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Abstract—DRVN is a regression testing tool that aims to
diversify the test scenarios (road maps) to execute for testing
and validating self-driving cars. DRVN harnesses the power
of convolutional neural networks to identify possible failing
roads in a set of generated examples before applying a greedy
algorithm that selects and prioritizes the most diverse roads
during regression testing. Initial testing discovered that DRVN
performed well against random-based test selection.

Index Terms—image recognition, search-based testing, au-
tonomous driving, test case diversity

I. INTRODUCTION

Regression test optimization is an important software testing
activity, particularly in systems where test cases are expen-
sive to execute. This challenge is especially prominent in
self-driving car (SDC) testing, where the cost to create
and run an extensive suite of test cases can increase drastically
over time. Due to the critical environments in which SDCs are
executed, testing will often initially be executed in a simulation
environment before the validation can be performed in a real-
world system. Although simulation environments are cheaper
to run than real-world applications, they are still expensive due
to the graphical overhead and the time it takes to execute.

With this in mind, the SDC Tool competition was created
and run for the first time in 2025 as part of the ICST
conference [3]. This competition combines knowledge from
existing regression test optimization work [1], [2], [5], bring-
ing together teams to design and create tools that help establish
diverse and optimized regression suites. These are suites in
which possible ‘failing’ roads are identified and sorted for
diversity through an algorithmic process rather than running
the entire test suite in simulation. This process helps to reduce
the cost of simulation by only executing the most diverse test
cases that could cause a failure. The competition hopes to
address the above-mentioned issue of test case selection for
SDCs by creating a structured test environment with which
teams can validate their tools. This environment allows teams
to focus solely on their selection methods.

This paper introduces our submission for the competi-
tion, DRVN. DRVN utilizes the power of Convolutional
Neural Networks (CNNs) to identify possible ‘failing’
roads in a test suite before applying a greedy optimization
algorithm [7] that prioritizes the most diverse roads for the
regression. A failing test case is a road map that an SDC fails

to drive correctly on, normally involving the SDC driving out-
of-bounds (too far over the side or middle line of a road).
DRVN is available at https://github.com/checkdgt/

sdc-testing-competition.

II. COMPETITION SETUP

The competition tool uses the gRPC 1 interface to create a
consistent environment where all tools implement/follow the
same interfaces, allowing the competition evaluator to work
smoothly with all submissions.

To begin with, the evaluation tool distributes the test cases
to our tool. Here, each test case contains limited information,
giving just the test case ID and the road points that delimit
the road map (the control point for interpolation). Here, ID is
a unique identifier of the test case, and road points are x and
y coordinates on a 2-dimensional Cartesian plane.

From this information, each tool must then apply its ap-
proach to locate viable test cases, returning them to the
evaluator. The evaluator then validates this selection, using
withheld information on the test case’s success or failure.

III. DRVN
DRVN is our entry to the ICST’2025 SDC Testing compe-

tition. We implemented a novel approach that uses the power
of CNNs to help locate failing roads from images before
executing a greedy algorithm to find diversity in the selected
roads. This hybrid approach removes the need for complex
algorithms and instead utilizes the feature extraction of a CNN
to find patterns on roads where failures occur. The greedy
algorithm is used to locate the most diverse roads in our subset,
as it is an inherently fast algorithm for such scenarios.

Fig. 1: Additional layers for the fine-tuned VGG16 model.

1https://grpc.io/
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Fig. 2: Example of road image used for training VGG16.

A. CNN Training

We utilize a CNN to predict which test cases could fail,
as CNNs are powerful tools for classifying images based on
features learned during training. For this task in particular, we
chose to fine-tune the existing, well-known CNN, VGG16 [9].
VGG16 is classified as a ‘very deep’ convolutional neural
network for large-scale image recognition, performing excep-
tionally well in the ImageNet benchmark challenges 2. During
our initial experimentation, VGG16 proved to be fast and
accurate against larger models such as VGG19 [9] and the
ResNet [6] family of CNNs.

To create our training data, we utilized the SensoDat
dataset, created by Birchler et al., 2024 [4]; SensoDat is a
dataset of more than 30, 000 simulation-based SDC test cases
executed. This data set contains information on road points and
whether a road had caused a failure, allowing us to accurately
label each image as pass or fail for training.

We generate a road map image from each test case (road
points) using the matplotlib 3 library in Python. These
road images were created with a size of 224 × 224 pixels,
which is the input size of the VGG16 model. This worked
well for us, as the original roads were created for a driving
space of 200 × 200 meters. Figure 2 contains an example of
the road plot generated by matplotlib.

To accommodate our task, we unfroze the last four layers
of the VGG16 model, adding extra layers for our specific use
case as seen in Figure 1. By unfreezing the last four layers,
we only affect the higher-level features of the original model,
allowing it to better adapt to our specific feature set (roads).
An augmentation step was also added to the model pipeline.
This allows us to create metamorphic images by flipping and
rotating the input images. Performing this additional step helps
to build further robustness into our model.

The remaining layers help to round out our model. Global
Average Pooling replaces the flattening layer in the orig-
inal model. Next, the dense layers helps the model to capture
new relationships and patterns from our dataset, whilst the
dropout layers help to prevent overfitting during training.

Our final dense layer applies a sigmoid activation to scale
the output to a value between 0 and 1, which serves as our
prediction value during selection.

2https://image-net.org/challenges/LSVRC/index.php
3https://matplotlib.org/

B. Test Case Selection

Initial test case selection is performed by our CNN model
by taking the entire test suite from the evaluator and batch pro-
cessing them for predictions. To make predictions, we follow
the same approach as for our training data in Section III-A,
plotting the road points to create an image of 224×224, before
feeding the image to the model for prediction. During this
prediction stage, we store each test case with a predictive value
> 0.6 in a pool, where a higher prediction should denote a
higher likelihood of the test case to fail.

C. Greedy Selection

With a pool of predicted test case failures, we are then able
to apply our greedy algorithm to find the most diverse cases.

Our greedy algorithm selects a random test case from the
pool of likely-failing test cases as a starting point. Then, it
iterates over the pool of likely-failing tests, calculating the
diversity of each test case against the starting point. We use the
pairwise Euclidean distance [8] between the curvature profiles
of the test case roads, giving us a diversity distance to use as a
fitness value. We chose an arbitrary diversity threshold > 0.9
for diversity selection, where test cases that met this selection
were iteratively added to our final selection of test cases.

The greedy search continues incrementally to add select test
cases to our final selection pool, until we no longer see an
increase of this pool at the end of an iteration. At this point,
the final pool of diverse test cases is returned to the evaluation
tool for final validation.

This initial evaluation revealed that our approach was able
to outperform the supplied random-based baseline, allowing us
to release our tool to the competition for further evaluation.
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