gumbel and Exponential. The distribu-
tions are given below expressing the non-exceedence probability within 7' years. A is the
average number of H,-data per year and N is the total number of data available for fitting
the distribution.

The statistical uncertainty of the distributions is included through the parameters
a and B which are modelled as stochastic normally distributed variables with variances
based on the maximum likelihood estimates of & and §. It should be noted that no quality
measure (correlation coefficient or X%-test) of the fit of a distribution to a data sample, is
included in the analyses that were carried out.

The considered distribution functions are listed below.

N(z1,z,) indicates a normally distributed parameter with mean value z; and standard
deviation, zj.

Gumbel  Fyr(H,) = [exp(—ezp(—a(H, — ﬂ)))]”

0.608 1 /1.109
a:N(a,a T ﬂN(ﬂ,z —

Weibull  Fyr(H,) = [1 —exp (‘ (E'E_H;Y)]AT

rls) oo ol )

var[a] = % is an assumption since it has not been possible to find an analytical expression.
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I' is the gamma function.

I\ AT
Ezponential Fyr(H,) = [1 — exp (_ H, ; H.)] a: N (a, a\[% ’
L 1

The H, data samples used in the analysis are real deep water and shallow water data set
from the North Sea, the Atlantic Ocean, the Bay of Biscaya and the Mediterranean Sea.
Table 8 shows the distribution parameters for the data sets.

Table 8. Distribution parameters for H,-data samples.

Gumbel Weibull Exp.

N| A a B a B H! a
Bilbao 50 [ 4.17 [ 1.95 [ 5.55 [ 1.39 [ 1.06 | 4.9 [ 0.97
Sines 15|1.25|0.88 | 8.75 | 1.78 | 2.53 | 7.1 | 2.27
Tripoli 15]0.75 | 0.74 | 5.06 | 1.83 | 3.24 | 2.9 | 2.91
North Sea [ 30 | 1.88 [ 1.30 | 6.65 | 1.28 | 1.48 | 5.7 | 1.39
Follonica |46 | 5.94 | 3.14 | 5.73 | 1.14 | 0.58 | 2.69 | 0.55
Pozzallo |22 [6.94 | 3.62 | 4.68 | 1.05 | 0.48 | 2.20 | 0.47

The statistical uncertainty described through the variance of a and B does not include
uncertainties due to

o lack of knowledge about the true extremal distribution

o climatological changes

e measurement errors

e variability due to imperfect calculations of H, and short term randomness

The last two points are incorporated in the analysis by the multiplication term F, H, on
H,. Fy, is modelled as a normally distributed variable with a mean value of unity and
a specified coefficient of variation, OFy,» the size of which depends on the quality of the
available information, cf. Table 7.

The first two points cannot be treated through Fy,, but in a design situation the designer
must try the different models for the extreme wave height and thereby select the most
appropriate. A partial coefficient system cannot take these problems into account.

Moreover, it is assumed inherent in the analysis that the N values of H, represent the
statistical population to which H, belongs. This sets limits to minimum length of the
period of observation N/ and N in order to prevent seasonal changes from biasing the
results.

For the calibration of the system the following target values of Oy, and Py were used:

oFs, = 0.00, 0.10 and 0.20

Py

0.01, 0.05, 0.10 , 0.20 and 0.40.
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6.8 Example of Design equations and Recommended Values of
ko and kg

The values of k, and ks which have been obtained by carrying out optimization for each
failure modes are presented as well as the related design equations in Tables 9 - 12. Note
that limitations related to the equations are not given here.

Table 9. Main armour hydraulic stability.

Formula Design equation kx ks

Hudson, rock % ADys0 (chotoz)l/3 > yu, HT 0.036 | 151

Van der Meer, rock
Plunging waves %6.25"'2P°"BAD,.5ocotcx°'5s?,;25N;‘“ > yu HT 0.027 | 38

Surging waves %S°'2P‘°"3AD,,socotao's"’s;"'sPN;O“ > vy, HT | 0.031 | 38

Van der Meer

Tetrapods %(3.75,7"’5.% + 0.85) s292AD, > v, HT 0.026 | 38
cota = 1.5

Van der Meer

Cubes 7%(6.7%:— + 1.0) sz9'AD, > yu,HT 0.026 | 38
cota = 1.5

Table 10. Hydraulic stability of low crested rock breakwaters.

Formula Design equation ka kg

Van der Meer, rock As for main armour with factor

-1

fi= [1.25 — 488 (g;s)“] 0.035 | 42

applied to D50
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Table 11. Hydraulic stability of rock toe berm.

Formula Design equation ko ks

Van der Meer, rock 8.7 (&) ADyso > 7, HT 0.087 | 100

Table 12. Run-up on rock armoured slopes.

Formula Design equation ko ks
Hunt for (cota)™1s;0% < 1.5
,% R, a 'cota s05 > vy HT - 0.036 | 44

for (cota)1s;0% > 1.5
o Rub7 [cotars2P)° > yy, HT 0.018 | 36

6.9 Example of the use of the Partial Coefficient System

The following example will illustrate how the partial coefficient system is applied for design
purpose.

Objective:

Determination of the average mass, or the nominal diameter D,s,
of quarry rock armour corresponding to the following design condi-
tions:

Case 1. Moderate to severe damage with a probability P; =
0.2 within a structural life of T = 50 years.

Case 2. Very severe damage (failure) with a probability P; =
0.2 within a structural life of T = 100 years.

Case 3. Moderate to severe damage with a probability P; =
0.1 within a structural life of T = 100 years.

The Van der Meer formulae for rock given in Table 9 are assumed
valid.

Design parameters:

Densities: Rock 2.8 t/m?, water 1.03 t/m3, A = 1.72
Slope: cota = 1.5, porosity P = 0.4
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Wave climate: Weibull distribution of H, with the site specific co-
efficients (a, §, H,) = (1.39, 1.06, 0.44) determined
by fitting to a hindcasted H,-data set consisting
of the N = 50 largest values within a 12 years pe-
riod, i.e. A = 50/12 = 4.17. 0%y, is estimated to
0.2 for the hindcasted H, values. Wave steepness
3m = 0.04, number of waves N, = 2500.

Damage: Moderate to severe damage S = 6, very severe
damage (failure) S = 14.
Procedure:
The procedure and the partial coefficent formulae described in sec-
tion 6.5 are used.
Calculations:

In case of a Weibull distribution the central estimate of the signifi-

cant wave height with an average return period of T years is given
by

H] = H,+ B (ezp[in(in(AT))/a])

0.44 + 1.06 (ezp[In(In(4.17T))/1.39))
The equivalent return period is given by

-1
Tp, = (1 -1 - P!)%)

From this is obtained

Case | T (year) Py |Tp, (vear) AT (m) H¥T (m) H.” (m)

1 50 0.2 225 3.98 4.49 4.67
2 100 0.2 449 4.30 4.80 4.97
3 100 0.1 950 4.30 4.80 5.29

From Table 9 (for plunging waves)
ko, =0.027 , ks=38
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From the formulae

(1+(f’3T 1):: p)
are 2 Mt T

s

T, = —F—+0p, -
T = JP; N

Yz = 1- kalnP,

and the Van der Meer design equation is obtained

Case | y#, vz Dnso (m) Average mass (t)

1 1.23 1.04 1.58 11.0
1.22 1.04 1.43 8.1
3 1.35 1.06 1.91 19.5

The example illustrates how easy it is to calculate the size of the armour for various design
conditions. The system facilitates economical optimization of a design.

The system can be used also for the evaluation of the failure probability of existing struc-
tures.

6.10 Conclusions

A concept for the calculation of partial coefficients corresponding to given failure probabil-
ity within given structure life is presented. Two partial coefficients vy, and ~, are applied
to a design formula. Two partial coefficients are calculated from formulae (68) and (69)
in which two failure mode specific coefficients, k, and kg, are used together with charac-

teristic return period values of H,, extracted from the site specific long term distribution
of H,.

So far the k, , kg coefficients have been calculated only for the failure modes which are
described by existing uncertainty evaluated formulae . However, it is easy to expand the
system as more failure mode formulae appear. It is important to notice that the reliability
of the formulae must be documented, e.g. in terms of a standard deviation, in order to
implement them in the partial coefficient system.
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