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Data assimilation for geothermal doublets using production data and
electromagnetic observations

Christiaan Oudshoorn∗, Dieter Werthmüller, Evert Slob, Denis Voskov

ABSTRACT

The data assimilation process for geothermal reservoirs
often relies on well data which primarily offers insights
into the immediate vicinity of the borehole. However,
integrating geophysical methods can provide valuable
information beyond well proximity, possibly enhancing
reservoir predictions. Electromagnetic methods can be
sensitive to the decreasing conductivity from heat ex-
traction in geothermal reservoirs. A scheme to incor-
porate electromagnetic data into a data assimilation
process for geothermal reservoirs is presented and im-
plemented in this study. First, an ensemble of prior
models representing the reservoir uncertainty is used
to determine the moments of the resulting temperature
field using a forward geothermal simulation. Source
and receiver locations are determined by maximizing
the distance of the path through the expected temper-
ature changes while ensuring that the source and re-
ceiver are not excessively distant. Subsequently, a con-
ductivity model is implemented using an empirical rela-
tionship. The expected electric field response can then
be simulated using an electromagnetic forward model.
To assimilate the data, the Ensemble Smoother with
the Multiple Data Assimilation (ES-MDA) method is
employed. The findings demonstrate that the incorpo-
ration of electromagnetic data provides more informa-
tion regarding the temperature field, which when com-
bined with the localized data from the production well
improves the temperature forecast accuracy of both the
production well and the entire reservoir model.
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INTRODUCTION

Geothermal energy holds immense potential as a clean,
renewable, and sustainable energy source (Hackstein and
Madlener, 2021). Realizing the full benefits of this re-
source requires a profound comprehension of the subsur-
face reservoirs containing geothermal energy, and numer-
ical simulation stands as a powerful approach to achieve
this understanding (Tian et al., 2023).

The calibration of physical reservoir models to match
actual field measurements is fundamental to this endeavor.
This process, commonly referred to as “history matching”
or “data assimilation”, aims to adjust the reservoir model
to replicate the observed field measurements (Huseby et al.,
2013; Wu et al., 2021). However, assimilation schemes re-
lying solely on well data, such as temperature and bore-
hole pressure, suffer from limited information content, of-
fering insights predominantly within the immediate vicin-
ity of the boreholes (Zhang et al., 2020).

Geophysical measurements can address this limitation
by providing valuable supplementary information concern-
ing dynamic changes in the reservoir beyond the direct
well proximity (Zhang and Hoteit, 2021; Djuraev et al.,
2017; Sambo et al., 2020; Bretaudeau et al., 2021). Of
particular interest, EM methods exhibit sensitivity to con-
ductivity changes associated with fluid temperature fluc-
tuations (Ucok et al., 1980; Sen and Goode, 1992).

This paper delves into the integration of EM data within
a data assimilation framework, alongside well data, to en-
hance the reservoir characterization. First, the method
for creating a model ensemble is described, which is the
collection of models which together describe the reservoir
uncertainty. Thereafter, descriptions of the reservoir, rock
physics, and EM forward models are given. After this, the
method for the data assimilation and method for deter-
mining EM source and receiver locations are described.
Lastly, a numerical example is presented where EM data
is incorporated into a data assimilation scheme to predict
reservoir performance and the results are evaluated.
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THEORY

Ensemble Generation

The initial phase of the workflow involves the genera-
tion of an ensemble to capture the uncertainty associated
with reservoir parameters. In this paper, the focus is on
the Delft sandstone member, which has a considerable
geothermal energy potential (Donselaar et al., 2015).
The ensemble is designed to reflect the characteristics

of the Delft reservoir, which has a normally distributed
porosity with a mean of 0.2192 and a standard deviation
of 0.0891. Each member of the ensemble comprises a grid
of 140 by 140 blocks, where each grid block measures 20
by 20 m with a 100 m thickness. To create the ensem-
ble members, sequential Gaussian simulation is employed.
A total of 25 random grid blocks are assigned a random
value from the aforementioned probability distribution for
each realization. Values between these blocks are then es-
timated sequentially in a random order using a correlation
defined by a spherical variogram,
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where hd is the distance in m from the nearest value, ar is
the range in m beyond which there is no correlation, and c
is the sill (Deutsch and Journel, 1992). The sill represents
the global maximum semivariance. In this paper, a range
of 1000 m and a sill of 1 is used. The geostatistical package
GeoStatPy for Python is employed to facilitate this process
(Pyrcz et al., 2021).
An empirical relationship is used to calculate the cor-

responding permeability, specifically µh = 196449ϕ4.3762,
where µh is the hydraulic permeability in mD and ϕ is
the porosity. Lastly, the porosity was limited to be within
0.05 and 0.40. The injection well grid block, located on
index ix = 40 and iy = 70, and the production well grid
block, located on ix = 100 and iy = 70, are limited to
having a permeability between 800 and 1000 mD.

Reservoir Simulation

This paper employs the reservoir simulation approach based
on the work by Khait and Voskov (2018); Wang et al.
(2020) and utilizes the Delft Advanced Research Terra
Simulator (DARTS). This approach focuses on two-phase
thermal simulation with water, considering its governing
equations and nonlinear formulations. However, this pa-
per considers a low enthalpy system, and for this reason,
the governing equations are adapted to account for a sin-
gle phase.
The mass equation of this system is described by

∂

∂t
(ϕρ)−∇ · (ρu) + ρq̃ = 0, (2)

and the energy conservation equation of this system by

∂

∂t
(ϕρU) +

∂

∂t
((1− ϕ)Ur)

−∇ · (hρu) +∇ · (κ∇T ) + hρq̃ = 0.
(3)

In the above equations, t represents time in seconds, ρ
signifies fluid density in kmol/m3, q̃ represents the fluid
source rate per unit volume in m3/s, U indicates spe-
cific fluid internal energy in kJ/kmol, Ur indicates the
rock internal energy in kJ/m3, h denotes fluid enthalpy
in kJ/kmol, κ represents thermal conduction in W/m/K,
and T signifies temperature in K.

Furthermore, the fluid Darcy velocity ud in m/s, con-
sidering gravity effects can be defined as

ud = K
1

µ
(∇P − γ∇D) . (4)

Here, K represents the permeability tensor of the media
in mD, µ represents the fluid viscosity in Pa·s, P denotes
the pressure in bars, γ represents the specific weight in
N/m3, and D signifies the depth in m. The rock com-
pressibility can be incorporated into the porosity using
ϕ = ϕ0 (1 + cr (P − Pref )), where ϕ0 represents the initial
porosity, cr represents the compressibility of the porous
media in 1/bars, and Pref is the reference pressure in bars.
In a geothermal system where the only component is

water, pressure and enthalpy are considered primary vari-
ables in DARTS. To linearize the nonlinear system of
equations, the Newton-Raphson method is adopted. The
resulting system is expressed as:

J
(
ωk

) (
ωk+1 − ωk

)
+ r

(
ωk

)
= 0, (5)

where J
(
ωk

)
is the Jacobian matrix and r

(
ωk

)
is the

residual, with k defining the iteration. The state variables
of enthalpy and pressure are encapsulated and represented
by ω. An initial time step of 10−3 days is used, with a
maximum time step of 365 days with the time step in-
creasing by 8 times as long as the solution is converging,
for the duration of the reservoir simulation.

To improve the computational process and flexibility
of nonlinear formulation, the operator-based linearization
(OBL) technique is employed, as proposed by Khait and
Voskov (2017). In this approach, the discretized mass and
energy conservation equations are transformed into an op-
erator form, separating the space- and state-dependent
properties. The state-dependent operators are then pa-
rameterized in the space of nonlinear variables adaptively
using a limited number of supporting points. This im-
proves the speed and robustness of highly nonlinear reser-
voir simulation.

Rock-Physics Model

To model the EM response from the rock properties and
dynamic changes, a rock physics relationship is required
linking the reservoir parameters to conductivity. As hot
water is extracted from the geothermal reservoir and cold
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water is injected, the temperature within the reservoir de-
creases. Over time, this forms a cold plume which pro-
gresses from the injection well to the production well.
Multiple studies have been conducted on measuring the

change in conductivity as the temperature of a brine-
saturated rock sample changes with varying degrees of
complexity. Ucok et al. (1980) described an empirical re-
lationship linking temperature and ions within the brine
with conductivity, and Sen and Goode (1992) derived an
empirical relationship that incorporates the inclusion of
clay minerals.
For simplicity, however, the approach by Dresser Indus-

tries (1982) is used, which simply links salt concentration
and temperature to electrical conductivity. Differences
in estimated conductivities among the above-mentioned
methods are generally small, with the exception that the
inclusion of clay minerals leads to a reduction in the change
in conductivity with varying temperatures.
Assuming that the main electrical conductive feature in

the reservoir rock is the pore fluid, Archie’s law is used to
determine the conductivity of the rock

σ = a−1σwϕ
msnw, (6)

where σ is the formation conductivity in S, and σw is the
brine conductivity in S. The saturation sw is set to 1 as
only one fluid is considered. Moreover, a, m, and n are
Archie’s parameters which depend on the rock’s cementa-
tion, wettability, compaction, and pore structure.
The brine conductivity σw can be determined by the

empirical relationship:

σw =

[(
0.0123 +

3647.5

C0.955
w

)
82

1.8T + 39

]−1

, (7)

where Cw is the salt concentration in ppm. The salt con-
centration is assumed to remain constant at 100,000 ppm
and the temperature is retrieved from the reservoir sim-
ulation to determine the conductivity at each grid cell.
It should be noted that Archie’s law is an empirical law
for clean sandstones (Archie, 1942). For reservoir models
which include other facies, an additional method has to
be used.

Electromagnetic Modeling

This paper employs the emg3d three-dimensional elec-
tromagnetic (EM) modeller, which is a Python package
specifically suited for diffusion EMmodeling (Werthmüller
et al., 2019). The response from the EM method is gov-
erned by Maxwell’s equations (Zhang et al., 2020). In the
presence of a current source Js and under the diffusive
field approximation, Maxwell’s equations can be given as

∂tB(x, t) +∇×E(x, t) = 0

∇×H(x, t)− Jc(x, t) = Js(x, t),
(8)

where Js is in A, E(x, t) is the electrical field in V/m, and
H(x, t) is the magnetic field in A/m (Werthmüller et al.,
2019).

The conduction current is defined such that is obeys
Ohm’s law as

Jc = σ(x)E(x, t), (9)

and the magnetic induction is defined as

B(x, t) = µmH(x, t). (10)

Here the magnetic permeability µm in H/m is expressed as
µm = µrµ0, where µr and µ0 are the relative and vacuum
magnetic permeability respectively.

In this paper, the relative permeability µr is set to 1.
Eliminating the magnetic field from Equation 8 yields the
second-order parabolic system of equations given as

σ∂tE+∇× µ−1
0 ∇×E = −∂tJs. (11)

Using the Fourier transform both the electrical E(x, t) and
magnetic field H(x, t) can be brought into the frequency
domain, yielding

iωµ0σÊ = −iωµ0Ĵs. (12)

Lastly, a perfectly electrically conducting boundary can
be used such that n × E = 0 and n · H = 0 where
n is the outward normal vector on the boundary of the
computational domain.

Since the current source Js used is a 1 m long 1 A elec-
tric dipole and the conductivity model σ(x) is retrieved
from the reservoir model, only the electric field E has to
be solved for (Zhang et al., 2020). Lastly, a sampling op-
erator S(·) that samples the electric field E at receiver
locations to get the observed data dobs is given by:

dobs = |S (xs,xr)| , (13)

where xs represents the source locations, and xr the re-
ceiver locations. The modulus is taken to take the ampli-
tude of the electric field E, and to avoid complex numbers
in the measured data.

The EM forward model requires a three-dimensional
grid, while the conductivity model is two-dimensional. For
compatibility, the conductivity model is extrapolated in
the z-axis, while the x- and y-axis are given buffer cells of
1 S around the model. The amount of buffer cells in each
direction is calculated based on the frequency and afore-
mentioned buffer conductivity, to avoid boundary effects.

Data Assimilation Scheme

The Ensemble Smoother for Multiple Data Assimilation
(ES-MDA) method (Emerick and Reynolds, 2013) is used
in this paper to improve model predictions by incorporat-
ing observation data. ES-MDA employs an ensemble of
models to capture inherent uncertainty, advancing them in
time using model equations, reflecting the range of poten-
tial outcomes due to uncertainty in initial conditions and
model parameters. This approach focuses on parameter
estimation leveraging the stability of reservoir simulation
models in relation to the rock reservoir fields.
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To update the model, the ES-MDA method considers
several factors. These include the discrepancy between
the predicted and measured data, the cross-covariance
between the model parameters and predicted data, the
auto-covariance of the predicted data, and the covariance
matrix of observed measurement orders.
This process constitutes the ensemble smoother compo-

nent of ES-MDA. However, this approach can be seen as
equivalent to a single Gauss-Newton iteration. To poten-
tially achieve better convergence, ES-MDA incorporates
multiple data assimilation by inflating the covariance ma-
trix associated with measurement errors. By performing
several smaller iterations instead of one large correction,
the method aims to refine the parameter estimation fur-
ther, ultimately improving the convergence of the assimi-
lation process.
The ES-MDA analysis equation is given by:

ma
j = mf

j +Cf
MD

(
Cf

DD + αiCD

)−1 (
duc,j − df

j

)
, (14)

for j = 1, 2, ... Ne, where Ne is the number of ensemble re-
alizations. Moreover,CMD represents the cross-covariance
matrix of the model parameters m and the predicted data
d, CDD is the Nd×Nd auto-covariance matrix of the pre-
dicted data with Nd representing the number of observed
data, and CD is the Nd × Nd covariance matrix of mea-
surement errors. The superscript a and f are the analysis
and forecast respectively. In this paper, porosity is taken
as the model parameter and temperature and pressure at
the production well, and electric field amplitude at the
receiver, are taken as observation data. The electric field
amplitude measurements in particular are also scaled by
a constant, to bring them closer to the magnitude of the
other production well measurements.
Lastly, duc is defined as:

duc = dobs +
√
αiC

1/2
D Zd, (15)

where dobs is the observed data, Zd is a Nd ×Ne matrix
composed of random samples drawn from a normal Gaus-
sian distribution, and αi is the magnitude of perturbation
applied to the observations. It has to satisfy the condition
that

∑Na

i=1
1
αi

= 1, but is otherwise a user set parameter.
The ES-MDA algorithm can be summarized as follows:

1. Determine the number of data assimilations Na and
the coefficients αi for i = 1, ..., Na.

2. For each data assimilation iteration i = 1 to Na:

• Run the entire ensemble from time 0

• Perturb the observations with Equation 15

• Update the ensemble using Equation 14

RESULTS

EM Observation Well Placement

The change in reservoir conductivity resulting from geother-
mal energy extraction is expected to only be a few S

at most, making it challenging for surface-based EM re-
ceivers to detect this change. For example, the Delft reser-
voir considered in this paper has an overburden depth of
2000 m (Vardon et al., 2020).

Placing receivers in boreholes at the desired depth is
a costly solution. Therefore, careful consideration must
be given to receiver placement to maximize the benefits
from each observation well. Since transmitting current to
reservoir depth is difficult, the sources are positioned on
the surface.

To simulate the conductivity field before and after in-
jection, each ensemble member was simulated for 25 years
using the reservoir forward model with an initial temper-
ature of 348.15 K and an injection temperature of 308.15
K, thermal conductivity of 2.1 W/m/K, and injection rate
of 0.0579 m3/s. The injection well pressure is set to 300
bars, production well pressure to 50 bars, and the initial
pressure of the reservoir is at 200 bars. The injection well
is placed at x = 800 and y = 1400 m, and the production
well is positioned at x = 2000 and y = 1400 m.

Figures 1a and 1b illustrate an example of the resulting
conductivity field for a single ensemble member before and
after the simulation. Figures 1c and 1d illustrate the
conductivity and temperature difference. Here it is seen
that as the cold front infiltrates the reservoir, it leaves an
imprint in the conductivity field of around 0 to 1 S. Since
the pore fluid is the primary conductor, the decrease in
conductivity also reflects the porosity.

The corresponding electric field amplitudes are shown
in Figures 2a and 2b, respectively. The ratio of the two
electrical fields is presented in Figure 2c to better high-
light the impact of conductivity changes on the electric
field amplitude. The decreased conductivity leads to a
modified electric field amplitude since the electric field E
is allowed to penetrate deeper into the reservoir due to
reduced current loss in highly conductive zones.

Optimizing the mean and standard deviation of the
electrical field amplitude at a receiver to their highest
values is crucial for ensuring that the data assimilation
attains the most accurate solution. To determine the best
source location, the mean and standard deviation of the
electric field amplitude for three different sources were
simulated: within, on the boundary, and far outside the
cold plume.

Figures 3a, 3b, 3c, and 3d present the mean temper-
ature field of the ensemble along with the mean electrical
field amplitude ratio for these locations. It is observed
that increasing the distance that the electrical field E
has to travel through the temperature plume, increases
the mean maximum change in the electrical field ampli-
tude. Reducing the distance between the source and the
expected boundary of the temperature plume results in a
more significant decrease in the electrical field amplitude
change. This indicates that the source should be along
the expected temperature plume.

Additionally, Figures 4a, 4b, 4c, and 4d demonstrate
the standard deviation of both the temperature field and
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electrical field amplitude ratio for three different source
locations. The highest change in the standard deviation
of the electrical field amplitude is seen when the source
is placed close to the expected temperature plume, either
inside it or right outside the boundary. Placing the source
far from the temperature change limits both the intensity
and range of the deviations amongst ensemble members.
From this, it is deduced that the optimal source and re-

ceiver placement are achieved by placing them on the two
opposite sides of the expected temperature plume. Since
the receiver is in a fixed location it is ideally placed in a
location which always borders the expected cold plume.
These findings also underscore the importance of accu-

rately capturing uncertainty in the prior ensemble models,
as the optimal source and receiver setup relies on the ex-
pected moments of the temperature plume uncertainty.

Data Assimilation of EM Data

The data assimilation training spanned 25 years with a
five-year measurement interval, which was chosen due to
the high computational cost of the EM forward model
and measurement consistency. Temperature and pressure
measurements were sampled at the production well. An
additional EM receiver well was placed at (x = 1400, y =
1400 m, z = -2050 m), and the vertical electrical field am-
plitude at the receiver was sampled at the same five-year
intervals, scaled by multiplying it by 1014 to increase the
impact of EM observations. Five source locations were
used: (400, 1000), (400, 1400), (400, 1800), (1000, 1000),
and (1000, 1800). The change over time of all observations
is also utilized, calculated by taking the change in obser-
vations divided by the change in time between consecutive
sampling times.
The data assimilation process comprised six steps, with

the αi values being 1/0.02, 1/0.05, 1/0.08, 1/0.2, 1/0.3,
and 1/0.4. This causes each subsequent data assimilation
iteration to have a smaller covariance matrix, allowing
for increasingly larger corrections. The prior ensemble
consisted of the first 100 realizations, while the 101st is
used as the reference model.
Three different scenarios were tested: one where only

production well observations were used, one where both
production well and EM observations were used, and one
where only EM observations were used. The respective
temperature results at the production well are given in
Figures 5a, 5c, and 5e. Moreover, the difference between
the final mean ensemble temperature field and reference
final temperature field is shown in Figures 5b, 5d, and
5f. Reference production well observations were given a
noise of 0.1%, and EM receiver measurements were given
a noise of 1%.
The integration of both production well and EM ob-

servations has demonstrated substantial improvements in
predicting the production well temperature and final tem-
perature field. Solely relying on the point observations
improves the prediction only at this specific point (e.g.,

at the production well). However, this approach performs
poorly in predicting the spatial temperature distribution.
Conversely, using only EM observations yields more pre-
cise predictions for the temperature field but performs
poorly in predicting the temperature at the production
well. By combining production well and EM observa-
tions we impose better constraints on the assimilated data
which is indicated by the better data assimilation results.

The shape of the mismatch in Figures 5b, 5d, and 5f
clearly indicates that the temperature variability is limited
to a narrow ”halo” around the temperature plume. This
happens due to the Gaussian assumptions on the ensemble
statistics and fixed injection rate control between different
realizations. In more complex reservoir models, like fluvial
systems, the cold plume between both wells can exhibit
greater variability. EM observations could be especially
useful in such systems due to their strength in constraining
the expected temperature field.

CONCLUSION

We have demonstrated the effect of integrating electro-
magnetic observation data into a data assimilation scheme
for geothermal reservoir forecasting of a temperature dis-
tribution. Additionally, we have established guidelines for
determining the optimal source and receiver locations for
electromagnetic measurements. Numerical experiment re-
sults have demonstrated that the change in conductivity
caused by the cold water plume is substantial enough to be
effectively quantified using EM measurements in a bore-
hole with several electric current source locations on the
ground surface. Moreover, by incorporating the tempo-
ral evolution of electric field amplitude into the data as-
similation scheme, we have observed improvements in the
accuracy of temperature forecasts. Specifically, the in-
corporation of electromagnetic data gives more informa-
tion about the temperature field, which when combined
with the more localized information from production well
observations improves both the temperature forecast at
the production well and final temperature field. Conse-
quently, this method holds the potential to provide more
precise constraints on the lifetime predictions of geother-
mal doublets and geothermal decision planning.
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(a) (b)

(c) (d)

Figure 1: Changes of the conductivity field and temperature field over time. The conductivity field at year 0 in S (a),
the conductivity field at year 25 in S (b), the difference between both conductivity fields in S (c), and the temperature
field at year 25 in K (d).
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(a) (b)

(c)

Figure 2: Electric field amplitude of both conductivity fields of Figure 1, with the source placed at x = 400 and y = 1400.
The electric field amplitude in V/m at year 0 (a), the electric field amplitude in V/m at year 25 (b), and the ratio
between the electric field amplitude before and after 25 years (c).
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(a) (b)

(c) (d)

Figure 3: Mean temperature and electric field amplitude for the entire ensemble for three different source locations. The
mean temperature in K of the entire ensemble in (a), the mean ratio of electrical field amplitudes in with the source
placed at the red circle (b), the mean ratio of the electrical field amplitudes with the source placed at the blue circle (c),
and the mean ratio of the electrical field amplitudes with the source placed at the green circle (d).
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(a) (b)

(c) (d)

Figure 4: Standard deviation of the temperature and electric field amplitude for the entire ensemble and three different
source locations. The standard deviation of the temperature in K of the entire ensemble (a), the standard deviation of
the ratio of electrical field amplitudes with the source placed at the red circle (b), the standard deviation of the ratio of
the electrical field amplitudes in with the source placed at the blue circle (c), and the standard deviation of the ratio of
the electrical field amplitude with the source placed at the green circle (d).
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Data assimilation results using either the production well observations, the EM observations, or both. The
temperature at the product well, using only production well observations (a), and the difference between the true and
ensemble mean final temperature field using only production well data (b). The temperature at the product well, using
production well and EM observations (c), and the difference between the true and ensemble mean final temperature field
using both (d). The temperature at the product well, using only EM observations (e), and the difference between the
true and ensemble mean final temperature field using only EM observations (f). The green segment of the production
well temperature plot represents the data assimilation training time, and the white area the prediction time. The grey
lines represent the prior ensemble, with the blue lines the ensemble after data assimilation. The black line is the reference
model observation and the dotted yellow line the ensemble mean.



Assimilation of production and EM data 11

REFERENCES

Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics: Transactions of
the AIME, 146, 54–62. (https://doi.org/10.2118/942054-G).

Bretaudeau, F., F. Dubois, S.-G. Bissavetsy Kassa, N. Coppo, P. Wawrzyniak, and M. Darnet, 2021, Time-lapse resistivity
imaging: CSEM-data 3-D double-difference inversion and application to the Reykjanes geothermal field: Geophysical
Journal International, 226, 1764–1782. (https://doi.org/10.1093/gji/ggab172).

Deutsch, C., and A. Journel, 1992, GSLIB: Geostatistical Software Library and User’s Guide: Oxford University Press.
GSLIB: Geostatistical Software Library and User’s Guide. (ISBN 9780195073928).

Djuraev, U., S. R. Jufar, and P. Vasant, 2017, A review on conceptual and practical oil and gas reservoir monitoring
methods: Journal of Petroleum Science and Engineering, 152, 586–601. (https://doi.org/10.1016/j.petrol.2017.01.038).

Donselaar, M., R. Groenenberg, and D. Gilding, 2015, Reservoir Geology and Geothermal Potential of the Delft Sandstone
Member in the West Netherlands Basin: Presented at the Proceedings World Geothermal Congress 2015. (ISBN 978-
1-877040-02-3).

Dresser Industries, 1982, Well logging and interpretation techniques: The course for home study: Dresser Atlas.
Emerick, A. A., and A. C. Reynolds, 2013, Ensemble smoother with multiple data assimilation: Computers & Geosciences,
55, 3–15. (https://doi.org/10.1016/j.cageo.2012.03.011).

Hackstein, F. V., and R. Madlener, 2021, Sustainable operation of geothermal power plants: why economics matters:
Geothermal Energy, 9. (https://doi.org/10.1186/s40517-021-00183-2).

Huseby, O., R. Valestrand, G. Nævdal, and J. Sagen, 2013, Natural and Conventional Tracers for Improving Reservoir
Models Using the EnKF Approach: SPE Journal, 15. (https://doi.org/10.2118/121190-MS).

Khait, M., and D. Voskov, 2017, Operator-based linearization for general purpose reservoir simulation: Journal of
Petroleum Science and Engineering, 157. (https://doi.org/10.1016/j.petrol.2017.08.009).

——–, 2018, Operator-based linearization for efficient modeling of geothermal processes: Geothermics, 74, 7–18.
(https://doi.org/10.1016/j.geothermics.2018.01.012).

Pyrcz, M., H. Jo, A. Kupenko, W. Liu, A. Gigliotti, T. Salomaki, and J. Santos, 2021, GeostatsPy python package:
PyPI, Python Package Index. (https://pypi.org/project/geostatspy/).

Sambo, C., C. C. Iferobia, A. A. Babasafari, S. Rezaei, and O. A. Akanni, 2020, The Role of Time Lapse(4D) Seismic
Technology as Reservoir Monitoring and Surveillance Tool: A Comprehensive Review: Journal of Natural Gas Science
and Engineering, 80, 103312. (https://doi.org/10.1016/j.jngse.2020.103312).

Sen, P. N., and P. A. Goode, 1992, Influence of temperature on electrical conductivity on shaly sands: Geophysics, 57,
89–96. (https://doi.org/10.1190/1.1443191).

Tian, X., O. Volkov, and D. Voskov, 2023, An Advanced Inverse Modeling Framework for Efficient, Flexible, and Adjoint-
Based History Matching of Geothermal Energy: SSRN Electronic Journal. (https://doi.org/10.2139/ssrn.4394926).

Ucok, H., I. Ershaghi, and G. R. Olhoeft, 1980, Electrical Resistivity of Geothermal Brines: Journal of Petroleum
Technology, 32, 717–727. (https://doi.org/10.2118/7878-PA).

Vardon, P., D. Bruhn, A. Steiginga, B. Cox, H. Abels, A. Barnhoorn, G. Drijkoningen, E. Slob, and K.
Wapenaar, 2020, A Geothermal Well Doublet for Research and Heat Supply of the TU Delft Campus.
(https://doi.org/10.48550/arXiv.2003.11826).

Wang, Y., D. Voskov, M. Khait, and D. Bruhn, 2020, An efficient numerical simulator for geothermal simulation: A
benchmark study: Applied Energy, 264, 114693. (https://doi.org/10.1016/j.apenergy.2020.114693).

Werthmüller, D., W. A. Mulder, and E. C. Slob, 2019, emg3d: A multigrid solver for 3D electromagnetic diffusion:
Journal of Open Source Software, 4, 1463. (https://doi.org/10.21105/joss.01463).

Wu, H., P. Fu, A. J. Hawkins, H. Tang, and J. P. Morris, 2021, Predicting Thermal Performance of an Enhanced Geother-
mal System From Tracer Tests in a Data Assimilation Framework: Water Resources Research, 57, e2021WR030987.
(https://doi.org/10.1029/2021WR030987).

Zhang, Y., and I. Hoteit, 2021, Feature-Oriented Joint Time-Lapse Seismic and Electromagnetic History Matching Using
Ensemble Methods: SPE Journal, 26, 1341–1365. (https://doi.org/10.2118/203847-PA).

Zhang, Y., F. C. Vossepoel, and I. Hoteit, 2020, Efficient Assimilation of Crosswell Electromagnetic Data Using an
Ensemble-Based History-Matching Framework: SPE Journal, 25, 119–138. (https://doi.org/10.2118/193808-PA).



12

APPENDIX: ADDITIONAL RESULTS

Introduction

The primary purpose of this appendix is to supplement
the limited numerical tests previously reported in the pa-
per. This appendix aims to offer an in-depth exposition of
supplementary results, which greatly impacted the selec-
tion and execution of the numerical experiments shown in
the paper. Unless otherwise stated, the parameters used
are the same ones found in the paper.
The main goal of this supplementary analysis is to pro-

vide valuable insights for future research work concerning
EM monitoring of the DAP well reservoir.

Original source locations

The data assimilation results in the paper were based on
five distinct source locations. For brevity, the electric field
amplitude ratio plots were omitted. Nevertheless, the in-
clusion of these fields yields valuable insights, particularly
in understanding the utilization of a single receiver in con-
junction with multiple sources. For this reason, they are
given in this appendix.
The mean electric field amplitude ratio after 25 years

are presented in this appendix as Figures A-1a, A-1c, A-
1e, A-2a, and A-2c. Correspondingly, Figures A-1b, A-1d,
A-1f, A-2b, and A-2d depict the standard deviations of the
electric field amplitude ratio.
The first two source locations illustrate the optimal sce-

nario, wherein the proposed receiver location at x = 1400
and y = 1400 is located in an area with the highest change
in electric field amplitude and is also categorized by high
standard deviation.
The third source location falls slightly outside the ideal

standard deviation range, and the fourth and fifth source
location fall outside the ideal mean range and standard de-
viation range. Despite this, the moments are beyond the
range of measurement errors, allowing for these sources
to still serve as supplementary constraints on the model’s
parameters.
By looking at the moments of the electric field ampli-

tude, the source locations can be refined. For instance,
increasing the y-coordinate of the third source is likely to
increase the standard deviation at the receiver. Further-
more, relocating the fourth and fifth sources to a smaller
x-coordinate may potentially yield higher standard devi-
ations at their respective positions.
Emphasizing the highest divergence among ensemble

models is crucial, as it gives a greater constraint on mod-
els which best best fit the measurement data. This, in
turn, enhances the posterior ensemble in representing the
subsurface more accurately.
It is also important that the source locations cross the

cold plume from different angles, as this allows for stronger
constraints within uncertain regions of the cold plume.
As is seen in Figures A-2b and A-2d, there is still a high
amount of standard deviation at the receiver location, de-

spite the source not being at the direct opposite location
of the cold plume. This still allows the EM measurements
from these sources to constrain the posterior ensemble.

In the figures it is also seen that the electric field am-
plitude is slightly different within the -2000 to -2010 m
range. This disparity is attributed to a modeling artifact
caused by a minor misalignment between the survey do-
main and the computational domain to which the survey
domain is extrapolated.

Source amount

It has been observed that different source locations cause
different distributions of the electric field amplitude. More-
over, it has been observed that sources can be placed
around the cold plume and still give large differences be-
tween ensemble members at a certain receiver well loca-
tion. These additional measurements can place additional
constraints which can assist in reducing the spread of
the ensemble members. However, the effect of the source
amount on the data assimilation results have not yet been
shown properly.

To illustrate the effect of the source amount on the data
assimilation results two additional numerical experiments
were performed. First, the results on both the temper-
ature at the production well and the temperature field
for one single source located at x = 400 and y = 1400
are given in Figures A-3a and A-3b. Moreover, the re-
sults when two more sources are added for a total of three
sources are given in Figure A-3c and A-3d. The two ad-
ditional sources are located at x = 400, y = 1000 and
x = 400, y = 1800. The results for five sources are given
in the paper in Figures 5c and 5d.

As predicted, the inclusion of additional sources im-
proves the temperature forecast of both the production
well and the reservoir. In the temperature forecast of the
production well it is seen that increasing the amount of
sources decreases the spread between ensemble members
and also moves the mean of the ensemble closer to the
temperature of the reference model. Moreover, the mean
temperature field of the ensemble also approaches the ref-
erence temperature field, with a decrease in overshoots
and undershoots.

One source only provides marginal benefits when com-
pared to the results without EM observations as shown
in Figures 5a and 5b. The inclusion of two additional
sources already improves the temperature field forecast
significantly, using five sources leads to a significant im-
provement in both the spread and mean of the ensemble
of the temperature at the production well forecast and
and also further increase the accuracy of the predicted
temperature field.

From these observations it can be concluded that using
multiple strategically placed source locations is critical to
the success of incorporating EM into data assimilation
workflow.
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Receiver location

It has been established that using multiple strategically
placed sources is critical for the success of EM data assimi-
lation. This still leaves the receiver to be decided however.
Since the receiver has to be placed in the subsurface, the
receiver placement has a far greater cost associated with
it due to the requirement of an additional well. This also
brings with it the complication that the receiver amount
is limited. For this reason two additional experiments are
performed using different receiver locations.
The first configuration is one where the receiver is placed

at the injection well side at x = 400 and y = 1400, and
the second configuration is one in which the receiver is
located below the cold plume spanning between the injec-
tion and production well at x = 1000 and y = 1000. For
the first configuration the sources are located at (1400,
1400), (1000, 1000), (1000, 1800), (1400, 1000), and (1400,
1800) with the temperature at the production well and
temperature field difference forecast results shown in Fig-
ures A-4a and A-4b. The second configuration with the
sources located at (500, 2000), (1000, 2000), (1500, 2000),
(500, 1400), and (1500, 1400) has the temperature at the
production well and temperature field difference results
shown in Figures A-4c and A-4d.
Both of these configurations perform slightly worse than

the results shown in Figures 5c and 5d. In both cases, the
production well forecast, while having a low spread, have
a mean which deviates from the actual reference model.
The configuration with the receiver placed below the cold
plume has a mean which is slightly closer. The tempera-
ture difference plots are also slightly worse then the case
presented within the paper.
While these results could potentially indicate that the

optimal receiver location is at the production well side,
there is one significant consideration to be made: the mo-
ment analysis of the temperature field was done at 25
years, which was the training period used for the data
assimilation. From this the source locations were deter-
mined. However, since the sources are located on the sur-
face they are not restricted to stay at the same location for
each measurement time during the data assimilation pro-
cess. For example, for each time step a new set of source
locations can be used which are placed to be optimal for
the cold plume predicted at that time step. Here the op-
timal receiver location would be behind the injection well,
as this is likely to remain the boundary of the cold plume
amongst all time steps as the cold plume moves to the
production well.
For this reason, and the observation that different re-

ceiver locations are only marginally worse than the setup
explored in the paper, the configuration were the receiver
is placed behind the injection well is still something which
could provide significant value if further explored.

EM observation scaling

The measured electric field amplitude at reservoir depth
with a surface source is multiple orders of magnitude smaller
than the observations measured at the production well.
Without proper scaling, the loss function within ES-MDA
will be dominated by the temperature and pressure terms,
leading to the EM observations having a reduced impact
on the model updates. For this reason the electric field
amplitude measurements in the paper were scaled by a
factor of 1014, to bring them closer to the production well
measurements. However, the effect of using a scaling fac-
tor were never shown. To provide more context to this de-
cision two additional experiments were performed using a
scaling factor of 1012 and 1016 on the EM measurements.

To fully understand the effect of the scaling factor on
the incorporation of EM measurements an additional met-
ric is used, the scaled EM amplitude observation at the
receiver with a source location of x = 1000 and y = 1800.
The reason for using this source location specifically is
that the measurements of this source showed the largest
change with different scaling factors. Since this measure-
ment has not been shown in the paper, it is hereby given
for the scenario presented in Figures 5c and 5d and in
Figure A-5.

The temperature at the production well, temperature
field difference, and aforementioned scaled EM amplitude
observation are shown in Figures A-6a, A-6c, A-6e for a
scaling factor of 1012. And in Figures A-6b, A-6d, and
A-6f for a scaling factor of 1016.

In all three metrics the scaling factor of 1014 performs
the best. Moreover, comparing the temperature forecast
at the production well between a scaling factor of 1012 and
1016 shows that the scaling factor of 1012 performs better
with a lower ensemble spread and better fitting mean. In
contrast, the scaling factor of 1016 has an ensemble with
a lesser spread and better fitting mean for the EM mea-
surements. Both scaling factors perform similarly, and
slightly worse than the 1014 case when the temperature
field difference is compared.

As expected, increasing the scaling prioritizes either
the production well measurements or EM measurements.
However, it is also observed that an optimal scaling factor
exists which properly balances the observations to reach
a posterior ensemble which performs better in all aspects.
For this reason special care should be given to the scaling
of the EM measurements, as the difference between the
three cases is significant.

An explanation for the relatively similar temperature
fields, even when EM measurements are prioritized by a
higher scaling, is that the well measurements can still have
a significant effect on the loss function. This affects the
model updates in the data assimilation to a degree which
could negatively affect the final temperature field.
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Alpha

ES-MDA is able to achieve multiple data assimilation by
using an inflated covariance matrix, where the inflation is
controlled by a parameter αi. This can be seen as replac-
ing one single large correction by multiple smaller correc-
tions.
By decreasing αi with each assimilation, the covariance

matrix becomes increasingly smaller, leading to larger model
corrections, and likewise: by increasing αi with each iter-
ation the covariance matrix becomes increasingly bigger,
leading to smaller model corrections.
Two additional numerical experiments are performed

to illustrate the effect of this parameter. The results ob-
tained for a decreasing αi are already shown in Figures 5c
and 5d, and in Figure A-5.
The results for a constant αi, where the values are all

6 are shown in Figures A-7a, A-7c, and A-7e. The results
for an increasing αi, which is the reversed order as seen
in the decreasing αi case, is shown in Figures A-7b, A-7d,
and A-7f.
When compared to a constant αi case, it is observed

that decreasing αi with each iteration gives small but sig-
nificant improvements to both the temperature prediction
of the production well and the field, with no significant
improvement seen in the EM observation. Increasing the
value of alpha with each iteration decreases the quality
of all three metrics significantly compared to the other
scenarios.

Training time

An interesting aspect of EM observations seen in Fig-
ure A-5 is that even before heat extraction the difference
between the ensemble members is significant. This is in
contrast to the temperature at the production well mea-
surement, which only shows differences amongst ensemble
members after ten years.
The conductivity of the reservoir is heavily influenced

by the porosity distribution, and for this reason EM mea-
surements might be able to give improved estimates of the
reservoir parameters with a relatively short training time.
It is also important to quantify the usefulness of EM

measurements with longer training times, as temperature
differences between ensemble members at the production
well increase with time, leading to the production well
measurements to be able to constrain the model more.
Four additional experiments were performed. Here the

data assimilation results only relying on production well
measurements and data assimilation results relying on
both production well and EM measurements for both 15
and 35 years were simulated. The production well and
temperature field difference forecast with 15 years of train-
ing time when only production well measurements are
used are shown in Figures A-8a and A-8b. Moreover, the
results when production well and EM measurements are
shown in Figures A-8c and A-8d. Likewise, the results for
35 years are shown in Figures A-8e and A-8f when only

production well measurements are relied on, and in Fig-
ures A-8g and A-8h when both production well and EM
observations are relied on.

It is seen that 15 years only gives a small reduction
in the spread of the production well temperature forecast
when only well measurements are relied on. In contrast,
when EM measurements are also relied on there is a signif-
icant improvement in the spread of the ensemble members.
Interestingly, the temperature field difference forecast dif-
ference when only production well data is relied upon is
similar to the case when 25 years are used as seen in Fig-
ure 5b, except for the well region showing some improve-
ment. The temperature field difference forecast when EM
measurements are incorporated already approaches the re-
sults seen with 25 years of training time in Figure 5d.

Comparing the results for 35 years show that EM mea-
surements still improve the forecast at the production
well, but only slightly when compared to the case when
only well data is relied upon. The temperature field dif-
ference forecast using only production well measurements
is slightly better than 25 years, but is still worse than the
forecast using EM measurements after 15 years. Interest-
ingly, the temperature field difference achieved with EM
observations is worse than the one seen at 25 years in Fig-
ure 5d. This could be due to a plethora of reason, one of
which is that the receiver position was chosen based on
the predicted temperature plume at 25 years, or that the
scaling of the EM measurements should be changes.

One important consideration is that a simple two- di-
mensional reservoir model is used which is extrapolated
in the third dimension. More realistic scenarios where
the overburden also has a complex porosity distribution
will affect the ability of EM measurements to predict the
reservoir parameter distribution as quickly as seen in these
results.

Truncated Gaussian Facies model

The Delft reservoir is fluvial, while the ensemble models
used are Gaussian. The reason for using a Gaussian model
is that ES-MDA requires is based on the assumption that
the models are Gaussian (Emerick and Reynolds, 2013).

A simple method of creating Gaussian models is to
adapt the ensemble model generation. Instead of letting
the semicovariance use a range ar which is the same in all
directions, the range can instead be defined by the direc-
tion. In this case, the y-direction ar was set to 3000 m,
and the x-direction ar was set to 600 m. This replaces
the range ar with an ellipse which causes structures to
be more elongated on the y-axis. Moreover, the Gaussian
can be truncated to represent facies. Porosities below 0.15
were set to 0.10, porosities below 0.30 were set to 0.20, and
porosities above or equal to 0.30 were set to 0.30. This
change from the Gaussian model to a model containing
clear facies can be done after the model update from ES-
MDA. This maintains Gaussianity while also allowing for
more complex models containing facies.
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The conductivity for one of these models before and af-
ter 25 years of extraction is shown in Figures A-9a and
A-9b. Moreover, the resulting conductivity and tempera-
ture change are shown in Figures 1c and 1d.
From these figures it is clear that vertical structure are

present, which cause the cold plume to travel vertically,
rather than mostly horizontally. To show the cold plume
path of all ensemble models, the mean and standard devi-
ation of the temperature fields of the entire ensemble after
25 years are given in Figures A-10a and A-10b. Here it is
observed that all ensemble models are now more prone to
travel vertically, rather than horizontally.
The experiment in the paper is repeated for the ensem-

ble containing facies models. The sources locations were
changed to (400, 1400), (400, 1000), (400, 1800), (750,
1500), and (750, 2250). with the receiver well still being
located at x = 1400, y = 1400. The temperature at the
production well temperature and field temperature differ-
ence forecast using only production well observations are
shown in Figures A-11a and A-11b, production well and
EM observations are shown in Figures A-11c and A-11d,
and lastly only using EM observations are shown in Fig-
ures A-11e and A-11f.
In the 25 year time span, the production well temper-

ature barely changes amongst ensemble members. This
causes the results using only EM and production well and
EM observation to be similar. EM data is again able to
constrain the ensemble members, but this time it becomes
less accurate. This is to the mean of the prior ensemble
being closer to the reference model temperature forecast.
Inspecting the temperature difference forecast plots re-
veals that utilizing EM data significantly improves the
temperature field, despite the temperature field being far
more complex. One area is seen where the prediction sig-
nificantly undershoots the temperature however, which is
near the well.
From these figures it is seen that EM observations can

resolve even more complex cold plume movements. More-
over, the results are likely to be improved if a better sur-
vey design was used. The EM receiver and sources are
all located left of the well, causing the well area to not
be covered. If the receiver was placed left to the injection
closer to the injection well, and the sources were placed
on the right at various distances it is possible that even
the well area could be accurately resolved.

DISCUSSION AND FUTURE WORK

In this paper it is shown that EM observations are able to
greatly improve the data assimilation, causing the model
updates to be able to predict the spatial distribution of
the cold plume significantly better. Moreover, the combi-
nation of production well data and EM data is also able
to improve the temperature predictions at the production
well.
Nevertheless, this appendix underscores the critical im-

portance of appropriate survey design and meticulous EM
observation scaling for the successful integration of EM

data. It also highlights several lingering research ques-
tions that require further exploration. Substantial addi-
tional experimentation is essential to fully quantify the
advantages of incorporating EM observations.

One aspect, which has been discussed but not yet ex-
perimentally explored, is the use of different sources at
different observation time steps. A receiver placed left of
the injection well, with the sources moving with the cold
front as it expands through time could provide even better
data assimilation.

Another noteworthy observation is that the EM mea-
surements between ensemble members is different before
extraction. This aspect could also be exploited, and could
potentially be leveraged to restrict the prior ensemble be-
fore geothermal heat extraction.

Another set of experiments that should be conducted
focuses on the influence of observation noise. The low
production well observation noise employed in this study
may potentially alter some of the outcomes and better
underscore the advantages of incorporating EM observa-
tions.

Also, the computational intensity of EM simulations ne-
cessitated observations only being taken at five-year inter-
vals. However, practical field scenarios allow for both pro-
duction well and EM observations to be collected monthly
or annually. This has the potential to yield even more bet-
ter outcomes.

It is also important to acknowledge that this paper as-
sumed for there to be no clay in the reservoir. Clay is con-
ductive, and reduces the change in electric resistivity as
the temperature decreases. This could reduce the benefit
of using EM observations, and should also be quantified.

ES-MDA is inherently limited to Gaussian models, pre-
venting the use of a more realistic fluvial model ensem-
ble that could better depict the Delft reservoir. Tech-
niques do exist for transforming these ensemble models
into a Gaussian space. Given the findings in this ap-
pendix, which demonstrate the improved forecast perfor-
mance with more complex reservoir models, it stands to
reason that EM observations could similarly enhance pre-
dictions when applied to a more representative Delft reser-
voir model ensemble

Lastly, this paper only showcases two dimensional reser-
voir models which were extrapolated in the z-axis for the
EM forward model. Experiments should also be performed
on three-dimensional models, since the effect of vertically
changing conductivity is potentially significant.

In conclusion, there is substantial room for methodolog-
ical refinement, and certain assumptions in this paper may
potentially lead to an overestimation of the benefits of EM
observations. Nevertheless, the experiments presented in
this paper and its appendix underscore the considerable
potential of EM observations in subsurface characteriza-
tion. Their utilization holds significant promise for en-
hancing decision-making in geothermal planning.
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Figures
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(a) (b)

(c) (d)

(e) (f)

Figure A-1: Mean and standard deviation of the electric field amplitude ratio for the first three source locations. Specif-
ically, with the source location at x = 400 and y = 1400 (a, b), source location at x = 400 and y = 1000 (c, d), and
source location at x = 400 and y = 1800 (d, e)
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(a) (b)

(c) (d)

Figure A-2: Mean and standard deviation of the electric field amplitude ratio for the last two source locations. Specifically,
with the source location at x = 1000 and y = 1000 (a, b) and source location at x = 1000 and y = 1800 (c, d).
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(a) (b)

(c) (d)

Figure A-3: Effect of source amount on the temperature at the production well and temperature field difference forecast.
For one source located at x = 400 and y = 400 (a, b), and for three sources (c, d). In the second case two additional
sources were added at x = 400 and y = 1000, and x = 400 and y = 1800.
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(a) (b)

(c) (d)

Figure A-4: Effect of the receiver location on the temperature at the production well and temperature field difference
forecast. With the receiver located at x = 400 and y = 1400, with the sources at (1400, 1400), (1000, 1000), (1000, 1800),
(1400, 1000), and (1400, 1800) (a, b). And also with the receiver located at x = 1000 and y = 1000 and sources at (500,
2000), (1000, 2000), (1500, 2000), (500, 1400), and (1500, 1400) (c, d).
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Figure A-5: EM observation with a source at x = 1000 and y = 1800 and a scaling of EM amplitude by 1014.
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(a) (b)

(c) (d)

(e) (f)

Figure A-6: Effect of the EM amplitude scaling factor on the temperature at the production well, temperature field
difference, and EM observation forecast. The EM observation shown is the EM observation when the source is placed at
x = 1000 and y = 1800. The results with a scaling of 1012 (a, c, e), and the results with a scaling factor of 1016 (b, d, f).
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(a) (b)

(c) (d)

(e) (f)

Figure A-7: Effect of the data assimilation parameters αi on the temperature at the production well, temperature field
difference, and EM observation forecast. The results for a constant alpha value (a, b, c) and the results for an increasing
alpha (d, e, f) are shown. The results for a decreasing alpha are shown in Figures 5c, 5d, and A-5.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-8: Effect of training time on the temperature at the production well temperature and temperature field difference
forecast. The results for 15 years of training time with only production well observations (a, b), and with both production
well and EM observations (c, d). Likewise, The results for 35 years of training time with only production well observations
(e, f) and with both production well and EM observations (g, h).
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(a) (b)

(c) (d)

Figure A-9: Changes of the conductivity field and temperature field over time for a single facies model. The conductivity
field at year 0 in S (a), the conductivity field at year 25 in S (b), the difference between both conductivity fields in S (c),
and the temperature field at year 25 in K (d).
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(a) (b)

Figure A-10: Mean of the temperature field in K (a) and standard deviation of the temperature field in K (b). The red
dots indicate the source positions used.
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(a) (b)

(c) (d)

(e) (f)

Figure A-11: Data assimilation results for the temperature at the product well and temperature field difference forecast
using the ensemble with facies models. The results using only production well observations (a, b), using both production
well and EM observations (c, d), and only using EM observations (e, f).


