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Summary

The common practice of designing a ship is to look for ships with similar specifications and
alter it to the client’s needs. This often leads to structurally redundant and therefore overdi-
mensioned ship designs. Hence, much improvement could be expected from ship structures
where optimization algorithms help advise in the design process. In this research, the midsec-
tion of a Trailing Suction Hopper Dredger (TSHD) is optimized. A TSHD midsection generally
consists of longitudinal stiffened panels and transverse web frames. The typical web frame
and longitudinal stiffener layout is optimized, as a weight improvement of this section can
have a large effect on the total weight of the ship since it is repeatedly reoccurring.

This research has optimized the midsection of a reference TSHD in two ways; the first step
was to perform a shape optimization for the longitudinal stiffener arrangement, which was
followed by a topology optimization for the transverse web frame. Both optimization objec-
tives were to minimize mass. The order of optimization follows the hierarchy in which stresses
are introduced into the structure; from the plates that make up the hull toward the stiffeners
and eventually the web frames. The complete optimization was performed a total of seven
times, for seven different web frame spacings ranging from 25% to 175% of the web frame
spacing of the reference TSHD.

For the shape optimization, a Simulated Annealing algorithm was used. The reference ship
was simplified to be able to parameterize the geometry into eleven panels with T-stiffeners.
Each panel has a set of variables that describe its geometry; the plate thickness, number
of stiffeners, stiffener web height, flange width and web and flange thicknesses. Although
feasible results came out of the optimization, no clear parallel was found when comparing
the plates of different web frame spacings. This is due to the fact that it is a high dimensional
problem. Although no clear parallels were found, the results were able to cope with all the
loads.

The topology optimization was performed with a modified Bi-directional Evolutionary Struc-
tural Optimization (MBESO) method. The applied modifications ensure a fast convergence
for large topology optimization problems. The new method was first verified by comparing
results to two benchmark cases from the original BESO method, which was followed by three
examples of common topology optimization benchmarks. Once established that the modified
method was capable of reproducing test cases, an aspect ratio analysis was performed to
better understand the transmission of stress. After that, the full geometry of the midsection
was divided into smaller basic models and the same optimization was carried out in order to
help interpret underlying physics of the final results. Finally, the topology optimizations for
the seven web frame spacings were performed, resulting in a new orientation of beams. The
topology optimization results showed that constructing beams not in an orthogonal way and
along the ship hull but rather under various angles could reduce the total mass of the web
frame.

To see how the shape optimization result influenced the topology optimization, three studies
were carried out where all the surrounding plates had the same thickness, except for one
that would have a significant smaller thickness. This showed how the web frame supports
the hull plating, but also how the web frame is dependent on the stiffness of certain panels
to be able to transfer shear into them.

Finally a comparison was made between the reference ship and the optimized structure. The
result was a decrease of 23% in weight for the midsection. Due to practical production consid-
erations this weight is likely to be higher in practice, however it is a promising start toward a
more efficient ship design. The innovative combination of shape optimization combined with
the MBESO procedure could help in early design stages where the main components of the
construction are defined.



Acknowledgements

This thesis completes the Master of Science programme at Delft University of Technology.
The research was carried out at Vuyk Engineering Rotterdam.

Doing this research has been an incredible and educational experience. From the start I
mentioned that the topic provided by Vuyk and the TU would have been similar to what I
would describe as the perfect research problem to dedicate my graduation thesis to.

I would like to thank Henk den Besten for his catching enthusiasm and astounding amount
of experience in ship structures and interest of implementing optimization. I would also like
to thank Michiel Verdult for all of his time spent on meetings, providing an ample amount of
feedback on the report and guiding the research with his tremendous amount of experience
in ship design. On top of that I would also like to thank Matthijs Langelaar to help me in
a crucial time to better understand and implement the topology optimization. Next to that
I would also like to thank Carey Walters and Hans Hopman to take part in the thesis comittee.

I would also like to express my gratitude toward my parents who have helped me keep a
positive mindset during the research. Furthermore, I would like thank Floortje in motivating
and supporting me in every way possible. Finally I would like to thank my friends with whom
I live with helping me unwind after a hard day’s work.

I hope you enjoy reading the report!






Contents

Topic Analysis

1

Introduction

1.1 Context . . . . . . . e e
1.2 Problem Statement. . . . . . . . ..
1.3 Significance. . . . . . . L

Literature Review

2.1 Buckling Analysis. . . . . . . . .. e
2.1.1 EulerBucklingTheory . . . . . . . . . . . . . .. . .

2.2 Shape Optimization . . . . . . . . . . e
221 Principles . . . . . . e
222 Simulated Annealing . . . . . . . ..

2.3 Topology Optimization . . . . . . . . . . . . . e
2.3.1 History. . . . . . e
2.3.2 Approaches. . . . . . . . e
233 Comparison. . . . . . . e
234 Conclusion . . . . . . . e

2.4 Shape and Topology Optimization in Ship Structures . . . . . . . .. ... .. ... ...

Research Objectives

3.1 ResearchQuestions . . . . . . . . . . . . . e
3.2 Research Subquestions . . . . . . . . ...
3.3 Methodology . . . . . . . e

Models and Results
4 Stiffened Panel Model

4.1 Introduction. . . . . . . L L L e e
4.2 Geometry . . . . .
4.3 Loading . . . . . . . e e
44 Geometry Variables . . . . . . . ..
4.5 Analytical Model . . . . . . . .
451 Momentoflnertia. . . . . . . .. . . . . ...
452 Yield. . . . . e e
453 LinearBuckling. . . . . . . .
454 Constraints . . . . . . . . L e
455 Simulated Annealing . . . . . . . ... e
4.5.6 Optimization Procedure . . . . . . . . . . .. ..
4.6 Numerical Analysis of Analytical Solutions . . . . . . . .. ... ... ... ........
4.7 Results . . . . . e e
4.8 DIiSCUSSION . . . . . L e e
48.1 ConstraintInfluence . . . . . . .. . ... ..
4.8.2 Differences Analytical and Numerical Results . . . . .. .. ... ... ......
4.8.3 Trendsin StiffenedPanels. . . . . . . .. .. ... Lo
4.84 Numerical Procedure. . . . . . . . . . ..



vi

Contents

5

Web Frame Model

51 Introduction. . . . . . ... . ...
52 Modified BESO . . . . . . . . . ...
5.2.1 NeighbourinclusionRatio . . . . . ... ... ... .......
522 RandomStart. . . . .. .. .. .. ... .. ... .. ...
5.2.3 Absence of Volume Constraint. . . . .. ... ..........
524 Ratios. . ... ... . . ...
5.2.5 Optimization Procedure . . . . ... .. ... ... .......
5.2.6 Verificationof MBESO . . . . . ... ... ... .........
53 Geometry . . . . . .. e
54 Loading . . . . . . . e
5.5 Optimization Parameter Setting . . . . . . . . ... ... ... ... ..
56 WebFrame Thickness . . . . . . ... .. .. ... ... .. ......
5.7 Underlying Mechanisms . . . . . ... ... ... ... .........
571 AspectRatioAnalysis . . ... ... ... ... ... ......
572 ReducedModels . . . . ... ... ... .. .. .........
58 Results . . . . . .. e
5.9 Discussion . . . . .. ..
591 CommonBeams . . ... ... . ... ... ...........
5.9.2 Neighbour Inclusion Ratio with Random Start . . . . . ... ..
59.3 Deflection. . . . . . .. ... ...
594 RandomStart. . . . .. .. .. ... .. ... ..
5.9.5 Limitation . . . .. . ... . ... .
596 MBESOCoarseness. . . . .. .. . ... ...
59.7 DesignTool. . ... ... ... . ... ... .

Optimization Interaction

6.1 Introduction. . . . . . . . . .. ...
6.2 Results . . . . . . . .
6.3 Discussion . . . . . ... e

Optimal Web Frame Spacing

7.1 Midsection Comparison . . . . . . .. . ... ..
7.2 Abstraction Procedure . . . . . . . . . . . ... ... .. ...
7.3 Discussion . . . . . ... e

lll Conclusions and Recommendations

8
9

Conclusion

Recommendations

IV Appendix and Bibliography

A

B
Cc
D

Direct Numerical Optimization Results

A.1 Simulated Annealing . . . . . .. ... ... L
A2 Result. . . . . . . .
A.3 Discussion . . . . . . ..

Appropriate Web Frame Thickness Analysis
Supplementary Fundamental Model Results

Supplementary Web Frame Topology Optimization Results

Bibliography

55
57
59

61
63

.......... 63
.......... 64
.......... 64

65
67
69
73



MBESO

N
NIR
ON
PSA
PSN
RR

List of Symbols and Abbreviations

Yield stress

Von Mises stress in element

effective width

plate breadth

Bi-directional Evolutionary Structural Optimization
Bureau Veritas

centroid along x-axis

centroid along z-axis

Young’s Modulus

Young’s Modulus of element k in iteration i
element size

Evolutionary Structural Optimization

Fitness of x

Finite Element Analysis

Finite Element Analysis of model with variable vector x
Finite Element Method

Fully Included Start

Hopper pressure due to sludge

web height

moment of inertia around x-axis

Inclusion Ratio

Length

Modified Bi-directional Evolutionary Structural Optimization
number of elements

number of stiffeners

Neighbour Inclusion Ratio

Oscillation Number

Plate-Stiffener Analytical

Plate-Stiffener Numerical

Rejection Ratio

Vi



viii List of Symbols and Abbreviations
RS Random Start

SA Simulated Annealing

SO Shape Optimization

SOV Sets of Variables

ss Stiffener Spacing

tr flange thickness

tp plate thickness

tw web thickness

TO Topology Optimization

TSHD Trailing Suction Hopper Dredger
W Water pressure

Wy width of flange

WFS Web Frame Spacing



I

Topic Analysis






|

Introduction

1.1. Context

Large ships are mainly constructed of longitudinal stiffened panels combined with web frames
and bulkheads. It is a good combination that can withstand loads induced by the sea and
cargo. This way of constructing a ship has been the conventional method and has proven
to be a redundant design. However, a shipyard and designer would always prefer to use the
least amount of material possible to reduce cost and weight, which in turn can increase the
payload. To achieve that, finite element analysis (FEA) has been combined with optimization
techniques to find the most ideal layout of stiffeners and shape of the web frame. However,
most of these methods do not include a buckling analysis in the iterations. That would mean
that these mechanisms have to be studied after the first layout has been determined and
may result in changing the design. To overcome this, the full static strength check should
be incorporated into the optimization.

Topology optimization (TO) and shape optimization (SO) can both be used to reduce the mass.
The difference between the two are the variables that are presented to the algorithm to alter.
With TO, several methods can be used to find the optimum geometry but in this research
each meshed element has its own E modulus ranging from zero to the E modulus of steel.
This approach allows for organic structures. The SO uses the stiffener parameters as its
variables. Examples of these are the web height and thickness, flange height and thickness
and stiffener spacing.

1.2. Problem Statement

The design space of this problem is the midsection of a Trailing Suction Hopper Dredger
(TSHD), consisting of a web frame and stiffened panels. The outer hull and hopper geometry
of the structure are predefined and will not change during the optimization. The longitudinal
stiffened panels will be subject to the SO since the stiffener arrangement can be parameter-
ized. The transverse web frame to the TO to give the opportunity to find a new orientation of
transverse beams.
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Figure 1.1: Typical midsection of TSHD (courtesy of Vuyk Engineering)

1.3. Significance

Industry’s interest

The fact that all ships now are designed with more structural redundancy than accounted for
is not necessarily a bad situation. However, it is always helpful to know how the structure
can be improved. The results of the shapes can be unprofitable to build, but it will show
the dependencies of structural members and the direction a feasible design could take to
improve on minimizing mass.

This research is now focused on the midsection of a hopper dredger, but will eventually be
easily transformed to be applicable to all kind of ship types.

Research interest

There is a gap in today’s knowledge about designing in early stages toward fatigue and buck-
ling simultaneously. This holistic approach would improve the structure or reduce post
processing time with FEA. Moreover, the combination of TO and SO on this scale has not yet
been applied.

On top of that, the design question will be turned around. At the moment the most conven-
tional way of designing a ship structure is to look back on previous designs that are similar
and configuring that to a structure that satisfies all the design requirements. This new way
of starting the design loop begins by asking ‘what does the structure want to look like?’.

Stakeholder’s interest

For Vuyk Engineering designing dredgers has become one of their specialties. Over time, a
considerable amount of hopper dredger designs have been delivered and the search for the
optimum design is desired. However, when the tool is working it should be easy to change
the hull shape to any midsection of any other ship possible.
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Literature Review

Before going into the models, an overview of all the pertinent theory must be described. This
chapter reviews most of the used literature and acts as a toolbox with theory that will be
applied in the models.

2.1. Buckling Analysis

To assess the buckling load, three main approaches can be used. Firstly the non-linear
approach which will have an accurate result of the buckling load, but it is a rather compu-
tational expensive method. Another one is the eigenvalue analysis, which is linear and less
accurate but a lot faster to calculate. This method assumes a perfect structure without any
defects and that is one of the reasons why it always over-estimates the actual critical load
as can be seen in Figure 2.1. A third option is to use a rule based system. This is the most
conservative, but realistic way of assessing the structure as it accounts for defects and is also
altered over the years to incorporate more redundancy where required through experience.
The most important factor for this research tool is the calculation speed as it will be used in
an iterative procedure. This cancels out the non-linear buckling analysis.

F F

Snap-through

bucklin \

9 , Bifurcation point
N / A\
\I I Limit load (from
\ // nonlinear buckling)
N s
> U u

Figure 2.1: F is compressive force and u the deflection. (left) non-linear buckling analysis. (right) linear buckling analysis [2]

2.1.1. Euler Buckling Theory

Euler buckling is a linear analysis and can be easily adopted into a large amount of iterations
as the time it consumes to calculate is relatively short. One of the main dependencies of
buckling is the slenderness of the structure. The equations below describe the slenderness
ratio of a column: [17]

A=1/k=1/\J1/A (2.1)

Where [ is the effective length of a column and k is the radius of gyration. This states that a
long and flexible column is more prone to buckle under a lower critical stress by:

2

, .11 .
O =T Ezl—2=n E % (2.2)

That is the critical buckling load, also referred to as the Euler buckling stress, for a column
that is simply supported at both ends as this yields a larger | than a clamped beam and
therefore a conservative approach.
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Figure 2.2: (a) Euler buckling curve. (b) Column buckling under compressive stress.[17]
From Figure 2.2a it is evident that when the slenderness becomes small, the buckling load

will be extremely large. That is however bound by the yield stress of the material. To approach
the experimental buckling stress, a few alternatives have been made:

l
a-— b(E) Tetmayers’s formula

Ocr =
l
O =a— b(E)Z Johnson’s formula (2.3)
a
0, = ————= Rankine’s formula

1+ b(/k)D)

Where a and b make up the cut-trough dimensions of the column.

The same principles apply to the buckling of plates but now a and b represent the width and
length of the plate and therefore a = a/b.

When assumed that the plate is simply supported around the edges it is a conservative ap-
proach, just as with the column. The shape that this plate will have when buckling is de-
scribed by the following formula [17]:

. ommx_ _ nmy
w=f- sm(T) . sm(T) (2.4)
Considering that the elastic buckling stress is a minimum critical stress [17]:
__"EF ey ith K = min((—= + —)? 25
" 1 0, < oy/2 06
= 1 .
where =1 Z_2(Z7 0, >0y/2 (26)

The factor n is used for the same reason the Euler buckling curve is altered in Equations 2.3.
When the factor b/t becomes too small, the o, will be higher than the yield stress. 7 is the
Johnson’s modification factor.

A stiffened panel is most likely exposed to more stresses than only the compression over one
side. A more elaborate visualization is shown in Figure 2.3b where the in plane stress varies
over one of the sides, creating a moment. On top of that a lateral pressure is imposed on
the structure, resembling water pressure on a hull. All these buckling influences will be the
base for the analytical approach formulated in in Section 4.5.3.
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Figure 2.3: (a) Plate buckling under compressive stress with modeshape of 3 half waves in x direction and 1 half wave in y.[18]
(b) Plate under combined longitudinal axial stress, longitudinal in-plane bending and lateral pressure.[19]

2.2. Shape Optimization
2.2.1. Principles

The structure is parameterized into a handful of variables which define the full geometry.
Examples of these variables are thickness of a material, width of a truss or radius and loca-
tion of a void. Whether the variables are continuous or discrete is dominant in the selection
for the optimization algorithm.[13]

The optimization algorithm will be used in the SO. This is a discrete problem due to the fact
that ‘number of stiffeners’ will be a variable and that must be an integer. Global optimization
methods can handle discrete variables whereas gradient based methods are only applicable
to continuous problems.

The standard problem formulation for optimization methods is the following:

fikx) =min  y(x)

9i(x) <0

hi(x) =0
Where f resembles an objective function, g stands for an inequality constraint which are
mostly converted to be less than or equal to 0. The same is done for the set of equality con-

straints h;. The complete problem is dependent on the set of variables x.

Figure 2.4 shows a 2 dimensional continuous objective function as an example where d = 2,
m = 5, the matrix a and vector ¢ [14]:

and c =

o)

Il
N-—k, N oUW
O S =N Ul
WNUTIN =

m 1 d d
f(x1,%): min  — Zci rexp| —— Z(xj —a;;)* | cos nZ(xj —a;;)?
j=1 j=1

i=1
g1(x1,%3) ¢+ —x1,—x, <0
92(x1,%2) ¢+ (%1 —10),(x2 —10) <0
h(xq,x,): not applied
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Figure 2.4: Example 2D Langermann optimization problem. [9]

It shows a local minimum around f(7,9) and the global optimum at approximately f(2,1).
When it is stated that some algorithms can get trapped in a local minima, it means that
the optimization gets stuck at point f(7,9) and is unable to escape and work toward f(2,1).
This figure also demonstrates the difficulties in visualizing a higher dimensional optimization
problem, as with these plots the maximum amount of variables is 2.

2.2.2. Simulated Annealing

The shape optimization problem that will be adopted is a discrete optimization problem be-
cause the amount of stiffeners is discrete. On top of that, for one iteration it will only use
one function evaluation as opposed to for instance a genetic algorithm which requires the
amount of function evaluations equal to the population size. This makes the SA computation-
ally more attractive. The basis of this algorithm is the ‘greedy hill climber’. That optimization
method only accepts a set of variables that results in a higher fitness for the next iteration.
The problem with that method is that it might get stuck in a local optimum because it cannot
escape out of the valley (wWhen minimizing). Another part of the basis is the ‘random search’
algorithm. The name is self-explanatory, which means that it makes random sets of variables
without comparing them during the iterations and hoping to find a good solution.

The combination of the two is the ‘simulated annealing’ (SA) [8]. It will always accept a better
solution, but in the beginning of the optimization process it is also likely that the current
solution will be overridden by a worse set of variables. This combines both of best worlds; a
greedy hill climber with a random search to be able to escape local minima.

The optimization loop toward an optimum is shown below:
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C = Xrandom
fOT T in 7”ange(Tmax' Tminr niterations)
Fcurrent F(C)

N = Xrandom
Frew = F(N)
AF = Fourrent — Frew
if (AF >0)
C=N

AF
elseif (eT >random(0,1))

C=N
else

c=cC
endif

endfor

Since the T vector starts at its maximum value and gradually works to it minimum, the
AF

eT™ > random(0,1) criterion becomes more strict toward the end of the optimization. If the

AF is negative, it means that the new value for F is higher and thus a worse solution. However,
AF

it will result in a e T between 0 and 1, with a ? of larger magnitude closer to 0. That means
that if the AF is small and T still large, it is more likely to be larger than random(0,1) and

therefore accepting it as the solution for the next iteration. This also implies that when T
AF

is small, it will produce a large negative e T and resulting in a value closer to O, therefore
less likely to pass the e T > random(0,1) criterion. This is why in the beginning of the
optimization, worse solutions can be accepted for the next iteration, but approaching the
final iterations it is far less likely to do so.

2.3. Topology Optimization
2.3.1. History

With topology optimization the goal is to find the best distribution of material in a given de-
sign domain [4]. One of the earliest adaptations to this philosophy has been synthesized
by A.G.M. Michell [12, 16] who analytically approached an optimal arrangement of bars to
form a frame. However, this approach but was found to be not practical and therefore only
stayed in the academic realm. Around half a century later the work was continued and led
to different topology optimization approaches including; the homogenization method SIMP
by Bendsoe [11], level set by Allaire [1], phase field by Boudrin and Chambolle [3] and evo-
lutionary approaches by Xie and Steven [25].

2.3.2. Approaches

Various approaches include the fitness function to be a minimization of compliance (maxi-
mization of stiffness), maximum performance or a minimization of mass. The applied con-
straints vary from a maximum allowable stress or deflection and minimum volume. Although
a range of different approaches exist, this research will mainly focus on element based op-
timization which include ’evolutionary’ and its close relative ‘density based’ Solid Isotropic
Material with Penalization (SIMP). This choice was made as the element approach is a rela-
tively easy comprehensible and implementable approach.

SIMP Method
The Solid Isotropic Material with Penalization method created by Bendsoe and Kikuchi in
1988 [11] has the objective to minimize strain energy density per element Wy ..
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“ulKou,
Wden,e = V. (2.7)
e

The density of an element is linked to its stiffness E,, therefore reducing the density will
also reduce its stiffness. When the fitness function is derivated by the density the following
sensitivity is created:

E, = PE “Eoe K, = pep “Koe (2.8)

Where the change in the elemental Young’s Modulus E, is the same as the change in its
elemental stiffness K,. When K, is implemented in Equation and derived over the density p,,
the following sensitivity equation is realised:

1

T
5Wden,e p-1 zue Ko,eue
Ve

5p, P Pe (2.9)
Every element has its own fitness function and therefore also its own sensitivity analysis. The
goal is to minimize the strain energy density by altering the stiffness of the element which
is done with the Young’s modulus. This is a convex function within the the range with p,
between O and 1. This density variable is not picked from a linear line between O and 1, but
rather p?. That way the algorithm is forced to pick values closer to 0 and 1, as this tends
to yield better results in terms of less moderately filled elements. This virtual density and
therefore stiffness are what is called the homogenization method. It resembles an element
of the structure that is partially filled and is partially a void, but is homogenized to have the
same amount of stiffness and density.

To find the density for the element in the next iteration, the sensitivity is set to zero.

6Wden,e

=0 2.10
3p, (2.10)

Because this is a continuous function it can be solved with a gradient based optimization al-
gorithm. After creating the geometry and initializing the optimization, each iteration consists
of the steps depicted below.

1. calculate strain energy densities for each element
2. find p, where sensitivity equals O

3. set this value for next iteration

This continues until the stopping criteria have been met. Examples of these are volume
constraints or maximum amount of iterations.

Evolutionary

This is a discrete type of optimization where the elements can be either an idle or included
element as opposed to the SIMP method where can be anything between a minimal value
and 1. The original version of ESO and BESO is in fact an unconstrained optimization type
and focuses on the stress. As there is no constraint on either the minimal amount of volume
or maximum stress. The final result can only be influenced by tuning the parameters and
this takes some experience. While during the optimization no constraints are used, it could
easily go over the yield stress without stopping or correcting for it.

The ‘Evolutionary Structural Optimization’ (ESO) [25] is only capable of removing ineffi-
cient material. The difference with the ‘Bi-directional Evolutionary Structural Optimization’
(BESO) [21] is that the latter is also allowed to include elements after they have been ren-
dered idle. This makes it converge faster than the ESO. Another difference is that the BESO
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method can be started by only filling in the least amount of elements, connecting the nodes
where the force is applied to the kinematically constrained nodes. From there the structure
can grow to the desired shape and remove elements that helped to create that shape.

O-VM,E S RR . aVM,max LUlth RR = T'l . SS + aRR . ON
UVM,e 2 IR . UVM,max LUlth IR = 1 - il . SS - a,R . ON
Where RR is the rejection ratio, IR is the inclusion ratio, gy is the Von Mises stress in the

element and oy mqx is the maximum allowable Von Mises stress. These are factors between
0 and 1 which will be the condition whether an element is removed or included.

2.11)

SS is the steady state number, which is incremented by 1 every time a steady state has been
reached. That happens when no elements are added or removed. The ON is the Oscillation
Number, which is also incremented by 1, but only when an element has been included and
removed in subsequent iterations. Furthermore, r; and i; are determined on experience and
in the paper [25] the values of ; = 0.001 and i; = 0.01 are recommended. The azp and a;
are constants as well and also established on experience and are recommended to be set at
agg = 0.01 and a;z = 0.1.

The iteration loop is similar to the one for SIMP:

1. calculate Von Mises stress for each element

2. check whether it should be included, excluded or should stay the same. This is deter-
mined whether the stress in the element is lower than the RR - 0y mqx Or higher than

IR - Oy M, max

3. set this value for next iteration

4. check whether steady state has been reached. If that is the case SS should be incre-
mented with 1.

That vector consists of values between O and 1 and are multiplied with the E modulus of
each element. When it is close to O, the element is regarded as removed and when it is 1 the
element is included. To keep track of the performance, the following formula is used:

n
Ze=1 O-VM,e Ve

=P] =
f FL

(2.12)
This objective function is equal to its Performance Index (PI) where 1, is the element volume,
F is the input force and L represents the length of the structure This is a non-dimensional
number that must be minimized. It must be kept in mind that this objective function merely
describes the performance of the geometry, but is not influenced by an optimization algo-
rithm. It is a result from what happens with the rejection and inclusion ratios.

2.3.3. Comparison

So the main difference between the two optimization methods is the sensitivity analysis.
Where the SIMP evaluates a function and uses an optimization algorithm to find the den-
sity factor where the sensitivity becomes 0, the BESO method is more crude by assuming a
threshold of inclusion or rejection ratio of the yield stress. The sensitivity analysis of the SIMP
can become a problem with a model that contains a lot of elements as it is computational
more expensive to find where the sensitivity becomes zero. Another difference is that with
the SIMP method, the element can have a virtual density, resembling not a realistic material
but by homogenization it should resemble part void, part material.

Both optimization types require human input, rendering them heuristic. SIMP requires a
penalization factor and the evolutionary methods need the ratios set. Both the authors seem
to have a discussion about which one yields the best results, both having criticism toward
the other method about how much human input is needed [24].
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2.3.4. Conclusion

With the two optimization approaches the results are satisfactory as well as the amount of
iterations. Where they do differ however, is the applicability to large problems regarding
the computational expense. SIMP requires one function evaluation and a root search for
the sensitivity, while the BESO method only requires an if statement per element to check
whether it should be an idle element or material. Since the midsection of the TSHD is a large
problem, the choice is evident to be for the BESO method. With the welcome advantage that
the method is simple in nature, so could easily be adapted and probably even improved.

2.4. Shape and Topology Optimization in Ship Structures
To find out how this research will compare to the current state of ship structure optimiza-
tion, a review of relevant and recent papers has been conducted.As can be found in the 20th
International Ship and Offshore Structures Congress (ISOSC) optimization is starting to be
incorporated into the ship design methods more frequently in recent years [23].

Kim et al. (2017) [7] have used a steepest descent algorithm to find a layout and sizing of
stiffened panels for a semi-submersible floater. The objective for this shape optimization was
to minimize the weight and the constraints consisted out of buckling and yield assessments.
These constraints were calculated with a rule based system.

Garbatov and Goergiev (2017) [6] have set up a multi objective nonlinear optimization where
a reliability-based design optimization is combined with a Pareto frontier. The objectives
applied were a minimal net sectional area and a minimal deflection of a panel with a sin-
gle stiffener. The loads employed were based on a panel with lateral hydrostatic and global
membrane loads, resembling a keel plate of a ship.

Tschullik et al. (2010) [22] has used the SIMP method to find an optimal topology for the
double bottom layout in a container ship. Much as the same reasons this research concerns
a midsection of a ship; high repeatably so an improvement could have a large effect on the
total mass of the ship. Two optimizations were executed, one starting with the conventional
holes in the floor and another one that was completely free to create a desired geometry. Mass
reductions of 11% for the conventional hole start and 38% for the less restricted optimization
were acquired. Next to the mass decrease a higher utilization, so higher average stress in
the active material were the result. On top of that, it is stated that topology optimization
could be used in the early stages of the design process to have more efficient material and
to reduce the amount of iteration steps in a later stage of the design as a near optimum has
been reached in the beginning already.

Leidenfrost et al. (2016) [10] have used topology optimization to find the optimal arrangement
for stiffeners in a 46 meter sailing yacht. This shows that the conventional method of having
all the stiffeners and web frames in a orthogonal layout is most probably not the optimum in
weight. In this paper the topology optimization results were also subject to an ‘abstraction’
process where the fully organic geometries were transformed to more producible shapes like
stiffeners. Resulting in Figure 2.5.
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Figure 2.5: Result of topology optimized stiffener layout [10].

From these examples it can be concluded that ship structure optimization is currently a topic
of interest. These researches have applied either a shape or topology optimization but have
not combined the two and applied the methods.
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Research Objectives

3.1. Research Questions

How can a shape and topology optimization with buckling and yield constraints help design
the midsection of a TSHD?

3.2. Research Subquestions

To answer the main question, five sub questions have been defined to answer the main
research question.

1. How can the longitudinal stiffener layout of a ship midsection be optimized?
The stiffened panels that make up the outer hull are subjected to two types of loads; a
global stress and local loads. Global stresses are induced by a bending moment as a
result of a unbalance in buoyancy and weight distribution throughout the length of the
ship. The local loads are the water pressure on the hull and a pressure in the hopper
created by the sludge. A modelling strategy is sought for that optimizes ships that are
subjected to these loads, based on minimum ship mass.

2. How to optimize the transverse web frame of a ship?
Transverse web frames are subjected to local loads, which are introduced to the stiffened
panels and transferred to the web frame. These transverse web frames are optimized to
minimize ship mass. A modified BESO method will be applied to find the a feasible and
improved topology.

3. What is the interaction between shape optimization and topology optimization?
Based on shape optimization, longitudinal stiffened panels are designed. If stiffened
panels of the ship hull have different stiffness values, they will deflect differently. It is
hypothesized that this will result in varying web frame topologies that are obtained with
topology optimization. The interaction between the two optimization steps is explored.

4. What is the optimal web frame spacing for an optimized web frame topology combined
with an optimal longitudinal stiffener layout for a given length of a midsection?
The web frame spacing defines the total local load in each stiffened panel and therefore
in each web frame. An optimum is sought between lighter stiffened panels and web
frame topologies distributed across shorter distances, and stiffer, heavier panels and
web frames with larger web frame spacing.

5. How can optimization techniques be used for a better understanding of ship structures?
News ships are often designed based on existing ship designs that meet requirements of
the client and have been tested and proven. This research aims at better understanding
ship structures using optimization methods, to possibly guide new lines of research and
enhance the ship design process.

3.3. Methodology

1. How can the longitudinal stiffener layout of a ship midsection be optimized?
A computationally efficient analytical model is assembled to obtain a first overview of
a well performing layout of longitudinal stiffeners and plate thicknesses. 5,000,000
randomly generated midsections are analyzed with the analytical model. The top 100

15
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analytical solutions are selected and run with a numerical model.

The yield and buckling constraints calculated with the analytical model will be checked
immediately and when these are violated it will receive a false’ fitness, rendering them
out of the final solutions. All solutions are stored and later filtered so that a set of
feasible designs is kept. The top performing solutions of the analytical and numerical
solutions will be compared and the one with the best fitness will be passed on to the
next model to find a matching web frame with topology optimization.

. How to optimize the transverse web frame of a ship?

The existing BESO method is modified to suit a topology optimization of this scale and
relatively complex loading. This method will first undergo a bench marking process to
verify that the modified BESO method performs well enough to be able to apply it. Next
to that, an equivalent web frame thickness has to be determined to compensate for the
fact that this optimization does not include flanges on the web frames, which is often
the case in existing ships. Consecutively, the results from the previous step will be used
to find a web frame suited for this longitudinal stiffener arrangement.

. What is the interaction between shape optimization and topology optimization?

Since topology optimization is extremely sensitive to model changes, it is expected that
when the stiffness of the surrounding plates changes, the topology will also be different.
A case study is conducted on one specific web frame spacing, comparing outcomes of
runs where all stiffened panels have the same stiffness and model outcomes of runs
where all stiffened panels have a distinct thickness.

. What is the optimal web frame spacing for an optimized web frame topology combined

with an optimal longitudinal stiffener

Midsections with seven distinct web frame spacings are input for the optimization pro-
cedure (shape optimization for longitudinal stiffened panels and topology optimization
for transverse web frames). To be able to compare results, the total weight of the ob-
tained shape is divided by the web frame spacing. It might be better to have many small
web frames with lighter longitudinal stiffening or the exact opposite; a few large web
frames with heavy stiffened panels and large span.

. How can optimization techniques be used for a better understanding of ship structures?

The optimization procedures can show underlying mechanisms in the structure that
are not evident on first glance.
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Stiffened Panel Model

4.1. Introduction

An analytical stiffened panel model can make a good approximation of what the actual
stresses will be. However, it is hard to include stresses other than the lateral pressure and
longitudinal stress. Therefore, after the analytical optimization has ran, the best results have
to be checked with a numerical model.

4.2. Geometry

A reference ship was used to provide the optimization with realistic loading and a represen-
tative geometry. The full and the altered geometries are shown in Figure 4.1.
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Figure 4.1: Original ship and the altered version.

To keep the model straightforward, the coaming was removed from the original ship and to
be able to parameterize the structure, a few simplifications have been made.

1. To approach the actual structure, the bilge has been divided into two plates. Because
these plates are relatively small, one stiffener of variable geometry is assigned to them.

2. The plate thicknesses for the lower hopper plates are in reality not constant. The lateral
pressure in the bottom of the hopper is larger than at the top. For this model the plate
is taken as one item and therefore this plate thickness and stiffener arrangement is
constant over that length.

19



20 4. Stiffened Panel Model
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Figure 4.2: Simplified geometry representation.

4.3. Loading

A global hull analysis report based on ship rules by BV was used to determine the loads. For
the global loading the absolute values for hogging and sagging were established by adding
the still water and wave loads. The report was based on the full geometry with the coaming.
When the coaming is removed, a lot of the stiffness is discarded as well. Therefore the global
bending moment has to be scaled. The original moment of inertia was 122.41 [m*] and
according to MARS2000 the new moment of inertia is 51.64 [m*]. So the scaling factor for

. 51.64 . . .
the bending moment becomes SCgy = oal The maximum water pressure also differs in

hogging and sagging (Wnaxhog Winaxsag)> but the hopper load Hy,q, does not change. These
resulted in:

item || value unit
Mgy sag 3491329 [kNm]
Myv.sag 1438210 [kNm]
Miotsag || 4929371-5Cpy  [KNM]
Winax.sag 0.0975 [MPa]
Mg hog 1348658 [kNm]
Myyohog 1341653 [kNm]
Miotnog || 2690311-5Cpy  [KNM]
Winaxnog 0.1498 [MPa]
Hopax 0.2486 [MPa]

Table 4.1: Load input (absolute values)

. A S N A A VA
(a) (b)

Figure 4.3: Maximum sagging (a) and maximum hogging (b) loading condition.

4.4. Geometry Variables

To create a midsection out of stiffened panels in a random way, upper and lower bounds
have to be set from which the geometry can be made out of. All eleven panels described in



4.5. Analytical Model 21

Section 4.2 consist out of T-stiffeners and a plate. A visualization is shown in Figure 4.4 and
the range and steps in which the variables are selected are depicted in Table 4.2.
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Figure 4.4: Visualization of a stiffened panel and its geometry

| tw [mm]  w [mm] h, [mm] t;[mm] ¢, [mm] n,[-]

min 4 Lo max 50 5 10 3
max 24 500 700 24 30 20
step 2 10 10 2 2 1

Table 4.2: Constraints on generating SOV.

This results in a total of 365,615,000 possible midsection stiffener arrangements.

4.5. Analytical Model

A quick way of assessing a lot of options is to analyze the panels analytically. These will later
be checked with a FE analysis.

4.5.1. Moment of Inertia

To define the stresses, the moment of inertia has to be determined. That is done by determin-
ing the inertia of the plate, webs and flanges and adding them together. When the stiffness of
the plate stiffener combination has been determined, it has to be transformed to the correct
location in the geometry.

T . (4.1)
Lw = fw 1 Zhiv R - hwl‘zti‘v (4.2)
L= Wfl—zt? o Ly = % (4.3)

Cxp = % , Cop = %p (4.4)

The vector [sv] holds the location of the center of the web and flange of a stiffener on a plate.
For example, with a plate of 1000 [mm] wide and three stiffeners, the spacing vector (sv)
would be sv = [250,500, 750].

Cew = [sV] Cow =1tp + TW (4.5)
tW
2

Once the local centroids of each component of the stiffened panel has been determined, the
centroid ¢,; and moments of inertia I, of the complete panel can be established.

Cry = [sv] Cpp =tp +hy + (4.6)
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. _ Ap-Zp+ns-(AW-cz,W+Af-cZ_f) 4.7)
Zps Ap + 1 (Ay + Af) '

oA X Ty (A o + Ay ) (4.8)
ops Ap +ng - (Ay + Af) |

Ixx,p = Ix,p + Ap : (Cz,p - Cz,ps)2 (4.9)
Ligp = lzp + Ap - (Cxp = Cxps)? (4.10)
Ixx,s = Ix,w + Ay - (Cz,w - Cz,ps)2 + Ix,f + Af ' (Cz,f - Cz,ps)z (4-11)
Izz,s = Iz,w + Aw : (Cx,w - Cx,ps)2 + Iz,f + Af : (Cx,f - Cx,ps)2 (412)
Ixx,ps = Ixx,p +ng - Ixx,s (4-13)

i=ng
Liops = bizp + ) Lizs (4.14)

i=1

Ixz,ps = Ap : (Cx,p - Cx,ps) ' (Cz,p - Cz,ps) +

Nng - (Aw ' (Cx,w - Cx,ps) : (Cz,w - Cz,ps) + Af ' (Cx,f - Cx,ps) ' (Cz,f - Cz,ps))
When the information of all stiffened panels have been calculated, the next step can be made.
The centroids and moments of inertia are all with respect to the horizontal x-axis and not
with respect to each other, resembling the complete midsection. To change the properties,
two procedures are taken. The first is to rotate the stiffened panel around its centroid in the
correct orientation and secondly it has to be translated to the corresponding x- and z-location.
To rotate the panel around the origin, the following formulas are applied.

(4.15)

_ Ixx,ps + Izz,ps Ixx,ps - Izz,ps
Iu,PS - 2 2

€0S(20) — Iz ps - Ssin(20) (4.16)

To create the inertia moment of the full midsection, all the areas and relocated centroids are
used to find the centroid c,,,;4 and finally the respective moments of inertia are added to
create I, miq. The global bending moment that is applied in these models is only around the
x-axis and therefore to determine and approach the membrane stress on each panel, only
the Iy miq is required.

Ixx,ps,trans u,ps + Aps ' (Cz,ps,trans - Cz,mid)z (4-17)

Lexmia = Z Ixx,ps,trans (4.18)

With this the local membrane stress induced by the global bending moment at the centroid
can be estimated for each plate-stiffener combination.

M - (c — Camid)
global z,ps,trans zmid
OBM,loc = (4.19)

Ixx,mid
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4.5.2. Yield

To follow the hierarchy of how stress is introduced into the structure, it makes sense to start
with checking whether the plate between the stiffeners will yield or not. The orientation and
loading is visualized in Figure 4.6 and the supporting equations are provided below. The
maximum stress induced by the lateral load on the plate between the stiffener is analyzed,
followed by the complete stiffened panel between the web frames which is simplified to a
column. For the keel plate the pressures pl and p2 are identical, but for the hopper and side
hull these have a varying pressure. The plate between the stiffeners that will be subjected to
the most lateral stress is considered for the plate calculation. The orientation for the column
calculation is different and the pl and p2 would be constant over this axes. The average
between pl and p2 are taken to have the same total force put on the column.

Y Ss N WFS
N ° y
A \: tp TBM,10¢ el O, 10¢
N
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Figure 4.5: (a) plate between stiffeners and (b) column between web frames

I _ WFS - tg 4.20
x,plate — 12 ( . )
WFS -ss? pl+p2
Mmax,plate = 12 : 2 (421)
t
Mmax,plate -2
Omaxplate = I 2 (4.22)
plate
Leotumn = Ixx,ps (4-23)
Ceolumn = max{(tp + hy +t5) — Copss cz‘ps} (4.24)
B, -WFS? pl+p2
Mmax,column =L 16 ' 2 (425)
M - C,
Gmax,column = maxcolumn column + O-BM,loc (426)

Icolumn

4.5.3. Linear Buckling
To assess the buckling analytically two situations are observed, the plates between the stiff-
eners and the plate-stiffener combination simplified as a column.
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Figure 4.6: (a) plate between stiffeners and (b) column between web frames

The Euler buckling load for the plate and column is determined with the following set of
formulas. The orientation of the plate and column are similar to the previously defined yield
analyses. The equations are based on Chapter 12 of Ship Structural Analysis and Design by
Paik [18].

PR 4.27
T 12-(1-v?) (4.27)
- D
OE,plate = m (4.28)
m?E 6\ )
OE plate = Cpx : m : (E) -K-n with K=4 (4.29)
1 5 Ogplate <= oy/2
where n = 1 (4.30)
U'E,Zjate B ‘_} <UE,:-}l,ate> 9Eplate > O-Y/Z
1 p-ss* L6 .. WFS
and Cpyx = 1+§%‘<E¢) if & =2 (4.31)
1 else
b, [oy
B = o NE (4.32)

For column buckling it is important to first find the effective width for a plate-stiffener combi-
nation, as the stress is not distributed equally throughout the plate. The following equations
are used to find the effective buckling load o,,. These are based on the book Ultimate Limit
State Design by Paik [20].

b % p=! (4.33)
= 2 1 .
TLGw) e B>
Ovp = M (4.34)
*E T WFS? - Apg
OxE , Oxe < 0y /2
Oxy = (4.35)
i ;;_YE - % (%) Oxg > Oy /2

The buckling load must not be exceeded by the load put on the beam. That is a combination
of both an axial stress by the global bending moment and a lateral load because of the water
or hopper pressure. Using buckling and yield as optimization constraints is in line with the
research conducted by Kim et al.[7]
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m?-E- Lo cotunm
Pp=—— 4.
& WES? (4.36)
B-WFS*  0gmuoc - Aps 5-WFS* pl+DP2 Cootumn
= + + : ‘ . . 4.37
Oecolumn = OB loc 16 1- GBM';?C.APS 768 - E - Icotumn 2 Ieotumn ( )
E
4.5.4. Constraints
Now that all the loads can be calculated, the constraints can be set up.
Omax,plat
g1 = max,plate (438)
Oy
Imax,column .
E— lf OBM,loc = 0
= Iy ) ' 4.39
9> Uc,c;;zmn l_f O8M.10c <0 ( )
_ OBM,loc .
93 = ——I Ogmioc <0 (4.40)
Jc,plate

All constraints must be g; < 1:CR to pass. CR is the constraint relaxation. In some cases it

might be better to relax constraints that are generally too conservative.

4.5.5. Simulated Annealing

For this analytical optimization problem, the simulated annealing algorithm is used. This
prevents the sheer amount of data that will be created because the amount of results will not
be exactly the given amount of iterations. The fitness function and constraint evaluation are

represented by F(x) and G(x) respectively.

C = Xrandom
Forrent = F(C)
Geurrene = G(C)

fOT‘ T in range(Tmaxr Tmiru niterations)

N = Xrandom

Frew = F(N)

Grew = G(N)

if 91,.9293=1-CR

Frew = false
AF = Foyrrent — Frew
if (AF >0)

Feurrent = Few

C=N
E
elseif <e T > random(0, 1))

Feurrent = Few

C=N
else

c=cC
endif

endfor
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Another approach would be to keep making new set of variables (SOV) until it passes the
constraints but with a while-loop it is not possible to define a time in which the optimization
will be done. For the higher WFS, the constraints were violated so many times that it could
run for a long time without giving results, surpassing the goal of this optimization.

4.5.6. Optimization Procedure

For this optimization the constraint relaxation CR was set to CR = [1.25,1.05,1.05] to avoid
disregarding too many solutions due to conservative constraints. The parameters used are:
Tmax = 10000 - WFS,4ti0, Tmin = 0 and finally njterqtions = 5,000,000 which would take approx-
imately 14 hours to compute. The scores are sorted and the top 100 solutions will undergo
the numerical procedure as described in Section 4.6. This way it is possible to compare them
and it gives a check whether the constraints applied have been sufficient.

4.6. Numerical Analysis of Analytical Solutions

The optimization has evaluated 5 million solutions and kept the 100 best and now these
will undergo a numerical analysis which incorporates all the interactions of the loads. The
loading is applied in the same manner as depicted in Figure 4.3, but for the FEM analysis
it also needs kinematic constraints as shown in Figure 4.7. An infinitely stiff web frame is
modeled by applying the constraints in the middle of the structure. The orange arrows show
rotational constraints on the location where the ship in reality continues. This satisfies the
fact that no rotation around the x and z directions are possible because that is the middle of
the plate where the moment and displacement are maximal but rotation is zero. The applied
element size is 150 [mm].
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Figure 4.7: Plate-stiffener numerical model constraints.

After the 100 iterations have been numerically analyzed, the data is filtered to satisfy the
constraints of oyymar < 235[MPa] and BE,;, = 2.5[-]. The buckling factor is derived by
letting Ansys find the first 20 buckling modes and sorting for the lowest positive factor.

4.7. Results

In Figure 4.8 the optimal stiffened panel layouts are depicted for each web frame spacing.
The thicknesses of the plate, web and flange are not included as the scale is too small for
display. The masses, maximum stresses and minimal buckling factors are shown in Table
4.3 which is followed by Table 4.5 that shows the ratios of the constraint violations of the
5,000,000 iterations.
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Figure 4.8: Shape optimization results of WFS = (a) 562.5 [mm] (b) 1125 [mm] (c) 1687.5 [mm] (d) 2250 [mm] (e) 2812.5 [mm]
(f) 3375 [mm] (g) 3937.5 [mm]

WFS[mm] || 562.5 | 1125 | 1687.5 | 2250 | 2812.5 | 3375 | 3937.5

mass [{] 562 | 11.05 | 17.73 | 26.03 | 32.64 | 40.56 | 59.02

OvmmaxsagIMPa] || 88.37 | 101.85 | 62.27 | 113.68 | 98.03 | 135,52 | 154.04

Oymmaxnog IMPa] || 48.71 | 101.18 | 63.49 | 182.08 | 124.76 | 136.11 | 150.60
BFyaq [ 459 | 334 | 359 | 469 | 471 | 332 | 394
BFog [] 846 | 263 | 291 | 857 | 837 | 6.09 | 854

Table 4.3: Mass, maximum Von Mises stress and buckling factor of the best results.

4.8. Discussion

4.8.1. Constraint Influence
Table 4.4 shows the influence of each of the constraints for the analytical optimization.

WFS [mm] || 562.5 | 1125 | 1687.5 | 2250 | 2812.5 | 3375 | 3937.5

g1 0.213 | 0.213 | 0.213 | 0.213 | 0.213 | 0.213 | 0.213
92 0.002 | 0.032 | 0.095 | 0.172 | 0.254 | 0.335 | 0.408
g3 0.149 | 0.149 | 0.149 | 0.149 | 0.149 | 0.149 | 0.149
total 0.363 | 0.394 | 0.460 | 0.534 | 0.616 | 0.697 | 0.769

Table 4.4: Ratio of declined solutions and constraint contribution

The first and third constraint seem to be constant for all the seven different web frame spac-
ings. The consistency of g; can be explained by the fact that total lateral load increases
linearly with the web frame spacing and so does the stiffness of the beam that resembles the
plate as shown in Figure 4.6 and equations 4.20, 4.21 and 4.22.

The third constraint has the same quality as the global load is constant and the buckling load
of the plate in this model is regarded as not dependent on the length of the plate. This is not
realistic as especially with smaller web frame spacings, the plate ’orientation’ changes and
the long side is the one along the web frame and the short side is attached to the stiffeners.
This is a shortcoming of the analytical model that should be noted.



28 4. Stiffened Panel Model

4.8.2. Differences Analytical and Numerical Results

The fact that not all the analytical solutions will be accepted after the numerical simulation
is because the numerical solution is a lot closer to the reality and the effects of transverse
stresses induced by the hydrostatic pressures form the hopper and hull are incorporated
into this design. To overcome the denial rate after the numerical analysis, a direct numerical
approach was also used. However, the results were not sufficient as in the same time the
analytical will produce 5,000,000 solutions the numerical is only capable of 1000. That is
not enough to find a good solution, however it can get lucky and find one that is better but
the probability of this happening is not high. Another disadvantage of the direct numeri-
cal analysis is that the calculation time is geometry dependent. As the web frame spacing
increases, so do the number of elements and that will lead to a long computing time. The
analytical analysis is not sensitive to the size of the geometre. A detailed description of the
direct numerical analyisis is given in Appendix A.

WFS [mm] || 562.5 | 1125 | 1687.5 | 2250 | 2812.5 | 3375 | 3937.5
Ovmmaxsag MPa] || O 1 0 0 1 2 1
Ovmmaznog IMPa] || O 0 2 3 4 10 6

BFqq [ 45 | 53 | 59 | 51 55 | 53 | 18
BFiog ] 34 | 48 | 61 30 | 44 | 42 | 14
total [-] 100 | 100 | 100 | 100 | 100 | 100 | 61
declined [-] 45 | 57 | 72 | 51 58 | 59 | 23

Table 4.5: Number of declined solutions after numerical analysis.

From Table 4.5 it is evident that the yield constraint is almost never violated in the numerical
model if it passed the analytical constraints. If the analytical procedure was more elaborate
by also including the transverse stresses, bending and buckling of stiffener webs and flanges
and if the constraint relaxation was tuned perfectly all the solutions generated by the an-
alytical model would also pass the numerical analysis. However, if the analytical model is
too conservative it could be possible that some solutions do not satisfy the analytical con-
straints, but would pass the numerical one thus leaving out perfectly good solutions. It is
likely that the yield constraints are set conservative in the analytical model. The buckling
load calculated by the analytical model is the main reason why some analytical solutions are
not passing to be the best solution.

Another aspect that is striking when the information for the web frame spacing of 3937.5 in
Table 4.4 is that the probability of passing the constraints with a random set of panels and
stiffeners is 23.1%, but only 61 solutions were viable from the analytical approach. This is
due to the fact that even when a viable option has been randomly created, it would also have
to pass the objective comparison. In other words, if it passes the constraints but is heavier
than the previous iteration it will only be accepted if the SA algorithms accepts it.

4.8.3. Trends in Stiffened Panels

The hope was that the shape optimization would give a unambiguous answer to how the ship
should be longitudinally stiffened. Examples of these would be a common plate thickness or
amount of stiffeners per local panel and a recorruing web height to flange width ratio. Table
4.6 shows the panel dimensions of the keel plates of the seven final results. However, these
geometry results do not show a definite amount of resemblance.
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WFS [mm] || 562.5 | 1125 | 1687.5 | 2250 | 2812.5 | 3375 | 3937.5

t, [mm] 12 ] 10 22 8 16 24
wy[mm] 45 | 125 35 245 | 215 | 185 | 205
hy, [mm] 180 | 300 | 410 | 160 | 350 | 270 | 450
ty[mm] 10 12 14 24 14 18 8
ne[-1 18 16 21 13 19 19 21
t,[mm] 30 18 22 28 28 22 21

Table 4.6: Keel plate dimensions of SO results.

With the lack of geometrical parallels, the moments of inertia and area have been calculated
for three different panels that are each in a different load state, the keel, the vertical part of
the hopper and the main deck.
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Figure 4.9
WFS[mm] || 5625 | 125 | 16875 | 2250 | 28125 | 3375 | 39375
keel Ix[mm¥] 820895520 2641038202 5826674143 2516321180 8416891587 5573674633 15969073527
A[mmz] 472980 298800 408790 519800 507990 457750 602040
mid hopper Iy [mm4] 1092463370 371567606 385293779 248706157 477420866 1271121432 5682777119
A[mmz] 92450 77980 113880 74440 173732 149064 172860
deck Iy [mm4] 1129284551 2862954560 546045794 313084838 3586039508 465994350 240769422
A[mmz] 188780 174370 181730 139260 251200 154840 170240

Table 4.7: Moments of Inertia and Area of best solution panels

It is hard to find trends in this model. Due to the large amount of variables and therefore
possibilities, it is better to see these solutions as improved designs rather than the optimal
result. A weak increase is seen in the panels that have a hydrostatic pressure, which makes
sense as this increases with the web frame spacing. The main deck should, however show
some resemblance as the global load does not vary as much. The global load for each panel
varies per solution as the neutral axis shifts, but the enormous fluctuating behaviour is too
much to settle on a trend.

4.8.4. Numerical Procedure

As the element size is 150 [mm], it is not guaranteed that all the webs of the stiffeners have
at least 3 elements in height. That could give it a higher stiffness than that it actually would
have. It cannot properly calculate the shear that would go through the web and therefore

A om0l
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overestimate the buckling load. The same applies for the flanges and this should be kept in
mind while assessing the results.

The infinitely stiff web frame that is resembled by the kinematic constraints in the middle of
the model will also overestimate the actual stiffness of the structure. This effect diminishes
as the web frame spacing increases, but it will still be a factor. This over-estimation should
also be kept in mind when assessing the results.
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Web Frame Model

5.1. Introduction

The goal of this model is to find a lightweight web frame that can withstand all the local loads.
The hopper load and water pressure introduce stress on the stiffened panels, which in turn
are reinforced by the transverse web frames.

The applied algorithm will be described and verified, after that the geometry, loading and
optimization procedure are shown.

5.2. Modified BESO

5.2.1. Neighbour Inclusion Ratio

The basis for the algorithm was the BESO method as described in Section 2.3.2. It is slightly
modified for a possible faster convergence and to be able to cope better with unmapped
meshes. BESO differs from ESO that it is able to revive turned off elements, and with this
alteration MBESO takes that concept one step further. It also allows the neighbouring ele-
ments to be reactivated. This way, in extreme local stress situations a lot of material is added
in one iteration and therefore reducing the stress.

-"-_-'“-
T B ag
Sy

.,
---------

Figure 5.1: Range of neighbouring elements to include

In Figure 5.1 a simplification of a elements in a meshed grid is shown. Arrow ‘A’ resembles
the radius and arrow ‘B’ the tolerance of neighbours to include when the element is under
high stress. Values are typically one element size e;. With this combination of radius and
tolerance the neighbouring elements are selected.

5.2.2. Random Start

When the starting point of a TO is in a state where all elements are included, the overall
average stress per element is extremely low. There will be a lot of elements with almost no
stress and just a few that will be in a hot-spot where the load or the constraints are applied.
This requires a tentative parameter setting where the RR is kept extremely low for a long
time to prevent the removal of too much material, resulting in a large number of required
iterations for a stable solution. A solution is to start the optimization in a state where element
stresses are altogether higher, which means that the RR ratio can start more aggressively
and therefore needs less iterations. One way to do this is to begin with a randomly generated
layout as shown in Figure 5.2.

31
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(@) (b) (©

Figure 5.2: (a) fully included start, (b) [0.001,1] random start and (c) [0.001,1,1] random start

Figure 5.2(b) shows a sparsely filled starting condition which is unstable and has a high
chance of resulting in a structure with an unreasonably high stress. A solution to this
is to start with a structure that is filled for approximately two-thirds of the available vol-
ume. This is done by assigning each element with a value randomly chosen out of the vector
Egtare[i] = [0.001,1,1]. Now the structure has the tendency toward a more filled in starting
volume and therefore a stable run.

Another advantage of this method is that every start has the possibility to have a different
result. If the results generally have the same structure, it could be argued that this is close
to the global optimum. In global optimization using a multi-start approach is a way to give
more confidence to the solution and the same concept could be applied with MBESO. Next to
that it can also act, to a degree, as a sensitivity analysis where different solutions give more
insight in the problem. The proposed method is to have a total of four runs, one starting out
as completely included and three randomly started.

The random start becomes more useful with the NIR as this helps extremely well to find a
quick convergence. However, it must be noted that these results can be used as a supplement
when making design decisions.

5.2.3. Absence of Volume Constraint

In most encountered literature about ESO/BESO methods, a volume constraint was applied.
This however, feels contradictory because the goal of the optimization is to reduce the struc-
ture to a minimal volume. However, when the objective is to minimize compliance a volume
constraint can be convinietn. In the MBESO there is no volume constraint, which means
that the tuning of the parameters (RR,IR,NIR,i . nstane) Mmust be taken into consideration to
have a stable simulation and a good result. These have to be acquired by experience, just as
with the normal BESO method. [5]

5.2.4. Ratios

With the BESO method the RR increases and IR decreases when a state of equilibrium is
achieved. To get to an equilibrium where no elements are included or rejected for at least
one iteration, the problem must be simple. If there are a lot of elements and especially with a
random start, such a state takes a lot of iterations to achieve. A fast way of approaching the
problem without this conditional, is to find a good ratio for IR and NIR to be constant over
all iterations and to increase it slowly as Equation 5.1 describes. Figure 5.3 shows how the
ratios stay constant or change over the iterations.

T, _ i

Oy * RR -sin(z - ) if i < iconstant

lconstant

(5.1)

Oreject—element [i] = e s
oy - RR if i > iconstant
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Oym
[MPa] S

Oinctude-element = IR * Oy

= NIR « oy

= — Oreject—el =RR =0y

icanstant L‘"I‘HX I: [_]
Figure 5.3: NIR, IR and RR visualized over number of iterations

5.2.5. Optimization Procedure

In every iteration, all the Von Mises stresses per element are checked. This is the basis for
whether the element is rejected, included or if even its neighbours are included. Each element
has its own stiffness E,, which by default is the the same Young’s modulus of steel. The
elements are not completely ‘killed’ but are given an extremely low Young’s modulus which
renders them virtually not contributing to the overall stiffness. To overcome an oscilating
behaviour a check for this is implemented after all the RR,IR and NIR operations are done.

fOT' i in range(O, niterations)
fOT' k in range(O, nelements)
if Oyme = Oinclude—neighbours
Ecli,k] = 1- Esteer
Eeneignbours [i,k] =1 Esteer
elseifo-VM,e 2 Oinclude—element
Ecli,k] =1 Esteer
€lS€if Ovm,e = O-reject—element[i]
E [i,k] = 0.0001 - Etee;
endif
if E,Ji—2k]#E.i—1k] and E.[i—2k]=E,[ik]
E,[i,k] = E.[i — 1,k]
endif
endfor
endfor
All these values are stored in a vector and passed on to the FEA to incorporate them and

solve for this new structure. When the FEA has been executed and each element is in a new
stress state, the process repeats itself.

Since the objective of this optimization is to minimize mass, the following objective function
has been formulated. The number of included elements is multiplied with the element size
and thickness and is subsequently multiplied with the density of steel to find the mass.

Mmassyr = Ne - €5 - € - ty,r - 8050 - 10712 [tonne] (5.2)

5.2.6. Verification of MBESO
With these modifications applied, it is required to check whether the results of the altered
method are logical and resemble existing results from literature. The main comparison that
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will be made is between the resulting structures from the MBESO and TO literature. This can
be satisfied with a visual check and the results do not have to match completely on elemental
level as this data is not available. The benchmarks use PLANE182 elements that only work
in the xy-plane, making it 2D models.

Neighbour Inclusion Ratio Effect with BESO Benchmark

Querin [21] used two benchmarks to test the method. For this simple geometry the algorithm
will also get to the final result with solely removing elements. To overcome this, and to show
the significance of the inclusion ratio, the experiments were set up in a starting point with
the least amount of material required. That means that the location of the load introduction
has to be connected to the kinematic constraints and nothing more. Two benchmarks were
used; the ‘two bar frame’ and a ‘Michell type’. The MBESO will also be subjected to these
and a comparison will be made to find out whether the NIR has an effect on the result and
amount of iterations.
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(b)

(@)

Figure 5.4: Two bar frame BESO Benchmark (a) and the Michell Type structure (b)[21]

(a) (b) (©)

Figure 5.5: Two bar frame BESO Benchmark (a) setup, (b) starting condition [21] and (c) result where the blue vectors resemble
compression and the black imply tension.
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(c)

Figure 5.6: Michell type BESO Benchmark (a) setup, (b) starting condition [21] and (c) result where the blue vectors resemble
compression and the black imply tension.

BESO Benchmark Two Bar Ratio Utilization BESO Benchmark Michell Ratio Utilization
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Figure 5.7: Ratio utilization and number of included elements per iteration step

The similarities are striking between the benchmarks, albeit that the difference between the
modified and the original method are that the original method continues to increase the RR
with each steady state number. The modified method is a lot more crude in this instance as
these parameters are tuned to find a similar solution. However, what is not mentioned in the
papers is the maximum stress that is allowed to find these structures, what is known though
is that the maximum stresses in these structures are extremely high. Far outreaching the
normal yield stress of 235 [MPa] by being in the range of 10 times as much. So when it is
applied to real life situations, as with the midsection the algorithm is able to push it beyond
what is realistic. From these similar results it can be concluded that the main principles are
reached, but to find the exact same structure is difficult and not realistic.

The BESO method would need 50 steady state solutions [21], but it is uncertain how many
iterations each steady state takes. The MBESO was set to find this solution in 100 iterations.
The neighbour inclusion will help the structure grow extremely fast at the start, but it might
cause unwanted oscillation at the end when all the elements are fully stressed.

Cantilever Beam Benchmark

The geometry and loading are according the thesis by [15], who gathered a lot of TO researches
and condensed them to general geometries. An often encountered problem in TO is the
cantilever beam. It is clamped on the left side and a load is applied on the center right.
The main dimensions and parameters for this optimization can be found in Table 5.1 and
a visualization in Figure 5.8. The black triangles represent the structural constraints and
refrain the nodes from moving in the direction of the triangle. This model constrained in
vertical and horizontal direction over the complete left side, therefore also eliminating rotation
of that line making it a clamped constraint. An expected outcome is shown in Figure 5.9.
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item || value  unit
e 125 [mm]
P 300 IN]
L 160 eg [mm]
w 80e;, [mm] "
RR 0125 [}
IR 0.65 [ "A
NIR 0.70 [ '
lconstant 40 [']
imax || 50 H B
Figure 5.8: Cantilever beam loading Figure 5.9: Cantilever Beam expected
Table 5.1: Model parameters. and constraints. outcome [15]

e e rd 7,9‘3 4 )
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Figure 5.10: (a) fully included start (b), (c) and (d) are random starts.

The fully included start (FIS) is comparable to the literature as found in Figure ??.

Cantilever Beam 200 Netements  OvM.max
12000 result [-] [MPa]
L 550 FULL 3366 158
7 10000 RS1 2881 169
4"‘—:3 200 RS2 2891 218
GEJ 8000 a RS3 2881 196
@ =
o 150 x n n
8 6000 A £ ratio H e,RS e,RSx
-g § NeFULL Ne START
'S 4000 100 © FULL 1 0.263
= RS1 0.856 0.225
2000 - 50 RS2 0.858 0.225
RS3 0.856 0.225
01— . . . . —Lo
0 10 20 .30 40 50 Table 5.2: Final solution number of el-
iteration ements and maximal Von Mises stress

for the cantilever beam benchmark.
Figure 5.11: Full and random start comparison in number of elements and
maximum Von Mises stress of cantilever beam benchmark.

Michell Benchmark

The Michell benchmark only uses simply supported constraints and therefore the geometry
experiences a mostly evenly distributed stress, except on the point where the vertical con-
straints end. This makes it particularly difficult to optimize as the elements far away from
the hot-spot do not necessarily have a high stress, but do have a significant effect on the
magnitude of the hot-spot stress. If the beam that connects the top left with the bottom right
has almost no radius, the direction of the stress tends more toward a horizontal direction.
This creates a moment and therefore a lot of stress on that location, while the rest of the
elements are well below the threshold to be included or include the neighbouring elements.
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Therefore a more subtle approach is needed to have a less steep increment of the RR. The
expected result is shown in Figure 5.13.

item || value unit
es 10 [mm]
150  [N] >
L 100 e,  [mm]
w 100 e¢  [mm]
RR 0.075 [] >
IR 0.50 B]
NIR 050 [
lconstant 70 [-] > AA /_\ J
Imax 80 [']
Figure 5.12: Michell type structure Figure 5.13: Michell benchmark ex-
Table 5.3: Model parameters. loading and constraints. pected outcome [15]

() (b) (c) (d)

Figure 5.14: (a) fully included start (b), (c) and (d) are random starts.

300 Nelements OyM,max
12000 result [-] [MPa]
L 550 FULL 1430 132
. 10000 - RS1 1199 222
42 200 RS2 1153 12
“E’ 8000 a RS3 1163 180
o =
Ko) 150 x n n
8 6000 A £ ratio H e,RS e,RSx
-g § Ne,FULL Ne,START
'S 4000 100 © FULL 1 0.143
z RS1 0.838 0.120
2000 - 50 RS2 0.806 0.115
RS3 0.813 0.116
01— . . : . —Lo
0 10 20 .30 40 50 Table 5.4: Final solution number of
iteration elements and maximal Von Mises
stress.

Figure 5.15: Full and random start comparison in number of elements and
maximum Von Mises stress.

The vertical line next to the horizontal constraints is the result of residual stress that is still
left in the elements that are virtually not there, but do still contribute a little bit.

L-Beam Benchmark
Another common benchmark is the L-beam. This has the property of creating a hot spot in
the inside of the knee’. What is important is that the way the stress is relatively distributed
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amongst the elements. This creates the same problem as found in with the Michell bench-
mark but the maximum amount of iterations can still be the usual 50. The result for the
L-beam topology optimization is shown in Figure 5.17.

item || value  unit
e 10 [mm]
P 100 [N] ParPa®a
L 150 e,  [mm]
w 60 e, [mm]
RR 0.05 []
IR 0.50 [ J
NIR 0.55 []
lconstant 40 [‘]
Imax 50 [']
Figure 5.16: L-beam loading and con- Figure 5.17: L-Beam expected out-
Table 5.5: Model parameters. straints. come [15]

(d)
(@) (b) (c)
Figure 5.18: (a) fully included start (b), (c) and (d) are random starts.
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Table 5.6: Final solution number of

. ) . elements and maximal Von Mises
Figure 5.19: Full and random start comparison in number of elements and stress.

maximum Von Mises stress.

Benchmark Discussion

From the benchmarks it shows that this method is quick, can deal with unmapped meshes
such as the L-beam and the random starts create the possibility to generate new structures
that can be used as a sensitivity analysis or it could provide new design ideas. To sum up:
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1. The benchmarks show an overall good resemblance to literature. For runs that start
with all elements included, the general shape matches what could be expected. The
random starts do show resemblance in the case of the Michell and L-beam, but are a
porous version of it. With the cantilever beam the shapes differ more from each other,
but that shows how the MBESO could be used; different options show the dependency
of the structural members.

2. The amount of iterations required for the result is generally low.

3. Alot of other aspects of these models are interesting, to research the effect of the radius
and tolerance of the NIR and a sensitivity study of the RR,IR and NIR but this was only
done to verify the method.

5.3. Geometry

The geometry is almost the same as the numerical stiffened panel model, with the excep-
tion that the bilge in this geometry is rounded. The hull plates also do not have stiffeners
attached to them, but will be of a thickness that was the result of the SO. So the longitudi-
nal plates are not variable, but all the elements representing the web frame are and will be
handled in the same manner as shown in the benchmarking of the MBESO method. The ele-
ments used in this optimization are SHELL181 and an element size of 100 [mm] was selected.

To have a minimal effect on the outcome, the constraints are placed on the outer sides which
would be halfway between the frames. At that position, the rotation around the z and x axis
should be equal to zero. The orange double arrows resemble the rotational constraint.

®» ® B R
A A A
> A X

vé»—»x ® vgéx

Figure 5.20: Web frame numerical model constraints.

5.4. Loading

The loading is simulated as if the midsection were in the hogging condition and fully loaded.
That way, the most amount of pressure is put into the structure. There is only local load-
ing induced by hopper load and water pressure. The global load is regarded to be entirely
absorbed by the longitudinal stiffeners.
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Figure 5.21: Web frame loading in maximum hogging condition for maximum load.

5.5. Optimization Parameter Setting

To keep the optimization a quick tool, the maximum amount of iterations is chosen to be 50.
This determines the rest as a longer optimization with a more delicate ratio setting might also
be a good option. Next to that it also determines the

item || value unit

e 100  [mm]
RR 0125 [
IR 0656 [
NIR 070 [
iconstant 40 [']
imax 50 [']

Table 5.7: Model parameters for the web frame topology optimization.

5.6. Web Frame Thickness

In the reference ship the web frame is a large T-stiffener that is mainly constructed with webs
of 700 and 1050 [mm], but a constant thickness of 12 [mm] and a flange of 150x12 [mm].
To stay in the same order of dimensions, the web frame thickness for the TO should be more
than 12 [mm] to compensate for the flange. If the thickness is too large, the optimization pa-
rameters should be changed. A sensitivity study has been done for 4 different thicknesses: |
12, 15, 18, 21] [mm]. These are based on the area and moments of inertia shown in Table 5.8

hy [mm] H T | twriz twras twr1s twr 21
Agoo[mm?] 10200 12000 8400 10500 12600 14700
I700[mm?*] 5.07-1e8 7.35-1e8 3.43-1e8 4.29-1e8 5.15-1e8 6.00-1e8
Aqpso[mm?] 14400 16200 12600 15750 18900 22050
Ligs0[mm?] 1.55-1e9 2.05-1e9 1.16-1e9 145-1e9 1.74-1e9 2.03-1e9

Table 5.8: Equivalent web frame plate thickness in comparison to T and | beams

For a load that causes a moment, the moment of inertia is important. For membrane stress
however, the area is the dominating structural property of a beam. The comparison in Table
5.8 is made for both a T-stiffener and and I-beam, resembling an equivalent flat bar when the
TO connects material alongside the hull plates and an equivalent beam when only connected
to the hull on either end.

The plate thicknesses of all the hull plating is set to 20 [mm] to ensure that it is equally
distributed and does not take up an unreasonable amount of stress and the WFS was taken
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at 2250 [mm)].

The least chaotic topology is the one with 18 [mm] as can be seen in Appendix B Figure B.3
and it has a comparable equivalent moment of inertia and area of a web frame T-stiffener
with the dimensions of [1050x12,150x12]. These are the minimum dimensions found in the
reference web frames, but thicker webs were found as well so the choice of 18 [mm)] for the
web frame thickness is in the same order of magnitude.

5.7. Underlying Mechanisms

To be able to understand the mechanisms that influence the final result a couple of smaller
models are created. Especially the bottom of the hopper will be an area of interest as this
is where the most of the load is concentrated. At first five different beams will undergo a
topology optimization to find out how the optimizer deals with shear forces, this is followed
with basic models that are derived from the main geometry. From the paper by Tschullick
[22] it can be seen that beams are created. To see why this is the case, the bottom of the
hopper tank and a double bottom are created and loaded with the hydrostatic pressure from
the hopper contents, the water pressure and the combination. These models were created
with PLANE 182 elements, the hydrostatic loads were the same as described in Table 4.1 and
the element size is 100 [mm)].

5.7.1. Aspect Ratio Analysis

To find out whether the optimization actually follows natural shapes an aspect ratio analysis
has been done. The natural phenomenon to be found is that shear stress is distributed along
45 degrees through the isotropic material. Five models were created with each a different
aspect ratio. The bottom half of the shapes are filled for the starting condition in order for
the inclusion ratios to also have effect.
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Figure 5.22: Aspect Ratio Models
models || A B C D E

vertical n, 50 50 50 100 150
horizontal n, 150 100 50 50 50
total n, 7500 5000 2500 5000 7500

Table 5.9: Design space specification for each aspect ratio model
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(d) (e)

Figure 5.23: Results of different aspect ratios, unscaled for better visuality. Relative size can be derived from Figure 5.22 and
Table 5.9

The results for model A and B show that the top elements are filled to overcome with the
moment due to the large span. However, when the beam is shorter a lot less material is
needed to withstand the loads. While the ‘tip’ of the structure shows a beam under a rough
45 degree angle in models A,B and C, the results for D and E do show a clean beam under
the expected angle and therefore geared for shear. The expected outcome of model C, D and
E is to be completely the same as the design domains have the same width and are under
the same load. This is, however, where the MBESQO’s crude nature is shown. A more refined
method would have given the same result for the C, D and E models.

5.7.2. Reduced Models

To better understand the final results, parts of the structure were created to find their con-
tribution to the final result. A total of four basic models were created and can be found in
Appendix C, but the two most important are shown here. The Von Mises stresses lack the
ability to find out whether a beam is in tension or in compression, the following results are
depicted with the vectors for the first and third principal stress. All the elements in ten-
sion will have the first principal stress as dominant stress and consist out of black vectors,
whereas the elements in compression will show blue vectors meaning that the third principal
stress is the largest.

Bottom Hopper and Double Bottom

The results show that when only one pressure is applied a large moment is induced that has
to guide the stresses to the kinematic constraints. However, when both the pressures are
applied, the load can be diverted to each other, resulting in beams between the loads and
the orientation in the direction of the higher load.

(b) (c) (d)

Figure 5.24: Bottom of hopper tank with double bottom fundamental model with (a) water pressure, (b) hopper pressure and (c)
water and hopper pressure combined

A similarity with the aspect ratio is demonstrated in Figure 5.24(b). In essence, these are
the same and the MBESO creates a beam of approximately 45 degrees to be most efficient of
taking up the shear that is induced by the vertical water pressure and has to be transferred
to the kinematic constraints.

Another remarkable finding is that when both the hopper and water pressure are applied,
less material is needed. This happens because the total moment that the constraints have
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to take in is reduced as the moments by both pressures are in opposite direction. That way,
the stresses can be conveyed to the opposing load and no material is needed for the extra
moment and to transport the load to the constraints.

Bottom Hopper, Double Bottom and Side Geometry
This geometry is the same as the previous one, but now the kinematic constraints are further
away from the load introductions, creating a larger moment.

Figure 5.25: Bottom of hopper tank with double bottom and side compartment fundamental model with (a) water pressure, (b)
hopper pressure and (c) water and hopper pressure combined

The same principles apply as previously mentioned, but because this model is closer to the
actual geometry, the combined hopper and water pressure result are of interest. In the
bottom right corner of Figure 5.25(b) and (c) a similarity is shown that is also reoccurring in
the aspect ratio. This is where shear is guided into the side shell of the ship.

5.8. Results

Per web frame spacing a total of eight results were produced. Four of these were with an
unscaled web frame thickness of 18 [mm)], consisting of one fully included start and three
random starts. The other four have a scaled web frame thickness and one fully included
start and three random starts as well. A complete overview of the results can be found in
Appendix D, but the best ones selected from the complete set are depicted here.
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Figure 5.26: Topology optimization results of WFS = (a) 562.5 [mm] (b) 1125 [mm] (c) 1687.5 [mm] (d) 2250 [mm] (e) 2812.5

[mm] (f) 3375 [mm] (g) 3937.5 [mm]

To get a good approximation of the mass, the number of elements is multiplied with the
element size, the element thickness and the density of steel. Because a mapped mesh was

not possible, it can only be an approximation.

WFS [mm] || 562.5 | 1125 | 1687.5 | 2250 | 2812.5 | 3375 | 3937.5

Ne,inc 3075 | 4985 | 4906 | 4858 | 6222 | 6616 | 7507
twy [mm] 4.5 9 13.5 18 18 18 18
mass [t] 1.11 3.61 5.33 7.04 9.02 9.59 | 10.88
OyMmax IMPa] 174 211 173 168 231 226 232
start cond. RS RS RS RS RS RS RS

Table 5.10: Best selected solutions from topology optimization

5.9. Discussion

5.9.1. Common Beams
To help the discussion on common beams, Figure 5.27 was created.
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Figure 5.27: A sketch of common beams in the final TO results

A

The most common beams are these, in the sketch only two beams are drawn but these vary
in number. The orientation of these however, are mostly the same and the orientation is in
the direction of the hopper load. From the fundamental models it was learned that these
help to relieve the kinematic constraints by transferring both of the loads toward each other
to diminish their effect. These are in pure axial stress.

B

This beam resembles the shear transfer from the upward hydrostatic pressure. Not only does
it face the hydrostatic pressure from the side shell, but it also prevents vertical displacement
through the kinematic constraints.

C

This is the most complicated beam as it solves various stress paths. The corner in the hopper
where the inclined bottom of the tank has a transition to the vertical part is a common
problem for stress concentrations. This concentration of stress is leaning on the hydrostatic
pressure and its horizontal part has to be taken in by the horizontal water pressure.

D
In most solutions this horizontal beam helps the inward deflection of the vertical part of the
hopper and the center panel of the side shell.

E

In some solutions such as seen in Appendix D Figure D.2(e) and (f) this beam is not present
and that results in a stress concentration at the location where the tank top connects with
the bottom inclined panel of the hopper tank. If the pressure in the hopper tank is not di-
verted to the hydrostatic pressure, the vertical and horizontal kinematic constraints in the
outer corner of the main deck, it will create a moment around the y-axis and therefore a
stress concentration at the lowest part of the hopper tank.
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5.9.2. Neighbour Inclusion Ratio with Random Start
To see the effect of the ratios in a random start, Figure 5.28 shows the utilization of each
ratio over the iterations.
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Figure 5.28: Ratio utilization of the result in Figure 5.26(g) and (h). Please note that the left y-axis is for the total number of
elements and the right y-axis is for the ratios.

The most dominant ratio over the optimization is the NIR, but it must be kept in mind that this
analysis also counts elements that are already included. The IR shows a small contribution
in the beginning because with a random start it is much easier to overcome the threshold of
including a single element, however when the geometry start to take shape the probability of
an element being in a stress state lower than the NIR but higher than IR is low.

5.9.3. Deflection

To even better understand the results, a supplementary deflection plot was created. It is
evident that the water pressure is dominant as the mid of the hopper is pushed upward.
This is due to the fact that the loading condition was set as if a wave travelled past the
section.

ANSYS

2019 R3
ACADEMIC
2R 31 202

Figure 5.29: Stress plot with deflection.
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5.9.4. Random Start

There are a lot of differences between the solutions, but that can help understand the prob-
lem. As Figure D.4(b) and (c) show that an absence of an inclined beam to the top of the
hopper will result in a high stress where the ship would be mirrored between the keel plate
and the tank top.

The similarities however, display what can be learned from this optimization. A striking con-
trast with the conventional way of constructing a web frame along the hull plates, is that
beams are created that have a perpendicular instead of a parallel orientation toward the hull
plating. This makes sense, as the least amount of material is used when a structure is in
membrane stress where the stress distribution throughout is constant. A beam that is loaded
with a moment, has a neutral axis which does not endure any stress and thus rendering it
a less efficient use of material. This understanding will help the designer in the next step of
making the structure ready for production and determining the compartments.

5.9.5. Limitation

A limitation of these results is that it optimizes the model and not necessarily the real life
situation. At the moment the outer vertical hull plating is constrained in vertical direction,
modelling how the ships buoyancy and weight distribution are kept in balance. The hopper
tank contains more weight than that the specific geometry can provide in buoyancy, so the
rest of the ship will be used to find an equilibrium. This stress is mostly conveyed through
all vertical plates and not only the outer vertical shell. So the optimization can improve the
understanding of the ship structure, but it cannot directly be implemented in the final de-
sign due to the fact that there is a discontinuity between the model and the real life situation.

5.9.6. MBESO Coarseness

From all the optimization methods, the element based optimization such as SIMP and BESO
are not the most refined ones. On top of that, the MBESO is even less refined as it does not
wait for a status quo before altering the ratios as the normal BESO would. So even more
refinement is traded for quick convergence of large problems with unmapped meshes.

5.9.7. Design Tool

Finally, these results can help start the discussion as to how to implement the web frame.
It is obvious that these organic shapes are hard to manufacture, but it could support design
decisions of how to orient the beams and how to divide the compartments for an optimal
strength.
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Optimization Interaction

6.1. Introduction

The optimization procedure dictates that the SO should be performed before the TO as this
is used as input. The thicknesses and therefore the stiffness of the panels are variable, but
in what way do these changes have an effect on the topology outcome?

In this chapter the reference WFS will be used and three different situations will be discussed.
As all the panels have an effect on each other, the ones that are most straightforward for this
mechanism are the side hull plates. It would be interesting to see whether the TO reinforces
the weaker parts or support the stiffer neighbouring panels.

24 » g

— C

Figure 6.1: All surrounding plates of 24 [mm)] except A-(bottom shell), B-(mid shell) and C-(top shell) of 4 [mm]

6.2. Results

(@) (b) () (d)

Figure 6.2: All surrounding plates of 24 [mm] except (b) panel thickness of A = 4[mm] (c) panel thickness of B= 4[mm] (d) panel
thickness of C = 4[mm]

6.3. Discussion

The results show how the shear of the vertical water pressure is transferred to the side hull.
In Figure 6.2(d) a lot of material is needed in the lower region as most of the vertical stress
cannot be taken up with the top part of the shell, but a moment is created as it needs to be
transferred to the bottom hopper. So two mechanisms are identified, if a plate with a high
hydrostatic pressure is thin, the web frame would support it with more material to prevent a

49



50 6. Optimization Interaction

high amount of deflection. However, if the hydrostatic pressure was low and the plate is thin,
the web frame is not able to transfer shear into that plate and therefore had to create more
material elsewhere to support the vertical hydrostatic pressure. These mechanisms confirm
the interaction between the shape optimization and the topology optimization.
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Optimal Web Frame Spacing

Seven different options have been calculated for different web frame spacings. There might
be an optimum between a lot of small web frames and a lighter longitudinal layout or a large
spacing that is more heavily stiffened. To be able to compare these all total weights are di-
vided by its respective WFS, resulting in a tonnage per meter. The lightest solutions that do
not exceed the maximum Von Mises stress of 235 [MPa] are combined to find the total weight
of a part of the midsection and are gathered in Table 7.1.

WEFS [mm] H 562.5 \ 1125 \ 1687.5 \ 2250 \ 2812.5 \ 3375 \ 3937.5
massp; [t] 562 | 11.05 | 17.73 | 26.03 | 32.64 | 40.56 | 59.02
massy [t] 1.1 3.61 5.33 7.04 9.02 9.59 | 10.88
massgo [t] 6.73 | 14.66 | 23.06 | 33.07 | 41.66 | 50.15 | 69.90
massgoe /WFES [t/m] || 12.79 | 13.03 | 13.67 | 14.70 | 14.81 | 14.86 | 17.75

Table 7.1: Lightest combination per web fame spacing

Table 7.1 shows the best option to be smallest web frame spacing and the web frame with
a scaled thickness. However, the stiffened panel relies on an infinitely stiff web frame and
the web frame is the least stiff in this situation. With a larger WFS this effect diminishes,
but will still be present. Keeping this in mind, the second contender is the WFS of 2250 [mm].

7.1. Midsection Comparison

To see how the optimized structure relates itself to the reference ship, both are displayed in
Figure 7.1 and Figure 7.2 respectively.

AAAAAAAAAAA
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Figure 7.1: Web frame and longitudinal stiffener arrangement of reference ship.
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Figure 7.2: Web frame and longitudinal stiffener arrangement of the optimized ship midsection.

Although the reference ship is already a fully designed shape with the distribution of compart-
ments, a weight comparison is helpful to give an idea how the optimized result compares to
the original midsection. Another difference is the simplification of the models, where internal
decks and vertical plates are not included.

WFS [mm] || reference ship optimized structure  weight improvement
massp; [t] 34.22 26.03 24%
mass, s [t] 8.70 7.04 19%
Mass.e; [t 42.92 33.07 23 %
mass,e/WFS [t/m] 19.07 14.70 23 %

Table 7.2: Weight comparison and percent improvement

7.2. Abstraction Procedure

Since the topology optimization results in organic beams that consist out of elements and
therefore have rugged edges, it will be harder, if not impossible to produce. To overcome this,
an abstraction process was made in Rhino, that fits a surface over the elements and adds a

flange to the free edges to prevent buckling. A proposed abstracted final result would look
like:
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Figure 7.3: Abstraction of web frame and longitudinal stiffener arrangement of the optimized ship midsection.

7.3. Discussion

While the lightest solution per meter is the for the smallest web frame spacing, this model also
copes with the most undesired model interference. The kinematic displacement constraints
in the middle of the model represent an infinitely stiff web frame and when the span is small,
the interaction becomes more significant and therefore leads to less reliable analysis. On
top of that for most panels, the orientation of the plates for the analytical buckling analysis
has changed. Whereas the long side is along the web frame and not along the stiffeners
anymore. Because these effects continue, the choice was made to stick to the reference web
frame spacing for comparison.

The 23% weight improvement is only a rough estimate with regard to what the final produ-
cable midsection would look like. The weight improvement is likely to decrease significantly
after a few design iterations and before it is able to be manufactured and pass a classification
check but it is most certainly an interesting start and could lead to new discussions early in
the design phase of how to arrange the midsection construction.
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Conclusion

In this research two models were created, an analytical shape optimization model and a topol-
ogy optimization. With the analytical shape optimization model, a good solution for the layout
of the longitudinal stiffeners in the midsection of a ship was obtained in relatively short time,
which then undergoes numerical check. The best solutions were selected to find a matching
web frame by means of a topology optimization. Two different topology optimizations were
executed; one with a scaled thickness of the web frame and a constant one. The complete
optimization procedure was performed a total of seven times, representing different designs
with distinct web frame spacings that were based on the reference ship. This resulted in an
optimum arrangement of longitudinal stiffeners, a matching web frame and the lightest form
of a web frame spacing.

1. How can the longitudinal stiffener layout of a ship midsection be optimized?
For optimization of the longitudinal strength, an analytical model was created that was
driven by a Simulated Annealing optimization algorithm to find a good solution. The SA
was selected as the optimization problem is a discrete one and this global optimization
algorithm is capable of dealing with discrete variables.

The stiffened panels were parameterized in a way that the plate thicknesses, amount of
stiffeners and stiffener dimensions are variable. These SOV are then randomly gener-
ated to describe the structure and an FEA was run to calculate stresses and buckling
factors.

The variables for the optimization were the amount of stiffeners, their dimensions and
the plate thickness. The optimization model run with these variables resulted in a mass
optimized layout that could still withstand the water and hopper pressure combined
with the global hull bending moment in sagging and hogging condition, without yielding
and without violating a linear buckling constraint.

2. How to optimize the transverse web frame of a ship?

Once the longitudinal layout has been determined, the transverse web frames were
optimized. This was done via a topology optimization based on the BESO method. To
speed up the process and since this is a large problem, some alterations have been made
to the BESO method to make the procedure less delicate but still quick and accurate
enough. The MBESO went through several benchmarks to compare it with conventional
optimization methods. Several sub models were created that each highlighted important
sections of the geometry to be able to interpret the results for the full geometry. The final
optimization procedure resulted in a different way of orienting beams as web frames.

3. What is the interaction between shape optimization and topology optimization?
To find a relevant thickness for the web frame panel, a study has been done with different
panel thicknesses. A model was created where all the hull plating had a thickness of
24 [mm] except for one plate that would have a thickness of 4 [mm)]. This would help
understand how the topology optimization is affected by the shape optimization. Two
mechanisms were identified, if a plate with a high hydrostatic pressure was thin, the
web frame would support it with more material. However, if the hydrostatic pressure
was low, the web frame was not able to transfer shear into that plate and therefore had
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8. Conclusion

to create more material elsewhere to support the vertical hydrostatic pressure. These
mechanisms confirm the interaction between the shape optimization and the topology
optimization.

. What is the optimal web frame spacing for an optimized web frame topology combined

with an optimal longitudinal stiffener layout for a given length of a midsection?

Seven options of web frame spacing were analyzed to find the an optimal arrangement.
With a short WFS, the span was smaller, resulting in a lighter longitudinal arrangement
and web frame but it would have to be repeated more often. A point of discussion is
that with a smaller web frame spacing, the infinitely stiff modelled web frame in the
shape optimization plays a greater role as opposed to a larger WFS. In comparison to
the reference ship, a total mass reduction of 23 % was established.

. How can optimization techniques be used for a better understanding of ship structures?

In the early design stage, especially the topology optimization results can help open the
discussion and let the computer do a virtual brainstorm. Especially the topology opti-
mization of the web frame has shown how the stress paths move through the structure.
The TO results showed that constructing beams not in an orthogonal way and along the
ship hull but rather under various angles could reduce the total mass of the web frame.
This can help in a later stadium of the design to make choices on how to subdivide the
compartments.

This research has shown that a better understanding of a structure and its reciprocal mech-
anisms can be acquired through optimization. The most applied method at the start of de-
signing a ship is to find ships that have comparable traits and use that as a beginning. Over
the years, this copying of previous work has deterred creative thinking about the structures
and the possibility of radical new solutions. By letting the algorithm find out a structure,
this could be a better starting point for the complete design.

Limitations of this research are that all the solutions that were created do not consider the
compartments and productivity. On top of that, the modified BESO method proved to be a
crude analysis.
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Recommendations

For continued research, the following subjects are advised:

1.

10.

To overcome the issue of optimizing the longitudinal stiffened panels with an infinitely
stiff web frame, a coupled model could be created. This would be a computationally
intensive exercise as for every distinct layout, at least 50 topology optimization iterations
are needed. This would, however give an ever better model.

. At the moment only the thicknesses of the plates for each panel are taken into account

for the topology optimization. However, a more realistic representation would be to
smear the stiffeners into the plate, resulting in a plate with orthotropic Youg’s Moduli.

. The g, used in the analytical optimization has proven to be too conservative. One way of

solving this is to give the constraint more relaxation and another is to alter the method
used to find the maximum stress. Right now it is modeled as a beam that is only simply
supported on two sides but it would be an improvement to model it as a plate that is
simply supported on three, and is free on one side.

. When fatigue is implemented in the constraints, it would make the model even more

complete.

. The longitudinal stiffeners could also be swapped for different stiffeners like the Holland

Profile. An even more practical solution would be that the optimization algorithm does
not change the geometry of the stiffeners, but has access to a library of of options with
pre-defined stiffeners that are already off-the-shelf available for the shipyard.

. Another option to make the tool more practical is to use constraints set by classification

bureaus like BV. When these constraints are applied, even less post processing of the
outcome is needed to get it through the classification procedure.

. Instead of having a minimum and maximum amount of stiffeners, a better way to ap-

proach the situation is to have a minium and maximum stiffener spacing. In the stiff-
ened panel model now a plate from 5 meters has the same range of allowed stiffeners
as a plate from 10 meter.

. The random start topology optimization procedure could also be used by creating a

significant amount of data and ‘morph’ these results together to see whether a new
topology is created.

. Make sure at least 3 elements are in the web for the plate stiffener model as this ensures

a better analysis for the shear and buckling of this part.

A multiprocessor brute force version of the shape optimization might be able to cal-
culate all the different longitudinal stiffener arrangement possibilities analytically in
a overseeable timeframe. That way, the optimum can be established with a hundred
percent certainty.
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A

Direct Numerical Optimization Results

In this research an analytical approach was taken to calculate a lot of different options for the
plate stiffener arrangement in a fast way. However, not all of the solutions were accepted after
a numerical procedure. To overcome this, another approach was tried to skip the analytical
calculations and directly do the numerical assessment. The drawback of this is calculation
time because this takes a longer time to analyze and is dependent on the web frame spacing
as a larger spacing means more elements and therefore an even more calculation expensive.
This resulted in a thousand iterations and took up around the same time of approximately
14 hours. The problem with this is that he amount of iterations stand in no comparison to
the possible amount of solutions of 365,615,000.

A.1. Simulated Annealing

Efficiency and computing time are important factors in this model. Each FEM calculation
takes the most time compared to the creation of SOV and its fitness check. Therefore the
SA is a the best choice of algorithm as it can judge whether the new SOV is accepted or
not before checking the constraints. Once the calculation is done, it would be senseless to
disregard the results hence these are still stored as design points. Albeit not a feasible design.

A schematic overview is shown below, where the F(x) is the fitness test and FEA(x) the finite
element analysis from which the yield criterion and buckling factor are retrieved.

C = Xrandom
Feurrene = F(O)
Geurrent = FEA(C)

fOT T in range(Tmaxr Tminv niterations)

N = Xrandom

Faew = F(N)
AF = Foprrent — Frew
if (AF >0)

Geurrent = FEA(N)

Feurrent = Few

C=N
E
elseif <e T > random(0, 1))

Geurrent = FEA(N)

Forrent = Frew

C=N
else
c=C

if Oymmax =235 or BEy;, <25
Frew = false
endif
endfor
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64 A. Direct Numerical Optimization Results

This is not the conventional way of applying the SA, but because it is not certain that the
last SOV will be the best. Furthermore, SHELL181 elements are used with an element size
of 150 [mm].

A.2. Result

Since this takes up a lot of time, only the reference web frame spacing of 2250 [mm] was
calculated in this manner. The results are shown in Table A.1.

WFS [mm] || 2250 5

mass [t] 26.23
O-VM,max,sag [MPa] 60.48
OyM,max,hog [MPa] 98.49

BFyqg [] 10.96

BFyoyg I-] 9.99

Table A.1: Mass, maximum Von Mises stress and buckling factor of the direct numerical optimization

The result is close to that of the analytical optimization method, which resulted in a mass of
26.23 [tonne].

A.3. Discussion

As the mass of the direct numerical optimization is higher than from the analytical one (26.03
[tonne]), this optimization is regarded as inferior. On top of that the time that it takes to create
these results is dependent on the web frame spacing as more elements are required to analyze
a larger web frame. On top of that the approval rate by the constraints diminishes as the
web frame spacing is increased.



B

Appropriate Web Frame Thickness
Analysis

(d)

(a) (b) (©) (d)

Figure B.3: Web frame thickness of 18 [mm] (a) fully included start (b), (c) and (d) are random starts.
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66 B. Appropriate Web Frame Thickness Analysis

(a) (b) (c) (d)

Figure B.4: Web frame thickness of 21 [mm] (a) fully included start (b), (c) and (d) are random starts.



Supplementary Fundamental Model
Results

(@) (b) (c) (d)

Figure C.1: Bottom of hopper tank fundamental model with (a) water pressure, (b) hopper pressure and (c) water and hopper
pressure combined

(b) (c) (d)

® (9 (h)

(e)

Figure C.2: Bottom of hopper tank with double bottom fundamental model with (a) water pressure, (b) hopper pressure and (c)
water and hopper pressure combined
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68 C. Supplementary Fundamental Model Results

T I I
(a) (b) © (d)

Figure C.3: Bottom of hopper tank with double bottom and side compartment fundamental model with (a) water pressure, (b)
hopper pressure and (c) water and hopper pressure combined

(b)

Figure C.4: Highly simplified TSHD midsection model with (a) water pressure, (b) hopper pressure and (c) water and hopper
pressure combined



Supplementary Web Frame Topology
Optimization Results
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Figure D.1: WFS of 562.5 [mm]: (a) fully included start with web frame thickness of 18 [mm] (b), (c) and (d) are random starts
with web frame thickness of 18 [mm]. (e) fully included start with web frame thickness of 18 - i [mm] (), (g) and (h) are random

starts with web frame thickness of 18 - % [mm]
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70 D. Supplementary Web Frame Topology Optimization Results

(e) U] (9 (h)

Figure D.2: WFS of 1125 [mm]: (a) fully included start with web frame thickness of 18 [mm] (b), (c) and (d) are random starts
with web frame thickness of 18 [mm]. (e) fully included start with web frame thickness of 18 - % [mm] (f), (g) and (h) are random

starts with web frame thickness of 18 - %[mm]

(a) (b)

(e) U] (9) (h)

Figure D.3: WFS of 1687.5 [mm]: (a) fully included start with web frame thickness of 18 [mm] (b), (c) and (d) are random starts
with web frame thickness of 18 [mm]. (e) fully included start with web frame thickness of 18 - % [mm] (f), (g) and (h) are random

starts with web frame thickness of 18 - % [mm]
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Figure D.4: WFS of 2250 [mm]: (a) fully included start with web frame thickness of 18 [mm] (b), (c) and (d) are random starts
with web frame thickness of 18 [mm].

(a) (b) ()

(e) ) (9) (h)

Figure D.5: WFS of 2812.5 [mm]: (a) fully included start with web frame thickness of 18 [mm] (b), (c) and (d) are random starts
with web frame thickness of 18 [mm]. (e) fully included start with web frame thickness of 18 - % [mm] (f), (g) and (h) are random

starts with web frame thickness of 18 - % [mm]
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(e) U] (9 (h)

Figure D.6: WFS of 3375 [mm)]: (a) fully included start with web frame thickness of 18 [mm] (b), (c) and (d) are random starts
with web frame thickness of 18 [mm]. (e) fully included start with web frame thickness of 18 - % [mm] (f), (g) and (h) are random

starts with web frame thickness of 18 - % [mm]

(e) U] (9) (h)

Figure D.7: WFS of 3937.5 [mm]: (a) fully included start with web frame thickness of 18 [mm] (b), (c) and (d) are random starts
with web frame thickness of 18 [mm]. (e) fully included start with web frame thickness of 18 - % [mm] (f), (g) and (h) are random

starts with web frame thickness of 18 - % [mm]

025 050 075 100 125 150 175

tw f [mm] ” 18 45 | 18 9 18 135 | 18 | 18 225 18 27 18 315

e [ FT 2216 3648 | 4407 5542 | 4486 5004 | 5266 | 6739 6337 | 7698 5935 | 9666 6331

BRS 2176 3075 | 4357 4985 | 4669 4906 | 4858 | 6222 5989 | 6616 5560 | 7507 5797
mass [t] FT 321 132 | 639 402 | 650 642 | 763 | 976 1148 | 1.5 1290 | 1401  16.05
BRS 315 111 | 631 361 | 677 533 | 704 | 902 1085 | 959 1208 | 10.88  14.70

Gy MmaxMPa] FT 77 165 296 469 177 468 220 163 194 165 168 182 78
BRS 184 174 211 211 169 173 168 231 169 226 173 232 185

Table D.1: The number of elements, its mass and maximum Von Mises stress of the topology optimizations
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