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Abstract 
The presence of a passenger can affect driver safety positively or negatively. Therefore gaining a better 
understanding of the nature of this interaction with a passenger is crucial. Additionally, drivers and 
passengers acquire nearly identical visual information from the driving scene. As a result, synchronised 
behaviour may occur. The driver-passenger synchrony may provide additional information on driver-
passenger interactions. This led to the aim of the current study: The identification of synchrony in head 
orientation and movement between drivers and passengers for various road types and cornering events. 
This study was based on real-world driving data. The head angle (orientation) and angular velocity 
(movement) of all three principal axes (pitch, roll, and yaw) were analysed for synchrony.  
 
The following methods were applied for the identification of driver-passenger synchrony. The head 
angles of drivers and passengers were detected using OpenFace 2.0, a video-based pose estimation 
method. Second, the windowed cross-lagged correlation (WCLC), a linear approach for synchrony 
identification, was applied. Next, two distinct facets of synchrony were measured. The first facet was 
determining the frequency of synchrony derived by the peak-picking algorithm developed by Altmann 
(2013). The frequency of synchrony was summarised as the percentage of synchrony that occurred over 
the measured road segment. The second facet of synchrony studied was the strength of synchrony with 
the help of the peak-picking algorithm developed by Boker et al. (2002). This peak-picking algorithm 
searches for the maximum peak correlation at every window of the WCLC. Then all maximum peak 
correlations were averaged into a single mean peak correlation per road segment or cornering event. 
Since behavioural synchrony could appear by chance, the results of the peak-picking algorithms were 
compared to pseudosynchrony. The first hypothesis states that it is possible to distinguish detected 
synchrony from pseudosynchrony of driver’s and passenger’s head angle and angular velocity. 
Secondly, it is hypothesised that more synchrony is detected in the urban road type than outside built-
up areas- and highway road types.  
  
The results showed that differentiation between the detected synchrony and pseudosynchrony could be 
made for the analysis on the total route for almost all head angles and angular velocity for the frequency- 
and strength of synchrony. Furthermore, the analysis on the different road types, revealed that the 
identified synchrony could be differentiated from pseudosynchrony for almost all urban road segments. 
The findings on the other road types were mixed. It can be concluded from these research results that 
synchronisation has been identified for the urban road type. The road types where the detected synchrony 
was not significantly different from pseudosynchrony could indicate that there was no synchrony present 
or that the applied methods were unable to capture the driver-passenger synchrony. Synchrony 
identification in cornering events revealed no observable patterns. As a result, no conclusions on the 
cornering events could be formed. The second hypothesis could only be tested for one condition, since 
the identified synchrony could not be differentiated from pseudosynchrony for all the required road 
types for the second hypothesis. The result showed no significant difference between the urban road 
type compared to the built-up areas and highway road types for the pitch–angular velocity. 
  
According to this study, drivers and passengers exhibited synchronisation in their head orientations and 
movements along particular road segments. However, more research is needed to truly comprehend the 
synchronised behaviour of drivers and passengers. A good place to start is for a study that looks into the 
relation between synchronous behaviour and the impact on driver safety as a result of the passenger's 
presence.  
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Introduction 
 
Driver distraction reduces road safety and is the cause of many accidents [1]. Former research revealed 
that the most common cause of driving distraction is the interaction with a passenger [2], [3]. The 
interaction between humans has been thoroughly studied. An essential factor of social interaction is 
synchrony [4]. Mayo and Gordon [5] cited interpersonal synchrony as “the spontaneous rhythmic and 
temporal coordination of actions, emotions, thoughts and physiological processes between two or more 
participants”. The timing of behaviour, movement and speech is critical for achieving interpersonal 
synchrony. There are various interpretations of synchrony. Behavioural synchrony can consist of 
identical or similar behaviour. But also complementary behaviour, such as turn-taking when talking, can 
be seen as synchronous behaviour [5]. Several factors influence synchrony, for instance, the 
environment. Former research shows that when two humans are exposed to similar visual information, 
spontaneous phase synchrony, unintentional in-phase coordinated behaviour can emerge [6]. Since 
drivers and passengers interact and experience the same visual information from the driving scene, 
synchronous behaviour could emerge.  
 
A passenger in the vehicle can directly affect the driver by interacting with the driver and indirectly due 
to social norms and expectations conveyed by the presence of a passenger. However, this passenger 
presence could positively impact safety depending on several factors, such as the passenger warning the 
driver of impending dangers [7]. Factors indicating whether the passenger influences the driver 
positively or negatively are the relationship between driver and passenger, gender, peer pressure, age 
and driving conditions [7], [8]. Investigation of single-vehicle accidents showed adult drivers are 
positively influenced by the presence of passengers, while on the other hand, young drivers are 
negatively affected by their presence [9], [10]. Driving safety improved when a young driver was 
accompanied by a passenger with driving experience, who provided comments regarding safety. This 
effect remained when driving alone afterwards [11]. Chandrasekaran et al. [12] showed that driving-
inexperienced passengers modulated their conversation less than driving-experienced passengers.  
 
Former studies found a difference between drivers’ and passengers’ head movements during driving. 
Drivers’ head tilts are related to the road’s curvature, while inactive passengers’ head tilt correlates 
inversely with the lateral forces [13]. Another study conducted in a driving simulator has shown that 
there could be a difference in behaviour between aware and unaware passengers [14]. Unaware 
passengers were assigned to perform a secondary spatial cognitive task by the experiments. In contrast, 
aware passengers learned about the situation through arrows; for instance, up indicated accelerating. 
These aware passengers also performed a think-aloud task to facilitate their cognitive processing. 
Results show that the head’s mean side rotation rate while cornering was similar between drivers and 
aware passengers [14]. Cabrall et al. [15] researched the eye measure eccentricity (mean percentage 
distance from the centre gaze point) for differentiation between drivers and passengers. Results indicate 
a higher eccentricity measure for passengers than drivers. The measurement duration and the inclusion 
of vehicle speed improved the differentiation between driver and passenger based on the eccentricity 
measure [15]. Former studies of Zikovitz and Harris [13], Schewe et al. [14] and Cabrall et al. [15]  
concentrated on finding differences between drivers and passengers. In short, a knowledge gap is 
discovered for synchronous head movements between driver and passenger in the same environment.  
 
Humans are in control of driving a vehicle. In the future, this may change due to the introduction of 
advanced driving assistance systems (ADAS). This will change the driver’s role from an active 
controller to a supervisor, and eventually, to a passenger [16]. Therefore, research to identify the changes 
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due to vehicle automation on the driver state and behaviour is necessary. Examples of these changes are; 
increased use of in-vehicle infotainment systems [17]-[19], reduced vigilance due to monitoring, mode 
awareness, changes in attention allocation, reduced situation awareness, over-reliance and complacency 
toward the systems and misuse [16]. The driver state and behaviour can be extracted by multiple 
measurement techniques, for instance, physiological, performance-based and subjective measures [20], 
[21]. In real-world driving experiments focused on automated driving, physiological measures are best 
suited. Eye- and head tracking measures are examples of physiological measures that can be non-
intrusive and are direct [22]. These measures are commonly used in Driver Monitoring Systems (DMS). 
The function of a DMS is stated by Hayley et al. [23] as: ‘ … collect observable information about the 
operator to make real-time assessment of their capacity to perform the driving task’.  
 
Pose estimation 
Previous studies that analysed synchrony during conversations between dyads focussed on head 
movements regularly [24]-[26]. Several techniques, such as motion tracking devices, image processing 
techniques, and physiological sensors, are prominent in the literature for capturing head motion between 
dyads [26]. An image processing technique, more specifically, a video-based tracking approach, seems 
promising to gain information of the head pose of drivers and passengers. Since this approach is non-
intrusive and only a single camera is sufficient, this is feasible for the implementation in DMS. 
Schoenherr et al. [27], Moulder et al. [28], Ramseyer and Tschacher [29], Feniger-Schaal et al. [30] and 
Paulick et al. [31] used a video-based tracking method - frame differencing technique called Motion 
Energy Analysis (MEA). This frame-differencing approach captures the human body in a plane or 
region. The frame-differencing technique is robust and implemented in various research contexts, such 
as casual chatting, clinical counselling, and specific collaborative tasks [29], [30], [32]. MEA does not 
include information about the direction and form of the movement, only the size. Another example of a 
video-based tracking method is a pose-estimation algorithm. Only one former study of Fujiwara and 
Yokomitsu [33] implemented a pose-estimation technique (OpenPose) for synchrony analysis between 
dyads. The OpenPose algorithm produces a real-time pose estimation (e.g., head, hand, face etc.) [34]. 
A promising pose-estimation algorithm for eye-and head detection is OpenFace 2.0. OpenFace 2.0 is a 
facial behaviour toolbox that detects facial landmarks (e.g., facial action units, head pose and eye-gaze) 
and contains a high detection rate compared to former head detection algorithms [34], [35]. This 
technique uses computer vision and deep learning to estimate the coordinates of the face. The result of 
the pose-estimation algorithm is a time series with information about the facial action units, head pose 
and eye-gaze of the detected face. 
 
Measurement of synchrony 
In this study, synchrony is defined as well-coordinated, or well-timed interaction. The measurement of 
synchrony is challenging since there are various methods available, leading to different results [28]. A 
couple of examples of these methods are correlations, regressions, structural equation models, 
recurrence quantification analyses, spectral analyses and human raters. The most apparent method, 
human rating, has low reliability [27]. Additionally, human raters should be trained to ensure all raters 
assess in a similar construct. This takes time. Automated synchrony identification could prove 
economical and reliable. However, the parameter settings are essential to generate meaningful results 
for synchrony detection [27], since both the method and the input parameters strongly affect the 
outcome. To date, there is still no agreement on which parameter values produce the best outcomes [28]. 
In behavioural sciences that focus on synchrony between two dyads, correlation- and regressive time 
series analysis methods are mostly applied [27], [36]. These approaches are based on linear relationships 
between dyads. Therefore, stationarity is required. This entails a stable frequency or repetitive pattern 
throughout the time series. The method used to identify synchrony should capture what happens during 
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synchrony. It should also allow for a slight time delay. The windowed cross-lagged correlation (WCLC) 
and windowed cross-lagged regression (WCLR) fulfil these requirements. Since the WCLR was 
developed for cyclic and auto-correlated time-series and is computational more expensive, the WCLC 
is promising for behavioural synchrony [27].  
 
Windowed Cross-Lagged Correlation 
WCLC is the most used method to quantify synchrony between dyads [37] and is regularly applied for 
head movement analysis regarding synchrony in former studies [24], [25], [38]. The WCLC analysis is 
a well-ordered method for capturing dynamic changes in synchrony. The WCLC estimates the peak 
Pearson product-moment correlation and the associated time lag at the peak correlation between two 
time series signals. The signal is divided into smaller overlapping windows instead of calculating the 
correlation coefficient over the whole time series. The lag captures the slight differences in pace between 
two individuals’ responses to one another. This method assumes that there is local stationarity (2 
seconds) [39]. This indicates that the statistical properties, e.g. mean, standard deviation, autocorrelation 
and cross-correlation, remain stationary or stable over a timespan of two seconds. Finding the best 
parameter configuration for the application of WCLC is challenging. Choosing the best window size is 
a reliability-sensitivity trade-off [38]. It is recommended to have a sample size of at least 65 observations 
for a high correlation, while for a weaker correlation, a sample size up to 250 observations is advised 
[39]. A larger window size reduces the sensitivity, while a small window size reduces the reliability of 
the results. The linear time series analysis methods, where WCLC is one of, can measure different facets 
of synchrony, for instance the strength- and the frequency of synchrony over the total interaction [36]. 
The different facets of synchrony are measured by different peak-picking algorithms.  
 
Peak-picking 
The WCLC is supported by a peak-picking algorithm. A peak is the maximum cross-correlation. The 
peak-picking algorithm analyses patterns of change in peak cross-correlation between two time series. 
This is accomplished by the identification of correlation peaks and their associated time lag. Since 
synchrony fluctuates over time, the correlation and the associated time lag changes as well. These 
changes are identified by the peak-picking algorithms. Also, the time series what lead the 
synchronisation is revealed by the peak-picking algorithm. Boker et al. [38] introduced the first peak-
picking algorithm. An alternative peak-picking algorithm was released by Altmann [40]. These peak-
picking algorithms are fundamentally different. The algorithm of Boker et al. implies the occurrence of 
synchrony over the entire duration of the interaction, with only the strength of the synchrony varying. 
Therefore, this algorithm aims to quantify the strength of synchrony over a specific time window. The 
peak-picking algorithm proposed by Altmann assumes the existence of synchronisation intervals. The 
frequency of synchrony can be determined due to detection of synchrony intervals, what is also known 
as an on and off pattern. Therefore, the peak-picking algorithm of Altmann can be implemented to 
identify the frequency of synchrony in a specific bandwidth. The algorithm of Boker can be used to 
obtain information about the strength of synchrony over total duration of the interaction.  
 
Pseudosynchrony 
Another challenge researchers face when investigating synchrony, is the occurrence of spurious 
synchrony between two individuals that were not engaged with one another. The spurious synchrony, 
also known as pseudosynchrony, occurs because humans are in a constant state of motion [28]. 
Therefore, it is essential to distinguish the detected synchrony from pseudosynchrony to assess 
synchrony in any communication context, since pseudosynchrony may be present due to random 
coincidence [32]. The synchrony identified by the peak-picking algorithms should be compared to 
pseudosynchrony values to confirm that the detected synchrony did not appear by chance. To create 
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pseudosynchrony, a surrogate data stream is produced by destroying the quality of interest, synchrony, 
while keeping all other attributes of the data streams, such as the mean value, intact. Another name is a 
bootstrap method for the comparison of the detected synchrony to pseudosynchrony or surrogate data 
[41]. Ramseyer and Tschacher explained in their study that to implement surrogate data for group 
analysis, it is recommended to generate one hundred or more surrogate data streams per sample and 
derived the mean value [32]. 
 
Research Aim 
The present study aimed the identification of synchrony in head orientation and movement between 
drivers and passengers for various road types and cornering events. Since the detection of synchrony 
during driving is a new area of research, analysis on different facets of synchrony was executed to study 
the frequency- and strength of synchrony over the total duration and the various segments of an 
interaction. This study was based on real-world driving data. Video-based pose estimation, windowed 
cross-lagged correlation analysis, two different peak-picking algorithms, and chance control were 
implemented. The head angle was intrinsically linked to the driver’s field of view and focus of attention 
[42], [43]. The principle axes of the head, pitch, roll and yaw were taken for investigation of head 
orientation and movements of drivers and passengers. The output of the peak-picking algorithms was 
compared to synchrony that may be expected by chance, pseudosynchrony. First, the frequency of 
synchrony in head angle and head angular velocity for drivers and passengers were compared to the 
pseudosynchrony for different road segments and cornering events. Secondly, the strength of synchrony 
between drivers and passengers for different road segments and cornering events were analysed and 
compared to pseudosynchrony. Lastly, the results for the different road types were compared. The first 
hypothesis states that it is possible to distinguish between the detected synchrony and pseudosynchrony 
of drivers and passengers for both the frequency- and strength of synchrony. The second hypothesis 
states that more synchrony is detected in the urban road type than outside built-up areas and highway 
road types. 

Methods 
Dataset 
For the identification of driver passenger synchrony, real-world driving data was used. This real-world 
driving data was obtained from a former naturalistic driving experiment of Cabrall et al. [15], [44].  The 
participants were 16 pairs (78% male, 22% female, mean age = 27.3, SD age = 2.4) recruited from the 
Delft University of Technology and had a normal or corrected-to-normal vision. All participants 
obtained their initial driver's license at least more than one year prior to the experiment. The experiment 
was carried out in a 2014 Toyota Prius Hybrid passenger vehicle with an automatic transmission and 
without advanced driving assistance systems. Each participant was involved in two trips. One trip the 
participant sat in the driver’s seat and one trip in the passenger’s seat, leading to a total of 32 trips. The 
drivers did not receive any instructions, except to drive safely and as they usually would. The passengers 
started without any instructions for the first part of the trip. In segment 5 (Figure 1), the passengers 
received an instruction paper asking them to pay attention and behave with their eyes as if they were 
driving. No restrictions were given regarding conversation, the use of electronic devices, e.g.  
 
The vehicle was instrumented with additional equipment including GPS and measuring tools for steering 
and pedal inputs, to collect data about the vehicle state and the control input at 25 Hz. Also, the vehicle 
contained facecams for assessing driver behaviour. The facecams are cameras inside that were directed 
at the driver and passenger. The generated videos had a sampling rate of 30 Hz. The drivers and 
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passengers wore UV shielded eye-tracking glasses from SensoMotoric Instruments (SMI) during the 
experiments. The glasses recorded eye measures sampled at 60 Hz. 
 
From the total of 32 trips, 24 trips were included in the analysis. The excluded trips are trip 7 due to a 
detour, trip 9 since no facecam videos of the driver and passenger were available, and trip number 32 
due to an error in the recording of the facecam video of the driver. Trips 11, 12, 13, 22 and 27 were 
eliminated due to too many missing values in the data produced by the head detection algorithm. The 
detection algorithm OpenFace 2.0 experienced difficulties detecting the head during large, fast 
movements due to the eye tracking glasses participants wore. Since the remaining trips contained a 
limited amount of missing data spread over the whole duration of the trip, it was considered sufficient 
for this study. 
 
Route 
The driving route covered mixed types of roads and various driving situations (e.g., traffic, signage, road 
geometry) (Figure 1). The total length of one trip was about 20.0 km and took approximately 30 minutes 
on average. 
 
To analyse the impact of the different road types and cornering events on the synchrony between driver 
and passengers, various road segments and cornering events are introduced. These segments 
differentiate between the mixed types of roads. Segments 1 and 9 are urban segments with cornering 
events A, N, B, M, C, L, D and K. The corner events E, and, J are the transition from urban area to 
outside built-up areas. The road type of segments 2 and 8 are outside built-up areas. Next, entering and 
exiting the highway, segments 3 and 7, with cornering events I and F. The highway is annotated by the 
segments 4 and 6. The last road segment is segment 5, the turnaround point with cornering events G and 
H, is called exit and entry highway. Figure 1 shows an overview of the different road segments and 
cornering events. Table 1 shows an overview of the distance of each segment, the mean time duration 
of each segment and the percentage of time of each road segment in relation to the total route. Table 2 
shows the average duration of each corner.  
 

 
 
 
 
 
 
 
 
 
 
 
 

The road segments were determined by analysing the route of the trip. The distinguishment of the 
segments in the data were implemented by deriving the travelled distance of the start of each segment. 
This method proved to be more accurate than the application of GPS for the current data. First, the start 
positions of the road segments were defined with road signs and characteristics that were visible at the 
side windows of the vehicle in the facecam videos of one trip. Thereafter, the distance travelled at those 
points was derived via the recorded vehicle speed. The distance travelled was then kept identical for all 
trips. Since some drivers may drive at a different corner radius, the distance travelled leads to a slight 

 Distance (m) Duration (s) Percentage of time (%) 
Total route 20543 1842 100 
Part 1: Pre task 9261 811 44.0 
Part 2: Post task 9853 889 48.3 
Segment 1: Urban 2044 286 15.5 
Segment 2: Outside built-up areas 3178 354 19.2 
Segment 3: Entry highway 179 16 0.9 
Segment 4: Highway 3246 164 8.4 
Segment 5: Exit and entry highway 1429 142 7.7 
Segment 6: Highway 3456 143 7.8 
Segment 7: Exit highway 386 30 1.6 
Segment 8: Outside built-up areas 3867 419 22.7 
Segment 9: Urban 2143 297 16.4 

 Duration (s) 
A 19.7 
B 23.4 
C 12.3 
D 24.6 
E 12.0 
F 11.5 
G 15.5 
H 45.7 
I 8.07 
J 20.4 
K 18.5 
L 12.9 
M 22.9 
N 15.2 

Table 1. Overview of average distance (m), average duration (s) and the average 
percentage of time (%) of each road segment compared to the total time. 

Table 2. Overview average 
duration (s) of each 
cornering event. 
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deviation in the segment starting point. However, for the differentiation of the road segments this level 
of accuracy is considered sufficient and will not affect results. 
 

 
Figure 1. Top: Various route scenes; 1: urban, 2: outside built-up areas, 3: entry highway, 4: highway. The location at the 
route is annotated by a blue number in bottom figure [45]. Bottom: The driving route of the real-world experiment divided into 
road segments. The different road types are marked in different colours, light blue: urban, pink: outside built-up areas, orange: 
entry/exit from the highway, dark blue: highway, green: entry/exit from the highway. The black numbers annotate the road 
segments, and the corners are circled and annotated by a letter. 

Identifying synchrony 
The synchrony of head orientation and movement between drivers and passengers was analysed as 
follows: (I) automatic detection of the head pose, (II) data filtering, (III) syncing data, (IV) creation 
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surrogate data, (V) application windowed cross-lagged correlation, (VI) identification frequency of 
synchrony (VII) identification strength of synchrony, and (VIII) statistical analysis.  
 
I. Automatic detection of the head pose 

First, the video-based pose-estimation OpenFace 2.0 algorithm was 
applied to provide the principle axes of the head of the driver and the 
passenger. These principle axes are angles are pitch, roll and yaw. 
These head pose angles are essential for driver attention monitoring, 
and therefore all three were analysed [45]. Besides the head pose, the 
head angular velocity was also explored. The angular velocity contains 
information about the activity of the head. The angular velocity of the 
head is derived from the head orientation. Figure 3 shows the values of 
the head angle and angular velocity of pitch, roll and yaw for trip 5, for 
a 10-second time window of road segment 1 - urban.   

 

Figure 3. The head angles (left) and head angular velocities (right) in the road segment 1 -  urban  for the driver of trip number 
5. Black line: raw signal detected by the OpenFace 2.0 algorithm, black dotted line: interpolated signal, red line (head angle): 
smoothed signal, blue line (head angular velocity): derivative smoothed signal head angle. 

An important feature for running OpenFace 2.0 was the detection of multiple faces, since the 
experimenters at the backseats of the vehicle were visibility in the facecams. Although face detection 
algorithms have improved the last years, the OpenFace 2.0 algorithms experienced difficulties in head 
detection in some cases. This could have been caused by the fact that large eye trackers were installed 
on the participant’s faces, occluding facial landmarks as eyes and eyebrows. This led to false positives 
and missing data. False positives were detected values of the correct participant but with incorrect 
proportions of the head resulting in incorrect head angles. The false positive values were removed from 
the data (Appendix A). Since, for most trips, the data gaps were small, a spline method for interpolating 

Figure 2. Principles axes pitch, roll 
and yaw [44]. 
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these gaps was applied. For five trips, the percentage of missing data after head detection and removing 
the false positive was more than 20% for the driver and/or passenger data (Appendix B). These five 
trips, (trip numbers; 11, 12, 13, 22 and 27), were excluded from analysis.  
 
II. Data filtering 
The detected head angle by the OpenFace algorithm contained noise. Applying a moving average filter 
keeps most variations in the detected data but it removes the high frequency noise. The moving average 
sample length was determined based on literature, most papers analysing movement synchrony use a 
moving average filter with a length of 400 milliseconds to 1 second for filtering movement signals [28], 
[33], [46], [47]. To reduce the amount of noise in the collected data a moving average filter was applied 
with a length of 8 samples (0.267 seconds) on the signal containing the head angle. Then the signal was 
differentiated to derive a filtered angular velocity signal. Figure 3 shows the detected, interpolated and 
smoothed signals of the head orientation and movement for pitch, roll and yaw for the driver of a random 
trip for a small time window in segment 1. The results of the filtering method for other segments and 
the passengers’ role are included in Appendix C.  
 
III. Syncing data 
Next, the time series data of the driver and passenger of each trip was synced to the car data. A method 
based on vibrations created by Fridman et al. was implemented to sync these data streams [48]. First, 
the dense optical flow from the facecam video was derived by the Farneback algorithm. The dense 
optical flow detected fluctuations (vibrations) in the y-direction of the videos. The next step was finding 
the maximum cross-correlation between the dense optical flow derived from the video and the body 
acceleration of the vehicle in Z-direction. The maximum correlation identified the lag between the two 
signals, after which we could correct for this lag, synchronising the two streams. Appendix D contains 
more information on the applied syncing method. 
 

 
Figure 4. Head angle yaw for the driver (red line) and passenger (blue line) for the first half of the trip 1. Blue box: road 
segment 1 – urban including a cornering events, green box: road segment  1– urban without a cornering events, purple box: 
road segment 2 – outside built-up areas without a cornering event and the orange box: road segment 4 – highway without a 
cornering event.  
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IV. Creation surrogate data 
Many methods of testing and quantifying nonverbal synchrony showed a level of synchrony, even when 
the two time series are not correlated, e.g. data of research participants that show no interaction [28]. 
Therefore, it is necessary to differentiate between detected – and pseudosynchrony to verify synchrony 
is not detected by chance. Different methods could be used to generate surrogate data. Since we were 
assessing synchrony over longer time intervals, data sliding was the best fit method for surrogate data 
generation for this application [28]. The method of data sliding does not destroy as much time 
dependency as, for example, data shuffling. For data sliding, a single cut was created at a random point 
between 50-70% of  the first data stream. The data past this point was removed from the end of the time 
series and appended at the beginning. An important note is that the placement of the cut should not be 
too close to the start or the end of the time series, hence the cut in the range of 50-70% of the signal. 
The second data stream remains unchanged. Next, the pseudosynchrony was calculated identically to 
the synchrony of the original signal. In the study of Ramseyer and Tschacher, it was stated to generate 
one hundred pseudosynchrony streams per sample and derive the mean value for a group analysis [32]. 
Since the number of trips is twenty-four, the total sample size of the group is relatively small. Therefore, 
the method of Ramseyer and Tschacher was applied. This strengthens the application of 
pseudosynchrony.  
 
V. Application Windowed Cross-Lagged Correlation (WCLC) 
The WCLC was calculated using the formulas (1) and (2) [38]. Suppose we take a segment of the time 
series of the head orientation from the driver, define this vector X. The exact length segment of the time 
series of the head orientation of the passenger is described as vector Y. The size of the window is denoted 
by wmax, and t indicates the time lag. The time lag should be between the minimum and maximum time 
lag.  
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The sampling frequency of the head angle estimation was 30 Hz. The WCLC was calculated for the 
complete duration of the trip. We carefully choose the parameters so that they were as adequate as 
possible in our case. The WCLC analysis required the specification of four parameters: window size, 
maximum lag, window increment and lag increment. The first parameter was the window size of the 
studied segment. The chosen window size was 60 data points (2 seconds). The second parameter was 
the maximum time lag; this was also 60 data points (2 seconds). The window increment between the 
two windows was set to 6 data points (200 milliseconds) and the lag increment was set to 2 data points 
(67 milliseconds). For calculating the WCLC, only positive correlations were included in the analysis. 
Anti-synchrony, negative correlation values, were disregarded since we were interested in whether the 
drivers and passengers moved their heads into the same direction. Next, two different peak-picking 
algorithms were employed, one focussing on the frequency of synchrony and the other on the strength 
of synchrony. Figure 5 shows the different structure of the two peak-picking algorithms with the 
different WCLC matrices, R2 for Altmann and R for Boker. Figure 6 shows the results of a 
synchronisation interval for a small time window for the head orientation and movement. In Figure 6, a 
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positive lag value in the synchrony interval indicates passenger synchrony leads and a negative lag value, 
indicate that the driver leads the synchrony interval.  
 

VI. Identification frequency of synchrony 
The first facet of synchrony analysed, was the frequency of synchrony, also called the occurrence of 
synchrony. The peak-picking algorithm of Altmann [40], [49] was implemented to identify the 
frequency of synchrony. First, this algorithm localised all local maxima, peaks, in the R2 matrix. The 
squared correlation (R2) causes that higher correlations weight higher than very low correlations. Next, 
the neighbouring peaks with an equal time lag were identified. The neighbouring peaks were assembled 
to peak clusters. A small time lag was tolerated in these peak clusters. Then, all peak clusters smaller 
than 2 seconds (ten consecutive peaks) were removed, since these short periods are considered too short 
for meaningful synchrony.  Next, the peak clusters containing a lower R2 average in the presence of 
overlapping peak clusters were removed. The outcome of this peak-picking algorithm was a sequence 
of synchrony intervals including frame numbers, their mean peak correlations in R2 and their 
corresponding time lags. The last step was calculating the percentage of synchrony intervals over the 
computed road segments and cornering events. Since the synchrony interval contained the frame 
numbers of where a synchrony interval was detected, the percentage synchrony over road segments and 
cornering events could be calculated by the sum of all frames of the synchrony intervals divided by the 
sum of all frames of the road segment or cornering event under analysis.  

Figure 5. Overview of the results of the windowed cross-lagged correlation (WCLC) and peak-picking algorithms of trip 5 of 
a time window of 25 seconds for the head angle and angular velocity -  yaw. Top left: WCLC + peak-picking Altmann, head 
angle (white lines: 4 synchrony intervals), Top right: WCLC + peak-picking Altmann , angular velocity (white lines: 6 
synchrony intervals). Bottom left: head angle WCLC + peak-picking Boker et al. (white line), Bottom right: head angular 
velocity WCLC + peak-picking Boker et al. (white line). 
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Figure 6: Overview synchrony intervals of trip 5 for a small time window of 25 seconds. Driver (red line), passenger (blue 
line), synchrony intervals (light blue boxes). Top: Head angle as function of time. Bottom: Head angular velocity as function 
of time.  

VII. Identification strength of synchrony 
The second peak-picking algorithm applied, analysed the second facet of synchrony, the strength of 
synchrony. The peak-picking algorithm developed by Boker et al. focused on finding the maximum 
cross-correlation, a peak [38]. A value was considered a peak when the values decrease on either side 
of the peak in a specific local region. In case more than one peak was found, the peak with the lowest 
time lag was picked. The input of the peak-picking algorithm was a column vector from the cross-
correlation including all time-lag options. The cross-correlation data was smoothed with a loess 
smoothing function. The loess smoother was developed by Cleveland and Devlin [50]. The smoother 
estimates changes in cross-correlation with regard to lag values using locally weighted regression. The 
peak-picking algorithm required the definition of two parameters for the loess smoothing, the local 
search region (L size) and the degree of smoothing (Pspan). The L size signifies the size of the local 
area that defines the peak. This value should be large enough to reject spurious local noise and small 
enough to identify meaningful peaks. The Pspan establishes the width of the moving window when 
smoothing the data. After careful analysis and pilot runs, the selected values for the parameters were for 
the local search size, L size, 8 data points, and for the degree of smoothing, Pspan, 0.1. The output of 
the peak-picking algorithm of Boker et al. was a list of local peaks of cross-correlation with their 
corresponding time lag. To determine the amount of synchrony, the mean of the peak correlation were 
presented. The mean peak correlation gave insight about the strength of synchrony in the analysed 
segment.  
 
VIII. Statistical analysis 
Concerning the first hypothesis, the ability to distinguish the detected synchrony and pseudosynchrony 
between drivers and passengers, two analyses were established. The first analysis is on the frequency of 
synchrony with the peak-picking algorithm of Altmann [40], [49] and the second on the strength of 
synchrony with the peak-picking algorithm of Boker et al. [38].   
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For both algorithms the total route, Part 1 – pre-task and Part 2 – post-task were analysed. Also, all road 
segments were separately analysed. In table 3, an overview of the road types, the associated road 
segment and cornering events are shown. 

 
 
 
 
 

 
The identified synchrony of the real- and surrogate data at different road segments and cornering events 
were compared. The synchrony intervals and mean peak correlation of all 100 surrogate data streams 
were derived first. After which, the mean value for those 100 surrogate data streams were obtained for 
the synchrony percentage and the mean peak correlation for each trip. The derivation of WCLC for 100 
surrogate data streams for 24 trips including the two different peak-picking algorithms was 
computationally expensive. Therefore, the calculations for the surrogate data streams were executed via 
Amazon Web Services (AWS), an online parallel computing service (Appendix E).   
 
Then, a dependent t-test was employed to compare the percentages of synchrony derived from the 
synchrony intervals of the real data to the mean value of the one hundred computed surrogate data 
streams. If the p-value of the dependent t-test was smaller than 0.01, the difference between real– and 
surrogate data was considered to be significant and therefore, it could be concluded that synchrony was 
identified. In addition, the effect size estimates (Cohen’s d) based on the dependent t-test were reported 
for the frequency of synchrony. The second analysis focussed on the strength of the synchrony between 
drivers and passengers for different road segments and cornering events. A dependent t-test compared 
the mean peak correlation of the real values to the values of the surrogate data for all different road 
segments. If the p-values of the t-test were smaller than 0.01 a distinction between real- and surrogate 
data could be made. Also, the effect sizes were calculated.  
 
Only if the detected synchrony was significantly different from pseudosynchrony for the required 
segments, the analysis to confirm or reject the second hypothesis was executed. The second hypothesis 
states that in the urban road type more synchrony occurs than outside built-up areas and highway. The 
statistical method to confirm or reject the second hypothesis was an one-way ANOVA.   
 

Results 
 
In order to create a total overview of the analysed data, Figures 7 to 10 are provided to illustrate a couple 
of vehicle input parameters for the head angle and angular velocity for the analysed sections. Figure 7 
shows the vehicle's speed as a function of the travelled distance for the 24 trips and Figure 8 displays 
the steering wheel angle as a function of the travelled distance for all the included trips. 
 
Six descriptive graphs on the head orientation and movement of drivers and passengers are presented in 
Figures 9 and 10. These graphs show the averaged interquartile range of the head angle and angular 
velocity of drivers and passengers for the studied segments. Since the neutral positions of the head angle 
differs per position in the vehicle, and per participant, the median value of the participants head angle 
was subtracted from the head angle before deriving the interquartile range per trip. This leads to a clear 
overview. Appendix H contains more graphs on the head angle and angular velocity of the driver and 
passenger for each trip 

Road type Road Segment Cornering event 
Urban 1, 9 A, B , C, D, N, M , L, K 
Outside built-up areas 2, 8 E, J 
Entry/Exit from the highway 3, 5, 7 F, I, G, H 
Highway 4, 6  

Table 3. Overview of road types with associated road segments and cornering events 
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Figure 7. Vehicle speed as a function of travelled distance for 24 trips. The black lines represent the speed of each individual 
trip, the blue line represents the average speed of the 24 trips. The vertical lines in combination with numbers 1 to 9 indicate 
the road segments.  

Figure 8. Steering wheel angle as a function of travelled distance for 24 trips. Angle left: positive, angle right: negative. The 
black lines represent the steering wheel angle of each individual trip, the blue line represents the average steering wheel 
angle of the 24 trips. The vertical lines in combination with numbers 1 to 9 indicate the road segments.   
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Figure 9. Averaged interquartile range of the head angles, pitch(top), roll(middle) and yaw (bottom) for drivers (red) and 
passengers (blue) of the 24 included trips. The analysed sections are on the x-axis: Total route, Part 1- pre-task, Part 2- post-
task, Segments 1 to 9. (1: Urban, 2: Outside built-up areas, 3: Entry highway, 4: Highway, 5: Exit/ Entry from highway, 6: 
Highway, 7: Exit highway, 8: Outside built-up areas, 9: Urban). Since the neutral positions of the head angle differs per 
position in the vehicle, and per participant, the median value of the participants head angle was subtracted from the head 
angle before deriving the interquartile range per trip. 

Figure 10. Averaged interquartile range of the head angular velocities, pitch(top), roll(middle) and yaw (bottom) for drivers 
(red) and passengers (blue) of the 24 included trips. The analysed sections are on the x-axis: Total route, Part 1- pre-task, 
Part 2- post-task, Segments 1 to 9. (1: Urban, 2: Outside built-up areas, 3: Entry highway, 4: Highway, 5: Exit/ Entry from 
highway, 6: Highway, 7: Exit highway, 8: Outside built-up areas, 9: Urban). 
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Frequency of synchrony 
First, the results on comparing detected- and pseudosynchrony in head angle and angular velocity 
between drivers and passengers for the frequency of synchrony are discussed.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Head angle 
Table 4 shows the results of the analysis of the frequency of synchrony for all head angles for the total 
route, Part 1 – pre-task, Part 2 – post-task and the different road segments. The percentage of synchrony 
for the head angle pitch was significantly different between the detected synchrony from the 
pseudosynchrony for the total trip, Part 1 – pre-task and the road segments 1 and 9 – urban. The head 
angle roll also showed a significant difference between real- and surrogate data for the total route, Part 
1 – pre-task and the road segments 1 – urban. Part 2 – post-task, indicated as well a significant difference 
for the head angle roll. The head angle yaw showed only one single significant difference between 
detected- and pseudosynchrony. This was road segment 9 – urban. The only cornering event where a 
significantly higher percentage of synchrony was detected was cornering event N for the roll angle 
(Table 5). All other road segments and cornering events did not indicate a significant difference between 
the detected- and pseudosynchrony.  
 
No differentiation between detected synchrony and pseudosynchrony was found for most of the 
segments. Therefore, no ANOVA analysis to confirm or reject the second hypothesis was conducted. 
Since only the urban segments confirmed the frequency of synchrony, the second hypothesis could 
partly be confirmed. Synchrony was identified in the urban segments, and therefore, more synchrony 
did occur at this road type than the outside built-up areas and highway segments. However, the frequency 

 PITCH ROLL YAW 
 Angle (%) Angular 

velocity (%) 
Angle (%) Angular 

velocity (%) 
Angle (%) Angular 

velocity (%) 
Total route 7.4* (0.704) 30.5* (1.113) 6.4* (1.539) 28.5* (1.594) 4.2 (0.566) 20.6* (0.665) 
Part 1: Pre-task 7.5* (0.609) 30.8* (0.937) 6.5* (0.955) 29.4* (1.518) 4.2 (0.390) 20.8* (0.816) 
Part 2: Post-task 7.6 (0.552) 30.5* (0.732) 6.5* (0.842) 27.8* (0.797) 4.1 (0.267) 20.2 (0.244) 
1: Urban 8.9* (0.815) 32.9* (0.886) 8.1* (0.913) 33.5* (1.586) 4.2 (0.284) 21.5* (0.697) 
2: Outside built-up areas 6.6 (0.266) 29.0 (0.418) 5.8 (0.276) 27.1 (0.522) 3.9 (0.170) 20.2* (0.620) 
3: Entry highway 9.2 (0.340) 30.1 (0.145) 4.1 (-0.018) 26.3 (-0.006) 5.0 (0.351) 26.7* (0.915) 
4: Highway 6.9 (0.079) 31.4* (0.638) 5.1 (-0.127) 27.1 (0.348) 4.6 (0.372) 20.2 (0.301) 
5: Exit and Entry highway 5.6 (-0.543) 29.1 (0.216) 5.6 (0.135) 27.3 (0.550) 4.5 (0.474) 21.3* (0.593) 
6: Highway 7.4 (-0.088) 30.6 (0.197) 5.5 (-0.283) 26.3 (-0.222) 3.5 (-0.214) 19.3 (0.053) 
7: Exit highway 3.5 (-0.684) 28.5 (0.043) 4.8 (-0.016) 26.1 (0.274) 3.3 (-0.042) 18.6 (-0.073) 
8: Outside built-up areas 7.3 (0.405) 29.4 (0.341) 5.6 (0.191) 25.2 (0.040) 3.6 (-0.023) 19.3 (0.038) 
9: Urban 8.9* (0.759) 32.5* (1.152) 8.5* (1.155) 32.4* (1.421) 5.3* (0.831) 22.0 (0.414) 

 PITCH ROLL YAW 
 Angle (%) Angular 

velocity (%) 
Angle (%) Angular 

velocity (%) 
Angle (%) Angular 

velocity (%) 
A 11.6 (0.478) 33.4 (0.278) 5.3 (-0.034) 38.1* (0.832) 3.3 (-0.129) 22.5 (0.258) 
B 10.9 (0.538) 33.2 (0.347) 12.0 (0.453) 35.4* (0.632) 2.8 (-0.344) 23.7 (0.240) 
C 7.4 (0.073) 28.1 (-0.028) 4.9 (-0.079) 33.7 (0.482) 4.0 (0.030) 23.5 (0.214) 
D 9.3 (0.314) 27.7 (0.108) 8.6 (0.220) 30.4 (0.279) 4.7 (0.067) 20.7 (-0.034) 
E 5.5 (-0.089) 28.8 (0.027) 5.6 (-0.006) 31.2 (0.286) 4.0 (0.053) 21.6 (-0.031) 
F 9.3 (0.269) 24.9 (-0.239) 2.4 (-0.299) 22.8 (-0.257) 3.4 (0.143) 26.2 (0.468) 
G 5.9 (-0.100) 27.1 (-0.109) 7.6 (0.272) 31.5 (0.225) 2.6 (-0.112) 20.9 (0.159) 
H 3.1 (-1.012) 25.5 (-0.332) 3.2 (-0.733) 26.0 (0.052) 4.7 (0.284) 19.8 (0.369) 
I 3.7 (-0.239) 32.2 (0.193) 6.8 ((0.228)) 28.6 (0.198) 2.0 (-0.262) 22.1 (0.062) 
J 6.0 (0.053) 31.6 (0.397) 4.0 (-0.116) 24.8 (-0.126) 4.6 (0.204) 23.7 (0.267) 
K 9.3 (0.183) 31.5 (0.168) 7.6 (0.125) 37.0* (0.626) 3.9 (-0.020) 23.9 (0.246) 
L 9.6 (0.292) 31.8 (0.205) 9.3 (0.312) 27.6 (0.006) 5.1 (0.180) 20.6 (-0.146) 
M 9.0 (0.268) 28.3 (-0.114) 10.2 (0.448) 31.6 (0.249) 6.2 (0.363) 25.8 (0.427) 
N 11.6 (0.060) 29.7 (0.159) 14.6* (0.667) 37.3 (0.484) 9.8 (0.486) 28.3* (0.580) 

Table 4. Percentage of synchrony intervals of head angles and angular velocity for pitch, roll and yaw for the analysed road 
parts. In the parenthesis the effect sizes are presented. * p < 0.01.   

Table 5. Percentage of synchrony intervals of head angles and angular velocity for pitch, roll and yaw for all cornering events. 
In the parenthesis the effect sizes are presented. * p < 0.01.   
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of synchrony for the built-up areas and highway segments could not be confirmed, so it could not be 
verified that synchrony occurred here at all.  
 
Head angular velocity 
Table 4 presents the results of the percentage of synchrony for the angular velocity for all three head 
angles. The percentage of synchrony for pitch showed a significant difference between detected- and 
pseudosynchrony for the total route, Part 1 – pre-task, Part 2 – post-task, and road segments 1 and 9 – 
urban, and segment 4 – highway. The results of the angular velocity in roll directions showed similar 
results as the head angle roll. Significant differences between detected synchrony of drivers and 
passengers and pseudosynchrony were indicated for the total route, Part 1- pre-task, Part 2 – post-task, 
and the road segments 1 and 9 – urban.  The results of the percentage of synchrony for yaw showed a 
significant difference between detected- and pseudosynchrony for the total route, Part 1 – pre-task, and 
road segment 1 – urban, segment 2 – outside built-up areas, segment 3 – entry highway, and segment 5 
– entry and exit from the highway. Significant differences between the real- and surrogate data were 
found for corners A, B and K for the roll angle (Table 5). The percentage of detected synchrony and 
pseudosynchrony for cornering event N in angular velocity yaw showed a significant difference. The 
locations of these corners are in the urban segments. For all other cornering events, no significant 
difference between real- and surrogate data was identified.  
 
Again, there was no significant differentiation for all urban, outside built-up areas and highway segments 
between the real- and surrogate data. Therefore, no ANOVA analysis was implemented.  
 
Strength of synchrony 
The detected strength of synchrony for a road segment or cornering event between drivers and 
passengers was compared to pseudosynchrony for all head angles and angular velocities.  
 
Head angle  
The mean peak correlation regarding the detected- and pseudosynchrony for the head angles and all 
road segments are summarised in Table 6. Regarding the head angle pitch, there was a significant 
difference between real - and surrogate data for the total route, Part 1 – pre-task, Part 2 – post-task, the 
road segments 1 and 9 – urban, the segment 2 and 8 – outside built-up areas, segment 3 – the entry of 
highway and segment 4 – highway. The effect sizes of all these findings are large (> 0.700) except 
segment 4- highway. For corners B, C, F and J, also a significant difference between real- and 
surrogate data was found for the head angle pitch. The head angle, roll, showed a significant difference 
for the total route, Part 1-pre task, Part 2 – post-task, road segments 1 and 9 – urban, segment 5 – entry 
and exit from highway and segment 7 – exit highway. No cornering events showed a significant 
difference between the detected- and the pseudosynchrony for roll angle (Table 7). Significant 
differences were found for the yaw angle between detected- and pseudosynchrony for the total route, 
Part 1 – pre-task and road segment 1 and 9 – urban and segment 3 – entry highway. Cornering events 
A, C, F, G, I, J, L and N, showed significant differences.  
 
No ANOVA analysis to test the second hypothesis was employed due to the inability to differentiate 
real- and surrogate data for the required road segment. Again, the urban segments for the pitch, roll and 
yaw showed a significant difference. Therefore, the strength of synchrony is most likely higher in the 
urban segments than the other road types. 
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Head angular velocity 
Angular velocity pitch showed a significant difference between detected- and pseudosynchrony for all 
road segments, except segment 3 – Entry highway. Almost all effect sizes are large (> 0.800). For 
cornering events, A, C and M, the detected synchrony was differentiated from pseudosynchrony. The 
angles yaw and roll showed different results. The mean peak correlation in roll direction for the detected 
synchrony between drivers and passenger versus pseudosynchrony was significantly higher for the total 
route, Part 1 – pre-task, Part 2 – post-task, road segments 1 and 9 – urban, segment 2 – outside built-up 
areas, segment 5 – exit and entry highway and segments 4 and 6 – highway (Table 6). The corners A, 
B, C, K, L and N showed a significantly higher mean peak correlation in the detected synchrony for the 
real data than the surrogate data. These corners were all located in the urban segments (Table 7). The 
mean peak correlation between drivers and passengers for the angular velocity in the yaw direction is 
significantly higher for the total route, Part 1 – pre-task, road segments 1 and 9 – urban, road segment 2 
– outside built-up areas and road segment 4 – highway. The cornering events C, E and G showed a 
significantly higher mean peak correlation for the detected synchrony compared to pseudosynchrony. 
 
The angular velocity in pitch showed a significant difference between real- and surrogate data for all 
road segments regarding the second hypothesis. Therefore, an analysis to check the second hypothesis 
was conducted. The one way ANOVA resulted in F = 2.95 and p = 0.055. Figure 11 shows the results 
in a boxplot. The p-value > 0.05 indicates no significant difference between the three road types was 
detected for the strength of synchrony for head angular velocity pitch.   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 PITCH ROLL YAW 
 Angle Angular 

velocity 
Angle Angular 

velocity 
Angle Angular 

velocity 
Total route 0.394* (1.631) 0.336* (1.401) 0.387* (1.079) 0.330* (2.617) 0.390* (0.956) 0.292* (01.106) 
Part 1: Pre-task 0.397* (0.934) 0.338* (1.258) 0.392* (0.611) 0.334* (1.910) 0.394* (0.844) 0.297 (0.933) 
Part 2: Post-task 0.393* (1.143) 0.340* (1.470) 0.387* (0.888) 0.328* (1.452) 0.385 (0.414) 0.288 (0.199) 
1: Urban 0.398* (0.953) 0.346* (1.149) 0.400* (0.635) 0.352* (1.569) 0.402* (0.657) 0.304* (0.578) 
2: Outside built-up areas 0.394* (0.771) 0.332* (1.260) 0.379 (0.077) 0.322* (1.249) 0.380 (0.360) 0.288* (0.580) 
3: Entry highway 0.451* (0.706) 0.326 (0.331) 0.402 (0.344) 0.344 (0.424) 0.486* (1.225) 0.321 (0.457) 
4: Highway 0.396* (0.569) 0.336* (0.888) 0.384 (0.110) 0.326* (0.572) 0.385 (0.211) 0.303* (0.822) 
5: Exit and Entry highway 0.374 (0.122) 0.316* (0.724) 0.393* (0.633) 0.318* (0.640) 0.391 (0.198) 0.296 (0.346) 
6: Highway 0.393 (0.469) 0.337* (1.016) 0.377 (0.251) 0.321* (0.599) 0.387 (-0.013) 0.284 (-0.215) 
7: Exit highway 0.378 (0.310) 0.323* (0.727) 0.404* (0.666) 0.324 (0.416) 0.414 (0.545) 0.294 (0.242) 
8: Outside built-up areas 0.392* (0.835) 0.334* (1.201) 0.378 (0.334) 0.310 (0.405) 0.375 (0.123) 0.274 (-0.142) 
9: Urban 0.401* (1.194) 0.350* (1.436) 0.394* (0.763) 0.358* (2.082) 0.409* (0.813) 0.305* (0.606) 

 PITCH ROLL YAW 
 Angle Angular 

velocity 
Angle Angular 

velocity 
Angle Angular 

velocity 
A 0.386 (0.091) 0.369* (1.046) 0.399 (0.229) 0.386* (1.070) 0.429* (0.584) 0.329 (0.387) 
B 0.442* (0.618) 0.350 (0.565) 0.450 (0.473) 0.373* (0.857) 0.421 (0.217) 0.320 (0.213) 
C 0.447* (0.587) 0.366* (0.604) 0.410 (0.167) 0.378* (0.721) 0.469 (0.579) 0.361* (0.674) 
D 0.383 (0.119) 0.314 (0.130) 0.372 (-0.151) 0.331 (0.544) 0.404 (0.184) 0.304 (0.022) 
E 0.412 (0.303) 0.332 (0.346) 0.370 (-0.050) 0.331 (0.202) 0.420 (0.270) 0.357* (0.896) 
F 0.453* (0.627) 0.340 (0.348) 0.416 (0.526) 0.355 (0.488) 0.546* (1.157)  0.331 (0.451) 
G 0.370 (-0.099) 0.305 (0.057) 0.415 (0.276) 0.328 (0.184) 0.491* (0.808) 0.354* (0.697) 
H 0.364 (0.102) 0.313 (0.340) 0.385 (0.282) 0.320 (0.341) 0.390 (0.066) 0.297 (0.079) 
I 0.407 (0.278) 0.276 (-0.182) 0.452 (0.445) 0.340 (0.348) 0.490* (0.584) 0.337 (0.384) 
J 0.426* (0.591) 0.315 (0.159) 0.422 (0.448) 0.311 (-0.031) 0.469* (0.680) 0.298 (0.014) 
K 0.401 (0.208) 0.323 (0.248) 0.395 (0.179) 0.375* (0.637) 0.401 (0.205) 0.342  (0.491) 
L 0.392 (0.058) 0.324 (0.223) 0.430 (0.414) 0.368* (0.682) 0.487* (0.707) 0.346  (0.348) 
M 0.423 (0.447) 0.354* (0.787) 0.393 (0.211) 0.330 (0.180) 0.430 (0.327) 0.320 (0.101) 
N 0.371 (0.069) 0.343 (0.509) 0.400 (0.359) 0.413* (1.190) 0.435* (0.780) 0.328 (0.273) 

Table 6. Mean peak correlation of head angles and angular velocity for pitch, roll and yaw for the analysed road parts. In the 
parenthesis the effect sizes are presented. * p < 0.01. 

Table 7. Mean peak correlation of head angles and angular velocity for pitch, roll and yaw for all cornering events. In the 
parenthesis the effect sizes are presented. * p < 0.01.   
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Overview results 
The results of the strength of synchrony showed a significant difference between real- and surrogate 
data for more road segments than the frequency of synchrony. For the yaw angle, no difference between 
detected- and pseudosynchrony was found for the frequency of synchrony except the road segment 9 – 
urban. However, regarding the strength, synchrony was detected for the total route, Part 1 – pre-task, 
Part 2 – post-task and road segment 1 and 9 – urban and road segment 3 – entry highway. The pitch 
angle showed the frequency of synchrony for segments 1 and 9 – urban. For comparing real- and 
surrogate data regarding the strength of synchrony, segments 1 and 9 – urban showed the same results. 
However, the strength of synchrony showed significant findings for more segments. The last angle, roll, 
showed synchrony for both frequency and strength of synchrony for the total route, Part 1 – pre-task, 
Part 2 – post-task and road segments 1 and 9 – urban, segment 5 – exit and entry from the highway and 
segment 7 – exit highway. However, the effect sizes were medium (< 0.700). 
  
The results of the angular velocity showed a significant difference between the real- and surrogate data 
for more segments compared to the head angle. The angle pitch showed a significant difference for the 
mean peak correlation for all road segments except segment 3 – entry highway. The effect sizes of these 
findings were large. The frequency of synchrony was significantly different for the total route, Part 1 – 
pre-task, Part 2 – post-task, segments 1 and 9 – urban and segment 4 – highway. The yaw angle showed 
different findings for the frequency- and strength of synchrony. This amplifies the different nature of 
both algorithms. The angular velocity in the roll direction showed a significant difference for both 
algorithms for the total route,  Parts 1 – pre-task and Part 2 – post-task again, and road segments 1 and 
9 – urban. Also, a higher mean peak correlation was found for segment 2  – outside built-up areas, 5 – 
entry and exit from highway and 6 – highway. 
 
The results regarding synchrony in the cornering events were mixed. Therefore, no observable patterns 
were found. The cornering events where the detected synchrony was differentiated from 
pseudosynchrony did not indicate any correlation between the segment the cornering events was located 
and the identification of synchrony. 

Figure 11. Results of one-way ANOVA for three road types, urban, outside built-up areas and highway versus the mean peak 
correlation of head angular velocity – pitch.    
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Discussion 
The aim of the present study was to identify synchrony of drivers and passengers in head orientation 
and movement for different road types and cornering events. The data from a real-world driving 
experiment was used for the analysis. The identification of synchrony was derived by implementing 
WCLC and two different peak-picking algorithms. The first peak-picking algorithm of Altmann focused 
on the frequency of synchrony, and the second peak-picking algorithm of Boker et al. determined the 
strength of synchrony for the total length of the studied interaction. Since behavioural synchrony can 
appear due to coincidence, the synchrony detected by the algorithm was compared to pseudosynchrony 
to legitimise the findings.  
 
The results showed that it was impossible to distinguish detected synchrony from pseudosynchrony for 
each head angle for every road segment and cornering event by the applied methods. The segments 
where a significant difference between the real- and the surrogate data occurred confirmed that the 
identification of synchrony between drivers and passengers for that specific road segment or cornering 
event was possible. The cases where no differentiation was found between detected- and 
pseudosynchrony could indicate: (1) there is no synchrony between drivers and passengers for that 
specific head angle or head angular velocity for the analysed road segment or cornering event, or (2) the 
applied method with the corresponding settings was unable to capture synchrony. In some cases, the two 
peak-picking algorithms gave different outcomes. Since both algorithms rely on different facets of 
synchrony, the findings were expected to differ. This highlights the algorithms’ differences. Driver-
passenger synchrony is a new field of study. Therefore, this was a more exploratory study including two 
different methods to capture synchrony to better understand this driver-passenger synchrony. Also, 
identified synchrony for a single head angle did not necessarily indicate synchrony in the other head 
angles. Consequently, the interpretation of the findings for the different head angles will be discussed 
separately.  
 
Zikovitz and Harris [13] showed differentiation between active and passive passengers in head tilt (head 
angle – roll). In the current study, passengers acted like passengers in the first part of the trip. In the 
second part, the passengers were asked to be attentive. However, the findings did not show results that 
are in line with the findings of Zikovitz and Harris. The results for Part 2 and the separate segments and 
corners for the second part of the trip did not show noticeable findings.  
 
Former studies focusing on synchrony in nonverbal behaviour for head movement had considered the 
head angle pitch [24], [25]. The head angle pitch was studied for DMS [51], [52]. However, the 
interpretation of the identified synchrony in this study for the pitch angle could reflect various things. 
First, it could indicate synchrony in head angle and angular velocity. Secondly, the vehicle undergoes 
vibrations. These vibrations impact the pitch angle of the heads’ of drivers and passengers. Therefore, 
the detected synchrony could not necessarily indicate synchrony in behaviour but could emerge through 
vibrations of the road. Another element worth noting was the available areas of interest to which the 
driver and passenger might devote their attention. The driver was able to look into the rear-view mirror 
and at the dashboard. On the other hand, the passenger was allowed to involve in non-driving-related 
secondary tasks such as checking messages on their mobile phone. These areas of interest do affect the 
head pitch angle.  
 
The head angle yaw contributes to attention allocation during driving [51], [52]. The results showed that 
for both algorithms, detected synchrony could be differentiated from pseudosynchrony for the total route 
for the head angular velocity of the frequency of synchrony and the head angle and head angular velocity 
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of the strength of synchrony. This could indicate that passengers and drivers are allocating their attention 
to the same things regularly.  
 
Validity of algorithms 
Figure 6 shows the difficulty of the identification of synchrony sequences by visual inspection. This 
underlines the need for a visual inspecting algorithm. However, the validity of the algorithms for 
deriving synchrony between drivers and passengers should be discussed. 
 
In this study, first, the frequency of synchrony was studied. The synchrony calculated for the real data 
was compared to surrogate data to establish that synchrony was not present by chance. The window size 
of the WCLC partly determined the possibility to detect synchrony intervals for a segment. A synchrony 
interval was assigned when at least ten subsequential R2 values were larger than 0.1. The R2 values were 
200 milliseconds apart, so at least 2 seconds of synchrony was required to be assigned as synchrony 
intervals. Road segments 3 and 7 were shorter, as well as the cornering events. This made it harder to 
show a significant difference because there are a smaller number of intervals possible. Therefore, the 
results of the road segments 3 and 7 and the cornering events are more challenging to interpret. 
 
Secondly, the strength of synchrony over the complete segments was studied by applying the peak-
picking algorithm of Boker et al. [38]. This method assumes synchrony was present during the complete 
duration and calculates the mean peak correlation over the analysed segment. However, during driving, 
it is not easy to assume synchrony was continuously present.  
 
Limitations and recommendations 
A limitation of the OpenFace 2.0 algorithm was its detection rate. For some participants, more than 20% 
of the data was missing. This occurred primarily in sections where fast and large head movements 
occurred and the participant’s face was difficult to detect due to lighting. However, most of the 
participants had a good amount of data left ( > 90%) for the analysis. Although the OpenFace 2.0 had a 
high detection rate compared to other face detection algorithms, the algorithm could not detect the 
drivers’ and passengers’ heads continuously. Since the algorithm could not detect the drivers’ and 
passengers’ heads for every frame, this led to missing values. These missing values were interpolated. 
The reliability of interpolating the missing values decreased when many missing values occurred in a 
sequence. In the case of relatively fast and large head movements, the OpenFace 2.0 had more difficulty 
detecting the head of the drivers and passengers. In future research, studies that incorporate face cameras 
should look into more improved video-based tracking methods. The pose-estimation OpenFace 2.0 for 
determining the head orientation of driver and passenger was last updated three years ago. New 
techniques are continuously developed for head detection. These new techniques will have an improved 
prediction and accuracy compared to OpenFace 2.0 [52]. 
 
The second limitation was the window size. To meet the local stationarity assumption, the window size 
of the WCLC in this study was 60 frames or 2 seconds. Although literature states that smaller bandwidth 
(approximately 65 frames) distinguishes well between synchrony and pseudosynchrony [28], improving 
the sampling frequency during the experiment is recommended. The small window size with a relatively 
low correlation could lead to less reliable results. For example, the study of Asfenfelter et al. [24] 
contained a sampling rate of 80 Hz and a window size of 160 observations, e.g. 2 seconds. 
 
Future research for real driving studies could include a screen to separate the front seats, where the 
participants are seated, from the backseats, where the experimenters are seated. Due to the increased 
number of visible faces, the OpenFace 2.0 has difficulty recognising the correct head. The detection rate 
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could be improved by isolating the participants. Additionally, by separating experimenters from the 
participant, the relationship between driver and passengers could be explored more thoroughly. 
 
Former research revealed that the presence of passengers could have a positive or negative effect on the 
driver’s performance [7], [8]. Since the results indicated that synchronisation might be identified for 
specific road segments, a future study on the relationship of synchronous behaviour of drivers and 
passengers and the positive and negative influence the passenger has on driver safety is proposed. Does 
synchronous behaviour between drivers and passengers indicate that the passengers’ presence positively 
influences driving safety?   
 
The WCLC method was a linear time series method. Continuously, new methods for measuring 
synchrony are introduced—for example, the Wavelet multiscale synchrony, combining frequency and 
time series analysis. This new method is still under development. Since this is no linear time series 
method, the stationarity requirement does not have to be met. For future studies regarding head 
movement, these methods could be applied to analyse synchrony [53]. 
 
Another research opportunity that emerged as a result of this research is examining synchrony in gaze 
strategy between drivers and passengers. Since both eye- and head movements are used for gaze 
allocation [51], it is valuable to investigate synchrony incorporating the gaze instead of only eye- or 
head movement. Numerous variables may influence eye- or head movements for gaze strategy, for 
instance, the personal preference [51]. 
 
This study focussed on the head movements measurable by a camera. Another opportunity that arises 
from this study is investigating synchrony in attention allocation. Eye-trackers could provide 
information about where the drivers and passengers are looking during driving.   

Conclusion 
 
The current study aimed to identify synchrony in head orientation and movement between drivers and 
passengers for various road types and cornering events. Drivers and passengers interact and are exposed 
to the same visual driving scene, which could results in behavioural synchrony. Advanced driving 
assistance systems can measure synchrony of head angle and head angular velocity, providing insight 
into the interaction and attention allocation of drivers and passengers. This could be implemented to 
create a safer driving environment. 
 
Since identifying synchrony between drivers and passengers is a new area of research, this study 
examined two facets of synchrony: the frequency- and strength of synchrony for various road segments 
and cornering events. First, a video-based pose estimation method called OpenFace 2.0 was used to 
determine the drivers’- and passengers’ head angles using face cameras mounted in the vehicle.  
Next, a windowed cross-lagged correlation method was implemented to determine the correlation 
between the signals of drivers and passengers with a time lag. Then, two different peak-picking 
algorithms were employed. The first peak-picking algorithm was based on the frequency of synchrony 
whereas the second peak-picking algorithm analysed the strength of synchrony. The output of both 
algorithms was compared to synchrony that may appear by chance, pseudosynchrony. Lastly, the results 
for the different road types were compared.  
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The two distinct algorithms for identifying different facets of synchrony resulted in a different outputs.  
The analysis on the frequency of synchrony showed that only for a couple of road segments the detected 
synchrony was differentiated from the pseudosynchrony. In the road segments – urban, the detected 
synchrony was significantly different from pseudosynchrony for almost all conditions. The same results 
were given for the analysis on the total route and Part 1 – pre-task. Almost no synchrony was identified 
for the cornering events. The results on the analysis on the strength of synchrony showed that the 
detected synchrony was significantly different from pseudosynchrony for more road segments compared 
to the frequency of synchrony. Synchrony was identified for the analysis on the total route and for almost 
all conditions for Part 1 – pre-task and Part 2 – post-task. Again, the analysis shows that in the road 
segments – urban synchrony was identified. Some cornering events identified synchrony, however, no 
observable pattern was found. 
 
The frequency of synchrony showed that synchrony was identified for less road segments than the 
strength of synchrony showed. However, the results can be summarised which leads to a conclusion 
regarding the research aim. It was possible for almost all conditions to differentiate between detected 
synchrony and pseudosynchrony for the total route, Part 1 – pre-task and the road segments – urban. 
This implies synchrony was present in the urban road types. Also, these results demonstrated that 
synchrony was detected in segments with a longer duration, the total route and Part 1 – pre-task. The 
road segments where no synchrony was detected could suggest two things. First, synchrony was not 
present in the road segment for the analysed condition or second, synchrony could not be measured by 
the applied method with the applied settings.  
 
Synchrony of head orientation and movement was identified for certain road segments. These findings 
indicate that this is an area of research with potential for further studies. Since synchrony was detected 
for some road segments, it is recommended to study what synchrony between drivers and passengers 
could indicate. Former research showed that interaction between drivers could positively and negatively 
influence the driver’s performance. Thus, a study examining the relationship between synchronisation 
and the type of influence passengers have on the driver provides an excellent opportunity to learn about 
driver-passenger interaction in road safety. 
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Appendix 

Appendix A. Pre-processing the data 

The face cameras employed in the real-world driving experiment captured the faces of the drivers and 
passengers. The videos are processed by the Facial behavioural toolbox, also called OpenFace 2.0, to 
extract valuable data from these facecam videos [35]. The OpenFace 2.0 toolkit recognises faces 
sufficiently although wearing eye-tracker glasses, can analyse video files and contains a high detection 
rate. The output of the OpenFace 2.0 includes facial landmarks, gaze and head orientation and facial 
action units. The head orientation is applicable for this study. 
 
The OpenFace 2.0 could run the algorithm for two main settings: detecting one single face, or detecting 
multiple faces. The current application required the setting of multiple faces. Although the analysis takes 
more computer power and time, it is necessary since the participants in the front and the experiments in 
the back are visible on the facecams.  The next step is to differentiate between the multiple faces detected 
by the OpenFace 2.0 declared in Figure A1by ‘Filter 1’.  The most reliable measure to distinguish the 
persons, drivers and passengers in the front from the experimenters in the back is the p-scale. The p-
scale parameter, one of the outputs by the toolbox, signifies the distance to the camera. A larger p-scale 
indicates closer to the camera. So, if a frame_id occurs more than once in the data, OpenFace 2.0 has 
detected multiple faces. Then the data row containing the highest p-scale value is kept (the ‘Filtered 1 
data’ in Figure A1). 
 
The ‘Filtered 1 data’ regularly contains a significantly lower or higher p-scale value than the mean p-
scale value. This can indicate two things: one, the algorithm has only detected one or two experimenters 
in the back or second, the algorithm cannot correctly detect the face and scaled the face smaller or larger. 
A second filtering method is required to remove the distinctly incorrect data samples, ‘Filter 2’ (Figure 
A1). Different approaches were implemented to differentiate between the correct and incorrect data 
samples. The most suitable method found for  ‘Filter 2’ is a Gaussian Mixture Model(GMM) for first 
clustering the different detected faces by the p-scale values and next keeping the data within the mean 
+/- 3 standard deviation of the largest cluster found by the GMM (Figure A2). This method is shown to 
be robust and keeps 99,7% of the data of the largest detected cluster.  
 
 
 

 

 

 

 

 

 

 

 

Figure A1. Overview steps pre-processing the data 
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Figure A2. Driver data (trip 1) and filter method Filter 2 
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Appendix B. Missing values analysis  

The OpenFace 2.0 detection algorithm could not detect the participants face continuously due to the 
limitations and challenges of the video tracking algorithm. Therefore, there are some instances in the 
data, the OpenFace 2.0 did not detect the head of the driver and/or passenger leading to data gaps. The 
data must be analysed to create insight into the frequency and positions of the missing data before 
synchrony calculations. The percentage of missing data for the total route, part 1 and part 2, all segments 
and the areas around the corner are analysed during the inspection of data presented by the OpenFace 
2.0 algorithm. Since synchrony is calculated for dyads, both the driver and the passenger data of one 
trip should not contain too many missing values.  Figures B1 and B2 shows the frequency and position 
of the missing values of trip 5, with only a small amount of missing values and of trip 12, which contains 
a lot of missing values.  
 
Since the missing values are more occurring in the cornering areas and some trips have a high percentage 
of missing values for the total trip, a couple were excluded from the analysis. These trips are 11, 12, 13, 
22 and 27. The missing values are for the total trip more than 20% for the driver and/or passenger role. In 
Table B1 an overview of percentage detected values for all trips for driver and passenger are displayed.  
 
To conclude, the data analysis on missing values shows that a relatively higher percentage of data gaps 
occurred in corner regions compared to other segments. Therefore, it can be concluded that cornering 
head detection was more difficult for the video-tracking algorithm leading to less reliable results about 
synchrony in cornering areas. The second remark about the missing data analysis is about the missing 
values in corners for different road segments. The corners in the urban region show more missing values 
than those of the other areas. This can be due to the corner angle or due to other road parameters and 
distractions. A more complex traffic scene is more occurring in an urban region than the highway.  
 

 
Figure B1. Overview missing values trip 5 versus the travelled distance. Blue: missing values, red: cornering events areas, the 
vertical black lines with the corresponding numbers indicate road segments. 

 

  



 38 

 
Figure B2. Overview missing values trip 12 versus the travelled distance. Blue: missing values, red: cornering events areas, 
the vertical black lines with the corresponding numbers indicate road segments. 

 
Trip number Percentage detected head driver [%] Percentage detected head passenger [%] 
1 95.58 95.02 
2 94.46 98.20 
3 96.75 98.27 
4 86.20 96.43 
5 97.31 97.90 
6 96.10 92.93 
7 - - 
8 97.33 97.12 
9 - - 
10 91.74 95.97 
11 86.67 78.00 
12 69.73 83.91 
13 77.66 95.27 
14 93.68 84.54 
15 94.15 95.92 
16 94.61 91.79 
17 87.18 95.46 
18 96.44 97.30 
19 94.81 96.23 
20 90.60 95.93 
21 96.03 92.41 
22 53.01 92.27 
23 94.91 97.15 
24 92.97 89.96 
25 95.79 94.82 
26 97,25 94.67 
27 77.23 84.28 
28 96.68 95.44 
29 92.63 96.62 
30 97.20 94.69 
31 92.55 96.04 
32 - - 

Table B1. Overview percentage detected values. Highlighted values: Detection rate < 80%.   
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Appendix C. Results processing detected signal 

This section includes graphs that show information about the interpolation and smoothing of the detected 
head position by the OpenFace 2.0 algorithm. All plots included are of trip number 5. The raw data is 
first interpolated (spline) and subsequential smoothed by a moving average of 8 frames (0.267 s) 
Black line: raw data, dotted line: interpolated data, red line: smoothed data and the blue line: derivative 
of the smoothed data (red line). 
 
Role:  Driver  
Segment: Urban 

 
Role:  Passenger 
Segment: 1: Urban 
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Role:  Driver  
Segment: 2: Outside built-up areas 

 
 
Role:  Passenger 
Segment: 2: Outside built-up areas 
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Role:  Driver 
Segment: 4: Highway 

 
Role:  Passenger 
Segment: 4: Highway 
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Appendix D. Syncing the data  

Since syncing car data and facecam data was not possible by using the epoch timestamps in the INS data 
files, another method was applied. Fridman et al. proposed a method for syncing driver data using 
vibrations [48]. This method has an accuracy of 14.2 milliseconds for syncing acceleration in the Z-axis 
of the vehicle with the optical flow of the facecam frames in the y-axis. The accuracy of 14.2 
milliseconds holds for trips longer or equal to 37 minutes in total. Since the trips of the driving 
experiments in this research had a shorter duration, about 30 minutes, the accuracy of syncing the data 
streams will decrease. From the paper, a synchronisation error around 20 milliseconds is stated for trips 
longer than 23 minutes. Another important aspect, is the resolution of the signals. The facecam data has 
a resolution of 30 fps and the car data of 25 Hz. The car data is interpolated to a resolution of 30 Hz to 
compare the signals. The 30 fps results in a resolution of 1/30 second, which is approximately 33 
milliseconds.  
 
The paper of Fridman et al. contains also the open-source computer vision code for deriving the optical 
flow from facecam videos. Since the facecam video of the driver included the steering wheel, the 
facecam video of the passenger was preferred for the identification of the optical flow in the y-axis. The 
drivers’ and passengers’ facecam videos are already synced. After collecting the dense optical flow for 
the passengers from all trips, the cross-correlation between the flow of the passenger and the acceleration 
of the vehicle is derived.  
 
Figure D1 displays the signal of the body acceleration in Z-direction and the signal of the optical flow 
of the facecam video in the y-axis of trip 11. After calculating the maximum correlation between the 
optical flow and the body acceleration, the two signals are aligned.  
  
In conclusion, for syncing the car data to the facecam data, the method proposed by Fridman is used. 
For this application, the generated result for syncing is satisfactory. To have more accurate results, 
longer recordings would be necessary and to generate more precise measurements, a higher resolution 
is recommended. 

  
Figure D1. Trip 11. Top: Body acceleration vehicle Z-axis as function of time. Middle: Optical flow y-axis of passengers’ 
facecam video as function of time. Bottom: Body acceleration vehicle synced with the optical flow passenger y-axis as function 
of  time.  
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Appendix E. Amazon Web Services 

To correctly apply the pseudosynchrony, it is necessary to calculate a large number of surrogate data 
streams. The data streams were created in several steps, as explained in the methods. The creation of 
surrogate data is not computational expensive. The challenge lies in calculating the WCLC and applying 
the two peak-picking algorithms for one hundred surrogate data streams for each trip. This process 
should be repeated for the head angle and angular velocity for pitch, roll and yaw. Although calculating 
the WCLC and performing peak-picking Altmann and Boker et al., for one head angle – yaw, only takes 
approximately 10 minutes, the total duration increases fast. The following formulae was applied to 
approximate the total computation duration. 
 

	2400	ℎ𝑜𝑢𝑟𝑠	(𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
= 	10	𝑚𝑖𝑛𝑢𝑡𝑒𝑠	(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑊𝐶𝐿𝐶 + 𝑝𝑒𝑎𝑘 − 𝑝𝑖𝑐𝑘𝑖𝑛𝑔)
∗ 2	(ℎ𝑒𝑎𝑑	𝑎𝑛𝑔𝑙𝑒	&	𝑎𝑛𝑔𝑢𝑙𝑎𝑟	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) ∗ 3	(𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ	𝑎𝑛𝑑	𝑦𝑎𝑤) 	
∗ 24	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑖𝑝𝑠) ∗ 100	(𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒	𝑑𝑎𝑡𝑎𝑠𝑡𝑟𝑒𝑎𝑚𝑠) 

 
The Amazon Web Services (AWS) service was used to calculate the surrogate data streams in an 
acceptable time frame. AWS was used for parallel computing of the WCLC and peak-picking algorithms 
for the different trips for the current application.   
  
Amazon Web Services grants virtual servers in the cloud. In other words, it provides access to lots of 
computer power. The results calculated via the virtual servers are stored in Amazon Simple Storage 
Service (S3). Computing the amount of data required is not free. Depending on the selected type and 
number of virtual servers you require, Amazon derives the costs. 
  
Before you can use the virtual servers of AWS, several steps must be completed first. For example, you 
have to create an account with AWS and connect it to a cloud location. These can be locations in Europe, 
America, actually all over the world. The account I made is under the designation of scientific purposes, 
student. This affects the type and amount of virtual servers made available to you. 
  
Next, I linked my Matlab account via the cloud to my AWS account. Since AWS takes time to start, it 
is advised to adjust your code and run it locally from your computer via parallel computing. For example, 
you can convert all your for loops to parfor loops and try whether it works. If you got it running, you 
can select the type and the numbers of machines you would like to access and start AWS. The maximum 
number of workers I was allowed to use is 24. 
  
The results obtained from the virtual machines are then stored in the S3. The last step is getting your 
results from the cloud. This is done via a short script since the manually downloading takes much time 
for many files. 
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Appendix F. Results statistical analysis 

* p < 0.01: detected synchrony > pseudosynchrony, ** p < 0.01: pseudosynchrony > detected synchrony 
 
PITCH 
Frequency of synchrony – head angle 

 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Frequency of synchrony – head angular velocity 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
  

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

Total route 7.4* 6.6 1.4 0.5 3.447 0.002 0.704 
Part 1: Pre-task 7.5* 6.4 2.0 0.5 2.983 0.007 0.609 
Part 2: Post-task 7.6 6.7 1.7 0.5 2.706 0.013 0.552 
S1: Urban 8.9* 6.7 3.1 0.7 3.995 0.001 0.815 
S2: Outside built-up areas 6.6 6.1 1.9 0.5 1.303 0.205 0.266 
S3: Entry highway 9.2 5.5 11.5 1.1 1.665 0.110 0.34 
S4: Highway 6.9 6.6 3.6 1 0.388 0.702 0.079 
S5: Exit and Entry highway 5.6 6.7 2.0 0.6 -2.662 0.014 -0.543 
S6: Highway 7.4 7.7 3.2 0.9 -0.43 0.671 -0.088 
S7: Exit highway 3.5** 6.3 3.4 1.4 -3.349 0.003 -0.684 
S8: Outside built-up areas 7.3 6.5 2.1 0.6 1.984 0.059 0.405 
S9: Urban 8.9* 6.7 3.1 0.7 3.72 0.001 0.759 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

A 11.6 7.0 10.7 2.3 2.344 0.028 0.478 
B 10.9 6.7 8 1.4 2.635 0.015 0.538 
C 7.4 6.6 12 1.7 0.357 0.725 0.073 
D 9.3 6.2 9.9 0.9 1.54 0.137 0.314 
E 5.5 6.2 8.4 1.3 -0.437 0.666 -0.089 
F 9.3 5.6 13.8 1.2 1.319 0.200 0.269 
G 5.9 6.9 9.3 1.9 -0.49 0.629 -0.1 
H 3.1** 6.8 3.5 1.3 -4.957 < 0.001 -1.012 
I 3.7 5.7 8.8 1.2 -1.169 0.254 -0.239 
J 6.0 5.7 7.0 0.6 0.259 0.798 0.053 
K 9.3 7.3 11.4 1.2 0.897 0.379 0.183 
L 9.6 5.8 13.4 1.3 1.431 0.166 0.292 
M 9.0 7.3 6.5 1.0.0 1.314 0.202 0.268 
N 7.1 6.6 7.6 2.2 0.295 0.771 0.06 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

Total route 30.5* 28.2 2.8 1.6 5.452 < 0.001 1.113 
Part 1: Pre-task 30.8* 28.1 3.5 1.5 4.592 < 0.001 0.937 
Part 2: Post-task 30.5* 28.3 3.2 2.0 3.588 0.002 0.732 
S1: Urban 32.9* 28.9 5.0 1.6 4.342 < 0.001 0.886 
S2: Outside built-up areas 29.0 27.4 4.5 1.8 2.045 0.052 0.418 
S3: Entry highway 30.1 27.8 15.9 2.5 0.71 0.485 0.145 
S4: Highway 31.4* 28.4 5.3 1.5 3.128 0.005 0.638 
S5: Exit and Entry highway 29.1 27.9 6.1 2.1 1.058 0.301 0.216 
S6: Highway 30.6 29.8 4.6 1.8 0.965 0.345 0.197 
S7: Exit highway 28.5 28.0 10.7 2.3 0.21 0.835 0.043 
S8: Outside built-up areas 29.4 27.9 4.3 2.1 1.672 0.108 0.341 
S9: Urban 32.5* 28.3 4.2 2.6 5.641 < 0.001 1.152 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

A 33.4 28.9 17.3 4.8 1.363 0.186 0.278 
B 33.2 29.2 12.1 2.2 1.701 0.102 0.347 
C 28.1 28.5 16.0 3.7 -0.136 0.893 -0.028 
D 27.7 26.5 10.7 3.6 0.528 0.602 0.108 
E 28.8 28.4 16.1 4.0 0.132 0.896 0.027 
F 24.9 28.6 15.3 3.1 -1.169 0.254 -0.239 
G 27.1 29.0 17.9 3.4 -0.536 0.597 -0.109 
H 25.5 28.2 8.1 3.3 -1.625 0.118 -0.332 
I 32.2 28.1 20.7 4.6 0.943 0.355 0.193 
J 31.6 26.6 13.0 2.9 1.943 0.064 0.397 
K 31.5 29.6 11.4 3.1 0.821 0.420 0.168 
L 31.8 28.2 16.8 3.2 1.006 0.325 0.205 
M 28.3 29.5 11.7 3.8 -0.557 0.583 -0.114 
N 29.7 27.9 13.4 5.3 0.779 0.444 0.159 
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Strength of synchrony – head angle 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  

 
 

Strength of synchrony – head angular velocity 
 
 
 
 
 
 
 
 
 
  

 Mean peak correlation    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

Total route 0.394* 0.371 0.437 0.441 7.989 < 0.001 1.631 
Part 1: Pre-task 0.397* 0.373 0.435 0.442 4.577 < 0.001 0.934 
Part 2: Post-task 0.393* 0.370 0.436 0.439 5.601 < 0.001 1.143 
S1: Urban 0.398* 0.373 0.427 0.431 4.668 < 0.001 0.953 
S2: Outside built-up areas 0.394* 0.372 0.440 0.446 3.779 0.001 0.771 
S3: Entry highway 0.451* 0.373 0.411 0.448 3.457 0.002 0.706 
S4: Highway 0.396* 0.375 0.435 0.443 2.789 0.010 0.569 
S5: Exit and Entry highway 0.374 0.368 0.454 0.444 0.599 0.555 0.122 
S6: Highway 0.393 0.377 0.421 0.425 2.298 0.031 0.469 
S7: Exit highway 0.378 0.356 0.445 0.444 1.518 0.143 0.31 
S8: Outside built-up areas 0.392* 0.369 0.447 0.442 4.089 < 0.001 0.835 
S9: Urban 0.401* 0.368 0.420 0.437 5.851 < 0.001 1.194 

 Mean peak correlation    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

A 0.386 0.376 0.407 0.416 0.445 0.661 0.091 
B 0.442* 0.379 0.418 0.420 3.029 0.006 0.618 
C 0.447* 0.381 0.399 0.406 2.875 0.009 0.587 
D 0.383 0.371 0.400 0.410 0.585 0.564 0.119 
E 0.412 0.373 0.404 0.423 1.486 0.151 0.303 
F 0.453* 0.375 0.398 0.431 3.071 0.005 0.627 
G 0.370 0.382 0.448 0.419 -0.487 0.631 -0.099 
H 0.364 0.356 0.459 0.445 0.502 0.620 0.102 
I 0.407 0.368 0.451 0.426 1.362 0.186 0.278 
J 0.426* 0.377 0.402 0.422 2.897 0.008 0.591 
K 0.401 0.376 0.395 0.419 1.021 0.318 0.208 
L 0.392 0.381 0.411 0.420 0.417 0.680 0.085 
M 0.423 0.378 0.400 0.422 2.191 0.039 0.447 
N 0.371 0.363 0.404 0.418 0.34 0.737 0.069 

 Mean peak correlation    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

Total route 0.336* 0.292 0.252 0.262 6.861 < 0.001 1.401 
Part 1: Pre-task 0.338* 0.291 0.251 0.260 6.163 < 0.001 1.258 
Part 2: Post-task 0.340* 0.293 0.251 0.261 7.203 < 0.001 1.47 
S1: Urban 0.346* 0.298 0.246 0.261 5.631 < 0.001 1.149 
S2: Outside built-up areas 0.332* 0.287 0.253 0.258 6.175 < 0.001 1.26 
S3: Entry highway 0.326 0.298 0.252 0.253 1.623 0.118 0.331 
S4: Highway 0.336* 0.288 0.249 0.255 4.349 < 0.001 0.888 
S5: Exit and Entry highway 0.316* 0.291 0.256 0.266 3.545 0.002 0.724 
S6: Highway 0.337* 0.300 0.247 0.263 4.977 < 0.001 1.016 
S7: Exit highway 0.323* 0.292 0.255 0.258 3.562 0.002 0.727 
S8: Outside built-up areas 0.334* 0.288 0.253 0.259 5.885 < 0.001 1.201 
S9: Urban 0.350* 0.297 0.246 0.260 7.033 < 0.001 1.436 

 Mean peak correlation    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

A 0.369* 0.313 0.228 0.254 5.126 < 0.001 1.046 
B 0.350 0.307 0.263 0.262 2.767 0.011 0.565 
C 0.366* 0.317 0.244 0.253 2.96 0.007 0.604 
D 0.314 0.306 0.245 0.257 0.637 0.530 0.13 
E 0.332 0.299 0.244 0.254 1.695 0.104 0.346 
F 0.340 0.299 0.230 0.249 1.704 0.102 0.348 
G 0.305 0.301 0.261 0.261 0.28 0.782 0.057 
H 0.313 0.297 0.248 0.266 1.666 0.109 0.34 
I 0.276 0.294 0.241 0.248 -0.892 0.382 -0.182 
J 0.315 0.303 0.228 0.259 0.78 0.443 0.159 
K 0.323 0.302 0.233 0.252 1.217 0.236 0.248 
L 0.324 0.304 0.238 0.254 1.091 0.287 0.223 
M 0.354* 0.310 0.241 0.258 3.856 0.001 0.787 
N 0.343 0.306 0.225 0.245 2.492 0.021 0.509 
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ROLL 
 
Frequency of synchrony – head angle 

 
  
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Frequency of synchrony – head angular velocity 
 
  
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
  

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

Total route 6.4* 5.5 0.7 0.5 7.541 < 0.001 1.539 
Part 1: Pre-task 6.5* 5.4 1.0 0.6 4.677 < 0.001 0.955 
Part 2: Post-task 6.5* 5.5 1.3 0.5 4.125 < 0.001 0.842 
S1: Urban 8.1* 5.8 2.7 0.8 4.474 < 0.001 0.913 
S2: Outside built-up areas 5.8 5.2 2.1 0.7 1.352 0.190 0.276 
S3: Entry highway 4.1 4.2 5.4 0.9 -0.091 0.929 -0.018 
S4: Highway 5.1 5.4 2.8 0.6 -0.624 0.539 -0.127 
S5: Exit and Entry highway 5.6 5.3 2.2 0.7 0.662 0.515 0.135 
S6: Highway 5.5 6.3 2.8 0.8 -1.386 0.179 -0.283 
S7: Exit highway 4.8 4.9 5.2 1.3 -0.077 0.939 -0.016 
S8: Outside built-up areas 5.6 5.3 1.6 0.7 0.937 0.358 0.191 
S9: Urban 8.5* 5.6 2.8 0.5 5.658 < 0.001 1.155 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

A 5.3 5.5 6.4 1.0 -0.167 0.869 -0.034 
B 12.0 6.4 12.2 0.8 2.22 0.037 0.453 
C 4.9 5.5 8.2 1.1 -0.389 0.701 -0.079 
D 8.6 6.4 10.0 1.3 1.077 0.293 0.22 
E 5.6 5.7 10.5 1.4 -0.031 0.975 -0.006 
F 2.4 4.5 7.1 1.4 -1.463 0.157 -0.299 
G 7.6 5.4 8.6 1.4 1.332 0.196 0.272 
H 3.2** 5.4 3.3 1.5 -3.592 0.002 -0.733 
I 6.8 4.3 11 2.1 1.118 0.275 0.228 
J 4.0 4.9 7.3 0.8 -0.566 0.577 -0.116 
K 7.6 6.7 8.0 1.0 0.612 0.546 0.125 
L 9.3 6.0 10.4 1.3 1.53 0.140 0.312 
M 10.2 6.0 9.4 1.4 2.194 0.039 0.448 
N 14.6* 6.1 12.8 1.5 3.266 0.003 0.667 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

Total route 28.5* 25.7 2.4 2.2 7.808 < 0.001 1.594 
Part 1: Pre-task 29.4* 25.8 2.3 2.2 7.437 < 0.001 1.518 
Part 2: Post-task 27.8* 25.9 3.3 2.5 3.904 0.001 0.797 
S1: Urban 33.5* 26.9 4.5 2.4 7.769 < 0.001 1.586 
S2: Outside built-up areas 27.1 25.0 3.9 2.6 2.558 0.018 0.522 
S3: Entry highway 26.3 26.4 13.5 2.4 -0.03 0.976 -0.006 
S4: Highway 27.1 25.4 5.4 2.0 1.703 0.102 0.348 
S5: Exit and Entry highway 27.3 24.8 5.1 2.8 2.694 0.013 0.55 
S6: Highway 26.3 27.4 5.4 3.3 -1.087 0.288 -0.222 
S7: Exit highway 26.1 23.9 8.8 5.4 1.344 0.192 0.274 
S8: Outside built-up areas 25.2 25 4.4 3.0 0.195 0.847 0.04 
S9: Urban 32.4* 26.6 5.0 2.2 6.963 < 0.001 1.421 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

A 38.1* 27.5 12.2 2.2 4.074 < 0.001 0.832 
B 35.4* 28.1 12.2 2.5 3.095 0.005 0.632 
C 33.7 27.0 14.6 3.5 2.361 0.027 0.482 
D 30.4 27.1 11.6 3.6 1.368 0.184 0.279 
E 31.2 26.9 14.5 3.7 1.401 0.175 0.286 
F 22.8 27.4 17.2 4.7 -1.258 0.221 -0.257 
G 31.5 27.3 19.3 4.2 1.103 0.282 0.225 
H 26.0 25.5 9.8 5.0 0.253 0.803 0.052 
I 28.6 24.8 19.4 3.3 0.971 0.342 0.198 
J 24.8 26.5 13.6 2.2 -0.619 0.542 -0.126 
K 37.0* 28.9 13.1 3.6 3.068 0.005 0.626 
L 27.6 27.5 18.2 3.8 0.03 0.977 0.006 
M 31.6 27.7 16.2 3.0 1.22 0.235 0.249 
N 37.3 28.6 19.4 4.8 2.372 0.026 0.484 
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Strength of synchrony – head angle 
 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  

 
Strength of synchrony – head angular velocity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Mean peak correlation    
 Mean Detected 

synchrony  
Mean Pseudo- 
synchrony  

SD- Detected 
synchrony  

SD- Pseudo- 
synchrony  

t p-value Cohen’s d 

Total route 0.387* 0.372 0.455 0.456 5.284 < 0.001 1.079 
Part 1: Pre-task 0.392* 0.376 0.448 0.455 2.992 0.007 0.611 
Part 2: Post-task 0.387* 0.370 0.454 0.455 4.349 < 0.001 0.888 
S1: Urban 0.400* 0.376 0.438 0.448 3.111 0.005 0.635 
S2: Outside built-up areas 0.379 0.377 0.458 0.457 0.376 0.710 0.077 
S3: Entry highway 0.402 0.355 0.460 0.467 1.687 0.105 0.344 
S4: Highway 0.384 0.378 0.456 0.456 0.538 0.596 0.11 
S5: Exit and Entry highway 0.393* 0.369 0.470 0.463 3.099 0.005 0.633 
S6: Highway 0.377 0.368 0.451 0.444 1.231 0.231 0.251 
S7: Exit highway 0.404* 0.358 0.473 0.460 3.264 0.003 0.666 
S8: Outside built-up areas 0.378 0.369 0.464 0.458 1.635 0.116 0.334 
S9: Urban 0.394* 0.370 0.437 0.451 3.739 0.001 0.763 

 Mean peak correlation    
 Mean Detected 

synchrony  
Mean Pseudo- 
synchrony  

SD- Detected 
synchrony  

SD- Pseudo- 
synchrony  

t p-value Cohen’s d 

A 0.399 0.376 0.406 0.427 1.121 0.274 0.229 
B 0.450 0.396 0.411 0.428 2.315 0.030 0.473 
C 0.410 0.389 0.414 0.425 0.816 0.423 0.167 
D 0.372 0.387 0.428 0.429 -0.738 0.468 -0.151 
E 0.370 0.377 0.442 0.437 -0.246 0.808 -0.050 
F 0.416 0.350 0.442 0.448 2.577 0.017 0.526 
G 0.415 0.375 0.448 0.437 1.351 0.190 0.276 
H 0.385 0.357 0.469 0.462 1.38 0.181 0.282 
I 0.452 0.361 0.437 0.443 2.181 0.040 0.445 
J 0.422 0.368 0.449 0.448 2.195 0.039 0.448 
K 0.395 0.371 0.397 0.421 0.878 0.389 0.179 
L 0.430 0.387 0.401 0.430 2.028 0.054 0.414 
M 0.393 0.377 0.399 0.421 1.033 0.313 0.211 
N 0.400 0.366 0.415 0.415 1.758 0.093 0.359 

 Mean peak correlation    
 Mean Detected 

synchrony  
Mean Pseudo- 
synchrony  

SD- Detected 
synchrony  

SD- Pseudo- 
synchrony  

t p-value Cohen’s d 

Total route 0.330* 0.304 0.261 0.253 12.823 < 0.001 2.617 
Part 1: Pre-task 0.334* 0.304 0.262 0.254 9.356 < 0.001 1.910 
Part 2: Post-task 0.328* 0.305 0.261 0.252 7.112 < 0.001 1.452 
S1: Urban 0.352* 0.308 0.260 0.253 7.687 < 0.001 1.569 
S2: Outside built-up areas 0.322* 0.301 0.257 0.253 6.117 < 0.001 1.249 
S3: Entry highway 0.344 0.313 0.247 0.247 2.075 0.049 0.424 
S4: Highway 0.326* 0.303 0.260 0.253 2.802 0.010 0.572 
S5: Exit and Entry highway 0.318* 0.301 0.266 0.256 3.134 0.005 0.640 
S6: Highway 0.321* 0.309 0.253 0.246 2.936 0.007 0.599 
S7: Exit highway 0.324 0.301 0.268 0.252 2.04 0.053 0.416 
S8: Outside built-up areas 0.310 0.302 0.257 0.252 1.982 0.060 0.405 
S9: Urban 0.358* 0.307 0.260 0.251 10.199 < 0.001 2.082 

 Mean peak correlation    
 Mean Detected 

synchrony  
Mean Pseudo- 
synchrony  

SD- Detected 
synchrony  

SD- Pseudo- 
synchrony  

t p-value Cohen’s d 

A 0.386* 0.313 0.250 0.245 5.244 < 0.001 1.070 
B 0.373* 0.312 0.261 0.252 4.198 < 0.001 0.857 
C 0.378* 0.313 0.244 0.247 3.535 0.002 0.721 
D 0.331 0.310 0.258 0.249 2.667 0.014 0.544 
E 0.331 0.312 0.264 0.243 0.992 0.332 0.202 
F 0.355 0.312 0.243 0.237 2.393 0.025 0.488 
G 0.328 0.312 0.272 0.244 0.902 0.376 0.184 
H 0.320 0.299 0.265 0.250 1.67 0.109 0.341 
I 0.340 0.307 0.275 0.242 1.703 0.102 0.348 
J 0.311 0.313 0.252 0.244 -0.15 0.882 -0.031 
K 0.375* 0.315 0.231 0.240 3.119 0.005 0.637 
L 0.368* 0.313 0.245 0.244 3.342 0.003 0.682 
M 0.330 0.316 0.247 0.247 0.881 0.387 0.180 
N 0.413* 0.311 0.252 0.232 5.829 < 0.001 1.190 
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YAW 
 
Frequency of synchrony – head angle 

 
  
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Frequency of synchrony – head angular velocity 

 
  
 
 
 
 
 
 
 
 
 
 
  

 
 

 
  

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

Total route 4.2 3.7 0.8 0.3 2.771 0.011 0.566 
Part 1: Pre-task 4.2 3.7 1.1 0.2 1.912 0.068 0.39 
Part 2: Post-task 4.1 3.7 1.5 0.4 1.308 0.204 0.267 
S1: Urban 4.2 3.8 1.4 0.3 1.39 0.178 0.284 
S2: Outside built-up areas 3.9 3.7 1.2 0.4 0.832 0.414 0.17 
S3: Entry highway 5.0 2.7 6.9 0.8 1.721 0.099 0.351 
S4: Highway 4.6 3.8 2.1 0.4 1.82 0.082 0.372 
S5: Exit and Entry highway 4.5 3.5 2.2 0.5 2.322 0.029 0.474 
S6: Highway 3.5 4.1 2.6 0.8 -1.05 0.304 -0.214 
S7: Exit highway 3.3 3.5 5.2 0.9 -0.204 0.840 -0.042 
S8: Outside built-up areas 3.6 3.7 1.9 0.5 -0.114 0.910 -0.023 
S9: Urban 5.3* 3.7 1.9 0.4 4.07 < 0.001 0.831 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

A 3.3 4.0 5.8 0.6 -0.63 0.535 -0.129 
B 2.8 4.3 4.7 1.1 -1.686 0.105 -0.344 
C 4.0 3.8 7.4 0.9 0.148 0.883 0.03 
D 4.7 4.2 8.2 0.6 0.327 0.747 0.067 
E 4.0 3.6 7.5 0.6 0.258 0.798 0.053 
F 3.4 2.3 7.5 0.5 0.7 0.491 0.143 
G 2.6 3.1 5.2 0.9 -0.549 0.588 -0.112 
H 4.7 3.2 5.0 1.7 1.392 0.177 0.284 
I 2.0 3.8 6.6 1.2 -1.285 0.212 -0.262 
J 4.6 2.7 9.2 0.9 1 0.328 0.204 
K 3.9 4.0 6.5 0.8 -0.098 0.923 -0.02 
L 5.1 3.7 8.0 0.7 0.882 0.387 0.18 
M 6.2 3.9 6.3 0.5 1.78 0.088 0.363 
N 9.8 3.7 12.7 0.8 2.383 0.026 0.486 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

Total route 20.6* 19.0 2.9 1.2 3.257 0.003 0.665 
Part 1: Pre-task 20.8* 18.5 3.4 1.4 3.999 0.001 0.816 
Part 2: Post-task 20.2 19.5 3.2 1.3 1.195 0.244 0.244 
S1: Urban 21.5* 19.7 3.1 1.4 3.417 0.002 0.697 
S2: Outside built-up areas 20.2* 17.6 4.7 1.6 3.037 0.006 0.62 
S3: Entry highway 26.7* 18.2 9.3 2.4 4.483 < 0.001 0.915 
S4: Highway 20.2 18.4 6.0 1.9 1.474 0.154 0.301 
S5: Exit and Entry highway 21.3* 18.2 5.9 2.2 2.907 0.008 0.593 
S6: Highway 19.3 19.0 5.1 1.9 0.26 0.797 0.053 
S7: Exit highway 18.6 19.3 8.7 3.9 -0.358 0.724 -0.073 
S8: Outside built-up areas 19.3 19.1 4.9 1.6 0.184 0.855 0.038 
S9: Urban 22.0 20.3 4.4 1.3 2.027 0.054 0.414 

 Percentage synchrony intervals    
 Mean Detected 

synchrony (%) 
Mean Pseudo- 
synchrony (%) 

SD- Detected 
synchrony (%) 

SD- Pseudo- 
synchrony (%) 

t p-value Cohen’s d 

A 22.5 19.8 10.8 2.2 1.264 0.219 0.258 
B 23.7 21.3 10.5 1.8 1.176 0.252 0.24 
C 23.5 20.5 13.8 2.6 1.049 0.305 0.214 
D 20.7 21.1 11.2 2.9 -0.169 0.867 -0.034 
E 21.6 22.1 16.1 3.3 -0.153 0.880 -0.031 
F 26.2 19.2 15.1 2.4 2.294 0.031 0.468 
G 20.9 18.5 15.6 2.3 0.777 0.445 0.159 
H 19.8 16.8 8.3 3.6 1.807 0.084 0.369 
I 22.1 20.8 20.0 4.5 0.303 0.765 0.062 
J 23.7 20.2 12.6 2.4 1.309 0.203 0.267 
K 23.9 20.5 13.7 1.6 1.203 0.241 0.246 
L 20.6 22.8 15.0 2.6 -0.717 0.481 -0.146 
M 25.8 20.7 12.2 1.7 2.093 0.048 0.427 
N 28.3* 20.1 14.9 2.6 2.84 0.009 0.58 
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Strength of synchrony – head angle 
 

 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  

 
 

 
Strength of synchrony – head angular velocity 

 

  

 Mean peak correlation    
 Mean Detected 

synchrony  
Mean Pseudo- 
synchrony  

SD- Detected 
synchrony  

SD- Pseudo- 
synchrony  

t p-value Cohen’s d 

Total route 0.390* 0.374 0.486 0.49 4.683 < 0.001 0.956 
Part 1: Pre-task 0.394* 0.372 0.484 0.485 4.136 < 0.001 0.844 
Part 2: Post-task 0.385 0.374 0.487 0.492 2.03 0.054 0.414 
S1: Urban 0.402* 0.376 0.480 0.479 3.217 0.004 0.657 
S2: Outside built-up areas 0.380 0.369 0.487 0.489 1.766 0.091 0.36 
S3: Entry highway 0.486* 0.350 0.471 0.501 6 < 0.001 1.225 
S4: Highway 0.385 0.376 0.482 0.479 1.032 0.313 0.211 
S5: Exit and Entry highway 0.391 0.382 0.496 0.496 0.968 0.343 0.198 
S6: Highway 0.387 0.387 0.493 0.484 -0.064 0.950 -0.013 
S7: Exit highway 0.414 0.359 0.482 0.490 2.669 0.014 0.545 
S8: Outside built-up areas 0.375 0.371 0.486 0.493 0.604 0.551 0.123 
S9: Urban 0.409* 0.372 0.471 0.490 3.985 0.001 0.813 

 Mean peak correlation    
 Mean Detected 

synchrony  
Mean Pseudo- 
synchrony  

SD- Detected 
synchrony  

SD- Pseudo- 
synchrony  

t p-value Cohen’s d 

A 0.429* 0.381 0.449 0.455 2.862 0.009 0.584 
B 0.421 0.394 0.484 0.465 1.064 0.298 0.217 
C 0.469* 0.367 0.460 0.484 2.838 0.009 0.579 
D 0.404 0.385 0.463 0.46 0.901 0.377 0.184 
E 0.420 0.375 0.454 0.463 1.323 0.199 0.27 
F 0.546* 0.341 0.426 0.506 5.667 < 0.001 1.157 
G 0.491* 0.373 0.456 0.495 3.957 0.001 0.808 
H 0.390 0.383 0.483 0.487 0.322 0.75 0.066 
I 0.490* 0.348 0.439 0.472 2.862 0.009 0.584 
J 0.469* 0.358 0.463 0.505 3.332 0.003 0.68 
K 0.401 0.378 0.459 0.469 1.002 0.327 0.205 
L 0.487* 0.372 0.458 0.480 3.465 0.002 0.707 
M 0.430 0.389 0.421 0.458 1.603 0.123 0.327 
N 0.435* 0.361 0.439 0.459 3.821 0.001 0.78 

 Mean peak correlation    
 Mean Detected 

synchrony  
Mean Pseudo- 
synchrony 

SD- Detected 
synchrony  

SD- Pseudo- 
synchrony 

t p-value Cohen’s d 

Total route 0.292* 0.283 0.276 0.273 5.418 < 0.001 1.106 
Part 1: Pre-task 0.297* 0.28 0.275 0.271 4.571 < 0.001 0.933 
Part 2: Post-task 0.288 0.285 0.276 0.273 0.973 0.341 0.199 
S1: Urban 0.304* 0.29 0.28 0.271 2.83 0.009 0.578 
S2: Outside built-up areas 0.288* 0.274 0.27 0.268 2.844 0.009 0.580 
S3: Entry highway 0.321 0.289 0.29 0.265 2.237 0.035 0.457 
S4: Highway 0.303* 0.279 0.27 0.266 4.026 0.001 0.822 
S5: Exit and Entry highway 0.296 0.284 0.285 0.281 1.697 0.103 0.346 
S6: Highway 0.284 0.291 0.28 0.278 -1.055 0.302 -0.215 
S7: Exit highway 0.294 0.284 0.29 0.269 1.185 0.248 0.242 
S8: Outside built-up areas 0.274 0.278 0.263 0.269 -0.697 0.493 -0.142 
S9: Urban 0.305* 0.289 0.278 0.272 2.967 0.007 0.606 

 Mean peak correlation    
 Mean Detected 

synchrony  
Mean Pseudo- 
synchrony 

SD- Detected 
synchrony  

SD- Pseudo- 
synchrony  

t p-value Cohen’s d 

A 0.329 0.306 0.275 0.263 1.895 0.071 0.387 
B 0.320 0.307 0.303 0.272 1.042 0.308 0.213 
C 0.361* 0.317 0.282 0.267 3.304 0.003 0.674 
D 0.304 0.303 0.286 0.266 0.109 0.914 0.022 
E 0.357* 0.29 0.264 0.261 4.39 < 0.001 0.896 
F 0.331 0.292 0.288 0.265 2.209 0.037 0.451 
G 0.354* 0.300 0.292 0.275 3.414 0.002 0.697 
H 0.297 0.292 0.286 0.280 0.387 0.702 0.079 
I 0.337 0.292 0.276 0.258 1.88 0.073 0.384 
J 0.298 0.297 0.302 0.272 0.069 0.946 0.014 
K 0.342 0.298 0.278 0.265 2.406 0.025 0.491 
L 0.346 0.305 0.257 0.264 1.704 0.102 0.348 
M 0.320 0.311 0.279 0.269 0.493 0.627 0.101 
N 0.328 0.298 0.259 0.253 1.336 0.195 0.273 
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Appendix G. The dataset  

The data analysed to study driver-passenger synchrony originated from real-world driving research 
conducted at Delft University of Technology. This dataset has already been the subject of one 
publication [45]. A second paper is also being considered [15]. The three main components of this real-
world driving study's dataset were eye-trackers, video data, and vehicle data. The current research 
concentrated on video data, specifically facecam video and vehicle data. 
 
Since both eye- and head movement are associated with gaze, the initial intention was to incorporate the 
eye-tracker data in this study. Therefore, the data from the eye-trackers and the facecam videos had to 
be synchronised. Since half of the eye-tracker recordings were missing and an incorrect epoch timestamp 
was indicated in the eye-tracker data, synchronising eye- and head data proved impossible in the order 
of the resolution. Data loss for some trips was another concern with the eye-tracker data. The trips data 
loss that occurred in the eye-trackers were not similar trips of the facecam videos. Table G1 shows an 
overview of the missing data of the facecam videos and eye-tracker data and videos. 
 
A proposed strategy for syncing data streams for future studies that integrate facecam videos and eye-
tracker videos when incorrect timestamps are given is calculating the correlation between the sound 
waves of the facecam videos and forward videos from the eye-tracker. This requires that all videos 
should include sound. The used dataset missed sound for one day of the driving experiment. However, 
future researchers should know a syncing method for the different data streams before executing the 
experiment. 

  

 Facecam videos Eye-tracker data  
Trip  Driver Passenger Driver data Driver video Passenger data Passenger video Notes 

1      Data loss Driver was experimenter 
2    Data loss Data loss Data loss Passenger was experimenter 
3    Data loss  Data loss  
4    Data loss  Data loss  
5   Data loss Data loss  Data loss  
6    Data loss Data loss Data loss  
7 Data loss Data loss    Data loss Took detour of 7 km 
8    Data loss Cut-off end   
9      Data loss Passenger was experimenter 

10    Data loss   Driver was experimenter 
11    Data loss    
12      Data loss  
13   Cut-off end Data loss    
14     Issue starting Data loss  
15    Data loss    
16      Data loss  
17 Missing sound Missing sound  Data loss   Passenger was experimenter 
18 Missing sound Missing sound    Data loss Driver was experimenter 
19 Missing sound Missing sound    Data loss  
20 Missing sound Missing sound  Data loss    
21 Missing sound Missing sound  Data loss    
22 Missing sound Missing sound    Data loss  
23 Missing sound Missing sound  Data loss    
24 Missing sound Missing sound    Data loss  
25      Data loss  
26    Data loss    
27   Data loss   Data loss Passenger was experimenter 
28    Data loss Issue starting  Driver was experimenter 
29      Data loss  
30    Data loss    
31      Data loss  
32 Data loss Data loss  Data loss    Table G1. Overview dataset facecam videos and eye-tracker data 
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Appendix H. Head angles  

This section contains graphs of all head angles of drivers and passengers for the 24 included trips from 
the analysis. For all twenty-four trips the same five graphs are showed. Therefore, the description of  the 
five different graphs will be explained in the next paragraph.  
 
 
Graphs D-E 
 
Graph D Histogram head angles for driver and passenger 
Graph E Histogram head angular velocity for driver and passenger 
 
Legend: Red:     Driver 
  Blue:     Passenger   
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