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Abstract

Autonomous driving relies heavily on cameras and LiDAR
for 3D perception, yet these vision-based sensors face lim-
itations under poor illumination, adverse weather, or oc-
clusion. Inspired by human hearing, we explore whether
microphone arrays can enhance vehicle perception. We
propose SonicVision, the first bird’s-eye-view (BEV) acous-
tic detection framework that jointly localizes and classifies
traffic participants using sound alone. Our method em-
ploys a horizontally arranged 32-channel microphone ar-
ray and transforms raw waveforms into short-time Fourier
transform (STFT) features augmented with positional em-
beddings. A ResNet-based architecture is trained with novel
Gaussian label representations to predict class-conditioned
direction–distance distributions. To support this study, we
collect three datasets (simulation, test track, and real road)
with synchronized audio and LiDAR, where LiDAR de-
tections serve as pseudo-labels. Experiments show that
SonicVision significantly outperforms beamforming-based
baselines, achieving accurate localization and classifica-
tion performance. In some cases, our approach is able to
identify objects that are missed by LiDAR, suggesting its
potential as both an independent sensor and a complemen-
tary modality. These results provide the first evidence that
low-cost microphone arrays can meaningfully contribute to
3D perception for autonomous vehicles.

1. Introduction

Autonomous driving systems rely heavily on accurate 3D
detection of surrounding traffic participants to ensure safe
navigation and decision making. Traditionally, this task has
been addressed using vision-based sensors, primarily cam-
eras and LiDAR. Cameras provide rich semantic cues, while
LiDAR offers precise 3D geometry. Their combination has
driven major advances in 3D detection, making them the
core backbone of today’s autonomous vehicles.[13]

Although vision-based perception systems have enabled
significant progress in autonomous driving, they still face
inherent limitations. Recent studies indicate that only about
30 % of autonomous vehicles currently deploy LiDAR[28],

meaning that many systems still rely solely on cameras. In
such cases, perception becomes highly sensitive to illumi-
nation changes and suffers in low-light or nighttime condi-
tions. Even when LiDAR is available, its performance can
still deteriorate under adverse weather, such as heavy fog,
or suffer from issues like overheating and line dropouts.

However, for humans, these challenges are rarely prob-
lematic. We not only rely on our eyes to observe, but also on
our ears to listen. For instance, when walking along a dark
street at night, we can roughly estimate the position of an
approaching car behind us solely from its sound, even with-
out turning around. Inspired by this natural ability, in our
study, we equip autonomous vehicles with a microphone
array to explore a key question: Could microphone arrays
contribute to 3D perception for autonomous vehicles?

1.1. Research Questions

Figure 1. Problem definition: Acoustic perception for au-
tonomous driving

To investigate whether sound can support 3D detection
tasks, we retain the same task formulation as in a conven-
tional detection framework, focusing on the localization and
classification of surrounding objects. However, consider-
ing that sound cannot directly predict bounding boxes, as it
does not provide information about object size. We restrict
localization to position estimation. Accordingly, our goal is
to design a neural network, as illustrated in Figure 1, that
accurately localizes nearby traffic participants while simul-
taneously identifying their categories.
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In this task, two key aspects need to be considered: the
design of informative features and the choice of an ap-
propriate neural network architecture. Leveraging our mi-
crophone array, we first seek to capture the acoustic cues
present in the driving environment and investigate suitable
preprocessing strategies to filter out the most useful infor-
mation. The next challenge is to formulate the problem
and design a neural network that can effectively transform
these features into accurate detection results, jointly encod-
ing both the position and category. Based on this reasoning,
we propose the following research questions:

• What types of information are conveyed by sound, and in
what ways have they been exploited in prior research on
autonomous driving?

• How can auditory information be effectively encoded,
and what output representations are most suitable for for-
mulating the detection problem?

• Which neural network architectures are best adopted to
address this problem and to jointly perform both localiza-
tion and classification?

To address the above questions, Chapter 2 reviews re-
lated work, from which we derive key insights, refine the
research questions, and identify gaps that motivate our
approach. Chapter 3 details the proposed methodology,
while Chapter 4 presents experiments designed to evalu-
ate the defined tasks and answer the research questions.
Finally, Chapter 5 concludes by revisiting our central in-
quiry: whether microphones can enhance 3D perception in
autonomous driving environments.

2. Related Work

In line with our research questions, our work can be
uniquely positioned within four related research directions:
acoustic perception in autonomous driving, acoustic local-
ization, sound classification and acoustic datasets in the
field of robotics.

2.1. Acoustic Perception in Autonomous Driving
Sound offers unique advantages as a sensing modality. Un-
like vision, its propagation is independent of light, allowing
perception under poor illumination or occlusion. In the con-
text of autonomous driving, the use of microphones can be
categorized into two primary tasks: in-line-of-sight (ILOS)
detection and non-line-of-sight (NLOS) object detection.

ILOS perception refers to the ability to detect objects
that are geometrically within the sensor’s field of view but
cannot be reliably recognized due to adverse sensing con-
ditions. For ILOS problem, Jannik et al.[46] first mounted
microphones on a vehicle and, using a camera-based de-
tector as supervision, performed beamforming-like acous-
tic segmentation of frontal vehicles. Later, Chakravarthula
et al.[7] introduced a large 1,024-microphone array on

the vehicle’s fender and, by combining audio with visual
data, achieved robust performance across diverse lighting
and weather conditions. Similar efforts were made by
Chuang[11], though their setup only placed microphones
on a static pole and thus lacked dynamic driving scenarios.
More recently, Valverde et al. [39] explored a horizontal mi-
crophone layout—an approach closely related to our prob-
lem—but their study suffered from test-set leakage, which
undermines the reliability of their detection results.

Another interesting study comes from Dai et al[9]. Al-
though they did not mount microphones on a vehicle, they
employed four sets of human ear-shaped microphones and
placed the array roadside. This setup enabled semantic seg-
mentation and depth estimation within a 360-degree camera
view of the environment, thereby demonstrating that sound
carries information about both the location and the category.

In addition, many studies have focused on addressing the
NLOS problem using acoustic information. For example,
Schulz et al.[34] employed a microphone array mounted
on the roof of a vehicle, through beamforming and SVM
methods, they successfully predicted the presence of vehi-
cles emerging from behind a narrow T-junction. Follow-
ing this, Hao et al.[15] reproduced the study using neu-
ral network–based methods, further validating the effective-
ness of acoustic cues for NLOS detection. However, these
studies were limited to predicting only the direction of on-
coming vehicles. Building on this, Jeon et al.[18] incor-
porated a particle filtering approach and leveraged sound
reflections to accurately estimate the positions of vehicles
located around street corners.

Research Gaps: Most existing studies have focused
on detection from a front-view perspective, whereas au-
tonomous driving requires the more comprehensive per-
spective offered by a bird’s-eye view. In addition, prior
work has largely addressed specific challenges, such as
NLOS conditions, while little attention has been given to
exploring the intrinsic potential of sound in autonomous
driving — specifically, whether sound alone can serve as
a reliable modality for detection and localization.

2.2. Acoustic Localization

Acoustic localization constitutes a broad application area
related to sound. Active techniques, such as echolocation,
operate by transmitting sound signals and analyzing the cor-
responding reflections for localization, navigation, or prey
detection, a mechanism commonly observed in animals like
bats and dolphins[19]. For instance, sonar systems perceive
the surrounding environment by actively emitting and re-
ceiving sound signals[41], and are mainly applied in under-
water and robotics domains[26, 37]. More recently, learn-
ing–based approaches have also been explored in active
acoustic localization. For example, Brunetto et al.[6] mim-
icked a sonar system by mounting a loudspeaker on a robot
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to emit short “beep” sounds, and employed a U-Net archi-
tecture to achieve indoor depth estimation.

2.2.1. Sound Source Direction Estimation

Besides active techniques, passive acoustic localization
methods have been widely applied to the problem of lo-
cating naturally sound-emitting objects. Previously, most
approaches focus primarily on estimating the direction of
the sound source. Classical physical methods, such as
beamforming[36] and MUSIC[33], infer the direction of ar-
rival by exploiting the phase differences (or equivalently,
time delays) of sound waves captured across microphones.

However, traditional physical methods face the follow-
ing problem: without prior knowledge of the number of
sound sources, it is difficult to accurately predict the di-
rections of multiple sources.[20] Consequently, learning-
based methods have emerged. Xiao et al.[42] achieved
sound source direction estimation using a simple MLP net-
work. Building on this, He et al.[16] optimized both the
network architecture and the encoding method, employing
a CNN-based neural network with a specially processed
GCC-PHAT as input to achieve more accurate sound source
detection. This approach was further applied to the real
robot Pepper, enabling it to interact more effectively with
users issuing voice commands. Moreover, considering the
sequential nature of sound, several works[1, 17, 22] have
adopted CRNN-based approaches for direction estimation
and likewise achieved promising results.

2.2.2. Sound Source Distance Estimation

Evidently, knowing only the direction of a sound without its
distance does not allow accurate localization of the source.
However, research on distance estimation from sound re-
mains scarce. Some studies[5, 31] combined machine learn-
ing model with traditional signal processing features, but
these often fail to generalize to the new environment.

More recently, deep learning–based methods have been
explored for sound distance estimation, where some ap-
proaches discretize spatial information and output a range
(e.g., 5–10 m) through classification[43], while others adopt
regression strategies to directly predict the distance[24].
Nevertheless, almost all studies related to distance predic-
tion have primarily focused on indoor acoustic tasks, leav-
ing a research gap when it comes to outdoor environments,
which are more spacious, dynamic, and noise-prone[14].

Research Gaps: Research on sound source direction es-
timation has mainly focused on indoor environments, where
conditions are simpler and noise levels are lower. Distance
estimation itself remains an emerging area, and to the best
of our knowledge, no prior work has addressed audio local-
ization that jointly considers both direction and distance.

2.3. Sound Classification

In autonomous driving, a complete object detection pipeline
requires both localization and classification, enabling the
system to distinguish among categories such as cars, mo-
torcycles, and buses[3]. For the classification task, vision-
based approaches typically rely on cues such as object shape
and appearance, whereas acoustic-based methods instead
exploit frequency characteristics and sound intensity to dif-
ferentiate between classes[10].

In the acoustic domain, several studies have explored tra-
ditional machine learning approaches for classification, in-
cluding Support Vector Machines (SVM)[38, 40], Hidden
Markov Model (HMM)[12, 44, 45] and K-Nearest Neigh-
bor (KNN) classifiers[4, 8]. Other studies have adopted
learning-based approaches. Su et al.[35] introduced CNN
for sound classification using spectrogram inputs, showing
that CNN outperforms traditional machine learning meth-
ods. Building on this, Salamon et al.[29] incorporated data
augmentation techniques to further enhance CNN perfor-
mance. In addition, to avoid information loss from prepro-
cessing, Sang et al.[32] instead used raw waveforms with
cRNN structure, achieving higher recognition accuracy.

Research Gaps: Research on sound source classifica-
tion has reached a relatively mature stage, and existing
methods have shown strong generalization across diverse
acoustic scenes. However, only a few studies have explored
its integration with localization.

2.4. Acoustic Dataset in Robotics

Autonomous driving scenario: In the field of autonomous
driving, publicly available datasets for acoustic detection re-
main scarce. Among the existing efforts, some multimodal
datasets incorporate sound, but they primarily concentrate
on the camera’s field of view, detecting vehicles located in
front of the ego vehicle [7, 39]. Others are designed to ad-
dress specific challenges such as non-line-of-sight (NLOS)
scenarios, aiming to detect vehicles in regions where the di-
rect line of sight is blocked [18, 34].

Indoor robotics research: In contrast, acoustic-related
datasets are more abundant in indoor robotics research.
Many studies employ microphone arrays for tasks such as
estimating a user’s location or orientation and enhancing
human–robot interaction [16, 27]. Other datasets target spe-
cific tasks, including sound classification [30] and depth es-
timation from acoustic echoes [6].

Research Gaps: To date, no dataset has explored the use
of microphone arrays for 3D object detection.

2.5. Research Gaps and Contributions

Through the above literature, we have learned how sound
has been applied in the context of autonomous driving and
how it supports localization and classification in indoor
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Figure 2. The framework of acoutic object detection. We collect synchronized environmental audio and LiDAR point clouds, where multi-
channel microphone signals are transformed into STFT features and fused with microphone positional embeddings as input to our network.
Meanwhile, CenterPoint LiDAR detections serve as pseudo labels to supervise the audio-based localization task, and consequently the
model outputs class-specific distance–direction distributions in a bird’s-eye view (BEV), where colored bounding boxes indicate localized
sound sources of different object categories.

robotics. Nevertheless, the existing studies in the audio do-
main lack a unified approach that enables both localization
(direction + distance) and classification of sound sources.
Similarly, in the context of autonomous driving, there is
a lack of research that leverages acoustic sensing from a
bird’s-eye-view perspective to enable vehicles to fully per-
ceive their surrounding environment.

To address these limitations, we design a novel bird’s-
eye-view acoustic detection framework for vehicle localiza-
tion and classification using sound. We further construct our
own dataset for evaluation, demonstrating that our method
not only achieves the proposed functionalities but also out-
performs baseline methods. Overall, the main contributions
of this study are as follows:

• To the best of our knowledge, we are the first to ad-
dress bird’s-eye view localization and classification
purely from audio signals, showing that sound pro-
vides both positional and categorical information to com-
plement other perception modalities and improve au-
tonomous driving safety.

• We adapt a Res-net architecture and propose a 2D Gaus-
sian labeling scheme for bird’s-eye-view sound source
localization, as distributional labels are more suitable for
sound-based perception.

• We collect and annotate a new dataset specifically for
this task, which we expect will advance research in acous-
tic and multi-modal perception for autonomous driving.

3. Methodology

As outlined earlier, our research focuses on the localization
and classification of traffic participants in autonomous driv-
ing environments using a microphone array. Accordingly,
this chapter first introduces the microphone array employed
in our study. We then describe how the recorded sounds
are transformed into neural network inputs, along with the
design of our tailored output representation. Finally, we
present the proposed model and the datasets used for its
training and evaluation. We outline the framework of our
proposed approach in Figure 2.

3.1. Microphone Array Design
To enable bird’s-eye view detection, we require our vehi-
cle to perceive sounds from all 360° directions. Therefore,
we designed a horizontally arranged microphone array in-
stalled around the vehicle, as shown in Figure 3. On each
side, a PMMA plate was fabricated to host eight micro-
phones, resulting in a total of 32 microphones covering four
directions. Each plate features a central groove that allows
precise alignment with the camera, simplifying the compu-
tation of transformation matrices between sensors for mul-
timodal perception. The microphones are mounted around
the vehicle’s roof frame without obstructing LiDAR. As our
focus is on bird’s-eye-view detection, the array was not de-
signed for high vertical resolution, which would require a
larger aperture and risk blocking other sensors.
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Figure 3. Microphone Design

3.2. Feature Extraction
With our designed microphone array, we are able to capture
raw signals from n audio channels. These signals can be en-
coded in different ways depending on the application: raw
audio preserves complete information but is often contami-
nated with noise, whereas processed representations such as
the STFT reduce noise and simplify neural network learn-
ing, albeit at the cost of some information loss.

After comparison (see Appendix), we adopt STFT as our
feature representation. It decomposes the signal into fre-
quency components over short time windows, producing a
time–frequency representation that captures frequency, in-
tensity, and temporal structure—key cues for localizion and
classification. The image-like nature of STFT outputs also
makes them well-suited for CNN-based feature extraction.

For each channel c = 1, 2, . . . , n, the short-time Fourier
transform (STFT) is computed as:

Xc(m, k) =

T−1∑
t=0

xc[mH + t]w[t] e−j
2πk
K t, (1)

where xc[·] is the discrete-time signal of channel c, w[t]
is the analysis window of length T , m is the frame index
with hop size H , and k is the frequency bin among K DFT
points. This formulation follows the standard definition of
the short-time Fourier transform (STFT).[2]

In addition, to represent the complex spectrum, we use
its real and imaginary parts rather than phase and magni-
tude, thereby avoiding the discontinuity problem at π:

Rc(m, k) = Re{Xc(m, k)}, (2)
Ic(m, k) = Im{Xc(m, k)}. (3)

3.3. Task Formulation
Unlike visual data, sound does not directly encode spatial
information, which makes a pure regression formulation for

network outputs particularly challenging. To overcome this,
we adopt a tailored labeling strategy for localization and
classification, which provides a more suitable and effective
supervision signal, as described in the following.

Sound Source Direction (◦) Distance (m)

Car1 -44 16
Car2 69 29

Table 1. Objects with annotated directional and distance labels.

3.3.1. Localization (direction + distance) label
For the sound localization problem, as mentioned earlier,
our goal is to detect the exact position (with uncertainty) of
an object by estimating its direction and distance. In the
following, we use the example in Table 1. to illustrate our
label design methodology. Our design is based on the label
strategy proposed by He et al[16]. As shown in Figure 5a,
a 360-dimensional direction vector is employed, in which
multiple Gaussian distributions represent the angular distri-
bution of sound sources, formally defined in (4) and (5).

∆(i, θk) = min
(
|i− θk|, 360− |i− θk|

)
, (4)

y[i] =

K∑
k=1

exp

(
−∆(i, θk)

2

2σ2

)
, (5)

where y ∈ R360 is the direction label vector, i =
0, 1, . . . , 359 is the discretized direction index, θk denotes
the true direction of the k-th source (in degrees), and σ con-
trols the angular spread of the Gaussian distribution.

Building upon this direction encoding, we design two
methods to further incorporate distance labels, namely a
1D Distance-Weighted Direction Gaussian and a 2D Direc-
tion–Distance Gaussian. In the following, we provide a de-
tailed explanation of both methods.

1D Distance-Weighted Direction Gaussian: A sim-
ple approach is to encode distance directly into the intensity
of the Gaussian distribution, as formulated in (6). In this
formulation, nearer sound sources yield higher intensities,
resulting in Gaussians with taller peaks. As illustrated in
Figure 5b, Car 1, being closer, exhibits a higher peak than
Car 2, which is farther away, while the spread of their Gaus-
sians remains identical to those in Figure 5a.

y[i] =

K∑
k=1

1

dk
exp

(
−∆(i, θk)

2

2σ2

)
, (6)

where dk denotes the distance of the k-th source, serv-
ing as an intensity weight (closer sources produce higher
peaks).
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(a) 2D lable for localization (b) Direction-view Gaussian label (c) Distance-view Gaussian label

Figure 4. 2D Direction–Distance Gaussian for multiple sound source localization, with two Gaussians applied in polar coordinates along
the direction and distance dimensions.

(a) 1D Gaussian direction label for direction estimation

(b) 1D Distance-Weighted Direction Gaussian

Figure 5. Illustration of different Gaussian label representations
for sound source localization

2D Direction–Distance Gaussian: Figure 4 presents
the labels for two targets in space (converted from polar to
Cartesian coordinates), along with the corresponding views
in the direction and distance domains. It can be seen that the
direction dimension is identical to the labels in Figure 5a,
with an additional dimension introduced to represent dis-
tance, as formulated in (7). The variance (σ) of the Gaus-
sian distribution can be interpreted as the uncertainty in
sound source localization. For direction estimation, closer
objects occupy a larger angular range and therefore exhibit
greater uncertainty. For distance prediction, farther objects
are more difficult to estimate accurately, resulting in higher
uncertainty. Overall, compared to closer objects, farther ob-
jects have greater uncertainty in distance and lower uncer-
tainty in direction (i.e., a wider Gaussian in distance dimen-
sion and a narrower Gaussian in direction dimension).

y[i, j] =

K∑
k=1

exp

(
−∆(i, θk)

2

2σ2
θ

− Φ(j, dk)

)
, (7)

Φ(j, dk) =
(j − dk)

2

2σ2
d

. (8)

where j denotes the discretized distance bin (j =
0, . . . , Dmax), θk and dk are the direction and distance of
the k-th source, and σθ and σd control the spread (uncer-
tainty) in direction and distance, respectively.

3.3.2. Classification label
For the further classification task, we adapt the localiza-
tion network into a multi-head architecture. Each head is
dedicated to one sound category (e.g., car, truck, motor-
cycle) and outputs a class-conditioned localization label of
the same form as in our localization task (e.g., a 1D direc-
tion distribution or a 2D direction–distance Gaussian). In-
tuitively, this label is a probability/intensity map over space
indicating where sources of that class are likely to be. The
detailed architecture will be presented later.

3.4. SonicVision Net
In the previous subsection, we defined the STFT real and
imaginary parts Rc(m, k) and Ic(m, k) as inputs. We aim
to combine them with the microphone positional encoding,

ec = PE(pc), (9)

and feed the concatenated features into the neural net-
work fΘ (as formulated in 10) to predict the target distribu-
tion.

ŷ[i, j](ŷ[i]) = fΘ
(
{Rc(m, k), Ic(m, k), ec}Cc=1

)
.
(10)

In the introduction chapter, we have already presented
the overall neural network architecture(Figure 2), while Fig-
ure 6 provides a more detailed version of the network.

6



Figure 6. SonicVision Design: The backbone is based on a
ResNet structure that extracts features from STFT real/imaginary
inputs combined with microphone positional encoding. On top of
the backbone, an ae joint head performs both classification and lo-
calization depending on the training objective. If only localization
is performed, a single head is used.

As mentioned earlier, we adopt the STFT as the network
input, which is particularly well-suited for processing by
CNN-based architectures. And therefore, for the backbone,
we employ the classical ResNet architecture, which is capa-
ble of extracting deep hierarchical features from image-like
representations. Its residual connections not only help pre-
serve essential low-level spectral information but also en-
able the learning of more complex time–frequency patterns
from the STFT. Furthermore, by alleviating the vanishing
gradient problem, ResNet facilitates the training of deeper
networks, resulting in more robust feature extraction.

Passing through the backbone, we obtain a TF-DOA
map with dimensions time × frequency × 360 (di-
rection), which encodes the sound intensity for each
time–frequency–direction bin. This representation enables
the network not only to detect the presence of sound from
a given direction, but also to infer its category and approxi-
mate distance by leveraging frequency and intensity cues.

In the output stage, If multiple sound types need to be
classified, as shown in Joint head in Figure 6, we adopt
a multi-head architecture in which each head shares the
same structure as the localization network and outputs the
BEV distribution for a specific sound type (e.g., motorcycle
sounds). The the output has dimensions of (d, 360), where
the dimension d represents distance bins. For example, with
a detection range of 30m, we set d = 60, which corre-
sponds to a distance resolution of 0.5m.

If no classification task is required, we simply use one of
the classification head alone to produce the sound distribu-
tion in the bird’s-eye-view (BEV) domain.

3.5. Loss Function
For the above neural network architecture, we adopt two
types of loss functions for training. Taking the localization
network as an example, the target label is represented as
a Gaussian distribution in a two-dimensional space of size
(n, 360), where all values lie within [0, 1]. One option is to
use the mean squared error (MSE) loss to directly compare
the predicted (n, 360) matrix with the ground truth:

LMSE =
1

n× 360

n∑
i=1

360∑
j=1

(
ŷ[i, j]− y[i, j]

)2
. (11)

Alternatively, we can apply the binary cross-entropy (BCE)
loss to each element individually:

LBCE =
1

n× 360

n∑
i=1

360∑
j=1

ℓBCE(ŷ[i, j], y[i, j]) , (12)

where the element-wise BCE term is defined as

ℓBCE(ŷ, y) = −
(
y log ŷ + (1− y) log(1− ŷ)

)
. (13)

We will compare the performance of these two approaches,
(11) and (12), in the following experiment.

3.6. Dataset
As mentioned in the first chapter, to develop and validate
the performance of our neural network, we have collected
our own three datasets: simulation, test track, and real road
data (shown in Table 2 and Figure 7).
• Simulation data Data are generated with the Acoular

package by modeling the microphone array geometry
and simulating point sources at specified locations. Real
recordings of cars and motorcycles are imported into the
simulation as source signals, and the resulting micro-
phone signals are then used for training and evaluation.

• Test track data Data are collected at an open test track,
where a car is parked at the center and one or more speak-
ers play sounds of various traffic participants, such as cars
and motorcycles. Although the car is stationary, wind
speeds during data collection are typically between 5 and
10 m/s, partially simulating the effect of wind noise.

• Road dataset Data are collected either by parking the car
at the roadside or by driving at 10 km/h, 30 km/h, and 50
km/h, thereby capturing the pass-by sounds of surround-
ing traffic participants. Both the environmental condi-
tions and the sounds are entirely real, enabling evaluation
of the network’s performance in highly realistic scenar-
ios. Due to time constraints, the classification network is
not tested in this setting, as acquiring sufficient samples
of diverse sound types would require substantial effort.
For annotating the real-world data, we use a LiDAR-

based detector (CenterPoint) to obtain the positions of
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Figure 7. Dataset scenario across simulation, and real environments

Dataset Number of samples Sound generation Task

Simulation 25000 Predefined virtual sound sources Localization & Classification
Test Track 7500 Loudspeakers carried by pedestrians Localization & Classification
Road Data 16000 Real traffic participants (cars, motorcycles, trucks) Localization

Table 2. Overview of the datasets from simulation and real environment.

sound sources around the ego vehicle. On the test track,
the detector identifies the positions of pedestrians carrying
speakers (serving as the sound sources). On public roads,
it provides the positions of surrounding traffic participants,
where we focus on cars, motorcycles, trucks, and buses as
the detection targets.

Since all tasks tested on the simulation data were also
evaluated on the more realistic datasets (test track and road
data), the results on the simulation data are presented in the
appendix. For the test track and road datasets used in our
experiments, an overview is provided in Figure 8 below.

Figure 8. Sonic-vision dataset

4. Experiment
In this chapter, we investigates the two research questions
introduced earlier, focusing on localization and joint local-
ization–classification. We begin by describing the experi-

mental setup in detail. Next, we present the results of our
experiments. Finally, we conduct ablation studies to gain
deeper insights into the proposed approach.

4.1. Experiment Setup
Label refinement: As mentioned earlier, we use Center-
Point to obtain the 3D positions of objects in the environ-
ment. Taking the road dataset as an example, since we are
only interested in sound-emitting traffic participants, we fil-
ter out silent or irrelevant objects based on their velocity
(e.g., stationary vehicles) and category (e.g., pedestrians on
the roadside). In addition, we define a detection range for
the microphone array, and any vehicles outside this range
are also discarded. Finally, because the detector’s predic-
tions are not always entirely accurate, we perform manual
label correction to the results, which amounted to nearly 20
hours of annotation work.

Labeling schemes: In the previous chapter, we in-
troduced two approaches for localization labeling and two
loss functions. In this chapter, we adopt the 2D Direc-
tion–Distance Gaussian encoding to represent distance and
use MSE loss for training. The reasons for these choices are
further analyzed in the ablation study.

Task-specific datasets: For the localization tasks, we
used data collected on real roads for both training and test-
ing. For the classification task specifically, due to time
constraints, it was hard to record sounds from various types
of vehicles on real roads. Instead, we conducted data collec-
tion on a test track, where motorcycle and car sounds were
played through loudspeakers for training and testing.

Since we focus on an autonomous driving scenario, we
evaluated its performance under both stationary conditions
and while the vehicle was moving at different speeds (10
km/h, 30 km/h, and 50 km/h). Specifically, we compared
the recognition of surrounding objects across these scenar-
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Method Acc@5°-
5m(%)↑1

Acc@10°-
5m(%)↑2

OA@-
5°(%)↑3

OA@-
10°(%)↑4

TP-
ADE(m)↓5

TP-
AAE(°)↓6

Beamforming - - 33.5 41.6 - 5.4
Beamforming + MLP - - 36.8 45.4 - 3.8
Iterative Beamforming - - 43.4 49.7 - 3.8

SonicVision (ours) 58.9 67.4 62.1 69.1 2.3 3.2

Table 3. Comparison of sound source localization performance across different methods. The proposed SonicVision achieves consis-
tently higher accuracy and orientation scores, while yielding lower average distance and angle errors, demonstrating its effectiveness over
beamforming-based baselines.

ios to assess the ability of the microphone array and the
neural network to handle wind noise.

4.2. Baseline Method
Since both acoustic localization algorithms and sound-
based localization–classification approaches are relatively
novel in the audio domain, and even research on distance
estimation from sound is still scarce, we only selected a
baseline method—beamforming—for comparison in the di-
rection estimation task. Moreover, as our focus is on multi-
target recognition, and given the inherent limitations of con-
ventional beamforming, we introduced two enhancements
to improve its performance.

• Beamforming MLP network The output of beamform-
ing is a prediction of sound intensity at a set of predefined
spatial locations. We use this intensity prediction as the
input to an MLP network, whose output is the estimated
direction of the potential sound source.

• Iterative beamforming In each iteration, beamforming is
performed to obtain the direction of the dominant sound
source. The signal from this direction is then suppressed,
and the beamforming algorithm is executed again. By re-
peating this process multiple times, the directions of mul-
tiple sound sources can be obtained.

4.3. Experiment 1: Sound Source Localization
4.3.1. Static Scenario
The first experiment addresses localization on the road
dataset using microphone-recorded sound signals. In this
part, we first performed experiments on the simpler
static dataset (with the car parked at the roadside) and
compared the results with the baseline method. The recog-
nition performance is illustrated in Figure 9, and the metrics
are summarized in Table 3.

From the figure and the table, it can be seen that the neu-
ral network achieves robust localization of passing vehicles:
the green boxes represent the predicted positions, while the

1Accuracy with 5° and 5 m tolerance
2Accuracy with 10° and 5 m tolerance
3Orientation accuracy within 5°

Figure 9. Localization performance under static motion. The
green box represents the predicted sound source location, while
the red dot indicates the ground truth position.

red dots denote the ground-truth locations. In terms of di-
rection estimation, the proposed model also outperforms the
baseline methods. Furthermore, as illustrated in the right
panel of Figure 9, there are instances where the microphone
detects a vehicle earlier than the LiDAR detector, which at
that moment fails to register it. This highlights the comple-
mentary role of microphones in relation to vision-based de-
tectors. Within a cooperative neural network framework, for
example, the detection of a sound from a particular direc-
tion could guide the vision-based network to allocate more
attention and computational resources to that region.

Moreover, from the experiment, we observe that our
Beamforming+MLP method achieves more accurate angle
predictions, which results in a lower TP-AAE. However,
since it struggles with multi-target scenarios, the orientation
accuracy shows little improvement.

4.3.2. Moving Scenario
Considering that our application targets microphone-based
recognition for autonomous driving, it is insufficient to eval-
uate performance only in stationary conditions. Therefore,
we also conducted tests while the vehicle was in motion.
Since wind noise varies with vehicle speed, we examined
the performance of the microphone array under different
conditions: 10 km/h (a representative low-speed environ-
ment), 30 km/h (the legal speed limit in Dutch residential
areas), and 50 km/h (the legal speed limit on main roads).

4Orientation accuracy within 10°
5True positive sample average angle error
6True positive sample average distance error
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Class Acc@5°
-5m(%)↑

Acc@10°
-5m(%)↑

F1 score
@5°-5m↑1

F1 score
@10°-5m↑2

TP-
ADE(m)↓

TP-
AAE(°)↓

Car 82.0 85.9 0.89 0.92 1.4 1.7
Motorcycle 75.6 78.8 0.82 0.86 1.9 1.0

Table 4. Comparison of sound-based classification and localization performance across object classes. The proposed method achieves
consistently higher accuracy and F1 scores for cars, while motorcycles show relatively lower performance.

To improve efficiency, the model initially trained in the
stationary environment was subsequently adapted through
fine-tuning with new data collected under different veloci-
ties. The resulting recognition performance and evaluation
metrics are presented in Figure 10 and Table 5 below.

(a) 10 km/h (b) 30 km/h (c) 50 km/h

Figure 10. Localization performance of the proposed system under
three different driving speeds: 10 km/h, 30 km/h, and 50 km/h.

Speed (km/h) Acc@10°-
5m(%)↑

TP-
ADE(m)↓

TP-
AAE(°)↓

0 83.2 1.7 2.5
10 81.2 1.9 2.8
30 77.8 2.3 3.2
50 63.1 3.5 4.8

Table 5. Localization performance of the proposed method under
different vehicle speeds. (The test set here is relatively simple, so
the overall performance is better than the static performance.)

From the experimental results above, we can see that
in dynamic scenarios, the performance at 10 km/h and 30
km/h is strong. These two speeds cover typical use cases
in urban residential areas, demonstrating that sound can be
effectively utilized in real-world environments. However,
at 50 km/h, the neural network performs slightly worse,
which can be largely attributed to the increased severity of
wind noise at higher speeds. This is consistent with our ob-
servations: under such conditions, traditional beamforming
methods almost fail to operate. To further improve robust-
ness, we plan to collect a larger and more diverse dataset

1F1 score with 5° and 5 m tolerance

in future work, which we expect will enhance the system’s
ability to cope with adverse noise conditions.

However, apart from improvements in the model and the
data, we also considered that for such high-speed scenarios,
under severe wind noise, a more effective solution should
be pursued from a hardware design perspective. For exam-
ple, professional microphones used in film production of-
ten employ specialized designs to suppress wind noise and
enhance directional sensitivity. Moreover, in our current
setup, the microphones are directly exposed on the outside
of the vehicle; designing a semi-enclosed housing could fur-
ther reduce wind noise and improve robustness.

4.4. Experiment 2: Sound Source Classification
Through the above experiments, we have demonstrated that
vehicles can localize surrounding targets under both station-
ary and moving conditions. Nevertheless, in the broader
context of 3D object detection for autonomous driving, it is
essential not only to localize objects but also to recognize
their categories (e.g., car, truck, motorcycle).

In this task, we adopt the multi-head neural network ar-
chitecture previously illustrated in Figure 6, where each
head outputs the localization of a specific sound category.
Since road data makes it difficult to collect a sufficient num-
ber of samples for both motorcycle and car at the same time,
we base our experiments on the available dataset. The de-
tection performance and evaluation metrics are presented in
Figure 11 and Table 4.

Figure 11. Illustration of classification and localization perfor-
mance. The green bounding box indicates the predicted motorcy-
cle position, while the purple bounding box indicates the predicted
car position. The red dot marks the ground-truth motorcycle loca-
tion, and the magenta dot marks the ground-truth car location.

2F1 score with 5° and 5 m tolerance
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The experimental results show that our neural network is
capable of both localizing objects using sound and classify-
ing their types. However, the network attains higher accu-
racy for cars than for motorcycles. This discrepancy likely
arises from frequency differences, as car sounds align more
closely with the aperture characteristics of the microphone
array. As a result, given the same amount of training data,
the model performs better for cars.

Regarding the previously mentioned challenge of lim-
ited road data, we also recognize that this issue may partly
arise from the design of our current model. Specifically,
the network trains the motorcycle head only when motor-
cycle sounds are detected, and the car head only when car
sounds are detected. A potential improvement would be to
design a labeling strategy that enables classification of dif-
ferent sound sources on top of localization. Such an ap-
proach could reduce the dependence on large amounts of
class-specific training data.

4.5. Ablation Study
In the previous section, we demonstrated that our neural
network can address both object localization and classifica-
tion tasks in autonomous driving scenarios. As described in
the Methodology section, several design choices regarding
the loss function and training strategies were introduced. In
this chapter, we conduct an ablation study to analyze the
impact of these choices in detail and discuss practical tricks
and hyperparameter settings used in the network design.

4.5.1. Comparison of Labeling Strategies for Localiza-
tion

In the output section, we propose two approaches for label-
ing localization: 1D Distance-Weighted Direction Gaussian
(1D Gaussian, Figure 5b) and 2D Direction–Distance Gaus-
sian (2D Gaussian, Figure 4a). To compare the effectiveness
of the two labeling schemes, we conducted experiments on
the test track dataset.

Method Acc@10°-
5m(%)↑

TP-
AAE(°)↓

TP-
ADE(m)↓

1D Gaussian 74.1 1.7 2.0
2D Gaussian 79.4 1.1 1.2

Table 6. Comparison of labeling strategies for sound localization

From Table 6, it can be observed that although the two
labeling methods yield similar performance in direction es-
timation, the 2D Gaussian approach achieves nearly 1 meter
lower error in distance prediction compared to the 1D Gaus-
sian method, and also provides higher recognition accuracy.

Our observation is that encoding distance as a 1D Gaus-
sian with a relatively low peak (e.g., 0.3) is inherently
harder to learn than a 2D Gaussian with a peak of 1. One

reason, as illustrated in Figure 12, is that in the 2D case
the sigmoid activation essentially learns a binary-like deci-
sion — whether there is sound at a given location — which
aligns well with its natural role as a probability estimator.

Figure 12. Comparison of 1D and 2D Gaussian labeling strategies,
illustrating the different behaviors of the sigmoid activation.

By contrast, in the 1D case the sigmoid must not only
decide if sound is present but also regress the precise peak
magnitude, which is far more challenging. This difficulty is
further amplified because intermediate values (e.g., 0.3) are
harder for the network to approximate reliably, and smaller
peaks provide weaker gradient signals during training.

4.5.2. Loss Function Selection
For the neural network labels (a 2D Gaussian distribution
defined over the n × 360 space), we pproposed two train-
ing strategies: (1) MSE loss, and (2) BCE loss applied at
each position. Their performance on the localization task is
compared, with the results summarized in Table 7.

Loss
function

Acc@10°-
5m(%)↑

TP-
AAE(°)↓

TP-
ADE(m)↓

MSE 61.76 3.2 1.9
BCE 60.29 3.4 1.7

Table 7. Comparison of performance using different loss func-
tions.

Through comparison, we observe that the two loss func-
tions achieve nearly identical training performance. The
MSE-based approach yields slightly higher accuracy and
smaller angular error, whereas BCE produces a lower dis-
tance error. This finding is consistent with the results re-
ported by Perotin et al.[25], although their study focused
solely on the impact of the two loss functions for direc-
tion estimation. They also demonstrated that BCE and MSE
achieve similar effectiveness when applied to Gaussian la-
bels, such as those illustrated in Figure5a.

4.5.3. Error Analysis for Acoustic Localization
In the problem definition section, we proposed two assump-
tions for setting the labels, which are as follows:
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• The uncertainty in distance (represented by the Gaussian
distribution’s σ) increases linearly with distance:

σd(d) = σmin
d +

(
σmax
d − σmin

d

) d

Dmax
, (14)

• The uncertainty in direction (represented by the Gaussian
distribution’s σ) decreases linearly with distance:

σθ(d) = σmax
θ −

(
σmax
θ − σmin

θ

) d

Dmax
, (15)

where d is the source distance and Dmax is the maximum
distance bin.

These two points stem from the intuition that as an object
becomes farther away, it occupies a smaller angular range
and, from the perspective of human hearing, its position also
becomes more difficult to estimate (especially the distance).
To examine this hypothesis, we conducted the following ex-
periment, analyzing how both distance error and direction
error vary with increasing distance.

(a) Relationship between direction error and ground truth dis-
tance

(b) Relationship between distance error and ground truth dis-
tance

Figure 13. Distance-dependent error analysis

Direction error analysis: We compared the magnitude
of direction error under different ground-truth settings, as
illustrated in Figure 13a. Contrary to our expectation, we
found that the direction error remains almost unchanged
with respect to the ground truth. In other words, although a
3-meter-long vehicle subtends only about 6° when located
30 m away and nearly 35° when only 5 m away, this varia-
tion does not affect the recognition performance.

Therefore, we conducted an additional experiment, in
which we compared the cases with distance-dependent un-
certainty (in the direction dimension) against those with

constant uncertainty. The results are summarized in Ta-
ble 8, which indicate that the dynamic uncertainty encod-
ing approach leads to improved recongnition accuracy and
reduced angle error

Method OA@-
5°(%)↑

OA@-
10°(%)↑

TP-
AAE(°)↓

Static Label 56.5 64.3 3.3
Dynamic label 58.9 67.4 3.1

Table 8. Comparison of static and dynamic direction labeling
strategies. The dynamic label adjusts directional uncertainty with
distance and achieves better overall performance.

Distance error analysis. We analyzed distance error
under different ground-truth settings(distance), as shown
in Figure 13b. As expected, the distance error increases
with source distance, partially validating our hypothesis.
Nevertheless, further experiments are required to determine
whether this growth follows a linear or exponential trend.

4.5.4. Positional Embedding
In our network design2, we incorporate positional embed-
dings after each microphone signal to help the model cap-
ture the spatial relationships. Therefore, in this ablation
study, we compare the performance with and without po-
sitional embeddings, as shown in Table 9.

Positional
Embedding

Acc@10°-
5m(%)↑

TP-
AAE(°)↓

TP-
ADE(m)↓

× 65.6 2.9 1.9
✓ 68.9 2.7 1.7

Table 9. Effect of Positional Embedding on Performance.

It can be observed that positional embedding yields a
modest improvement in recognition performance. This is an
interesting finding, as we neither changed the microphone
positions within the array nor altered the input ordering.
The key difference lies in the learning objective: with posi-
tional embeddings, the network is encouraged to learn the
absolute position of each channel with respect to a spatial
reference, whereas without embeddings, it must rely only
on relative ordering.

Two factors may explain this improvement. First, posi-
tional embeddings provide the model with a shared coordi-
nate system, allowing it to better associate phase differences
with the physical microphone geometry, rather than infer-
ring such relations solely from channel indices. Second,
by supplying explicit positional cues, the model reduces the
burden of mapping from the acoustic domain to the geomet-
ric domain, thereby lowering the learning difficulty.
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(a) Effect of time window on localization accuracy (b) Effect of time window on angular error (c) Effect of time window on distance error

Figure 14. Effect of time window length on localization performance. Improvements continue with longer windows, but the growth
becomes gradual after 100 ms.

4.5.5. STFT Time Windows Length
In the input stage, we adopt 100 ms audio segments con-
verted into STFT representations as our baseline, following
prior work on direction estimation. Longer windows cap-
ture richer information and provide higher frequency res-
olution, but they also increase model complexity and may
introduce time delay and localization errors due to target
motion. Conversely, shorter windows reduce the parameter
size and are more robust to moving sources, but at the cost
of losing spectral detail. To better understand this trade-off,
we investigate the impact of different STFT window lengths
in this ablation study. We evaluate multiple window sizes
ranging from 30 ms to 200 ms and compare their perfor-
mance on the static road dataset, as illustrated in Fig. 14.

Through our observations, we found that as the time win-
dow increases, recognition performance consistently im-
proves. However, we must also take into account the latency
introduced by a larger window—for example, a 200 ms
window implies an additional 100 ms delay before recog-
nition can be made. Our results show that once the win-
dow length exceeds about 80-100 ms, the improvements in
recognition accuracy and error(direction and distance) re-
duction become relatively marginal. This indicates that our
earlier choice of a 100 ms window length appears to be rea-
sonably justified, as it strikes a balance between recognition
performance, network parameter efficiency, and latency.

5. Discussion
Through the two experiments above, our approach
demonstrates the capability to localize and classify traf-
fic participants in the environment using a microphone
array. We have also successfully addressed our initial re-
search questions: based on the STFT experiments and the
comparisons presented in Appendix A, we identified a suit-
able encoding strategy for auditory information. Further-
more, two ablation studies on label design confirm the ef-
fectiveness of our proposed representation, which is specif-

ically tailored for BEV acoustic localization in autonomous
driving. This labeling scheme not only enables more ro-
bust learning but also bridges the gap in the robotics audio
perception domain, where direction and distance have typ-
ically been treated in an isolated manner. In addition, two
studies on network design choices—specifically, positional
embedding and the loss function—further support the effec-
tiveness of our network design.

Furthermore, although microphone performance may
degrade in complex environments, they remain valuable
for enhancing other sensors through joint detection. For
example, in our experiments, we observed instances where
acoustic sensing successfully identified objects that LiDAR
failed to detect. Such failures were typically caused by par-
tial occlusions in the LiDAR’s field of view or by sparser
point clouds resulting from sensor overheating. In these
cases, acoustic information provided complementary cues
that enabled cross-validation and more reliable recognition.
Specifically, when microphones detect sound from a region,
the system can assign higher confidence to that location, ef-
fectively favoring it as a true positive even when LiDAR
evidence is ambiguous.

5.1. Limitations and future work
Despite achieving encouraging results, our work is still sub-
ject to the following limitations.

• The dataset was collected primarily in relatively simple
road environments, without highly congested scenarios.

• The current experiments did not fully explore the vision-
independent nature of sound; future work could investi-
gate more challenging cases, such as narrow T-junctions.

• The hardware setup relied on simple, fully exposed mi-
crophones, making it more susceptible to wind noise.

To tackle these limitations, we outline the following di-
rections for future work: we plan to expand the dataset
to include highly congested downtown scenarios, enabling
a more thorough evaluation of model performance under

13



complex traffic conditions. Another promising direction
is to investigate the non-line-of-sight (NLOS) problem by
combining microphone array data with environmental in-
formation, such as maps or LiDAR points. In such cases,
knowledge of the road layout combined with acoustic cues
from the environment can help recognize vehicles hidden
behind corners. Finally, we aim to improve the microphone
design by introducing stronger wind-noise suppression cov-
ers, exploring more advanced types such as directional or
ear-shaped microphones, and adopting semi-enclosed lay-
outs to reduce direct wind exposure and enhance robustness
in real-world deployments.

6. Conclusion

In the previous chapter, we provided answers to the research
questions at the beginning. In summary, we proposed an
acoustic detection method that leverages low-cost micro-
phone arrays for autonomous driving to detect critical sur-
rounding objects. This approach successfully extends prior
research in indoor robotics from simple direction estimation
to full localization and classification, and introduces acous-
tic perception into the autonomous driving domain from a
bird’s-eye-view perspective. Our experiments demonstrate
that the proposed method can not only reliably detect traf-
fic participants in the environment, but in certain cases can
even identify objects that vision-based sensors fail to recog-
nize—highlighting its value both as an independent sensor
and as a complementary modality. Overall, our findings
provide strong evidence that microphone arrays could
contribute to 3D perception for autonomous vehicles.
Looking ahead, we hope that acoustic sensing will be ap-
plied in broader scenarios, enabling vehicles to perceive the
world more like humans do—through both eyes and ears.

References
[1] Sharath Adavanne, Archontis Politis, and Tuomas Virtanen.

Direction of arrival estimation for multiple sound sources us-
ing convolutional recurrent neural network. In EUSIPCO,
2018. 3

[2] J. B. Allen. Short term spectral analysis, synthesis, and mod-
ification by discrete fourier transform. IEEE transactions on
acoustics, speech, and signal processing, 1977. 5, 16

[3] Abhishek Balasubramaniam and Sudeep Pasricha. Object
detection in autonomous vehicles: Status and open chal-
lenges. arXiv, 2022. 3

[4] Vasileios Bountourakis, Lazaros Vrysis, and George Pa-
panikolaou. Machine learning algorithms for environmental
sound recognition: Towards soundscape semantics. In Pro-
ceedings of the audio mostly 2015 on interaction with sound.
2015. 3

[5] Andreas Brendel and Walter Kellermann. Distance estima-
tion of acoustic sources using the coherent-to-diffuse power
ratio based on distributed training. In IWAENC, 2018. 3

[6] Amandine Brunetto, Sascha Hornauer, X Yu Stella, and Fa-
bien Moutarde. The audio-visual batvision dataset for re-
search on sight and sound. In IROS, 2023. 2, 3

[7] Praneeth Chakravarthula, Jim Aldon D’Souza, Ethan Tseng,
Joe Bartusek, and Felix Heide. Seeing with sound: Long-
range acoustic beamforming for multimodal scene under-
standing. In CVPR, 2023. 2, 3

[8] Selina Chu, Shrikanth Narayanan, C-C Jay Kuo, and Maja J
Mataric. Where am i? scene recognition for mobile robots
using audio features. In ICME, 2006. 3

[9] Dengxin Dai, Arun Balajee Vasudevan, Jiri Matas, and Luc
Van Gool. Binaural soundnet: predicting semantics, depth
and motion with binaural sounds. TPAMI, 2022. 2

[10] Ali Dalir, Ali Asghar Beheshti, and Morteza Hoseini Ma-
soom. Classification of vehicles based on audio signals us-
ing quadratic discriminant analysis and high energy feature
vectors. arXiv, 2018. 3

[11] Chuang Gan, Hang Zhao, Peihao Chen, David Cox, and An-
tonio Torralba. Self-supervised moving vehicle tracking with
stereo sound. In CVPR, 2019. 2

[12] Oguzhan Gencoglu, Tuomas Virtanen, and Heikki Huttunen.
Recognition of acoustic events using deep neural networks.
In EUSIPCO, 2014. 3

[13] Alireza Ghasemieh and Rasha Kashef. 3d object detection
for autonomous driving: Methods, models, sensors, data, and
challenges. Transportation Engineering, 2022. 1

[14] Pierre-Amaury Grumiaux, Sran Kitić, Laurent Girin, and
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A. Appendix: Feature Extraction
In this thesis, several commonly used feature extraction
methods were reviewed and compared, including raw wave-
forms, GCC-PHAT[21], cepstral features (MFCCs)[23],
and spectral features such as STFT[2]. Table 10 summa-
rizes their respective merits and limitations. Below we
briefly introduce each method.

Raw Waveform. The raw audio signal x(t) contains the
full temporal information without any preprocessing. Its
main advantage is completeness, but neural networks must
learn task-specific representations directly from x(t), which
typically requires deep models (e.g., CNNs, RNNs, Trans-
formers).

GCC-PHAT. Generalized Cross-Correlation with Phase
Transform estimates the time delay τ between two micro-
phone signals x1[n] and x2[n]:

R12(τ) = F−1

{
X1(k)X

∗
2 (k)

|X1(k)X∗
2 (k)|

}
, (16)

where X1(k) and X2(k) are Fourier transforms of the sig-
nals. This emphasizes phase differences while reducing
sensitivity to noise and reverberation.

Cepstral Features (MFCCs). MFCCs approximate hu-
man auditory perception by mapping the spectrum to the
Mel scale, applying log compression, and then computing
the Discrete Cosine Transform (DCT):

c[n] =

M∑
m=1

log(Sm) cos
[πn
M

(m− 0.5)
]
, (17)

where Sm is the Mel-scaled spectral energy. MFCCs are
compact and efficient, but sensitive to noise.

Spectral Features (STFT). The Short-Time Fourier
Transform provides a time–frequency representation:

X(τ, ω) =

∫ ∞

−∞
x(t)w(t− τ)e−jωt dt, (18)

where w(·) is a window function. STFT captures both
magnitude and phase information, which are critical for
direction-of-arrival (DOA) estimation.

Based on the review above, raw waveforms preserve the
entire acoustic signal, but they inevitably include noise and
redundant information, making effective feature extraction
more demanding for the neural network. GCC-PHAT ad-
dresses this by focusing on inter-microphone time-delay
cues and is robust in reverberant environments, yet it dis-
cards much of the spectral content that can be valuable for

richer perception tasks. MFCCs provide a compact rep-
resentation inspired by human auditory perception and are
widely used in classification, but their compression of spec-
tral and temporal details limits their applicability to local-
ization.

Compared with the above features, STFT retains both
magnitude and phase information while suppressing part of
the noise through its windowed transformation, providing a
richer time–frequency representation that is well suited to
our tasks of classification and localization, and is therefore
adopted in this work.

B. Appendix: Microphone Array Design
As discussed in our related works, most current acoustic
research in autonomous driving focuses on microphone lay-
outs arranged in a vertical configuration. In contrast, we aim
to perform recognition from a bird’s-eye-view perspective,
which requires the design of a custom horizontally arranged
microphone array. In the preliminary stage of this thesis, we
employed the Acoular library in Python to design a horizon-
tal microphone array tailored for autonomous vehicles and
evaluated its performance in simulation using beamforming
methods (Shown in Figure 15).

Figure 15. Beamforming simulation with the proposed micro-
phone array.

In this simulation setup, the proposed horizontal mi-
crophone array is visualized by the red points, while the
green points represent the positions of the predefined sound
sources. Beamforming is performed over the circular band
surrounding the array, with the highlighted region corre-
sponding to the estimated direction of arrival. The align-
ment between the detected direction and the ground truth
source positions demonstrates the effectiveness of the array
design for sound localization tasks.

After finalizing the microphone placement design, we
utilized the mounting rack on top of our autonomous vehicle
to install eight microphone plates around the vehicle, with
two plates on each side. Each plate is equipped with four
microphones, resulting in a total of 32 channels. The plates
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Method Typical Application Strengths / Weaknesses

Raw Waveform Classification, Distance
Estimation

• Strength: Preserves full information without preprocessing.
• Weakness: Requires deep architectures; less interpretable.

GCC-PHAT Direction of Arrival
Estimation

• Strength: Encodes inter-microphone time delay, robust to
reverberation.

• Weakness: Loses frequency and intensity information;
scales poorly with many microphones.

MFCCs Speech / Sound
Classification

• Strength: Compact, efficient, aligned with human hearing.
• Weakness: Sensitive to noise; limited temporal information.

Spectral Features
(STFT)

Classification, DOA
Estimation

• Strength: Captures rich frequency–time patterns and phase
information, critical for DOA tasks.

• Weakness: Computationally more demanding.

Table 10. Comparison of feature extraction methods considered.

are fabricated from PMMA material, which offers a balance
between rigidity and lightweight properties. A schematic il-
lustration is provided in Fig. 16.

Figure 16. Horizontal microphone array installation.

C. Appendix: Simulation Test
We used the Python Acoular package to design simulations
and perform an initial validation of our neural network de-
sign. In the simulation, the microphone array geometry can
be specified, point sound sources can be generated at arbi-
trary spatial locations, and real recordings can be injected
into these sources. The setup is illustrated in Figure 17

Figure 17. Simulation setup.

As an initial step, the simulation experiments targeted di-

rection estimation and classification, with distance model-
ing introduced in later parts(test-track and road data) of this
work. In the direction estimation task, the neural network
achieved the performance summarized in Table 11.

Method Acc@
5°(%)↑

Acc@
10°(%)↑

TP-
AAE(°)↓

SonicVision 85.2 92.3 0.9

Table 11. Direction Estimation Performance with Simulation Data

The results in the Table above demonstrate that our neu-
ral network effectively handles sound source direction es-
timation, maintaining strong performance even in multi-
source scenarios. In addition, the performance of the sound
source classification task is presented in Table 12.

Target Overall
Acc (%)↑

Class-wise
Acc (%)↑

TP-
AAE(°)↓

Car 84.2 86.7 1.0
Motorcycle 81.3 1.6

Table 12. Classification Performance with Simulation Data

The table shows that our network can also perform the
classification task effectively, although recognition of car
sounds is slightly stronger than that of motorcycles. This is
partly because car sounds align more closely with the aper-
ture characteristics of our microphone array.

In summary, the simulation data allowed us to verify the
feasibility of our neural network for direction estimation
and joint classification with direction. However, distance
estimation was not validated, and compared to real-world
data, the simulations lack environmental noise and cannot
incorporate obstacles that may affect sound propagation. As
a result, they fall short in realism and require further valida-
tion on real data.
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