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Abstract

In this thesis, the joint DOA-range estimation of stationary targets is investigated using
multiple FMCW MIMOs with super-resolution capability. To address the low azimuth
resolution problem of single MIMO, a novel topology of array is used, which consists of
multiple MIMOs arranged along the azimuth to increase azimuth resolution by extending
the effective aperture size. According to such topology, signal models are formulated
using FMCW waveform. To accurately model the scenarios, targets are considered as
near-field objects for the system, but they are treated as far-field targets for each MIMO.

After formulating signal models, two algorithms are investigated and tested to localize
targets in the observing domain. The generalized 2D-MUSIC algorithm is applicable for
both multi-static and mono-static configurations of the system. The FBSS technique
is used to tackle highly correlated signals. Though this algorithm provides super-high
resolutions, it requires prior knowledge of the number of targets (model order). The
performance would drop significantly by incorrect estimation of model order. To avoid
this limitation, an augmented Lagrangian method is introduced for the first time to ad-
dress the localization problem, which is named extended C-SALSA. This method casts
target localization problem as a sparse representation problem, and then the problem
is transferred from estimating targets’ locations to the problem of sparse spectrum es-
timation. It utilizes variable splitting and augmented Lagrangian to handle objective
functions. For both algorithms, with the accurate positions of sensors in the system,
geometrical constraints of the system can be maintained by applying the same search
grid to all virtual arrays, consequently, data association is avoided.

The feasibility of both proposed methods are analyzed with numerical simulations of
point targets and electromagnetic simulations of an extended target. MATLAB simula-
tion results demonstrate that the azimuth resolution is increased using multiple MIMOs
with both proposed algorithms. Besides the resolution, the accuracy of the generalized
2D-MUSIC is also compared with the derived CRLB. Moreover, CRLB is used to ana-
lyze the potential accuracy for the estimation results of the mono-static configuration.
In spite of the requirement of model order, the generalized 2D-MUSIC outperforms the
extended C-SALCA for extended targets and is more robust for off-grid targets.
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1
Introduction

1.1. Motivation and Aims

To better perceive and explore the unknown environment, attentions are increasingly
paid to the sensing technology and the related signal processing. Since radar has ad-
vantages on localizing objects in adverse weather (such as rain and fog) and lighting
conditions [1–3], it plays an important role in future applications.

The information of conventional radars is limited by the restricted degree of freedom.
To extend the functionality of radars, the phased array is investigated to extract the
direction of arrival (DOA) information using the phase differences between elements
within an antenna array [4]. However, due to the limited number of elements, the DOA
resolution of the phased array could not meet requirements of many applications, for
instance, autonomous driving. Then multiple-input multiple-output (MIMO1) has been
introduced and intensively studied over the last decades. The concept of virtual arrays
is used in MIMO analysis and it can achieve the equivalent performance as the phased
array using fewer elements [5]. Although the number of elements in the virtual array
is increased, the DOA resolution of a single compact MIMO is still restricted by the
physical aperture size. It is necessary to investigate new topologies of the array to
obtain a better performance on DOA estimation in modern applications.

The DOA information is extracted from the phase differences among array elements,
1Throughout this thesis, the notion of MIMO represents a single compact coherent MIMO radar where
transmitters and receivers are closely spaced.

1



2 1. Introduction

while the range information is obtained from the time delay. Although there are many
kinds of waveforms available, frequency modulated continuous wave (FMCW) are widely
used because it has many advantages. It is simple and low cost with a portable size, and
is safe from an absence of pulse radiation with high peak power [6]. In addition, dechirp
processing is used to the received FMCW waveform, which considerably simplifies the
realization of the processing circuits. The signal after dechirp, also called the beat
frequency signal or the beat signal, contains range information of objects [7].

After pre-processing and sampling, the discrete signal model of the FMCW MIMO is
represented as two-dimensional (2D) sinusoids [2] under the narrowband assumption,
whose frequencies correspond to the DOA and range information. The general process
of the joint DOA and range estimation is performed by 2D matched filters. However,
for small aperture arrays, the DOA resolution of the conventional matched-filter or
beamforming method is relatively low. Thus super-resolution algorithms are widely
investigated for DOA estimation.

According to the review above, the main objectives of this thesis are to develop and
test novel approaches to jointly estimate the DOAs and ranges of multiple targets with
super-high resolutions. Moreover, these approaches should be applied to new topologies
of multiple FMCW MIMOs flexibly.

1.2. Literature Review

To the best of our knowledge, target localization by jointly using multiple coherent
MIMOs has not been reported yet. Hence, the state-of-the-art algorithms for target
localization are summarized in two major categorizes: algorithms for a single coherent
FMCW MIMO is reviewed in subsection 1.2.1; algorithms for passive locally coherent
arrays is presented in subsection 1.2.2. Furthermore, sparsity-based algorithms are re-
viewed and introduced to target localization with multiple MIMOs for the first time in
subsection 1.2.3.

1.2.1. Algorithms for Single Coherent FMCW MIMO

This subsection introduces several state-of-the-art algorithms for target localization by
single coherent FMCW MIMO. The following subspace-based algorithms require the
number of targets as prior knowledge to separate signal and noise subspaces. Every
mentioned algorithm is analyzed whether it is suitable to be extended for analyzing the
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received signals of a system consisting of multiple MIMOs.

A 2D-multiple signal classification (MUSIC) algorithm for simultaneously estimating
DOA and range is proposed in [8–10]. MUSIC algorithm is based on analyzing the
covariance matrix of received signals and the separation of signal and noise subspaces
[11]. Moreover, [8–10] apply a 2D-forward-backward spatial smoothing (FBSS) technique
[12] to cope with the coherent behavior of back-scattered signals. The disadvantage
of this technique is that it reduces the maximum number of detectable targets along
scanning dimension. Moreover, off-grid problem exists in this method. This algorithm
can be extended for multiple MIMOs without requiring data association, which will be
further discussed in Chapter 3.

In order to save computational cost, [7] and [13] proposed two different discrete Fourier
transform (DFT)-MUSIC algorithms. [7] processes range profile by one-dimensional
(1D)-DFT and then applies 1D-MUSIC to angle profile. By contrast, [13] first determines
the time of arrivals (TOAs) by 1D-DFT, then it goes back to time domain, substitutes
the estimated TOAs into the spatial spectrum function of 2D-MUSIC to estimate DOAs.

A 2D-estimation of signal parameters via rotational invariance techniques (ESPRIT)-
based joint DOA and range estimator is proposed in [14], which exploits the dual shift
invariant structure of the stacked smoothed matrix in time and space domains to achieve
auto-paired estimation. Compared with 2D-MUSIC algorithm [8–10], this algorithm
performs better with fewer receiving channels, while the performance is comparable
with sufficient receiving channels [15].

A DFT-ESPRIT joint time of arrival (TOA)-DOA estimator is proposed in [16], which
estimates TOAs by 1D-DFT and then obtains DOAs by 1D-ESPRIT. The computational
burden is even lower than DFT-MUSIC algorithms because MUSIC employs spectral
search. However, this method is difficult to operate in a challenging environment since
only applying 1D-DFT to one channel cannot provide sufficient signal to noise ratio
(SNR) to detect targets [7].

Although the DFT-MUSIC, 2D-ESPRIT, DFT-ESPRIT can efficiently estimate the tar-
gets’ locations with respect to each individual arrays, the estimation results with multiple
MIMOs have to be associated. This is sub-optimal from the perspective of estimation
theory. Therefore, we will not investigate these methods in following contents.
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1.2.2. Algorithms for Multiple Passive Locally Coherent Arrays

This subsection presents several state-of-the-art algorithms for 2D target localization
using multiple passive locally coherent arrays. Assume that all emitters locate in the
far-field of each array, which implies that the wavefronts relative to each array is plane
wave [17]. Furthermore, assume that all emitters locate in the light of sight (LOS) region
of each array.

Generalized MUSIC (GMUSIC) method proposed in [18] estimates source positions
through synthesizing signal subspaces of all arrays in together. The number of tar-
gets is required as prior information. This method can resolve ambiguities in source
localization compared with the decentralized MUSIC algorithm introduced in [17]. A
weighted MUSIC (w-MUSIC) algorithm is proposed in [19] based on GMUSIC, which
improves estimation performances by taking the difference among arrays into account.
Since identical MIMOs are employed in this project, GMUSIC algorithm is suitable
for being extended to analyze a system consisting of multiple MIMOs. Details will be
discussed in Chapter 3.

The direct position determination (DPD) method is introduced in [20] for a single source,
and in [21] for multiple sources whose number is known. This kind of algorithms utilize
observations from all arrays together, and the cost function only depends on source po-
sitions. Initially, [20] proposed the DPD algorithm based on maximum likelihood (ML),
after that [21] combined DPD with MUSIC to save computational cost. An improved
DPD algorithm is introduced in [22], which achieves high resolution by combining min-
imum variance distortionless response (MVDR) with DPD algorithm. Moreover, DPD-
MVDR method does not require knowledge of the number of transmitters. However,
localization accuracy of previously mentioned DPD methods largely depends on syn-
chronization accuracy among arrays [21] since they utilize the information of TOA. To
relax the limitation of time synchronization, a new DPD algorithm is proposed in [23],
where source positions are directly estimated by utilizing the cross-correlation matrix.
Compared with previously mentioned DPD-based algorithms, this method is easier to
estimate the number of targets, and the estimation accuracy is higher when time syn-
chronization error exists among arrays. However, this method is not suitable for chirp
signals.
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1.2.3. Sparsity-based Algorithms

One of the major limitations of subspace-based algorithms is that the number of targets
is required as prior knowledge to separate signal and noise subspaces. The performance
of subspace-based algorithms could drop significantly if the number of targets is incor-
rectly estimated. Therefore, optimization-based algorithms are considered to avoid such
problem. After analyzing the signal model, alternating direction method of multipliers
(ADMM) [24] attracts our attentions. As far as we know, ADMM techniques have not
been applied to estimate target locations with multiple MIMOs. Hence in this subsec-
tion, we will summarize the state-of-the-art algorithms of ADMM for DOA estimation
and image processing.

The received data matrix of each MIMO can be cast as a sparse representation prob-
lem by introducing an overcomplete dictionary relative to all possible targets’ locations,
which is a constrained optimization procedure. [25] estimates DOA with a passive ar-
ray by relaxing the constrained problem to an unconstrained one, which is commonly
known as basis pursuit denoising and can be solved by ADMM with stopping criterion.
Split augmented Lagrangian shrinkage algorithm (SALSA) [26, 27] is an ADMM tech-
nique proposed for image recovery. SALSA first relaxes the constrained problem into
an unconstrained one, then further transfer it into a constrained one via ADMM trick.
Constrained split augmented Lagrangian shrinkage algorithm (C-SALSA) [28] directly
solves the constrained problem via ADMM for imaging inverse problems. In princi-
ple, the target localization with multiple MIMOs can be formulated as an optimization
problem in the same framework as C-SALSA, though our problem has more constraints.
Therefore, we will extend C-SALSA to estimate 2D targets’ locations by jointly using
multiple MIMOs in Chapter 4.

1.3. Contributions and Novelties

To the best of our knowledge, target localization by jointly using multiple coherent
MIMOs has not been reported yet. To this end, a radar system consisting of multiple
FMCWMIMOs has been designed to improve the azimuth resolution as mush as possible.
Then if the system is well-synchronized, received signals in the multi-static configuration2

can be used to maximumly improve the azimuth resolution. Considering the difficulty of

2The notation of the multi-static configuration considers that every single compact MIMO can receive
transmitted signals from all transmitters in the system.
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achieving phase synchronization among multiple MIMOs, the mono-static configuration3

is also discussed because its performance is independent with synchronization errors
among different MIMOs.

The generalized 2D-MUSIC algorithm is proposed for 2D target localization using multi-
ple MIMOs, whose framework is suitable for both multi-static and mono-static configu-
rations. This subspace-based method requires the number of targets as prior knowledge
to separate signal and noise subspaces. The 2D-MUSIC algorithm is applied to each
compact MIMO locally, but geometrical constraints are maintained by using the same
search grid for all virtual arrays. Hence, this method does not require data association.

Besides, an augmented Lagrangian method is proposed for the mono-static configuration
of the system, where the localization problem is cast as a sparse representation problem.
This method can find all targets’ locations together with estimating the number of
targets. However, it suffers from off-grid problems and requires moderate SNR.

In order to specify a benchmark for performance analysis, Cramer-Rao Lower Bound
(CRLB) for the multi-static configuration is derived, shown in Appendix A. In addition,
CRLB for the mono-static configuration can be obtained by simplifying the derivation of
the multi-static configuration. Electromagnetic (EM) simulations are firstly done with
step frequency signals, and then the received signals are mixed with chirp carrier signals
to synthesize simulation results for FMCW MIMOs. The chirp spectrum is derived in
Appendix B, which is used as the carrier signal in frequency domain.

1.4. Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the FMCW radar sys-
tem model for 2D target localization. Subsequently, signal models for both multi-static
and mono-static configurations are analyzed. The generalized 2D-MUSIC algorithm is
presented in Chapter 3 for both multi-static and mono-static configurations of the sys-
tem. A sparsity-based augmented Lagrangian method named extended C-SALSA is
given in Chapter 4 for the mono-static configuration of the system. Chapter 5 ana-
lyzes the possible accuracy of the estimation results of the mono-static configuration by
CRLB. Moreover, the performance of proposed algorithms is analyzed via MATLAB and
EM simulations. Some conclusions and recommendations for future work are presented
in Chapter 6.

3The notation of the mono-static configuration means that each single compact MIMO in the system
only receives its own transmitted signals.



2
System Model

In this chapter, the geometry of the system is introduced and subsequently the sig-
nal model for both multi-static and mono-static configurations are analyzed using the
FMCW waveform. As for a single compact MIMO, the far-field assumption is usually
made for targets in the moderate distance. However, in our case, multiple MIMOs sig-
nificantly increase the physical aperture size; thus the far-field assumption is not valid
for the whole aperture formed by them. For accurate estimation of targets’ positions,
we keep the far-field assumption for each compact MIMO array while among them the
near-field assumption is used. The rest of this chapter is organized as follows. In section
2.1, the geometrical relationship of the radar system is presented. The signal models are
discussed in section 2.2 using the FMCW waveform, in which the chirp signal concerning
a single antenna in derived in subsection 2.2.1 and in subsection 2.2.2, the signal model
for multi-static configuration between MIMOs is given. The signal model for mono-static
configuration based on a compact MIMO is analyzed in section 2.2.3. Conclusions are
drawn in section 2.3.

2.1. Geometrical Configuration

Assume that there are Nr = 2M + 1 identical coherent FMCW MIMOs in the system,
where each MIMO contains NTx transmitters and NRx receivers. Within each compact
MIMO array, the inter-element spacing of receivers is dRx and that of transmitters is
dTx = NRxdRx; thus the equivalent aperture size of the virtual array for one MIMO is

7



8 2. System Model

(NTxNRx − 1)dRx. Besides, the distance between two adjacent MIMOs is ds = ∆ · dRx,
where ds � dRx.

The geometrical model of the radar system is illustrated in the upper part of Figure 2.1,
where the smallest unit is a compact MIMO and the 0th MIMO is used as the reference
unit of the radar system. Multiple MIMOs are arranged along azimuth to increase the
azimuth resolution as much as possible. In the lower part of Figure 2.1, the geometry of
a compact MIMO is shown.

the kth target

θk  (θk(0))

rk   ( rk(0))

0 1 M-M -1 x

y

ds

rk(-1)

θk(-1)θk(-M)

rk(-M)

θk(M)

rk(M)

θk(1)

rk(1)

21 NRx1 x
dRx

NTx
dTx

2

Figure 2.1: Illustration of the geometrical model of the radar system

In most case, the far-field assumption is generally made for simplicity when targets
locate in the moderate distance of a compact MIMO. While in our case, since the overall
aperture size of the radar system is too large to simply apply the far-field assumption,
the near-field assumption is made between MIMOs to establish a more accurate model.
That is to say, the wavefronts of back-scattered signals are spherical [29] from the system
perspective, while they can be approximately treated as plane waves for each MIMO [30].

Assuming that K stationary point targets are located in the observing domain, they are
illuminated by all MIMOs via LOS propagation. Targets’ locations are parameterized
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with their ranges and DOAs relative to the reference MIMO as

r = [r1, r2, . . . , rK ] (2.1)

θ = [θ1, θ2, . . . , θK ] (2.2)

Then the ranges and DOAs of all targets relative to the mth MIMO, can be written as

r(m) =
[
r

(m)
1 , r

(m)
2 , . . . , r

(m)
K

]
(2.3)

θ(m) =
[
θ

(m)
1 , θ

(m)
2 , . . . , θ

(m)
K

]
(2.4)

where m = −M, . . . ,M and k = 1, . . . , K denote the indices of the MIMOs and indices
of the targets, respectively.

According to the geometry defined above, the relative distance r(m)
k between the kth

target and the mth MIMO can be written as

r
(m)
k =

√
r2
k + (mds)2 − 2rkmds sin (θk) (2.5)

and the corresponding direction of departure (DOD) ψ(m)
k and DOA θ

(m)
k are

ψ
(m)
k = θ

(m)
k = arcsin

(
rk sin (θk)−mds

r
(m)
k

)
(2.6)

where θk ∈ [−π/2, π/2].

2.2. Signal Model

After introducing the geometry of the system, the signal model for both multi-static and
mono-static configurations are analyzed using the FMCW waveform in this section. Here
we assume that the transmitted signals from different transmitters are independent, and
the additive noise of the receivers is also independent [31]. Besides, the relative locations
of all sensors are known, and each MIMO is perfectly coherent itself. If the system is well-
synchronized among MIMOs, it is possible to utilize the received signals of multi-static
combinations to improve azimuth resolution. Hence, we analyze the signal model for
the multi-static configuration under the assumption of phase synchronization. However,
considering the difficulty of achieving phase synchronization among multiple MIMOs,
signal model for the mono-static configuration is also discussed because it is unaffected
by synchronization error among different MIMOs.
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2.2.1. Chirp Signal

The transmitted signal of a FMCW MIMO is the linear frequency modulated (LFM),
which is given as

sTx(t) = A0 exp

[
j

(
2π

(
f0 −

1

2
µt

)
t+ φ0

)]
0 ≤ t < Ts (2.7)

where A0 is amplitude, f0 is initial frequency, µ is the rate of frequency change, µ = B/Ts,
B is the sweep bandwidth, Ts is sweep duration, and φ0 is initial phase.

The back-scattered signal from a point target, at a single antenna is given by

xRx(t) = γejφ · sTx(t− τ) + w(t)

= γejφ · A0 exp

[
j

(
2π

(
f0 −

1

2
µ(t− τ)

)
(t− τ) + φ0

)]
+ w(t)

(2.8)

where γejφ represents reflectivity of the target, τ = 2r/c is the roundtrip time delay
caused by the distance r between the antenna and the target, w(t) ∼ CN (0, σ2) is the
complex additive white Gaussian noise (AWGN), and σ2 is the noise variance.

For dechirp operation, the received signal is multiplied with the complex conjugate of
the transmitted signal [16]

x(t) = xRx(t) · s∗Tx(t)

= γejφ |A0|2 exp

[
j2π

(
µτt− f0τ −

1

2
µτ 2

)]
+ w(t)

(2.9)

where (·)∗ represents complex conjugate.

For simplicity, assume A0 = 1 in the following contents, then (2.9) can be written as

x(t) = γejφ · exp

[
j2π

(
µτt− f0τ −

1

2
µτ 2

)]
+ w(t) (2.10)

Now, consider K stationary point targets located in the far-field of this antenna element,
then the beat signal can be written as

x(t) =
K∑
k=1

γke
jφk · exp

[
j2π

(
µτkt− f0τk −

1

2
µτ 2

k

)]
+ w(t) (2.11)

where τk = 2rk/c is the roundtrip time delay cased by the distance rk between the kth
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target and the antenna.

Sampling the time signal in (2.11) with analog-to-digital (ADC) sampling frequency fs,
we will have the discrete received signal in a single sweep duration as

x[n] =
K∑
k=1

γke
jφk · exp

[
j2π

(
µτk

n

fs
− f0τk −

1

2
µτ 2

k

)]
+ w[n] (2.12)

where n = 0, . . . , N − 1, and N = bTs · fsc is the number of samples in a sweep, where
b·c represents the floor function.

Note: The value of ADC sampling rate fs should be at least twice of maximum beat
frequency fb,max:

fs ≥ 2fb,max (2.13)

where fb,max corresponds to the maximum detectable range Rmax,

fb,max =
2RmaxB

cTs
(for a stationary target) (2.14)

Considering coherent transmitters and coherent receivers, spatial sampling is applied
along both transmitter- and receiver- dimension according to the MIMO configuration.
The wavefronts of scattered signals can be approximately treated as plane waves for
each compact MIMO since we suppose that all targets are located in the far-field of each
MIMO. Therefore, we can visualize the spatial sampling behavior via phase difference
relative to the reference transmitter/receiver. For each MIMO, the N th

Tx transmitter and
the 1th receiver (as shown in Figure 2.1) are selected as the reference transmitter/receiver,
respectively. We will analyze signal models of multi-static and mono-static configurations
separately because their virtual arrays have different structures.

2.2.2. Multi-static Configuration

To analyze the multi-static configuration, the radar system is assumed to be well-
synchronized. Suppose signals are transmitted from the mth

1 MIMO, then the scattered
signals are received by the mth

2 MIMO. Since both the inter-element spacing between
transmitters and receivers are equidistant, under the narrowband assumption, the re-
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ceived signals in a single sweep duration can be written as

xm1,m2 [aNRx + b, n] =
K∑
k=1

γke
jφk · exp

[
j2π

(
µτ

(m1,m2)
k

n

fs
− f0τ

(m1,m2)
k

− 1

2
µ
(
τ

(m1,m2)
k

)2

+ f0
a · dTx sin (ψ

(m1)
k )

c

+ f0
b · dRx sin (θ

(m2)
k )

c

)]
+ wm1,m2 [aNRx + b, n]

(2.15)

where {m1,m2} ∈ {−M, . . . ,M}, a = −(NTx − 1), . . . , 0, b = 0, . . . , NRx − 1, n =

0, . . . , N − 1. τ (m1,m2)
k = (r

(m1)
k + r

(m2)
k )/c is the time delay corresponding to the path

from the mth
1 MIMO to the mth

2 MIMO through the kth target. r(m1)
k and ψ(m1)

k are range
and DOD of the kth target to the mth

1 MIMO, respectively. r(m2)
k and θ(m2)

k are range and
DOA of the kth target to the mth

2 MIMO, respectively. In total, there are P = NTxNRx

channels in the virtual array.

The narrowband assumption implies that the complex envelope of a received signal does
not vary significantly over the time interval that its wavefront propagates across any of
the receive array [17].

In the perspective of each MIMO, we can assume that the DOD is proximately the
same as the DOA for each target since all targets located in the far-field region [4].
Parameterizing the location of the kth target as (rk, θk) with respect to the reference
MIMO of the system, then its relative position to the mth

1 and mth
2 MIMO can be

obtained via (2.5) and (2.6),

r
(m1)
k =

√
r2
k + (m1ds)2 − 2rkm1ds sin (θk) (2.16)

ψ
(m1)
k = θ

(m1)
k = arcsin

(
rk sin (θk)−m1ds

r
(m1)
k

)
(2.17)

r
(m2)
k =

√
r2
k + (m2ds)2 − 2rkm2ds sin (θk) (2.18)

ψ
(m2)
k = θ

(m2)
k = arcsin

(
rk sin (θk)−m2ds

r
(m2)
k

)
(2.19)

where the range and DOD/DOA are approximately calculated relative to the middle
point between the N th

Tx transmitter and the 1th receiver of each MIMO, as shown in
Figure 2.1.
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2.2.3. Mono-static Configuration

The mono-static configuration only considers that the received signals are transmitted
from the same MIMO, which means m1 = m2 = m in (2.15). Therefore, the signal
model for the mono-static configuration can be reduced from that of the multi-static
configuration. Regardless of whether the system has phase synchronization error or not,
we can obtain reliable targets’ locations by analyzing the mono-static configuration. The
virtual antenna array of each MIMO is a uniform linear array (ULA) with P = NTxNRx

elements, and the spacing between two adjacent elements is d = dRx [5]. Hence the
time delay varies linearly for consecutive elements in the virtual ULA [32]. Besides, we
assume that P = 2Q + 2, which means at least one of NTx or NRx is even. Figure 2.2
shows the virtual ULA geometry of each MIMO, where the 0th antenna is the reference
antenna.

0 1-1 2-2 Q-Q-1 x
d

Figure 2.2: Virtual ULA geometry of each MIMO

From (2.15), the received signals of the mth MIMO, in a single sweep duration, can be
represented as

xm[q, n] =
K∑
k=1

γke
jφk exp

[
j2π

(
µτ

(m)
k

n

fs
− f0τ

(m)
k

− 1

2
µ
(
τ

(m)
k

)2

+ f0
qd sin (θ

(m)
k )

c

)]
+ wm[q, n]

(2.20)

where q = −Q− 1, . . . , 0, . . . , Q, and τ (m)
k = 2r

(m)
k /c represents the roundtrip time delay

caused by the distance r(m)
k between the mth MIMO and the kth target. Parameterizing

the location of the kth target as (rk, θk) relative to the reference MIMO, then (r
(m)
k , θ

(m)
k )

can be obtained from (rk, θk) through (2.5) and (2.6).

2.3. Conclusions

In this chapter, the radar system model and signal models with multiple MIMOs are
presented. Targets’ positions are parameterized relative to the reference MIMO of the
system, and then the relative positions to each MIMO can be obtained from the geo-
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metrical relationship. Under the assumption that the system is well-synchronized, the
signal model for the multi-static configuration is developed. After that, the signal model
for the mono-static configuration is obtained by simplifying that of the multi-static con-
figuration, which can provide robust estimation without phase synchronization among
MIMOs.



3
Generalized 2D-MUSIC Algorithm

This chapter introduces the generalized 2D-MUSIC algorithm for 2D target localization,
which can be applied in both multi-static and mono-static configurations of the system.
This approach jointly constructs the noise subspace and steering vectors based on the
geometrical relations among different small MIMO arrays. However, the number of
targets is required as prior knowledge. When received signals are highly correlated or
coherent, the rank of signal subspace will not equal to the number of targets. Therefore,
the forward-backward spatial smoothing (FBSS) technique [12] is employed to restore
the rank of the signal covariance matrix [33]. Section 3.1 analyzes the multi-static
configuration based on a pair of MIMOs. The analysis of mono-static configuration
based on a single MIMO is provided in Section 3.2. Then Section 3.3 discusses data
fusion for these two configurations followed by a special case which combines the analysis
of both multi-static and mono-static configurations into together. Section 3.4 analyzes
this estimator via MATLAB simulations. Section 3.5 concludes this chapter.

3.1. Analysis of Multi-static Configuration

Figure 3.1 displays the measured samples of the mth
2 MIMO in a data matrix Xm1,m2 ∈

CP×N , where signals are transmitted from themth
1 MIMO. Since the virtual array of most

MIMO pairs is non-uniform linear array (NLA) in the multi-static configuration, we only
apply 1D-FBSS technique along the time dimension. Define a window of dimensions
[P ×L], where K < L < N , and then we have p = N −L+1 scanning positions in total.

15
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𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥, 0] ⋯ 

𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥 , 

 𝐿 − 1] 
⋯ 

𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥 , 

 𝑁 − 1] 

𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥 + 1, 0] ⋯ 

𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥 + 1, 

 𝐿 − 1] 
⋯ 

𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥 + 1, 

 𝑁 − 1] 
⋮ ⋱ ⋮ ⋱ ⋮ 

𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥 + (𝑁𝑅𝑥 − 1), 

 0] 
⋯ 

𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥 + (𝑁𝑅𝑥 − 1), 

 𝐿 − 1] 
⋯ 

𝑥𝑚1,𝑚2
[(1 − 𝑁𝑇𝑥)𝑁𝑅𝑥 + (𝑁𝑅𝑥 − 1), 

𝑁 − 1] 
⋮ ⋱ ⋮ ⋱ ⋮ 

𝑥𝑚1,𝑚2
[0, 0] ⋯ 𝑥𝑚1,𝑚2

[0, 𝐿 − 1] ⋯ 𝑥𝑚1,𝑚2
[0, 𝑁 − 1] 

𝑥𝑚1,𝑚2
[1, 0] ⋯ 𝑥𝑚1,𝑚2

[1, 𝐿 − 1] ⋯ 𝑥𝑚1,𝑚2
[1, 𝑁 − 1] 

⋮ ⋱ ⋮ ⋱ ⋮ 
𝑥𝑚1,𝑚2

[𝑁𝑅𝑥 − 1, 0] ⋯ 𝑥𝑚1,𝑚2
[𝑁𝑅𝑥 − 1, 𝐿 − 1] ⋯ 𝑥𝑚1,𝑚2

[𝑁𝑅𝑥 − 1, 𝑁 − 1] 

 
Time samples 
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Figure 3.1: Data matrix Xm1,m2 with scanning window

For each scanning position p̃, the sub-matrix Dm1,m2 ∈ CP×L is

Dm1,m2(p̃) = [xm1,m2(p̃),xm1,m2(p̃+ 1), . . . ,xm1,m2(p̃+ L− 1)] (3.1)

where p̃ = 0, 1, . . . , N − L and

xm1,m2(p̃) =



xm1,m2((1−NTx)NRx, p̃)
...

xm1,m2(aNRx + b, p̃)
...

xm1,m2(NRx − 1, p̃)


∈ CP×1 (3.2)

Each sub-matrix is stacked into a [PL× 1] vector column by column, as

dm1,m2(p̃) = vec(Dm1,m2(p̃))

= [xm1,m2(p̃); xm1,m2(p̃+ 1); . . . ; xm1,m2(p̃+ L− 1)]
(3.3)

and then collected into a new data matrix D̃m1,m2(p̃) ∈ CPL×p.

The smoothed covariance matrix Rm1,m2 ∈ CPL×PL can be obtained as [8]

Rm1,m2 =
1

2p

[
D̃m1,m2D̃

H
m1,m2

+ J
(
D̃m1,m2D̃

H
m1,m2

)∗
J
]

= A(m1,m2)
s R(m1,m2)

s (A(m1,m2)
s )H + σ2I

(3.4)
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where J ∈ CPL×PL is a reflection matrix,

J =


0 0 · · · 1
... 0 1 0

0 . .
.

0
...

1 0 · · · 0

 (3.5)

R(m1,m2)
s ∈ CK×K is the covariance matrix of received signals (excluding noise), and

columns of A(m1,m2)
s ∈ CPL×K contain steering vectors of all targets,

A(m1,m2)
s = [am1,m2(r1, θ1), . . . , am1,m2(rK , θK)] (3.6)

When signals are transmitted from the mth
1 MIMO and then the scattered signals are

received by the mth
2 MIMO, steering vector am1,m2 ∈ CPL×1 of the kth target can be

expressed as [13, 34]

am1,m2(rk, θk) = a(τ)
m1,m2

(τ
(m1,m2)
k )⊗

[
a(ψ)
m1,m2

(ψ
(m1)
k )⊗ a(θ)

m1,m2
(θ

(m2)
k )

]
(3.7)

where ⊗ represents the Kronecker product. (rk, θk) represents the location of the kth

target to the reference MIMO. a(τ)
m1,m2 ∈ CL×1, a(ψ)

m1,m2 ∈ CNTx×1 and a(θ)
m1,m2 ∈ CNRx×1 are

steering vectors of the time delay, DOD, and DOA for the kth target to the mth
1 and mth

2

MIMO pair, respectively. τ (m1,m2)
k = (r

(m1)
k + r

(m2)
k )/c is the time delay corresponding to

the path from the mth
1 MIMO to the kth target and then to the mth

2 MIMO. r(m1)
k and

ψ
(m1)
k are the range and DOD of the kth target to the mth

1 MIMO, respectively. r(m2)
k and

θ
(m2)
k are the range and DOA of the kth target to the mth

2 MIMO, respectively. Moreover,
(r

(m1)
k , ψ

(m1)
k ) and (r

(m2)
k , θ

(m2)
k ) can be obtained from (rk, θk) through (2.16) - (2.19).

From the signal model in (2.15), we can write the time delay, DOD, and DOA steering
vectors (a(τ)

m1,m2 , a(ψ)
m1,m2 and a(θ)

m1,m2) in (3.7) as

a(τ)
m1,m2

(τ
(m1,m2)
k ) =

[
1, . . . , exp

(
j2πµτ

(m1,m2)
k

L− 1

fs

)]T

(3.8)

a(ψ)
m1,m2

(ψ
(m1)
k ) =

[
exp

(
j2πf0

−(NTx − 1)dTx sin (ψ
(m1)
k )

c

)
, . . . , 1

]T

(3.9)

a(θ)
m1,m2

(θ
(m2)
k ) =

[
1, . . . , exp

(
j2πf0

(NRx − 1)dRx sin (θ
(m2)
k )

c

)]T

(3.10)

Taking eigenvalue decomposition (EVD) or singluar value decomposition (SVD) to the
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smoothed covariance matrix Rm1,m2 , we have

Rm1,m2 = U(m1,m2)
s Σ(m1,m2)

s (U(m1,m2)
s )H + U(m1,m2)

n Σ(m1,m2)
n (U(m1,m2)

n )H (3.11)

where U(m1,m2)
s ∈ CPL×K is the signal subspace which relates to eigenvectors of the K

largest eigenvalues Σ
(m1,m2)
s ∈ CK×K , and U(m1,m2)

n ∈ CPL×(PL−K) represents the noise
subspace which contains eigenvectors of the (PL −K) smallest eigenvalues Σ

(m1,m2)
n ∈

C(PL−K)×(PL−K) [10].

The columns of A(m1,m2)
s in (3.4) span the same space as the columns of signal subspace

U(m1,m2)
s in (3.11). Ideally, we have

aH
m1,m2

(rk, θk)U
(m1,m2)
n = 0 (3.12)

where k = 1, . . . , K.

However, due to the existence of noise, am1,m2(rk, θk) and U(m1,m2)
n are not perfectly

orthogonal. That is to say, (3.12) does not hold. Therefore, targets’ locations are
normally estimated through minimizing the following objective function,

argmin
r,θ

aH
m1,m2

(r, θ)U(m1,m2)
n (U(m1,m2)

n )Ham1,m2(r, θ) (3.13)

The targets’ locations are parameterized with the range and bearing angle relative to
the reference MIMO of the system (as shown in Figure 2.1). Therefore, we define a
search grid which includes all possible targets’ locations relative to the reference MIMO.
Then the search grid can be transferred for each MIMO through (2.5) - (2.6). Let (r, θ)

represents a general point on the search grid. The 2D-MUSIC spatial spectrum function
for a MIMO pair can be written as

fm1,m2(r, θ) =
1

aH
m1,m2

(r, θ)U
(m1,m2)
n (U

(m1,m2)
n )Ham1,m2(r, θ)

(3.14)

where am1,m2(r, θ) is the steering vector for a possible target location on the search grid,
which is defined in (3.7).
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3.2. Analysis of Mono-static Configuration

Since the virtual array of each MIMO is a ULA in the mono-static configuration, it is
possible to apply 2D-FBSS technique along both spatial and fast-time dimensions for
each ULA. To achieve a better performance, 2D-FBSS is employed in this configuration.
Hence the FBSS technique for mono-static configuration is different from multi-static
configuration.

Figure 3.2 displays the measured samples of themth MIMO in a data matrix Xm ∈ CP×N .
We define a window of dimensions [l1 × l2], where K < l1 < P and K < l2 < N , and
then scan the data matrix in all possible positions. We have p1 = P − l1 + 1 scanning
positions in the spatial dimension and p2 = N − l2 + 1 scanning positions in the time
dimension.

𝑥𝑚[−𝑄 − 1, 0] 𝑥𝑚[−𝑄 − 1, 1] ⋯ 𝑥𝑚[−𝑄 − 1, 𝑙2 − 1] ⋯ 𝑥𝑚[−𝑄 − 1, 𝑁 − 1] 

𝑥𝑚[−𝑄, 0] 𝑥𝑚[−𝑄, 1]  ⋮  𝑥𝑚[−𝑄,𝑁 − 1] 

⋮ ⋮ ⋱ ⋮  ⋮ 

𝑥𝑚[0, 0] 𝑥𝑚[0, 1] ⋯ 𝑥𝑚[0, 𝑙2 − 1] ⋯ 𝑥𝑚[0,𝑁 − 1] 

⋮ ⋮  ⋮ ⋱ ⋮ 

𝑥𝑚[𝑙1 − 𝑄 − 2, 0] 𝑥𝑚[𝑙1 − 𝑄 − 2, 1] ⋯ 𝑥𝑚[𝑙1 − 𝑄 − 2, 𝑙2 − 1] ⋯ 𝑥𝑚[𝑙1 −𝑄 − 2,𝑁 − 1] 

⋮ ⋮  ⋮ ⋱ ⋮ 

𝑥𝑚[𝑄, 0] 𝑥𝑚[𝑄, 1] ⋯ 𝑥𝑚[𝑄, 𝑙2 − 1] ⋯ 𝑥𝑚[𝑄, 𝑁 − 1] 
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Figure 3.2: Data matrix of the mth MIMO with scanning window

For each scanning position p̃ = (p̃1, p̃2), the sub-matrix Dm ∈ Cl1×l2 is

Dm(p̃) = [xm(p̃2),xm(p̃2 + 1), . . . ,xm(p̃2 + l2 − 1)] (3.15)

where p̃1 = 0, 1, . . . , P − l1, p̃2 = 0, 1, . . . , N − l2 and

xm(p̃2) =



xm(p̃1 −Q− 1, p̃2)
...

xm(p̃1, p̃2)
...

xm(p̃1 + l1 −Q− 2, p̃2)


∈ Cl1×1 (3.16)
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Each sub-matrix is stacked into a [l1l2 × 1] vector column by column, as

dm(p̃) = vec(Dm(p̃))

= [xm(p̃2); xm(p̃2 + 1); . . . ; xm(p̃2 + l2 − 1)]
(3.17)

and then collected into a new data matrix D̃m ∈ Cl1l2×p1p2 .

The smoothed covariance matrix Rm ∈ Cl1l2×l1l2 is obtained as [8]

Rm =
1

2p1p2

[
D̃mD̃H

m + J(D̃mD̃H
m)∗J

]
= A(m)

s R(m)
s (A(m)

s )H + σ2I

(3.18)

where J ∈ Cl1l2×l1l2 is a reflection matrix

J =


0 0 · · · 1
... 0 1 0

0 . .
.

0
...

1 0 · · · 0

 (3.19)

R(m)
s ∈ CK×K is the covariance matrix of received signals (excluding noise), and columns

of A(m)
s ∈ Cl1l2×K contain steering vectors of all targets,

A(m)
s = [am(r1, θ1), . . . , am(rK , θK)] (3.20)

The steering vector of the kth target relative to the mth MIMO can be expressed as

am(rk, θk) = a(r)
m (r

(m)
k )⊗ a(θ)

m (θ
(m)
k ) (3.21)

where (rk, θk) represents the location of the kth target relative to the reference MIMO.
a(r)
m ∈ Cl2×1 and a(θ)

m ∈ Cl1×1 are steering vectors of the range (r
(m)
k ) and DOA (θ

(m)
k )

for the kth target relative to the mth MIMO, respectively. Moreover, (r
(m)
k , θ

(m)
k ) can be

obtained from (rk, θk) through (2.5) and (2.6).

From the signal model in (2.20), we can write the range and DOA steering vectors (a(r)
m

and a(θ)
m ) in (3.21) as

a(r)
m (r

(m)
k ) =

[
1, . . . , exp

(
j2πµ

2r
(m)
k

c

l2 − 1

fs

)]T

(3.22)
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a(θ)
m (θ

(m)
k ) =

[
exp

(
j2πf0

(−Q− 1)d sin (θ
(m)
k )

c

)
,

. . . , exp

(
j2πf0

(l1 −Q− 2)d sin (θ
(m)
k )

c

)]T
(3.23)

Applying EVD/SVD to the smoothed covariance matrix Rm, one can get

Rm = U(m)
s Σ(m)

s (U(m)
s )H + U(m)

n Σ(m)
n (U(m)

n )H (3.24)

where U(m)
s ∈ Cl1l2×K is the signal subspace that contains eigenvectors of the K largest

eigenvalues Σ
(m)
s ∈ CK×K , and U(m)

n ∈ Cl1l2×(l1l2−K) is the noise subspace which includes
eigenvectors of the (l1l2 −K) smallest eigenvalues Σ

(m)
n ∈ C(l1l2−K)×(l1l2−K).

As described in Section 3.1, the columns of A(m)
s in (3.18) span the same space as the

columns of signal subspace U(m)
n in (3.24). However, A(m)

s and U(m)
n are not perfectly

orthogonal to each other due to the influence of noise. Thus, targets’ positions are
generally estimated by minimizing the following objective function,

argmin
r,θ

aH
m(r, θ)U(m)

n (U(m)
n )Ham(r, θ) (3.25)

The targets’ positions are parameterized with range and bearing information relative
to the reference MIMO. Accordingly, we define a search grid which includes all possible
targets’ locations with respect to the reference MIMO. Then the search grid can be
transferred for each MIMO through (2.5) - (2.6). As a result, the 2D-MUSIC joint
range-DOA spatial spectrum function for the mth MIMO is

fm(r, θ) =
1

aH
m(r, θ)U

(m)
n (U

(m)
n )Ham(r, θ)

(3.26)

where am(r, θ) is the steering vector for a possible target position to the mth MIMO,
which is defined in (3.21).

3.3. Data Fusion

Since the system contains Nr identical MIMOs, we totally have N1 = N2
r virtual arrays

in the multi-static configuration and N2 = Nr virtual ULAs in the mono-static config-
uration. For each configuration, we have to integrate estimation results of all virtual
arrays to obtain the final result. The same search grid is applied to all virtual arrays to
maintain geometrical constraints, which includes all potential targets’ positions param-
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eterized with the range and DOA (r, θ) relative to the reference MIMO. Then the search
grid can be transferred for each MIMO via (2.5) - (2.6).

Virtual arrays in the system do not share measured data samples with one another,
which means every virtual array can do estimation individually. Nevertheless, our main
objectives are to improve azimuth resolution and get robust estimation result by jointly
using multiple MIMOs. We prefer to coherently integrate all virtual arrays during the
search stage instead of fusing individual estimation results. We combine steering vector
and noise subspace of all virtual arrays into together, but the steering vector of each
virtual array only interacts with its own noise subspace [18]. Section 3.3.1 and 3.3.2
offer data fusion for multi-static and mono-static configurations respectively. Besides,
Section 3.3.3 describes a special case: targets’ locations are estimated through combining
the analysis of multi-static and mono-static configurations together when they share the
same bearing reference center of each MIMO.

3.3.1. Multi-static Configuration

The generalized 2D-MUSIC spatial spectrum function, for intergrating all virtual arrays
in multi-static configuration, can be written as:

fmulti(r, θ) =
1

aH
multi(r, θ)U

(multi)
n (U

(multi)
n )Hamulti(r, θ)

(3.27)

where N1 is the number of virtual arrays in multi-static configuration, and amulti(r, θ) ∈
CN1PL×1 and U(multi)

n ∈ CN1PL×N1(PL−K) are joint steering vector and noise subspace of
the system, respectively.

The joint steering vector amulti(r, θ) can be expressed as:

amulti(r, θ) = [a−M,−M(r, θ); . . . ; am1,m2(r, θ); . . . ; aM,M(r, θ)] (3.28)

The joint noise subspace U(multi)
n is constructed as:

U(multi)
n =



U
(−M,−M)
n 0 · · · · · · 0

0
. . .

. . .
...

... 0 U
(m1,m2)
n 0

...
...

. . .
. . . 0

0 · · · · · · 0 U
(M,M)
n


(3.29)
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where {m1,m2} ∈ {−M, . . . ,M}.

Simplifying (3.27), one can obtain

fmulti(r, θ) =

(
M∑

m1=−M

M∑
m2=−M

aH
m1,m2

(r, θ)U(m1,m2)
n (U(m1,m2)

n )Ham1,m2(r, θ)

)−1

=

(
M∑

m1=−M

M∑
m2=−M

f−1
m1,m2

(r, θ)

)−1
(3.30)

where fm1,m2(r, θ) is defined in (3.14).

3.3.2. Mono-static Configuration

The generalized 2D-MUSIC spatial spectrum function for integrating all virtual arrays
in mono-static configuration has the same framework as the multi-static case, which can
be written as

fmono(r, θ) =
1

aH
mono(r, θ)U

(mono)
n (U

(mono)
n )Hamono(r, θ)

(3.31)

where N2 is the number of virtual arrays in mono-static configuration, and amono(r, θ) ∈
CN2l1l2×1 and U(mono)

n ∈ CN2l1l2×N2(l1l2−K) are joint steering vector and noise subspace of
the system, respectively.

The joint steering vector amono(r, θ) can be expressed as:

amono(r, θ) = [a−M(r, θ); . . . ; am(r, θ); . . . ; aM(r, θ)] (3.32)

The joint noise subspace U(mono)
n is constructed as:

U(mono)
n =



U
(−M)
n 0 · · · · · · 0

0
. . .

. . .
...

... 0 U
(m)
n 0

...
...

. . .
. . . 0

0 · · · · · · 0 U
(M)
n


(3.33)

where m = −M, . . . ,M .
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Simplifying (3.31), one can get

fmono(r, θ) =

(
M∑

m=−M

am(r, θ)HU(m)
n (U(m)

n )Ham(r, θ)

)−1

=

(
M∑

m=−M

f−1
m (r, θ)

)−1
(3.34)

where fm(r, θ) is defined in (3.26).

Note that when there is only a single MIMO, (3.34) is reduced to the traditional 2D-
MUSIC algorithm.

3.3.3. Special Case: joint Multi-static and Mono-static Analysis

If the reference antenna of each virtual ULA locates at the middle point between the N th
Tx

transmitter and the 1th receiver, as shown in Figure 2.1, of each MIMO, the virtual ULAs
and NLAs share the same bearing reference centers. Then it is possible to apply the
analysis of mono-static configuration for virtual ULAs in the multi-static configuration
to get better resolutions. More specifically, we will apply 2D-FBSS to virtual ULAs, but
employ 1D-FBSS to virtual NLAs in the multi-static configuration. Consequently, the
data fusion process can be divided into three steps:

1. Joint estimation results of all virtual NLAs.

2. Joint estimation results of all virtual ULAs.

3. Fuse these two partly fused results to obtain the final result.

In this case, the generalized 2D-MUSIC spatial spectrum function still shares the same
framework as general multi-static/mono-static configuration, which can be written as

fjoint(r, θ) =
1

aH
joint(r, θ)U

(joint)
n (U

(joint)
n )Hajoint(r, θ)

(3.35)

where
ajoint(r, θ) = [adual(r, θ); amono(r, θ)] (3.36)

and

U(joint)
n =

[
U

(dual)
n 0

0 U
(mono)
n

]
(3.37)
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adual(r, θ) and Udual
n can be obtained from (3.28) and (3.29) with the extra condition

that m1 6= m2. amono(r, θ) and U(mono)
n can be directly got from (3.32) and (3.33).

Simplifying (3.35), one can have

fjoint(r, θ) =

 M∑
m1=−M

M∑
m2=−M
m2 6=m1

f−1
m1,m2

(r, θ) +
M∑

m=−M

f−1
m (r, θ)


−1

(3.38)

where fm1,m2(r, θ) and fm(r, θ) are defined in (3.14) and (3.26), respectively.

3.4. Simulations

3.4.1. Parameters

Table 3.1 lists key parameters of chirp signals for MATLAB simulations, Table 3.2 offers
parameters of the radar system, and Table 3.3 contains parameters of each MIMO.
We employ three identical coherent FMCW MIMOs in the system. Each MIMO has
2 transmitters and 4 receivers. The inter-element spacing of receivers is dRx = λ/2,
and the inter-element spacing of transmitters is dTx = 2λ. Hence, the virtual antenna
array of each MIMO is a ULA with 8 elements in the mono-static configuration, and the
inter-element spacing is d = dRx.

Table 3.1: Parameters of chirp signals for MATLAB simulations

Parameter Value
Center frequency (fc) 76.5 GHz

Chirp valid sweep bandwidth (B) 600 MHz

Sweep duration (Ts) 60µs

The number of samples per chirp (N) 372

ADC sampling rate (fs) 6.2 MHz

Table 3.2: Parameters of the radar system

Parameter Value
M 1

The number of MIMOs
(Nr = 2M + 1) 3

∆ 256

Inter-MIMO spacing
(ds = ∆ · dRx)

0.502 m
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Table 3.3: Parameters of a single MIMO

Parameter Value
The number of transmitters (NTx) 2

The number of receivers (NRx) 4

Inter-element spacing of transmitters (dTx) 0.0078 m

Inter-element spacing of receivers (dRx) 0.002 m

The number of elements per MIMO
(P = NTxNRx)

8

Q = (P − 2)/2 3

Inter-element spacing for virtual ULAs (d) 0.002 m

3.4.2. MATLAB Simulations

Search steps are ∆R = 0.02m and ∆θ = 0.02◦ in range and azimuth dimensions, respec-
tively. SNR is set to 15 dB in all simulations.

We place three point targets to analyze the performance of the generalized 2D-MUSIC
algorithm, where two of them locates in the same range relative to the system while
two of them locates in the same bearing direction relative to the system. Figure 3.3
displays pseudo spectrum of a single MIMO together with the mono-static and multi-
static configurations of the radar system. 1D-FBSS is applied in Figure 3.3 (a), (b) and
(c) along the time dimension. 2D-FBSS is employed in Figure 3.3 (d) and (e) along both
time and spatial dimensions. Using parameters listed in Table 3.3, virtual NLAs and
ULAs of the system share the same reference centers for calculating relative ranges and
DOAs. Therefore, 2D-FBSS is used for virtual ULAs and 1D-FBSS is applied for virtual
NLAs in Figure 3.3 (f). Since 1D-FBSS cannot completely achieve decorrelation of high
correlated signals, bad estimation results of the multi-static configuration are discarded
by checking the rank of signal subspace. In addition, the window size for 1D-FBSS and
2D-FBSS are [8× 100] and [5× 100], respectively.
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Figure 3.3: Pseudo spectrum of 3 point targets when SNR is 15dB. The first row employs 1D-FBSS: (a)
a single MIMO; (b) the mono-static configuration of the radar system; (c) the multi-static configuration
of the radar system. The second row uses 2D-FBSS for virtual ULAs and 1D-FBSS for virtual NLAs: (d)
a single MIMO; (e) the mono-static configuration of the radar system; (f) the multi-static configuration
of the radar system.

Comparing Figure 3.3 (a) with (b) and (c) can be found that azimuth ambiguity can
be suppressed by jointly using multiple MIMOs, but only the multi-static configuration
can achieve that with 1D-FBSS along the time dimension. Comparing Figure 3.3 (b)
with (e) can be seen that apply 2D-FBSS along both time and spatial dimensions have
better decorrelation performance than 1D-FBSS. Comparing Figure 3.3 (d) with (e), one
can find that azimuth resolution can be improved in the mono-static configuration with
2D-FBSS. Furthermore, 2D-FBSS can improve resolutions compared with 1D-FBSS.
However, the range resolution is only slightly improved in Figure 3.3 (f) compared with
(c). The reason is that majority virtual arrays in the multi-static configuration are NLAs
and the estimation results of all virtual arrays are jointed without weighting. Therefore,
the improvement made by 2D-FBSS to virtual ULAs are suppressed.
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Figure 3.4 displays the influence of the scanning window size of FBSS. For Figure 3.4(a),
(b) and (c), 1D-FBSS is applied along the time dimension, where the window widths in
the time dimension are 80, 150 and 200, respectively. By contrast, 2D-FBSS is used for
Figure 3.4 (d), (e) and (f), where the window width is set to 100 in the time dimension
while the window lengths in the spatial dimension are 4, 6 and 7, respectively.
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Figure 3.4: The first row contains pseudo spectrum of the multi-static configuration with 1D-FBSS,
where window length is set to 8 in spatial dimension while window width is (a) 80, (b) 150, (c) 200
in time dimension. The second row shows estimation results of the mono-static configuration with
2D-FBSS where window width is set to 100 in time dimension but window length is (d) 4, (e) 6, (f) 7
in spatial dimension.
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Slices of pseudo spectrum are presented to show the influence of the scanning window size
of the FBSS techniques. Figure 3.5 displays slices of pseudo spectrum of the multi-static
configuration with 1D-FBSS, where window width is fixed in the spatial dimension but
varied in the time dimension. When the window width in the time dimension increases,
range resolution increases while azimuth resolution slightly decreases.
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Figure 3.5: Slices of pseudo spectrum of the multi-static configuration with 1D-FBSS, where window
length is 8 in spatial dimension but window width is 80, 100, 150, or 200 in time dimension.

Figure 3.6 shows slices of pseudo spectrum of the mono-static configuration with 2D-
FBSS, where the size of the window changes only in the spatial dimension. In general,
range resolution slightly decreases as the window length in the spatial dimension in-
creases. The ability of decorrelation decreases when the window length in the spatial
dimension goes close to the number of elements.
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Figure 3.6: Slices of pseudo spectrum of the mono-static configuration with 2D-FBSS, where window
width is 100 in time dimension but window length is 4, 5, 6 or 7 in spatial dimension.
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According to the results from Figure 3.5 and Figure 3.6, the window size for 1D-FBSS
and 2D-FBSS are set to be [8× 100] and [5× 100], respectively, to balance azimuth and
range resolutions in the following simulations.

Two point targets are placed in the same range relative to the radar system to analyze
the azimuth resolution for mono-static and multi-static configurations of the system.
The performance is compared with a single MIMO since our main aim is to improve the
azimuth resolution by jointly using multiple MIMOs. 1D-FBSS is applied to the multi-
static configuration of the system. 2D-FBSS is employed to the single MIMO and the
mono-static configuration of the system. Figure 3.7 shows that azimuth resolution can
be improved by utilizing multiple MIMOs. Figure 3.7 (b) indicates that the multi-static
configuration of the system can provide better azimuth resolution compared with the
mono-static configuration since it uses extra information of multi-static combinations.
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Figure 3.7: Slices of pseudo spectrum of a single MIMO together with multi-static and mono-static
configurations of the radar system. Black lines represent ground truth of targets’ locations. The orange
dash-dot line represents slice of pseudo spectrum of the multi-static configuration of the radar system.
The blue line represents slice of pseudo spectrum of the mono-static configuration of the radar system.
The purple dashed line represents slice of pseudo spectrum of a single MIMO.
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Then two point targets are placed in the same bearing direction relative to the radar
system to analyze the down-range resolution. The relative distance between these two
targets is 0.12m and 0.14m in Figure 3.8 (a) and (b), respectively.
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Figure 3.8: Slices of pseudo spectrum of a single MIMO together with multi-static and mono-static
configurations of the radar system. Black lines represent ground truth of targets’ locations. The orange
dash-dot line represents slice of pseudo spectrum of the multi-static configuration of the radar system.
The blue line represents slice of pseudo spectrum of the mono-static configuration of the radar system.
The purple dashed line represents slice of pseudo spectrum of a single MIMO.

Using chirp information listed in Table 3.1, the Rayleigh range resolution is

δR =
c

2B
= 0.25m (3.39)

Figure 3.8 (b) indicates that both the single MIMO and the radar system can achieve
better down-range resolution compared with the Rayleigh range resolution. Figure 3.8(a)
shows the down-range resolution of the multi-static configuration is the worst. One
of the reasons is that the multi-static configuration applies 1D-FBSS while the others
employ the 2D-FBSS. As observed from Figure 3.3, the 2D-FBSS can improve resolutions
compared with the 1D-FBSS.
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3.5. Conclusions

The generalized 2D-MUSIC algorithm is proposed in this chapter for 2D target local-
ization. It can be used for both multi-static and mono-static configurations of a radar
system. The same search grid is employed for all virtual arrays to maintain geometrical
constraints of the system. 2D-MUSIC is applied to each virtual array individually, and
then estimation results are fused via (3.30) or (3.34) for multi-static/mono-static con-
figuration, respectively. Then targets’ positions correspond to the local maxima of the
resulting spectrum.

FBSS technique is applied to restore the rank of signal covariance matrix when the scat-
tered signals from different targets are highly correlated or coherent. The main drawback
of this technique is that it decreases the maximum number of detectable targets. Fortu-
nately, a side benefit is that it reduces the computational load for determining subspaces
by EVD/SVD. Moreover, the size of the scanning window influences the ability of reso-
lutions. However, the optimal selection of window size is an remaining issue which needs
further investigation.

Simulation results show that the azimuth resolution can be improved by jointly using
multiple MIMOs. The multi-static configuration of the system can provide better az-
imuth resolution compared to the mono-static one since it uses extra information of
multi-static combinations. The generalized 2D-MUSIC algorithm can provide super res-
olution for every configuration, but the down-range resolution of the multi-static config-
uration is worse than the mono-static configuration. A possible reason is that 2D-FBSS
can improve resolutions compared with 1D-FBSS.

To save computational cost, we can first apply fast Fourier transform (FFT) along the
time dimension to reduce the search scope of range, and then use the generalized 2D-
MUSIC algorithm to estimate targets’ positions. An iterative grid refinement (IGR)
method [35] can be employed to minimize the influence of off-grid problems.



4
An Augmented Lagrangian Method

This chapter offers an augmented Lagrangian method for 2D target localization. Due
to time limitation, its application only in the mono-static configuration of the radar
system is discussed. In principle, this method can be easily used for the multi-static
configuration. Section 4.1 analyzes the signal model of the mono-static configuration
based on a single MIMO. Section 4.2 extends the sparsity-based C-SALSA for the radar
system. Compared with subspace-based algorithms, this method does not require the
number of targets as prior knowledge. Section 4.3 validates this algorithm via MATLAB
simulations. Conclusions of this chapter are drawn in Section 4.4.

4.1. Analysis of Signal Model

From (2.20), we can write time samples in a single sweep, for the mth MIMO, into a
data matrix Xm ∈ CP×N . Then stacking the data matrix into a vector xm column by
column, we have

xm =
K∑
k=1

bm(rk, θk)
(
γke

jφk
)

+ wm

= Bms + wm

(4.1)

where m = −M, . . . ,M , s ∈ CK×1 is a vector of the reflectivities of all targets, and
wm ∈ CNP×1 stacks the complex AWGN of the mth MIMO in a column vector. The

33



34 4. An Augmented Lagrangian Method

matrix Bm ∈ CNP×K is called array manifold matrix, whose columns are steering vectors
of all targets

Bm = [bm(r1, θ1), . . . ,bm(rK , θK)] (4.2)

The steering vector bm ∈ CNP×1 of the kth target relative to the mth MIMO can be
expressed as

bm(rk, θk) = b(r)
m (r

(m)
k )⊗ b(θ)

m (θ
(m)
k ) (4.3)

where (rk, θk) is the location of the kth target relative to the reference MIMO. (r
(m)
k , θ

(m)
k )

represents the position the kth target relative to the mth MIMO, which can be obtained
from (rk, θk) through (2.5) and (2.6). b(r)

m ∈ CN×1 and b(θ)
m ∈ CP×1 are the range and

DOA steering vectors, for the kth target relative to the mth MIMO, respectively.

According to the signal model in (2.20), we can write the range and DOA steering vectors
(b(r)

m and b(θ)
m )in (4.3) as

b(r)
m (r

(m)
k ) = exp

j2π
−f0

2r
(m)
k

c
− 1

2
µ

(
2r

(m)
k

c

)2


·
[
1, . . . , exp

(
j2πµ

2r
(m)
k

c

N − 1

fs

)]T

(4.4)

b(θ)
m (θ

(m)
k ) =

[
exp

(
j2πf0

(−Q− 1)d sin (θ
(m)
k )

c

)
,

. . . , exp

(
j2πf0

Qd sin (θ
(m)
k )

c

)]T
(4.5)

The targets’ locations can be parameterized by their range and DOA information relative
to the reference MIMO of the system. Given knowledge of xm and the mapping from
targets’ locations to the manifold matrix Bm, the objective is to find all targets’ locations
together with estimating the number of targets. Matrix Bm is unknown since it depends
on targets’ locations.

4.2. Extended C-SALSA

To cast (4.1) as a sparse representation problem, we introduce an overcomplete represen-
tation B̃m relative to all possible targets’ locations [35]. Then divide the area of interest
into discrete set of potential targets’ locations, {r̃1, r̃2, . . . , r̃Nd} and {θ̃1, θ̃2, . . . , θ̃Nθ},
where both Nd and Nθ should be much greater than the number of targets K [25].
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Therefore, for the mth MIMO, we have

B̃m =
[
bm(r̃1, θ̃1), . . . ,bm(r̃1, θ̃Nθ), . . . ,bm(r̃Nd , θ̃Nθ)

]
(4.6)

where m = −M, . . . ,M represents the indices of the MIMOs. B̃m ∈ CNP×NdNθ is known
and independent of true targets’ positions [35].

Now the signal model, for a single sweep of the mth MIMO, can be expressed as

xm = B̃ms̃ + wm (4.7)

where s̃ ∈ CNdNθ×1 and the ith element of s̃ is

si =

{
γke

jφk , if (ri, θi) = (rk, θk);

0, otherwise.
(4.8)

where i = 1, . . . , NrNθ and k = 1, . . . , K.

Consequently, we can transfer the problem from estimating unknown targets’ locations to
the problem of sparse spectrum estimation of s̃ thanks to the overcomplete representation
of B̃m [35].

The simplest version of problem (4.7), without taking noise into account, can be solved
through an optimization procedure

minimize
s̃

‖s̃‖0

subject to xm = B̃ms̃
(4.9)

However, (4.9) is a non-convex problem and even intractable for medium-sized problems
[35]. Many approximations have been discussed, such as l1 and lp relaxations, where
‖x‖0 is replaced by ‖x‖1 [36]

minimize
s̃

‖s̃‖1

subject to xm = B̃ms̃
(4.10)

or ‖x‖p with 0 < p < 1 [37]

minimize
s̃

‖s̃‖p
subject to xm = B̃ms̃

(4.11)

These two approximations can obtain exact solutions if s̃ is sparse enough relative to B̃m
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[38]. Moreover, [39] shows that sparse representations can be stable with sufficient spar-
sity and a favorable structure of the overcomplete dictionary. l1 relaxation is preferred
since (4.10) is a convex optimization problem, while (4.11) is non-convex and hard to
solve. In addition, (4.10) is in the framework of basis pursuit [24].

Now, by taking noise into account, (4.10) can be modified as

minimize
s̃

‖s̃‖1

subject to
∥∥∥B̃ms̃− xm

∥∥∥
2
≤ εm

(4.12)

where εm ≥ 0 is a parameter which depends on standard noise deviation.

Then we can extend (4.12) for the radar system, which in total contains (2M + 1)

MIMOs, as
minimize

s̃
‖s̃‖1

subject to


∥∥∥B̃−M s̃− x−M

∥∥∥
2
≤ ε−M

...∥∥∥B̃M s̃− xM

∥∥∥
2
≤ εM

(4.13)

(4.13) is a constrained sparse optimization problem, which can be solved by variable
splitting and augmented Lagrangian (AL). Therefore, C-SALSA in [28] is extended to
solve the target localization problem with multiple MIMOs.

Following [28], the constrained problem (4.13) can be transformed into an unconstrained
one (4.15) by adding the indicator functions of feasible sets,{

s̃ :
M∑

m=−M

(∥∥∥B̃ms̃− xm

∥∥∥2

2
≤ εm

)}
(4.14)

to the objective function in (4.13),

minimize
s̃

λ1 ‖s̃‖1 +
M∑

m=−M

ιE(εm,I,xm)(B̃ms̃) (4.15)

where λ1 > 0 controls the importance of sparsity, and ιE(εm,I,xm)(B̃ms̃) is the indicator
function of the feasible set E(εm, I,xm):

E(εm, I,xm) = {s̃ ∈ C(NdNθ×1) : ‖Is̃− xm‖2 ≤ εm} (4.16)
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ιY (y) =

{
0, if y ∈ Y
+∞, if y /∈ Y

(4.17)

(4.15) can be rewritten as

minimize
s̃

2M+1∑
i=0

gi(H
(i)s̃) (4.18)

where

gi =


λ1 ‖·‖1 , for i = 0;

ιE(εm,I,xm), for

{
i = 1, . . . , 2M + 1

m = i− (M + 1)
.

(4.19)

H(i) =


I for i = 0;

B̃m for

{
i = 1, . . . , 2M + 1

m = i− (M + 1)
.

 ∈ Cai×NdNθ (4.20)

and

ai =

{
NdNθ for i = 0;

NP for i = 1, . . . , 2M + 1.
(4.21)

We can further rewrite (4.18) as a constrained problem

minimize
z

f(z)

subject to z−Gs̃ = 0
(4.22)

where

f(z) =
2M+1∑
i=0

gi(z
(i)) =

2M+1∑
i=0

gi(H
(i)s̃) (4.23)

G =


H(0)

...

H(2M+1)

 ∈ Ca×NrNθ (4.24)

z =
[(

z(0)
)T
, . . . ,

(
z(2M+1)

)T]T ∈ Ca×1 (4.25)

and a = a0 + . . . + a(2M+1). In addition, all objective functions in (4.19) are closed,
proper and convex [28].

The AL for (4.22) is

Lρ(s̃, z,y) = f(z) + yH(z−Gs̃) +
ρ

2
‖Gs̃− z‖2

2 (4.26)

where y is a vector Lagrange multiplier and ρ > 0 is the AL penalty parameter.
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By completing the squares, (4.26) can be written in a slightly different form

Lρ(s̃, z,d) = f(z) +
ρ

2
‖Gs̃− z− d‖2

2 −
ρ

2
‖d‖2

2 (4.27)

where d = (1/ρ)y is the scaled dual variable.

We can express ADMM with

zk =


z

(0)
k

...

z
(2M+1)
k

 and dk =


d

(0)
k

...

d
(2M+1)
k

 (4.28)

then using the scaled dual variable, we have

s̃k+1 = argmin
s̃

ρ

2
‖Gs̃− zk − dk‖2

2 (4.29)

The matrix G has full column rank since H(0) = I. Hence s̃k+1 has a unique solution,
and it can be further expressed as

s̃k+1 =
(
GHG

)−1
GH(zk + dk)

=

[
2M+1∑
i=0

(
H(i)

)H
H(i)

]−1 2M+1∑
i=0

[(
H(i)

)H (
z

(i)
k + d

(i)
k

)] (4.30)

where the second equality is obtained by using (4.24).

zk+1 = argmin
z

(
f(z) +

ρ

2
‖Gs̃k+1 − z− dk‖2

2

)
(4.31)

dk+1 = dk − (Gs̃k+1 − zk+1) (4.32)

Specifically, in (4.31), minimization for z(0), . . . , z(2M+1) are decoupled, which means they
can be updated separately,

z
(i)
k+1 = argmin

z(i)

(
gi
(
z(i)
)

+
ρ

2

∥∥∥z(i) − u
(i)
k

∥∥∥2

2

)
(4.33)

where i = 0, . . . , 2M + 1, and

u
(i)
k = H(i)s̃k+1 − d

(i)
k (4.34)
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The Moreau proximal map of g0 = λ1 ‖·‖1 is

Ψ(0)(u(0)) = soft(u(0), λ1/ρ) (4.35)

where soft(u(0), λ1/ρ) is the element-wise application of soft-threshold function [40]

soft(u(0), λ1/ρ) = sign(u(0)) ·max (0, |u(0)| − λ1/ρ) (4.36)

It is recommended to update the value of λ1 and ρ during iterations [41]. Moreover,
the gradient of λ1 should be no greater than the change rate of ρ because the threshold
value of soft-threshold function should not become larger during iterations.

The Moreau proximal map of gi = ιE(εm,I,xm), where i = 1, . . . , 2M + 1 and m =

i− (M + 1), is independent of the AL penalty parameter and represents the orthogonal
projection of u(i) into the closes εm-radius ball centered at xm [28],

Ψ(i)(u(i)) =

 u(i), if
∥∥u(i) − xm

∥∥
2
≤ εm

xm + εm
u(i)−xm
‖u(i)−xm‖

2

, if
∥∥u(i) − xm

∥∥
2
> εm

(4.37)

Furthermore, d(0), . . . ,d(2M+1) can also be updated separately,

d
(i)
k+1 = d

(i)
k −

(
H(i)s̃k+1 − z

(i)
k+1

)
(4.38)

In summary, the extended C-SALSA for the mono-static configuration of a radar system
is presented in Algorithm 1.
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Algorithm 1 the extended C-SALSA for the mono-static configuration of a radar system

1: Set k = 0, choose λ1 > 0, ρ > 0, z(0)
0 , . . ., z(2M+1)

0 , d(0)
0 , . . ., d(2M+1)

0

2: repeat

3: vk =

[∑2M+1
i=0

(
H(i)

)H

H(i)

]−1

4: rk =
∑2M+1

i=0

[(
H(i)

)H
(
z(i)
k + d(i)

k

)]
5: s̃k+1 = vkrk

6: for i = 0, . . . , 2M + 1 do

7: u(i)
k = H(i)s̃k+1 − d(i)

k

8: z(i)
k+1 = Ψ(i)

(
u(i)
k

)
9: d(i)

k+1 = d(i)
k −

(
H(i)s̃k+1 − z(i)

k+1

)
10: end for

11: k ← k + 1

12: until some stopping criterion is satisfied.
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4.3. Simulations

Numerical simulations are performed with the parameters of chirp signals and the radar
system listed in Table 3.1 and Table 3.2, respectively. We use three identical coher-
ent FMCW MIMOs in the radar system. Each MIMO has NTx transmitters and NRx

receivers. The performance of the extended C-SALSA will be analyzed in Cartesian
coordinate system. Search steps are ∆x = 0.05m and ∆y = 0.1m along the x− and y−
axes, respectively. The SNR is set to be 20 dB in the following simulations.

Firstly, the performance of a single MIMO is discussed to validate the feasibility of
C-SALSA. Figure 4.1 shows estimation results of two different MIMO configurations.
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Figure 4.1: Estimation results of 4 on-grid targets by a single MIMO, (a) 5 transmitters and 6 receivers,
(b) 2 transmitters and 4 receivers. Estimation results of 4 off-grid targets by a single MIMO, (c) 5
transmitters and 6 receivers, (d) 2 transmitters and 4 receivers.

Figure 4.1 (a) and (c) are estimation results of a single MIMO with 5 transmitters and
6 receivers while Figure 4.1 (b) and (d) are obtained with a single MIMO consisting
of 2 transmitters and 4 receivers. Comparing Figure 4.1(a) with (b), one can see that
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C-SALSA can provide accurate estimation for on-grid targets, but ghost targets appear
with few sensors. However, the amplitude of ghost targets are more than 10 dB lower
than real targets. Therefore, we can set a threshold to filter them out. The performance
is more robust with large elements because the amount of information increases as the
number of elements increases. From the perspective of information theory, more infor-
mation about a certain observing domain can provide more robust result. Figure 4.1(c)
and (d) shows that the off-grid problem exits in both MIMO settings which is caused
by the inherent limitation of C-SALSA.

Then we will analyze the performance of a radar system to demonstrate the feasibility of
the extended C-SALSA. Figure 4.2 and Figure 4.3 display estimation results of 4 on-grid
or off-grid targets by a radar system which contains 3 identical MIMOs, respectively. In
addition, each MIMO has 5 transmitters and 6 receivers.
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Figure 4.2: Estimation results of 4 on-grid targets where each MIMO has 5 transmitters and 6 receivers,
(a) jointed 3 MIMOs, (b) the left MIMO, (c) the center MIMO, (d) the right MIMO.

Figure 4.2 (a) shows the estimation result by jointly using all MIMOs in the radar
system, where all targets are precisely located without any ghost target. Meanwhile,
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Figure 4.2 (b), (c) and (d) display the individual estimation results of each MIMO in
the system. Comparing them with Figure 4.2 (a), it can be found that the estimation
accuracy can be improved by jointly using multiple MIMOs.

By contrast, Figure 4.3 (a) shows the estimation result of the off-grid targets with jointly
employing all MIMOs in the radar system while Figure 4.3 (b), (c) and (d) present the
individual estimation results of each MIMO in the radar system. These figures indicate
that jointly using multiple MIMOs cannot reduce the influence of off-grid problems.
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Figure 4.3: Estimation results of 4 off-grid targets where each MIMO has 5 transmitters and 6 receivers,
(a) jointed 3 MIMOs, (b) the left MIMO, (c) the center MIMO, (d) the right MIMO.
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To further demonstrate the performance of extended C-SALSA, one more numerical
simulation is carried out with MIMO arrays consisting of two transmitter and four
receivers. Similar to the previous simulation, a radar system with three MIMO arrays is
considered. Figure 4.4 and Figure 4.5 display estimation results of 4 on-grid or off-grid
targets.
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Figure 4.4: Estimation results of 4 on-grid targets where each MIMO has 2 transmitters and 4 receivers,
(a) jointed 3 MIMOs, (b) the left MIMO, (c) the center MIMO, (d) the right MIMO.

Figure 4.4 (a) shows the estimation result by jointly using all MIMOs in the radar
system, where all targets are accurately estimated without causing any ghost target.
Figure 4.4 (b), (c) and (d) display the individual estimation result of each MIMO in the
radar system. Ghost targets can be seen in each individual estimation result, but it is
possible to filter them out by setting a threshold for detection. Comparing Figure 4.4
with Figure 4.2, ghost targets appear in the estimation result of a single MIMO with
few sensors, but jointly utilizing multiple MIMOs can improve the robustness of the
estimation.
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Figure 4.5 (a) displays the estimation result of the off-grid targets by jointly exploiting all
MIMOs in the radar system. Figure 4.5 (b), (c) and (d) show the individual estimation
results of each MIMO in the radar system. These plots indicate that off-grid problems are
unavoidable for this method. Moreover, comparing Figure 4.5 with Figure 4.3, increasing
the number of sensors of each MIMO does not suppress the influence of off-grid problems.
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Figure 4.5: Estimation results of 4 off-grid targets where each MIMO has 2 transmitters and 4 receivers,
(a) jointed 3 MIMOs, (b) the left MIMO, (c) the center MIMO, (d) the right MIMO.
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Figure 4.6 shows the estimation results of the same dataset as Figure 3.3, which is plotted
in Polar coordinate system to analyze the azimuth resolution. Figure 4.6 (a) presents
the original pseudo spectrum from extended C-SALSA. Since the number of targets is
unknown, a threshold is applied for detection. Figure 4.6 (b) displays the filtered pseudo
spectrum.
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Figure 4.6: Estimation results of 3 point targets via extended C-SALSA with SNR = 15dB: (a) original
pseudo spectrum, (b) filtered pseudo spectrum.

The extended C-SALSA is a data-based method, which means it is sensitive to noise. The
optimization parameters is not easy to tune when SNR equals to 15 dB. Ghost targets
appear corresponding to local maximas, but their amplitudes are more than 10 dB lower
than that of real targets. Therefore, a threshold is set for detection in Figure 4.6 (b).
Comparing Figure 4.6 (b) with Figure 3.3 (e), one can observe that extended C-SALSA
have comparable performance with generalized 2D-MUSIC. Moreover, the down-range
resolution obtained with the extended C-SALSA is limited by the size of grid.

4.4. Conclusions

The extended C-SALSA can find targets’ locations together with estimating the number
of targets by jointly using multiple MIMOs. This method is an ADMM technique utiliz-
ing variable splitting and AL to handle objective functions. Geometrical constraints are
remained by applying the same overcomplete dictionary to all virtual arrays. Hence, the
information acquired with all small MIMO arrays within the system is fused. However,
this estimator suffers from off-grid problems and requires moderate SNR. Moreover, the
performance of this method is sensitive to optimization parameters when the SNR is less
than or equal to 15 dB.



5
Performance Analysis

The performance of the proposed algorithms will be analyzed with the mono-static con-
figuration of the system. Parameters of the spectra of a chirp signal for electromagnetic
(EM) simulations are presented in section 5.1. The performance of the proposed signal
models together with algorithms are analyzed in section 5.2 via MATLAB simulations.
Subsection 5.2.1 compares Cramer-Rao Lower Bound (CRLB) for a single MIMO with
multi-static and mono-static configurations of the radar system. Subsection 5.2.2 dis-
cusses the possible accuracy of the estimation results of the mono-static configuration
using CRLB. Subsection 5.2.3 compares resolutions of the generalized 2D-MUSIC and
extended C-SALSA. The performance of proposed algorithms are analyzed via EM sim-
ulations in section 5.3. Conclusion of this chapter is drawn in section 5.4.

5.1. Parameters

Table 5.1 offers key parameters of the chirp spectrum for EM simulations. When using
MATLAB to analyze the performance of proposed algorithms, beat signals are utilized
to save computational load in time domain. However, EM simulations are done in
frequency domain, which means Nyquist criterion should be satisfied when we transfer
the chirp spectrum into time domain. In order to reduce computational cost, the sweep
duration is set to a quite small value for chirp spectrum.
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Table 5.1: Parameters of chirp spectrum for EM simulations

Parameter Value
Center frequency (fc) 76.5GHz

Chirp valid sweep bandwidth (B) 1GHz

Frequency step (∆f) 2MHz

Sweep duration (Ts) 0.5µs

ADC sampling rate (fs) 154GHz

Downsampling factor 100

The number of samples per chirp after downsampling (N) 770

5.2. MATLAB Simulations

5.2.1. Performance Analysis with CRLB

In order to specify a benchmark for performance analysis, CRLB for the general multi-
static configuration of the radar system is derived in Appendix A [42]. The CRLB
represents a lower bound of the root mean square error (RMSE) for any unbiased esti-
mator [43]. Moreover, CRLB for the mono-static configuration of a system and even a
single MIMO can be deduced from its deviation for the multi-static configuration.

Figure 5.1 displays CRLBs of DOA and range for a single MIMO together with multi-
static and mono-static configurations of the radar system.
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Figure 5.1: CRLB versus SNR of a single MIMO together with multi-static and mono-static configura-
tions of the radar system: (a) DOA, (b) range. The yellow line with upward-pointing triangle represents
CRLB of a single MIMO. The orange with plus sign represents CRLB of the mono-static configuration
of the radar system. The red line represents CRLB of the multi-static configuration of the radar system.

Tables 3.1, 3.2 and 3.3 contain parameters of chirp signals, the radar system and MI-
MOs, respectively. Since the performance of the generalized MUSIC algorithm will be
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compared with the corresponding CRLB, the sampling frequency is reduced to 0.7MHz

to save computational cost. Moreover, the target position is (5◦, 5m) relative to the
reference MIMO.

Figure 5.1 (a) and (b) indicate that the estimation performance can be improved by
jointly using multiple MIMOs. Considering to achieve the same RMSEs of DOA/range,
the mono-static configuration can improve estimation performance for SNR of DOA/range
about 7 dB/5 dB compared with the performance of a single MIMO. Then the multi-
static configuration can further improve estimation performance for SNR of DOA/range
about 3.5 dB/5 dB compared with the performance of mono-static configuration.

The performance of generalized 2D-MUSIC estimator is analyzed for both multi-static
and mono-static configurations through Monte Carlo simulations. The results are aver-
aged over Ni = 400 trials. Moreover, the performance of the system is compared with
that of a single MIMO (here we use the 0th MIMO in Figure 2.1). The RMSE of range
and DOA for each target are defined as

σr =

√√√√ 1

Ni

Ni∑
ni=1

(r̂k,ni − rk)
2 and σθ =

√√√√ 1

Ni

Ni∑
ni=1

(
θ̂k,ni − θk

)2

(5.1)

where Ni is the number of trials, and r̂k,ni and θ̂k,ni represents the estimated range and
DOA of the kth target in the nth

i Monte Carlo trial, respectively.

The extended C-SALSA is not suitable for drawing an extremely fine search grid within
a quite small region, in which case the parameters for optimization process are hard
to tune. That is why we do not compare RMSEs of extended C-SALSA with CRLB.
Therefore, estimation error level of extended C-SALSA is determined by search step.

Figure 5.2 displays RMSEs of DOA and range for a single target by generalized 2D-
MUSIC algorithm, where the RMSEs of both DOA and range are close to their CRLBs
for each configuration.
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Figure 5.2: RMSE versus SNR for a single target by generalized 2D-MUSIC: (a) DOA, (b) range. The
red line represents RMSE of the multi-static configuration of the radar system. The green line with
diamond represents CRLB of the multi-static configuration. The orange line with plus sign represents
RMSE of the mono-static configuration of the radar system. The blue line with cross represents CRLB
of the mono-static configuration. The yellow line with upward-pointing triangle represents RMSE of a
single MIMO. The purple line with downward-pointing triangle represents CRLB of a single MIMO.

5.2.2. Possible Accuracy Analysis via CRLB

Parameters listed in Tables 3.1, 3.2 and 3.3 is used to analyze the possible accuracy of
the radar system. Only the mono-static configuration will be analyzed here, but the
multi-static configuration can be discussed in the similar way. A point target is placed
at (5◦, 20m) relative to the reference MIMO.

Figures 5.3, 5.4, 5.5 and 5.6 show CRLB of the DOA and range versus bandwidth,
the inter-MIMO spacing, the number of elements per virtual array, and the number
of MIMOs for the mono-static configuration of the system, respectively. When one
parameter is changing, the other parameters are fixed as listed in Tables 3.1, 3.2 and
3.3. When signal bandwidth, the inter-MIMO spacing, the number of elements per
virtual array, or the number of MIMOs increases, the CRLBs of both the DOA and
range decrease.

Comparing Figures 5.3(a) with 5.4(a), 5.5(a) and 5.6(a), it can be seen that the CRLB
of DOA is more sensitive to the inter-MIMO spacing. The correlation of received signals
decreases as the inter-MIMO spacing increases; thus more independent information can
be used to estimate the targets’ positions. Comparing Figures 5.3(b) with 5.4(b), 5.5(b)
and 5.6(b), one can find that the CRLB of range is more sensitive to the change of
signal bandwidth. The Rayleigh range resolution is decided by the signal bandwidth.
The estimation accuracy increases as the range resolution increases. When the number
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of elements per MIMO or the number of MIMOs increases, samples in spatial dimension
increases. That is to say, the amount of uncorrelated information increases, consequently,
the estimation error decreases from the perspective of information theory. Moreover,
the estimation of range and DOA is coupled when jointly using multiple MIMOs, which
means their estimation accuracy is coupled as well. Therefore, CRLBs of DOA and
range have the same trend when the parameters change.
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Figure 5.3: CRLB versus bandwidth for a single target: (a) DOA, (b) range.

0.5 1 1.5 2 2.5
The inter-MIMO spacing (m)

10 -4

10 -3

10 -2

10 -1

C
R

LB
 o

f D
O

A
 (

de
gr

ee
)

SNR = 5dB
SNR = 10dB
SNR = 15dB
SNR = 20dB

(a)

0.5 1 1.5 2 2.5
The inter-MIMO spacing (m)

10 -4

10 -3

10 -2

C
R

LB
 o

f r
an

ge
 (

m
)

SNR = 5dB
SNR = 10dB
SNR = 15dB
SNR = 20dB

(b)

Figure 5.4: CRLB versus the inter-MIMO spacing for a single target: (a) DOA, (b) range.
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Figure 5.5: CRLB versus the number of elements per virtual array for a single target: (a) DOA, (b)
range.
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Figure 5.6: CRLB versus the number of MIMOs for a single target: (a) DOA, (b) range.



5.2. MATLAB Simulations 53

5.2.3. Comparing Resolutions of Proposed Algorithms

The same search grid is employed to compare the resolutions obtained with the gen-
eralized 2D-MUSIC algorithm and the extended C-SALSA. Search step in range and
azimuth dimensions are ∆R = 0.05m and ∆DOA = 0.2◦, respectively. SNR is set to be
15 dB.

Figure 5.7 (a) displays the slice of the pseudo spectrum for two point targets whose
ground truth positions are (1◦, 20m) and (3◦, 20m). The extended C-SALSA can dis-
tinguish these two targets in the mono-static configuration of the system while the
generalized 2D-MUSIC algorithm cannot.

Figure 5.7 (b) shows the slice of pseudo spectrum for two point targets whose ground
truth positions are (−1◦, 20m) and (−1◦, 20.2m). Both generalized 2D-MUSIC and
extended C-SALSA can achieve better range resolution compared with the Rayleigh
range resolution (δR = 0.25m) defined by the signal bandwidth. Moreover, generalized
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Figure 5.7: slices of pseudo spectrum of the generalized 2D-MUSIC and extended C-SALSA, where (a)
two targets locate in the same range relative to the reference MIMO; (b) two targets locate in the same
bearing direction relating to the reference MIMO. Black lines represent ground truth of target locations.
The blue line represent slice of pseudo spectrum by the generalized 2D-MUSIC algorithm. The green
dashed line represents slice of pseudo spectrum by the extended C-SALSA.

2D-MUSIC for the mono-static configuration can achieve range resolution equals to
0.12m as shown in Figure 3.8 (a), but the performance of extended C-SALSA drops
when targets are too close. As shown in Figure 5.7 (b), the range resolution of extended
C-SALSA is about 0.2m.
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5.3. Electromagnetic Simulations

Electromagnetic (EM) simulations are initially done with step frequency signals, and
then the simulation results are mixed with chirp spectrum to get the synthetic data for
FMCW MIMOs. The expression of chirp spectrum is derived in Appendix B, which
is used as the carrier signal in the frequency domain. Then we transfer the mixed
signals into the time domain and follow (2.9) to obtain beat signals. The performance
of proposed algorithms will be analyzed for both point targets and an extended target.

5.3.1. Point targets

Figure 5.8 shows the simulation setup of 3 point targets together with the radar system.
Three identical small spheres are placed at (2.5m, 19.5m), (3m, 20m) and (3.5m, 20.5m)

respectively. Moreover, the circumference of the great circle is less than the wavelength
of center frequency. The inter-MIMO spacing is 0.5m.
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Figure 5.8: Ground truth of 3 point targets with the radar system
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Generalized 2D-MUSIC

Figure 5.9 displays the estimation results of generalized 2D-MUSIC estimator with a
single MIMO and a radar system with mono-static and multi-static configurations. 1D-
FBSS is applied along the time dimension for all configurations. The performance of
mono-static and multi-static configurations of the system is acceptable, because their
pseudo spectrum are summation of multiple virtual arrays without weighting.

1 2 3 4 5
X (m)

18

19

20

21

22

Y
 (

m
)

-40

-30

-20

-10

0
dB

Ground truth

(a)

1 2 3 4 5
X (m)

18

19

20

21

22
Y

 (
m

)

-40

-30

-20

-10

0
dB

Ground truth

(b)

1 2 3 4 5
X (m)

18

19

20

21

22

Y
 (

m
)

-40

-30

-20

-10

0
dB

Ground truth

(c)

Figure 5.9: Estimation results of 3 point targets by the generalized 2D-MUSIC estimator: (a) a single
MIMO, (b) the mono-static configuration of the system, (c) the multi-static configuration of the system.

Extended C-SALSA

Figure 5.10 shows the estimation results of extended C-SALSA for the mono-static
configuration of the system. Because this method does not require the number of targets
as prior knowledge, a threshold is applied for detection. Figure 5.10 (b) presents the
filtered pseudo spectrum.
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Figure 5.10: Estimation results of 3 point targets by the extended C-SALSA: (a) the original pseudo
spectrum, (b) the filtered pseudo spectrum.

Figure 5.9 and Figure 5.10 indicate that both algorithms have the ability to estimate
these three point targets.
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5.3.2. Extended target

Figure 5.11 illustrates the ground truth of an extended target together with the radar
system. The relative down-range distance between the car and radar system is 20m.
The inter-MIMO spacing is 0.5m. Vertical and horizontal beamwidth of each antenna
are 20◦ and 120◦ respectively. Two simulation scenarios will be considered: a full-scale
car with/without ground. Multipath propagation exists when ground appears.
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Figure 5.11: Ground truth of an extended target with the radar system: (a) top view, (b) right view.



5.3. Electromagnetic Simulations 57

Generalized 2D-MUSIC Algorithm

Figure 5.12 displays the pseudo spectrum of the generalized 2D-MUSIC algorithm with
a single MIMO and the radar system with mono-static and multi-static configurations
when ground exists. In contrast, Figure 5.13 shows the corresponding pseudo spectrum
without introducing ground in the simulation scenario. The extended target is 3D but
estimation results are displayed in a 2D coordinate. Since the target is far away from
the radar system, top view of the extended target can approximately describe the size
of target indicated by the blue box in each plot. Moreover, individual estimation result
of each virtual array for both multi-static and mono-static configurations are displayed
in Appendix C. In addition, we set −25 dB as the threshold for the normalized singular
values to estimate the number of targets for each virtual array. Then the maximum
value is selected as the estimated number of targets.
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Figure 5.12: Estimation results of an extended target with ground via the generalized 2D-MUSIC
algorithm: (a) a single MIMO, (b) the mono-static configuration of the system, (c) the multi-static of
the system.
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Figure 5.13: Estimation results of an extended target without ground via the generalized 2D-MUSIC
algorithm: (a) a single MIMO, (b) the mono-static configuration of the system, (c) the multi-static of
the system.
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Strong reflection points are corresponding to the front side and wheels of the car. Both
Figure 5.12 and Figure 5.13 indicate that more virtual arrays can observe more strong
reflection points. Then the estimation result can better represent the target.

Actually, we cannot directly compare Figure 5.12 and Figure 5.13 to analyze the influence
of ground in the simulation. Appendix C indicates that strong reflection points for each
virtual array could be different. Even the low-rank approximation could be different
for different virtual arrays. However, this project assumes every MIMO can observe
the same targets, which means we have to provide all virtual arrays with the same
model order to separate signal and noise subspaces. The performance of MUSIC-based
algorithm could seriously drop if the model order is incorrectly estimated.

Extended C-SALSA

Figure 5.14 displays the estimation results of mono-static configuration for the extended
target with and without ground in the simulation scenarios. The region inside the blue
box in each plot approximately indicates the size of the extended target from top view.
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Figure 5.14: Estimation results of an extended target via the extended C-SALSA: (a) the original
pseudo spectrum when ground exists, (b) the filtered pseudo spectrum when ground exists, (c) the
original pseudo spectrum without ground, (d) the filtered pseudo spectrum without ground.
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The objective function of extended C-SALSA requires that the objective vector of each
virtual ULAs is the same, which is a quite strictly constraints. Appendix C shows
that strong reflection points relative to each virtual array can be quite different. These
different reflection points could be significantly suppressed by the extended C-SALSA.

5.4. Conclusions

CRLBs of the DOA and range in different configurations indicate that both azimuth and
range resolutions can be improved by using multiple MIMOs. The multi-static configu-
ration can achieve better azimuth resolution than that of the mono-static configuration
since it employs extra information of multi-static combinations. The possible estimation
accuracy of both DOA and range increase when the signal bandwidth, the inter-MIMO
spacing, the number of elements per virtual array, or the number of MIMOs increases.
The CRLB of range is more dependent on the signal bandwidth, while the CRLB of
DOA is more sensitive to the change of the inter-MIMO spacing. Moreover, from the
perspective of information theory, the estimation accuracy increases as the amount of
uncorrelated information increases.

Both the generalized 2D-MUSIC algorithm and extended C-SALSA can provide better
azimuth and range resolutions compared to the traditional Rayleigh resolutions. In
mono-static configuration, azimuth resolution of the extended C-SALSA is better than
the generalized 2D-MUSIC. However, the performance of extended C-SALSA drops if
targets are too close. A possible reason is that the data-based method is less robust with
few samples in spatial dimension, while MUSIC-based algorithm still can work thanks to
the fact that it exploits the orthogonality between signal and noise subspaces. Moreover,
the performance of extended C-SALSA can be more stable with more sensors in each
MIMO.

Extended targets may have different strong reflection points relative to different virtual
arrays in the system. However, both proposed algorithms assume that every MIMO
can observe the same targets. Consequently, if a reflection point cannot be seen by
all virtual arrays, it might be demonstrated as a weak target or totally missing in the
estimation result. Moreover, both algorithms have limitations for extended targets, but
the generalized 2D-MUSIC provides a better profile of the simulated vehicle in EM
simulation results.





6
Conclusions and Future Work

This chapter will summarizes outcomes of this work and provide suggestions for further
investigation. Section 6.1 summarizes achievements based on results and novelties, and
Section 6.2 provides suggestions for future work.

6.1. Results and Novelties

This work addressed the low azimuth resolution problem of a single MIMO. In this the-
sis, we proposed a novel topology of array, which consists of multiple coherent FMCW
MIMOs. These MIMOs are arranged along the azimuth dimension to improve azimuth
resolution by extending the effective aperture size. Then signal models for multi-static
and mono-static configurations of the radar system are formulated with FMCW wave-
form. To the best of our knowledge, target localization by jointly using multiple coherent
MIMOs has not been reported yet. To this end, we have investigated and tested two
algorithms to localize targets with super-high resolutions using multiple MIMOs. One
is a subspace-based algorithm and the other one is a sparsity-based method.

The subspace-based algorithm is named as generalized 2D-MUSIC algorithm, which ex-
ploits the orthogonality of signal and noise subspaces. Geometrical constraints of the
system are maintained by using the same search grid to all virtual arrays, consequently,
data association is avoided. We are the first one to generalize 2D-MUSIC to multiple
MIMOs. 2D-MUSIC is applied to each virtual array locally, and their estimation re-
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sults are connected through the same search grid. The performance of this method is
summarized as follows.

1. This algorithm is applicable for both multi-static and mono-static configurations
of the radar system.

2. The estimation accuracy of this algorithm is close to CRLB with applying ex-
tremely fine search grid. In practice, the grid-based error can be suppressed by
applying an iterative grid refinement method.

3. Azimuth resolution is improved by using multiple MIMOs. Moreover, azimuth
resolution of the multi-static configuration is better than that of the mono-static
configuration since the first one uses extra information of multi-static combina-
tions.

4. This method has limitations for estimating extended targets, but it still provided
a better profile of the simulated target compared with extended C-SALSA in EM
simulation results.

5. This method suffers from high correlated signals, therefore, the FBSS technique is
required to decorrelate back-scattered signals.

6. This method requires the number of targets as prior knowledge to separate signal
and noise subspace. The performance could significantly drop if the model order
is incorrectly estimated.

To avoid pre-estimating the number of targets, we proposed the extended C-SALSA
to tackle localization problems. It is worth noting that we are the first to cast the
target localization problem as a constrained sparse representation problem. Instead
of estimating targets’ locations, this method focuses on sparse spectrum estimation.
Geometrical constraints of the system are remained by applying the same overcomplete
dictionary to all virtual arrays, thus data association is avoided. The performance of
this method is summarized as follows.

1. This method can estimate the number of point targets as a side benefit.

2. Compared with the generalized 2D-MUSIC algorithm, this method can achieve
better azimuth resolution in the mono-static configuration of a radar system.

3. This method has limitations for estimating extended targets, because the objec-
tive function strictly requires that each MIMO should observe the same targets.
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However, strong reflection points of the extended target to each MIMO could be
different.

4. This method suffers from off-grid problems, is sensitive to optimization parameters,
and requires moderate SNR.

6.2. Recommendations for Future Work

Based on this work, several recommendations for future work are provided as follows.
The first two suggestions are from algorithms perspective, and the last one is from the
system model perspective.

• The objective function of extended C-SALSA requires that the objective vector of
each MIMO should be the same, which is a quite strict constraint. Future work
can relax the objective function in (4.13) to a joint sparsity constraint using l2,1
norm, as

minimize
S

‖S‖2,1

subject to



∥∥∥B̃−M s̃−M − x−M

∥∥∥
2
≤ ε−M

...∥∥∥B̃M s̃M − xM

∥∥∥
2
≤ εM

S = [s̃−M ; . . . ; s̃M ]

(6.1)

• The extended C-SALSA is a data-based sparse optimization method, which suffers
from off-grid problems and is sensitive to noise. We recommend to use robust
KronPCA proposed in [44] to achieve gridless 2D target localization.

Analyzing covariance matrices, we have

Rm = E
[
xmxH

m

]
= Θm + Γm

(6.2)

Then, the information of targets’ positions can be estimated by combining low rank
and sparsity as objective function. Since rank function is hard to solve, nuclear
norm can be used to penalize low rank matrix approximation. l1 norm regulariza-
tion function is applied to penalize sparsity. Moreover, the term ‖Rm −Θm − Γm‖2

F

is introduced to relax the exact constraint of (6.2), where || · ||F is the Frobenius
norm. Then the optimization procedure is
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minimize
∑M

m=−M
(
‖Rm −Θm − Γm‖2

F + λΘm ‖R(Θm)‖∗ + λΓm ‖Γm‖1

)

subject to



Θm =
∑K

k=1 γ
2
k ·C

(k)
m ⊗D

(k)
m

C
(k)
m = b

(r)
m (r

(m)
k )

(
b

(r)
m (r

(m)
k )

)H

D
(k)
m = b

(θ)
m (θ

(m)
k )

(
b

(θ)
m (θ

(m)
k )

)H

r
(m)
k = f(rk, θk,m)

θ
(m)
k = g(rk, θk,m)

Γm = σ2
mI

(6.3)

where m and k represent the indices of the MIMOs and the targets, respectively.
γk is the reflectivity’s amplitude of the kth target. (rk, θk) is the position of the kth

target relative to the reference MIMO of the system. b(r)
m (r

(m)
k ) and b(θ)

m (θ
(m)
k ) are

the range and DOA steering vectors of the kth target relative to the mth MIMO
which are defined in (4.4) and (4.5), respectively. σ2

m is the noise variance of themth

MIMO. C
(k)
m and D

(k)
m are two positive semi-definite Hermitian Toeplitz matrices,

thus their Kronecker product Θm ∈ CNP×NP is a positive semi-definite Toeplitz-
block-Toeplitz matrix [45]. ‖R(Θm)‖∗ is the rearranged nuclear norm of Θm,
which is a low rank matrix, where R(·) is the invertible rearrangement operator
[46]. Γm ∈ CNP×NP is a sparse matrix. The regularization parameters λΘm > 0

and λΓm > 0 control the importance between low rank and sparsity, respectively,
where increasing either increases the percentage of regularization. Moreover, the
geometrical relationship between (r

(m)
k , θ

(m)
k ) and (rk, θk) is formulated as follows.

f(rk, θk,m) =
√
r2
k + (mds)2 − 2rkmds sin (θk) (6.4)

g(rk, θk,m) = arcsin
(

(rk sin (θk)−mds)(r(m)
k )−1

)
(6.5)

• The system model proposed in this project focuses on 2D target localization. Under
the assumption that the radar system is well-synchronized, it is recommended to
place MIMOs in different height, then elevation information can be obtained from
the phase difference among MIMOs in multi-static combinations.
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A
Cramer-Rao Lower Bound for the

Multi-static Configuration of the System

As shown in Figure 2.1, the system consists of (2M + 1) MIMOs in total. Suppose
that a point target locates in the near-field of the system, but in the far-field of each
MIMO. Then, we can assume that the DOD is approximately same as the DOA for the
target relative to each MIMO. The middle point between the N th

Tx transmitter and the
1th receiver is selected to calculate the range and DOD/DOA relative to each MIMO.
Assume the target location is (r, θ) relative to the reference MIMO of the radar system,
then from (2.5) and (2.6), we can get its position relative to each MIMO as

r(m) =
√
r2 + (mds)2 − 2rmds sin θ (A.1)

ψ(m) = θ(m) = arcsin

(
r sin θ −mds

r(m)

)
(A.2)

where m = −M, . . . ,M , r(m) is the relative distance between the target and the mth

MIMO, ψ(m) and θ(m) are the DOD and DOA for the target relative to the mth MIMO,
respectively. ds is the spacing between two adjacent MIMOs.

Assume signals are transmitted from the mth
1 MIMO, then the scattered signals, from

the point target, are received by the mth
2 MIMO. From (2.15), the received signals after

dechirp, in a sweep duration, can be written as

xm1,m2 [aNRx + b, n] = sm1,m2 [aNRx + b, n] + wm1,m2 [aNRx + b, n] (A.3)
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where

sm1,m2 [aNRx + b, n] =γejφ exp

[
j2π

(
µτ (m1,m2) n

fs
− f0τ

(m1,m2)

− 1

2
µ(τ (m1,m2))2 + f0

adTx sin (ψ(m1))

c

+ f0
bdRx sin (θ(m2))

c

)]
=γ exp

[
j
(
φ− 2πf0τ

(m1,m2) − πµ(τ (m1,m2))2
)

+ j2π

(
µτ (m1,m2) n

fs
+ f0

adTx sin (ψ(m1))

c

+ f0
bdRx sin (θ(m2))

c

)]
=γ exp

[
jΦm1,m1 + j2π

(
µτ (m1,m2) n

fs

+ f0
adTx sin (ψ(m1))

c
+ f0

bdRx sin (θ(m2))

c

)]

(A.4)

γejφ represents the reflectivity of the target. µ is the rate of frequency change, µ =

B/Ts, B is sweep bandwidth, Ts is sweep duration. τ (m1,m2) represents the time delay
corresponding to the path from the mth

1 MIMO to the mth
2 MIMO through the point

target. fs is ADC sampling rate, f0 is initial frequency, dTx and dRx are the inter-
element spacing of transmitters and receivers, respectively. NTx and NRx represent the
number of transmitters and receivers, respectively. c is the speed of light, {m1,m2} ∈
{−M, . . . ,M}, a = −(NTx − 1), . . . , 0, b = 0, . . . , NRx − 1, n = 0, 1, . . . , N − 1, and

τ (m1,m2) =
r(m1) + r(m2)

c
(A.5)

r(m1) =
√
r2 + (m1ds)2 − 2rm1ds sin θ (A.6)

r(m2) =
√
r2 + (m2ds)2 − 2rm2ds sin θ (A.7)

sin (ψ(m1)) = sin (θ(m1)) =
r sin θ −m1ds

r(m1)
(A.8)

sin (ψ(m2)) = sin (θ(m2)) =
r sin θ −m2ds

r(m2)
(A.9)

Φm1,m2 = φ− 2πf0τ
(m1,m2) − πµ(τ (m1,m2))2 (A.10)
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Collect all received signals together, we have

x−M,−M [aNRx + b, n]
...

xm1,m2 [aNRx + b, n]
...

xM,M [aNRx + b, n]


=



s−M,−M [aNRx + b, n]
...

sm1,m2 [aNRx + b, n]
...

sM,M [aNRx + b, n]


+



w−M,−M [aNRx + b, n]
...

wm1,m2 [aNRx + b, n]
...

wM,M [aNRx + b, n]


(A.11)

Therefore, we can express the noisy discretized received signal of the radar system as

x[aNRx + b+ l, n] = s[aNRx + b+ l, n] + w[aNRx + b+ l, n] (A.12)

where l = (m1 +M)(2M + 1)P + (m2 +M)P , PNTxNRx represents the total number of
channels of each virtual array, and w[aNRx + b+ l, n] ∼ CN (0, σ2) is complex AWGN.

The signal to noise ratio (SNR) is defined as

SNR =
γ2

σ2
(A.13)

The likelihood function [43] of the noisy received signal is

p(x; Ω) = exp

[
− 1

σ2

N−1∑
n=0

0∑
a=1−NTx

NRx−1∑
b=0

M∑
m1=−M

M∑
m2=−M

wm1,m2 [aNRx + b, n]

· w∗m1,m2
[aNRx + b, n]

]
· 1

(πσ2)(2M+1)2NP

(A.14)

where

Ω = [Ω1,Ω2,Ω3,Ω4]T = [γ,Φm1,m2 , r, θ]
T (A.15)

wm1,m2 [aNRx + b, n] = xm1,m2 [aNRx + b, n]− sm1,m2 [aNRx + b, n] (A.16)

Then the log-likelihood function is

ln p(x; Ω) =− ln
(
πσ2
)(2M+1)2NP

− 1

σ2

N−1∑
n=0

0∑
a=1−NTx

NRx−1∑
b=0

M∑
m1=−M

M∑
m2=−M

wm1,m2 [aNRx + b, n]

· w∗m1,m2
[aNRx + b, n]

(A.17)
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The first derivative of the log-likelihood function with respect to Ωi produces

∂ ln p(x; Ω)

∂Ωi

=
1

σ2

N−1∑
n=0

0∑
a=1−NTx

NRx−1∑
b=0

M∑
m1=−M

M∑
m2=−M

[
∂sm1,m2 [aNRx + b, n]

∂Ωi

· w∗m1,m2
[aNRx + b, n] + wm1,m2 [aNRx + b, n]

·
∂s∗m1,m2

[aNRx + b, n]

∂Ωi

] (A.18)

and the second derivative with respect to Ωj is

∂2 ln p(x; Ω)

∂Ωi∂Ωj

=
1

σ2

N−1∑
n=0

0∑
a=1−NTx

NRx−1∑
b=0

M∑
m1=−M

M∑
m2=−M

[
∂2sm1,m2 [aNRx + b, n]

∂Ωi∂Ωj

· w∗m1,m2
[aNRx + b, n]− ∂sm1,m2 [aNRx + b, n]

∂Ωi

·
∂s∗m1,m2

[aNRx + b, n]

∂Ωj

− ∂sm1,m2 [aNRx + b, n]

∂Ωj

·
∂s∗m1,m2

[aNRx + b, n]

∂Ωi

+ wm1,m2 [aNRx + b, n]

·
∂2s∗m1,m2

[aNRx + b, n]

∂Ωi∂Ωj

]
(A.19)

The Fisher information matrix, I(Ω), is [42]

[I(Ω)]i,j =− E
[
∂2 ln p(x; Ω)

∂Ωi∂Ωj

]
=

1

σ2

N−1∑
n=0

0∑
a=1−NTx

NRx−1∑
b=0

M∑
m1=−M

M∑
m2=−M

[
∂sm1,m2 [aNRx + b, n]

∂Ωi

·
∂s∗m1,m2

[aNRx + b, n]

∂Ωj

+
∂sm1,m2 [aNRx + b, n]

∂Ωj

·
∂s∗m1,m2

[aNRx + b, n]

∂Ωi

]
=

2

σ2

N−1∑
n=0

0∑
a=1−NTx

NRx−1∑
b=0

M∑
m1=−M

M∑
m2=−M

[
∂um1,m2 [aNRx + b, n]

∂Ωi

· ∂um1,m2 [aNRx + b, n]

∂Ωj

+
∂vm1,m2 [aNRx + b, n]

∂Ωi

· ∂vm1,m2 [aNRx + b, n]

∂Ωj

]

(A.20)
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where

um1,m2 [aNRx + b, n] = Re{sm1,m2 [aNRx + b, n]} (A.21)

vm1,m2 [aNRx + b, n] = Im{sm1,m2 [aNRx + b, n]} (A.22)

Assume

hm1,m2 [aNRx + b, n] =Φm1,m2 + 2π

(
µτ (m1,m2) n

fs

+ f0
adTx sin (ψ(m1))

c
+ f0

bdRx sin (θ(m2))

c

) (A.23)

then we have

um1,m2 [aNRx + b, n] = γ cos (hm1,m2 [aNRx + b, n]) (A.24)

vm1,m2 [aNRx + b, n] = γ sin (hm1,m2 [aNRx + b, n]) (A.25)

∂um1,m2 [aNRx + b, n]

∂Ω1

= cos (hm1,m2 [aNRx + b, n]) (A.26)

∂um1,m2 [aNRx + b, n]

∂Ω2

= −γ sin (hm1,m2 [aNRx + b, n]) (A.27)

∂um1,m2 [aNRx + b, n]

∂Ω3

=− 2πγ

(
µ

c

n

fs
(ξ1 + ξ5) +

f0

c
dTxξ2a

+
f0

c
dRxξ6b

)
sin (hm1,m2 [aNRx + b, n])

(A.28)

∂um1,m2 [aNRx + b, n]

∂Ω4

=− 2πγ

(
µ

c

n

fs
(ξ3 + ξ7) +

f0

c
dTxξ4a

+
f0

c
dRxξ8b

)
sin (hm1,m2 [aNRx + b, n])

(A.29)

∂vm1,m2 [aNRx + b, n]

∂Ω1

= sin (hm1,m2 [aNRx + b, n]) (A.30)

∂vm1,m2 [aNRx + b, n]

∂Ω2

= γ cos (hm1,m2 [aNRx + b, n]) (A.31)

∂vm1,m2 [aNRx + b, n]

∂Ω3

=2πγ

(
µ

c

n

fs
(ξ1 + ξ5) +

f0

c
dTxξ2a

+
f0

c
dRxξ6b

)
cos (hm1,m2 [aNRx + b, n])

(A.32)
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∂vm1,m2 [aNRx + b, n]

∂Ω4

=2πγ

(
µ

c

n

fs
(ξ3 + ξ7) +

f0

c
dTxξ4a

+
f0

c
dRxξ8b

)
cos (hm1,m2 [aNRx + b, n])

(A.33)

where
ξ1 =

r −m1ds sin θ

r(m1)
(A.34)

ξ2 =
r(m1) sin θ − (r sin θ −m1ds)ξ1

(r(m1))2
(A.35)

ξ3 = −rm1ds cos θ

r(m1)
(A.36)

ξ4 =
r(m1)r cos θ − (r sin θ −m1ds)ξ3

(r(m1))2
(A.37)

ξ5 =
r −m2ds sin θ

r(m2)
(A.38)

ξ6 =
r(m2) sin θ − (r sin θ −m2ds)ξ5

(r(m2))2
(A.39)

ξ7 = −rm2ds cos θ

r(m2)
(A.40)

ξ8 =
r(m2)r cos θ − (r sin θ −m2ds)ξ7

(r(m2))2
(A.41)

Therefore,

I(Ω) =
2

σ2

N−1∑
n=0

0∑
a=1−NTx

NRx−1∑
b=0

M∑
m1=−M

M∑
m2=−M


i1,1 0 0 0

0 i2,2 i2,3 i2,4

0 i3,2 i3,3 i3,4

0 i4,2 i4,3 i4,4

 (A.42)

where
i1,1 = 1 (A.43)

i2,2 = γ2 (A.44)

i2,3 = i3,2 = 2πγ2

(
µ

c

1

fs
(ξ1 + ξ5)n+

f0

c
dTxξ2a+

f0

c
dRxξ6b

)
(A.45)

i2,4 = i4,2 = 2πγ2

(
µ

c

1

fs
(ξ3 + ξ7)n+

f0

c
dTxξ4a+

f0

c
dRxξ8b

)
(A.46)
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i3,3 =(2πγ)2

{[
µ

c

1

fs
(ξ1 + ξ5)

]2

n2 +

(
f0

c
dTxξ2

)2

a2

+

(
f0

c
dRxξ6

)2

b2 + 2

(
f0

c

)2

dTxdRxξ2ξ6ab

+ 2
µ

c

1

fs

f0

c
(ξ1 + ξ5) (dTxξ2a+ dRxξ6b)n

} (A.47)

i3,4 = i4,3 =(2πγ)2

{(
µ

c

1

fs

)2

(ξ1 + ξ5) (ξ3 + ξ7)n2 +
µ

c

1

fs

f0

c
dTx
[

(ξ1 + ξ5) ξ4

+ (ξ3 + ξ7) ξ2

]
an+

µ

c

1

fs

f0

c
dRx [(ξ1 + ξ5) ξ8 + (ξ3 + ξ7) ξ6] bn

+

(
f0

c

)2 [
d2
Txξ2ξ4a

2 + d2
Rxξ6ξ8b

2 + dTxdRx (ξ2ξ8 + ξ4ξ6) ab
]}

(A.48)

i4,4 =(2πγ)2

{[
µ

c

1

fs
(ξ3 + ξ7)

]2

n2 +

(
f0

c
dTxξ4

)2

a2

+

(
f0

c
dRxξ8

)2

b2 + 2

(
f0

c

)2

dTxdRxξ4ξ8ab

+ 2
µ

c

1

fs

f0

c
(ξ3 + ξ7) (dTxξ4a+ dRxξ8b)n

} (A.49)

Then we can get the CRLB of range and DOA as

σ
(r)
CRLB =

√
[I−1(Ω)]3,3 and σ

(θ)
CRLB =

√
[I−1(Ω)]4,4 (A.50)

where the unit of σ(θ)
CRLB is radian.





B
Chirp Spectrum

For simplicity, assume A0 = 1 and φ0 = 0 in (2.7), then we can write the LFM signal in
time domain as:

sTx(t) = exp

[
j2π

(
f0 −

1

2

B

Ts
t

)
t

]
0 ≤ t < Ts

= exp

[
j

(
ω0t−

1

2

∆Ω

Ts
t2
)] (B.1)

where f0 is initial frequency, B is sweep bandwidth, Ts is sweep duration, 0 ≤ t < Ts,
ω0 = 2πf0 and ∆Ω = 2πB.

The spectrum of this signal can be calculated as

S(ω) =

∫ Ts

0

exp

[
j

(
ω0t−

∆Ω

2Ts
t2
)]

exp (−jωt)dt

=

∫ Ts

0

exp

[
j

(
(ω0 − ω) t− ∆Ω

2Ts
t2
)]
dt

(B.2)
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Completing the square of the above equation, we have

S(ω) =

∫ Ts

0

exp

[
j

(
−∆Ω

2Ts

(
t− (ω0 − ω)Ts

∆Ω

)2

+
(ω0 − ω)2Ts

2 ·∆Ω

)]
dt

= exp

[
j

(
(ω0 − ω)2 Ts

2 ·∆Ω

)]∫ Ts

0

exp

[
−j∆Ω

2Ts

(
t− (ω0 − ω)Ts

∆Ω

)2
]
dt

=

√
2Ts
∆Ω

exp

[
j

(
(ω0 − ω)2 Ts

2 ·∆Ω

)]∫ y1

y0

exp
(
−jy2

)
dy

=

√
2Ts
∆Ω

exp

[
j

(
(ω0 − ω)2 Ts

2 ·∆Ω

)]
·G(ω)

(B.3)

where

y =

√
∆Ω

2Ts

(
t− (ω0 − ω)Ts

∆Ω

)
(B.4)

G(ω) =

∫ y1

y0

exp
(
−jy2

)
dy (B.5)

y0 = −
√

Ts
2 ·∆Ω

(ω0 − ω) (B.6)

y1 =

√
Ts

2 ·∆Ω

(
∆Ω− (ω0 − ω)

)
(B.7)

Applying Euler’s formula to G(ω), then

G(ω) =

∫ y1

y0

cos
(
y2
)
dy − j

∫ y1

y0

sin
(
y2
)
dy

=

∫ y1

y0

cos

[
π

2

(√
2
π
· y
)2
]
dy − j

∫ y1

y0

sin

[
π

2

(√
2
π
· y
)2
]
dy

=

√
π

2

[∫ z1

z0

cos
(π

2
z2
)
dz − j

∫ z1

z0

sin
(π

2
z2
)
dz

] (B.8)

where

z =

√
2

π
· y (B.9)

z0 = − (ω0 − ω)√
π ·∆Ω

Ts

(B.10)

z1 =
∆Ω− (ω0 − ω)√

π ·∆Ω

Ts

(B.11)
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Using the Fresnel integrals C(Z) and S(Z),

C(Z) =

∫ Z

0

cos
(π

2
z2
)
dz (B.12)

S(Z) =

∫ Z

0

sin
(π

2
z2
)
dz (B.13)

the expression of G(ω) can be written as:

G(ω) =

√
π

2
[C(−z0)− jS(−z0) + C(z1)− jS(z1)] (B.14)

Therefore, the expression of chirp spectrum can be written as:

S(ω) =

√
πTs
∆Ω

exp

[
j

(
(ω0 − ω)2 Ts

2 ·∆Ω

)]
· [C(−z0)− jS(−z0) + C(z1)− jS(z1)]

(B.15)





C
Generalized 2D-MUSIC Results of an
Extended Target via EM Simulations

Ground truth of the extended target is shown in Figure 5.11. Actually, the extended
target may have different strong reflection points for different virtual arrays. Therefore,
individual estimation results of all virtual arrays for both multi-static and mono-static
configurations are displayed in this Appendix. Section C.1 and Section C.2 show es-
timation results by using multi-static/mono-static configuration of the radar system,
respectively. For the extended target, 1D-FBSS is employed for both multi-static and
mono-static configurations along fast-time dimension. Moreover, the region inside the
blue box in each plot approximately indicates size of the extended target from top view.
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C.1. Estimation Results of Multi-static Configuration

Figure C.1 and Figure C.2 display the estimation result of the extended target with/without
ground from each virtual array in the multi-static configuration, respectively.
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Figure C.1: Estimation result of an extended target with ground by generalized 2D-MUSIC estimator
of the multi-static configuration, when signals are transmitted from the −1th MIMO, and scattered
signals are received by: (a) the −1th MIMO, (b) the 0th MIMO, (c) the 1th MIMO; when signals are
transmitted from the 0th MIMO, and scattered signals are received by: (d) the −1th MIMO, (e) the
0th MIMO, (f) the 1th MIMO; when signals are transmitted from the 1th MIMO, and scattered signals
are received by: (g) the −1th MIMO, (h) the 0th MIMO, (i) the 1th MIMO.
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Figure C.2: Estimation result of an extended target without ground by generalized 2D-MUSIC estimator
of the multi-static configuration, when signals are transmitted from the −1th MIMO, and scattered
signals are received by: (a) the −1th MIMO, (b) the 0th MIMO, (c) the 1th MIMO; when signals are
transmitted from the 0th MIMO, and scattered signals are received by: (d) the −1th MIMO, (e) the
0th MIMO, (f) the 1th MIMO; when signals are transmitted from the 1th MIMO, and scattered signals
are received by: (g) the −1th MIMO, (h) the 0th MIMO, (i) the 1th MIMO.
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C.2. Estimation Results of Mono-static Configuration

Figure C.3 and Figure C.4 display the estimation result of the extended target with/without
ground from each virtual array in the mono-static configuration, respectively.
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Figure C.3: Estimation result of an extended target with ground by generalized 2D-MUSIC estimator
of the mono-static configuration: (a) the −1th MIMO, (b) the 0th MIMO, (c) the 1th MIMO.
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Figure C.4: Estimation result of an extended target without ground by generalized 2D-MUSIC estimator
of the mono-static configuration: (a) the −1th MIMO, (b) the 0th MIMO, (c) the 1th MIMO.



Bibliography

[1] I. Shapir, I. Bilik, and G. Barkan, “Doppler ambiguity resolving in tdma automo-
tive mimo radar via digital multiple prf,” in 2018 IEEE Radar Conference (Radar-
Conf18), April 2018, pp. 0175–0180.

[2] D. Oh and J. Lee, “Low-complexity range-azimuth fmcw radar sensor using joint
angle and delay estimation without svd and evd,” IEEE Sensors Journal, vol. 15,
no. 9, pp. 4799–4811, Sep. 2015.

[3] U. Chipengo, P. M. Krenz, and S. Carpenter, “From antenna design to high fi-
delity, full physics automotive radar sensor corner case simulation,” Modelling and
Simulation in Engineering, vol. 2018, pp. 1–19, 12 2018.

[4] H. Krim and M. Viberg, “Two decades of array signal processing research: the
parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94,
July 1996.

[5] J. Li and P. Stoica, MIMO Radar Signal Processing, ser. Wiley - IEEE. Wiley,
2008. [Online]. Available: https://books.google.nl/books?id=g6uLLWb-TqYC

[6] A. G. Stove, “Linear fmcw radar techniques,” IEE Proceedings F - Radar and Signal
Processing, vol. 139, no. 5, pp. 343–350, Oct 1992.

[7] S. Xu, J. Wang, and A. Yarovoy, “Super resolution doa for fmcw automotive
radar imaging,” in 2018 IEEE Conference on Antenna Measurements Applications
(CAMA), Sep. 2018, pp. 1–4.

[8] F. Belfiori, W. v. Rossum, and P. Hoogeboom, “Coherent music technique for
range/angle information retrieval: application to a frequency-modulated contin-
uous wave mimo radar,” IET Radar, Sonar Navigation, vol. 8, no. 2, pp. 75–83,
February 2014.

[9] F. Belfiori, W. van Rossum, and P. Hoogeboom, “Application of 2d music algorithm
to range-azimuth fmcw radar data,” in 2012 9th European Radar Conference, Oct
2012, pp. 242–245.

83

https://books.google.nl/books?id=g6uLLWb-TqYC


84 Bibliography

[10] ——, “2d-music technique applied to a coherent fmcw mimo radar,” in IET Inter-
national Conference on Radar Systems (Radar 2012), Oct 2012, pp. 1–6.

[11] R. Schmidt, “Multiple emitter location and signal parameter estimation,” 1979.

[12] S. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing techniques for
coherent signal identification,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 1, pp. 8–15, Jan 1989.

[13] S. Kim, Y. Ju, and J. Lee, “A low-complexity joint toas and aoas parameter estima-
tor using dimension reduction for fmcw radar systems,” Elektronika ir Elektrotech-
nika, vol. 24, 08 2018.

[14] D. G. Oh, Y. H. Ju, and J. H. Lee, “Subspace-based auto-paired range and doa
estimation of dual-channel fmcw radar without joint diagonalisation,” Electronics
Letters, vol. 50, no. 18, pp. 1320–1322, August 2014.

[15] D. Oh, Y. Ju, H. Nam, and J. Lee, “Dual smoothing doa estimation of two-channel
fmcw radar,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52,
no. 2, pp. 904–917, April 2016.

[16] S. Kim, D. Oh, and J. Lee, “Joint dft-esprit estimation for toa and doa in vehicle
fmcw radars,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1710–
1713, 2015.

[17] M. Wax and T. Kailath, “Decentralized processing in sensor arrays,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 33, no. 5, pp. 1123–1129,
October 1985.

[18] D. W. Rieken and D. R. Fuhrmann, “Generalizing music and mvdr for multiple
noncoherent arrays,” IEEE Transactions on Signal Processing, vol. 52, no. 9, pp.
2396–2406, Sep. 2004.

[19] F. Wen, Q. Wan, R. Fan, and H. Wei, “Improved music algorithm for multiple
noncoherent subarrays,” IEEE Signal Processing Letters, vol. 21, no. 5, pp. 527–
530, May 2014.

[20] A. J. Weiss, “Direct position determination of narrowband radio frequency trans-
mitters,” IEEE Signal Processing Letters, vol. 11, no. 5, pp. 513–516, May 2004.

[21] A. Amar and A. J. Weiss, “Direct position determination of multiple radio signals,”
in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing,
vol. 2, May 2004, pp. ii–81.



Bibliography 85

[22] T. Tirer and A. J. Weiss, “High resolution direct position determination of radio
frequency sources,” IEEE Signal Processing Letters, vol. 23, no. 2, pp. 192–196, Feb
2016.

[23] G. Wang, C. Gao, S. G. Razul, and C. M. S. See, “A new direct position determina-
tion algorithm using multiple arrays,” in 2018 IEEE 23rd International Conference
on Digital Signal Processing (DSP), Nov 2018, pp. 1–5.

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, pp. 1–122, 01 2011.

[25] Q. Wang, Z. Zhao, and Z. Chen, “Fast compressive sensing doa estimation via admm
solver,” in 2017 IEEE International Conference on Information and Automation
(ICIA), July 2017, pp. 53–57.

[26] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image recovery
using variable splitting and constrained optimization,” IEEE Transactions on Image
Processing, vol. 19, no. 9, pp. 2345–2356, Sep. 2010.

[27] M. A. T. Figueiredo, J. M. Bioucas-Dias, and M. V. Afonso, “Fast frame-based
image deconvolution using variable splitting and constrained optimization,” in 2009
IEEE/SP 15th Workshop on Statistical Signal Processing, Aug 2009, pp. 109–112.

[28] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented la-
grangian approach to the constrained optimization formulation of imaging inverse
problems,” IEEE Transactions on Image Processing, vol. 20, no. 3, pp. 681–695,
March 2011.

[29] W. Zhi and M. Y. Chia, “Near-field source localization via symmetric subarrays,”
IEEE Signal Processing Letters, vol. 14, no. 6, pp. 409–412, June 2007.

[30] H. He, Y. Wang, and J. Saillard, “Near-field source localization by using focusing
technique,” EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 1,
p. 461517, Nov 2008. [Online]. Available: https://doi.org/10.1155/2008/461517

[31] M. Chen, X. Mao, and L. Xin, “Underdetermined passive localization of emitters
based on multi-dimensional spectrum estimation techniques,” IET Radar, Sonar &
Navigation, vol. 11, 07 2017.

[32] Y. Gürcan and A. Yarovoy, “Super-resolution algorithm for joint range-azimuth-
doppler estimation in automotive radars,” in 2017 European Radar Conference (EU-
RAD), Oct 2017, pp. 73–76.

https://doi.org/10.1155/2008/461517


86 Bibliography

[33] G. O. Manokhin, Z. T. Erdyneev, A. A. Geltser, and E. A. Monastyrev, “Music-
based algorithm for range-azimuth fmcw radar data processing without estimat-
ing number of targets,” in 2015 IEEE 15th Mediterranean Microwave Symposium
(MMS), Nov 2015, pp. 1–4.

[34] X. Zhang, L. Xu, L. Xu, and D. Xu, “Direction of departure (dod) and direction
of arrival (doa) estimation in mimo radar with reduced-dimension music,” IEEE
Communications Letters, vol. 14, no. 12, pp. 1161–1163, December 2010.

[35] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction per-
spective for source localization with sensor arrays,” IEEE Transactions on Signal
Processing, vol. 53, no. 8, pp. 3010–3022, Aug 2005.

[36] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”
SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61, 1998. [Online].
Available: https://doi.org/10.1137/S1064827596304010

[37] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, April 2006.

[38] D. M. Malioutov, M. Cetin, and A. S. Willsky, “Optimal sparse representations in
general overcomplete bases,” in 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 2, May 2004, pp. ii–793.

[39] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcom-
plete representations in the presence of noise,” IEEE Transactions on Information
Theory, vol. 52, no. 1, pp. 6–18, Jan 2006.

[40] H. E. Güven, A. Güngör, and M. Çetin, “An augmented lagrangian method for
complex-valued compressed sar imaging,” IEEE Transactions on Computational
Imaging, vol. 2, no. 3, pp. 235–250, Sep. 2016.

[41] J. Nocedal and S. Wright, Numerical Optimization, ser. Springer Series in
Operations Research and Financial Engineering. Springer New York, 2006.
[Online]. Available: https://books.google.nl/books?id=VbHYoSyelFcC

[42] J. Kim, J. Chun, and S. Song, “Joint Range and Angle Estimation for FMCW
MIMO Radar and Its Application,” arXiv e-prints, Nov. 2018.

[43] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Up-
per Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

https://doi.org/10.1137/S1064827596304010
https://books.google.nl/books?id=VbHYoSyelFcC


Bibliography 87

[44] K. Greenewald and A. O. Hero, “Robust kronecker product pca for spatio-temporal
covariance estimation,” IEEE Transactions on Signal Processing, vol. 63, no. 23,
pp. 6368–6378, Dec 2015.

[45] C. F. Loan, “The ubiquitous kronecker product,” Journal of Computational and
Applied Mathematics, vol. 123, no. 1, pp. 85 – 100, 2000, numerical Analysis
2000. Vol. III: Linear Algebra. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0377042700003939

[46] C. F. Van Loan and N. Pitsianis, Approximation with Kronecker Products.
Dordrecht: Springer Netherlands, 1993, pp. 293–314. [Online]. Available:
https://doi.org/10.1007/978-94-015-8196-7_17

http://www.sciencedirect.com/science/article/pii/S0377042700003939
http://www.sciencedirect.com/science/article/pii/S0377042700003939
https://doi.org/10.1007/978-94-015-8196-7_17

	List of Acronyms and Symbols
	Introduction 
	Motivation and Aims
	Literature Review
	Algorithms for Single Coherent FMCW MIMO 
	Algorithms for Multiple Passive Locally Coherent Arrays 
	Sparsity-based Algorithms 

	Contributions and Novelties
	Outline of the Thesis

	System Model 
	Geometrical Configuration 
	Signal Model 
	Chirp Signal 
	Multi-static Configuration 
	Mono-static Configuration 

	Conclusions 

	Generalized 2D-MUSIC Algorithm 
	Analysis of Multi-static Configuration 
	Analysis of Mono-static Configuration 
	Data Fusion 
	Multi-static Configuration 
	Mono-static Configuration 
	Special Case: joint Multi-static and Mono-static Analysis 

	Simulations 
	Parameters 
	MATLAB Simulations 

	Conclusions 

	An Augmented Lagrangian Method 
	Analysis of Signal Model 
	Extended C-SALSA 
	Simulations 
	Conclusions 

	Performance Analysis 
	Parameters 
	MATLAB Simulations 
	Performance Analysis with CRLB 
	Possible Accuracy Analysis via CRLB 
	Comparing Resolutions of Proposed Algorithms 

	Electromagnetic Simulations 
	Point targets
	Extended target

	Conclusions 

	Conclusions and Future Work 
	Results and Novelties 
	Recommendations for Future Work 

	Appendices
	Cramer-Rao Lower Bound for the Multi-static Configuration of the System 
	Chirp Spectrum 
	Generalized 2D-MUSIC Results of an Extended Target via EM Simulations 
	Estimation Results of Multi-static Configuration 
	Estimation Results of Mono-static Configuration 

	Bibliography

