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1 Introduction
Conventional design practice for coastal structures is deterministic in nature and is based
on the concept of a design load, which should not exceed the resistance (carrying capacity)
of the structure. The design load is usually defined on a probabilistic basis as a charac­
teristic value of the load, e.g. the expectation (mean) value of the lOO-yearreturn period
event, however,often without consideration of the involved uncertainties. The resistance is
in most cases defined in terms of the load which causes a certain design impact or damage
to the structure and is not given as an ultimate force or deformation. This is because most
of the available design formulae only give the relationship between wave characteristics
and structural response, e.g. in terms of run-up, overtopping, armour layer damage etc.
An example is the Hudson formula for armour layer stability. Almost all such design for­
mulae are semi-empirical being based mainly on central fitting to model test results. The
often considerable scatter in test results is not considered in general because the formulae
normally express only the mean values. Consequently, the applied characteristic value of
the resistance is then the mean value and not a lower fractile as is usually the case in other
civil engineering fields. The only contribution to a safety margin in the design is then the
one inherent in the choiceof the return period for the design load. It is nowmore common
to choose the return period with due consideration of the encounter probability, i.e. the
probability that the design load value is exceeded during the structure lifetime. This is an
important step towards a consistent probabilistic approach.

A safety factor or a conventional partlal coefficient (as given in some national standards)
might be applied too, in whichcases the methods are classifiedas LevelI (deterministic/quasi
probabilistic) methods. However, such approaches do not allow the determination of the
reliability (or the failure probability) of the design, and consequently it is neither possible
to optimize, nor to avoid over-design of a structure. In order to overcome this prob­
lem more advanced probabilistic methods must be applied where the uncertainties (the
stochastic properties) of the involved loading and strength variables are considered. Meth­
ods where the actual distribution functions for the variables are taken into account are
denoted Level 111methods. Lever 11methods comprise a number of methods in which
a transformation of the generally correlated and non-normally distributed variables into
uncorrelated and standard normal distributed variables is performed and reliability in­
dices are used as measures of the structural reliability. Both Level 11and 111 methods
are discussed in the following. Described is also an advanced partial coefficient system
which takes into account the stochast ie properties of the variables and makes it possible
to design to a specific failure probability level.

2 Failure modes and failure functions
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Evaluation of structural safety is always relatèd to the structural response as defined by
the failure modes. Neglect of an important failure mode will bias the estimation of the
safety of the structure.
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Fig. 1 illustrates the failure modes for a conventional rubble mound breakwater with a
capping wall.

tlltlng

Core settlement
'.......... _.,'*

Initabillty ---

Subsoil Iettiement........... _---_,.""

FIG. 1. Failuremodesfor a rubble moundbreakwater.

Each failure mode must be described by a formula and the interaction (correlation) between
the failure modes must be known. Asan illustrative example let us consider only one failure
mode, "hydraulic stability of the main armour layer" , described by the Hudson formula

~= H:
n KD 6.3cota (1)

where Dn is the nominal block diameter, 6. = .&. -1, where .&. is the ratio of the block
PUI Pw

and water densities, a is the slope angle, Hs is the significant wave height and KD is the
coefficient signifying the degree of damage (movements of the blocks).

The formula cao be split into load variables X!oad and resistance variables. Xre•• Whether
a parameter is a load or a resistance parameter can be seen from the failure function. If
a larger value results in a safer structure it is a resistance parameter and if a larger value
results in a less safe structure it is a load parameter.

According to this definition one specific parameter can in one formula act as a load pa­
rameter while in another it can act as a resistance parameter. An example is the wave
steepness in the van der Meer formulae for rock, which is a load parameter in the case of
surging waves but a resistance parameter in the case of plunging waves. The only load
variabie in eq. (1) is 'H. while the others are resistance variables.

Eq. (1) is forrnulated as a [ailure function (performance function)

{
< 0 failure

9 = A· 6. . Ir; (KD cota)1/3 - H. = 0 limit state (failure)
> 0 no failure (safe region)

(2)

All the involved parameters are regarded as stochastic variables, Xi, except KD, which
signifiesthe "failure", i.e. a specificdarnage level chosen by the designer. The factor A in
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eq. (2) is also a stochastie variabie signifying the uncertainty of the formula. In this case
the mean value of A is l.O.

In general eq. (2) is formulated as

g=R-S (3)

where R stands for resistance and S for loading. Usually Rand S are functions of many
random variables, i.e.

R = R(Xre• , x;eo , , X;':') and S = S (X~~ , , X!04d) or 9 = 9 (X)

The limit state is"givenby

9=0 (4)

A simple method - in principle - of estimation of PI is the Monte Carlo method where a
very large number of realisations x of the variables X are simulated. PI is then approxi­
mated by the proportion of the simulations where 9 :5 O.

The reliability of the method depends of course on arealistic assessment of the distribution
functions for the variables X and their correlations.

Given IJl as thejoint probability density function (jpdf) ofthe vector X = (Xl, X2 , ••• ,

Xn) then eq. (5) can he expressed by

PI = J Ix (z) dz
RSS

(7)

which'is denoted the limit state equation and defines the so-called [ailure surface which
separates the safe region from the failure region.

In principle R is a variabie representing the variations in resistance between nominally
identical structures, whereas S represents the maximum load effects within a period of
time, say successiveT years. The distributions of R and S are both assumed independent
of time. The probabilityollailure PI during any reference period of duration T years is
then given by

PI = Prob Is :5 0] (5)

The reliability 'R is defined as

(6)

3 Single failure mode probability analysis

3.1 Level111methods

214
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Note that the symbol :r is used for values of the random variabie X.

I{only two variables R and S are considered then eq. (7) reduces to

PI = J ~R.S)(r,s)drds
R~S

(8)

which can he illustrated as shown in Fig. 2. I{more than two variables are involved it is
not possible to describe the jpdf as a surface but requires an imaginary multi-dimensional
description. .

•
F'ailur. lurfac.~

I

FIG. 2. Dlustration of the two-dimensionaljoint probability density function for load­
ing and strength.

Fig. 2 also shows the so-called design point which is the design point on failure surface
where the joint probability density function attains the maximum value, i.e. the most
probable point of failure.

Unfortunately, the jpdf is seldom known. However, the variables CaD often be assumed
independent (non-correlated) in which case eq, (7) is given by the n-fold integral

(9)

where Ix; are the marginal probability density function of the variables Xi. The amount
of calculations involved in the multi-dimensional integration eq. (9) is enormous if the
number of variables, n, is larger than say 5.

I{only two variables are considered, say R and S, then eq. (9) simplifies to

PI = J J IR(r) Is(s) dr ds
R5:S

(10)

which by partial integration can he reduced to a single integral

(11)
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fs (5), F~(r)

x

~o

-~=;;'_..L+J..-___;=-".~s.r,x
X

00

= Pf= iFR (x)fS(x)dx
o

IJ, = IJR - IJs (12)

FIG. 3. Illustration of failure probability in case of two independent variables,
S and R.

where FR is the cumulative distribution function for R. Formally the lowerintegration limit
should be -00 but is replaced by 0 since, in generaI, negative strength is not meaningful.

Eq. (11) can be explained as the product of the probabilities of two independent events,
namely the probability that S lies in the range x, x+dx (i.e. fs(x)dx) and the probability
that R:5 x (i.e. FR(X)), cf. Fig. 3.

3.2 Level11methods
3.2.1 Linear failure functions of normal-distributed random variables

In the followingis given a short introduetion to calculations at levelU. For a more detailed
description see Hallam et al. (1977) and Thoft-Christensen and Baker (1982). Only the
so-called first-order reliability method (FORM) where the failure surface is approximated
by a tangent hyberplane at some point will be discussed. A more accurate method is
the second-erder reliability metbod (SORM) which uses aquadratic approximation to the
failure surface.

Assumethe loading S(x) and the resistance R( x) for a single failure mode to be statistically
independent and with density functions as illustrated in Fig. 3. The failure function is
given by eq. (3) and the probability of failure by eq. (10) or eq. (11).

However, these functions are in many cases not known but might be estimated only by
their mean values and standard deviations. If we assume S and R to be independent
normally distributed variables with knownmeans and standard deviations, then the linear
failure function 9 = R - S is normally distributed with mean value,
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and

standard deviation, Uil = (uh+u}t5
The quantity (g - Pg) /ug will be unit standard normal and consequently

(13)

PI = prob[g $ OJ= jOlg(X)dx = ~ (0 :gpg) = ~(-.8)
-00

where

(14)

(15)

is a measure of the probability of failure and is denoted the reliability index (Cornell1969),
cf. Fig. 4 for illustration of .8. Note that .8 is the inverse of the coefficientof variatien and
is the disrance in terms of number of standard deviations from the most probable value of
9 (in this case the mean) to the failure surface, 9 = O.

9<0
reilure

9>0
Sefe domeine

Àrea = PI

lJv
(Jo, .. I

FIG. 4. IDustrationof the reliability index.

Some corresponding values of .8 and PI are given in Table 1.

.8
Table 1. Corresponding values 01.8 and PI'

0.0
0.5
1.0
1.5
2.0
3.0
4.0
5.0

0.50
0.31
0.16
0.067
0.023
0.0013
0.32.10-4
0.29.10-6
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ICR and S are normally distributed and "correlated" then eq. (14) still holds but u9 is
given by

(16)

where PRS is the correlation coefficient

(17)

R and S are said to be uncorrelaied if PRS = o.
In general, if the failure function 9 = 9 (j() is a linear function of the normally distributed
basic variables Xl! X2, ••• Xn, i.e.

(18)

then IJ = !!.i. and PI can be found from eq. (14) usingUg

(19)

and

(20)

where Pij expresses the correlation coefficient bet ween any pair of variables, cf. eq. (17).

Besides the illustration of IJ in Fig. 4 a simple geometrical interpretation of IJ can be
given in case of a linear failure function 9 = R - S of the independent variables R and
S by a transformation into a normalized coordinate system of the random variables Ir =
(R -/lR) /UR and S' = (S - J.!.s)lus, cf. Fig. 5.

s s'
9="'-S=0

IJ
r'

FIG. 5. Illustration of fJ in normalized coordinate system.
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With these variables the failure surface9 = 0 is linear and given by

HUR - S'us +PR - Ps = 0 (21)

By geometrical considerationsit can he shown that the shortest distance from the origin
to this linear failure surface is equal to

{3= P, = PR - Ps
_ (2 + 2)0.5v, UR Us

in whicheqs. (12) and (13) are used.

3.2.2 Non-Iinear failure functions of normal-distributed random variables

If the failure function 9 = 9 (X) is non-linear then approximate valuesfor P, and u, CAD

be obtained by using a linearized failure function.

Linearization is generally performed by Taylor-seriesexpansion about some point re­
taining only the linear terms. If the expansion is performed around the mean values
(X}, ... ,Xn) = p}, ... ,Pn then

n ag
9 ~ g(pt, ... ,Pn) +EaK (Xi - Pi) ,

.=1 I
(22)

where agjaXi is evaluated at (IJ}, ... ,Pn). The approximate values of P, and u, are
then

(23)

2 n n ag ag
U, ~ EEaK aK Cov[Xi, Xj]

i=} j=} • J
(24)

If the random variablesX are "uncorrelated", i.e. PX;Xi = 0, then e.g. (24) reduces to

2 ~, ~I()g \) 2
U, ~ ~ ax. UX;.=} • (25)

becauseCov [Xi, Xi] = ui; and Cov [Xi, Xj] = 0 for all i and i. i t- i.
When linearization is performed around the expected mean values the method is often
calleda first-order mean value approach (FMA).

The values of P, and u" and thereby also the value of {3, depend on the choice of lin­
earization point. Moreover,the valueof {3 defined byeq. (15) will changewhen different
but equivalent non-Iinear failure functions are used. For example an equivalent failure
function to eq. (2) wouldbe

(26)
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which expresses the Hudson formula as does eq. (2), but will result in different p-values.

In order to overcome these problems a transformation of the basic variables X =
(Xl, X2, ... ,Xn) into a new set of normalized variables Z = (Zb Z2, ... ,Zn) is per­
formed. For uncorrelated normal distributed basic variables X the transformation is

Z . _ Xi - I'Xi,-
«x. (27)

in which case I'Zi = 0 and (lZi = 1. By this linear transformation the failure surface 9 = 0
in the x-coordinate system is mapped into a failure surface in the z-coordinate system
which also divides the space into a safe region and a failure region, cf. Fig. 6.

Mopping Into normollzed eoordlnote system

~
Z 1

Sofe region

F"ollure region\ F"ollure regIon

~oilure surfoee
g(x)=O

Sofe region
XI

L1neorlzed
follure
surfoce

F"oilure surfoce
g(i)=O

FIG. 6. Definition of the Hasofer and Lind reliability index, fJHL.

Fig. 6 introduces the Hasofer and Lind reliability index PHL which is defined as the
distance from origo to the nearest point, D, of the [ailure surface in the a-coordinate
system. This point is called the design point. The coordinates of the design point in th"
original x-coordinate system are the most probable values of the variables X at failure,
PHL cao be formulated as

f3HL = min (t z?)o.S
,(f)=O i=1

The special feature of f3HL as opposed to f3 is that f3HL is related to the failure "surface"
9 (i) = 0 which is invariant to the failure function because equivalent failure functiona
result in the same failure surface.

(28)

The two reliability indices f3 and PHL will coincide when the failure surfaces are linear,
cf. Figs. 5 and 6. Obviously, this will also be the case if non-linear failure functions are
linearized by Taylor Series expansion around the design point. .

Linearization around the design point instead of meao values is therefore very much to
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be preferred, also because the design point is the most probable point of failure, cf. Fig.
2. Linearization around mean values can lead to quite erroneous results but due to the
simplicityof the method it might be used to get a first order-of-magnitude impression of
the failure probability.

The method where linearization is performed around the design point is often called a
first-order design point approach(FDA).

The calculation of f3HL and the design point coordinates can be undertaken in a number
of different ways. An iterative method must be used when the failure surface is non-linear,
In the following a simple method is introduced.

Let 6 denote the distance from the origin to any point at the failure surface given in the
normalized coordinate system

{
6 = [f>l]l

.=1
g(Z1>Z2, ... ,Zn) = 0

Construct the multiple function (Lagrange function)

F = 0 +KIg

(29)

1= H+z~+ ... +Z~]2 +KIg(zl,z2,'" ,zn)

where KI is an unknown constant (multiplier).

(30)

Maximum or minimum of 6 occurs when

{

aF [2 2 2j-! K ag-a = ZI + Z2+ '" + Zn . Zi + I -a = 0 i = 1,2, ... ,n~ ~
g(Z1>Z2, ... ,Zn) = 0

Assume that only one minimum exists and the coordinates of the design point D are given
by

(31)

(32)

Then

Omin= PHL = [t. (PHLQi)2] I and consequently

n .

1:Q~= 1 (33)
.=1

Eq. (31) becomes

{
p;l· (PHLQ.) +s, 88g = 0 i = 1,2,z.
9 (PHLQ"PHLQ2, ••• ,PHLQn) = 0

... ,n
(34)
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or

(35)

Inserting eq. (35) into eq. (33) gives

[

ft (0 )2]!K= E ...J...
i=l OZi (36)

The a-values defined by (32) are often called sensitivity factors (or influence factors)
because a~provides an indication of the relative importance on the reliability index fJHL of
the random variabie Xi' If al is small it might be considered to model X, as a deterministic
quantity equal to the median value of Xi. In such case the relative change in the reliability
index by assuming X, deterministic can be approximated by

{3HL (Xi : deterministic) 1
{3HL (Xi : random) ~";1 - al (37)

The corresponding change in failure probability can be found from eq. (14) or from Table
1. Eq. (37) is used for the evaluation of a simplification of a failure function by reducing
the numher of random variables.

The sensitivity of fJHL to change in the value of a deterministic parameter bi can he
expressed by

d{3HL 1 og
dbi = K Obi (38)

where K is given by eq. (36) and the partial derivative of 9 with respect to bi is taken in
the design point.

Eq. (38) is useful when it is considered to change a deterministic parameter (e.g. the
height of wave wall) into a stochastic variable,

EXAMPLE 1

Consider the hydraulic stability of a rock armour layer given by the Hudson equation
formulated as the failure function, cf. eqs. (1) and (2)

1g=A.:lDft (Kv cota) 3 -H. (39)

all the parameters are regarded uncorrelated random variables Xi, except Kv which sig­
nifies the [ailure criterion, i.e. a certain damage level here chosen as 5% displacement
corresponding to Kv ~ 4. The factor A is also a random variabie signifying the uncer­
tainty of the formula.

21-12



RELIABILITY EV ALUA nON OF A STRUCfURE AT SEA 609

All random variables are assumed normal distributed with known mean values and stan­
dard deviations, cf. Table 2. The normal distribution can be a bad approximation for
H.which is usually much bet ter approximated by an extreme distribution, e.g. a Weibull
or Gumbel distribution as will be discussed later. The normal distribution of Hs is used
here due to the simplicity involved but might be reasonable in case of depth limited wave
conditions.

Table 2. Basic variables.

x, PX; ux; coefficientof variatien
uxJpx;

1 A 1 0.18 18%
2 Dn Lö m 0.10 m 6.7%
3 1/. 4.4 m 0.70 m 16%
4 ~ 1.6 0.06 3.8%
5 cota 2 0.10 5.0%

The failure surface corresponding to the failure function (39) reads for KD = 4

A ~ D; (cota)11.59 - H. = 0

or

(40)

By use of the transformation eq. (27) the failure surface in the normalized coordinate
system is given by

1
(1 + 0.18 zt) (1.6 + 0.06 z.) (1.5 + 0.10 Z2) (2 + 0.10 ZS)3 1.59 - (4.4 + 0.70 Z3) = 0

In order to make the calculations in this illustrative example more simple we negleer the
small variational coefficientsof ~ and coia and obtain

1(1 + 0.18 zt) . 1.6 . (1.5 + 0.10 Z2) ·23 ·1.59 - (4.4 + 0.70 Z3) = 0 (41)

or

0.864 Zl + 0.32 ':2 + 0.058 ZlZ2- 0.70 Z3+ 0.40 = 0 (42)
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By use of eq. (35)

1
al = - K (0.864 + 0.058.BHL02)

1
02 = - K (0.32 + 0.058.BH Lal)

0.7
K

Byeq. (36)

K = V(0.864 +0.058.BHL02)2 + (0.32 + 0.058.BHLod + (0.7)2

The iteration is now perforrned by choosing starting values for .BHL, al, 02 and 03 and
calculating new values until srnall rnodifications are obtained. This is shown in Table 3.
The convergence is faster if a positive sign is used for o-values related to loading variables
and a negative sign is used for o-values related to resistance variables.

Table 9.

Iteration No.

start 1 2 3

.BHL 3.0 0.438 0.342 0.341
K 1.144 1.149 1.149
al -0.50 -0.744 -0.747 -0.747
02 -0.50 -0.263 -0.266 -0.266
03 0.50 0.612 0.609 0.609

21-14

The probability of failure is then

PJ = ~(-f3HL) = ~(-0.341) = 0.367

cf. Table 1 for sorne corresponding values of .B and PJ.

The design point coordinates in the norrnalized z coordinate systern are

(zt, z~, zg) = (.BHLQt, .BHL02, .BHL(3)

= (-0.255, -0.091, 0.208)

Expression (33) .BHL = (t (4)2)! provides a check on the design point coordinates.

Using the transformation
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and the valuesof J'X., ax, givenin Table 2 the designpoint coordinates in the original z
coordinate system are found to be

(zt, z~,z~)= (0.954, 1.491, 4.546)

The relative importance of the random variables to the failure probability is evaluated
through the a2-values. Table 4 shows that the uncertainty related to Dn is of minor
importance compared to the uncertainties on A and H•.

Table -I.

Xi ai al (%)

1 A -0.747 55.8 1.50 ol
2 Dn -0.266 7.1 1.04
3 H. 0.609 37.1 1.26 ol

100.0

0.83101
0.989
0.899 ol

0) The assumption of validity only for small o-values is not fulfilled

If all 5 parameters in the Hudsonformulawas kept as random variableswith mean values
and standard deviations as given in Table 2 then the correspondingvalues would be as
shown in Table 5.

Table 5.

x, ai al (%)

1 A -0.705 49.7 1.41 e]

2 Dn -0.275 7.6 1.04
3 H. 0.631 39.8 1.29 e]

4 ~ -0.154 2.3 1.01
5 cota -0.068 0.5 1.00

100.0

0.857oi
0.986
0.896 ol
0.999
1.000

0) The assumption of validity only for small o-values is not fulfilled

It is clearly seenwhy ~ and cota can be regarded as constants.

If the normallydistributed basic variablesX are correlaied the proceduregivenabove can
be used if a transformation intonon-correlatedvariablesY is performedbeforenormalizing
the variables.
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The correlation betweenany pair of the random variables X is expressed by the covariance
matrix

[

Var [Xl] Cov[Xlt X2]

= Cov [X2, Xl] Var [X2]
es= .

Cov[Xn, Xl] Var [Xn]

(43)

After determination of Y and O'y the followingtransformation. analog to (27), into uncor­
related and normalized variables z is performed

ti -/SY;
Zi = (46)

If (:y is a diagonal matrix

Var [YI] 0

= Var [Y2]
Cy=

o Var [Yn]

(12 0Y1

=
(1}2 (44)

0 (12Yn

then no correlation hetween any pair og random variables Y exists.

A set of uncorrelated variabels Y can be obtained by the transformation
_ =T_
Y=A X (45)

whereA is an orthogonal matrix with column veetors equal to the orthonormal eigenvalues
of·(:x.

The diagona! elements of ëy, i.e. O'?I O'}n' are equal to the eigenvalnes of ëx.

The reliability index fJHL, defined in the z-coordinate system as given in Fig. 6 and eq.
(28), can he determined by the described iterative procedure of eqs. (35) and (36).

3.2.3 Non-linear failure functions containing non-normal distributed random
variables .

It is not a!ways areasonabie assumption to consider the random variables normally dis­
tributed. This is for example the case for parameters such asH. characterizing the sea state
in long-term wave statistics. H. will in genera! followextreme distributions (e.g. Gumbel
and Weibull) quite different from the norma! distribution, and cannot he described only
by the meao va!ue and the standard deviation.
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For such cases it is still possible to use the reliability index f3HL but au extra transfor­
mation of the non-normal basic variables into normal basic variables must be performed
before f3HL can be determined as described above.

A commonly used transformation is based on the substitution of the non-norm al distribu­
tion of the basic variable Xi by a norm al distribution in such a way that the density and
distribution functions [x, and Fx. are unchanged at the design point.

If the design point is given by xt, x~, ... ,x~ then the transformation reads

Fx, (xt)

[x, (xt)
(47)

where fJ.'x.and u'x. are the mean and standard deviation of the approximate (fitted) norm al
distribution.

From eq. (47) is obtained

cp (~-l (Fx. (xt)))
[x, (xt)

(48)

fJ.'x. = xt-~-1(Fx.(x1))u~.
Eq. (47) can also be written

( d) (xt - fJ.'x.) ( d)Fx, Xi =. , = + Zi = + (fJHLOi)
o"x.

Solving with respect to xt gives

(4S)

The iterative method presented above for calculation of fJHL can still be used if for each
step of iteration the values of o'x. and fJ.'x.given by eq. (.8) are calculated for these vari­
ables where the transformation (47) has been used.

For correlated random variables the transformation given byeq. (.5) is used befere nor­
malization.

EXAMPLE 2
The same failure function and non-correlated nerrnal-distributed variable as in Example
1 are considered except that H. now fellows a Gumbel c:Iistribution but with the same
average and standard deviation as given in Tabie 2.
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The Gumbeldistribution function and density function are
Fa (xa) = e-e-A(Z3-B)

(50)
fa (xa) = dFa (xa) = A e[-e-A('3-B)-A(Z3-Bl]

dxa
The distribution parameters A and B can be determined by the followingexpressionsfor
the mean and the standard deviation

B 0.57722
1''''3 = + A

(51)

Usingthe Table 2 valuesI'Z3= 4.4 m amd UZ3 = 0.7 m givesA = 1.83 m-1 and B = 4.08
m.

In the normalizedcoordinate system the failure surfaceis then (compared with eq. (41))

(1 + 0.18z1) . 1.6· (1.5 +0.li2) • 2t ·1.59 - (1'~3+ u~3za) = 0

0.864z1 + 0.32z2 + 0.058z1Z2 - 0"~3za+ (4.8 -1'~3) = 0

21-18

- (4.8 - P~3)
PHL=----------~----~~~-------

0.86401 + 0.3202 + 0.0580102PHL - u~30a
Byeq. (35)

1
01 = - K (0.864 + 0.058PHL02)

1
02 = - K (0.32 + 0.058PHLo1)

I
~
K

Byeq. (36)
r-------------------------------~

K = V(0.864 +0.058PHL02)2+ (0.32 +0.058PHLOl)2+ (~3r

Byeq. (49)

x~= Fö1 [~(PHLOa)]
Byeq. (48)

I = <p(~-l(Fa(x~)))
U"'3 ( )fax~
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The results from each step of iteration are shown in Table 6.

Table 6.

Iteration No.

start 1 2 3 4 5 6 7

f3HL 3.0 1.717 0.553 0.569 0.463 0.461 0.457 0.457
/{ 1.295 1.363 1.165 1.155 1.144 1.143 1.143
al -0.5 -0.629 -0.629 -0.735 -0.742 -0.749 -0.749 -0.750
a2 -0.5 -0.199 -0.220 -0.254 -0.260 -0.262 -0.262 -0.263
a3 0.5 0.772 0.754 0.627 0.619 0.609 0.608 0.607
xd 5.359 4.568 4.525 4.475 4.471 4.469 4.4693

0'~3 1.0 1.027 0.731 0.715 0.697 0.695 0.694 0.694
11-~ 3.0 4.033 4.139 4.264 4.270 4.275 4.276 4.276

The probability of failure is then

PI = ~ (-f3HL) = ~(-0.457) = 0.324

The coordinates of the design point D in the normalized z-coordinate systern are

(zt, zg, z;) = (f3HLal' f3ULa2 , f3HL(3)

= (-0.342, -0.12 , 0.277)

( 3 2)!
Note that f3HL = ?; (zn
The coordinates of the design point D in the original x-coordinate system are calculated
by the transformation

xt = J.lXi + (1XiZt i = 1, 2 (cf. Table 2 for I'Xó and O".J

(cf. Table 6 for 11-:3 and 0":3)

to be

x;) = (0.934 , 1.474 , 4.468)

The reliability index is now f3HL = 0.457 which is larger than f3HL = 0.341 from Example 1.
However, the failure probability does not change so much (from 36.7% in Example 1 to
32.4% in this example).

A more widely used method of calculating f3HL is

1. Select some trial coordinates of the design point in the z-coordinate system

zd = (zt ,zg , ... , z~)
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2. Calculate ai i = 1, 2, '" , n by

3. Determine a bet ter estimate of zd by

i=1

4. Repeat 2) and 3) to a.chieve convergence

5. Evaluate f3HL by

The method is based on the assumption of the existence of only one minimum. However,
several "local" minima might exist. In order to avoid convergence against such local
minima (and thereby overestimation of f3HL and the reliability) several different sets of
trial coordinates might be tried.

3.2.4 Time-variant random variables

The failure functions within breakwater engineering are generally of the form

9 = Jl(r) - h (H. , W , Tm) (52)

where R represents the resistance variables and H., Wand Tm are the load variables
signifying the wave height, the water level and the wave period. The random variables are
in general time-variant.

Discussion of Load Variables:

The most important load parameter in breakwater engineering is the wave height. It is a
time-varying quantity which is best modelled as a stochastic process. Distinction is made
between short-tem and long-term statistics of the wave heights. The first one deals with
the distribution of the wave height H during a stationary sequence of a storm, i.e. during
a period of constant H, (or any other characteristic wave height). The short term wave
height distribution follows the Rayleigh distribution in case of deep-water waves and some
truncated distribution in case of shallow water waves.

The long term statistics deals with the distribution of the storms which are then char­
a.cterized by the max value of H. occurring in e~h storm. The storm history is given
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as the sample (Hol, H'2' ... , H.n) coveringa period of observationY. Extreme value
distributions like the Gumbel and Weiblllldistributions are tben fitted to the sample.
For strongly depth limited wave conditions a normal distribution with meao value as a
function of water depth might be éonsidered.

The distribution ofH. can be substituted by tbe distribution of tbe maximumvaluewitbin
T years, i.e. the distribution ofH;. Tbe calculated failure probability tben refers to tbe
periodT (whichin practice might be the lifetimeof the structure) if distribution functions
of the other variables in (52) are assumedunchangedduring tbe period T.

As an example consider a sample of n independent storms, i.e. H.l> Hol, ... , H.n,
obtained within Y years of observation. Assumethat H. followsa Gumbel distribution

F(H.) = exp [-exp(-a(H. - .8))] (53)

i.e. the distribution ofH. within a periodofaveragelength betweenthe observationsYin.

The distribution parameters a and .8 can be estimated e.g. by the maximum likelihood
method or the methods of moments. Moreover, the standard deviations of a and .8 signi­
fying the statistical uncertainty due to limited samplesize can be estimated too.

The samplingintensity is À = nlY. Within a T-years referenceperiod the number of data
will be ÀT. The probability of the maximumvalueof H. within the period T is then

F (H?') = (F(H.)/T = [exp[-exp(-a(H. - .8))]]"T (54)

The expectation (mean) valueofH; is givenby
p. = .8 - 2. In [-In (1 __ 1 )]Hf a ÀT (55)

and the standard deviation ofH; - in case of maximumlikelihoodestimates - is

UHf = C~2[1.109+0.514 (-Jn (~.In (1 - À~)))
+0.608 (-In (-In (1 ., À~)))2]) 0.5 (56)

This expression includes the statistical uncertainty due to limited sample size. Some
uncertainty is related to the estirnation of the sample values H61, Hol, ... , H.n due
to measurementerrors, errors in hindeast modelsetc. This uncertainty corresponds to a
coefficientof variatien UH. in the orderof5-20%. Tbe effectof this might be implemented

P.H.
in the calculationsby consideringa total standard deviation of

(57)
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In the level II calculation eq. (54) is normalized around the design point and eqs. (55) and
(56) or (57) are used for the mean and the standard deviation, cf. the procedure given in
Example 2.

Instead of substituting H. in eq. (52) with H; the following procedure might be used:
Consider T in eqs. (54) to (56) to be 1 year.

The outcome of the calculations will then be the probability of failure in a 1 year period,
P, (1 year). If the failure events of each year are assumed independent for all variables
then the failure probability in T years is

P,(T years) = 1 - [1 - P,(1 year)f (58)
However, for typical resistance variables such as concrete strength it is not realistic to
assume the events of each year to be independent. The calculated values of the failure
probability in T-years using H~ lIear and H; wil! be different. The difference will be very
small !f the variability of H. is much larger than the variability of ot her variables.

The water level W is also an important parameter as it influences the structural freeboard
and limits the wave heights in shallow water situations. Consequently, for the general case
it is necessary to consider the joint distribution of H., Wand Tm. However, in case of
deep-water waves W is often almost independent (except for barometric effects) of H. and
Tm and might therefore be taken as a non-correlated variabie and might be approximated
by a normal distribution with a certain standard deviation. The distribution of W is
assumed independent of the length of the reference period T.

The "wave period" Tm is correlated to H•. As a minimum the mean value and the standard
deviation of T, and the correlation of T, with H. should be known in order to perform a
level II analysis. However, the linear correlation coefficient is not very meaningful as it gives
an insufficient description when the parameters are non-normal distributed, Alternatively
the following approach might be used: From a scatter diagram of H. and Tm a relationship
of the form Tm = Af (H.) is estahlished in which the parameter A is norm al distributed
(or some ot her distribution) with mean value J.lA = 1 and a standard deviation 0"A which
signifies the scatter. Tm can then he substituted by the variabie A in (52). A is assumed
non-correlated to all other parameters. Generally. the best procedure to cope with the
correlations between H., Wand Tm is to work on the conditional distributions. Assume
the distribution of the maximum value of H. within the period T given as FI (H;).
Further, assume the conditional distributions F2 (WIH;) and F3 (TmlH;) to be known.
Let ZI, Z2 and Z3 be independent standard normal variables and

~ (zI) = FI (H;)
F2 (WIH;)

~ (Z3) = F3 (TmlH;)
The inverse relationships are given by

H; = FI-I [~(Zl)]
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W = F2-1 [~( Z2) IH;]
Tm = F3-1 [~(Z3) IH;]

Let the resistance variablesR converted into standard normal variabie zo. The resistance
term is written /J (r) = h (zo). Then the failure function eq. (52) becomes

9= h (zo) -12 (F1-1[~(Zl)], F2-1 [~(Z2) IIH;] , F;l [~(Z3) IH;]) = 0
because 9 now comprisesonly independent standard normaI variables the usuaI iteration
methods for caIculating f3HL can be applied.

Discussion of Resistance Parameters

The service life of coastaI structures is in most cases a span of years, say 20 to 100years.
During periods of that length a decrease in the structuraI resistance is to be expected due
to varioustypes ofmateriaI deterioration. ChemicaIreaction, thermaI effect,and repeated
loads (fatigue load) can causedeterioration of concreteand naturaI stone leading to disin­
tegration and rounding of elements. Also the resistance against displacementsof arrnour
layersmade of randomly placed armour units willdecreasewith the number of waves(i.e.
with time) due to the stochastic nature of the resistance. Consequently,for armour layers
it means a reduction of D; and KD with time, cf. the Hudsonequation.

Although of great importance in some cases, it is not easy to account for the materiaI
effects in reliability calculations. The main problem is the assessment of the variation
with time whichdepends a lot on the intrinsic characteristicsof the applied rock and con­
crete. However,only fairly primitive methods are availablefor assessmentof the relevant
characteristics. Moreover,the variatien with time depends verymuchon the load-history
which can he difficultto estimate for the relevant period of structuraI life,

Tenslle strength R(t), tenslle stress S{t)

F'oilure

FIG. 7. IDustrationofa first-passageproblem.

Fig. 7 illustrates a situation where a resistanceparameter R(t), e.g. signifyingthe tensile

21-23



620 HANS F. BURCHARTH

strength of concrete armour units, decreases with time t. R(t) is assumed to he a deter­
ministic function. The load S(t), e.g. the tensile stress caused hy wave action, is assumed
to he a stationary process. The probability of failure, i.e. P(S > R), within a period T is

(59)

where v+ (R(t)) is the mean-upcrossing rate (number of up-crossings per unit time) of the
level R(t) by the process S(t) at time t. v+ can be computed by Rice's formula

v+ (R(t)) = Loo (5 - R) fss (R(t), 5) d5
in which fss is the joint density function for S(t) and 5(t).

~1-24

Implementation of time-variant variables into level II analyses is rather complicated. For
explanation reference is given to Wen and Chen, 1987.

4 Failure probability analysis of failure mode sys­
tems

It is clear from Fig. 1 that a breakwater can be regarded as a system of components
which can either fail or function. Due to interactions between the components, failure
of one component may impose failure of another component and even lead to failure of
the system. A so-called fault tree is often used to clarify the relations between the failure
modes.

A fault tree describes the relations between the failure of the system (e.g. excessive wave
transmission over a breakwater protecting a harbour) and the events leading to this fail­
ure. Fig. 8 shows a simplified example based on some of the failure modes indicated in
Fig. 1.

A fault tree is a simplification and a systematization of the more complete so-called cause­
consequence diagram which indicates the causes of parrial failures as weil as the interac­
tions between the failure modes. An example is shown in Fig. 9.

The failure probability of the system, e.g. the proba.bility of excessive wave transmission in
Fig. 8, depends on the failure probability of the single failure modes and on the correlation
and linking of the failure modes.
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R_ .!op•• ' ....0" ®I

- boel .cour 0~

FIG. 8: Example of simplified(ault tree for a breakwater.

I I I
I I I

I
i

Do.~t1'"'
i I

I..
Coat benem onai,...

On" ..,._ lood. or. .ho... OIho, "pee ol lood. _ lor •• _ .... : SHlP COWSION - Sl!SM1C ACTMTT _

AGGR[SSIVt HUIoWf ACTION(SA8OTACE. WAR. [Ic.)

FIG. 9: Example o( cause-consequencediagram for a rubble mound breakwater.
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The failureprobabilityof a singlefailure modecan be estimated by the methods described
in chapter 3. Two factors contribute to the correlation, namely physical intereetion. sueh
as sliding of main arrnour caused byerosion of a supporting toe berm, and correlation
through common parameters likeH•. The correlationscaused by physical interactions are
not yet quantified. Consequently,only the common-pararneter-correlationcan be dealt
with in a quantitative way. However,it is possible to calculate upper and lowerbounds
for the failure probabilityof the system.

A system can be split into two types of fundamental systems, namely series systems and
parallelsystems, Fig. 10.

Parall.1 syst.m .

FIG. 10. Seriesand parallel systems.

Series systems

In a series system failure oecurs if any of the elements i = 1, 2, ... , n fails,
The upper and lowerbounds of the failure probability of the system, PIS are

Upper bound u .PIS = 1 - (1 - PIl) (1 - P/2) ... (1 - PIn) (60)

Lowerbound (61)

wheremax Pli is the largest failureprobability amongall elements. The upper
bound correponds to no correlation between the failure modes and the lower

n

bound to full correlation. Eq. (60)is sometimesapproximatedby pYs = E Pli
. i=1

which is applicableonly for small Pli because pYs should not be larger than
one.

The OR-gates in a fault tree eorresponds to series components, Series components are
dominating in breakwater fault trees. Really, the AND-gate in Fig. 8 is included for
illustration purpose and is better substituted by an OR-gate.
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Parallel systems

A parallel system fails only if all tbe elementsfail.

Upper bound PYs = min Pj; (62)

Lowerbound pis = PIl .Pn ... PI" (63)

Tbe upper bound corresponds to fuIl correlation between tbe failure modes
and tbe lowerbound to no correlation.

Tbe AND-gates in a fault tree correspondto parallel components.

Inorder to calculateupper and lowerfailureprobabilitybounds fora systemit is convenient
to decomposeit into series and parallel systems. Fig. 11 sbowsa decompositionof tbe
fault tree, Fig. 8.

Slldlftg/tlltl"1l of
aufMIrwtructu,. <D Diaplactm.n' of

mal" afmuur ®

FIG. 11. Decomposition of the fault treeFig. 8 into series and parallel systems.

EXAMPLE 3

Tbe level 11analysis of the single failure modes for a specific breakwater
schematized in Figs. 8 and 11 revealed the followingprobabilities of failure
in a l-year period

P/i % 3 6 4 3 0.5 1

1 2 3 4 5 6

Note tbat tbese P/i-values cannot be used in general because tbey relate to
a specificstructure. However,they are typical fo~ conventionallydesigned
breakwaters witb respect to order of magnitudeand large variations.

Tbe simple failure probability bounds for the system are, cf. eqs. (60), (61),
(62) and (63):
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Upper bound (no correlation):

Pfs = 1 - (1 - PJ6) (1 - P/l) (1 - PJs) (1 - PJ2) (1 - min. of W/3, PJ4]) = 12.9%

or for small values of PJi

Pfs = PJ6+ PJl + PJs+Pn +min. of [PJ3' PJ4] = 13.5%

Lower bound (full correlation):
L ;PJs = max ot [PJ6' PJI, PJ5, Pf2' PJ3· PJ4] = 6%

The simple bounds corresponding to T-years structurallife might be approxi­
mated by the use of eq. (58) *)

95 100

Structure life in years
20 50 100

100 10094

71

*) It is very important to notice that the use of eq. (58), which assumes
independent failure events from one year to another, can be misleading. This
will be the case if some of the parameters which contribute significantly to the
failure probability are time-invariant, i.e. are not changed from year to year.
An example would be the parameter signifying a large uncertainty of a failure
mode formula, e.g. A in eq. (2). If all parameters were time-invariant then
the correct lower bound would be pfs = max [PJi] independent of T, i.e.

i=l-n
6% for all Tin the exarnple. It follows that use of eq. (58) leads to too large
values of ph for T > 1 year.

In order to obtain correct PJs-values it is very important that the fault tree represents
precisely the real physics of the failure development. This is illustrated by Example 4
where a fault tree alternative to Fig. 8 is analysed, however, containing the same failure
mode probabilities as given in Example 3.

EXAMPLE 4

Fig. 12 shows the fault tree which differs from the fault tree in Fig. 8 in that
in Fig. 12 only failure mode 6 can directly cause system failure, while in Fig.
8 each of the failure modes 6, 5, 1, 2 and (3+4) can cause system failure.
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FIG. 12. Example of simplifiedfault tree for a breakwater.

The deeomposition of the fault tree is shown in two steps in Fig. 13. Note that
the same failure mode ean appear more than onee in the decomposed system.

Sliding/tilting of.....,_,..t,,,ctt.I,.. CD

Breokag. of parapet
.011 ® DI.placement of maln

ormour ®

ReGr .Iop.
.rosio" ® [roli"" of I.. berm ®

$eo bed ICOU'

Slidlng/tl"lng of
aup.ntrudure CD Dl.plQc~t of mol"

ormo"r ®
lreokoge of parapet
.011 ®

Reo, slop•
• roslon

[ra.1on of '_oe berm ®

FIG. 13. Decompositionof the fault tree Fig. 12 into series and parallel systems.
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The simpel bounds for the system are, cf. eqs. (60), (61), (62) and (63):

Upper bound:

Pfs = 1- (1- PJ6)(1 - min. of [Pjl, PJs]) (1- min. of [PJ}, PJ2' PJ3,PJ4]) = 4.5%

or for smaller values of PJ;

Lower bound:

Using the same PJ;-values and procedure as given in Example 3 the following
system failure probabilities are obtained

60 90 99

Structure life in years
20 50 100

18 39 63

These values are quite different from the values of Example 3 which underlines
the importance of a correct fault tree. *) see note on page 28.

The real failure probability of the system PJs will always be in between PYs and pfs
because some correlation exists bet ween the failure modes due to the common sea state
parameters, e.g. H•.

Itwould be possible to estimate PJs if the physical interactions between the various failure
modes were known and described by formulae and if the correlations bet ween the involved
parameters were known. However, the procedure for such correlations are very complicated
and are in fact not yet fully developed for practical use.

The probability of failure cannot in itself be used as the basis for an optimization of a
design. This is because an optimization must be related to a kind of measure (scale) which
for most structures is the economy, but other measures such as loss of human life (without
considering some cost of a life) are also used.
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The so-called risk, defined as the product of the probabiJity of faiJure and the economie
consequences is used in optimization considerations. The economie consequences must
cover all kind of expenses related to the faiJure in question, i.e. cost of replacement,
down-time costs etc.

5 Uncertainties related to parameters determining
the reliability of the structure

Calculation of reliability or failure probability of a structure is based on formulae describing
its response to loads and on information about the uncertainties related to the formulae
and the involved parameters.

Basically, uncertainty is best given by a probability distribution. Because the distribution
is rarely known it is common to assume a norm al distribution and a related coefficient of
variation

, 0' standard deviation
0'=-=

p. mean value

as the measure of the uncertainty.

The word uncertainty is here used as a general term referring both to errors, to randomness
and to lack of knowiedge.

(64)

5.1 Uncertainty related to failure mode formulae
The uncertainty of a formula can be considerable. This is clearly seen from many dia­
grams presenting the formula as a nice curve shrouded in a wide scattered cloud of data
points (usually from experiments) which are the basis for the curve fitting. Coefficients of
variation of 15-20% or even larger are quite normal.

The range of validity and the related coefficient of variation should always be considered
when using a formula.

5.2 Uncertainty related to environmental parameters
The sourees of uncertainty contributing to the tot al uncertainties in environmental design
values are categorized as:

1. Errors related to instrument response (e.g. from accelerometer buoy and visual
observations)

2. Variability and errors due to different and imperfect calculations methods (e.g. wave
hindeast modeis, algorithms for timeseries analysis)

3. Statistical sampling uncertainties due to short-term randomness of the variables
(variability within a stochastic process, e.g. two 20 min. records from a stationary
storm will give two different values of the significant wave height)
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4. Choise of theoretical distribution as a representative of the unknown long-term dis­
tribution (e.g. a Weibull and a Gumbel distribution might fit a data set equally weIl
but can provide quite different values of a 200-year event).

5. Statistical uncertainties related to extrapolation from short samples of data sets to
events of low probability of occurrence.

6. Statistical vagaries of the elements

Distinction is to be made between short-term sea state statistica and long-term (extreme)
sea statistics. Short-term statistica is related to the stationary conditions during a sea
state, e.g. wave height distribution within a storm of constant significant wave height, H•.
Long-term statistics deals with the extreme events, e.g. the distribution of H •.

Related to the short-term sea state statistics the following aspects must be considered:

• The distribution for individual wave heights in a "record in deep water and shallow
water conditions, i.e Rayleigh distribution and some truncated distributions, respec­
tively.

• Variability due to short samples of single peak spectra waves in deep and shallow
water based on theory and physical simulations.

• Variability due to different speetral analysis techniques, i.e. different algorithms,
smoothing and filter limits.

• Errors in instrument response and influence of location of measurement. Floating
accelerometer buoys tend to underestimate the height of steep waves. Character­
istics of shallow water waves can vary considerably in areas with complex sea bed
topography. Wave recotdings at positions with depth limited breaking waves cannot
produce reliable estimates of the deep- water waves.

• Imperfection of deep and shallow water numeri cal hindeast models and quality of
wind input.

Estimates on overall uncertainties for short-term sea state parameters covering items 1 - 3
given above, are presented in Table 7 for use when no more precise site specific information
is available.
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Table 7. Typical variational coefficientsu' = u/ JI. (standard deviation
overmeao value) for measuredand calculatedsea state parameters (Bur­
charth, 1989).

typical valu ..
Parameter Methodo of determiAatiOll e' Biu Commenta
Significant Accelerometer buoy, 0.05-0.1 ....0
wave height, preuure eell,
OFFSHORE verticaI radar

HorillOntai radar 0.15 ....0

Hindcaat, num. modelo 0.1-0.2 0-0.1 Very dependent
on quality of
weather~_

Hindcaat, 5MB method - 0.15-0.2 ? Valid only for
.tormconditiono
in reotricted
oea buino.

Vioual oboervationo 0.2 0.05
&omohipe

Significant
wave heipt Numerical modelo 0.1-0.20 0.1 ,,' can be much
NEARSHORE lazwer in oome
determined &om Manua! calcul&tiono 0.15-0.35 .,_
olfahore aignificant
waveheipt takinS
into account typical
ahaIlow w&ter effect.
(refr&ction, difrraction,
ahoalln«, •.. )
Meao wave Accelerometer buoy record. 0.02-0.05 ....0
period ofr-
more on Eotim&teo from amplitude
conmUon of .pectra 0.15 ....0
fixed aigni-
ficant wave Hindcaat, num. modelo 0.1-0.2 ....0
heipt
Uurat.on of Direct meuurement. 0.02 ....0
oea .tate with
.ignificant Hindcaat, num. modeIo 0.05-0.1 ....0
wave heipt
exceeWns a
opecific
level
Spectra! peaI< Meuurementa 0.05-0.15 ....0
frequency
offshore Hindcast, num. modelo 0.1-0.2 ....0
Spectra! Meaourement. and
peakedneu hindcaat, num. modelo 0.4 ....0
offshore

Degrees
Mean direction Pitch - roU buoy 5·
of wave
propacatioD Meaaurementa '7, u, Y

offahore or P, u, v 0) 10·

Hindcast, num. modelo 15 - 30·

"Astro tid .. Prediction from conotant. 0.001-0.01 ....0
Stonnaurle Numerical models 0.1-0.25 :!::0.1

.) two'horizontal velocity component. and water level elevation or preaure.
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Evaluation of the uncertainties related to the long-term sea state statistics and its use for
design involves considerations of the followingaspects:

• The encounter probability

• Estimation of the standard deviation of a return-period event for a given extreme
distribution

• Estimation of extreme distributions hy fitting to data sets consisting of uncorrelated
values of H. from

- frequent measurements of H, equally spaeed in time
- identification of the largest H. in each year (annual series)

maximum values of H. for a number of storms exceeding a certain threshold
value of H. (POT, peak over threshold, analysis)

The methods of fitting are the maximum likelihood method, the method of moments,
the least square method and visual graphical fit.

:21-34

• Uncertainty on extreme distribution parameters due to limited data sample size.

• Influence on the extreme value of H. of the choise of threshold value in the POT
analysis. (The threshold level should exclude all waves which do not belong to the
statistical population of interest.)

• Errors due to lack of knowledge about the true extreme distrihution. Different
theoretical distributions might fit a data set equally weil, hut might provide quite
different return period values of H.. (The error can he estimated only empirically
by comparing results from fits to different theoretical distributions.)

• Errors due to applied plotting formulae in case of graphical fitting. Dependent on
the applied plotting formulae quite different extreme estimates can he obtained. The
error can only he empirically estimated.

• Climatological changes.

• Physicallimitations in extrapolation to events of low probahility. The most impor­
tant example might be limitations in wave heights due to limited water depths and
fetch restrictions.

• The effect of measurement error on the uncertainty related to an extreme event.

It is beyond the scope of this contribution to discuss in more detail the mentioned uncer­
tainty aspects related to the environmental parameters. Reference is given to Burcharth
(1989).
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5.3 Uncertainty related to structural parameters
The uncertainties related to material parameters (like density) and geometrical parameters
(like slope angle and size of structural elements) are generally much smaller than the
uncertainties related to the environrnental parameters and to the design forrnulae.

6 Introduction of a partial coefficientsystem for im­
plementation of a given reliability in the design

The following presentation explains in short the partial coefficient system developed and
proposed by Subgroup-F under the PIANC PTC Il Working Group 12 on Rubble Mound
Breakwaters. For more details reference is made to Burcharth (1991).

6.1 Introduction to partial coefficients
The objective of the use of partial coefficients is to assure a certain reliability of the struc­
tures.

The parrial coefficients, ""ti, are related to characteristic values of the stochast ie variables,
Xi,ch. In conventional civil engineering codes the characteristic values of loads and ot her
action parameters are often chosen to be an upper fractile (e.g. 5%), while the character­
istic values of material strength parameters are chosen to be the mean values. The values
of the partial coefficients are uniquely related to the applied definition of the characteristic
values.

The part.ial coefficients, ""ti are usually larger than or equal to one. Consequently, if we
define the variables as either load variables x!oad (as for example H.) or resistance vari­
ables X[" (as for example the block volume) then the related partial coefficients should
be applied as follows to obtain the design values

xr»: = ...l0ad. X10ad• I. .,eh

(65)

xr+ =•

The magnitude of ""ti reflects both the uncertainty on the related parameter Xi and the
relative importance of Xi in the failure function. A large value, e.g. ""tH. = 1.4, indicates
a relatively large sensitivity of the failure probability to the significant wave height, Hs.
On the other hand, ""ti ~ 1 indicates no or negligible sensitivity in which case the partial
coefficient should be omitted. It is to be stressed that the magnitude of ""ti is not - in a
mathematica! sense - a stringent measure of the sensitivity of the failure probability to
the parameter, Xi.

When the partial coefficients are applied to the characteristic values of the parameters in
eq. (2) we obtain the design equation, i.e. the definition of how to apply the coefficients.
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The parrial coefficientscan be related either to each parameter or to combinations of the
parameters (overall coefficients). In the first case we obtain the design equation

( )

1/3

G Zeh !::.ehti;eh K cotOeh H > 0=---- D-- -,H.. ,eh_
" IA IDn "[eoto

or (66)
D 1/3 H.
n,eh ;:::1"A,Dn'cola'"YH, ZAK tehueh D co ach

In the second casewe could for example have only IH, and an overall coefficientI. related
to the first term on the right hand side of eq. (2). The design equation would then be

G = Zeh !::.ehDn,eh (KDcotO)1/3 - IH,H. ;:::0

"or (67)
D > H.n,eh - ,a IH, ZAK tehueh D co ach

Eqs. (66) and (67) express two different "code formats". By comparing the two
equations it is seen that the product of the partial coefficientsis independent of the chosen
format, other things equal. It is desirable to have a system which is as simple as possible,
i.e. as few parrial coefficientsas possible, but without invalidating the accuracy of the
design equation beyond acceptable limits.

Fortunately, it is very often possible to use overall coefficients, like " in eq. (67), without
loosing significant accuracy within the realistie range of combinations of parameter values.
This is the case for the system proposed in this paper where only two partial coefficients,
IH, and '" are used in each design formula.

Usually several failure modes are relevant to a design. The relationship between the failure
modes are characterized either as series systems or parallel systems. A fault tree can be
used to illustrate the complete system. The partlal coefficients for failure modes being
in a system with failure probability, PJ are different from the partial coefficientsfor the
single failure modes with the same failure probability, PJ. Therefore, partial coefficients
for single failure modes and multi failure mode systems are treated separately.

6.2 Overall concept of the proposed partial coefficientsystem
In existing civil engineering codes of practise, e.g. for steel and concrete structures, it is a
characteristic of them that

• partlal coefficientsare related to combinations of basic variables rather than to each
of them in order to reduce the number of coefficients.
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• the partial coefficientsreflect the safety levelinherent in a large number ofweIlproven
designs. Two sets of coefficientscovering permanent and preliminary structures are
usually given, but the related average probabilities of failure are not specified. In
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other words, it is not possible by means of the normal structural codes to design a
structure to a predetermined failure probability.

However, it is not advisable to copy this concept in safety recommendations for rubble
mound breakwaters for the following reasons:

• For coastal structures and break waters there is no generally accepted tradition which
reflects one or more levels of failure probability. On the contrary it is certain that the
safety level of existing structures varies considerably and is often very low. Besides,
it is very difficult to evaluate the safety level of existing coastal structures and break­
waters because of lack of inforrnation, especially on the environmental conditions,
e.g. the water level variations and the wave elimate. Consequently, it is not possi­
ble to produce sets of partial coefficients which, in a meaningful way, are calibrated
against existing designs. -

• Due to the very nature of coastal engineering where design optimization dictates
considerable variations in the safety level of the various structures it is necessary
[advisable) to have sets of parrial coefficients which correspond to various failure
probabilities, In other words the designer and the elient decide on the basis of
optimization and cost benefit analyses that the structure should be designed for
a specific safety level (for exarnple 20% probability of failure (PI = 20%) within
a structural lifetime of T = 80 years, where failure is defined as a certain degree
damage). The code should then contain a set of parrial coefficients corresponding to
this failure probability,

• Because the quality of information about the long term wave elimate (the domi­
nating load) varies from very unreliable (uncertain) wave statistics based on few
uncertain data sets to very reliable statistica based on many years of high quality
wave recordings and hindeast values it is necessary that the partial coefficients must
be a function of the quality of the available information on the wave elimate. This
means that the statistical uncertainty due to limited number of wave data and errors
in the wave data should be implemented.

Extensive calculations, performed at Universityof Aalborg. of partial coefficients for ar­
mour layer stability formulae demonstrated that it was possible to develop a concept which
satisfies these demands.

6.3 Method of determining the partial coefficient
The overall procedure for the development of a partlal coefficient system was as follows

• Define the failure modes and the failure element structure
(single element analysis and/or system analysis)

• Select the code format (design equations)

• Define intervals of the parameters, their statistica! properties and combinations

• Select target probabilities of failure
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• Calculate the partial coefficients

• Optimize and calibrate the system

'Y. = 1 - k",lnP, (69)

• Verify the part ial coefficient system against the observed behaviour of existing struc­
tures.

The partlal coefficients '""fi are determined from a so-called level 11 reliability arialysis.
The applied computer programmes BWREL (Rreak Water RELiability programme) and
BWCODE (.B.reak Water .QQllE) were developed at the University of Aalborg by Dr.
John Dalsgaard Serensen especially for the reliability analysis of breakwaters. For further
explanation reference is made to the Sub-group F report.

6.4 Breakwater Types and Failure Modes
The Working Group set out to study five different types of breakwaters and considered
a wide range of failure modes. During the work it became clear that sufficiently weU
documented failure formulae were only available to justify recommendations of partial
coefficients for conventional multi-layer rubble mound break waters with armour carried
over the crest - and for the foUowing Failure modes:

• Hydraulic instability of front face armour

• Instability of low crested rock break waters

• Hydraulic instability of rock toe berm

• Run-up on rock armoured slop es

The formulae for these failure modes are given in section 6.8 in the form of design equations,
which shows how to apply the partial coefficients.

6.5 Partial Coefficient System Format for Single Failure Modes
For each failure mode only two partial coefficients '""fH, and '""f%are used, cf. the example
given by eq. (67). The parrial coefficient are determined from formulae. Three different
concepts for these formulae have been evaluated and the following were chosen as being
acceptable with respect to deviations from the target probability of Iailure,

ÎI:p/ , (1+(1i-1)kpPf)
'""fH, = ÎlT + (J"FH.,

k.+--jPiN
(68)

where
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'TH. is the central estimate of the T-year return period value of H.,
where T is the structural lifetime (T = 20, 50 and 100 years
were used for the code calibration). ÎH. is applied to k[ (the
characteristic valueof Ho, cf. the designequations).

is the central estimate of the 3T-yearreturn period valueofH•.

N

is the central estimate of H. correspondingto an equivalent re­
turn period TpJ definedas the return period correspondingto a
probability PI that b;PJ willbe exceededduring the structural
lifetimeT. TpJ is calculated from the encounter probability for-
mula TpJ = (1 - (1 - PI)~fl , cf. Fig._14.

is the variational coefficientof a function FH• modelled as a
factor on H.. FH. signifiesthe measurement errors and short
term variabilityofH. and has the meanvalue 1.0. O'~H. is equal
to 0" forH. in Table 7. The statistical uncertainty on H. is not
included in FH•.

is the number of H. data, used for fitting the extreme distribu­
tions. The statistical uncertainty dependson this parameter.

ka, k(3 and k, are coefficientswhich are determined by optimization.
k. !:::! 0.05 for all failure modes. The ka and the k(3 values are
given in Tables 9-12.

The first term in eq. (68) gives the correct ÎH. provided no statistical uncertainty and
measurementerrors related to H. are present. The middle term in eq. (68) signifiesthe
measurementerrors and the short term variabilityrelated to the wavedata. The last term
in eq. (68) signifiesthe statistical uncertaintyof the estimated extreme distributionof H•.
The statistical uncertainty dependson the total number of wavedata, N, but not on the
length of the period ofobservation,as mightbe expected. The 10largest valuesofH. over
a 15years period providesa muchmore reliableestimate of the extreme distribution than
the 10 largest valuesof H. over 1 year. However,in the statistical analysis it is assumed
that the data samples are equally representativeof the true distribution. In other words
it is assumed that the data, besidesbeing non-correlated, are sampled with a frequency
and over a length of time whichensures that periodic variations (e.g. seasonal)are not
biasing the sample. The designermust be awareof these restrictions.

If the extremewavestatistics isnot basedonN wavedata, but forexampleon estimates
ofH. from informationabout water levelvariationsin shallowwater, then the last term in
eq. (68)disappearsand instead the valueofO'~H. must account for the inherentuncertainty.
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FIG. 14. Encounter probability, i.e. the probability p that the R-year return period
event will be exceededduring a T-year structural life,

6.6 Format for Multi Failure Modes
A simple series system is considered, cf. chapter 4. The reliability of the system depends
on the correlation between the failure modes. Two factors contribute to the correlation,
namely the physical interaction, e.g. the erosion of a toe berm triggering a slide in the
main armour layer, and the correlation through commonparameters likeH•. The physicaJ
correlations are not yet generally known. Consequently, only the common parameter
correlations have been implemented in the present work.

A simple system is to treat each failure mode, i = 1,2,3, ... , n separately using the single
failure mode models. The upper and lower bounds of probability of the system, Pi could
then be estimated as

Upper bound Pi = 1 - (1 - P})(l - pJ) ... (1 - Pi) (70)

Lower bound Pi = max P}

Max Pj is the largest of the failure probabilities of the failure modes.

Eqs. (70) and (71) correspond to no correlation and full correlation, respectively. Due to
the common parameters there will always be a correlation of some size. However, closer
bounds must await further work on correlation between failure modes.

(71)

6.7 Investigated Ranges of Parameter Variations
The optimization of the partial coefficients is based on calculations where all combinations
of realistic values of the failure formula parameters are considered.
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The resistance parameters are modelled as normally distributed stochastic variables given
by mean values and standard deviations. An example of these values and the related range
of parameter variations is given below for the Hudson equation applied to rock armour

H. ( )1/3Hudson formula -- = KDcotaso,

IAAA / ATDesign equation :G = -Z{)'Dn(KDcot&)l 3 - '"'fHsH. ~ 0
'"'fz

Notatien

D(p) indicates a deterministic value, p.
N(X1' X2) indicates a normally distributed parameter with rnean

value Xl and standard deviation, X2.

z is the design parameter
p defines the ranges of application of the code for.this failure

mode.
X expected value (mean value) of X.

FH. error function on H•.
ATH. central estimate of the significant wave height which on

average is exceeded once every T years.
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Parameters for the stochastic variables.

parameter distribution variatien of 15

D. N(Pl>P2) (Pt.P2) = (1.4,0.03), (1.6,0.06)
Dn N(z,pz) P = 0.01, 0.05
cota N(p,O.l) P = 1.5, 2, 3
KD D
FH• N(I,p) P = UFH. = (0,0.10,0.20)
Z N(1.0, 0.18)
H, Extreme distribution fitted to local wave data

The statistical model for the load parameteer H. was described by three of the commonly
used theoretical extreme distributions: Weibull, Gumbel and Exponential. The distribu­
tions are given below expressing the non-exceedenceprobability within T years. À is the
average number of H,-data per year andN is the total number of data available for fitting
the distribution.

The statistical uncertainty of the distributions is included through the parameters
a and {3 which are modelled as stochastic normally distributed variables with variances
based on the maximum likelihood estimates ofa and {3. It should be noted that no quality
measure (correlation coefficientor X2-test) of the fit of a distribution to a data sample, is
included in the analyses that were carried out.

The considered distribution functions are listed below.
N(XI' X2) indicates a normally distributed parameter with mean value Xl and standard
deviation, X2.

Gumbel FH'[(H.) = [exp( -exp( -a(H. - (3)))]ÀT

( .~a :N a,ay ----p;- )

Weibull [ ( (
H _ H,)a)]ÀTFH'[(H.) = l-exp - I {3 ,

a:N(a,~
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var [a] = 1; is an assumption since it has not been possible to find an analytical expression.
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r is the gamma function.

[ ( H. - H;)l>'TExponential FHJ(H.) = 1 - exp
Q / J

o:N(o,o/P
\ / 1'/)

The H. data samples used in the arialysis are real deep water and shallow water data set
from the North Sea, the Atlantic Ocean, the Bay of Biscaya and the Mediterranean Sea,
Table 8 shows the distribution parameters for the data sets.

Table 8. Distribution parameters for H.-data samples.

Gumbel Weibull Exp.
N À 0 f3 0 f3 H; 0

Bilbao 50 4.17 1.95 5.55 1.39 1.06 4.9 0.97
Sines 15 1.25 0.88 8.75 1.78 2.53 7.1 2.27
Tripoli 15 0.75 0.74 5.06 1.83 3.24 2.9 2.91
North Sea 30 1.88 1.30 6.65 1.28 1048 5.7 1.39
Follonica 46 5.94 3.14 5.73 1.14 0.58 2.69 0.55
Pozzallo 22 6.94 3.62 4.68 1.05 0048 2.20 0047

The statistical uncertainty described through the varianee of Cl and f3 does not include
uncertainties due to

• lack of knowledge about the true extremal distribution

• climatological changes

• measurement errors

• variability due to imperfect calculations of H. and short term randomness

The last two points are incorporated in the arialysis by the multiplication term FH. on
H.. FH• is modelled as a normally distributed variabie with a mean value of unity and
a specified coefficient of variation, a'FH.' the size of which depends on the quality of the
available information, cf. Table 7.

The first two points cannot be treated through FH., but in a design situation the designer
must try the different models for the extreme wave height and thereby select the most
appropriate, A partiel coefficient system cannot take these problems into account.

Moreover, it is assumed inherent in the analysis that the N values of H. represent the
statistical population to which H. belongs. This sets limits to minimum length of the
period of observation N / À and N in order to prevent seasonal changes from biasing the
results.

For the calibration of the system the following target values of o'FH, and PJ were used:

(jFH, = O.O~, 0.10 and 0.20

PI = 0.01, 0.05 , 0.10 , 0.20 and 0040.
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6.8 Example of Design equations and Recommended Values of
ka and kfj

The values of kor and k{Jwhich have been obtained by carrying out optimization for each
failure modes are presented as weUas the related design equations in Tables 9 - 12. Note
that limitations related to the equations are not given here.

Table 9. Main armour hydraulic stability.

Formula Design equation kor k{J

Hudson, rock ;. I:!..Dnso (Kdcota)1/3 ~ ïH.H; 0.036 151

Van der Meer, rock

Plunging waves l62So.2pO.18I:!..D cotaO.SsO.25N-0.1 > ï HT 0.027 38"Y~ • n50 m z _ H. ,

Surging waves lSO.2p-O.13I:!..D cotao.s-P s-o.sP N-O.1 > ï HT 0.031 38r. nSO m z - H. •

Van der Meer
Tetrapods 1 (~.. ) -02 T 0.026 38r. 3.75j;jp. + 0.85 sm· I:!..Dn~ ïH.H•
cota = 1.5

Van der Meer
Cubes 1 (~., ) -Ol T 0.026 38r. 6.7~ + 1.0 Sm·I:!...Dn~ ïH.H•
coro = 1.5

Table 10. Hydraulic stability of loui crested rock breakwaters.

Formula Design equation kor k{J

Van der Meer, rock As for main armour with factor

[ o.srl/; = 1.25 - 4.8f/j (~ ) 0.035 42

applied to Dnso
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Table 11. Hydraulic stability of rock toe berm.

Formula Design equation kor kp

143
Van der Meer, rock ;. 8.7 (Ij:-). ADnSO?:. 'YH.H; 0.087 100

Table 1f!. Run-up on rock armoured slopes.

Forrnula Design equation kor kp

Hunt for (eototls;;.o.s < 1.5
.1.. Ru ar+coia sO.s> '"( HT- 0.036 441~ m - H. ,

for (cototls;;'o.s> 1.5
.1.. Ru b-1 [coto sO.s]"> '"( HT 0.018 36'Y. m - H••

6.9 Example of the use of the Partial CoefficientSystem
The following example will illustrate how the partial coefficient system is applied for design
purpose.

Objective:
Determination of the average maas, or the nominal diameter D"so,
of quarry rock armour corresponding to the following design condi­
tions:

Case 1. Moderate to severe damage with a probability PI =
0.2 within a structurallife of T = 50 years.

Case 2. Very severe damage (failure) with a probability PI =
0.2 within a structurallife of T = 100 years.

Case 3. Moderate to severe damage with a probability PI =
0.1 within a structurallife of T = 100 years.

The Van der Meer formulae for rock given in Table 9 are assumed
valid.

Design parameters:
Densities: Rock 2.8 t/m3, water 1.03 t/m3, A == 1.72

Slope: cota = 1.5, porosity P = 0.4
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Wave climate: Weibull distribution ofH.with the site specificco­
efficients(a,P,H;) = (1.39, 1.06, 0.44) determined
by fitting to a hindcasted H.-data set consisting
of the N == 50 largest values within a 12 years pe­
riod, i.e. À = 50/12 = 4.17. CTFH. is estimated to
0.2 for the hindcasted H. values. Wave steepness
Sm = 0.04, number of wavesN~= 2500.

Damage:Moderate to severe damage S = 6, very severe
damage (fallure] S = 14.

Procedure:
The procedure and the partlal coeflicent formulae described in sec­
tion 6.5 are used.

Calculations:
In case of a Weibull distribution the central estimate of the signifi­
cant wave height with an average return period of T years is given
by

Îl; = H~+ p(exp[ln(ln(ÀT))/a])

= 0.44 + 1.06 (exp [ln(ln(4.17T))/1.39])

The equivalent return period is given by

From this is obtained

Case T (year) PJ Tpl (year) ÎlI (m) Îl;T (m) Îl;PI (m)

1 50 0.2 225 3.98 4.49 4.67
2 100 0.2 449 4.30 4.80 4.97
3 100 0.1 950 4.30 4.80 5.29

From Table 9 (for plunging waves)

ka = 0.027 , kp = 38'
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From the formulae

IH,

and the Van der Meer design equation is obtained

1
2
3

1.23 1.04
1.22 1.04
1.35 1.06

1.58
1.43
1.91

11.0
8.1
19.5

Case IH, IZ Dnso (m) Average mass (t)

The example illustrates how easy it is to calculate the sizeof the armour for various design
conditions. The system facilitates econornical optirnization of a design.

The system can be used also for the evaluation of the failure probability of existing struc­
tures.

6.10 Conclusions
A concept for the calculation of partial coefficientscorresponding to given failure probabil­
ity within given structure life is presented. Two partial coefficientsIH, and IZ are applied
to a design formula. Two partial coefficientsare calculated from formulae (68) and (69)
in which two failure mode specific coefficients,ka and kp, are used together with charac­
teristic return period values of H., extracted from the site specific long term distribution
of H•.

So far the ka , kp coefficients have been calculated only for the failure modes which are
described by existing uncertainty evaluated formula.e . However, it is easy to expand the
system as more failure mode formulae appear. It is important to notice that the reliability
of the Iormulae must be documented, e.g. in terms of a standard deviation, in order to
implement them in the partial coefficientsystem.
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