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ABSTRACT

Radar micro-Doppler signatures are powerful indicators of target movements and ac-
tivities, enabling the extraction of valuable information about various objects’ internal
and external dynamics. Consequently, classifying these signatures has become crucial
in numerous applications, ranging from target recognition in surveillance, to biomedi-
cal sensing and interaction with smart sensors.

In this thesis, an evaluation of classification performances for a wide variety of or-
thogonal moments, when applied to micro-Doppler classification problems, is presented.
A pipeline is proposed to evaluate all moments commonly used in image processing, but
not routinely employed in radar-based classification. The evaluation results are com-
pared with other state-of-the-art classification approaches, such as using micro-Doppler
signatures directly as the input of Convolutional Neural Networks. The influence of noise
in the data on the classification performance is also shown.

The classification results demonstrate the different moments’ capabilities with a va-
riety of publicly available datasets containing human micro-Doppler signatures, result-
ing in a very well performing classification pipeline for this type of classification prob-
lem, and novel insights into the potential of these moments for radar classification prob-
lems.
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1
INTRODUCTION

Radar signal processing has experienced a paradigm shift in the analysis of complex
radar returns since the introduction of micro-Doppler signatures [1]. Micro-Doppler
signatures have emerged as powerful indicators of target motion and activities, enabling
the extraction of valuable information about various objects’ internal and external dy-
namics. Consequently, classifying micro-Doppler signatures has become crucial in nu-
merous applications, ranging from target recognition in surveillance, to biomedical sens-
ing [2][3].
The classification of micro-Doppler signatures has emerged as a thriving field of re-
search, with numerous methods being proposed to address this task. In recent years,
machine learning algorithms have gained prominence in this domain, with neural net-
works emerging as the dominant approach [3]–[5]. Other methods rely on handcrafted
features with a more conventional classification algorithm, for example, K-nearest neigh-
bor (KNN) and support vector machines (SVM)[6][7]. These methods provide better in-
sight into the explainability of the classification process. In addition, they are, on aver-
age, less computationally expensive than neural networks.
One of the earlier proposed handcrafted feature methods is to extract the pseudo-Zernike
moments of the radar spectrogram, which is used as a feature[8]. The pseudo-Zernike
moments are part of a larger family of orthogonal moments. This family is most com-
monly used in image processing and classification, where it has shown the ability to
have good compression and classification potential. More generally, orthogonal mo-
ments utilize different basis functions that meet the orthogonality criterion with varying
properties. These differences have an impact on the classification behaviour.
While research exists on comparing and testing various moments for classification in
image processing [9], there is a lack of comprehensive research on the suitability of or-
thogonal moments for micro-Doppler classification. Currently, only a few moments have
been proposed for this purpose, where no evidence is given as to why other moments
would not perform as well. Furthermore, the classification performances of a processing
pipeline with orthogonal moments can vary when other processing blocks are changed,
such as the data set, the data format and the classifier. Therefore it is hard to say with
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the current knowledge in the state of the art how orthogonal moments contribute to the
classification process without assessing those dependencies.
In this thesis, a pipeline is proposed and experimentally verified to evaluate the classi-
fication performances of a wide variety of orthogonal moments applied to radar micro-
Doppler signatures.

1.1. CLASSIFICATION PIPELINE
This thesis aims to evaluate the most commonly researched orthogonal moments in
image-based classification when applied to radar micro-Doppler classification prob-
lems. A large portion of the novel contributions of the thesis originates from the litera-
ture study in Chapter 2. This evidenced that rather limited research has been performed
on this topic, essentially showing the wide variety of moments proposed in the image
processing literature, but their very limited investigation when considering radar-based
classification problems. To fill this gap, a classification pipeline is formulated and exper-
imentally verified as the backbone of the research presented in this thesis. Additional
details on the several constituent elements are discussed more thoroughly in Chapter 5,
but the general structure of the pipeline is presented as follows.

Radar measurement Pre-processing Feature extraction Classification

Figure 1.1: General structure of the investigated classification pipeline

The several components of the pipeline are:

• Radar measurement: Dataset used for the classification problem at hand, in this
thesis specifically focusing on experimental data in the context of human micro-
Doppler signatures.

• Pre-processing: The type of processing of the data performed before extracting
the moments, i.e., how the radar data are processed and formatted to be used by
the moment extraction algorithms.

• Feature extraction: The extraction of class-defying features, in this thesis specif-
ically by calculating different moments. Table 2.3 displays all the orthogonal mo-
ments used in this study.

• Classification: The type of classification algorithm used, for example, K-NN and
SVM among others, where the extracted features are used for classification.

Different options for the above components of the classification pipeline will be investi-
gated, with a specific emphasis on assessing classification performances when different
orthogonal moments are used as features. These performances will eventually be tested
against the classification performances of other state-of-the-art algorithms, e.g., convo-
lutional neural networks that use micro-Doppler signatures directly as input.
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1.2. CONTRIBUTIONS OF THIS THESIS
The main contributions of this thesis are summarized below:

• An assessment of classification performances for a wide variety of orthogonal mo-
ments used as features for experimental micro-Doppler datasets is presented. To
the best of the author’s knowledge, this is the first comprehensive investigation of
the suitability of diverse orthogonal moments for radar-based classification. These
results are compared with other common classification algorithms.

• The influence of different variants for the key components of the proposed classi-
fication pipeline is thoroughly investigated. These variants include: three exper-
imental datasets collected with different models of radars and participants; dif-
ferent orthogonal moments as well as different orders and parameters in the def-
inition of their orthogonal basis functions; different types of classifiers using the
moments as features.

• The effect of adding noise in radar data on classification performance is evaluated
and compared with other common classification algorithms, demonstrating that
the proposed moment-based approach is more robust to noise than convolutional
neural networks.

• All studied orthogonal moments have been provided with a rigorous mathemati-
cal implementation and cleaned MATLAB code, publicly shared in https://doi.
org/10.4121/efd059aa-f2c2-4c54-be85-4e600876f444 [10]. Furthermore,
the main results of this thesis are currently being summarized for publication in
the IEEE Transactions on Radar Systems, or comparable journal.

1.3. STRUCTURE OF THE THESIS
The thesis addresses all elements of the base pipeline presented in Figure 1.1. Chapter 2
presents a comprehensive review of the literature on the classification of micro-Doppler
signatures using orthogonal moments. The review highlights the current state of the art
and identifies research gaps. Next, Chapter 3 presents the moments evaluated in this
work and provides a mathematical explanation of their calculation to high orders. Af-
terwards, Chapter 4 introduces and evaluates various datasets and pre-processing tech-
niques, covering the ’Radar measurement’ and ’Pre-processing’ components blocks as
outlined in the previously proposed block diagram. In Chapter 5, several classification
algorithms are proposed, which are suitable for testing the classification based on the
moments. In addition, the construction of feature vectors is discussed. Finally, Chapter
6 presents the results, with different selected studies that highlight the various effects of
the variations made in the pipeline. Finally, Chapter 7 concludes the thesis.

https://doi.org/10.4121/efd059aa-f2c2-4c54-be85-4e600876f444
https://doi.org/10.4121/efd059aa-f2c2-4c54-be85-4e600876f444




2
LITERATURE REVIEW ON

ORTHOGONAL MOMENT-BASED

CLASSIFICATION FOR

MICRO-DOPPLER SIGNATURES

This chapter provides a review of the literature on previous work in micro-Doppler sig-
nature classification and feature extraction using orthogonal moments. This includes
an analysis of the data, data preprocessing, and feature extraction using orthogonal mo-
ments. It is shown that only a very limited analysis exists in the literature for the suitability
of orthogonal moments for micro-Doppler based classification.

Detecting and classifying micro-Doppler signatures from radar data has become a grow-
ing area of study since its introduction in [1]. Since then, several methods have been put
forth, with a significant portion of the contributions being based on machine learning-
related approaches, including neural networks, SVM, and k-NN algorithms. The input of
these algorithms typically consists of carefully selected features. For this, a wide variety
of approaches are proposed to optimize the the distinctiveness of the extracted features.
One such approach is proposed in [11] where a type of orthogonal moments is suggested
as a feature for micro-Doppler signature classification. Orthogonal moments (OM) were
a brand-new feature for micro-Doppler radar data and demonstrated the potential of
using orthogonal moments in radar classification. However, the usage of OM for clas-
sification is not new. This approach was previously widely used in image and pattern
recognition. Clemente’s study in [11] demonstrated that one specific OM provides accu-
rate classification results. Although more moments were used for micro-Doppler data
after the aforementioned study by Clemente et al., comprehensive research encompass-
ing all relevant OMs in micro-Doppler classification is missing.

5
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2. LITERATURE REVIEW ON ORTHOGONAL MOMENT-BASED CLASSIFICATION FOR

MICRO-DOPPLER SIGNATURES

2.1. RADAR DATA AND DATA REPRESENTATION
In micro-Doppler signature classification, different targets are of interest. These targets
will have different micro-dynamic behaviour and, therefore, different signatures and
properties of interest for a classification algorithm. Different types of radar and radar
settings are preferred in measuring the different targets. A simple classification pipeline
is presented in Figure 2.1. The blocks illustrate the stages in the process, from measure-
ment to classification. The first block: Radar measurement data, is discussed in section
2.1.1 containing the analysis of targets, applications and data topology. Furthermore,
publicly available data sets will be evaluated and, lastly, in section 2.1.2, a review of the
state-of-the-art prepossessing techniques will be presented.

Radar measurement Pre-processing Feature extraction Classification

Figure 2.1: General structure of the investigated classification pipeline

2.1.1. DATA AND TARGET ANALYSIS
One of the most researched targets in micro-Doppler signature recognition is human
motion. Where in [12], human walking models are created to simulate the micro-Doppler
response of a walking man. In several types of research on micro-Doppler of human mo-
tion, [13][14] the harmonics created by the non-rigid body, e.g. arms, legs, torso, etc. de-
fine the class of the activity. This information is mainly spread around the bulk motion
of the object. In the case of gait analysis [14], the peaks of the multibody limbs specify
the class. The length of the recording for gait analysis, compared to other human activity
data, i.e. hand gestures [15] or activity detection [16], is longer. This gives the impression
that when dealing with human gait walking analysis or human gestures, the signature’s
length will depend on the target class. In gait analysis, as done in [14], the whole cap-
tured time window information is present. In contrast to a semifinite data sequence in
a captured hand gesture, only a part of the captured window contains Doppler frequen-
cies related to their class.
Rotor blades, e.g. helicopter blades, are studied in [17] [18]. The Doppler data can be
seen as a superposition of each blade’s Doppler response. The rotor blade commonly
has a higher Doppler velocity than human motion signatures. The harmonics produced
by the rotating blades are visible in the Doppler spectrogram. The clear presence of this
rotational frequency makes techniques based on extracting the repetition frequency of
Doppler frequencies in time a good feature for class detection [19]. In [20], a review is
given in different target signatures. The most common targets are discussed, summariz-
ing the research done and the most common types of radar/settings used for this type of
target.
Another field where a clear characteristic harmonic defines the target class is the detec-
tion of spinning ballistic missiles. As studied in [21], the data is simulated as an explicit
continuous harmonic related to the Doppler frequency of a spinning object.
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For classification using orthogonal moments, the topology of the data, i.e. how the data
spatially look on an image, is important. The moments represent the image from orders
of the basis function, where more errors are introduced in some regions of the image
than in other regions. The location of the errors depends on the type of moment used.
Therefore, to be able to give a good evaluation of the OMs for classification, the data
topology is analyzed. The radar data topology from the different targets can be divided
into two categories:

• Whole time frame: The signature stretches the entire captured time frame. Most
continuous harmonic targets fall into this category; an example would be the rotor
blades of a drone.

• Partial time frame: The signature is present only in part of the captured time
frame. All temporal activities fall into this category. An example would be the sig-
nature of a person falling.

Further, the micro-Doppler data’ presence of harmonics in the spectrogram will be im-
portant in the prepossessing step. Especially when using techniques relying on the ca-
dence of an object. This is further discussed in Section 2.1.2. For evaluation, the data is
divided into three categories;

• Clearly Present: The harmonics of the microdynamics are visible and distinctive
for the signature class, e.g. the rotor blade of a drone.

• Present: The microdynamic harmonics are visible but hard to distinguish. The
harmonics, or superpositions of harmonics, are still distinctive for the signature
class, e.g. the human gait signature.

• Not visible: The harmonics of the microdynamics are visible but not distinctive
for the signature class, e.g. human activity signature.

As discussed in this section, the analyzed data from previous research are summarized
topology-wise in table 2.1.

Object type
Harmonic
micro dynamics

Data Spread Reference

Human Walking Present Whole time frame [12], [13],[14]
Human activity Not visible partial time frame [13]
Hand gesture Not visible partial time frame [15]
Rotor Clearly Present Whole time frame [17], [18]
Ballistic missiles Clearly present Whole time frame [21]

Table 2.1: Summary of micro-Doppler data topology

The most relevant publicly available data sets are shown in table 2.2. Most of the rel-
evant available data sets focus on the classification of human behavior. Additionally,
all references that link to the research in which the data set is presented include research
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2. LITERATURE REVIEW ON ORTHOGONAL MOMENT-BASED CLASSIFICATION FOR

MICRO-DOPPLER SIGNATURES

Dataset Reference Target Radar Remark Classes Samples Institute

Dop-NET [22] Human hand gesture CW FMCW
Single activity
each sample

4 3052
Delft University
of Technology

Radar signatures
of human activities

[2] Human Activity FMCW
Single activity
each sample

10 1754
University of
Glasgow

Continuous Activities
of Daily Living

Human Activity UWB * 5
Multiple radars,
Multiple activities
on one sample

9 -
Delft University
of Technology

ASL-Sequential-Dataset [23] Human Activity 77 GHz FMCW MIMO
Multiple activaties
each sample

5 -
The university
of Alabama

OPERAnet [24] Human Activity UWB
More signals are
present in data set
e.g. PWR, SDR

10 -

UK Engineering and
Physical Sciences
Research Council
(EPSRC)

Cross-frequency [25] Human Activity
77 GHz FMCW,
24 GHz FMCW,
XeThru UWB

Same targets
for three
different radars

11 -

Delft University
of Technology,
University of
Alabama

Table 2.2: Summary of the analyzed datasets with experimental micro-Doppler data

with classification results. These results could be used as a benchmark for new proposed
classification techniques.

TO SUMMARIZE

There is a wide variety of micro-Doppler signatures. The topology of the signatures dif-
fers significantly, depending on the type of target. The summary of the different topolo-
gies of target signatures is given in Table 2.1. For publicly available data, most of the data
sets are based on human movements and activities.

2.1.2. STATE OF THE ART PRE-PROCESSING TECHNIQUES
The output of radar is not a Doppler-time representation of the data. Raw data first need
to be processed in the desired format. This step is referred to as the prepossessing step
in the classification pipeline. The output of the prepossessing step defines how the data
is shaped before feature extraction. Therefore, the effect of the feature will depend on
how the data is processed. The Doppler time spectrogram is used in the general case of
Doppler classification. To obtain the Doppler representative of the data, the STFT has to
be taken over the range in the range time representation, referred to as the spectrogram
[26]. The spectrogram is mainly used as a first tool to evaluate micro-Doppler data. Ex-
tensive research exists where the features are directly extracted from the spectrogram,
e.g. the separation of different harmonic components[27][28][29]. The spectrogram is
an intermediate stage of the full preprocessing pipeline and will be followed by another
mapping, e.g., the Cadence velocity diagram.

CADENCE VELOCITY DIAGRAM

The Cadence Velocity Diagram(CVD) maps the radar data’s spectrogram by calculating
the Fourier transform along its time axis.[30] This returns the frequency at which the dif-
ferent micro-doppler frequencies occur in time. The representation technique has been
shown to be useful in human activity recognition[30][31]. It relies on the characteristic
harmonics of the microdynamic motions that create the micro Doppler response, e.g.
recognition of the frequency of moving body parts in human activity. In addition to hu-
man recognition in [19], the CVD was used to classify different kinds of drones. Here, the
CVD is projected onto the frequency axes, resulting in the Cadence Frequency Spectrum
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(CFS). The main peaks of the CFS have proven to be a good feature [11] [32]. The CVD
can be calculated as a step before mapping onto an orthogonal basis function to create
moments as a feature. This mapping changes the data’s topology and emphasizes the
target’s cadence. Table 2.7 gives a summary of the most relevant classification research
in micro-doppler. From this evaluation, it can be seen that CVD is the most commonly
used type of mapping used as a tool for preprocessing. The lack of other representations
when extracting features using OM can be an opportunity for future work.

OTHER PROMISING STATE-OF-THE-ART TECHNIQUES

Next to the CVD, several other promising techniques have been proposed. The downside
of implementing the lesser-used techniques will be that fewer results will be comparable
as a benchmark for the classification of the proposed feature extraction algorithm. Some
lesser-used algorithms that showed promising results/characteristics are listed below.

• In [27] the short-time fractional Fourier transform is used to map the spectrogram.
The STfrFT has the advantage that for fast-varying signals, the STfrFT will perform
better resolution compared to FTs than STFTs [33].

• Joint time-frequency analysis approaches such as the Hilbert Huang transform
where the HHT has proven to be more effective for non-linear and non-stationary
signals[34].

• In [35], the inverse Radon Transform is performed on the spectrogram. Where
the IRT mapping produces another topology of the data compared to other trans-
formations related to Fourier, e.g. Wavelet, that mainly focus on the change in
resolution, this change in data topology could be a good variety for the data repre-
sentation as input for a moment extraction algorithm. Also, it has been shown to
provide good results under the influence of noise [36].

TO SUMMARIZE

A spectrum of techniques exist that have proven effective; the CVD is the most widely
used step in formatting radar data as a pre-processing tool. However, the benefit of the
CVD can be questioned when dealing with non-periodic signals. The CVD mapping is
most prevalent in current state-of-the-art research regarding micro-Doppler signature
classification, where the analysis of the different types of mappings and pre-processing
techniques would be a field of future research.

2.2. ORTHOGONAL MOMENTS FOR CLASSIFICATION
Orthogonal moments have proven to be a suitable type of feature of micro-Doppler sig-
natures as in the classification pipeline in Figure 2.1. This section evaluates the research
performed in the literature on OMs in micro-Doppler classification. The evaluation in-
cludes an analysis of the general classification in pattern and image recognition. This
illustrates the research gap between the orthogonal moment-based classification of mi-
crodoppler signatures compared to the field of pattern and image classification.
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2. LITERATURE REVIEW ON ORTHOGONAL MOMENT-BASED CLASSIFICATION FOR

MICRO-DOPPLER SIGNATURES

ORTHOGONAL MOMENTS

Several moments have been proposed after Hu proposed moment invariants for image
recognition in [37]. The moments of interest are the moments of which their basis func-
tion, satisfies the orthogonality condition1. The property of orthogonality in the basis
functions means that the inner products of two different basis functions from the same
set of basis functions are perpendicular, i.e., the two functions are uncorrelated and un-
correlated with all the other functions from the basis set. This uncorrelated property
means no redundancy possible at the moment set [38]. Furthermore, orthogonal mo-
ments are used because of their robustness against noise, rotation, scaling and transla-
tion [39].
A division can be made between two categories of moment functions; Continuous and
discrete. Continuous functions need to be discretized to map a digital image. This intro-
duces corresponding computational errors, which makes them, in theory, less suitable
for high-precision image processing [38].

Moment type Abbreviation Reference
Legendre moments LM [40]
Gaussian-Hermite moments GHM [41]
Continuous Chebyshev moments CHM [42]
Gegenbauer moments GM [43]
Zernike moments ZM [44]
Pseudo-Zernike moments PZM [40]
Chebyshev-Fourier moments CHFM [45]
Pseudo Jacobi-fourier moments PJFM [46]
Jacobi-Fourier moments JFM [47]
Exponent-Fourier moments EFM [48]
Bessel-Fourier moments BFM [49]
Radial harmonic Fourier moments RHFM [50]
Orthogonal Fourier-Mellin moments OFMM [51]
Krawtchouk moments KM [52]
Hahn moments HM [53]
Racah moments RM [54]
Dual Hahn moments DHM [54]
Discrete Chebyshev moments CHDM [42]
Meixner moments MM [55]
Charlier moments CM [55]
Polar complex exponential moments PCEM [56]

Table 2.3: Moment types investigated in this thesis and their abbreviations

There are two main classes of coordinate systems on which basis functions are defined;
Cartesian and circular. The circular basis has the advantage that functions represented
in polar coordinates perform better in rotational invariance[38]. When dealing with data

1〈
Vnm ,Vn′m′

〉=Î
D Vnm (x, y)V ∗

n′m′ (x, y)d xd y = δnn′δmm′
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defined on a Cartesian coordinate system, like most digital images, the data will first
be mapped onto a unit disk, or there will be a loss of information at the corners of the
image. This mapping will introduce computational errors, but techniques are proposed
for error reduction[38]. Most relevant research is done on moments defined on a polar
coordinate system because of the rotational invariant property. One could question the
advantage of rotational invariance when dealing with radar data because of the fixed
location of the axes. Table 2.3 lists the moments used for this research. The different
families of the moments discussed can be also seen in figure 2.2.

Figure 2.2: Schematic view on the different classes of orthogonal moments, presented in detail in Chapter 3

2.2.1. DISCRETE MOMENTS
The first discussed group of moments will be the discrete set of moments. The general
advantages of discrete moments are:

• No discretization step is needed when calculating the moments. A higher theo-
retical reconstruction of the image is possible without the discretization errors.
Therefore, this family of moments is more suitable for high-precision reconstruc-
tion.

• The discrete moments are defined on a square Cartesian grid D = {(x, y) : x ∈
[−1,1], y ∈ [−1,1]}. Most digital images can be easily mapped on a square domain;
therefore, almost no information will be lost when projecting the original image
on the basis function.

The most relevant research on discrete moments is briefly discussed below and eval-
uated for each moment. The mathematical description and implementation are pre-
sented in Chapter 3.
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RACAH MOMENTS (RM)
Racah polynomials are hypergeometric polynomials defined on a discrete Cartesian grid.
As described before, this has the advantage that there will be no calculation errors in dis-
cretizing the basis function. Also, the image function does not need to be mapped; i.e.,
the image is defended on a square Cartesian domain. [54] The Racah polynomial can be
seen as a more general form of the other orthogonal functions in this family, e.g., Hahn,
Dual Hahn, Meixner, Krawtchouk, Chalier, Hermite. These orthogonal polynomials can
be derived from the Racah polynomial by changing their limits [57]. The askey scheme
describes the relations of Hypergeometric Orthogonal polynomials [39]. This also de-
scribed the relations between the discrete orthogonal functions and their continuous
twins, e.g., Wilson, continuous Dual Hahn, continuous Hahn, Meixner - Pollaczek, Ja-
cobi, Laguerre.
From previous research, the Racahn moments used for image recognition better recon-
structed the original image in a noise-free case than DCT, Legendre moments, and dis-
crete. Tchebichef moments and discrete Krawtchouk moments. [54]. Racahn moments
can be transformed into invariant Rachan moments that are rotational and scale invari-
ant[58].
Another notable observation is that the ROI can be changed by changing the limits in
equation 3.66. This has the property that a higher resolution can be obtained for specific
areas, using the same order of moments.

HAHN MOMENTS (HM)
From the Racah polynomial as given in section 3.4 the Hahn polynomial, can be formed.
See Chapter 3 for the derivation. As for the RM, the Hahn moments also have the ability
to change its region of emphasis, i.e., they can change its ROI[53]. This allows them to ex-
tract local or global features. In [53], a method for adaptive feature selection is proposed
using the property of highlighting the moment in the region of interest. The proposed
method uses the centroid as the spread to determine the values of certain parameters.
This has shown significantly better results in the reconstruction of the ROI compared to
Chebyshev, Legendre, Zernike and Hahn.[53] provides empirical proof that an image can
be represented in lesser moments and still contain the same level of information.

DUAL HAHN MOMENTS (DHM)
As with the Hahn polynomial, the dual Hahn can be derived from the Racah polynomial.
In [59] dual Hahn moments are proposed, together with KM and CHM, to extract local
and global features. This proposal aims to prove the effectiveness of these moments
in near-infrared and visible light. The proposed moment shows encouraging results in
terms of accuracy, error rate, and classification.

KRAWTCHOUK MOMENTS (KM)
From previous research, Krawtchouk is one of the most promising orthogonal moments,
when looking at reconstruction capabilities [54], [52],[60]. The weighted Krawtchouk
moment has some remarkable properties. Krawtchouk moments can change its ROI,
i.e., adjusting its resolution on certain parts of the image. In [60], the performance of
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the reconstruction ability is shown to depend on the location and size of the higher-
resolution areas in the image. The ability to move the ROI to a high information-dense
part of the data could improve the classification results [52]. These information dense
parts are referred to as local features, whereas capturing the whole image is referred to
as global features. In [61], an analysis is made on the classification of Chinese charac-
ters. Each frame is divided into several zones, referred to as local features. It showed that
Krawtchouk and Tchebichef outperformed continuous orthogonal movements such as
Zernike and Legendre in classification. In [62], the moments are used for iris recognition
with a global and local feature extraction algorithm. In this case, the ability to change
the ROI of the CHM is exploited. An overview was given in [63] for different OM clas-
sifications of micro Doppler signatures. Here, a selection of OM is tested, classifying
signatures using a simulated rotor blade as data. Furthermore, in [15], a selection of OM
is evaluated in relation to the classification performance of hand gesture signatures. The
research done on micro-Doppler classification has shown promising results in classifi-
cation for KM compared to ZM, PZM, CHM, OFMM and LM. In this research, there is no
reference to the ROI.

TCHEBICHEF (CHDM)
The Tchebichef polynomial is related to Racah, Hahn, and Krawtchouk and can be formed
from the Hahn polynomial. [53] CHDM are commonly used for image and pattern recog-
nition[61]. In [62] the moments are used for iris recognition with a global and local fea-
ture extraction algorithm. There it showed that at lower orders, Tchebichef performs
worse than DHM and KM for local features, since the other moments have the ability to
change the ROI. In [15] the Tchebichef moments are introduced as classification method
for micro Doppler signatures. The data on which the classification is performed are sig-
natures of hand gestures using CVD as a representation. The results are compared to
pseudo-Zernike, Krawtchouk and Doppler Time and Range (DTR) based features. The
study showed that the Tchebichef moments got the best performance in the classifica-
tion rate. In [64], the CHM is introduced as a tool for the Classification, Recognition and
Fingerprinting of Drones. As validation, there are several experiments performed with
drone/bird, loaded/unloaded drone, and a fixed-wing/multirotor classification. In gen-
eral, the CHM showed good classification results compared to the KMs that are imple-
mented as references. The classification step is performed with three different classifiers:
KNN, SVM, and RF.

CHARLIER (CM)
Charlier Moments are part of the family of discrete moments. The basis function has free
parameters influencing the location of the ROI. In [65] the recursive implementation of
the moment is given. In addition, the moment is used for image reconstruction where it
is compared to the Krawtchouk moment.

MEIXNER (MM)
Meixner Moments are part of the family of discrete moments [57]. The moments’ basis
function contains free parameters which enables the moments to change their ROI. In
[66] the moment is used for accurate 2D and 3D image classification using translation
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and scale invariants. Here the moment is compared in classification performance to
Legendre, Tchebichef, Krawtchouk, and Charlier moments.

2.2.2. CONTINUOUS CIRCULAR MOMENTS

The continuous circular moments are the family most widely used in recent research
due to their natural rotational invariance [38]. The general advantages/disadvantages of
Continuous Circular Moments are:

• Discretization errors are introduced when discretizing the basis function. The in-
troduction of these errors makes it less suitable for high-precision reconstruction
[42].

• The radial basis function of the continuous circular moments is rotation invariant.
Because of this property, great scientific interest has been given to this category of
moments [38].

• The fact that the basic function is defined on a unit disk implies that when dealing
with a square image, some information will be lost, e.g. the corners of the image.

JACOBI-FOURIER MOMENTS( JFM)
The JFM can be seen as the generalized case of the other exceptional cases of Jacobi-
based moments. Where the Jacobi polynomial is used In [63], the JFM are simulated and
compared with other simulated continuous orthogonal moments defined on the unit
disk. In this work, the ability to reconstruct and classify using the moments as features
and the robustness against noise were tested. The JFM did show average results in these
simulations, comparable to the other moments based on the Jacobi polynomial.
In [47], The JFM are calculated for a black and white image of a letter. This is used to
calculate the reconstruction error. Other moments based on the Jacobi polynomial are
also calculated, and the results are compared. Also, the influence of noise and its relation
to other orthogonal moments are studied.

PSEUDO JACOBI-FOURIER MOMENTS(PJFM)
In [63], the JFM are simulated and compared with other continuous orthogonal mo-
ments defined on the unit disk. This work tested the ability to reconstruct and clas-
sify using the moments as features and the robustness against noise. The PJFM showed
comparable results with the JFM where only at high order the PJFM shows minimal bet-
ter results when Gaussian noise is added.
In [46] PJFM are studied with respect to image reconstruction. The PFM are compared
with the OFMM, and the PFM outperforms the OFMM with respect to signal-to-noise
ratio and reconstruction.

ZERNIKE MOMENTS(ZM)
[63] Looks at the performance of reconstruction and classification of simulated micro-
Doppler data for different Orthonogal moments. Zernike moments are compared to
PZM, OFMM, LM, and KM. This research shows that KMs and PZMs perform better with
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respect to reconstruction errors. The correct classification rate shows similar results be-
tween the moments on higher orders. In [67], the reconstitution of noisy images is ex-
amined using orthogonal moments. The signal-to-noise ratio is calculated for different
OGs. An original image under the influence of additive zero-mean Gaussian noise is
compared to the reconstructed one. This shows that Zernike moments perform better in
signal-to-noise ratio after reconstructing an original image compared to Chebyshev mo-
ments i.e. Zernike is less sensitive to added noise than Chebyshev moments. The study
also presents a comparative empirical study of orthogonal moments in watermarking
applications.

PSEUDO-ZERNIKE MOMENTS(PZM)

In [11] the application of pseudo-Zernike moments for micro-Doppler classification is
introduced. It compares the classification rates of Zernike and pseudo-Zernike mo-
ments when applied to Cadence Velocity diagrams(CVD). In addition, the results showed
robustness against translation and scale variation in the microdoppler data. In [15]
pseudo-Zernike moments are implemented for the micro Doppler classification of hand-
gestation signatures. The main focus of this research is classification using Chebyshev
moments, where the pseudo-Zernike moments are used as a reference. CVD is used as
an image function that will be mapped using moments. The results show that on lower
order, pseudo-Zernike outperforms Chebyshev and Krawtchouk moments; on higher or-
der, the named moments will perform better.

CHEBYSHEV-FOURIER (CHFM)

The Chebyshev-Fourier radial basis function can be derived from the Jacobi basis func-
tion; see Chapter 3 for the derivation. In [38] a review is given on continuous orthogonal
moments. Here several continuous moments are compared. Moments are evaluated
and tested on image representation en classification. These results show that the CHFM
performs average in classification on low noise levels and the best classification results
on higher noise levels. In [45], CHFM is proposed for image reconstruction. The results
of the CHFM are compared with those of OFMM, which defers a lot from its performance
in representation error.

FOURIER-MELLIN (OFMM)

The Fourier-Mellin moment basis function can be derived from the Jacobi basis func-
tion. In [38], OFMMs are tested, evaluated, and compared to several other orthogonal
moments. The results showed that the OFMM have an average classification result in
the noiseless and noisy case compared to the other researched moments. In [68] The
moments are used as a reference when introducing the BFM for classification. In this
research, the OFMMs did not perform better than the ZM and BFM moments. In [63], a
study is presented comparing different types of orthogonal moments for classifying mi-
crodoppler data. The classification is performed on the CVD of a simulated rotor blade.
The results show that the ZM performs better than the OFMM in classification for this
type of micro-Doppler data.
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EXPONENT-FOURIER MOMENTS (EFM)
Exponent Fourier moments are introduced in [48], where they are compared with BFM
ZM and RHFM. This research showed that the exponential Fourier polynomial has much
more zeros than ZM of the same degree. This property makes FM more suitable for im-
age description. Also, it illustrates that the unbounded imaginary part causes numeri-
cal instability. Exponent Fourier moments have shown promising results in [38], where
several continuous moments are evaluated and compared. The EMF showed the best
classification rate and the classification rate under the influence of noise. Although Mo-
ment is one of the most promising ones in classification, the research on using EFM for
classification and, notably, using EFM for micro-Doppler classification is lacking.

BESSEL-FOURIER MOMENTS (BFM)
Bessel-Fourier moments are a type of eigenvalue-based moments.[38] The moments are
proposed in [49], where the comparison is made between BFM, OFM and ZM in terms of
image analysis aspects. The basis function of the proposed BFM is based on the Bessel
function of the first kind and can be seen as a generalization of the orthogonalized com-
plex moments. The results show that the BFM performs better than the OFM and ZM in
image reconstruction under normal and noisy conditions. In [68], BFM are again tested
and compared against OFFM and ZM; The same conclusion is drawn from the results
that BFM are consistently better suited for image retrieval, rotation invariant, and image
classification. Research on BFM applied to radar data is lacking.

RADIAL HARMONIC FOURIER MOMENT(RHFM)
Radial harmonic Fourier moments are proposed for the recognition of Chinese charac-
ters in [68]. RFMs are tested on simulated, experimental, and transformed experimental
data. The experiments showed that RFM outperformed ZMs and JFMs in classifying and
transforming experimental data, e.g., under the influence of noise. For the analysis done
in [38], the RFM is compared with several continuous moments in classification. The
results show that they outperform ZM as seen in other research, and the classification
rate is average compared to all analyzed moments.

POLAR COMPLEX EXPONENTIAL TRANSFORMATION (PCEM)
The Polar Complex Exponential Transformation PCET is closely related to Discrete Co-
sine Transformation (DCT) and discrete sine transformation (DST) [56]. In [69], the
PCEM is used for Zero-Watermarking for Multiple Medical Images. Further, in [38], the
moments are used for classification and reconstruction, where the moment performed
particularly well in the classification of images under the influence of white Gaussian
noise.

2.2.3. CONTINUOUS CARTESIAN MOMENTS
The continuous cartesian moments are the moments defined on the square D = {(x, y) :
x ∈ [−1,1], y ∈ [−1,1]}. The general advantages/disadvantages of discrete moments are
listed below, followed by the literature review of the moments of this family. The mathe-
matical derivation and implementation is given in Chapter 3.

• Discretization errors are introduced when discretizing the basis function. The in-
troduction of these errors makes it less suitable for high-precision reconstruction.
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• The continuous cartesian moments are defined on a square Cartesian grid D =
{(x, y) : x ∈ [−1,1], y ∈ [−1,1]}. Most digital images can be easily mapped on a
square domain; therefore, almost no information will be lost when projecting on
the basis function.

LEGENDRE MOMENTS (LM)
Where in contrast to the variations of the Jacobi-based polynomials discussed earlier, the
orthogonality region is a Cartesian square [-1,1]x[-1,1]. In [62], Legendre invariant mo-
ments are used as features to classify different types of car logos from pictures. This re-
search is compared to Tchebychef, which showed a better classification result than Leg-
endre. In [40], Legendre moments are compared to pseudo-Zernike, rotational, Zernike
and complex moments in terms of reconstruction error. It showed that the SNR under
the influence of noise is significantly worse than the other simulated moments. In [63],
Legendre moments are used as a feature for micro-Doppler data. In this study, a com-
parison is made between the other orthogonal moments, e.g. Zernike, Pseudo-Zernike,
Krawtchouk, and orthogonal Fourier-Mellin moments. The simulations have shown that
the Legendre moments have the highest reconstruction error and the worst classification
rate results.

GEGENBAUER MOMENTS (GM)
Gegenbauer polynomials also known as ultraspherical polynomials, is a special case of
the Jacobi polynomial and can be derived from the Legendre polynomial. In [43], the
GM is proposed for the classification of Chinese characters. The moments are tested
on a data set with different parameters. The experiments showed promising results in
classification rate but are hard to interpret because they are not compared with another
type of moment or type of classification algorithm.

CONTINUOUS CHEBYSHEV MOMENTS (CHM)
The continuous Chebyshev is a special case of Jacobi polynomials. It can be derived from
the Gegenbauer polynomial by setting λ = 0 for the first kind and λ = 1 for the second
kind of Chebyshev polynomials.

GAUSSIAN-HERMITE MOMENTS (GHM)
In [70] the GHM are introduced for the recognition of license plates. The features that
are extracted using the moments are used in a back-propagation neural net. In [41] the
image reconstruction abilities and properties are evaluated. This evaluation shows that
a better result separating image features based on different modes could be obtained be-
cause of the different number of zero crossings for the different orders. Also, an analysis
was done on several applications, including; Fingerprint extraction and Moving object
detection. Research on the GHM for the extraction of micro-Doppler features is lacking.
The GHM is applied not commonly, and research regarding the usage of micro-Doppler
data is lacking.

2.2.4. SUMMARY ON ORTHOGONAL MOMENTS FOR CLASSIFICATION
The research performed on OMs, as discussed previously in this section, is summarized
in table 2.5 and table 2.7. The tables clearly show the research gap between the num-
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ber of different moments applied in image and pattern recognition, and applied to radar
micro-Doppler classification. Only a few discussed moments have been used for micro-
Doppler classification. In table 2.4 an overview is given on what moments have been
used for this purpose. Several of the moments that have never been used on radar data
outperformed the top-performing moments in image classification, for example, EFM
outperformed PZM [9]. Additionally, several moments discussed can extract local fea-
tures by changing their region of emphasis/region of interest (ROI). This property has
never been addressed in research related to micro-Doppler, to the best of the author’s
knowledge.

2.2.5. STATE OF THE ART TECHNIQUES FOR MICRO-DOPPLER SIGNATURE

CLASSIFICATION

In the pipeline, as demonstrated in section 2.5, it is visible that a classification algorithm
is needed after the extraction of features. The OMs used as features are, in most relevant
research, using a classifier dependent on the Euclidean distance between the moments,
e.g. KNN, SVM etc. In the summarizing table 2.5 the most relevant research related
to the classification of micro Doppler signatures using orthogonal moments is listed,
including the classifier. From this table, it is easily observed that the KNN classifier is
used primarily.

NEURAL NETWORKS

Neural networks have been proven to be highly efficient in the field of classification of
micro-Doppler signatures [3][71][4]. Because of this performance, neural networks are
one of the most popular classification techniques in micro-Doppler classification. In
[16] a study is presented in the classification of human behaviour using radar Doppler
data. A comparison is made between a neural network, GoogleNet, and a transfer learn-
ing method leveraging the AlexNet network using other classifiers, e.g. KNN and SVM. It
showed the best results for GoogleNet, which handles feature extraction and classifica-
tion. The neural networks can be used as classifiers for the extracted features, but can
also use the total data window represented as an image as input in most cases.
To conclude, because of the widely used neural networks in micro-Doppler classifica-
tion, using the neural networks as a reference classification rate for new proposed tech-
niques would be a reasonable choice.

2.3. SUMMARY AND RESEARCH GAPS
From the analysis of the open literature, several knowledge gaps are exposed. These gaps
are listed below and are considered as the inspiration for the novel research of this thesis.

• Although a wide variety of moments have been evaluated for image classifica-
tion purposes, only a small part of them have been studied in research regard-
ing radar data, for example, for classification tasks based on radar micro-Doppler
data. Therefore, a comprehensive investigation of the usage of the many existing
OMs for radar-based classification is missing, to the best of the author’s knowl-
edge.
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Moment type
Used for image-based

classification

Used for micro-Doppler

classification

PJFM Yes No

ZM Yes Yes

PZM Yes Yes

CHFM Yes No

OFMM Yes Yes

EFM Yes No

PCEM Yes No

BFM Yes No

RHFM Yes No

GM Yes No

LM Yes Yes

CHM-1st Yes No

CHM-2nd Yes No

GHM Yes No

RM Yes No

DHM Yes No

HM Yes No

CHDM Yes Yes

KM Yes Yes

MM Yes No

CM Yes No

Table 2.4: Table showing the research gap between the field of image-based classification and radar micro-
Doppler signatures classification: only a few moments proposed in image processing are studied for micro
Doppler classification
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• Research on the influence of data topology when using orthogonal moments is
missing. The topology is closely related to the type of target’s movement/activity
and pre-processing, but is rarely addressed as an aspect affecting the overall per-
formances, for instance in classification problems.

• Research on the influence of pre-processing approaches when using orthogonal
moments is lacking. In all the research considered in OM used for radar data,
CVD was used as input. No evaluations exist on the effect of different types of
pre-processing, to the best of the author’s knowledge.

• The influence of noise when using orthogonal moments on radar data is not inves-
tigated in depth. Only a small number of the moments discussed have been tested
under the influence of noise. Also, an evaluation of robustness against noise com-
pared to other state-of-the-art classification algorithms is lacking.

• The optimization properties of some moments, e.g. the ROI of the KM and, in
general, the local and global features that have proven to give good results in image
recognition, are typically not examined for radar data.
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3
ORTHOGONAL MOMENTS

This chapter introduces orthogonal moments as features in a classification processing
pipeline. The chapter includes the mathematical derivation and implementation of the
orthogonal moments investigated in this research. Next to the implementation, the indi-
vidual properties are analyzed and elucidated.

3.1. MOMENTS AS FEATURE
From the literature review presented in the previous chapter, the conclusion can be
drawn that orthogonal moments have the potential to be a good feature extraction tech-
nique for micro-Doppler signatures. The variety of moments, as found in the literature,
will be evaluated on the problem of micro-Doppler signature classification. This is in-
tended to fill in the research gaps found. The moments are introduced mathematically
in this chapter, after which an implementation is proposed.

MATHEMATICAL MOMENTS

Let us first define moments in general; moments are scalar quantities used to describe a
certain image function. The principle of using moments to capture significant features
from a function has been around for a long time. Examples of commonly used statistical
moments are Expectation, Variance, and Skewness, among many others. The mathe-
matical definition of a general moment is given by:

Mpq =
Ï

D
ppq (x, y) f (x, y)dx dy (3.1)

Where the function f (x, y) is the image function and is defined as a piece-wise continu-
ous real function of two variables defined on D ⊂ R×R with a finite nonzero integral. p
and q are non-zero integers defining the moment order: r = p+q . The function pqp (x, y)
is the polynomial basis defined on D . Mathematically, moments can be seen as a pro-
jection of the image function onto a polynomial basis, i.e. a change in basis.
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ORTHOGONAL MOMENTS

The orthogonal moments are derived by taking a polynomial basis ppq (x, y) in equation
3.1 that carries the condition of orthogonality. This means that two different basis func-
tions from the same set, ppq and pp ′q ′ , are independent of each other. Mathematically,
this independence can be proved by satisfying the condition:

〈
ppq , pp ′q ′

〉=Ï
D

ppq (x, y)p∗
p ′q ′ (x, y)d xd y = δpp ′δqq ′ (3.2)

Where δi j is the Kronecker delta function defined as

δi j =
{

0 i ̸= j
1 i = j

. (3.3)

The orthogonal polynomial basis can be constructed over different domains and cate-
gorized into different families. The mathematical formulation of the different families is
discussed in this chapter, with the derivation of all the moments used in this thesis. In
extension to the derivation, an implementation will be proposed. For this research, the
influence of the moment order is also analysed concerning the classification abilities.
An assumption is made that this could be done with an analysis stopping at 50 as the
highest order. Therefore, the proposed implementations of the variety of moments will
be at least suitable for calculation till the 50th order.

3.2. CONTINUOUS CIRCULAR MOMENTS
The circular moments are the family of moments that are orthogonally defined on the
unit disk. This section mathematically introduces the moments and proposes an im-
plementation. This includes the implementation of the basis function and the mapping
used to extract moments from a square image function.

JACOBI-FOURIER

The Jacobi-Fourier moments are the first discussed of the Jacobi polynomial-based group
of functions. The JFM can be seen as the generalized case of the other special cases of
Jacobi-based moments. Where for the radial basis function from the special cases can
be derived from the JFM radial basis function by changing the parameters q and p. The
Jacobi Fourier moments combine the Jacobi function radial function and the Fourier ex-
ponential factor. The JMF kernel function consists of two separable parts: The Fourier
exponent function exp(jmϑ) and the deformed Jacobi polynomial R(JFM)

n (p, q,r )[47]. The
JMF kernel can be defined as

Pnm(r,ϑ) = R(JFM)
n (p, q,r )exp( j mϑ) (3.4)

Where the orthogonality condition holds for the region 0 É r É 1,0 É ϑ É 2π The Jacobi
polynomial and the Fourier exponentials are separable. Where the Fourier exponent
exp(jmθ) is orthogonal [47]. This means that the radial function R(JFM)

n (p, q,r ) should
satisfy the condition: ∫ 2π

0

∫ 1

0
Pnm(r,ϑ)Pkl (r,ϑ)r dr dϑ= δnkδml (3.5)



3.2. CONTINUOUS CIRCULAR MOMENTS

3

27

The Jacobi polynomial itself is defined as :

Gn(p, q,r ) = n!(q −1)!

(p +n −1)!

n∑
s=0

(−1)s × (p +n + s −1)!

(n − s)!s!(q + s −1)!
r s (3.6)

The polynomial should satisfy equation 3.5 on the interval 0 É r É 1 resulting in∫ 1

0
Gn(p, q,r )Gm(p, q,r )w(p, q,r )dr = bn(p, q)δnm (3.7)

Where bn is a normalisation constant and w(p, q,r ) the weight function.

bn = n![(q −1)!]2(p −q +n)!

(q +n −1)!(p +n −1)!(p +2n)
, (3.8)

w(p, q,r ) = (1− r )p−q r q−1 p −q >−1, q > 0. (3.9)

And so can the radial polynomial can be defined as

R(JFM)
n (p, q,r ) =

√
w(p, q,r )

b(p, q)r
Gn(p, q,r ) (3.10)

Or when substituted, resulting in

R(JFM)
n (p, q,r ) =

√
r q−2(1− r )p−q (p +2n) ·Γ(q +n) ·n!

2πΓ(p +n) ·Γ(p −q +n +1)

n∑
k=0

(−1)kΓ(p +n +k)r k

k !(n −k)!Γ(q +k)
(3.11)

This results in the Jacobi Fourier moment, defined as

φnm =
∫ 2π

0

∫ 1

0
f (r,ϑ)R(JFM)

n (p, q,r )e− j mϑr dr dϑ (3.12)

By changing the parameters q and p the properties of the radial basis function and,
therefore, the moments will change. In [47], several combinations of q and p are eval-
uated, showing that for image representation, the optimal values are p = 4 q = 4. The
error near the origin is the smallest in this combination compared to the other evalu-
ated variants. The results on the reconstruction capabilities do not guarantee that this
combination will still be optimal in classification. As the data of interest could be off the
origin.
For some specific values of q and p, the JFM radial basis function will reduce the func-
tion to another type of basis function. The accompanying moments will still consist of
the same Fourier angular kernel exp( j ∗M ∗θ), but the radial basis function will differ.
These special cases are listed below:

• Pseudo Jacobi-Fourier: By setting the parameters of the Jacobi radial function
equation 3.2 to

p = 4 and q = 3

by filling in the values for p and q , the radial basis function is obtained

R(PJFM)
n (r ) =

√
(n +2)

(
r − r 2

)
π(n +3)(n +1)

n∑
k=0

(−1)n+k (n +k +3)!r k

k !(n −k)!(k +2)!
(3.13)
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• Zernike: The Zernike radial basis function is obtained when setting the parame-
ters q and p in equation 3.2 to

p = |m|+1 and q = |m|+1

resulting in the radial basis function

R(ZM)
nm (r ) =

√
n +1

π

n−|m|
2∑

k=0

(−1)k (n −k)!r n−2k

k !
(

n+|m|
2 −k

)
!
(

n−|m|
2 −k

)
!

(3.14)

• Pseudo-Zernike: The Pseudo-Zernike radial basis function is obtained when set-
ting the parameters q and p in the Jacobi-Fourier radial basis function (equation
3.2) to

p = 2|m|+2 and q = 2|m|+2

Reduces to:

R(PZM)
nm (r ) =

√
n +1

π

n−|m|∑
k=0

(−1)k (2n +1−k)!r n−k

k !(n +|m|+1−k)!(n −|m|−k)!
(3.15)

• Chebyshev-Fourier: The Chebyshev-Fourier radial basis function is obtained when
setting the parameters q and p in equation 3.2 to

p = 2 and q = 1.5

Reduces to:

R(CHFM)
n (r ) = 2

π

(
1− r

r

) 1
4
⌊ n

2 ⌋∑
k=0

(−1)k (n −k)!(4r −2)n−2k

k !(n −2k)!
(3.16)

• Fourier-Mellin: The Fourier-Mellin radial basis function is obtained when setting
the parameters p and q in equation 3.2 to

p = 2 and q = 2

Reduces to:

R(OFMM )
n (r ) =

√
n +1

π

n∑
k=0

(−1)n+k (n +k +1)!r k

k !(n −k)!(k +1)!
(3.17)

IMPLEMENTATION

The discussed moments are all defined on a unit circle. In general, radar data is repre-
sented in a square grid. This means there will be some loss in data or mapping of some
kind to reduce this loss. In [38], different methods are proposed for accurately calculat-
ing square image functions using moments defined in a unit circle. The most straight-
forward solution would be to translate the Cartesian-defined image function to polar
coordinates and draw a circular area with a radius r max on the image defining the do-
main. Two cases are shown in figure 3.2; one is defined as a domain containing the whole
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image function and a part of non-existing data, and one where some data of the image
function is not contained in the domain of the moments. Due to the nature of radar data
in Doppler-time representation, a case where the corners are not included would not in-
troduce a large loss of information; this type of information loss is commonly referred to
as ’Geometric Error’. An illustration of a cut out on human motion Doppler-time data is
shown in figure 3.2c. Where the main part of interest lies in the domain of the calculated
moment suggesting a low level of information loss, in the other case, non-existent data
should be introduced to calculate the moments. This will, inevitably, introduce errors
in representation capability for the calculated moments [38]. Therefore, the moments
defined on the unit disk will be calculated as an incircle mapping.
After which the Cartesian-defined image function f (x, y) will be mapped to the polar
domain using;

r =
√

(x2 + y2) θ = tan−1(y/x)

A numerical approximation has to be made for the discretisation of the integral. Here a
variant of the midpoint method is used because of its simplicity. As an implementation, a
grid is created in polar space where r ∈ [0,1] and θ ∈ [0,2π] all points outside this domain
will be set to zero since they are not needed when calculating the moment. The number
of pixels/data will determine the stepsize of the grid points N . The matrices containing
r and θ can be directly filled in the radial polynomials as given previously in this section.

(a) r = 1, Circumcircle (b) r = 1, Incircle (c) r = 1, Incircle, placed on human
motion spectrogram

Figure 3.1: Illustration of the square image function mapping

FAST AND ACCURATE COMPUTATION

The function, as described earlier, depends on the factorial. Higher-order factorials must
be computed when entering higher-order moments, resulting in computationally ex-
pensive procedures. In addition, the software used to calculate the moments (MATLAB
R2021a) cannot deal with such large factorials, causing the calculations to become nu-
merically unstable. Therefore, the direct implementation of the moments is limited in
order. As a solution, several papers have proposed [79][80] to use the recursion property
of radial functions to make higher-order moments less computationally expensive. The
recursive version of the Jacobi-Fourier radial function as given in the equation can be
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calculated recursively using the method proposed in [79]. The radial basis function first
has firstly to be rewritten in the form:

Rn(p, q,r ) =
√

(p +2n)(1− r )p−q r q−2 An(p, q)Pn(p, q,r ) (3.18)

with

Pn(p, q,r ) =
n∑

k=0

(−1)k (n +k +p −1)!r k

k !(q +k −1)!(n −k)!
(3.19)

and

An(p, q) =
√

n!(q +n −1)!

(p +n −1)!(p −q +n)!
(3.20)

Where the initialization of the zeroth and first order for Pn :

P0(p, q,r ) = (p −1)!

(q −1)!
, P1(p, q,r ) = p !

(q −1)!

(
1− (p +1)

q
r

)
, (3.21)

The function itself is given by the following recursion

Pn(p, q,r ) = (L1r +L2)P(n−1)(p, q,r )+L3P(n−2)(p, q,r ), n = 2,3, . . . ,nmax (3.22)

Where nmax defines the maximum order of the moments. The values of L1,L2 and L3 are
defined as:

L1 =− (2n +p −1)(2n +p −2)

n(q +n −1)

L2 = (p +2n −2)+ (n −1)(q +n −2)

(p +2n −3)
L1

L3 = (p +2n −4)(p +2n −3)

2
+ (q +n −3)(n −2)

2
L1 − (p +2n −4)L2

(3.23)

Also for An(p, q) it is possible to do the calculations recursively;

A0(p, q) = (q −1)!

(p −1)!(p −q)!

An(p, q) = n(q +n −1)

(p +n −1)(p −q +n)
An−1(p, q),n = 1,2, . . . ,nmax

(3.24)

The other Jacobi-based moments defined on a unit disk are mapped and computed the
same way as done for the JFM. The recursive implementation is able to get accurate
reconstruction results at higher-order moments. Also, the recursive method at lower
orders seems more accurate when visually validating the moments. In Figure 3.2, the
results can be seen for the direct and recursive approaches at order 50, illustrating the
numerical instability of the direct approach.
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(a) Original spectogram of human
motion

(b) Order 50 reconstruction with di-
rect implementation

(c) Order 50 reconstruction with re-
cursive implementation

Figure 3.2: Example of radar spectrogram reconstruction of order 50 with Zernike moments, illustrating the
instability of the direct implementation

EXPONENT-FOURIER

The Exponent-Fourier moments are part of the so-called harmonic function-based mo-
ments. The function is obtained using the exponent function Rn(r ) = Ane j nr as a radial
basis function combined with the Fourier exponential function[48]. The orthogonality
condition stated in equation 3.25 must hold for the region 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2∗π. From
this condition, the value of An can be derived.∫ 1

0
An exp( j nr )Ak exp(− j kr )r dr = δnk (3.25)

When substituting An = 1p
2πr

the final radial basis function is given as

R(EFM)
n (r ) = 1p

2πr
exp( j 2nπr ) (3.26)

The resulting moments are then calculated using 3.27, with f (r,θ) being the image func-
tion.

Enm = 1

2π

∫ 2π

0

∫ 1

0
f (r,θ)T ∗

n (r )exp(− j mθ)r dr dθ (3.27)

The implementation, given by [38], is used to calculate this type of moment. This uses
the algorithm proposed in [81] that uses an FFT-based calculation method in a polar
coordinate system. Further, it provides the relation from this proposed; fast generic po-
lar complex exponential transform (FGPCET) - to other harmonic function-based mo-
ments. Using this relation, a variety of harmonic-based moments can be calculated, e.g.
Exponent-Fourier moments.

POLAR COMPLEX EXPONENTIAL TRANSFORM MOMENTS

As for the exponent Fourier, the Polar complex exponential transform moment (PCETM)
is a harmonic function-based moment. Unlike the exponent Fourier, the radial basis
function is numerically stable. The PCET is closely related to the discrete cosine transfor-
mation (DCT) and the discrete sine transformation (DST) [56]. The radial basis function
is defined by the complex exponential:

Rn(r ) = e j 2nπr 2
(3.28)
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And the complete basis function as a combination of the complex exponential and the
Fourier exponential:

Hnl (r,θ) = Rn(r )∗e i lθ (3.29)

Note that this radial basis function is numerically stable and satisfies the orthogonality
condition: ∫ 1

0
Rn(r )[R ′

m(r )]∗r dr = 1

2
δnm′ (3.30)

and so ∫ 2π

0

∫ 1

0
Hnl (r,θ)[Hn′l ′ (r,θ)]∗ r dr dθ =πδnn′δl l ′ (3.31)

As can be seen from this equation, the basis function can be normalized, making the
function orthonormal by:

H̃nl (r,θ) = 1p
π

Hnl (r,θ) (3.32)

The PCET-Moment is implemented similarly to the exponent Fourier, using an FFT-
based computation technique. [81].

BESSEL-FOURIER

The Bessel-Fourier moments are based on the Bessel function; in this case, the Bessel
function of the first kind is used. This function is defined as [68]

Jv (x) =
∞∑

k=0

(−1)k

k !Γ(v +k +1)

( x

2

)v+2k
(3.33)

With v a real constant. The Bessel-Fourier moment is formed by taking the Bessel func-
tion in polar form and the exponent function [49]:

Bnm = 1

2πan

∫ 2π

0

∫ 1

0
f (r,θ)Jv (λnr )exp(− j mθ)r dr dθ (3.34)

Where f (r,θ) is a N ∗ M image function, an a normalization constant defined by an =
(Jv+1(λn))2/2, n the order and λn the n-th zero of the function jv (x). The orthogonality
of this moment holds for 0 ≤ r ≤ 1 can be shown by the orthogonality condition:∫ 1

0
r Jv (λnr ) Jv (λk r )dr = anδnk (3.35)

With δnk the Kronecker symbol. The function can be rewritten in the same form as done
with the Jacobi Fourier moments. Consisting of a radial basis function and the Fourier
exponential function. Where the radial basis function can be derived from the equations
above:

R(BFM)
n (r ) = 1p

πJv+1 (λn)
Jv (λnr ) (3.36)

The function is implemented using the same procedure as the Jacobi Fourier. MATLAB’s
first-order Bessel function is used to calculate the Bessel function. In addition, the im-
plementation is used as provided in [38] for the moment calculation.
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RADIAL HARMONIC FOURIER

The radial harmonic Fourier moments show similarities with the harmonic function-
based moments discussed above. The basis function can be written again as a radial
function R(RHFM)

n (r ) in combination with an exponent function exp( j mθ). The basis
function is defined as:

Pnm(r,θ) = R(RHFM)
n (r )exp( j mθ) (3.37)

Satisfying the orthogonality condition in the range 0 < r < 1:∫ 2π

0

∫ 1

0
Pnm(r,θ)Pkl (r,θ)r dr dθ = δnmkl (3.38)

The radial function is defined as:

R(RHFM)
n (r ) =


1p
2πr

n = 0√
1
πr sin(π(n +1)r ) n > 0&n odd√

1
πr cos(πnr ) n > 0&n even

(3.39)

The Radial harmonic Fourier-Moments are implemented similarly to the exponent Fourier,
using an FFT- based computation technique. The implementation, given by [38], is used
to calculate this type of moment.

3.3. CONTINUOUS MOMENTS DEFINED ON A SQUARE GRID
The continuous orthogonal moments defined on a square grid can be easily computed
since no mapping of the image function is needed. The discretization can be done using
a discrete linear approximation related to the midpoint method. The moments of this
family will be first derived, and then the proposed implementation will be discussed.
The implementation is just as for previously discussed moments based on recursive al-
gorithms, in order to reduce the computational complexity.

GEGENBAUER

Gegenbauer polynomials, such as continuous Chebyshev and Legendre, are all special
cases of Jacobi polynomials. The domain in which they are orthogonal is a square D =
{(x, y) : x ∈ [−1,1], y ∈ [−1,1]}. The other continuous moments, Chebyshev and Legendre,
can be formed from the Gegenbauer moments. The Gegenbauer basis function is given
as:

G (λ)
n (x) = (2λ)n(

λ+ 1
2

)
n

Pn

(
λ− 1

2
,λ− 1

2
, x

)
(3.40)

Where Pn(α,β) is the jacobi polynominal and λ a free parameter

Pn(α,β)(x) = (α+1)n

n!
× 2F1

( −n,n +α+β+1
α+1

| 1−x

2

)
(3.41)
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Where the orthogonallity condition on domain D ∈ [−1,1]× [−1,1] holds:∫ 1

−1
wG (x,λ)G (λ)

n (x)G (λ)
m (x)d x = ρG (n,λ)δ(n,m) (3.42)

The weighting function and normalization function are derived from this condition:

w(x) = (1−x2)a− 1
2 (3.43)

ρG (n,λ) = 2πΓ(n +2λ)

22λn!(n +λ)[Γ(λ)]2
(3.44)

resulting in the final moment being defined as

MG
n,m = 1

ρG (n,λ)ρG (m,λ)

∫ 1

−1

∫ 1

−1
f (x, y)G (λ)

n (x)G (λ)
m (y)wG (x,λ)wG (y,λ)d xd y (3.45)

The function is discretized by mapping the image function f (i , j ) that exists in the do-
main defined by 1 < i , j < N to the region −1 < x, y < 1
The computational complexity becomes problematic when directly calculating the mo-
ments since the Gegenbauer polynomial depends on gamma, factorial, Pochhammer,
and hypergeometric functions. Therefore, a recursive method is preferred. In [80], a
fast computation method for Legendre moments based on recursion is proposed. The
method is given as a pseudocode. This method can be rewritten for all moments in
this family. First, the proposed algorithm is rewritten for Gegenbauer moments. From
Gegenbauer implementations, the other cases can be formed by changing the parame-
ter λ. The implementation is based on the recursion of the Gegenbauer polynomial[82]
[83]:

G(n, a, x) = 2x(n +a −1)

n
∗G(n −1, a, x)− n +2a −2

n
G(n −2, a, x) (3.46)

With the initialization G(0, a, x) = 1 and G(1, a, x) = 2ax. The pseudo-code for computing
the GMs is given in Appendix A.

LEGENDRE MOMENTS

The Legendre two-dimensional moments of order (q + p) are given as in [84] as 3.48,
where f (x, y) is the image intensity function. The function is Orthogonal on the square
[-1,1]x[-1,1] on a Cartesian grid. The Legendre is of the same family as the Gegenbauer
polynomial and can be obtained by setting λ= 0.5. This results in a polynomial of order
p described as:

Pp (x) =
p∑

k=0

(−1)
p−k

2
1

2p

(p +k)!xk(
p−k

2

)
!
(

p+k
2

)
!k !


p−k=cven

(3.47)

And the Legendre moment as

Lpq = (2p +1)(2q +1)

4

∫ 1

−1

∫ 1

−1
Pp (x)

×Pq (y) f (x, y)dx dy ; x, y ∈ [−1,1],
(3.48)
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The function is discretized by mapping the image function f (i , j ) that exists in the do-
main defined by 1 < i , j < N to the region −1 < x, y < 1. Resulting in

Łpq = (2p +1)(2q +1)

(N −1)2

N∑
i=1

N∑
j=1

Pn (xi )Pm
(
y j

)
f (i , j ) (3.49)

The moment is implemented in the same way as the Gegenbaur moment. Following the
same procedure as proposed earlier. Where the implementation is based on the recur-
rence relation of the Legendre polynomials, which follows:

Pp (x) = (2p −1)xPp−1(x)− (p −1)Pp−2(x)

p
(3.50)

and is initialized using P0(x) = 1 P1(x) = x

CONTINUOUS CHEBYSHEV

The continuous Chebyshev is a special case of Jacobi polynomials. It can be derived from
the Gegenbauer polynomial by setting λ = 0 for the first kind and λ = 1 for the second
kind of Chebyshev polynomials.

First kind: As for λ = 0 will introduce singularities in the Gegenbauer polynomial, the
limit is taken, and the polynomial function is defined as:

T (n, x) =
{ 1

2 limλ→0
n+λ
λ Gλ(n, x) if n ̸= 0

limλ→0 Gλ(0, x) = 1 if n = 0
(3.51)

This influences the recurrence relation:

T (n, x) = 2xT (n −1, x)−T (n −2, x) (3.52)

with initialization T (0, x) = 1 and T (1, x) = x and the weighting function and normaliza-
tion function:

w(x) = 1p
1−x2

(3.53)

ρ =
 π if n = m = 0
π

2
if n = m ̸= 0

(3.54)

SECOND KIND:
For this research, the Gegenbauer polynomial, as implemented before, is taken to calcu-
late the second Chebyshev moments where:

U (n, x) =G(n,1, x) (3.55)



3

36 3. ORTHOGONAL MOMENTS

GAUSSIAN-HERMITE

The pth-order Hermite polynomial is defined as

Hp (x) = (−1)p exp
(
x2)(d p /d xp)

exp
(−x2) (3.56)

When written as a series, the function can be described as:

Hp (x) =
p/2∑
k=0

(−1)k p !

k !(p −2k)!
(2x)p−2k (3.57)

Witch is a discrete function and can easily be implemented using the recursive proper-
ties of the factorial term:

Hp+1(x) = 2xHp (x)−2pHp−1(x), for p ≥ 1 (3.58)

with H0(x) = 1 and H1(x) = 2x
The orthogonality condition is given as follows:∫ ∞

−∞
exp

(−x2)Hp (x)Hq (x)d x = 2p p !
p
πδpq (3.59)

From this condition, the weighted Hermite polynomial can be derived. This is done
by modulating the Hermite function with a Gaussian function, making the function or-
thonormal and resulting in the Gaussian-Hermite function.

Ĥp (x;σ) = (
2p p !

p
πσ

)−1/2
exp

(−x2/2σ2)Hp (x/σ) (3.60)

∫ ∞

−∞
Ĥp (x;σ)Ĥq (x;σ)d x = δpq . (3.61)

Note that the function depends on the term σ that defines the variance of the Gaussian
function. In [85], an optimization of σn , concerning the image reconstruction, is per-
formed. This resulted in the relation given:

σn =
{

0.9n−0.52 n ≥ 1

1.0 n = 0
(3.62)

The assumption is made that the optimal σn for image representation would also be op-
timal for a classification problem. The resulting moments can then be calculated using
the following:

ηpq =
Ï

f (x, y)Ĥp (x,σ)Ĥq (y ;σ)d xd y (3.63)

Note that the Gaussian function is still continuous. Therefore, the image function will be
mapped to the square domain of [-1,1]x[-1,1], at which the function is orthogonal, and
at these locations, the function is evaluated. Resulting in a sample size equal to the size
of the image.

ηpq =
1∑

y=−1

1∑
x=−1

f (x, y)Ĥp (x,σ)Ĥq (y ;σ)d xd y (3.64)
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3.4. DISCRETE MOMENTS
The discrete orthogonal moments defined on a square grid can be computed without the
need to map the image function. The moments of this family will be first mathematically
derived, and then the proposed implementation will be discussed. The implementation
is as for previously discussed moments based on recursive algorithms to reduce compu-
tational complexity.

RACAH MOMENTS

Racah polynomials are hypergeometric polynomials defined on a discrete Cartesian grid.
As described above, this has the advantage that there will be no calculation errors in dis-
cretizing the basis function. Also, the image function does not need to be mapped; i.e.,
the image is defended on a square Cartesian domain. [54] The Racah polynomial can be
seen as a more general form of the other orthogonal functions in this family, e.g., Hahn,
Dual Hahn, Meixner, krawtchouk, Chalier, Hermite. All orthogonal polynomials given
can be derived from the Racah polynomial by changing their limits [57]. The relations
of Hypergeometric Orthogonal polynomials are described by the askey scheme as rep-
resented in the figure. This also described the relations between the discrete orthogonal
functions and their continuous twins, e.g., Wilson, continuous Dual Hahn, continuous
Hahn, Meixner - Pollaczek, Jacobi, and Laguerre.
The Racah polynomial is defined on a non-uniform lattice, contrary to Krawtcouk, Tchebichef
and Hahn. For this research, the lattice is quadratically defined as x(s) = s(s +1)). The

nth order Racah polynomial u(α,β)
n (s, a,b), defined on an NxN image, is represented by

the equation:

u(α,β)
n (s, a,b) = 1

n!
(a −b +1)n(β+1)n(a +b +α+1)n

× 4F3

( −n,α+β+n +1, a − s, a + s +1
β+1, a +1−b, a +b +α+1

;

)
,

n = 0,1, . . . ,L−1, s = a, a +1, . . . ,b −1

(3.65)

Where (u)k is the Pochhammer symbol and 4F3(·) a hypergeometric function. Further-
more, the constraints 3.66 apply; note that changing the limits of these constraints changes
the region of the image function that is mapped on the basis function, i.e. the region of
interest (ROI) will change.

−1/2 < a < b, α>−1, −1 <β< 2a +1, b = a +N (3.66)

Equation 3.65 satisfies its orthogonal property as described in equation 3.67

b−1∑
s=a

u(α,β)
n (s, a,b)u(α,β)

m (s, a,b)ρ(s)

[
∆x

(
s − 1

2

)]
= δnmd 2

n , n,m = 0,1, . . . ,L−1 (3.67)

with

d 2
n = Γ(α+n +1)Γ(β+n +1)Γ(b −a +α+β+n +1)Γ(a +b +α+n +1)

(α+β+2n +1)n!(b −a −n −1)!Γ(α+β+n +1)Γ(a +b −β−n)
,

n = 0,1, . . . ,L−1.

(3.68)
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To reach numerical stability, the weighting function described in Equation 3.69 is intro-
duced.

ρ(s) = Γ(a + s +1)Γ(s −a +β+1)Γ(b +α− s)Γ(b +α+ s +1)

Γ(a −β+ s +1)Γ(s −a +1)Γ(b − s)Γ(b + s +1)
(3.69)

Resulting in the weighted Racah polynomial:

û(α,β)
n (s, a,b) = u(α,β)

n (s, a,b)

√
ρ(s)

d 2
n

[
∆x

(
s − 1

2

)]
, n = 0,1, . . . ,L−1 (3.70)

Then the orthogonality condition reduces to;

b−1∑
s=a

û(α,β)
n (s, a,b)û(α,β)

m (s, a,b) = δnm , n,m = 0,1, . . . ,L−1., (3.71)

In [54] these normalized orthogonal Racahn functions are used to create moments and
are defined, for a N xN domain and a (n+m)th order, as:

Unm =
b−1∑
s=a

b−1∑
t=a

û(α,β)
n (s, a,b)û(α,β)

m (t , a,b) f (s, t ) n,m = 0,1, . . . ,L−1 (3.72)

IMPLEMENTATION

The Racah polynomials are dependent on a higher-order hypergeometric function which
is a computationally expensive procedure to implement. Furthermore, the weighting
functions ρ(s) and the square norm d 2

n are dependent on the gamma functions, which
also require a lot of computational power to implement directly. In [54], a recursive
method is proposed with respect to n to calculate Racah polynomials. Where the fol-
lowing recursive relation is proposed:

An û(α,β)
n (s, a,b) = Bn

dn−1

dn
û(α,β)

n−1 (s, a,b)+Cn
dn−2

dn
û(α,β)

n−2 (s, a,b) (3.73)

Where :

An = n(α+β+n)

(α+β+2n −1)(α+β+2n)
(3.74)

Bn =x − a2 +b2 + (a −β)2 + (b +α)2 −2

4
+ (α+β+2n −2)(α+β+2n)

8

−
(
β2 −α2

)[
(b +α/2)2 − (a −β/2)2

]
2(α+β+2n −2)(α+β+2n)

(3.75)

Cn =− (α+n −1)(β+n −1)

(α+β+2n −2)(α+β+2n −1)

[(
a +b + α−β

2

)2

−
(
n −1+ α+β

2

)2]
×

[(
b −a + α+β

2

)2

−
(
n −1+ α+β

2

)2] (3.76)
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and the initialization is done using:

û(α,β)
0 (s, a,b) =

√
ρ(s)

d 2
0

[
∆x

(
s − 1

2

)]
(3.77)

û(α,β)
1 (s, a,b) =− 1

ρ(s)

ρ1(s)−ρ1(s −1)

x(s +1/2)−x(s −1/2)

√
ρ(s)

d 2
1

[
∆x

(
s − 1

2

)]
(3.78)

With ∆x
(
s − 1

2

) = 2s +1 > 0 for s >−1/2. This implementation greatly reduces the com-
putational complexity of the Racah polynomial although the initialization terms are still
dependent on equations 3.69 and 3.68, which on themselves are dependent on gamma
functions. Therefore these functions will be rewritten in a recursive manner. The same
procedure is used as proposed in [86] for calculating Dual Hahn polynomials but re-
written for the Racah polynomial. ρ(s) can be rewritten using property: Γ(x +1) = xΓ(x)
for x > 0 and Γ(1) = 1, as the recursive function:

ρ(s) = Γ(a + s +1)Γ(s −a +β+1)Γ(b +α− s)Γ(b +α+ s +1)

Γ(a −β+ s +1)Γ(s −a +1)Γ(b − s)Γ(b + s +1)

ρ(s) = (a + s)Γ(a + s)(s −a +β)Γ(s −a +β)(b +α− s)−1Γ(b +α− s −1)(b +α+ s)Γ(b +α+ s +1)

(a −β+ s)Γ(a −β+ s +1)(s −a)Γ(s −a +1)(b − s)−1Γ(b − s −1)(b + s)Γ(b + s +1)

ρ(s) = ρ(s −1)∗ (a + s)(s −a +β)(b +α+ s)(b − s −1)

(a −β+ s)(s −a)(b + s)(b +α− s)

For initialization s = a:

ρ(a) = Γ(2a +1)Γ(β+1)Γ(b +α−a)Γ(b +α+a +1)

Γ(2a −β+1)Γ(b −a)Γ(b +a +1)
(3.79)

Note that this initialization is not stable when calculating the higher values of the gamma
function. Therefore, a second recursive calculation is proposed with respect to b; since
b = a + i mag e_si ze.

ρ(b) = Γ(b +α−a)Γ(b +α+a +1)

Γ(b −a)Γ(b +a +1)
∗ Γ(2a +1)Γ(β+1)

Γ(2a −β+1)
(3.80)

Initialization bi = a +1

ρ(bi = a +1) = Γ(α+1)Γ(α+2a +2)

(2a +1)
∗ Γ(β+1)

Γ(2a −β+1)
(3.81)

ρ(bi ) = (bi +α−a −1)(bi +α+a)

(bi −a −1)(bi +a)
∗ρ(bi −1) (3.82)

for bi = a +2, a +3, . . . ,b The same procedure can be done for d 2
n resulting in :

d 2
n = Γ(α+n +1)Γ(β+n +1)Γ(b −a +α+β+n +1)Γ(a +b +α+n +1)

(α+β+2n +1)n!(b −a −n −1)!Γ(α+β+n +1)Γ(a +b −β−n)
(3.83)
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(α+β+2n+1)∗d 2
n = d 2

n−1∗
(α+n)(β+n)(b −a +α+β+n)(a +b +α+n)(b −a −n)(a +b −β−n)

n(α+β+n)
(3.84)

With initialization n = 0:

d 2
0 = Γ(α+1)Γ(β+1)Γ(b −a +α+β+1)Γ(a +b +α+1)

(α+β+1)(b −a −1)!Γ(α+β+1)Γ(a +b −β)
(3.85)

Again, due to the complexity of the initialization, a second iterative solution is proposed,
where the iteration is performed with respect to b:

d 2
0,b = d 2

0,b−1

(b −a +α+β)(a +b +α)

(b −a −1)(a +b −β−1)
(3.86)

initialization for b = a +1

d 2
0 = Γ(α+1)Γ(β+1)Γ(α+β+2)Γ(2a +α+2)

(α+β+1)Γ(α+β+1)Γ(2a +1−β)
(3.87)

Using this method will give an accurate result for d 2
n till the 12th order and then numbers

will become too large for Matlab. To be able to go into higher orders the terms
d 2

n−1

d 2
n

and

d 2
n−2

d 2
n

from equation 3.73 recursively calculated using previous derivations. Rewriting

equation 3.84.

(α+β+2n +1)

(α+β+2(n −1)+1)
∗ d 2

n

d 2
n−1

=

(α+n)(β+n)(b −a +α+β+n)(a +b +α+n)(b −a −n)(a +b −β−n)

n(α+β+n)

(3.88)

and for
d 2

n−2

d 2
n

:

(α+β+2n +1)

(α+β+2(n −2)+1)
∗ d 2

n

d 2
n−2

=

(α+n)(β+n)(b −a +α+β+n)(a +b +α+n)(b −a −n)(a +b −β−n)

n(α+β+n)
∗

(α+n −1)(β+n −1)(b −a +α+β+n −1)(a +b +α+n −1)(b −a −n −1)(a +b −β−n −1)

(n −1)(α+β+n −1)
(3.89)

This method gives accurate results and can be seen in the values in Table 3.1.

EVALUATION PARAMETERS

Equation 3.72 has the ability to adjust different parameters. Each parameter will deter-
mine how the basis functions which define the resulting moment will behave. To be able
to determine the best possible realization of the Racah moment for the purpose of clas-
sifying micro-Doppler signatures, an analysis is performed. This is done by illustrating
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n d recursive d direct d/(d-1) recursive d/(d-1) direct d/(d-1) fraction
recursive

10 1.19602903500493e+79 1.19602903500499e+79 41143120.7478261 41143120.7478247 41098431.1688312

15 1.38132936819189e+117 - 40460155.4823529 - 40696056.6532258

20 1.38456519804585e+155 - 38716260.4389006 - 39132489.8587933

50 - - - - 18179296.1144854

80 - - - - 156492.302853998

d/(d-2) recursive d/(d-2) direct d/(d-2) fraction recursive

10 1.69168446014574e+15 - 1.68383447049679e+15

15 1.62581559364224e+15 - 1.66395097380975e+15

20 1.48166935679476e+15 - 1.54639831758786e+15

50 - - 345726449017378

80 - - 48371242043.0769

Table 3.1: Table containing the calculated parameter d values for the different calculation methods.

the influence of each parameter on the basis function and then optimizing it to actual
micro-Doppler signatures.
The free variables in the basis function are a,b,α,β. Variables are constrained by the
equation 3.66. The variable a can be seen as the starting point of the region of interest.
Variations in the values of a and b can be seen in Figure 3.3. Note that the region size will
not change due to the earlier-mentioned constraints. In the case of an image, the hori-
zontal and vertical basis functions are defined by the same values of a and b. Examples
of the influence on image representations can be seen in Figures 3.4 and 3.5.

Figure 3.3: Racah basis functions of order 1 to 5 under different values of the parameters a, b, α, and β, the s
axis represents the non-uniform lattice.

Where also variations of alpha and beta are shown. It is clearly visible that the value
of a has a shifting property that places emphasis on the part at pixel locations larger
than a. The influence of alpha and beta is also visible. Whereas β increases, the basis
function will contract and shift [54]. This property also holds for α. This means that
the distribution of the zeros depends on the values of α and β [58]. This property can



3

42 3. ORTHOGONAL MOMENTS

Figure 3.4: Example of reconstructed images with different parameters in Racah basis function, order 5

Figure 3.5: Example of reconstructed images with different parameters in Racah basis function, order 50

potentially increase classification rates, as the distribution of zeros illustrates the region
of emphasis of a basis function. When taking a simple Micro-Dopler data set, Dopnet,
the information is spread across the middle, vertically, and horizontally. Therefore, a
distribution is chosen where the basis functions have a high zero density in the middle
region of our image function. This results in a change in emphasis to the region with the
most relevant information. Various parameter variations are shown in Figures 3.4 and
3.5. In these figures, zero distributions can be easily observed. These parameter settings
are used in Chapter 6, where they are evaluated as individual moments and applied to
different datasets.

DUAL HAHN

Compared to the Hahn moment, the dual Hahn moment is defined on a non-uniform
grid as x(s) = s(s + 1). The Dual Hahn moment of order n and size N is defined by the
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hypergeometric function[54]:

Hn
(a,b,c)(s) = (a −b +1)n(a + c +1)n

n!

3F2(−n, a − s, a + s +1; a −b +1, a + c +1;1)
(3.90)

Where n = 0,1, ...N − 1, s = a, a + 1, ..,b − 1, (u)k the Pochhammer symbol1 and 3F2 a
hypergeometric function2. The orthogonality condition is given as follows

b−1∑
s=a

H (a,b,c)
n (s)H (a,b,c)

m (s)ρ(s)

[
∆x

(
s − 1

2

)]
= δnmd 2

n (3.91)

With n,m = 0,1, . . . , N −1 and ∆x
(
s − 1

2

)= 2s +1 > 0 for s >−1/2 and

ρ(s) = Γ(a + s +1)Γ(c + s +1)

Γ(s −a +1)Γ(b − s)Γ(b + s +1)Γ(s − c +1)
(3.92)

Where the constraint holds :

−1

2
< a < b, |c| < 1+a, b = a +N (3.93)

and

d 2
n = Γ(a + c +n +1)

n!(b −a −n −1)!Γ(b − c −n)
(3.94)

Note that the Dual Hahn polynomial, as described before, is not numerically stable.
Therefore, will the function be normalized using the relation from equation 3.91 result-
ing in:

H̃ (a,b,c)
n (s) = H (a,b,c)

n (s)

√
ρ(s)

d 2
n

[
∆x

(
s − 1

2

)]
(3.95)

The resulting weighted dual Hahn moments for an image function f (s, t ) can then be
calculated using the following:

Wnm =
b−1∑
s=a

b−1∑
t=a

H̃n
(a,b,c)(s)H̃m

(a,b,c)(t ) f (s, t ), n,m = 0,1, ....N −1 (3.96)

IMPLEMENTATION

The equation for the Dual Hahn polynomial is computationally complex due to its de-
pendence on Gamma functions and factorial operators. Due to this complexity, MATLAB
cannot compute the high-order moments. Therefore, a recursive implementation is pre-
ferred. In [86], a recursive method is proposed. This follows the recursion:

H̃ (a,b,c)
n (s) = A

p
B × H̃n−1

(a,b,c)(s)+C
p

D × H̃n−2
(a,b,c)(s) (3.97)

1(a)k = a(a +1)(a +2) . . . (a +k −1) = Γ(a+k)
Γ(a)

2
3F2 (a1, a2, a3;b1,b2; z) =∑∞

k=0
(a1)k (a2)k (a3)k

(b1)k (b2)k
· zk

k !
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With

A 1
n

[
s(s +1)−ab +ac −bc − (b −a − c −1)(2n −1)+2(n −1)2

]
B n

(a+c+n)(b−a−n)(b−c−n)
C − 1

n (a + c +n −1)(b −a −n +1)(b − c −n +1)
D n(n−1)

(a+c+n)(a+c+n−1)(b−a−n+1)(b−a−n)(b−c−n+1)(b−c−n)

(3.98)

And initialization:

H̃0
(a,b,c)(s) =

√
ρ(s)

d 2
0

[
∆x

(
s − 1

2

)]
H̃1

(a,b,c)(s) = (s −a)(s +b)(s − c)+ (s +a +1)(s + c +1)(s −b +1)

(2s +1)

×
√
ρ(s)

d 2
1

[
∆x

(
s − 1

2

)] (3.99)

Note that the terms ρ(s) and .n
2 still depend on the Gamma function and factorial term.

Therefore, for the calculation of the initialization of the polynomial, another recursion
over n is introduced:

H̃0
(a,b,c)(s) =

√
(a + s)(c + s)(b − s)(2s +1)

(s −a)(b + s)(s − c)(2s −1)
H̃0

(a,b,c)(s −1) (3.100)

Where H0
(a,b,c)(a) is rewritten using the l nΓ(∗) function. This function is chosen to re-

duce the size of the output of the gamma function and so reduce the computational
complexity. This results in :

H0
(a,b,c)(a) =p

2a +1∗e
E−F

2 (3.101)

with

E = lnΓ(2a +1)+ lnΓ(b + c) (3.102)

F = l nΓ(b +a +1)+ lnΓ(a − c +1) (3.103)

And the second initialization :

H1
(a,b,c)(s) = A∗ (s −a)(s +b)(s − c)+ (s +a +1)(s + c +1)(s −b +1)

(2s +1)
∗H0

(a,b,c)(s) (3.104)

with

A =
√

1

(a + c +1)(b − c −1)(b −a −1)
(3.105)
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EVALUATION PARAMETERS

The Dual Hahn polynomial, as described in equation 3.90 has free parameters a,b and
c. As can be deduced from the region where s is defined, the parameter a states the
beginning location of the polynomial evaluation on the image function, i.e. the starting
point. Because the constraint 3.93, b = a +N will determine the largest point of s that
will be evaluated. Therefore, a and b together determine the location of the window of
size N of the polynomial function that is evaluated. This can be observed in figure 3.6.
Note that the size of the reconstructed image does not vary as illustrated in figure 3.7.
The influence of c is shown in figure 3.6 where the values of b and a are kept constant,
and three cases of c are plotted for the first ten orders of the polynomial. This shows that
when increasing c, the polynomial will shift from left to right and the other way around.
The three cases of parameter selection, as illustrated in the figures presented, will be
tested in the classification pipeline to get an idea of the influence of the varying values
for c on the classification results.

Figure 3.6: 1D representation of 10th order Dual-Hahn moment with varying values of the parameter c

Figure 3.7: Example of image reconstruction of human motion spectrogram with 10th order Dual-Hahn mo-
ment and varying values of the parameter c

HAHN

From the Racah polynomial given in Section 3.4 the Hahn polynomial, Qn(x;α,β, N ), can
be formed by setting γ+1 =−N and let δ→∞ in Rn(x(x +γ+δ+1);α,β,γ,δ)[53]. Note
that in contrast to the Racah and Dual- Hahn moments, the Hahn moment is defined on
a uniform lattice. This results in the Hahn polynomial as described in
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H
α,β
n (x; N ) = (−1)n(β+1)n(N −n)n

n!
3F2

( −n,−x,n +1+α+β 1
β+1,1−N

)
(3.106)

Here (u)k the Pochhammer symbol and 3F2 a hypergeometric function. To establish nu-
merical stability, the same step as for Racah is applied. Here the polynomial is normal-
ized as in 3.107, resulting in the weighted Hahn polynomial.

H̄
α,β
n (x; N ) =H

α,β
n (x; N )

√
ωH

ρH
. (3.107)

With the weight function defined as

w(x;α,β, N ) =
(
α+x

x

)(
β+N −x

N −x

)
(3.108)

and Norm
ρ(n;α,β, N ) =

(−1)n(n +α+β+1)N+1(β+1)nn!

(2n +α+β+1)(α+1)n(−N )n N !

(3.109)

The Hahn polynomial has the ability to change its region of emphasis, i.e., it can change
its ROI. This is done by changing the parameters α1 = p1t1,β1 = (

1−p1
)

t1, and α2 =
p2t2,β2 = (

1−p2
)

t2.[53] In the case of α1 = β1 = α2 = β2 = 0 the Moment is set into
global mode i.e. capturing the whole image. In case of

{
α1,β1,α2,β2

} > 0 it will extract
local features.

IMPLEMENTATION

As with the Racah moments and Dual Hahn moments, the calculation of the Hahn mo-
ments will depend on the hypergeometric function and factorial functions. Therefore,
the order of the moments that can be computed in e.g. MATLAB will be limited. There
are several techniques for rewriting equation 3.106 in recursive ways. In [87], a method
is proposed to calculate the Hahn moments in a recursive and fast manner. For this
research, the implementation of recursive computation over x is chosen and is imple-
mented as follows:
-Initialization:

h̃(α,β)
0 (x) =


√

(N−x)(β+x)
x(N+α−x) h̃(α,β)

0 (x −1); x > 0√
(α+β+1)Γ(α+1+β)Γ(N+α)

Γ(α+1)Γ(N+α+β+1) ; x = 0
(3.110)

-Recursive method to lose gamma functions :

h̃(α,β)
n (0) =−

√
(α+β+2n +1)(α+β+n)(N −n)(n +β)

n(α+n)(α+β+N +n)(α+β+2n −1)
h̃(α,β)

n−1 (0) (3.111)
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h̃(α,β)
n (1) = ((n+β+1)(N−n−1)−n(N+α−1))

√
1

(β+1)(N −1)(N +α−1)
h̃(α,β)

n (0) (3.112)

-The iteration loop itself is then defined as:

h̃(α,β)
n (x) = A× h̃(α,β)

n (x −1)+B × h̃(α,β)
n (x −2) (3.113)

with

A = 2(x −1)(N +α−x +1)+ (β+1)(N −1)− (α+β+2)(x −1)−n(α+β+n +1)

(x −1)(N +α−x +1)+ (β+1)(N −1)− (α+β+2)(x −1)

√
(β+x)(N −x)

(N +α−x)x
(3.114)

and

B =− (x −1)(N +α−x +1)

(x −1)(N +α−x +1)+ (β+1)(N −1)− (α+β+2)(x −1)

√
(β+x)(N −x)

(N +α−x)x

(β+x −1)(N −x +1)

(N +α−x +1)(x −1)
(3.115)

EVALUATION PARAMETERS

The variables α and β in the Hahn polynomial, as described in Equation 3.106, can
change the topology of the basis function. As previously described for the Racah mo-
ments, the change of shape of the basis function will affect the moments’ classifica-
tion ability for micro-Doppler signatures, where the values of a and b define the ROI
of the basis functions. Therefore, a selection of parameter values is evaluated to opti-
mize these parameters with respect to the classification rate. A selection of parameter
settings is chosen for evaluation on micro-Doppler data. This selection consists of three
cases where the values of a and b are appointed to move the ROI of the Hahn polynomial
in the right, left and whole image. The 1D representation of the different polynomials is
shown in figure 3.8 illustrating the shape change of the basis functions when varying a
and b.

Figure 3.8: 1D representation of 10th order Hahn moment with varying values of the parameters a and b
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Figure 3.9: Example of image representation of 10th order Hahn moment with varying values of the parameters
a and b

The 2D image representation of the different Hahn polynomials is shown in figure 3.9,
where a spectrogram is reconstructed from the 10th-order moments.
The different cases are evaluated for classification of their classification performance by
evaluating them in the same manner as the other discussed moments. The results are
presented in Chapter 6.

KRAWTCHOUK MOMENTS

As with the Racah moment, a hypergeometric function defines the basis function. The
basis function can again be obtained by the Racah polynomial and the Hahn polynomial
as t →∞. For a 1D case, the Krawtchouk polynomial is defined as equation 3.117 and
3.118 with (a)k the Pochammer symbol.

lim
t→∞ h̄n(x;α,β, N ) = k̄n(x; p, N ) (3.116)

Kn(x; p, N ) =
N∑

k=0
ak,n,p xk = 2F1

(
−n,−x;−N ;

1

p

)
(3.117)

with

2F1(a,b;c; z) =
∞∑

k=0

(a)k (b)k

(c)k

zk

k !
(3.118)

(a)k = a(a +1) . . . (a +k −1) = Γ(a +k)

Γ(a)
(3.119)

The weighted version, by means of a form of normalization, is derived for numerical
stability. The weighting function is constructed by means of a binomial distribution as
described below, with the orthogonality condition given, and this will be reduced to just
δnm after normalization.

w(x; p, N ) =
(

N
x

)
px (1−p)N−x (3.120)

N∑
x=0

w(x; p, N )Kn(x; p, N )Km(x; p, N ) = ρ(n; p, N )δnm (3.121)
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where n,m = 1,2, . . . , N and

ρ(n; p, N ) = (−1)n
(

1−p

p

)n n!

(−N )n

K̄n(x; p, N ) = Kn(x; p, N )

√
w(x; p, N )

ρ(n; p, N )
(3.122)

This results in the 2D weighted Krawtchouk moments described as

Qnm =
N−1∑
x=0

M−1∑
y=0

K̄n
(
x; p1, N −1

)
K̄m

(
y ; p2, M −1

)
f (x, y) (3.123)

IMPLEMENTATION

As with the previous discrete moments discussed, a recursive implementation is desired
to lose the binomial operator and factorial terms. In [88] a recursive implementation for
calculating the Krawtchouk polynomial is proposed. The recursion is given by:

p(N −n)K̄n+1(x) = A(N p −2np +n −x)K̄n(x)−Bn(1−p)K̄n−1(x) (3.124)

for
n = 1,2, . . . , N −2; x = 0,1, . . . , N −1; p ∈ (0,1)

Where A and B are defined by

A =
√

p(N −n)

(1−p)((n +1)

B =
√

p2(N −n)(N −n +1)

(1−p)2(n +1)n

(3.125)

And the initialization of K̄

K̄0(x) =
√

w(x; p, N )

ρ(0; p, N )

K̄1(x) =
(
1− x

pN

)√
w(x; p, N )

ρ(1; p, N )

(3.126)

for x = 0,1, . . . , N −1.

EVALUATION PARAMETERS

The weighted Krawtchouk moment has some remarkable properties. Krawtchouk mo-
ments can change its ROI, by changing its p1 and p2 corresponding to the binomial dis-
tribution in equation 3.123 and 3.120 i.e., adjusting its resolution on certain parts of the
image. The p values change the basis functions so that, in lower-order Krawtchouk mo-
ments, the selection of the p values could be seen as specifying the window location in
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which the moments capture information. On higher orders, the value of p can be in-
terpreted as the point at which the basis function begins to expand, e.g., defining the
starting point of the ROI. To be able to exploit this property for micro-Doppler classifica-
tion purposes, an analysis is performed using a selection of p values. As an illustration
of the influence of this variable, three different cases are shown in figures 3.10 and 3.11,
where p1 = p2 and values 0.3, 0.5 and 0.7 are chosen, evaluated on two orders as data a
spectrogram of a human micro Doppler signature is used as a sample image. From the
figures, it can be easily observed that the window captured by the moments depends on
the order and value of p, where p will influence the starting point of expansion of the
basis function and the order of the size and resolution of the frame. Therefore, the topol-
ogy of the classification data will influence the classification potential of the Krawtchouk
moment, given a particular value of p. To illustrate their influence on classification per-
formances, the three selected cases are used to classify three different micro-Doppler
data sets. The results and analysis of this classification are presented in Chapter 6.

Figure 3.10: Example of image representation of 10th order Krawtchouk moment with varying values of the
parameter p

Figure 3.11: Example of image representation of 30th order Krawtchouk moment with varying values of the
parameter p

TCHEBICHEF

The Tchebichef polynomial is related to Racah, Hahn, and Krawtchouk.[53] The polyno-
mial can be formed from the Hahn polynomial by letting t → 0 .

lim
t→0

hn(x;α,β, N ) = tn(x) (3.127)
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This results in
tn(x) = (1−N )n 3F2(−n,−x,1+n;1,1−N ;1)

n, x, y = 0,1,2, . . . N −1
(3.128)

which can be written in the form

tn(x) = n!
n∑

k=0
(−1)n−k

(
N −1−k

n −k

)(
n +k

n

)(
x
k

)
(3.129)

The scaling factor β(n, N ) = N n is introduced for numerical stability.

β(n, N ) = N n . (3.130)

The scaled Chebyshev polynomial is then given by

t̃l (x) = tl (x)

β(l ,L)
. (3.131)

The norm or amplitude factor is given as

ρ(n, N ) = (2n)!

(
N +n
2n +1

)
. (3.132)

The dependence on the binomial operator (
N +n
2n +1

) and the factorial term (2n)! will

limit the maximum order due to the computational complexity. Therefore a recursive
the function is rewritten in a recursive manner:

ρ(n, N ) = (2n)!(N +n)!

(2n +1)!(N −n −1)!
(3.133)

using n! = n(n −1)!, this can be rewritten as

(2n +1)ρ(n, N ) = ρ(n −1, N )(N 2 −n2) (3.134)

and the scaled version ρ̃(n, N ) = ρ(n,N )
β(n,N )2

(2n +1)ρ̃(n, N ) = ρ̃(n −1, N )(N 2 −n2)

N 2 (3.135)

t̃n(x) =
(2n −1)t̃1(x)t̃n−1(x)− (n −1)

(
1− (n−1)2

N 2

)
t̃n−2(x)

n
, n = 2,3, . . . N −1 (3.136)

The resulting moment is defined as

Tl ,h = 1

ρ̃(l ,L)ρ̃(h, H)

N−1∑
x=0

N−1∑
y=0

t̃l (x)t̃h(y) f (x, y), (3.137)

With f (x, y), the image function. Note that when t → 0 results in the Hahn polynomial
α1 = β1 = α2 = β2 = 0. As described in section 3.4, it would be the same as the Hanh
moment that captures the whole frame. Note that the Tchebychef moment cannot em-
phasize a certain region.
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MEIXNER MOMENTS

The Meixner moments are part of the family of discrete moments. The polynomial is
defined as

ϖ
(β,µ)
n (x) = (β)n2 F1(−n,−x;β;1−1/µ) (3.138)

Which is based on a hypergeometric function and has free parameters β and µ

where β and µ are restricted to 0 <µ< 1 and β> 0. (3.139)

And the normalized Meixner polynomial is then defined as:

ϖ̃
(β,µ)
n (x) =

√
w(x)

d 2
n

n = 0,1, . . . , N −1 (3.140)

With

w(x) = µx+nΓ(n +β+x)

Γ(β)x!
(3.141)

and

d 2
n = n!(β)n

µn(1−µ)β
(3.142)

The resulting Meixner moments of order n are then calculated for an image function
f (x, y) over the domain N xM using:

M Mnm =
M−1∑
x=0

N−1∑
y=0

ϖ̃
(β,µ)
n (x)ϖ̃(β,µ)

n (y) f (x, y) (3.143)

IMPLEMENTATION

The basis function is implemented similarly to the other discrete moments. Here, a re-
cursive implementation is chosen to be able to calculate the basis functions up to high
orders. As presented in [55], the approach was used to achieve a recursion on n. The
recursion is implemented as follows:

ϖ̃
(β,µ)
n (x) = BD

A
ϖ̃

(β,µ)
n−1 (x)− C E

A
ϖ̃

(β,µ)
n−2 (x) (3.144)

With
A = µ

µ−1

B = x−xµ−n+1−µn+µ−βµ
1−µ

C = (n−1)(n−2+β)
1−µ

D =
√

u
n(β+n−1)

E =
√

u2

n(n−1)(β+n−2)(β+n−1)

(3.145)

The initialization is of ϖ̃(β,µ)
0 (x) and ϖ̃(β,µ)

1 (x) is calulated using:
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ϖ̃
(β,µ)
0 (x) =

√
ω(x)

d 2
n(0)

ϖ̃
(β,µ)
1 (x) =

(
γ+x − x

µ

)√
ω(x)

d 2
n(1)

(3.146)

Note that because of the Gamma functions and the exponential terms in equation 3.141,
the function cannot be calculated to high orders and high values of x and β. Therefore
the function will be recursively implemented, resulting in the procedure:

w(x) = x +β−1

x
∗w(x −1)∗µ (3.147)

with the initialization w(0) = 1

EVALUATION PARAMETERS

The parameters β and µ are free under the condition 3.139. Where the two parameters
will change the shape of the basis functions. The combination of the two variables will
define the ROI of the functions. β can be seen as an indication of the center on which
the function starts expanding. The parameter µ defines the distribution of the zeros. In
the case of µ < 0.5 this will emphasize the left side of β, µ = 0.5 centred around β and
lastly, µ > 0.5 right of β. Four variations in parameter selections are chosen to analyze
the effect on the moments, selected in a way that gives a good overview of the variety in
the characteristics. The different cases are shown in figure 3.12. In figure 3.13, the image
reconstruction of the Meixner moments is shown when calculated for a 128x128 spec-
trogram of a micro-doppler signature. The variations of the moments are evaluated the
same way as the other moments analyzed. This results in an overview of the influence on
the classification result when varying parameters. The results can be found in Chapter 6

CHARLIER MOMENTS

Charlier moments are part of the family of discrete moments. The basis function is de-
fined using a hypergeometric function:

ca1
n (x) = 2F0

(
−n,−x;

−1

a1

)
(3.148)

for 0 < a1. When rewriting the Hypergeopmatic term, the equation function becomes:

C a1
n (x) =

n∑
k=0

(
n
k

)(
x
k

)
k ! (−a1)−k (3.149)

The normalized Charlier polynomial follows from the orthogonality condition and is de-
fined as
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Figure 3.12: Representation of 10th order Meixner basis function with varying values of the parameters β and
µ

C̃ a1
n (x) =C a1

n (x)

√
ω(x)

d 2
n

(3.150)

with

ω(x) = e−a1 ax
1

x!
(3.151)

d 2
n = n!

a1
n (3.152)

As with the previous discrete moments discussed, a recursive implementation is desired
to lose the binomial operator and factorial terms. In

C̃ a1
n+1(x) = a1 −x +n

a1

√
a1

n +1
C̃ a1

n (x)−
√

n

n +1
C̃ a1

n−1(x) (3.153)

With initialization:

c̃a1
0 (x) =

√
w(x)

d 2
0

=
√

e−µµx

x!

c̃a1
1 (x) = µ−x

µ

√
w(x)

d 2
1

= µ−x

µ

√
e−µµx+1

x!

(3.154)
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Figure 3.13: Example of image representation of 10th order Meixner moment with varying values of the pa-
rameters β and µ

The Resulting Charlier moments are then calculated for an NxM case, using the follow-
ing:

Cnm =
N−1∑
x=0

M−1∑
y=0

C̃ a1
n (x)C̃ a1

m (y) f (x, y) (3.155)

EVALUATION PARAMETERS

The Charlier basis function has a free parameter a1. This parameter will influence the
ROI of the basis function where a1 can be mainly seen as the point where the basis func-
tion is centered. This behavior can be observed in figure 3.14. The effect on the 2d ROI
of the moment can be observed in figure 3.15. Here, also the compression in the distri-
bution of zeros is visible. As with the earlier discussed moments, the selection of the free
parameter values, as given in the presented figures, will be evaluated on the classification
pipeline to see their influence on the classification performance.

3.5. TO SUMMARIZE
All the moments investigated in this research have been mathematically derived, and an
implementation is proposed for each moment. With the proposed implementations, the
moments can be calculated to a maximum order equal to 50 without issues of stability.
This opens up the possibility of using the moments as features. Furthermore, for the
moments with free parameters in their formulation, various variables are chosen to test
further regarding their classification abilities. The implementation of the moments as
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Figure 3.14: Basis functions of 10th order Charlier moment with varying values of the parameter a1

Figure 3.15: Image representation of 10th order Charlier moment with varying a1 values

presented in this chapter is used to construct the feature vector discussed in Chapter 5.
The final classification results are then presented in Chapter 6.

3.6. CONTRIBUTION OF CODE
As a further contribution, the MATLAB scripts that implement the moments as described
in this chapter are shared after the publication of this thesis. The scripts and documenta-
tion can be found at https://doi.org/10.4121/efd059aa-f2c2-4c54-be85-4e600876f444.
v1[10].

https://doi.org/10.4121/efd059aa-f2c2-4c54-be85-4e600876f444.v1
https://doi.org/10.4121/efd059aa-f2c2-4c54-be85-4e600876f444.v1


4
MICRO-DOPPLER SIGNATURE DATA

This chapter describes the experimental micro-Doppler datasets used for the verification
of the moment-based classification approaches formulated in this thesis. The analysis
contains an evaluation of the topology and the influence of the different moments, an
evaluation of the data concerning the physical aspects they capture, and an analysis of a
selection of pre-processing techniques and their influence on the classification potential of
the orthogonal moments.

4.1. DATA GENERATION
This research focuses on the classification of micro-Doppler signatures and tries to gen-
eralize the micro-Doppler classification problem as a general research question. How-
ever, the micro-Doppler signatures will not come from a constant source, as different
factors will influence the data and therefore their appearance and the way relevant infor-
mation is encoded in them. As described in Chapter 2, first various objects are of interest,
which causes a variety of signatures. In addition to the diversity of objects, the type of
radar and settings will also influence the data gathered, resulting in a time-Doppler rep-
resentation that differs from case to case. This means that micro-Doppler signature data
cannot be treated as homogeneous. To generalize the classification results as much as
possible, a variety of data sets will be evaluated; these sets will have different settings and
targets. This will show the classification abilities of the moments for these various cases.

4.1.1. MICRO-DOPPLER SIGNATURES
The Micro-Doppler signatures are generated by taking the short-time Fourier transform
(STFT) over the data generated from the radar. The Doppler-time representation of the
data is generally represented by the spectrogram. The spectrogram is obtained by repre-
senting the signal power in time and Doppler frequency. This is illustrated in the equa-
tion 4.1. Here s̃(n) indicates the radar signal and h(n −k) a window filter.

χ(ν,k) = |ST F T (x)|2 =
∣∣∣∣∣N−1∑

n=0

(
s̃(n) ·h(n −k) ·e

− j 2πνn
N

)∣∣∣∣∣
2

,k = 0, . . . ,K −1, (4.1)
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Most datasets and classification pipelines treat digitally the signatures as images, whereas
several datasets provide the data in spectrograms saved as images. The literature study
provided in Chapter 2 shows that the data in such proposed pipelines are commonly pre-
sented as a spectrogram for micro-Doppler classification problems. Note that raw data
are not available for the cases where the datasets are provided as a spectrogram. Dif-
ferent techniques have been proposed to transform the raw radar data, e.g., the wavelet
transform or other time-frequency distributions. Evaluation of all transformation possi-
bilities for raw radar data is considered outside of the scope of this research. The input
data for the proposed classification pipeline is assumed to be in the format of a spectro-
gram described as an image.

4.2. DATASETS USED FOR THE ANALYSIS
In Chapter 2, a selection of different micro-Doppler data sets is presented. From this se-
lection, three data sets are used to evaluate the moments. The data sets used are selected
on the basis of the analysis presented regarding the general properties of the data, e.g.
presence of harmonics and topologies. Where a variation in data set properties is desired
to subject the moments to distinct cases, the different cases will open up the opportunity
to test the classification abilities of the moments more broadly.
Knowing the characteristics of the data can make a possible link on why/which orthogo-
nal moments will perform the way they do. Section 3 shows that the basis function of the
moments has different characteristics. The functions expand in different ways, resulting
in a difference in how the ROI of the functions behaves. Therefore, the way a function
places emphasis on a certain region will be different between the functions. The differ-
ence in the data topology of the different classes could influence the performance of the
moments. All classes of the sets will be evaluated to identify how the data distributions
look. Connecting the data with the physical event they represent, e.g. waving hands
with a particular repetition frequency and duration in Doppler time. From this evalua-
tion, the class-defining properties of classes can be estimated. These properties can be
compared to the properties of the moments to explain their classification behaviour.
To get an idea of the general distribution of the data, we used the mean and variance of
the data set. Variance can be seen as a measure of the spread of the data. In the case of
a dataset defined by classes, the assumption can be made that when taking the variance
over the whole set, the variance between the data from different classes will be domi-
nant, i.e. measuring the variability between the classes. In the case of a classification
problem, a region of significant statistical spread could identify a class-defining region,
as the data differs from class to class in this location. The variance will be defined as:

vi j = 1

N −1

N∑
k=1

∣∣xi j −µi j
∣∣2 (4.2)

Where i and j define the pixel location of the image, N is the number of the data sample,
and µi j indicates the average value of the pixel at location (i , j ) for the whole data set.

4.2.1. DOP-NET DATASET
The Dop-NET data set [22] is a set of four classes of human hand motion. The data is
recorded using a 24GHz FMCW radar with a bandwidth of 750 MHz and a chirp period
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of 1 ms. Four human hand signatures define the classes. The data are published as a pre-
processed spectrogram. One sample of each class is shown in figure 4.1. The different
classes and their physical interpretation are listed below:

• Wave: A waving motion of the human hand. Note that this creates a harmonic re-
sponse in time Doppler, as shown in figure 6.5a. This continuous harmonic means
that frequency-based preprocessing, e.g. CVD, could improve classification rates.
Also notable is that the same harmonic spreads over the whole horizontal axes.

• Pinch: The thumb and index finger move to each other and back. This creates a
temporal Doppler-time response of a positive and negative frequency shift, figure
6.5b. In this case, the information is only present in a certain part of the horizontal-
time axes.

• Click: The thumb moves to the middle finger, similar to the pinch, but faster.
Therefore, the Doppler-time response is similar, but the positive and negative parts
are closer in time, figure 6.5c.

• Swipe: The hand is moved in the direction of the pointing direction of the thumb.
This creates a single positive response in Doppler time, figure 6.5c. Again, we cre-
ate a temporal response in Doppler time where the class information is situated in
only a small part of the time axes.

(a) Waving (b) Pinch

(c) Click (d) Swipe

Figure 4.1: Spectrogram examples for the four classes of the Dop-NET dataset

The variance of the different pixel locations across the whole data set is shown in Figure
4.2. This figure shows the variability of the pixels; this can be used as an indication of a
region of interest. It can be observed that the whole horizontal axis, representing time,
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has high variability. Therefore, defining an ROI of the horizontal pixel location will lead
to a potential loss in classification. This would require using a moment that captures
the whole horizontal axes. In addition, regions of high variability are present above and
below the central x values, indicating positive and negative Doppler values. This region
has the highest values around the vertical center of the image. Vertically, the classifica-
tion rate could benefit from defining an ROI and the appropriate moment close to the
vertical center of the image. A moment type that performs well in the illustrated region
is expected to also perform well in terms of classifying this dataset.

Figure 4.2: The representation of the variance over the pixel location of the whole Dop-NET dataset

4.2.2. GLASGOW DATASET
The Glasgow set [2] is a dataset containing micro-Doppler signatures of different human
activities. The set is measured using a 5.8 GHz radar with a 1ms chirp duration and
400 MHz bandwidth. The set used contains six different events defined by their human
activity. The class activities and their micro-Doppler signatures are discussed below.

• Walking: The person walks away, turns and walks towards the radar. This causes
a micro-Doppler response that is negative when walking away and positive when
walking towards. The multibody dynamics produced by the limbs produce har-
monics around this burst Doppler velocity, figure 4.3a. Note that the harmonics
are spread over the total length of the data frame. Also, the continuous presence of
harmonics could indicate that, for this class, a frequency-separating preprocessing
step, e.g., CVD, would improve classification results.

• Sitting down: A person sits in a chair. This introduces a bulk of complex mov-
ing multi-dynamic bodies. It is hard to say which body part and motion will pro-
duce the dominant part of the signature. Figure 6.5b shows a temporal Doppler
response. Furthermore, are there no clear harmonics present

• Standing up: A person stands up from a sitting position. This movement is simi-
lar to sitting down class, where this produces the inverse motions. The produced
Doppler response is temporal and without any clean, continuous harmonics.
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• Pick up an object: A person is kneeling or bending down to pick up an object
from the floor. This motion is similar to sitting down and standing up, as it creates
a bulk of complex motions. The Doppler response is temporal and without any
clear harmonics.

• Drink water: Pouring and drinking a glass of water. The arm movements of the
person will dominate this activity. The Doppler velocity will be low as the arms
will not move at high speeds. This can be seen in figure 4.3e. Also, the data are
spread over more time. Here, the Doppler response stretches almost the whole
data frame.

• Fall: A person will fall on the ground. The falling motion will produce a high nega-
tive Doppler velocity, as can be seen in Figure 4.3f. The limbs will cause less dom-
inant responses in different motions. The Doppler response will be temporal an
without any continuous harmonics.

(a) Walking (b) Sitting down (c) Standing up

(d) Pick up an object (e) Drink water (f) Fall

Figure 4.3: Spectrogram examples for the six classes of the Glasgow dataset

The variance over the dataset of each pixel location is again used as an indication of
interclass variability. Figure 4.4 shows the variance figure. This figure shows that the
most variable pixes are located at the vertical center of the image, that is, the time axes.
Horizontally, the variance is spread uniformly, with the exception of the left side. There
an increase in the variability of the pixels is shown. Emphasizing this could potentially
increase the classification results. For the horizontal axes, the emphasis should be on
the center.
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Figure 4.4: The representation of the variance over the pixel location of the whole Glasgow dataset

4.2.3. CROSS-FREQUENCY SET - XETHRU
The Cross-frequency set used [25] is initially made with three types of radar, each pro-
viding its own data set. The set is produced to analyze the influence of different types of
radar on a classification problem. For this research, one of the data sets is used. This set
was recorded with a XeTru UWB impulse radar with a frequency band of roughly 7GHz
- 8GHz. The set consists of 11 classes of human activities. The activities are more com-
plex in motion than the earlier ones and are described in figure 4.5. Note that because of
the larger amount of classed and less separable activities, this data set will be harder to
classify.

(a) Walking towards the
radar

(b) Walking away from
the radar

(c) Picking up an object (d) Bending

(e) Sitting (f) Kneeling (g) Crawling (h) Walking on both toes

(i) Limping with right leg
stiff

(j) Short step (k) Scissor Gait

Figure 4.5: Spectrogram examples for the eleven classes of the Cross-frequency XeThru dataset

The pixel variance over the dataset is shown in figure 4.6. Where the highlighter regions
indicate a location of high variability, this region is mainly spread around the vertical
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center and the whole horizontal part of the image. Note that the vertical spread of the
variability is wider than in the previous presented dataset. Moments that emphasize this
region could potentially increase the classification results.

Figure 4.6: The representation of the variance over the pixel location of the whole Cross-frequency XeThru
dataset

4.2.4. TOPOLOGY OVERVIEW
The variance figures of all the selected datasets show variability that is concentrated in
the vertical center of the image function and spreads throughout the horizontal direc-
tion. As the variance over the classes is assumed to be an indicator for class-defying
regions, the moments that will capture this region will potentially have better perfor-
mances. The mathematical evaluation of the moments presented in 3 shows that in gen-
eral most moments capture this region. However, those moments that can move the
ROI, i.e. the moments with free parameters, do not always capture the whole vertical
region at lower orders. Therefore, it is assumed that these moments will perform better
at higher orders. This hypothesis is tested and the results are presented in Chapter 6.

4.3. CVD AS PRE-PROCESSING METHOD
The literature study in chapter 1 shows that CVD is always used in the general processing
pipeline of previous research using orthogonal moments. The Cadence Velocity Diagram
is created when taking the FFT over time at each Doppler frequency bin in the time-
frequency spectrogram [19], i.e. it returns the motion harmonics of the targets mea-
sured. As the analysis done on the different data sets shows that not all classes contain
continuous, well-defined harmonics, the benefits of this mapping can be questioned.
The orthogonal moments will be analyzed on both spectrograms and CVD to analyze
the influence of using one instead of the other. The CVD will be calculated using:

∆(ν,ϵ) =
∣∣∣∣∣K−1∑

k=0

(
χ(ν,k) ·e

− j 2πkϵ
K

)∣∣∣∣∣ , (4.3)

Where χ(v,k) is the spectrogram defined in the equation 4.1. The data characteristics of
the data sets, as analyzed above, will change when taking the CVD, i.e., the whole data
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topology will be different due to this mapping.

PRESENCE OF HARMONICS IN DATASETS

The presence of harmonics in a data set would favor the argument for using CVD as an
additional preprocessing step. For the selected datasets, some classes show the presence
of a harmonic. Although only a small portion of the classes have a recognizable continu-
ous harmonic presence over the whole length of the captured frame. Therefore, it would
be hard to say if techniques such as CVD would be beneficial for these datasets. This is
evaluated for all moments, and the results are presented in Chapter 6

4.4. NOISE INTRODUCTION
The robustness against noise introduction will be tested for the moments discussed. The
data used in this research is measured in different settings and environments. This in-
troduces a problem on where the data is not noise-free, essentially it will be unknown
what the contribution of this noise is compared to the captured signal.
To evaluate the robustness against noise, the default data from the data sets will be seen
as a clean signal. Noise will then be introduced into the data in an additive manner. For
this research, the choice is made to introduce additive Gaussian noise to the spectrogram
representation of the radar data. Note that this noise introduction does not have a direct
physical meaning. The noise introduction in this way only evaluates the robustness with
random Gaussian variations. The evaluation of the robustness against more physical
varieties of noise and distortions is out of the scope of this research for time limitations.
This method of testing the influence of noise on classification ability is however similar
to the method used in image recognition [38]. For this evaluation, the radar data are
not tested on the physical implementation of noise, but the spectrogram of the data is
treated as done in image processing, so the data are treated as an image. This method
shows the robustness of the moments regarding zero-mean Gaussian noise and provides
a first indication of the general noise robustness of the moments.
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CLASSIFICATION PROCESSING

STEP

This chapter discusses and analyses the different aspects of the proposed classification
pipeline exploiting a set of orthogonal moment-based features. These aspects include
specifically the feature vector generation from the discussed moments, the classifier se-
lection, and the feature selection out of an initially established set. The analysis of these
aspects illustrates the choices available in these components of the classification pipeline.
Different methods are introduced to optimize the overall classification performance of the
discussed moments.

5.1. FEATURE VECTOR GENERATION
A feature vector must be made from the generated moments to use a distance-based
classifier, e.g. KNN or SVM. Specific properties of the moments can be exploited to gen-
erate a vector that optimizes the overall classification performances. Not all moments
have the same properties. Therefore, different approaches are discussed for different
types of moments.

5.1.1. COMPLEX MOMENTS
The moments that are defined on a circle have an imaginary part. This imaginary part
is a problem for most simple Euclidean classifiers, since they are designed to deal with
only real numbers. There are several ways to deal with the imaginary parts. In [38], the
characteristic vector is made up of taking the magnitude. The rotational invariance can
still be proven as it satisfies the equation:

Vnm(r cosθ,r sinθ) ≡Vnm(r,θ) = Rn(r )Am(θ) (5.1)

Where Am(θ) = exp( j mθ) and Rn(r ) is the radial basis function. This invariance holds
since, when taking the length of the exponential function, the length will be constant,
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Figure 5.1: Zoom in on the feature selection block of the overall classification pipeline

independent of the value of θ. Suppose there will be a rotation of angle θ0; then:

|Vnm(r,θ0)| = |Rn(r )exp( j mθ0)| = |Rn(r )| (5.2)

and for the angle:

φr ot
nm =φnm −m ∗θ0 (5.3)

In most research, the importance of the rotational invariance property implies that the
magnitude of the complex moments is taken to construct the feature vector. This pro-
cedure excludes the phase part of the moments as a source of information. In [89] it is
shown that the phase of Zernike moments does capture information about the image
function. It was proved that the expected distortion caused by the variation in magni-
tude is less than or equal to the distortion caused by the variation in phase, indicating
that the phase contains information of importance similar to the magnitude.

PROPOSED FEATURE VECTOR CONSTRUCTION METHOD

Considering the aforementioned discussion, for this research the importance of the ro-
tational invariance property can be questioned, because the micro Doppler signatures
are defined on a non-rotational square grid. Therefore, the imaginary part can be added
to the feature vector, contributing the additional phase information. The vector will be
constructed using the normalized real part of the orders 0 to nth. The complex normal-
ized part of the moment is added to the end vector.

F̃r eal =
Fr −µFr

σFr

, F̃Imag = Fi −µFi

σFi

(5.4)

With Fi = Im(F) and Fr =Re(F) for a feature vector F, where µ indicates the mean and σ
the standard deviation. The final vector is constructed as:

F̃ = [F̃r eal , F̃Imag ] (5.5)
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5.1.2. FEATURE VECTOR NORMALIZATION

The moments defined on a square grid are commonly normalized in their feature vec-
tor. This procedure ensures that the impact of all features is normalized, removing a
potential bias in the classification process [90]. The normalization of the feature vector
is defined as:

F̃ = F−µF

σF
(5.6)

Here, σF is defined as the standard deviation of the feature vector F and µF the mean of
F. The feature vector itself is composed by taking all non-zero components from the mo-
ment matrices. The normalization step can be performed on all moment-based feature
vectors. In section 6, the results are shown in terms of the classification performance
with normalization on the complex feature vectors.

5.2. EUCLIDEAN DISTANCE-BASED CLASSIFIERS
To focus the investigation on the different properties and parameters of the studied mo-
ments, a simple classifier is preferred. Note that the property of interest is the extraction
ability of class-defying information of the data of each moment. A classifier based on the
distance of the features between the classes will preserve these individual properties of
the moments. When choosing a relatively advanced classification algorithm, e.g. Neu-
ral Networks, the classification results cannot be traced back as an achievement by the
moment investigated. A selection of the most commonly used classifying algorithms is
discussed and implemented.

5.2.1. K-NEAREST NEIGHBOR (KNN)
From the literature review presented in Chapter 1, a KNN is the most commonly used
classification algorithm in research related to orthogonal moments as a feature for micro
Doppler signature classification. This algorithm is commonly chosen due to its simple
nature. The parameter k has to be chosen. From the literature, the most common cases
are 1, 3 and 7 [64]. It does not specify whether the values used are optimal for the eval-
uated moment. Also, it would be hard to reason which value would be optimal for each
case. Therefore a variety of k: 1 to 10 is chosen and tested using the moments discussed
and the selected datasets. The results can be found in Chapter 6

5.2.2. SUPPORT VECTOR MACHINE (SVM)
A Support Vector Machine (SVM) is commonly chosen as a classifier. This classifier is
chosen for the same reason as the KNN, i.e. as a simple distance-based classifier. The
SVM algorithm is dependent on a specific type of kernel. This kernel influences the clas-
sification ability, which depends on the distribution of the features. In previous research,
several kernels are used in classifying problems in combination with orthogonal mo-
ments. The most common kernels are listed below, where x j and xk are vectors of di-
mension p representing observations j and k in x. q represents the polynomial kernel
order.
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• Linear
G

(
x j , xk

)= x j
′xk

• Quadratic
G

(
x j , xk

)= (
1+x j

′xk
)q

• Radial Basis Function
G

(
x j , xk

)= exp
(
−∥∥x j −xk

∥∥2
)

The choice of kernel and if this kernel is optimal for a classification problem with a par-
ticular type of moment is not stated. There are algorithms proposed for the automated
selection of kernel and regularization parameters. A complete derivation of optimal ker-
nels and parameters is beyond the scope of this research. To give an initial idea of kernel
selection, the kernels listed above are selected and used in Chapter 6. This gives an ini-
tial optimal approach to using an SVM in micro-Doppler classification problems with
the applied moments.

5.3. FEATURE SELECTION
The general idea behind using orthogonal moments for micro-Doppler classification is
to extract class-defining features directly from them. Data will be mapped from a large
set of data points to a smaller set, where the class-defining aspects of the data are pre-
served. In the simplest case, the moments will be used directly for classification. This
means that the moments generated are used as features in a particular type of classifier.
Section 5.2 will go deeper into selecting a classifier, but for now, the assumption will be
made that the classifier will be limited in the number of features, i.e., the classifier will be
sensitive to overfitting. The compressing data rate of the moments differs from moment
to moment.

Moment Feature vector size

ZM (K+1)(K+2)/2

PZM, GM,LM,GHM,CHM,CHDM,KM,HM,DHM,RM,CM,MM (K+1)ˆ2

OFMM, CHFM, PJFM, JFM, RHFM, BFM (K+1)(2K+1)

EFM, PCEM (2K+1)ˆ2

Table 5.1: Table illustrating the size of the feature vector of the calculated moments. K represents the order of
the calculated moments

An overview of the moment matrix size created concerning their order is given in Ta-
ble 5.1. The table lists the non-zero components, as not all moments expand squarely.
As can be seen from the table, the compression rate differs. When going to higher-order
moments, it can be expected that the size of the feature vector would become a prob-
lem. In most relevant research, this is not a commonly addressed problem. It can be
argued that reducing the number of data samples in a selected manner could improve
the classification results of higher-order moments. Therefore, an analysis is included in
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the selection of the moments feature. Here, the emphasis lies on preserving the proper-
ties of moments.
The rest of this section analyses different feature selection methods when applied to the
discussed orthogonal moments. This analysis aims to see if further feature selection,
performed on the moment-based feature vector, would benefit the classification rate.
The classification results using a feature selection algorithm are presented and discussed
in Chapter 6

5.3.1. UNIVARIATE FEATURE RANKING FOR REGRESSION USING F-TESTS
The F-test is a statistical test that assesses the significance of the relationship between a
characteristic and the target variable in a regression model. Each moment is treated as
an individual feature when using univariate feature ranking with F-tests. Moments with
higher scores on the F-test indicate stronger correlations with the target variable, sug-
gesting that they have more predictive power. On that basis, the most relevant features
are selected. This feature selection approach helps identify the moments that contribute
the most to explaining the variance in the target variable.
For this research, the MATLAB implementation of this feature selection algorithm is
used. The performance of this method depends on the number of features included
and does not guarantee a better or optimal solution. The method will be used as a first
indication of the effect of feature selection when using orthogonal moments. It is chosen
because of the short calculation time in comparison to other commonly used feature se-
lection methods, e.g., sequential feature selection which require many multiple assess-
ments of different candidate feature vectors with the chosen classifier. The classification
results can be found in Chapter 6.

5.3.2. UNIVARIATE FEATURE RANKING FOR CLASSIFICATION USING CHI-SQUARE

TESTS
The univariate feature ranking for classification using the chi-square test [91] feature
selection method is similar to the previously proposed univariate feature ranking for
regression using F-tests. In this method, a chi-square test is used to estimate the de-
pendence of individual characteristics on the outcome. This method has as advantage
that it is more suitable for selecting features in classification tasks with categorical target
variables, whereas F-tests are utilized for regression tasks. Both methods are used for a
first indication on the influence of feature selection on orthogonal moments. Here, the
function provided in MATLAB is used. The results are presented in Chapter 6.

5.4. EVALUATION METRIC AND PIPELINE
The results from the different pipelines will be compared between the different mo-
ments, classifiers, data sets, and moment orders. A measure is required to properly il-
lustrate the classification performance of the proposed pipelines in the most uniform
way. For this purpose, the F1 score is chosen as a measure. The F1 score does take the
recall and precision into account and is defined as:

F 1 = T P

T P + 1
2 (T P +F N )

(5.7)
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T P is the true positive classification, and the F N is the false negative. For this research,
the F1 score brings an advantage over other metrics, e.g. the sample size or the difference
between the classes (imbalances) will not influence the performance measure. Note that
the calculation given in Equation 5.7 is calculated over each class, resulting in the so-
called Micro-F1 score. The Macro-F1 score, i.e., the F1 score over the whole set, is then
calculated by averaging over all the classes. In the limit case of T P = 0, the fraction does
not exist, and the micro-F1 score is interpreted as zero.

5.4.1. PROPOSED PIPELINE
To evaluate all the aspects of the classification pipeline described earlier, a revised pipeline
is proposed for evaluation. This is built up of the combination of the blocks described
in figure 5.2. Each block will vary between the previously discussed options, resulting in
the classification results for all possible combinations. From there, the influence of the
different blocks can be evaluated.

Figure 5.2: Revised proposed classification pipeline, with more specific processing blocks explored in this the-
sis

For clarity, the possible variations of each block are summarised below:

• Datasets: There are three datasets evaluated, as described in Chapter 4.

• Preproscessing: There are two preprocessing options evaluated, namely spectro-
gram and the cadence velocity diagram (CVD).

• Moments: There are 20 moments evaluated as described in Chapter 2, for which
various parameters will be evaluated.

• Feature vector generation: There is one type of feature vector generation algo-
rithm for the real-valued moments. For the complex-valued moments, there are
two: including the imaginary part and without.

• Feature selection: Three feature selection methods are evaluated: no selection at
all, CHI-square, and F-test.

• Classifiers: There are 13 different classifiers; a K-NN varying with k = [1,..,10] and
an SVM with the kernel options of linear, quadratic and radial basis function.

The final composed pipeline will be evaluated with all possible combinations. The re-
sults are presented and discussed in Chapter 6. In addition, the pipeline is tested on the
influence of added noise. Specifically, these two cases are evaluated: the case where the
noise is introduced in the training and test data, and the case where the training process
is done using normal data and the testing performed with the introduction of noise.
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This chapter presents the results of the proposed classification pipeline. Several varia-
tions in the pipeline and its components are investigated to fully evaluate the classifica-
tion abilities of the different orthogonal moments. The results are presented and discussed
component-wise, illustrating the different influences of the components on the overall re-
sults, and drawing the main take-home messages from each part of the analysis.

6.0.1. NOTE ON THE PRESENTATION OF THE RESULTS

It should be first noted that the generated results from the proposed classification pipeline
are multidimensional. A visual representation of the data structure is given in figure 6.1,
where the different variables to be accounted for are illustrated, namely classifier, mo-
ment order, and moment type. Note that this case is only for one pre-processing type
and only for one dataset, so variability across datasets and across pre-processing will
also add another dimension to evaluate the results across. Given this complex multidi-
mensional nature of the analysis, the discussion on the results will be segmented over
the different variables of interest to assess their influences.

6.1. GENERAL CLASSIFICATION RESULTS

As a step to reduce the number of possible combinations of the different aforementioned
variables, the maximum value of the F1 score as performance metric will be taken across
the different evaluated classifiers (described in Chapter 5) in the results reported in this
section. Hence, the reported results will first look at the different moment types and or-
der, for the different datasets. For the moments with various tunable parameters, the
best-performing variation will be initially selected, and the influence of the parameter
variation will be further evaluated in section 6.1.7. Moreover, the influence of the classi-
fiers will be further discussed in Section 6.2.
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Figure 6.1: Sketch of the data structure generated by the proposed pipeline given one type of pre-processing;
essentially, the variables of interest are the type of moments considered, their order, and the choice of the
classifier. This can be repeated for each dataset.

6.1.1. INFLUENCE OF THE DIFFERENT DATA SETS
In table 6.1, the general classification results are presented across the three considered
data sets. The maximum classification F1 score is taken for each evaluated moment. The
five best performing F1 scores for each data set are highlighted in green, and the lowest
five are highlighted in red. From the table, it can be observed that the relative perfor-
mance of the moments fluctuates over the different datasets. The relative performance
is, for this case, defined as the performance relative to the other moments applied to the
same data set. Because of this fluctuation, no optimal moment in an absolute sense can
be appointed to give the overall best performance in terms of classification. The mo-
ments that showed the most promising performance on average will be the CM, CHM-
2nd and ZM.
Based on the findings presented in this study, it can be concluded that the performances
of the moments do not exhibit significant differences. However, it is worth noting that
using different classifiers tends to cause the performances to converge towards a rela-
tively narrow range of overall performance. These results suggest that the choice of clas-
sifier may significantly impact the overall system’s performance. Note that the optimal
classifier changed for the different datasets for most moments; this will further be eluci-
dated in the analysis performed in Section 6.2. Regarding overall performance under the
same classifier for all datasets, RM and CHM-2nd moments will be reasonable options.
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Moments Dopnet dataset Glasgow dataset Xethru dataset

Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.960 ’Quadratic svm’ 0.900 ’RBF svm’ 0.775 ’RBF svm’

ZM 0.946 ’Quadratic svm’ 0.921 ’RBF svm’ 0.805 ’Knn, k =1’

PZM 0.954 ’Quadratic svm’ 0.914 ’RBF svm’ 0.772 ’Knn, k =1’

CHFM 0.959 ’Quadratic svm’ 0.883 ’RBF svm’ 0.766 ’Knn, k =4’

OFMM 0.950 ’Quadratic svm’ 0.889 ’RBF svm’ 0.777 ’Knn, k =4’

EFM 0.917 ’Quadratic svm’ 0.901 ’RBF svm’ 0.748 ’RBF svm’

PCEM 0.941 ’RBF svm’ 0.817 ’RBF svm’ 0.775 ’Knn, k =5’

BFM 0.952 ’Knn, k =3’ 0.846 ’RBF svm’ 0.760 ’RBF svm’

RHFM 0.967 ’Knn, k =4’ 0.894 ’RBF svm’ 0.783 ’RBF svm’

GM 0.949 ’Knn, k =3’ 0.895 ’RBF svm’ 0.794 ’RBF svm’

LM 0.939 ’Knn, k =5’ 0.889 ’RBF svm’ 0.756 ’RBF svm’

CHM-1st 0.934 ’RBF svm’ 0.891 ’Knn, k =5’ 0.772 ’RBF svm’

CHM-2nd 0.968 ’RBF svm’ 0.878 ’RBF svm’ 0.808 ’RBF svm’

GHM 0.971 ’RBF svm’ 0.871 ’RBF svm’ 0.787 ’RBF svm’

RM max 0.967 ’RBF svm’ 0.880 ’RBF svm’ 0.810 ’RBF svm’

DHM max 0.970 ’RBF svm’ 0.873 ’Knn, k =10’ 0.802 ’RBF svm’

HM max 0.967 ’RBF svm’ 0.876 ’RBF svm’ 0.787 ’RBF svm’

CHDM 0.945 ’Knn, k =7’ 0.883 ’RBF svm’ 0.760 ’RBF svm’

KM max 0.971 ’RBF svm’ 0.870 ’RBF svm’ 0.794 ’RBF svm’

MM max 0.966 ’RBF svm’ 0.873 ’Knn, k =8’ 0.834 ’Knn, k =5’

CM max 0.968 ’RBF svm’ 0.873 ’RBF svm’ 0.811 ’Knn, k =2’

Table 6.1: Classification results over the different datasets for different moments. The green colour indicates
the top five performing and the red colour the worst five performing F1-scores

Network Dopnet F1 Glasgow F1 XeThru F1
Googlenet 0.967 0.762 0.648
RESnet-50 0.975 0.875 0.703

Table 6.2: Classification results over the different datasets using the convolutional neural networks GoogLeNet
and RESnet-50

6.1.2. COMPARISON TO NEURAL NETWORKS

A classification of the datasets using convolutional neural networks (CNN) is performed
to compare with the results obtained with the proposed moments, presented in Table
6.1. The CNNs are chosen to represent conventional methods from the literature to pro-
cess radar data, such as spectrograms as input images. For this analysis, GoogleNet and
RESnet-50 networks are chosen, mainly because of their usage in related research [38].
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The classification results are shown in Table 6.2. The best-performing approach is the
RESnet-50. Comparing this result with the classification results of the moments shows
that the best-performing moments outperform the CNN for the Glasgow and Xethru
dataset. However, for the Glasgow dataset, the differences in F1 scores are small. For
the Dopnet dataset, the RESnet-50 CNN outperforms all moments. Again, the difference
in the F1 score is small.
Summarizing, the comparison of Table 6.1 and Table 6.2 shows that the investigated mo-
ments are similar to the two investigated CNNs in terms of performance for the Dopnet
and Glasgow datasets, and even better performing for the more complex Xethru dataset.
In the broader context, it should be noted that CNNs tend to have higher computational
complexity, which consequently makes the utilization of orthogonal moments more ad-
vantageous for classification tasks of this nature. The rigorous comparative analysis of
algorithmic complexities can serve as a useful future research diretion to expand from
this work.

6.1.3. ASSESSMENT OF MOMENTS DEFINED ON A DISK

To further evaluate how the moments behave with respect to their order, they will be
evaluated for each family of moments due to the expected similarities in behavior. This
will being with the family of continuous moments defined on a disc. Table 6.3 shows the
results in terms of moment order for the Dopnet dataset. The results for this data set il-
lustrate the general behavior; the results for the other data sets can be found in Appendix
B for completeness.
The table shows that the optimum values are found at low orders centered around order
ten, and that the lower orders generally provide high classification scores. Furthermore,
it can be observed that, at high orders, the scores of the moments that use the SVM clas-
sifier with quadratic kernel drop in the F1 score. This can be explained as a result of the
larger feature vector size on higher orders.
The findings of this study suggest that the use of this family of moments produces favor-
able outcomes at lower orders. This is a desirable characteristic, as lower orders typically
necessitate fewer computational resources.

6.1.4. PROPOSED FEATURE VECTOR FOR COMPLEX MOMENTS

In Section 5.1.1, a feature vector construction method is proposed for moments that con-
tain complex values. This holds for all the moments defined on a disk. The proposed
method is tested and compared to the method used in previous research based on the
absolute value of the moments, i.e. real-valued moments. The results are presented in
Table 6.4, where ’old method’ refers to the conventional usage of real-valued moments,
and ’new method’ to the proposed complex-valued feature vector.

The results show a clear improvement using the proposed method for all the complex
moments evaluated. This shows that adding the phase information is beneficial to the
classification abilities when classifying micro-Doppler signatures. This research uses
this complex-valued feature construction method for all the tests involving complex mo-
ments.
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Moment
Max

F1 score
Best Classifier F1 score

n=5 n=10 n=15 n=20 n=25 n=30 n=40 n=50

PJFM 0.960 ’Quadratic svm’ 0.960 0.903 0.138 0.117 0.122 0.665 0.563 0.546

ZM 0.946 ’Quadratic svm’ 0.817 0.920 0.946 0.263 0.118 0.338 0.547 0.609

PZM 0.954 ’Quadratic svm’ 0.893 0.954 0.324 0.142 0.117 0.236 0.166 0.150

CHFM 0.959 ’Quadratic svm’ 0.959 0.925 0.113 0.117 0.113 0.207 0.663 0.522

OFMM 0.950 ’Quadratic svm’ 0.950 0.922 0.113 0.113 0.113 0.113 0.589 0.510

EFM 0.917 ’Quadratic svm’ 0.917 0.594 0.102 0.097 0.113 0.117 0.117 0.227

PCEM 0.941 ’RBF svm’ 0.788 0.941 0.794 0.617 0.483 0.409 0.364 0.364

BFM 0.952 ’Knn, k =3’ 0.922 0.952 0.846 0.675 0.626 0.637 0.637 0.665

RHFM 0.967 ’Knn, k =4’ 0.907 0.967 0.744 0.623 0.556 0.521 0.467 0.456

Table 6.3: Classification results of the continuous moments defined on a disk as a function of their order, when
applied to the Dopnet dataset

6.1.5. ASSESSMENT OF CONTINUOUS MOMENTS DEFINED ON A SQUARE GRID

Table 6.5 shows the results of the continuous moments defined on a square grid, with
respect to their order when applied to the Dopnet dataset. The results when applied to
the other datasets, can be found in Appendix B for completeness.

The study shows that the spread in optimal order is wider compared to the continuous
moments defined on a disk analyzed in section 6.1.3, and on average these moments
show optimum values at higher orders.

6.1.6. ASSESSMENT OF DISCRETE MOMENTS DEFINED ON A SQUARE GRID

Table 6.6 shows the results of the discrete moments defined on a square grid as a function
of their order, when applied to the Dopnet dataset. When applied to the other data sets
discussed, the results can be found in Appendix B for completeness. One must mention
that the moments evaluated as a function of their various parameters are presented in
this table by taking the combination providing the best performances.

The table shows that the discrete moments find their optimum values at the highest
orders compared to the other families of moments. Specifically, the moments that do
not capture the whole input image at low orders, for example RM, DHM, HM, KM, MM,
CM, show a required higher order at which the optimum is found, compared to the mo-
ments that capture the whole image at lower orders, for example, CHDM. This is ex-
plained by the nature of the data sets described in Chapter 4, where the variance plots
over the different classes illustrate the region defining the class-related information. This
showed that valuable information is present over the whole horizontal length of the im-
age. This information is not captured at low order for the moments that expand from
a center point outwards. As the result shows, higher orders are needed to capture the
class-defining information, potentially resulting in additional complexity.
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Moments Dopnet dataset Glasgow dataset

New method Old method New method Old method

Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.960 ’Quadratic svm’ 0.908 ’RBF svm’ 0.900 ’RBF svm’ 0.831 ’RBF svm’

ZM 0.946 ’Quadratic svm’ 0.908 ’RBF svm’ 0.921 ’RBF svm’ 0.768 ’RBF svm’

PZM 0.954 ’Quadratic svm’ 0.899 ’RBF svm’ 0.914 ’RBF svm’ 0.798 ’RBF svm’

CHFM 0.959 ’Quadratic svm’ 0.914 ’RBF svm’ 0.883 ’RBF svm’ 0.827 ’RBF svm’

OFMM 0.950 ’Quadratic svm’ 0.908 ’RBF svm’ 0.889 ’RBF svm’ 0.831 ’RBF svm’

EFM 0.917 ’Quadratic svm’ 0.844 ’RBF svm’ 0.901 ’RBF svm’ 0.858 ’RBF svm’

PCEM 0.941 ’RBF svm’ 0.901 ’RBF svm’ 0.817 ’RBF svm’ 0.859 ’RBF svm’

BFM 0.952 ’Knn, k =3’ 0.887 ’Quadratic svm’ 0.846 ’RBF svm’ 0.794 ’RBF svm’

RHFM 0.967 ’Knn, k =4’ 0.925 ’RBF svm’ 0.894 ’RBF svm’ 0.828 ’RBF svm’

Table 6.4: F1 scores of the continuous moments defined on a disk when applied to the Dopnet and Glasgow
datasets. Two feature vectors are tested, based on the old method (i.e., real-valued moments computed via the
absolute value) and the newly proposed method (i.e., complex-valued moments).

Moment
Max

F1 score
Best Classifier F1 score

n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=50

GM 0.949 ’Knn, k =3’ 0.887 0.928 0.949 0.918 0.916 0.891 0.797 0.761 0.648

LM 0.939 ’Knn, k =5’ 0.841 0.925 0.939 0.910 0.814 0.751 0.690 0.621 0.540

CHM-1st 0.934 ’RBF svm’ 0.544 0.748 0.798 0.905 0.929 0.934 0.897 0.734 0.620

CHM-2nd 0.968 ’RBF svm’ 0.667 0.727 0.768 0.816 0.908 0.955 0.967 0.968 0.959

GHM 0.971 ’RBF svm’ 0.607 0.726 0.826 0.933 0.963 0.967 0.971 0.968 0.946

Table 6.5: Classification results of the continuous moments defined on a square grid as a function of their
order, when applied to the Dopnet dataset

Moment
Max

F1 score
Best Classifier F1 score

n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45 n=50

RM max 0.967 ’RBF svm’ 0.675 0.691 0.800 0.900 0.962 0.965 0.967 0.965 0.965 0.951

DHM max 0.970 ’RBF svm’ 0.548 0.703 0.861 0.947 0.956 0.967 0.970 0.944 0.908 0.617

HM max 0.967 ’RBF svm’ 0.610 0.753 0.770 0.837 0.922 0.953 0.967 0.962 0.959 0.952

CHDM 0.945 ’Knn, k =7’ 0.846 0.925 0.945 0.885 0.835 0.759 0.696 0.645 0.592 0.592

KM max 0.971 ’RBF svm’ 0.637 0.733 0.831 0.908 0.939 0.959 0.959 0.968 0.971 0.944

MM max 0.966 ’RBF svm’ 0.414 0.621 0.707 0.776 0.895 0.942 0.958 0.962 0.959 0.966

CM max 0.968 ’RBF svm’ 0.672 0.714 0.835 0.895 0.962 0.965 0.965 0.968 0.962 0.961

Table 6.6: Classification results for the discrete moments defined on a square grid when applied to the Dopnet
dataset

6.1.7. EFFECT OF VARIATION OF MOMENT PARAMETERS

Several moments of the family of discrete moments defined on a square are evaluated for
different parameters in their basis functions. The exact parameter values are described
also in Chapter 3, where the moments were first introduced. Classification F1 scores for
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the variety of Racah moments, applied to the Dopnet data set, are presented in Figure
6.2. The scores are plotted for each case against the order of the moment. It is shown
that the cases where the expansion of the ROI covered by the moment starts away from
the vertical center perform worse at low orders. When the order is increased, the ROI of
the moments expands and the classification results converge to the same F1 score.
This illustrates that selecting parameters for the Racah moment is only important when
high classification rates are requested on low orders. At high orders, the influence of the
parameter selection regarding the classification score will be little.
This behavior can be seen for all moments shown in figure 6.3, where the results of the

Figure 6.2: F1-score results as a function of the different variations in parameters of the Racah moment, using
an SVM with an RBF kernel and the Dopnet data set.

parameter variation are shown for CM, HM, KM, and MM when applied to the Dopnet
dataset. These results show that parameter selection can increase classification perfor-
mances at low orders and that at high orders, the different varieties converge, making it
less valuable to tune the parameters.
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(a) CM (b) HM

(c) KM (d) MM

Figure 6.3: The F1 scores of the CM, HM, KM, and MM for different parameter selections when classifying the
Dop-net dataset. This illustrates the convergence to the same scores at higher orders, making the parameters
tuning less valuable.

Further results for the Dual Hahn moments are shown in Figure 6.4; again, it is shown
that the performance at low order differs in F1-scores for the different parameter vari-
ations, and when the order increases, the F1-scores converge. After order 30, the re-
sults show a rapidly decreasing performance for D H M1. In contrast to the previously
observed trends, this appears to indicate that the parameter selection does matter to
avoid decreasing performance for high moments orders, after the maximal F1-score is
reached.

6.1.8. OVERVIEW EVALUATION OF REQUIRED MOMENT ORDER
The results presented so far looked at the influence of the order of the moments for the
different families of moments. It was demonstrated that continuous moments defined
on a disk need the lowest order of moments to obtain their maximal classification score.
Further, it was shown that moments that expand in their ROI need higher orders to ob-
tain the maximum classification rate. This matches the hypotheses of the expected ROI
presented in Chapter 4, where it was illustrated that valuable information is spread over
the entire horizontal axis of the data. Only at higher orders will the ROI cover this whole
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Figure 6.4: Classification results as a function of the different variations in parameters of the Dual-Hahn mo-
ment, using an SVM with an RBF kernel and the Dopnet data set

axis for all moments. This is shown in the convergence to the same classification rates at
higher orders, irrespective of the type of moments considered.

6.2. CLASSIFIER INFLUENCE

The type of chosen classifier influences the classification results. As it can be seen from
the results presented above, the maximum F1 scores are obtained by different classifiers
for the different moments. Table 6.7 presents the difference in the F1 scores obtained
using the Glasgow dataset. The highest- and lowest-scoring classifiers are highlighted,
showing that, on average, an SVM with a radial basis function performs best on this
dataset. In addition, the table shows that the influence of the classifier can be consid-
ered significant, with about 0.1 difference in the F1 scores between the best and worst-
performing classifiers. The results of the other data sets are presented in Appendix B for
completeness. They similarly show widespread performance over the different classi-
fiers.
The classifiers’ performance shows a dependency on the order of the moments. Figure
6.5 presents the box plots for the results of all the different classifiers used, with respect
to the moment order when using the Glasgow data set. It can be seen that the classi-
fiers show different behaviors. For instance, the SVM-RBF has the highest values of F1
scores at orders 15 and 20, and becomes more unstable when dealing with lower orders,
whereas the KNN shows the highest average performances. These plots show that the
linear SVM becomes the most stable and the highest-performing classifier at the higher
orders.
In general, the results show that the classification performance of the moments is highly
dependent on the type of classifier and order. The classifier that shows on average the
best classification results is the SVM with a radial basis function as a kernel function. A
comment has to be made that this only would be the case with orders 15 to 20. When
dealing with lower orders, KNN shows better performance; at higher orders, the SVM
with linear kernel becomes the most favorable classifier.
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Moments RBF SVM Quadratic SVM Linear SVM KNN-1 KNN-5 KNN-10 Difference

PJFM 0.900 0.839 0.807 0.836 0.822 0.817 0.093

ZM 0.921 0.836 0.790 0.814 0.805 0.826 0.132

PZM 0.914 0.857 0.770 0.849 0.839 0.843 0.143

CHFM 0.883 0.848 0.800 0.812 0.819 0.827 0.083

OFMM 0.889 0.834 0.814 0.821 0.820 0.804 0.084

EFM 0.901 0.781 0.808 0.829 0.814 0.821 0.120

PCEM 0.817 0.748 0.784 0.768 0.748 0.765 0.068

BFM 0.846 0.811 0.777 0.811 0.827 0.809 0.069

RHFM 0.894 0.810 0.771 0.850 0.814 0.814 0.123

GM 0.895 0.827 0.764 0.842 0.852 0.865 0.132

LM 0.889 0.839 0.779 0.847 0.865 0.859 0.110

CHM-1st 0.864 0.847 0.803 0.860 0.891 0.886 0.088

CHM-2nd 0.878 0.822 0.774 0.844 0.858 0.869 0.104

GHM 0.871 0.736 0.814 0.800 0.819 0.810 0.134

RM max 0.880 0.817 0.814 0.789 0.835 0.828 0.091

DHM max 0.857 0.745 0.789 0.830 0.859 0.873 0.128

HM max 0,876 0,817 0,782 0,847 0,864 0,863 0,094

CHDM 0.883 0.850 0.780 0.855 0.872 0.859 0.103

KM max 0.870 0.705 0.782 0.842 0.848 0.844 0.164

MM max 0.870 0.807 0.793 0.791 0.845 0.839 0.079

CM max 0.873 0.754 0.786 0.796 0.800 0.796 0.119

Table 6.7: F1-scores for different moments when different classifiers are used to classify the Glasgow dataset.
The difference in F1-score between the best-performing (green) and worst-performing (red) classifier for each
moment is also included.
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(a) Linear SVM (b) KNN-1

(c) Quadratic SVM (d) RBF SVM

Figure 6.5: Boxplot of the F1 score values using all the moments considered in this thesis. This illustrates the
influence of the moment order on the used classifiers.

6.3. ASSESSMENT OF PERFORMANCE OF THE CVD

The influence of using CVD as a type of preprocessing and data formatting is tested in
terms of classification rates. Table 6.8 presents the maximum F1 scores obtained by the
moments evaluated applied to the Dopnet data set using CVD and spectrograms. The
F1 scores for the spectrogram case are shown as a reference, and the maximum value
is highlighted in gray. This indicates that the CVD performs worse in most cases than
the spectrogram. Only in the cases of EFM and PCEM, the F1 score shows a slight in-
crease. These results show that the usage of the CVD in this format can be questioned.
The technique does not appear to increase the classification results and generates more
computational complexity in the classification pipeline.
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Moments Spectrogram CVD

Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.960 ’Quadratic svm’ 0.885 ’Knn, k =3’

ZM 0.946 ’Quadratic svm’ 0.838 ’linear svm’

PZM 0.954 ’Quadratic svm’ 0.858 ’linear svm’

CHFM 0.959 ’Quadratic svm’ 0.897 ’Knn, k =1’

OFMM 0.950 ’Quadratic svm’ 0.873 ’RBF svm’

EFM 0.917 ’Quadratic svm’ 0.928 ’RBF svm’

PCEM 0.941 ’RBF svm’ 0.951 ’RBF svm’

BFM 0.952 ’Knn, k =3’ 0.875 ’Knn, k =6’

RHFM 0.967 ’Knn, k =4’ 0.866 ’Knn, k =8’

GM 0.949 ’Knn, k =3’ 0.934 ’RBF svm’

LM 0.939 ’Knn, k =5’ 0.927 ’RBF svm’

CHM-1st 0.934 ’RBF svm’ 0.921 ’RBF svm’

CHM-2nd 0.968 ’RBF svm’ 0.940 ’RBF svm’

GHM 0.971 ’RBF svm’ 0.934 ’RBF svm’

RM max 0.967 ’RBF svm’ 0.948 ’RBF svm’

DHM max 0.970 ’RBF svm’ 0.940 ’RBF svm’

HM max 0.967 ’RBF svm’ 0.948 ’RBF svm’

CHDM 0.945 ’Knn, k =7’ 0.934 ’RBF svm’

KM max 0.971 ’RBF svm’ 0.943 ’RBF svm’

MM max 0.966 ’RBF svm’ 0.948 ’RBF svm’

CM max 0.968 ’RBF svm’ 0.946 ’RBF svm’

Table 6.8: Classification results comparison for the spectrogram vs CVD used as pre-processing techniques
classifying the DOP-net dataset

6.3.1. ASSESSMENT OF THE INFLUENCE OF NOISE INTRODUCTION

The classification performance of the moments is tested with respect to the noise influ-
ence. The disturbance in the data is simulated by adding zero-mean Gaussian noise to
the spectrogram. Note that this procedure does not have direct physical meaning. It is
similar to the noise analysis techniques proposed in image processing [9] as explained in
Chapter 4. The classification pipeline is subjected to noise in two ways; first, where the
classifier is trained and tested on the noisy data, and second, a case where the classifier
is trained on clean data and tested on data with introduced noise.

NOISE IN TRAINING AND VALIDATION DATA

The results of the case where the training and testing data are subjected to noise are
shown in Table 6.9 for the Glasgow data set, and Table 6.10 for the Dopnet data set. Noise
is added as zero-mean Gaussian noise with variances 0.1 0.2, and 0.3, respectively. It
can be observed from the tables that the increases in noise variance cause the F1-scores
to drop as the data get more disrupted. The orthogonal moment-based classification
pipeline is compared with two neural networks. Table 6.11 presents the classification
results of these two neural networks using the Glasgow data set. Comparing these results
shows that the best-performing moments and best-performing neural networks have
similar, comparable performances.
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Moments Spectogram 0.1 0.2 0.3
Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.900 ’RBF svm’ 0.794 ’Quadratic svm’ 0.763 ’Quadratic svm’ 0.748 ’Quadratic svm’
ZM 0.921 ’RBF svm’ 0.742 ’linear svm’ 0.728 ’linear svm’ 0.714 ’linear svm’
PZM 0.914 ’RBF svm’ 0.738 ’linear svm’ 0.716 ’linear svm’ 0.703 ’linear svm’
CHFM 0.883 ’RBF svm’ 0.781 ’Quadratic svm’ 0.771 ’Quadratic svm’ 0.784 ’Quadratic svm’
OFMM 0.889 ’RBF svm’ 0.794 ’Quadratic svm’ 0.777 ’Quadratic svm’ 0.763 ’Quadratic svm’
EFM 0.901 ’RBF svm’ 0.749 ’Knn, k =8’ 0.710 ’Knn, k =10’ 0.710 ’Knn, k =9’
PCEM 0.817 ’RBF svm’ 0.731 ’Quadratic svm’ 0.713 ’Quadratic svm’ 0.674 ’Quadratic svm’
BFM 0.846 ’RBF svm’ 0.751 ’Quadratic svm’ 0.747 ’Quadratic svm’ 0.736 ’Quadratic svm’
RHFM 0.894 ’RBF svm’ 0.784 ’Quadratic svm’ 0.773 ’Quadratic svm’ 0.774 ’Quadratic svm’
GM 0.895 ’RBF svm’ 0.777 ’RBF svm’ 0.759 ’Knn, k =7’ 0.715 ’Knn, k =9’
LM 0.889 ’RBF svm’ 0.754 ’RBF svm’ 0.738 ’linear svm’ 0.684 ’Knn, k =10’
CHM-1st 0.891 ’Knn, k =5’ 0.783 ’RBF svm’ 0.734 ’RBF svm’ 0.712 ’RBF svm’
CHM-2nd 0.878 ’RBF svm’ 0.810 ’RBF svm’ 0.787 ’RBF svm’ 0.776 ’RBF svm’
GHM 0.871 ’RBF svm’ 0.818 ’RBF svm’ 0.775 ’RBF svm’ 0.757 ’RBF svm’
RM max 0.880 ’RBF svm’ 0.819 ’RBF svm’ 0.782 ’RBF svm’ 0.752 ’RBF svm’
DHM max 0.873 ’Knn, k =10’ 0.823 ’RBF svm’ 0.804 ’RBF svm’ 0.786 ’RBF svm’
HM max 0.876 ’RBF svm’ 0.815 ’RBF svm’ 0.779 ’RBF svm’ 0.766 ’Knn, k =8’
CHDM 0.883 ’RBF svm’ 0.770 ’RBF svm’ 0.743 ’linear svm’ 0.704 ’Knn, k =10’
KM max 0.870 ’RBF svm’ 0.813 ’RBF svm’ 0.779 ’RBF svm’ 0.749 ’RBF svm’
MM max 0.873 ’Knn, k =8’ 0.813 ’RBF svm’ 0.792 ’RBF svm’ 0.779 ’RBF svm’
CM max 0.873 ’RBF svm’ 0.821 ’RBF svm’ 0.785 ’RBF svm’ 0.778 ’RBF svm’

Table 6.9: Classification results using the Glasgow dataset when noise is introduced in the training and test
data. Noise is introduced as a zero-mean Gaussian with σ variance of 0.1, 0.2 and 0.3

Moments Spectogram 0.1 0.2 0.3
Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.960 ’Quadratic svm’ 0.926 ’Quadratic svm’ 0.914 ’Quadratic svm’ 0.916 ’Quadratic svm’
ZM 0.946 ’Quadratic svm’ 0.852 ’RBF svm’ 0.844 ’RBF svm’ 0.840 ’RBF svm’
PZM 0.954 ’Quadratic svm’ 0.781 ’RBF svm’ 0.785 ’RBF svm’ 0.768 ’RBF svm’
CHFM 0.959 ’Quadratic svm’ 0.916 ’Quadratic svm’ 0.907 ’Quadratic svm’ 0.911 ’Quadratic svm’
OFMM 0.950 ’Quadratic svm’ 0.906 ’Quadratic svm’ 0.907 ’Quadratic svm’ 0.913 ’Quadratic svm’
EFM 0.917 ’Quadratic svm’ 0.873 ’RBF svm’ 0.861 ’RBF svm’ 0.837 ’RBF svm’
PCEM 0.941 ’RBF svm’ 0.850 ’RBF svm’ 0.830 ’Knn, k =4’ 0.839 ’Knn, k =4’
BFM 0.952 ’Knn, k =3’ 0.900 ’Quadratic svm’ 0.896 ’Knn, k =3’ 0.910 ’Quadratic svm’
RHFM 0.967 ’Knn, k =4’ 0.923 ’Quadratic svm’ 0.916 ’Quadratic svm’ 0.913 ’Knn, k =2’
GM 0.949 ’Knn, k =3’ 0.914 ’Knn, k =1’ 0.865 ’Knn, k =3’ 0.865 ’Knn, k =5’
LM 0.939 ’Knn, k =5’ 0.907 ’RBF svm’ 0.870 ’RBF svm’ 0.859 ’RBF svm’
CHM-1st 0.934 ’RBF svm’ 0.922 ’RBF svm’ 0.878 ’RBF svm’ 0.841 ’RBF svm’
CHM-2nd 0.968 ’RBF svm’ 0.887 ’RBF svm’ 0.872 ’Knn, k =5’ 0.869 ’Knn, k =5’
GHM 0.971 ’RBF svm’ 0.884 ’RBF svm’ 0.840 ’RBF svm’ 0.774 ’RBF svm’
RM max 0.967 ’RBF svm’ 0.896 ’Knn, k =4’ 0.903 ’Knn, k =5’ 0.898 ’Knn, k =5’
DHM max 0.970 ’RBF svm’ 0.930 ’RBF svm’ 0.916 ’RBF svm’ 0.900 ’RBF svm’
HM max 0.967 ’RBF svm’ 0.914 ’Knn, k =7’ 0.914 ’Knn, k =3’ 0.905 ’Knn, k =7’
CHDM 0.945 ’Knn, k =7’ 0.910 ’RBF svm’ 0.878 ’RBF svm’ 0.878 ’RBF svm’
KM max 0.971 ’RBF svm’ 0.882 ’RBF svm’ 0.843 ’RBF svm’ 0.777 ’RBF svm’
MM max 0.966 ’RBF svm’ 0.921 ’Knn, k =3’ 0.917 ’Knn, k =3’ 0.912 ’Knn, k =2’
CM max 0.968 ’RBF svm’ 0.911 ’RBF svm’ 0.882 ’RBF svm’ 0.814 ’RBF svm’

Table 6.10: Classification results using the Dopnet dataset when noise is introduced in the training and test
data. Noise is introduced as a zero-mean Gaussian with σ variance of 0.1, 0.2 and 0.3

NOISE IN VALIDATION DATA

The results for the Glasgow dataset, where noise is only added to the test set but not to
the training set, are shown in Table 6.12. In the presented table, the top five performing
moments are highlighted for each case, i.e. for the original case and for the three cases
where noise has been added. The classification results show that the moments that had
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Network
Gaussian white noise (variance)
0 0.1 0.2 0.3

Googlenet 0.762 0.753 0.692 0.716
RESnet-50 0.876 0.841 0.798 0.699

Table 6.11: Classification results using the Glasgow dataset and a neural network as a classifier, when noise is
introduced in the training and test data. Noise is introduced as a zero mean Gaussian with σ variance of 0.1,
0.2 and 0.3

their optimum values at lower orders (see Sections 6.1.3-6.1.6) perform better under the
influence of noise in their test set compared to the other moments. This behavior can
be explained by the low-pass filtering behavior of the lower-order moments. The lower-
order basis functions will be less affected by the high-frequency components of the white
noise and, therefore, be more robust. The moments that show best performances for this
type of noise introduction are the CHDM, PCEM,OFMM, PJFM and RHFM.
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Moments Spectrogram
Gaussian white noise (variance)

0.1 0.2 0.3

Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.900 ’RBF svm’ 0.831 ’RBF svm’ 0.716 ’RBF svm’ 0.637 ’RBF svm’

ZM 0.921 ’RBF svm’ 0.618 ’Knn, k =1’ 0.531 ’Knn, k =1’ 0.438 ’Knn, k =1’

PZM 0.914 ’RBF svm’ 0.599 ’RBF svm’ 0.511 ’Knn, k =1’ 0.454 ’RBF svm’

CHFM 0.883 ’RBF svm’ 0.796 ’RBF svm’ 0.683 ’RBF svm’ 0.595 ’RBF svm’

OFMM 0.889 ’RBF svm’ 0.838 ’RBF svm’ 0.698 ’RBF svm’ 0.634 ’RBF svm’

EFM 0.901 ’RBF svm’ 0.321 ’linear svm’ 0.299 ’linear svm’ 0.227 ’linear svm’

PCEM 0.817 ’RBF svm’ 0.823 ’RBF svm’ 0.737 ’RBF svm’ 0.671 ’RBF svm’

BFM 0.846 ’RBF svm’ 0.731 ’RBF svm’ 0.648 ’RBF svm’ 0.578 ’RBF svm’

RHFM 0.894 ’RBF svm’ 0.829 ’RBF svm’ 0.684 ’RBF svm’ 0.625 ’RBF svm’

GM 0.895 ’RBF svm’ 0.687 ’Knn, k =1’ 0.441 ’Knn, k =3’ 0.377 ’Knn, k =3’

LM 0.889 ’RBF svm’ 0.768 ’Knn, k =1’ 0.569 ’Knn, k =1’ 0.429 ’Knn, k =1’

CHM-1st 0.891 ’Knn, k =5’ 0.326 ’linear svm’ 0.276 ’linear svm’ 0.262 ’linear svm’

CHM-2nd 0.878 ’RBF svm’ 0.364 ’linear svm’ 0.288 ’linear svm’ 0.287 ’linear svm’

GHM 0.871 ’RBF svm’ 0.374 ’Knn, k =7’ 0.325 ’Knn, k =7’ 0.301 ’Knn, k =9’

RM max 0.880 ’RBF svm’ 0.353 ’Knn, k =8’ 0.333 ’Quadratic svm’ 0.318 ’linear svm’

DHM max 0.873 ’Knn, k =10’ 0.480 ’Knn, k =8’ 0.454 ’Knn, k =10’ 0.459 ’Knn, k =8’

HM max 0.876 ’RBF svm’ 0.391 ’Knn, k =6’ 0.341 ’Knn, k =7’ 0.328 ’Knn, k =9’

CHDM 0.883 ’RBF svm’ 0.997 ’Knn, k =1’ 0.979 ’Knn, k =1’ 0.881 ’Knn, k =1’

KM max 0.870 ’RBF svm’ 0.382 ’Knn, k =7’ 0.365 ’Knn, k =2’ 0.344 ’RBF svm’

MM max 0.873 ’Knn, k =8’ 0.400 ’Knn, k =1’ 0.392 ’Knn, k =2’ 0.395 ’Knn, k =2’

CM max 0.873 ’RBF svm’ 0.492 ’Knn, k =5’ 0.450 ’Knn, k =6’ 0.397 ’Knn, k =6’

Table 6.12: Classification results using the Glasgow dataset when noise is introduced only in the test data. Noise
is introduced as a zero-mean Gaussian with σ variance of 0.1,0.2 and 0.3. The best-performing moments are
highlighted for each scenario.

Network
Gaussian white noise (variance)
0 0.1 0.2 0.3

Googlenet 0.762 0.258 0.0501 0.0502
RESnet-50 0.876 0.163 0.0712 0.0502

Table 6.13: Classification results using the Glasgow dataset and a neural network as a classifier, when noise is
introduced only in test data. Noise is introduced as a zero-mean Gaussian with σ variance of 0.1,0.2 and 0.3

6.4. CLASSIFICATION RESULTS WITH FEATURE SELECTION
The earlier proposed F-test- and chi-square-based methods are used to investigate the
potential of feature selection in the feature set of the generated orthogonal moments.
The Dopnet data set is used to show its influence. The results are shown in Table 6.14
and 6.15. The results show that when using feature selection for a feature vector length
of 100 and 200, the classification results will be similar, where some moments see a small
increase in F1-score. Although these results do not show a clear increase in performance,
they do show that the feature selection could be beneficial, as fewer moments may need
to be calculated. This could potentially speed up the classification pipeline and reduce
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Moments Unbounded nf = 100 nf = 200

Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.960 ’Quadratic svm’ 0.970 ’Quadratic svm’ 0.950 ’Quadratic svm’

ZM 0.946 ’Quadratic svm’ 0.928 ’RBF svm’ 0.923 ’RBF svm’

PZM 0.954 ’Quadratic svm’ 0.920 ’RBF svm’ 0.922 ’RBF svm’

CHFM 0.959 ’Quadratic svm’ 0.962 ’Quadratic svm’ 0.962 ’Quadratic svm’

OFMM 0.950 ’Quadratic svm’ 0.963 ’Quadratic svm’ 0.959 ’Quadratic svm’

EFM 0.917 ’Quadratic svm’ 0.914 ’Quadratic svm’ 0.940 ’RBF svm’

PCEM 0.941 ’RBF svm’ 0.945 ’Knn, k =3’ 0.941 ’Quadratic svm’

BFM 0.952 ’Knn, k =3’ 0.954 ’Quadratic svm’ 0.954 ’Quadratic svm’

RHFM 0.967 ’Knn, k =4’ 0.956 ’Quadratic svm’ 0.956 ’Quadratic svm’

GM 0.949 ’Knn, k =3’ 0.960 ’Knn, k =7’ 0.963 ’Knn, k =3’

LM 0.939 ’Knn, k =5’ 0.934 ’Knn, k =3’ 0.942 ’Knn, k =1’

CHM-1st 0.934 ’RBF svm’ 0.948 ’Knn, k =3’ 0.954 ’RBF svm’

CHM-2nd 0.968 ’RBF svm’ 0.954 ’Knn, k =3’ 0.960 ’RBF svm’

GHM 0.971 ’RBF svm’ 0.909 ’Quadratic svm’ 0.933 ’Knn, k =5’

RM max 0.967 ’RBF svm’ 0.943 ’Quadratic svm’ 0.966 ’RBF svm’

DHM max 0.970 ’RBF svm’ 0.958 ’Knn, k =3’ 0.958 ’Knn, k =3’

HM max 0.967 ’RBF svm’ 0.945 ’Knn, k =3’ 0.955 ’Knn, k =1’

CHDM 0.945 ’Knn, k =7’ 0.935 ’RBF svm’ 0.979 ’Knn, k =1’

KM max 0.971 ’RBF svm’ 0.938 ’Knn, k =1’ 0.942 ’Knn, k =1’

MM max 0.966 ’RBF svm’ 0.949 ’Knn, k =1’ 0.949 ’Knn, k =1’

CM max 0.968 ’RBF svm’ 0.945 ’Quadratic svm’ 0.955 ’Quadratic svm’

Table 6.14: Classification results using F-tests based feature selection, applied to the Dopnet dataset where n f
denotes the feature vector size. The best classification value is highlighted for each moment

its complexity.



6.4. CLASSIFICATION RESULTS WITH FEATURE SELECTION

6

87

Moments Unbounded nf = 100 nf = 200

Max F1 Best Classifier Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.900 ’RBF svm’ 0.872 ’RBF svm’ 0.898 ’RBF svm’

ZM 0.921 ’RBF svm’ 0.814 ’RBF svm’ 0.881 ’RBF svm’

PZM 0.914 ’RBF svm’ 0.883 ’RBF svm’ 0.883 ’RBF svm’

CHFM 0.883 ’RBF svm’ 0.873 ’RBF svm’ 0.902 ’Knn, k =8’

OFMM 0.889 ’RBF svm’ 0.874 ’RBF svm’ 0.894 ’RBF svm’

EFM 0.901 ’RBF svm’ 0.905 ’RBF svm’ 0.907 ’RBF svm’

PCEM 0.817 ’RBF svm’ 0.829 ’RBF svm’ 0.840 ’RBF svm’

BFM 0.846 ’RBF svm’ 0.864 ’Knn, k =6’ 0.901 ’RBF svm’

RHFM 0.894 ’RBF svm’ 0.872 ’RBF svm’ 0.880 ’RBF svm’

GM 0.895 ’RBF svm’ 0.898 ’Knn, k =6’ 0.904 ’Knn, k =8’

LM 0.889 ’RBF svm’ 0.912 ’Knn, k =10’ 0.889 ’RBF svm’

CHM-1st 0.891 ’Knn, k =5’ 0.899 ’Knn, k =6’ 0.891 ’Knn, k =5’

CHM-2nd 0.878 ’RBF svm’ 0.887 ’Knn, k =6’ 0.879 ’Knn, k =8’

GHM 0.871 ’RBF svm’ 0.841 ’RBF svm’ 0.864 ’RBF svm’

RM max 0.880 ’RBF svm’ 0.888 ’RBF svm’ 0.882 ’Knn, k =6’

DHM max 0.873 ’Knn, k =10’ 0.886 ’Knn, k =6’ 0.879 ’Knn, k =6’

HM max 0.876 ’RBF svm’ 0.887 ’Knn, k =9’ 0.874 ’RBF svm’

CHDM 0.883 ’RBF svm’ 0.907 ’Knn, k =10’ 0.902 ’Knn, k =8’

KM max 0.870 ’RBF svm’ 0.857 ’Knn, k =9’ 0.881 ’RBF svm’

MM max 0.873 ’Knn, k =8’ 0.873 ’RBF svm’ 0.873 ’RBF svm’

CM max 0.873 ’RBF svm’ 0.870 ’Knn, k =7’ 0.891 ’RBF svm’

Table 6.15: Classification results using chi-square tests based feature selection, applied to the Glasgow data set
where n f denotes the feature vector size. The best classification value is highlighted for each moment
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6.5. SUMMARY OF RESULTS
The results presented in this chapter show the influence of the data sets on the inves-
tigated moments’ classification abilities. It is shown that the classification rates of the
moments vary as a function of the dataset, and that different moments are optimal for
different datasets, whereas CM, CHM-2nd and ZM exhibit the strongest performance
across all evaluated data sets. For the case where the classifier is kept constant, RM and
CHM-2nd demonstrate promising results in terms of overall performance with the same
classifier across all datasets.
Further, it is shown that the moments defined on a disk perform better at lower orders
compared to the other moments. In addition, this family of moments showed the best re-
sults for noise robustness when noise is introduced in the validation set while the train-
ing is done on clean data. Also, for this case, it is shown that the proposed moments
provide better performances compared to the evaluated convolutional neural networks.
The moments with free parameters showed to converge to the same classification rates
when computed for high orders. At lower orders, the classification ability depends on the
region of the original input radar data that the moment ROI captures, where the middle
part of the spectrogram around the 0 Hz region is proven to be important for micro-
Doppler signature classification. The CVD showed no clear increase in classification
rate compared to spectrograms. This result shows that the usage of the CVD in these
classification problems can be questioned since no performance increase is achieved,
and computational complexity is added to the pipeline.
For the complex-valued moments, a feature vector construction method is proposed.
This method showed an increase for all the complex moments and shows that adding
phase information is beneficial for micro-Doppler classification problems.
Feature selection applied to the calculated orthogonal moments showed that the feature
vector can be reduced without decreasing the classification abilities. This could poten-
tially be used to speed up the classification process since complexity can be reduced.
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7.1. SUMMARY AND CONCLUSION
This thesis focuses on the investigation of orthogonal moments for the classification of
radar micro-Doppler signatures. It provides an analysis of the most frequently used or-
thogonal moments found in the literature, including the assessment of a proposed clas-
sification pipeline to identify the most critical aspects affecting the classification rates.
Notably, to the best of the author’s knowledge, the vast majority of the analysed mo-
ments has not been used for the classification of radar micro-Doppler data as discussed
in this thesis. The main conclusions are summarized below as contributions to answer
the formulated research questions, namely:

• What moments show the best performances in the classification of micro-Doppler
signatures?
The analysis of three different experimental datasets and order of moments has
provided valuable information on the most effective moments for classification.
The results demonstrate that CM, CHM-2nd, and ZM exhibit the strongest, consis-
tent performance across all the evaluated datasets. Furthermore, RM and CHM-
2nd demonstrate promising results in terms of overall performance with the same
classifier across all datasets.

• What is the influence of the dataset on the classification performance of orthog-
onal moments used as a feature?
The influence of the datasets in an orthogonal moment-based classification pipeline
is shown to be significant. The change in the dataset causes a change in classifi-
cation performance in terms of different optimal orthogonal moments, classifiers,
and moment orders. This highlights the fact that relying solely on the evaluation
of moment performance on a single dataset, as conducted in prior research, is a
precarious approach, and on the contrary one should be mindful of adapting the
moments-based classification approach to the specific radar data and classifica-
tion problem at hand.
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• What is the influence of the classifier on the classification performance of or-
thogonal moments used as a feature?
The type of classifier employed in the pipeline for micro-Doppler signature classi-
fication using orthogonal moments has been demonstrated to influence the clas-
sification outcomes significantly. The performance of orthogonal moments varies
depending on the specific classifier used in combination with them, a phenomenon
observed also for other features proposed in the literature. Furthermore, the clas-
sification behavior of moments exhibits variations at different orders, implying
that the optimal classifier at lower orders may differ from that at higher orders.
These findings emphasize that the choice of classifier cannot be considered ho-
mogeneous within the classification pipeline of micro-Doppler signature classifi-
cation using orthogonal moments. Essentially, it highlights the necessity of care-
fully considering the interaction between moments and classifiers to achieve the
most effective and accurate classification results.

• How robust are the orthogonal moments with respect to the introduction of
noise?
The highest-performing moments have similar classification results as the state-
of-the-art comparison method (Convolutional Neural Networks) in case noise is
introduced in the test and train data. However, for the case where noise is only
introduced in the test data, the moments outperformed the neural networks by a
great margin. In this case, the best performing moments are of the family of the
continuous moments defined on a disk, where the CHDM, PJFM, OFMM, PCETM,
and RHFM showed the best results. These results favor the use of orthogonal mo-
ments in case the general noise distributions are not known when establishing the
training set.

• What is the influence of the variation in parameters for the moments with free
parameters?
Moments with free parameters to be selected converge to the same classification
performance at higher moment orders. This is explained as the moments cap-
ture the whole class-defying region of the data at high orders. At lower orders, the
parameter selection will influence the classification performances depending on
how much of the class-defying region is captured within their ROI.

• What is the influence of using the CVD as a pre-processing step in the classifica-
tion pipeline?
The use of the CVD does not appear to show a significant increase in classifica-
tion performance with respect to using the spectrogram. For all three evaluated
datasets, the majority of the orthogonal moments do not see an increase in F1
score. Therefore, the usage of CVD can be questioned for the studied classification
problems, as it does not increase classification rates and yet introduces additional
computational complexity.

• How is the performance of orthogonal moments compared to other classifica-
tion methods?
Orthogonal moments exhibit a modest but significant improvement in performance
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compared to the convolutional neural networks investigated in this thesis. The
classification results have shown that the best performing moments generally per-
form better in comparison to the evaluated neural networks. In addition, as men-
tioned above, the moments outperformed the evaluated neural networks in the
cases where noise is introduced in the test data and the networks are trained on
clean data.

In conclusion, the comprehensive evaluation of orthogonal moments for radar micro-
Doppler classification demonstrates their efficacy across the essential aspects of the clas-
sification pipeline. This investigation highlights the significance of considering orthogo-
nal moments as a valuable option in the pursuit of accurate and reliable micro-Doppler
based classification.

7.2. FUTURE WORK
The presented evaluation of orthogonal moments indicated the potential to use orthog-
onal moments for radar classification. While several aspects have been evaluated, there
are still some potential subjects that can be examined in future research.

• Evaluation of realistic noise distributions
Measured radar data will inevitably be influenced by noise. This research assumed
that the noise was white Gaussian and added it to the spectrogram image, which
has no direct physical/electromagnetic meaning. Further research is needed to
evaluate the performance of moments under more realistic noise conditions.

• Evaluation of computational complexity
Orthogonal moments-based classification is assumed to be computationally sim-
pler compared to neural networks. This property has not yet been evaluated in
a rigorous manner, even because the complexity of either moments or networks
can be highly variable depending on moment type or network architecture. Fu-
ture research is needed to assess rigorously the computational benefits of using
orthogonal moments.

• Optimization of feature selection
The evaluated feature selection methods showed that the size of the feature vectors
could be greatly reduced while still obtaining similar classification performances.
The evaluation served as an indication of the influence of feature selection. In fur-
ther research, the methods used for selection of features can be optimized. Fur-
thermore, this process could potentially speed up classification. Training and clas-
sification will be less time-consuming when dealing with smaller feature vectors,
and, in addition, fewer moments have to be calculated, decreasing the computa-
tional complexity of the feature vector construction.

• Adaptation of moments in different scenarios
The optimal performing moments showed to differ from dataset to dataset. Fur-
ther investigation is needed to evaluate moments on a more diverse selection of
activities. This evaluation could indicate average best-performing moments in
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real-life scenarios where many different activities are mixed in a continuous se-
quence.
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Algorithm 1 Recusive calcualtion gegenbauer moment method

1: nmax ← Maximum order of moments
2: F (N , N ) ← Image
3:

4: /* Compute Gegebauer polynomial */
5: for i = 1 to N do
6: x ← (i ∗2/N )−1
7: P (0, i ) ← 1
8: P (1, i ) ← 2∗a ∗x
9: for i = 2,nmax do

10: P (n, i ) ← (2∗ (n +a −1)∗x ∗P (n −1, i )− (n +2∗a −2)∗P (n −2, i ))/n
11: end for
12: end for
13: /* Compute Gegebauer Moment */
14: for n ← 0 to nmax do
15: for m ← 0 to nmax do
16: sum ← 0
17: for i ← 1toN do
18: for j ← 1toN do
19: sum ← sum + P (n, i ) ∗ P (m, j ) ∗ F (i , j ) ∗ ((1 − x( j )2)a−0.5) ∗ ((1 −

x(i )2)a−0.5)
20: end for
21: end for
22: moment s(n,m) ← sum ∗ 4

(N−1)2 ∗ ((n!∗ (n + a)∗ (Γ(a))2)/(pi ∗Γ(n + 2∗ a)∗
(21−2∗a)))∗ (m!∗ (m +a)∗ (Γ(a))2)/(pi ∗Γ(m +2∗a)∗ (21−2∗a))

23: end for
24: end for



B
GENERAL RESULTS

B.1. INFLUENCE OF THE MOMENT ORDERS

Moment
Max
F1 score

Best Classifier F1 score

n=5 n=10 n=15 n=20 n=25 n=30 n=40 n=50
PJFM 0.900 ’RBF svm’ 0.835 0.900 0.866 0.775 0.575 0.338 0.120 0.0554
ZM 0.921 ’RBF svm’ 0.756 0.850 0.900 0.921 0.880 0.646 0.327 0.0606
PZM 0.914 ’RBF svm’ 0.844 0.905 0.914 0.698 0.531 0.438 0.336 0.3293
CHFM 0.883 ’RBF svm’ 0.850 0.883 0.854 0.757 0.563 0.309 0.112 0.0554
OFMM 0.889 ’RBF svm’ 0.833 0.889 0.866 0.775 0.575 0.341 0.120 0.0554
EFM 0.901 ’RBF svm’ 0.801 0.891 0.901 0.893 0.691 0.504 0.176 0.0554
PCEM 0.817 ’RBF svm’ 0.759 0.817 0.775 0.691 0.571 0.484 0.403 0.3038
BFM 0.846 ’RBF svm’ 0.835 0.846 0.702 0.535 0.219 0.159 0.084 0.0554
RHFM 0.894 ’RBF svm’ 0.842 0.894 0.883 0.794 0.578 0.324 0.066 0.0501

Table B.1: Classification results for the continuous moments defined on a square grid using the Glasgow
dataset

Moment Max F1 score Best Classifier F1 score
n=5 n=10 n=15 n=20 n=25 n=30 n=40 n=50

PJFM 0.775 ’RBF svm’ 0.529 0.775 0.740 0.420 0.135 0.046 0.019 0.019
ZM 0.805 ’Knn, k =1’ 0.595 0.629 0.649 0.752 0.805 0.757 0.722 0.619
PZM 0.772 ’Knn, k =1’ 0.656 0.719 0.725 0.772 0.707 0.272 0.255 0.173
CHFM 0.766 ’Knn, k =4’ 0.651 0.766 0.609 0.547 0.534 0.487 0.397 0.375
OFMM 0.777 ’Knn, k =4’ 0.678 0.777 0.635 0.560 0.534 0.473 0.385 0.382
EFM 0.748 ’RBF svm’ 0.619 0.748 0.690 0.468 0.240 0.102 0.019 0.019
PCEM 0.775 ’Knn, k =5’ 0.775 0.655 0.562 0.490 0.480 0.440 0.319 0.307
BFM 0.760 ’RBF svm’ 0.564 0.760 0.249 0.019 0.019 0.019 0.019 0.019
RHFM 0.783 ’RBF svm’ 0.528 0.783 0.740 0.417 0.124 0.046 0.019 0.019

Table B.2: Classification results for the continuous moments defined on a square grid using the Xetrhu dataset
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Moment
Max
F1 score

Best Classifier F1 score

n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45 n=50
GM 0.895 ’RBF svm’ 0.526 0.854 0.895 0.884 0.818 0.605 0.531 0.347 0.093 0.050
LM 0.889 ’RBF svm’ 0.597 0.889 0.871 0.805 0.575 0.362 0.109 0.055 0.055 0.050
CHM-1st 0.891 ’Knn, k =5’ 0.791 0.891 0.845 0.840 0.807 0.803 0.732 0.674 0.602 0.621
CHM-2nd 0.878 ’RBF svm’ 0.487 0.697 0.854 0.878 0.866 0.860 0.862 0.842 0.835 0.731
GHM 0.871 ’RBF svm’ 0.592 0.751 0.818 0.839 0.867 0.871 0.857 0.846 0.755 0.657

Table B.3: Classification results for the continuous moments defined on a square grid using the Glasgow
dataset

Moment Max F1 score Best Classifier F1 score
n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45 n=50

GM 0.794 ’RBF svm’ 0.460 0.674 0.761 0.794 0.373 0.053 0.019 0.019 0.019 0.019
LM 0.756 ’RBF svm’ 0.454 0.659 0.756 0.534 0.101 0.019 0.019 0.019 0.019 0.019
CHM-1st 0.772 ’RBF svm’ 0.482 0.623 0.708 0.764 0.772 0.745 0.577 0.275 0.132 0.054
CHM-2nd 0.808 ’RBF svm’ 0.511 0.628 0.720 0.786 0.808 0.798 0.696 0.314 0.132 0.083
GHM 0.787 ’RBF svm’ 0.452 0.681 0.767 0.787 0.787 0.618 0.256 0.110 0.019 0.019

Table B.4: Classification results for the continuous moments defined on a square grid using the Xtehru dataset

Moment Max F1 score Best Classifier F1 score
n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45 n=50

RM max 0.880 ’RBF svm’ 0.564 0.821 0.880 0.870 0.857 0.860 0.862 0.855 0.806 0.705
DHM max 0.873 ’Knn, k =10’ 0.627 0.814 0.853 0.850 0.856 0.873 0.867 0.843 0.824 0.829
HM max 0.876 ’RBF svm’ 0.524 0.807 0.870 0.876 0.860 0.857 0.856 0.849 0.818 0.699
CHDM 0.883 ’RBF svm’ 0.602 0.883 0.867 0.767 0.487 0.112 0.050 0.050 0.050 0.050
KM max 0.870 ’RBF svm’ 0.398 0.700 0.834 0.831 0.870 0.859 0.857 0.837 0.765 0.664
MM max 0.873 ’Knn, k =8’ 0.340 0.539 0.789 0.838 0.838 0.873 0.847 0.824 0.758 0.758
CM max 0.873 ’RBF svm’ 0.605 0.773 0.816 0.873 0.867 0.866 0.852 0.858 0.790 0.687

Table B.5: Classification results for the discrete moments defined on a square grid using the Glasgow dataset

Moment Max F1 score Best Classifier F1 score
n=5 n=10 n=15 n=20 n=25 n=30 n=35 n=40 n=45 n=50

RM max 0.810 ’RBF svm’ 0.231 0.460 0.703 0.754 0.774 0.810 0.635 0.296 0.145 0.019
DHM max 0.802 ’RBF svm’ 0.181 0.681 0.793 0.802 0.748 0.360 0.132 0.072 0.019 0.019
HM max 0.787 ’RBF svm’ 0.494 0.664 0.781 0.778 0.775 0.787 0.528 0.207 0.121 0.019
CHDM 0.760 ’RBF svm’ 0.412 0.671 0.760 0.473 0.090 0.019 0.019 0.019 0.019 0.019
KM max 0.794 ’RBF svm’ 0.460 0.674 0.761 0.794 0.373 0.053 0.019 0.019 0.019 0.019
MM max 0.834 ’Knn, k =5’ 0.279 0.471 0.642 0.650 0.746 0.817 0.825 0.834 0.735 0.766
CM max 0.811 ’Knn, k =2’ 0.271 0.456 0.660 0.786 0.811 0.790 0.762 0.730 0.719 0.672

Table B.6: Classification results for the discrete moments defined on a square grid using the Xehtru dataset
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Moments Spectrogram CVD

Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.900 ’RBF svm’ 0.873 ’linear svm’

ZM 0.921 ’RBF svm’ 0.718 ’linear svm’

PZM 0.914 ’RBF svm’ 0.780 ’linear svm’

CHFM 0.883 ’RBF svm’ 0.879 ’linear svm’

OFMM 0.889 ’RBF svm’ 0.874 ’linear svm’

EFM 0.901 ’RBF svm’ 0.888 ’RBF svm’

PCEM 0.817 ’RBF svm’ 0.842 ’linear svm’

BFM 0.846 ’RBF svm’ 0.866 ’linear svm’

RHFM 0.894 ’RBF svm’ 0.863 ’linear svm’

GM 0.895 ’RBF svm’ 0.797 ’RBF svm’

LM 0.889 ’RBF svm’ 0.790 ’linear svm’

CHM-1st 0.891 ’Knn, k =5’ 0.774 ’linear svm’

CHM-2nd 0.878 ’RBF svm’ 0.797 ’Knn, k =10’

GHM 0.871 ’RBF svm’ 0.813 ’linear svm’

RM max 0.880 ’RBF svm’ 0.843 ’linear svm’

DHM max 0.873 ’Knn, k =10’ 0.880 ’linear svm’

HM max 0.876 ’RBF svm’ 0.837 ’linear svm’

CHDM 0.883 ’RBF svm’ 0.798 ’RBF svm’

KM max 0.870 ’RBF svm’ 0.863 ’linear svm’

MM max 0.873 ’Knn, k =8’ 0.788 ’Knn, k =5’

CM max 0.873 ’RBF svm’ 0.815 ’linear svm’

Table B.7: Classification results comparison for the spectrogram vs CVD used as pre-processing technique,
using the Glasgow dataset

Moments Spectrogram CVD

Max F1 Best Classifier Max F1 Best Classifier

PJFM 0.775 ’RBF svm’ 0.519 ’Quadratic svm’

ZM 0.805 ’Knn, k =1’ 0.493 ’Knn, k =1’

PZM 0.772 ’Knn, k =1’ 0.507 ’Knn, k =1’

CHFM 0.766 ’Knn, k =4’ 0.509 ’Knn, k =4’

OFMM 0.777 ’Knn, k =4’ 0.518 ’Quadratic svm’

EFM 0.748 ’RBF svm’ 0.607 ’Knn, k =8’

PCEM 0.775 ’Knn, k =5’ 0.619 ’Knn, k =4’

BFM 0.760 ’RBF svm’ 0.515 ’Quadratic svm’

RHFM 0.783 ’RBF svm’ 0.537 ’Knn, k =4’

GM 0.794 ’RBF svm’ 0.640 ’Quadratic svm’

LM 0.756 ’RBF svm’ 0.645 ’Knn, k =4’

CHM-1st 0.772 ’RBF svm’ 0.621 ’Knn, k =4’

CHM-2nd 0.808 ’RBF svm’ 0.626 ’Knn, k =2’

GHM 0.787 ’RBF svm’ 0.627 ’Quadratic svm’

RM max 0.810 ’RBF svm’ 0.647 ’Quadratic svm’

DHM max 0.802 ’RBF svm’ 0.641 ’Knn, k =1’

HM max 0.787 ’RBF svm’ 0.634 ’Quadratic svm’

CHDM 0.760 ’RBF svm’ 0.663 ’linear svm’

KM max 0.794 ’RBF svm’ 0.625 ’Knn, k =1’

MM max 0.834 ’Knn, k =5’ 0.667 ’Quadratic svm’

CM max 0.811 ’Knn, k =2’ 0.660 ’Quadratic svm’

Table B.8: Classification results comparison for the spectrogram vs CVD used as pre-processing technique,
using the Xterhu dataset
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B.3. INFLUENCE OF THE CLASSIFIER

Moments RBF SVM Quadratic SVM Linear SVM KNN-1 KNN-5 KNN-10 Difference

PJFM 0.775 0.626 0.696 0.754 0.770 0.665 0.150

ZM 0.761 0.664 0.705 0.805 0.718 0.695 0.140

PZM 0.761 0.683 0.697 0.772 0.753 0.645 0.127

CHFM 0.759 0.643 0.657 0.758 0.743 0.681 0.116

OFMM 0.752 0.694 0.706 0.773 0.741 0.686 0.087

EFM 0.748 0.653 0.642 0.713 0.705 0.651 0.106

PCEM 0.765 0.743 0.673 0.775 0.775 0.689 0.102

BFM 0.760 0.723 0.652 0.704 0.710 0.611 0.149

RHFM 0.783 0.661 0.710 0.710 0.742 0.615 0.168

GM 0.794 0.696 0.690 0.732 0.739 0.714 0.104

LM 0.756 0.696 0.687 0.753 0.713 0.702 0.069

CHM-1st 0.772 0.699 0.656 0.719 0.727 0.673 0.116

CHM-2nd 0.808 0.652 0.666 0.759 0.738 0.701 0.156

GHM 0.787 0.650 0.693 0.740 0.730 0.694 0.137

RM max 0.810 0.662 0.684 0.790 0.782 0.782 0.148

DHM max 0.802 0.640 0.668 0.751 0.716 0.645 0.162

HM max 0.786 0.708 0.681 0.757 0.721 0.683 0.105

CHDM 0.760 0.705 0.679 0.754 0.723 0.687 0.081

KM max 0.794 0.623 0.705 0.743 0.739 0.715 0.171

MM max 0.780 0.712 0.684 0.789 0.834 0.778 0.150

CM max 0.801 0.703 0.692 0.754 0.786 0.739 0.109

Table B.9: F1-scores for different moments when different classifiers are used to classify the Xterhu dataset.
The difference in F1-score between the best-performing and worst-performing classifier for each moment is
included.
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Moments RBF SVM Quadratic SVM Linear SVM KNN-1 KNN-5 KNN-10 Difference

PJFM 0.925 0.960 0.852 0.913 0.942 0.913 0.108

ZM 0.931 0.946 0.844 0.906 0.902 0.876 0.102

PZM 0.932 0.954 0.847 0.950 0.931 0.912 0.106

CHFM 0.924 0.959 0.856 0.912 0.932 0.902 0.103

OFMM 0.922 0.950 0.866 0.918 0.941 0.922 0.084

EFM 0.903 0.917 0.805 0.887 0.836 0.769 0.148

PCEM 0.941 0.926 0.823 0.896 0.891 0.884 0.118

BFM 0.891 0.948 0.834 0.931 0.941 0.903 0.114

RHFM 0.920 0.956 0.834 0.934 0.961 0.897 0.127

GM 0.936 0.888 0.821 0.935 0.940 0.905 0.119

LM 0.915 0.891 0.839 0.939 0.939 0.898 0.100

CHM-1st 0.934 0.751 0.831 0.917 0.903 0.903 0.182

CHM-2nd 0.968 0.883 0.837 0.932 0.932 0.916 0.131

GHM 0.971 0.920 0.920 0.909 0.897 0.857 0.114

RM max 0.967 0.905 0.880 0.895 0.871 0.781 0.186

DHM max 0.970 0.919 0.899 0.949 0.938 0.857 0.113

HM max 0.967 0.909 0.836 0.923 0.935 0.887 0.131

CHDM 0.902 0.888 0.829 0.932 0.939 0.898 0.110

KM max 0.971 0.925 0.899 0.937 0.918 0.894 0.077

MM max 0.966 0.883 0.842 0.912 0.903 0.857 0.124

CM max 0.968 0.935 0.880 0.887 0.887 0.811 0.157

Table B.10: F1-scores for different moments when different classifiers are used to classify the Dopnet dataset.
The difference in F1-score between the best-performing and worst-performing classifier for each moment is
included.
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