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Abstract

In this paper we comment on some recent numerical and analytical work to evaluate the Hantush Well
Function. We correct an expression found in a Comment by Nadarajah (J. of Hydrology, vol. 338, p. 152-
153 (2007)) to a paper by Prodanoff et al. (J. of Hydrology, vol. 318, p. 173-183 (2006)). We subsequently
derived another analytic representation based on a generalized hypergeometric function in two variables and
from the hydrological literature we cite an analytic representation by Hunt (J. of Hydrology, vol. 33, p.
179-183 (1977)). We have implemented both representations and compared the results. Using a convergence
accelerator Hunt’s representation of Hantush Well Function is efficient and accurate. While checking our
implementations we found that Bear’s table of the Hantush Well Function (”Hydraulics of Groundwater”,
1979, Table 8-6) contains a number of typographical errors that are not present in the original table published
by Hantush (Transactions, American Geophysical Union, vol. 36, p. 95-100 (1956)). Finally, we offer a very
fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by
Bear.

Keywords: Hantush Well Function, Generalized Incomplete Gamma Function, pumping test, leaky
aquifer, closed-form representation, time series analysis.

1. Introduction

Hantush’s Well Function (Hantush and Jacob (1955)) may well be the most popular formula in hy-
drogeological practice, which is remarkable for an inconvenient mathematical expression that classifies as
a special case of the Generalized Incomplete Gamma Function. Ever since its first appearance hydroge-
ologists have searched for methods to compute the well function; several methods will be reviewed in the
next paragraph. In this paper, we review existing analytic methods and discuss two analytic representa-
tions. At the end of the paper we present a very fast approximation, which may be useful in programs
that require many evaluations of the function, such as models for time series analysis (Asmuth et al. (2008);
http://www.menyanthes.nl). We remark that one may alternatively evaluate the Hantush Well Function
by performing a numerical inversion of the Laplace transform (2) or by standard numerical integration, for
example using Gaussian quadrature (e.g., the Matlab®-code quadgk). Both turn out to be also satisfactory.
Other methods to evaluate the Hantush Well Function, sometimes purely numerical, have been published,
by e.g., Harris (2008) and Temme (2009).

Besides a proposed numerical integration scheme Prodanoff et al. (2006) presented a review of earlier
results. Nadarajah (2007) commented on Prodanoff et al. (2006) to the effect that there was no longer
a need for approximate methods, since a closed-form mathematical expression was available, based on an
Appell type generalization of the well-known hypergeometric series that allegedly was offered by standard
mathematical software. We found some difficulties in evaluating Nadarajah’s solution for various reasons
which we discuss in this paper (Section 3). Another representation of the Generalized Incomplete Gamma
Function uses also an Appell type series generalization of the hypergeometric series (see (13) in Section
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4). We rewrite (13) into (24), a representation expressed in the better known Bessel functions Ij and K0

and discuss its evaluation in Section 6. In Section 5 we consider the closed-form analytic representation by
Hunt (1977), which Prodanoff et al. (2006) erroneously called approximate. Using a convergence accelerator,
Hunt’s representation of Hantush’s Well Function is efficient and accurate, which means that one gets high
precision for a relatively small number of terms. While checking our implementations we found that Bear’s
table of the Hantush Well Function (Bear (1979, Table 8-6)) contains a number of typographical errors,
which are not present in the original table published by Hantush (1956). We discuss the performance of the
two representations mentioned above in Section 7. In Section 8 we end our paper with a very fast but stable
approximate expression that is good enough for engineering practice. It is continuous and has continuous
first derivatives with respect to its parameters, which is important when it is to be used in an optimization
loop. The Appendix contains a Matlab code for this approximation. Our Matlab code for the method by
Hunt is available upon request.

2. Hantush Well Function

The Hantush Well Function is defined as

W
(
u,
r

B

)
=
∫ ∞
u

1
t

exp
(
−t− r2

4B2t

)
dt. (1)

This function was introduced in the field of hydrology by Hantush and Jacob (1955). An application with a
number of numerical results in table form was given by Hantush (1956). Bear summarized these results and
included a table for this function (Bear (1979, Table 8-6)). The Hantush Well Function was given by Hunt
(1977) as a sum over Iterated Exponential Integrals. A recent survey of methods to evaluate the Hantush
Well Function was given by Prodanoff et al. (2006). Also, in the mathematical literature attention has been
paid to this function, see Harris (2008) and Temme (2009). The Laplace transform of (1) reads

W
(
s;
r

B

)
=
∫ ∞

0

W
(
u,
r

B

)
exp(−us)du = (2)

2
(
K0

( r
B

)
−K0

(√
1 + s

r

B

))
/s,

where K0 is the Modified Bessel Function of the Second Kind, order 0.

3. Result of Nadarajah (2007)

In a recent Comment (Nadarajah (2007)) to the paper by Prodanoff et al. (2006) the author points
out that it is possible to express (1) in a closed analytical form as a double sum based on the Appell
hypergeometric series of the first kind ΦN1 . The result of Nadarajah (2007) reads

W
(
u,
r

B

)
=

K0(r/B) + I , 0 < u < r/(2B),

K0(r/B)− I , u ≥ r/(2B),

(3)

with I =

√
2Bu
r

+
r

2Bu
− 2 exp

(
− r
B

)
×

ΦN1

(
1
2
,

1
2
,

3
2

;
1
2
− Bu

2r
− r

8Bu
, u+

r2

4B2u
− r

B

)
,
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where K0 is the Modified Bessel Function of the Second Kind, order 0, and where ΦN1 is defined according
to Nadarajah as

ΦN1 (a, b, c;x, y) =∑∞

m=0

∑∞

n=0

(a)m+n (b)n x
myn

(c)m+nm!n!
,

(4)

with (a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · (a+ k − 1),

a 6= 0,−1,−2, · · · .

We introduced the notation ΦN1 in stead of Φ1 for reasons below. We discuss this result with a few remarks:
1. Nadarajah (2007) calls the function ΦN1 the Appell hypergeometric series of the first kind. This is

not correct. The Appell hypergeometric series of the first kind is commonly denoted by F1 and defined with
one extra parameter as (see e.g., Horn (1931, p. 383), Gradshteyn and Ryzhik (1965, (9.180)))

F1(a, b, b′, c;x, y) = (5)∑∞

m=0

∑∞

n=0

(a)m+n (b)m (b′)n x
myn

(c)m+nm!n!
,

whereas the function (4) used by Nadarajah (2007) is one of the other functions in two variables introduced
by Horn (1931, p. 383-384) as a generalization of the well-known hypergeometric function.

2. According to Horn (1931, p. 384) and Erdélyi (1954, p. 384) the correct definition for that function
Φ1 reads (see also Srivastava and Karlsson (1985, p. 25, (16)))

Φ1(a, b, c;x, y) =∑∞

m=0

∑∞

n=0

(a)m+n (b)m x
myn

(c)m+nm!n!
,

(6)
with the restriction of |x| < 1 and |y| <∞.

Note the different subscript for the term (b) in the numerator in (4) and (6). The definition used by
Nadarajah (2007) occurs in the literature by Erdélyi (1953, p. 225, (20)) and Gradshteyn and Ryzhik (1965,
p. 1067, (9.261)). This has caused some confusion with respect to the results in which Φ1 is involved. As
can easily be seen, there holds

Φ1(a, b, c;x, y) = ΦN1 (a, b, c; y, x). (7)

3. Nadarajah (2007) used a result for some specific integral listed in Prudnikov et al. (1986, (2.3.8.1))∫ a

0

xα−1(a− x)β−1(x+ z)−ρ exp(−px)dx =

B(α, β)z−ρaα+β−1Φ1(α, ρ, α+ β;−a/z, ap),
(8)

with Reα > 0, Reβ > 0, |arg(1− σ)| < π,

and B(α, β) =
Γ(α)Γ(β)
Γ(α+ β)

.
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The function Φ1 seems not to be defined in that work. This result (8) is related to a similar integral listed
in Erdélyi (1954, 4.3, (24))∫ 1

0

tα−1(1− t)β−1(1− σt)−γ exp(−pt)dt =

B(α, β)Φ1(α, γ, α+ β;σ,−p),
(9)

with Reα > 0, Reβ > 0, |arg(1− σ)| < π.

The result (9) is in accordance with (8) (after the scaling t = x/a, and the change of parameters γ → ρ,
σ → −a/z, p → ap), except for the minus-sign in the last argument for Φ1. A careful analytical study
reveals that (9) is correct. Gradshteyn and Ryzhik (1965, (3.385)) also gave this result (9), but since
Gradshteyn and Ryzhik (1965, p. 1067, (9.261)) used the wrong definition for Φ1, it seems that their
result is in error. There exists a correction for that result (Gradshteyn and Ryzhik (1965, (3.385))) (see
http://www.mathtable.com/gr) in the sense that the two last arguments for Φ1 have to be changed. It
would have been better to correct the definition of Φ1 in Gradshteyn and Ryzhik (1965, p. 1067, (9.261)).

4. The final conclusion is that the result given by Nadarajah (2007) for the Hantush Well Function is in
error. His formula can be repaired by introducing an extra minus-sign for the last argument (u+ r2

4B2u−
r
B →

−
(
u+ r2

4B2u −
r
B

)
) and by requiring that the correct definition of Φ1 will be used (i.e. (6)). Moreover, the

function Φ1 converges only for values
∣∣ 1
2 −

Bu
2r −

r
8Bu

∣∣ < 1. So, the correct results reads

W
(
u,
r

B

)
=

K0(r/B) + I , 0 < u < r/(2B),

K0(r/B)− I , u ≥ r/(2B),

(10)

with I =

√
2Bu
r

+
r

2Bu
− 2 exp

(
− r
B

)
×

Φ1

(
1
2
,

1
2
,

3
2

;
1
2
− Bu

2r
− r

8Bu
,−u− r2

4B2u
+
r

B

)
,

for
∣∣∣∣12 − Bu

2r
− r

8Bu

∣∣∣∣ < 1.

4. Another Representation of the Hantush Well Function

Chaudhry and Zubair (2002) discussed a result by Vu Kim Tuan for the Generalized Incomplete Gamma
Function defined by

Γ(α, x; b) =
∫ ∞
x

tα−1 exp
(
−t− b

t

)
dt. (11)

So,

W
(
u,
r

B

)
= Γ

(
0, u;

r2

4B2

)
, or (12)

Γ(0, x; b) = W
(
x, 2
√
b
)
.

Again, it turns out that the function Γ(α, x; b) can be expressed as a generalized hypergeometric function
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in two variables, like (10). The result reads (Chaudhry and Zubair (2002, (2.158)))

Γ(α, x; b) = Γ(α)
∑∞

n=0

bn

n!(1− α)n

− xα

α
Γ2

(
−α, α, x, b

x

)
,

(13)
with Γ2 (β, β′, x, y) =∑∞

m=0

∑∞

n=0

(β)n−m(β′)m−n
m!n!

xmyn,

where the interpretation for the symbol (a)−k can be given in a natural way as (see Srivastava and Karlsson
(1985, p. 16-17))

(a)−k =
Γ(a− k)

Γ(a)
=

(−1)k

(1− a)k
, (14)

k = 1, 2, 3, · · · , a 6= 0,±1,±2,±3, · · · .

The function Γ2 is another one in the series of generalized hypergeometric functions in two variables, see
Horn (1931, p. 384) or Erdélyi (1953, p. 226, (28)).

To express (1) in terms of (13), one has to evaluate the result (13) carefully for α → 0. Therefore, we
need the following asymptotic results

limα→0 (α)−k = limα→0
Γ(α− k)

Γ(α)
= (15)

limα→0
(−1)k

(1− α)k
=

(−1)k

k!
,

xα

α
=

eα ln x

α
=

1 + α lnx+O
(
α2
)

α
= (16)

1
α

+ lnx+O(α), α→ 0,

Γ(α) =
1
α

e−γα +O(α) =
1
α
− γ +O(α), α→ 0, (17)

γ = limm→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
m
− lnm

)
= (18)

0.5772156649 · · · ,

1
(1− α)n

=
1

n!(1− α)(1− α/2) · · · (1− α/n)
= (19)

(1 + α)(1 + α/2) · · · (1 + α/n)
n!

+O(α2) =

1
n!

(
1 + α

∑n

l=1

1
l

)
+O(α2), α→ 0.
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In (13), the second term gives rise to the expressions

if n > m: limα→0

(−α)n−m(α)−(n−m)

α
=

limα→0
Γ(−α+ (n−m))

αΓ(−α)
Γ(α− (n−m))

Γ(α)

= −Γ(n−m)
(−1)n−m

(n−m)!
=

(−1)m−n

m− n
,

if n = m: limα→0(−α)0(α)0 = 1,

if n < m: limα→0

(−α)−(m−n)(α)m−n
α

=

limα→0
Γ(−α− (m− n))

Γ(−α)
Γ(α+ (m− n))

αΓ(α)

=
(−1)m−n

(m− n)!
Γ(m− n) =

(−1)m−n

m− n
.

So, we have the result

Γ(α, x; b) =

Γ(α)
∑∞

n=0

bn

n!(1− α)n
− xα

α
Γ2

(
−α, α, x, b

x

)
=

Γ(α)
∑∞

n=0

bn

n!(1− α)n

− xα

α

∑∞

m=0

∑∞

n=0

(−α)n−m(α)m−n
m!n!

xm
(
b

x

)n
.

This gives for α→ 0

Γ(α, x; b) =(
1
α
− γ +O(α)

)∑∞

n=0

bn

n!
1
n!

(
1 + α

∑n

l=1

1
l

)
− (1 +O(α))×∑∑∞

m,n=0,m 6=n

(−1)m−n

(m− n)m!n!
xm
(
b

x

)n
−
(

1
α

+ lnx+O(α)
)∑∞

n=0

1
n!n!

xn
(
b

x

)n
,

α→ 0.

So,

Γ(0, x; b) = limα→0 Γ(α, x; b) =∑∑∞

m,n=0,m 6=n

1
(n−m)m!n!

(−x)m
(
− b
x

)n
(20)

+ (− lnx− γ)
∑∞

n=0

bn

n!n!
+
∑∞

n=1

bn

n!n!

∑n

l=1

1
l
.

We remark that the following result can be applied (Abramowitz and Stegun (1964, (9.6.13)))∑∞

n=1

bn

n!n!

∑n

l=1

1
l

= (21)

K0

(
2
√
b
)

+
(

ln
(√

b
)

+ γ
)
I0

(
2
√
b
)
,
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which gives for Γ(0, x; b) the surprisingly simple expression

Γ(0, x; b) =∑∑∞

m,n=0,m 6=n

1
(n−m)m!n!

(−x)m
(
− b
x

)n
+K0

(
2
√
b
)

+ ln

(√
b

x

)
I0

(
2
√
b
)
, (22)

(remember that
∑∞
n=0

bn

n!n! = I0(2
√
b)). As a bonus one gets from (22) for b → 0 an expression for the

Exponential Integral E1(x), since (in view of (21))

limb→0 Γ(0, x; b) =

limb→0

(
K0

(
2
√
b
)

+ ln

(√
b

x

)
I0

(
2
√
b
))

+
∑∞

m=1

1
(−m)m!

(−x)m

= −γ − ln(x)−
∑∞

m=1

1
m!m

(−x)m

= E1(x). (23)

The last identity is given in Abramowitz and Stegun (1964, (5.1.11)). Of course, this is in agreement with
the definition of Γ(0, x; 0).

Eq. (22) involves a double sum
∑∑∞

m,n=0,m 6=n am,n. It is possible to handle this sum by performing
summation along diagonals, below (n > m) and above (m > n) the main diagonal (m = n), which itself
is excluded from this sum. We make the substitutions j = n −m and j′ = m − n, respectively, with the
following result∑∑∞

m,n=0,m 6=n

1
(n−m)m!n!

(−x)m
(
− b
x

)n
=
∑∞

j=1

∑∞

m=0

1
jm!(j +m)!

(−1)j+2mx−jbj+m

−
∑∞

j′=1

∑∞

n=0

1
j′n!(j′ + n)!

(−1)j
′+2nxj

′
bn

=
∑∞

j=1

∑∞

m=0

1
jm!(j +m)!

×{
(−x)−j bj+m − (−x)j bm

}
=
∑∞

j=1

1
j

((
− b
x

)j
− (−x)j

)
×

∑∞

m=0

bm

m!(j +m)!

=
∑∞

j=1

1
j

((
− b
x

)j
− (−x)j

)
b−j/2Ij

(
2
√
b
)

=
∑∞

j=1

1
j

(−1)jIj
(

2
√
b
)(√b

x

)j
−
(
x√
b

)j .
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Here, we used the power series expansion for Ij , the Modified Bessel Function of the First Kind, order j,
see Abramowitz and Stegun (1964, (9.6.10)). So, the final analytical expression for Γ(0, x; b) reads

Γ(0, x; b) =∑∞

j=1

1
j

(−1)jIj
(

2
√
b
)(√b

x

)j
−
(
x√
b

)j
+K0

(
2
√
b
)

+ ln

(√
b

x

)
I0

(
2
√
b
)
. (24)

Exploring the behaviour of Ij
(

2
√
b
)

as bj/2/j! for j →∞, and for fixed argument, it is clear that this sum
converges, see among others Temme (1996, (9.37)). It can be remarked that this expression can also be
derived using Abramowitz and Stegun (1964, (9.6.33))

exp
(

1
2
z

(
t+

1
t

))
=
∑k=∞

k=−∞
tkIk(z),

together with the knowledge that Γ(0, 0; b) = 2K0

(
2
√
b
)

. As a by-product we derive the interesting relation

limx→0

∑∞

j=1

1
j

(−1)jIj
(

2
√
b
)
× (25)(√b

x

)j
−
(
x√
b

)j+ ln

(√
b

x

)
I0

(
2
√
b
)

= K0

(
2
√
b
)
.

It has to be remarked that for large values of b together with
√
b � x evaluation of (24) poses numerical

problems since loss of precision arises by the fact that the general term becomes very large before it converges
to zero for large indices.

N.M. Temme has drawn the authors’ attention to the paper by Harris (2008), where (24) occurs in a
somewhat different but equivalent form as equation (38) in that paper. In Veling (2009) we have extended
this type of expansion for Γ(α, x; b) with general α.

5. Yet Another Representation of the Hantush Well Function

Another analytic expression for Γ(0, x; b) can be found by expanding the factor exp(−b/t) in the integrand
as a power series

Γ(0, x; b) =∫ ∞
x

t−1 exp
(
−t− b

t

)
dt =∑∞

n=0

(−b)n

n!

∫ ∞
x

t−n−1 exp(−t)dt =∑∞

n=0

(−b)n

n!
x−n

∫ ∞
1

t′−n−1 exp(−xt′)dt′ =∑∞

n=0

(−b/x)n

n!
En+1(x), x > 0, (26)
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and by the substitution t′ = b/t one can derive

Γ(0, x; b) =∫ b/x

0

t′−1 exp
(
−t′ − b

t′

)
dt′ =

2K0

(
2
√
b
)
−
∫ ∞
b/x

t′−1 exp
(
−t′ − b

t′

)
dt′ =

2K0

(
2
√
b
)
−
∑∞

n=0

(−x)n

n!
En+1(b/x), x ≥ 0. (27)

In the hydrologic literature these expressions have been given already by Hunt (1977). See also Chaudhry
et al. (1996, (2.1)). Contrary to what has been suggested in Prodanoff et al. (2006, (10) and (12)), these
expressions are no approximations but closed-form analytical expressions. These formulas are rather easy to
evaluate, since the Iterated Exponential Integral can be found by a recursion, and it remains to evaluate the
function E1(x) in (26) only once or the functions K0(2

√
b) and E1(b/x) in (27) only once. It is appropriate

to evaluate (26) for x ≥
√
b, and (27) for 0 < x <

√
b. Since the terms in the sum are alternating and

decreasing to 0 (En(x) = exp(−x)
(x+n) (1 + O(n−2)), n → ∞), the convergence is assured and the error can

be estimated by the absolute value of the last term included in the sum. These series can be handled by
convergence accelerators like the Euler summation technique suitable for such alternating series.

As a side remark we note that for cases where α 6= 0, but an integer α = m, the same expansion can be
applied with the following results

Γ(m,x; b) = (28)∫ ∞
x

tm−1 exp
(
−t− b

t

)
dt =∑∞

n=0

(−b/x)n

n!
xmE−m+n+1(x), x > 0,

and

Γ(m,x; b) = 2bm/2Km

(
2
√
b
)

(29)

−
∑∞

n=0

(−x)n

n!
xmEm+n+1(b/x), x ≥ 0.

In cases where the index of the Expontial Integral E−m, m ≥ 0, becomes non-positive, that function has to
be interpreted as the function αm, see Abramowitz and Stegun (1964, (5.1.5))

E−m(x) = αm(x) =
∫ ∞

1

tm exp(−xt)dt;

with α0(x) = E0(x) = exp(−x)/x.

The function Em(x), m ≥ 2, can be found by a recursion, starting from E1(x); the function αm(x), m ≥ 1,
by a recursion starting from α0(x).

6. Numerical Evaluation Eq. (22)

Here, we describe how formula (22) has been implemented in a Matlab script. An N ×N−matrix G will
be filled with zeros on the diagonal and with the terms according the double sum as

Gij = 0, i = j, 1 ≤ i, j ≤ N,
(30)

Gij =
(−b/x)i−1 (−x)j−1

(i− j)(i− 1)!(j − 1)!
, i 6= j, 1 ≤ i, j ≤ N.
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In view of the restrictions posed on by Matlab, the indices start at i = 1, j = 1. Summation over all elements
of this matrix gives an approximation for the double sum in (22). To make a choice for the right value of
N , we have to make an error estimation. The sum of the terms not taken into account by the matrix G can
be represented by

E = B +B′ + C + C ′, where
(31)

B =
∑N−1

m=0

(−x)m

m!

∑∞

n=N

(−b/x)n

(n−m)n!
,

B′ =
∑∞

m=N

(−x)m

m!

∑∞

n=m+1

(−b/x)n

(n−m)n!
,

C =
∑N−1

n=0

(−b/x)n

n!

∑∞

m=N

(−x)m

(n−m)m!
,

C ′ =
∑∞

n=N

(−b/x)n

n!

∑∞

m=n+1

(−x)m

(n−m)m!
.

The sum B represents the terms for 0 ≤ m ≤ N−1, n ≥ N ; the sum B′ the terms n ≥ m+1, n ≥ N and
m ≥ N , and analogously for C and C ′. So, E represents all terms not summed. We estimate the various
terms in a rather crude, but effective way.

|B| ≤
∑N−1

m=0

∣∣∣∣ (−x)m

m!

∑∞

n=N

(−b/x)n

(n−m)n!

∣∣∣∣
≤
∑N−1

m=0

∣∣∣∣ (−x)m

m!

∣∣∣∣ ∣∣∣∣∑∞

n=N

(−b/x)n

(n−m)n!

∣∣∣∣
≤
∑N−1

m=0

xm

m!
(b/x)N

(N −m)N !
≤
∑N−1

m=0

xm

m!
(b/x)N

N !
.

|B′| ≤
∣∣∣∣∑∞

m=N

(−x)m

m!

∑∞

n=m+1

(−b/x)n

(n−m)n!

∣∣∣∣
≤
∑∞

m=N

∣∣∣∣ (−x)m

m!

∣∣∣∣ ∣∣∣∣∑∞

n=m+1

(−b/x)n

(n−m)n!

∣∣∣∣
≤
∑∞

m=N

xm

m!
(b/x)m+1

(m+ 1−m)(m+ 1)!

=
∑∞

m=N

xm

m!
(b/x)m+1

(m+ 1)!
.

We required the additional condition b/(x(N+1)) < 1, (which can be fullfilled forN large enough) to estimate
the sums over n by their first term, since the terms in these sums are oscillating and are monotonously
decreasing under that condition. This results in

|B +B′| ≤ |B|+ |B′| (32)

≤
∑N−1

m=0

xm

m!
(b/x)N

N !
+
∑∞

m=N

xm

m!
(b/x)m+1

(m+ 1)!
.
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Since b/(x(N + 1)) < 1, this equation (32) can be further estimated as

|B +B′| (33)

≤
∑N−1

m=0

xm

m!
(b/x)N

N !
+
∑∞

m=N

xm

m!
(b/x)N

N !

= ex
(b/x)N

N !
.

Analogously, under the additional condition x/(N + 1) < 1, we find

|C + C ′| (34)

≤
∑N−1

n=0

(b/x)n

n!
xN

N !
+
∑∞

n=N

(b/x)n

n!
xN

N !

= eb/x
xN

N !
.

So, we find as an absolute errror estimate the rather simple expression

|E| ≤ ex
(b/x)N

N !
+ eb/x

xN

N !
, (35)

for b/(x(N + 1)) < 1 and x/(N + 1) < 1.

For given x and b the parameter N can be taken as large as necessary to fullfill the estimate

|E| ≤ ex
(b/x)N

N !
+ eb/x

xN

N !
≤ Eabs, (36)

with Eabs a by the user required absolute error.

So, for given Eabs a value for N can be found, and the matrix G can be filled and summed.
For Eabs = 1.E−7 we recalculated the values in a table given by Bear (1979, Table 8-6). The values in

that table were taken from Hantush (1956), where Hantush made the statement ”It is probable that several
of the tabulated values are in error by one unit in the fourth decimal, but very few may be in error by more
than two units in the fourth decimal”. We found indeed several corrections. Moreover, some values were
taken over not correctly from Hantush (1956); see Table 1 and the legend.
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Table 1
r/λ 0 0.0020 0.0040 0.0050 0.0070 0.0100 0.0200 0.0400 0.0600 0.0800 0.1000

u

0 12.6611 11.2748 10.8286 10.1557 9.4425 8.0569 6.6731 5.8658 5.2950 4.8541

1.E-6 13.2383 12.4417 11.2711 10.8283 10.1557 9.4425 8.0569 6.6731 5.8658 5.2950 4.8541

2.E-6 12.5451 12.1013 11.2259 10.8174 10.1554 9.4425 8.0569 6.6731 5.8658 5.2950 4.8541

5.E-6 11.6289 11.4384 10.9642 10.6822 10.1291 9.4413 8.0569 6.6731 5.8658 5.2950 4.8541

8.E-6 11.1589 11.0377 10.7151 10.5072 10.0602 9.4314 8.0569 6.6731 5.8658 5.2950 4.8541

1.E-5 10.9357 10.8382 10.5725 10.3963 10.0034 9.4176 8.0569 6.6731 5.8658 5.2950 4.8541

2.E-5 10.2426 10.1932 10.0522 9.9530 9.7126 9.2961 8.0558 6.6731 5.8658 5.2950 4.8541

5.E-5 9.3263 9.3064 9.2479 9.2052 9.0957 8.8827 8.0080 6.6730 5.8658 5.2950 4.8541

7.E-5 8.9899 8.9756 8.9336 8.9026 8.8224 8.6625 7.9456 6.6726 5.8658 5.2950 4.8541

0.0001 8.6332 8.6233 8.5937 8.5717 8.5145 8.3983 7.8375 6.6693 5.8657 5.2950 4.8541

0.0002 7.9402 7.9352 7.9203 7.9092 7.8800 7.8192 7.4972 6.6242 5.8637 5.2949 4.8541

0.0005 7.0242 7.0222 7.0162 7.0118 6.9999 6.9750 6.8346 6.3626 5.8011 5.2849 4.8530

0.0007 6.6879 6.6865 6.6822 6.6791 6.6706 6.6527 6.5508 6.1917 5.7273 5.2619 4.8478

0.0010 6.3315 6.3305 6.3276 6.3253 6.3194 6.3069 6.2347 5.9711 5.6057 5.2087 4.8292

0.0020 5.6394 5.6389 5.6374 5.6363 5.6334 5.6271 5.5907 5.4516 5.2411 4.9848 4.7079

0.0050 4.7261 4.7259 4.7253 4.7249 4.7237 4.7212 4.7068 4.6499 4.5590 4.4389 4.2960

0.0070 4.3916 4.3915 4.3911 4.3908 4.3899 4.3882 4.3779 4.3374 4.2719 4.1839 4.0770

0.0100 4.0379 4.0378 4.0375 4.0373 4.0368 4.0356 4.0285 4.0003 3.9544 3.8920 3.8150

0.0200 3.3547 3.3547 3.3545 3.3544 3.3541 3.3536 3.3501 3.3365 3.3141 3.2832 3.2442

0.0500 2.4679 2.4679 2.4678 2.4678 2.4677 2.4675 2.4662 2.4613 2.4531 2.4416 2.4271

0.0700 2.1508 2.1508 2.1508 2.1508 2.1507 2.1506 2.1497 2.1464 2.1408 2.1331 2.1232

0.1000 1.8229 1.8229 1.8229 1.8229 1.8228 1.8227 1.8222 1.8200 1.8164 1.8114 1.8050

0.2000 1.2227 1.2226 1.2226 1.2226 1.2226 1.2226 1.2224 1.2215 1.2201 1.2181 1.2155

0.5000 0.5598 0.5598 0.5598 0.5598 0.5598 0.5598 0.5597 0.5595 0.5592 0.5587 0.5581

0.7000 0.3738 0.3738 0.3738 0.3738 0.3738 0.3738 0.3737 0.3736 0.3735 0.3732 0.3729

1.0000 0.2194 0.2194 0.2194 0.2194 0.2194 0.2194 0.2194 0.2193 0.2193 0.2191 0.2190

2.0000 0.0489 0.0489 0.0489 0.0489 0.0489 0.0489 0.0489 0.0489 0.0489 0.0489 0.0489

5.0000 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

7.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

8.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1: This table shows the corrected table 8-6 from Bear (1979) in the notation of Bear. Note that u
corresponds to x and r/λ = ρ to 2

√
b. In this table differences with the results of Hantush (1956) have been

denoted with an underlining of one or (once, u = 5.E−5, r/λ = 0.0040) two digits.
All other underlinings are numbers taken over not correctly from Hantush (1956) in the book by Bear

(1979, Table 8-6).
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7. Numerical Evaluation Eqs. (24) and (26) & (27)

We performed some experiments using the two analytic methods (24) and (26) & (27) and we used some
kind of automated numerical procedure to find the sum with some specified numerical relative error, which
is in fact better than the use of an absolute error criterium. We compared the results using (24) and (26) &
(27) for the parameter values of Table 1 with the results presented in Table 1 and found agreement to all
digits. It turned out that (24) required more terms than the expressions (26) & (27) for the same relative
error estimate. So, for the parameter values in Table 1, the number of terms one needed for a relative
precision of 1.E−12 was for the sum (24) some 20 to 40 terms and for (26) & (27) was the maximum number
11 terms. Moreover, during evaluation of the sum (24) some terms can become very large and with opposite
sign, so, in those cases loss of precision will occur if one strives for a high precision. If one is satisfied with
a relative precision of 1.E−3, then in case (26) & (27) just 5 terms are enough. Moreover, as has been said
before, formulas (26) & (27) are easier to evaluate.

8. Fast Approximation

The methods of evaluation treated above may be cumbersome in applications that call upon the Hantush
Well Function innumerable times. Such is the case, for instance, in a program for geohydrological time series
analysis that we are developing. Therefore, we give here a very efficient approximative formula expressed
as a simple expression in terms of the Exponential Integral E1 and the Modified Bessel Function K0 for the
Hantush Well Function. Firstly, we rewrite,

Γ(0, x; b) = (37)∫ ∞
x

t−1 exp
(
−t− b

t

)
dt =∫ log(

√
b/x)

−∞
exp

(
−2
√
b cosh τ

)
dτ,

by the substitution t =
√
b exp(−τ). Here, we have put all the information of the integrand in just one single

exponential with a complicated argument. We define

F (ρ, τ) =
∫ τ

−∞
exp (−ρ cosh τ ′) dτ ′ = (38)∫ ∞

−τ
exp (−ρ cosh τ ′) dτ ′.

So, the translation between the different forms of the Hantush Well Function are summarized as

Γ(0, x; b) = F

(
2
√
b, log

(√
b

x

))
= W (x, 2

√
b),

F (ρ, τ) = Γ
(

0,
ρ

2
exp(−τ);

ρ2

4

)
= (39)

W
(ρ

2
exp(−τ), ρ

)
,

W (u, ρ) = Γ
(

0, u;
ρ2

4

)
= F

(
ρ, log

( ρ
2u

))
.

Thus, u = x, ρ = 2
√
b and τ = log(

√
b/x). We know

F (ρ, 0) = K0(ρ); F (ρ,∞) = 2K0(ρ).
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We introduce

J (ρ, τ) =
∫ ∞
τ

exp (−ρ cosh τ ′) dτ ′, (40)

and using a symmetry argument we have

F (ρ, τ) = J (ρ,−τ) = 2K0(ρ)− J (ρ, τ) . (41)

We estimate J(ρ, τ) as follows, for τ > 0

J(ρ, τ) =
∫ ∞
τ

exp (−ρ cosh τ ′) dτ ′

>

∫ ∞
τ

exp (−ρ cosh τ ′) tanh(τ ′)dτ ′

=
∫ ∞
ρ cosh(τ)

ζ ′−1 exp (−ζ ′) dζ ′

= E1(ρ cosh(τ)) ≡ J−(ρ, τ), (42)

and also

J(ρ, τ) =
∫ ∞
τ

exp
(
−ρ

2
exp(τ ′)− ρ

2
exp(−τ ′)

)
dτ ′

<

∫ ∞
τ

exp
(
−ρ

2
exp(τ ′)

)
dτ ′

=
∫ ∞
ρ/2 exp(τ)

ζ ′−1 exp (−ζ ′) dζ ′

= E1

(ρ
2

exp(τ)
)
≡ J+(ρ, τ). (43)

Since J(ρ, τ) is bounded by J−(ρ, τ) and J+(ρ, τ), it is possible to interpolate between these upper and lower
functions as

Japp(ρ, τ) = (44)
wJ+(ρ, τ) + (1− w)J−(ρ, τ), 0 < w < 1.

So, we know that

Eapp = max |Japp(ρ, τ)− J(ρ, τ)| (45)
< J+(ρ, τ)− J−(ρ, τ).

For an approximation it is appropriate that Japp(ρ, 0) = K0(ρ), so, if one makes the choice

w(ρ) =
J−(0, τ)−K0(ρ)
J−(0, τ)− J+(0, τ)

=
E1(ρ)−K0(ρ)
E1(ρ)− E1

(
ρ
2

) , (46)

we find a very simple, and easy approximation for τ > 0

F (ρ, τ) = 2K0(ρ)− J (ρ, τ) (47)
∼= 2K0(ρ)− Japp (ρ, τ) , so

F (ρ, τ) ∼= 2K0(ρ)− w(ρ)E1

(ρ
2

exp(τ)
)

− (1− w(ρ))E1(ρ cosh(τ)),
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and for τ ≤ 0

F (ρ, τ) = J (ρ,−τ) ∼= Japp (ρ,−τ) , so (48)

F (ρ, τ) ∼= w(ρ)E1

(ρ
2

exp(−τ)
)

+ (1− w(ρ))E1(ρ cosh(τ)),

Translated into the arguments for Γ(0, x; b), this results in, for x <
√
b

Γ(0, x; b) ∼= 2K0(2
√
b) (49)

−

{(
E1(2

√
b)−K0(2

√
b)

E1(2
√
b)− E1(

√
b)

)
E1

(
b

x

)

+

(
K0(2

√
b)− E1(

√
b)

E1(2
√
b)− E1(

√
b)

)
E1

(
x+

b

x

)}
,

and for x ≥
√
b

Γ(0, x; b) ∼= (50){(
E1(2

√
b)−K0(2

√
b)

E1(2
√
b)− E1(

√
b)

)
E1 (x)

+

(
K0(2

√
b)− E1(

√
b)

E1(2
√
b)− E1(

√
b)

)
E1

(
x+

b

x

)}
.

It is possible to give an estimate for the maximal error Eapp (45) under the condition ρ
2 exp(−τ) → 0 as

follows

Eapp = J+(ρ, τ)− J−(ρ, τ) (51)

= E1

(ρ
2

exp(τ)
)
− E1(ρ cosh(τ))

= E1

(ρ
2

exp(τ)
)
− E1

(ρ
2

exp(τ) +
ρ

2
exp(−τ)

)
= E1

(ρ
2

exp(τ)
)
−{

E1

(ρ
2

exp(τ)
)

+
ρ

2
exp(−τ)

dE1

dx

(ρ
2

exp(τ)
)

+ O

((ρ
2

exp(−τ)
)2
)}

,

for
ρ

2
exp(−τ)→ 0, τ > 0.

This results into

Eapp (52)

= −ρ
2

exp(−τ)
(

(−1)
x

exp(−x)
)∣∣∣∣

x= ρ
2 exp(τ)

= exp
(
−2τ − ρ

2
exp(τ)

)
,

for
ρ

2
exp(−τ)→ 0, τ > 0.
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The corresponding estimates for the maximal error for τ < 0, can be found by using the equations (51) and
(52) with τ = −τ .

We have evaluated (49) and (50) for the same set of values as in Table 1 (1.E−6 ≤ x ≤ 8, 0.002 ≤
ρ = r/λ ≤ 0.1) and we found that the maximal absolute error for these parameters was 5.3052E−3 for
W (0.1, 0.1) = 1.8050 (i.e. b = (r/λ)2 /4 = 0.0025) and the maximal relative error of 3.3133E−3 for
W (0.2, 0.1) = 1.2155 (i.e. b = (r/λ)2 /4 = 0.0025). Moreover, we have extended our analysis for the range
of the parameters as given in Kruseman and de Ridder (1994, Annex 4.2) and beyond (1.E−6 ≤ x ≤ 8,
0.002 ≤ ρ = r/λ ≤ 6) and found that the maximal absolute error for these parameters was 7.6081E−3
for W (0.07, 0.25) = 1.9867 (i.e. b = (r/λ)2 /4 = 0.015625) and the maximal relative error of 1.260E−1 for
W (5, 6) = 2.4562E−4 (i.e. b = (r/λ)2 /4 = 9). This last combination of parameters is well at the border of
the standard range.

9. Discussion

The Comment (Nadarajah (2007)) to the paper by Prodanoff et al. (2006) triggered this paper and
exploring several expressions for the Hantush Well Function we found the equations (26) & (27) the most
useful for evaluation. We found that (26) & (27) were about three times faster than evaluation of (24) for
the calculation of Table 1. Equations (47) & (48) (or (49) & (50)) may suffice for engineering purposes.
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Appendix: A Matlab code

The following Matlab code evaluates

s(r, t) ≈ Q

4πT
W

(
r2S

4Tt
,
r

λ

)
=

Q

4πT

∫ ∞
r2S
4Tt

1
t′

exp
(
−t′ − r2

4λ2t′

)
dt′,

where

s [L] approximate transient drawdown during a pumping test of a leaky aquifer,
Q [L3T−1] steady well discharge, starting at t = 0,
T [L2T−1] transmissivity of the aquifer,
W [−] Hantush’s Well Function, see eq. (1),
r [L] distance from the well,
S [−] storativity of the aquifer,
t [T] time,
λ [L] leakance, λ =

√
Tc.

function s = Hantush(T,c,S,r,t,Q)
rho = r/sqrt(T*c);
tau = log(2/rho*t/(c*S));
s = Q/(4*pi*T)*F(rho,tau);

function h = F(rho,tau)
tau = tau(:);
tau(find(tau>100)) = 100;
h inf = besselk(0,rho);
expintrho = expint(rho);
w = (expintrho-h inf)/(expintrho-expint(rho/2));
I = h inf - w*expint(rho/2*exp(abs(tau))) + (w-1)*expint(rho*cosh(tau));
h = h inf + sign(tau).*I;

The first function calls the second function, given by eqs. (47) and (48). The variable t may be a vector
in which case the output s will be a vector of the same length; the other parameters are scalars. The relative
error of the approximation is at most 3.3 ‰.
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