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Abstract

Cryptographic primitives such as Bit Commitment (BC) and Oblivious Transfer (OT) are foundational building
blocks for two-party Secure Function Evaluations. While unconditional security for BC is impossible in the
quantum setting, it can be realised under additional physical assumptions. In particular, the bounded- and
noisy-storagemodels provide a framework where security is guaranteed against adversaries with limited quan-
tum memory. Recent work by Ribeiro and Wehner [1] introduced the first Measurement-Device-Independent
(MDI) protocols for BC and OT in the bounded storage model. For the BC protocols, they consider a variant of
BC that is called Randomised String Commitment (RSC). They give twoMDI-RSC protocols using polarisation-
encoded photon sources: one with perfect single-photon emission and another with multi-photon emissions.
They also give an MDI-OT protocol using sources with perfect single-photon emission. However, the MDI
security for OT using sources with multi-photon emissions remains an open problem.

This thesis investigates the feasibility of MDI-RSC protocols using sources with multi-photon emissions, such
as weak coherent pulses (WCP) and spontaneous parametric down-conversion (SPDC) sources. First, we
correct a practical error in the existing MDI-RSC protocol by bounding the relevant parameters, ensuring
the validity of the original security claims. Second, we analyse the achievable committed string rates while
using WCP and SPDC sources. We further consider heralded SPDC sources, which in principle enable
single-photon emission, and discuss the impact of imperfect local detectors on their performance and the
consequences that has on the protocol implementation.

Finally, motivated by techniques from Twin-Field Quantum Key Distribution (TF-QKD), we give a phase-
encoded MDI-RSC protocol using coherent states and provide a sketch of the security proof in the bounded-
storage model. We also investigate extending the approach to OT. However, this is still a challenge due to
the basis-dependent information leakage inherent in phase-encoded coherent states.
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1
Introduction

1.1. Context
Cryptography provides the foundation for secure communication and computation. We encounter it every day
in secure online transactions, encrypted messaging apps and confidential data exchange. The emergence
of quantum information has both challenged and extended classical cryptographic assumptions. In particular,
Shor’s algorithm illustrates that widely used hardness assumptions, such as factoring and discrete logarithms,
are no longer secure in the presence of quantum computers [2]. This motivates the development of cryp-
tographic protocols that are resistant to these quantum threats. One approach is to leverage the inherent
properties of quantum mechanics to ensure security. This concept forms the basis of the field of quantum
cryptography.

1.1.1. Secure function evaluations
The most well-known protocol of quantum cryptography is Quantum Key Distribution (QKD), which uses the
fundamental principles of quantum mechanics to securely distribute a secret key between two trusted parties.
QKD provides security that is guaranteed by the laws of physics, rather than computational assumptions.
However, QKD is limited in scope. It enables secure key exchange, but it does not realise more general
cryptographic tasks.

Two-party Secure Function Evaluation (SFE) protocols address a different problem. Instead of defending
against an outside eavesdropper, they provide security when the two parties, Alice and Bob, themselves do
not fully trust each other but still wish to jointly perform a cryptographic task. SFE allows the parties to compute
a function of their private inputs while ensuring that no party learns more about the other’s input than what
can be inferred from the output of the function itself, see Figure 1.1. Two foundational examples of two-party
SFE are Bit Commitment and Oblivious Transfer.

Figure 1.1: Schematic of a general two-party Secure Function Evaluation. At the start of the protocol Alice (left) has an input x and Bob
(right) has an input y. At the end, Alice has fA(x, y) and Bob has fB(x, y). Alice does not know more about y than what fA(x, y)

reveals and Bob does not know more about x than what fB(x, y) reveals.

Bit Commitment (BC) is a primitive in which one party, Alice, commits to a chosen bit while keeping it hidden
from the other party, Bob. Later, Alice can “open” the commitment to reveal the bit, see Figure 1.2. The
protocol must ensure both hiding (Bob cannot learn the bit before the opening) and binding (Alice cannot
change the bit after committing).

1



1.1. Context 2

Figure 1.2: Schematic of Bit Commitment. In the Commit phase, Alice (left) commits a certain bit b to the protocol and this outputs a
guarantee that she committed to Bob (right). In the Open phase, Alice gives the prompt to open her bit to Bob and the protocol output b

to Bob.

An important variant of bit commitment that will be relevant later is Randomised String Commitment (RSC). In
this primitive, Alice does not commit to an arbitrary string of her choice, but instead receives a random string
from the protocol and commits to it. The security requirements mirror those of standard BC: the commitment
must be hiding, so that Bob cannot learn anything about the string before the opening, and binding, so that
Alice cannot change the string once she has committed. RSC is often easier to prove than BC, since it removes
power from Alice by not letting her choose what she commits to. This means that the binding requirement
reduces to binding given randomness.

1-out-of-2 Oblivious Transfer (OT) is a primitive where Alice has two messages, and Bob chooses one of them
to receive, see Figure 1.3. The security of the protocol ensures that Bob learns only the message he selected,
and Alice remains oblivious to which choice Bob made.

Figure 1.3: Schematic of 1-out-of-2 Oblivious Transfer. Alice (left) gives two messages s0 and s1 as input. Bob’s (right) input is a
choice c ∈ {0, 1}. The protocol outputs only the message of Bob’s choice only to Bob.

OT and BC are central cryptographic primitives. OT is called universal, as any two-party SFE can be con-
structed fromOT [3]. Furthermore, OT and BC are closely related: OT can be used to build BC, and conversely,
BC can be used to build OT if quantum communication is available. In fact, with quantum communication, OT
and BC are reducible to one another [4].

Nevertheless, neither OT nor BC is possible without restrictions on adversaries. The classical approach
assumes computational hardness, which is vulnerable to quantum attacks such as Shor’s algorithm. Similarly,
unconditional approaches based on quantum mechanics, in analogy to QKD, fail for bit commitment: Mayers
[5] and Lo and Chau [6, 7] prove that unconditionally secure quantum BC is impossible. This motivates
alternative models that impose physical limits on adversaries, such as constraints on their ability to store
quantum information.

1.1.2. Bounded storage model
The bounded-storage model offers a future-proof alternative. This model assumes that the adversary has
access to a quantum memory, but can store only a limited number of qubits. Its key advantage is that security
remains valid even if the adversary later gains improved storage capabilities, since the assumptions need
only hold during the protocol execution. A generalisation, the noisy-storage model, links security to the imper-
fections of the adversary’s memory, such as its classical capacity, entanglement cost, or quantum capacity.
These settings provide everlasting security and do not require honest parties to have quantum memory them-
selves. Protocols developed under these models have established secure OT and BC, demonstrating the
practical relevance of storage-based assumptions. Damgård et al. [8] show that two-party cryptographic prim-
itives such as OT and BC can be securely implemented against adversaries with bounded quantum memory.
Wehner et al. [9] provide practical security guidelines for implementing these protocols in the noisy-storage
model, analysing real-world imperfections and proposing decoy-state modifications with explicit security pa-
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Figure 1.4: Schematic of a Measurement Device Independent setup with Alice on the left, Bob on the right and a central measurement
station.

rameters. König, Wehner, and Wullschleger [10] additionally prove security against general attacks under
realistic noise levels and show that these protocols can be implemented with current quantum key distribution
technology without requiring quantum storage for honest parties. Ng et al. [11] demonstrate the practical feasi-
bility of bit commitment in the noisy-storage model by experimentally implementing the protocol with entangled
photons, providing a full security analysis under realistic errors and finite-size effects.

1.1.3. Measurement device independence
While storage-based models are powerful, they assume that devices behave as intended. In practice, adver-
saries can exploit device imperfections, for example by tampering with measurement devices. To address
this, the device-independent (DI) framework can be used to enable two-party protocols that remain secure
even when the quantum devices (both sources and measurement devices) are compromised [12]. A more
practical relaxation is measurement-device independence (MDI), in which security is maintained even when
measurement devices are untrusted [13]. A schematic of an MDI protocol is given in Figure 1.4. MDI assumes
that Alice and Bob can fully trust and characterise their own devices, but that the central measurement device
is fully controlled by the adversary.

Within MDI, two frameworks are typically considered: one with ideal sources and another with imperfect,
realistic sources. Practical implementations must deal with imperfections such as weak coherent pulses that
exhibit multi-photon emissions, in contrast to ideal single-photon sources. Bridging this gap between theory
and experiment is crucial. This, in combination with the fact that MDI has been extensively studied in QKD
but less so in the context of bit commitment, motivates the study of MDI-RSC under realistic conditions. We
do this based on the work of Ribeiro and Wehner [1], who introduce the first MDI protocols for RSC and
Random 1-out-of-2 OT. They prove the security of these protocols in the bounded quantum storage model
with perfect photon sources and show that with imperfect sources BC remains possible, while secure OT is
significantly harder. This is because the imperfect sources allow unavoidable multi-photon emissions, which
leak information that a dishonest party can exploit. For OT, this means that security is no longer possible in
the class of protocols studied by [1].

1.1.4. Twin-Field QKD
Twin-field quantum key distribution (TF-QKD) is a family of protocols that achieves secure key exchange at
distances far beyond the fundamental rate-distance limit (the repeaterless bound) of traditional QKD schemes
[14]. The central idea is that Alice and Bob each send weak quantum signals to a central measurement
station, where interference between the two ”twin” fields enables the extraction of secret key information
without requiring either party to send strong pulses directly over long distances.

TF-QKD possesses several interesting features. It overcomes the linear secret key rate scaling with channel
transmittance, while at the same time remaining compatible with existing optical fiber infrastructure, and the
protocols are MDI. We discuss TF-QKD here because it relies on a similar paradigm as the quantum SFE
protocols studied in this work: both use a central node to perform interference-based measurements, while
maintaining security even if this node is not trusted. TF-QKD illustrates how carefully designed protocols
can enable strong cryptographic tasks under realistic assumptions, and it motivates our exploration of related
techniques in the context of quantum SFE.
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1.2. Research goals
This thesis focuses on protocols for MDI-RSC by Ribeiro and Wehner [1]. The goals of this work are:

1. To investigate the feasibility and security of MDI-RSC protocols implemented with realistic physical
sources, such as weak coherent pulses (WCP) and spontaneous parametric down-conversion (SPDC)
sources, by analysing the achievable committed string rates for different ranges of physical parameters.

2. To study the effect of heralding the idler photon in SPDC sources on protocol performance.
3. To explore the possibility of designing MDI-RSC protocols motivated from TF-QKD, specifically using

phase-based encoding in weak coherent pulses.

1.3. Thesis outline
In Chapter 2, we present notation, mathematical and quantum preliminaries, and details of the physical
sources, including photon number distributions. Chapter 3 reviews related work and introduces introduces
the two MDI-RSC protocols from [1]. The first contribution of this thesis, described in Section 3.4, corrects
a practical error in the existing protocols by bounding the relevant parameters, thereby maintaining security
claims. In Chapter 4, we analyse the achievable committed string rates for the protocols introduced in Chap-
ter 3, using the source models described in Chapter 2. In Chapter 5, we explore the potential for MDI-RSC
protocols in the framework of TF-QKD. We focus on its characteristic phase-based encoding and propose a
phase-encoded MDI-RSC protocol and give a sketch of its security proof. Our security proof of Alice still needs
some improvement. We also find that the problem of extending this approach to an MDI-OT protocol, that [1]
encountered, still exists for implementation with phase-based encoding. Finally in Chapter 6, we conclude
this work and give recommendations for further research.



2
Background

2.1. Mathematical tools
We start with some general notations and definions. Given ϵ > 0, we denote by log(ϵ) the binary logarithm

log(ϵ) := log2(ϵ) =
ln(ϵ)

ln(2)
. (2.1)

For a given set K, we write k ∈R K if the random variable k is sampled uniformly at random from K, where
a uniform distribution on a finite set K assigns equal probability 1/|K| to each element k ∈ K.

For a positive integer N ≥ 1, we denote [N ] := {1, 2, . . . , N}.

The n× n identity matrix is denoted as 1n.

States and Operators
We denote quantum states with the Greek letters ρ, σ, τ and use the bra-ket notation to denote pure states:
|Ψ〉. The quantum protocols in this work also use classical information, which can be represented within the
quantum formalism.

Definition 2.1.1. A register Y consisting of m ∈ N classical bits is described by a probability distribution
{pY (y), y ∈ {0, 1}m}, where pY (y) is the probability that the register contains the string y. In the bra–ket
notation, the associated density matrix is

ρY =
∑

y∈{0,1}m

pY (y) |y〉 〈y| . (2.2)

Thus, a classical state can be fully specified either by its probability distribution or by its diagonal density matrix
in the computational basis.

Definition 2.1.2. If Y is a classical register as above and Q is a quantum register, we define a classical–
quantum (cq) state on Y Q by

ρY Q =
∑

y∈{0,1}m

pY (y) |y〉〈y| ⊗ ρyQ, (2.3)

where ρyQ is the quantum state of Q conditioned on Y = y. In this way, the register Y behaves classically,
while Q can be in a general quantum state.

A classical register Y of size m is uniformly distributed if pY (y) = 2−m for all y ∈ {0, 1}m. The corresponding
density matrix is the maximally mixed state

τY :=
1

2m

∑
y∈{0,1}m

|y〉〈y|. (2.4)

5



2.1. Mathematical tools 6

An n×n complex valued matrixM is Hermitian ifM =M†, whereM† = (M⊤)∗ is the conjugate transpose of
M . We describe quantummeasurements as Positive Operator ValuedMeasures (POVMs) on a d-dimensional
Hilbert space H = Cd. A POVM is a finite collection of positive semidefinite operators {Mx}x∈X satisfying∑

xMx = 1d, where X is a finite set of indices.

Definition 2.1.3. The trace norm of an operatorM is defined as

‖M‖1 := Tr
√
M†M. (2.5)

Definition 2.1.4. The trace distance between two quantum states ρ, σ is

1

2
‖ρ− σ‖1. (2.6)

We say that ρ and σ are ϵ-close, denoted ρ ≈ϵ σ, if

1

2
‖ρ− σ‖1 ≤ ϵ. (2.7)

Information-theoretic Tools
A family R of functions h : {0, 1}n → {0, 1}ℓ is called 2-universal if, for all x 6= x′,

Pr
h∈RR

[h(x) = h(x′)] ≤ 2−ℓ. (2.8)

Let Ext : {0, 1}n × R → {0, 1}ℓ be a randomness extractor from the 2-universal family of functions, where R
is a family of 2-universal hash functions. It extracts nearly uniform random bits from a source that may be
biased or weakly random, using an auxiliary random seed r ∈R R. The input source needs, however, to have
enough min-entropy.

Definition 2.1.5. The conditional min-entropy of X given a quantum system Q for a cq-state ρXQ is defined
as

Hmin(X|Q)ρ = − log(Pguess(X|Q)), (2.9)

where Pguess is the maximum probability to guess X correctly given all information in Q.

We see from this definition that for a high conditional min-entropy, the system Q gives little information about
X. The smooth conditional min-entropy Hϵ

min(X|Q)ρ is obtained by maximizing Hmin(X|Q) over all states ρ′
that are ϵ-close to ρ. A useful property of the smooth min-entropy is a chain rule.

Lemma 2.1.1 (Chain Rule for min-entropy [10]). For any classical-classical-quantum (ccq)-state ρXYQ,

Hϵ
min(X|Y Q)ρ ≥ Hϵ

min(X|Q)ρ − log |Y|, (2.10)

where |Y| is the size of the support of Y , and

Hϵ
min(X|Y Q)ρ ≥ Hϵ

min(X|Y )ρ − log dim(Q), (2.11)

where dim(Q) is the dimension of Q.

We will use this chain rule and the following lemma when we prove the security for Alice in Section 5.3.

Lemma 2.1.2 (Leftover Hash Lemma with min-entropy (adapted from [15, Corollary 5.6.1] and [10, Theorem
II.3])). Let ρXQ be a cq-state, where X is an n-bit string, and let Ext : {0, 1}n × R → {0, 1}ℓ be an extractor
based on a 2-universal family R, that maps the classical n-bit string X into C. Then,

ρCRQ ≈ϵ′ τ{0,1}ℓ ⊗ ρRQ, (2.12)

where
ϵ′ = 2ϵ+ 2−

1
2 (H

ϵ
min(X

n|Q)−ℓ). (2.13)
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In the MDI-RSC protocols that we present in this work, we use random linear codes to ensure that certain
strings have a minimum Hamming distance. For this, we use the following lemma.

Lemma 2.1.3 (Distance of a randomly generated code [1]). For a randomly generated [n, k, d] binary linear
code C, the minimum distance d satisfies

Pr[d ≤ δn] ≤ 2(k/n−(1−h(δ)))n, 0 ≤ δ ≤ 1, (2.14)

where h(x) := −x log(x)−(1−x) log(1−x) is the binary entropy function, and the probability is taken uniformly
over all codes with fixed k and n.

Statistical Tools
Since the protocols in this work are defined in the finite regime, we need to deal with statistical fluctuations
when we sample from sets with a certain probability pyx. Therefore, we introduce fluctuation parameters ζyx
associated with probabilities pyx. These allow us to bound deviations from expected values with high confidence
using Hoeffding’s inequality.

Lemma 2.1.4 (Hoeffding’s Inequality [16]). Let X1, . . . , Xn be i.i.d. random variables with Xj ∈ {0, 1}, and let

Sn =
∑n

i=1Xi. Then, for ζ =
√

ln(1/ϵ)
2n ,

Pr(Sn ≥ E(Sn) + nζ) ≤ ϵ, (2.15)
Pr(Sn ≤ E(Sn)− nζ) ≤ ϵ, (2.16)

Pr(|Sn − E(Sn)| ≥ nζ) ≤ 2ϵ. (2.17)

As an example, consider bounding the number of single-photon emissions overN rounds, where the emission
probability is p1src. The expected number is p1srcN . With fluctuation parameter ζ1src =

√
ln(1/ϵ)
2N , we obtain

Pr
[
|S − p1srcN | ≥ ζ1srcN

]
≤ 2ϵ, (2.18)

so that, except with probability 2ϵ, the number of emissions lies in

[(p1src − ζ1src)N, (p
1
src + ζ1src)N ]. (2.19)

We will frequently use this argument and denote such intervals by ζyx .

2.2. Quantum physics preliminaries
In this section, we briefly review the basic quantum states and measurements that are relevant to the protocols
discussed in this work. We describe the types of states that Alice and Bob prepare, the measurements
performed at the central station, and the role of the decoy-state technique.

The computational basis of a qubit is given by {|0〉 , |1〉}. Another important basis is the Hadamard (or diagonal)
basis, defined as |±〉 := 1√

2
(|0〉 ± |1〉), so that the basis states are {|+〉 , |−〉}.

The four states |0〉 , |1〉 , |+〉 , |−〉 are known as the BB84 states. They form the signal states of the BB84
quantum key distribution protocol and will also serve as the basic states in the protocols studied here.

Photon states in a single optical mode are described in the Fock basis {|n〉}∞n=0, where |n〉 represents a
number state containing exactly n photons.

Unless otherwise stated, the central measurement node in the measurement-device-independent (MDI) proto-
cols we consider performs a probabilistic Bell state measurement (BSM). A BSM projects two incoming qubits
onto maximally entangled Bell states, XaZb |00⟩+|11⟩√

2
, (a, b) ∈ {0, 1}2, where X and Z denote the Pauli X and

Z operators. Using only linear optics, however, one can reliably distinguish only a subset of these states
[1]. The measurement station has two threshold detectors that click in the presence of a photon. These click
patterns are the outcome of the measurement station. Outcomes that do not correspond with operators that
are projections onto maximally entangled states are failure outcomes. These also include the events where it
could be detected that the photons were lost before reaching the measurement device.
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2.2.1. Multi-photon emissions
In a realistic setup, Alice and Bob do not have access to perfect single-photon sources. Pulses may contain
instead zero, one or multiple photons. These multi-photon emissions endanger the security of the protocol,
as they are vulnerable to attacks like photon number splitting, where a dishonest party could do projective
measurements to determine the basis of the photon emission. A malicious player can then announce all of
the single-photon emissions as lost and only keep the rounds where they have information about the bases.
The decoy state method mitigates this vulnerability by allowing the parties to estimate the behaviour of the
quantum channel (in terms of losses) for pulses of different photon numbers. This technique makes it possible
to estimate an upper bound to the number of rounds that are kept and correspond to multi-photon emissions.
Honest parties can then better control that themost rounds that are kept at the end correspond to single-photon
emissions.

2.2.2. Decoy state technique
With the decoy state technique, Alice and Bob will randomly choose a setting of their photon source according
to some probability distribution. Here we give the decoy state technique as described by Ribeiro and Wehner
[1]. One of the settings is the signal setting, which will post-selectively be used for the protocol (as for Alice and
bs for Bob). The other settings are decoy settings, used to test the honesty of the other party. These are drawn
from the set {ad1, . . . , adq} and {bd1, . . . , bdq}, respectively. We will use pa (pb) to denote the probability that
Alice (Bob) prepares a signal with intensity a ∈ {as, ad1, . . . , adq} (b ∈ {bs, bd1, . . . , bdq}). The probability that
an emitter produces k photons will be written as pk (e.g., for k = 1, we write p1, etc.). Similarly, the probability
that an emitter produces more than k photons will be denoted as p≥k. Furthermore, we will combine these
notations for conditional events. For instance, the probability that Alice emits 1 photon given that she chooses
a signal intensity as will be represented as p1|as

.

LetN be the total number of quantum communication rounds, let nHk be the number of quantum communication
rounds in which party H ’s source (H ∈ {A, B}) has produced k photons, while using their signal setting, and
in which the measurement station announced a successful measurement. Note that Alice and Bob can only
know the quantities nA1 +nA≥2 and nB1 +nB≥2 from the announcements of the measurement station, but cannot
individually distinguish nA1 , nB

1 and nA≥2, n
B
≥2. However, using the decoy states, Alice (Bob) can estimate a

lower bound LA1 (LB1) on nA1 (nB1 ) by estimating the yield of single-photon pulses, denoted as Y1.

For a given intensity setting i, the total detection probability Qi is:

Qi =

∞∑
k=0

pk|iYk, (2.20)

where pk|i is the probability of emitting k-photon pulses, Yk is the yield for k-photon pulses. By comparing
the detection probabilities Qi for the signal state and various decoy states, the Alice (Bob) solves a system of
equations to isolate Y1, the yield for single-photon pulses [9]. Once Y1 is estimated, the lower bound on the
number of single-photon emissions in the rounds using the signal state is given by:

nH1 = p1|iY1(n
H
1 + nH≥2), (2.21)

where nH1 + nH≥2 is the total number of pulses sent by a honest party H using the signal setting.

2.3. Sources
In this section, we introduce two types of realistic quantum sources, which we will use to evaluate theMDI-RSC
protocols in Chapter 4.

Phase-randomised Weak Coherent Pulses
A coherent state is a quantum state of light that most closely resembles classical light, for example, light from
a laser. Coherent states can be written in the Fock basis of number states as follows:

|α〉 = e−
|α|2
2

∞∑
n=0

αn

√
n!

|n〉 , (2.22)

where α is a complex number, |α|2 is the intensity or the mean photon number and the phase arg(α) represents
the phase of the electromagnetic wave. |n〉 is the photon number state. In a weak coherent pulse source the
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intensity is low, meaning that the mean photon number per pulse is also small. This allows for a probabilistic
generation of single photons, that are useful in quantum cryptographic applications. For a weak coherent
pulse source with low intensity, most pulses contain no photons, some are single photon pulses and very few
contain more than one photon.

In the phase randomised version of a weak coherent pulse with α = |α|eiϕ, the phase ϕ is chosen uniformly
at random in [0, 2π). When the phase of the state is not known, this state is equivalent to a mixed state and is
represented as a statistical mixture of Fock (number) states

ρ =

∞∑
n=0

pWCP(n, µ)|n〉〈n|. (2.23)

Here, pWCP(n, µ) is the probability of having n photons per pulse, which follows a Poisson distribution

pWCP(n, µ) =
µne−µ

n!
, (2.24)

where µ = |α|2 is the average photon number (intensity) of the pulse.

Phase randomisation ensures that the state is diagonal in the photon number basis, removing phase coher-
ence between different Fock states. This simplifies the analysis of security by reducing the state to a classical
mixture of Fock states with a known photon number distribution. A dishonest party, in principle, gains no
additional advantage by attempting to exploit coherence between different photon number states because the
phase randomisation destroys such coherence. The best strategy for an adversary is then to perform a quan-
tum non-demolition measurement of the photon number so as to not cause a disturbance. We can assume
that a dishonest party will do this attack without loss of generality. This also simplifies the security analysis,
as we can analyse single-photon emissions separately from multi-photon emissions [9].

Spontaneous Parametric Down Conversion
Spontaneous parametric down-conversion (SPDC) is a non-linear optical process used to generate entangled
photon pairs. It occurs when a high-energy pump photon passes through a non-linear optical medium and
spontaneously splits into two lower-energy photons: the signal and the idler. In the type of SPDC that we
consider in this work, the signal and idler photons have orthogonal polarisations and emerge in an entangled
state. A detailed derivation of the probability of having n photons per pulse for a SPDC source is given in
Appendix A. The final statement is (as in Wehner et al. [9]):

pPDC(n, µ) =
(n+ 1)(µ/2)n

(1 + µ/2)n+2
(2.25)

where µ is the intensity of the pulse, which includes both the signal and idler beam.

2.3.1. Central measurement for an MDI setup
In the phase-encoded MDI setup that is used in Chapter 5, Alice and Bob have identical setups that send
coherent states to a central node, which consists of a 50:50 beamsplitter (BS) with threshold detectors at its two
output modes. In this section we give description of how coherent states move through a 50:50 beamsplitter
and how they are measured in threshold detectors.

An ideal threshold detector clicks if it detects one or more photons, but does not resolve how many photons
there were. The probability of there being no photons in coherent state |β〉 is p(0) = e−|β|2 . Thus the probability
that an ideal threshold detector clicks in the presence of the coherent state is

pclick = 1− p(0) = 1− e−|β|2 (2.26)

Now, we look at how coherent states move through a 50:50 beamsplitter. A detailed description of the beam-
splitter transformations of single photon states and coherent states is given in Appendix B. First note that
coherent states |α〉 are defined as the eigenstates of the annihilation operator,

â |α〉 = α |α〉 . (2.27)
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Wewill analyse what happens when we input two arbitrary coherent states, by using the beamsplitters transfor-
mation on the annihilation operators. With the transformation of the creation operators given in Equation (B.2),
the output annihilation operators are given by

âout =
1√
2
(âin + b̂in), b̂out =

1√
2
(−âin + b̂in). (2.28)

First consider putting two coherent states with the same amplitude and phase

|Ψin〉 = |αeiθ〉a ⊗ |αeiθ〉b . (2.29)

Since coherent states are eigenstates of the annihilation operator, we have

âin |αeiθ〉a = αeiθ |αeiθ〉a , b̂in |αeiθ〉b = αeiθ |αeiθ〉b , (2.30)

To find the eigenvalues of the output modes, we use linearity of the transformation to write

âout |Ψin〉 = 1√
2
(âin + b̂in) |αeiθ〉a ⊗ |αeiθ〉b =

1√
2
(αeiθ + αeiθ) |Ψin〉 =

√
2αeiθ |Ψin〉 . (2.31)

Thus the state in output mode a becomes a coherent state with eigenvalue
√
2αeiθ.

b̂out |Ψin〉 = 1√
2
(−âin + b̂in) |αeiθ〉a ⊗ |αeiθ〉b =

1√
2
(−αeiθ + αeiθ) |Ψin〉 = 0. (2.32)

So mode b ends up in the vacuum state. Since coherent states are uniquely determined by their eigenvalues,
the output state is

|Ψout〉 = |
√
2αeiθ〉a ⊗ |0〉b . (2.33)

Now we consider two different coherent states in the input modes:

|Ψin〉 = |αeiθa〉a ⊗ |βeiθb〉b . (2.34)

We can simply use the same transformations of the annihilation operators given in Equation (2.28) and the
fact that coherent states are eigenstates of the annihilation operators to write

|Ψout〉 = | 1√
2
(αeiθa + βeiθb)〉

a
⊗ | 1√

2
(−αeiθa + βeiθb)〉

b
. (2.35)

Thus we conclude that, when Alice and Bob send coherent states to the central node, this results in a determin-
istic click in output mode a when their states have the same amplitude and phase, and in a deterministic click
in output mode b when their states have the same amplitude and a phase difference of ∆θ = π. For all other
coherent input states, the click pattern of the output detectors is determined by some probability distribution
that depends on the input states.



3
MDI Randomised String Commitment for

multi-photon emissions

In this chapter, we describe the two protocols for MDI-RSC by Ribeiro and Wehner [1, Protocol II.1] and
[1, Protocol II.3], on which this work is based, and their security proofs in Section 3.2 and Section 3.3. In
Section 3.4 we remove a circularity error in some of the parameters of [1, Protocol II.3], which is the first
contribution this work makes.

3.1. Randomised String Commitment
Randomised String Commitment is a generalisation of BC, since Alice does not commit only one bit b, but a
whole string C. However, since the string is randomised, she cannot choose her string. The string will be
produced uniformly at random by the protocol. The protocols for RSC that we show in this work consist of 3
phases: Preparation, Commit and Open.

In the Preparation phase, Alice and Bob do their quantum communication. Afterwards they each hold an
n-bit string: Alice has X, and Bob has X̂, which matches Alice’s string in roughly half of the positions. Bob
knows which positions match, but Alice does not. In the Commit phase, Alice creates a commitment to her
string by applying a randomness extractor, which produces a shorter, nearly uniform random output C. This
commitment hides almost all information about her original string, so that Bob cannot learn anything useful
about it before Alice decides to reveal. To allow later verification, Alice sends Bob a different piece of auxiliary
information derived from her string X. In the Open phase, Alice reveals her original string X. Bob can
check that it matches what Alice committed to, using the auxiliary information she sent him and the positions
he knows from X̂ to confirm that Alice could not have changed her mind about the commitment. When he
accepts he can recompute the commitment C on his own to complete the protocol.

We give an informal definition of RSC below. The formal definition can be found in Appendix C.

Definition 3.1.1 (Randomised String Commitment (informal, from [1, Definition II.1])). A protocol implements
an (ℓ, ϵ)-Randomised String Commitment if it satisfies the following three conditions.

Correctness: If both Alice an Bob are honest, the protocol outputs a classical state ρCCF such that ρCF is
ϵ-close to τC ⊗ |accept〉〈accept|F , where τC := 1

2ℓ
is maximally mixed and C is an ℓ-bit string.

Security for Alice: If Alice is honest, then after the Commit phase and before the Open phase Bob is ”ϵ-
ignorant” about the string C that Alice has received during the Commit phase. This property is called ϵ-hiding.

Security for Bob: If Bob is honest, then there exists a string C after the Commit phase, such that the prob-
ability that Alice opens to another string C ′ 6= C and Bob accepts is smaller than ϵ. This property is called
ϵ-binding.

11
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3.2. MDI-RSC with perfect sources
In this section we present [1, Protocol II.1] that implements MDI-RSC for ideal single photon sources. First
we define the following parameters, according to [17],

ζ :=

√
ln ϵ−1

2n
, (3.1)

ζI :=

√
ln ϵ−1

2( 12 − ζ)n
, (3.2)

λ := f

(
−D
n

)
− 1

n
−

log
(

2
ϵ2

)
n

, (3.3)

δ := 2perr + 4ζI (3.4)

where 0 < ϵ < 1 is a security parameter, n is the length of Alice’s string, perr is the expected bit-flip error
probability on the quantum communication channel. Let Q be Bob’s quantum register, then D is such that
log dim(Q) ≤ D, and f(·) is the following function.

f(x) :=


0 if x < −1

g−1(x) if − 1 ≤ x < 1
2

x if 1
2 ≤ x ≤ 1,

(3.5)

where g(x) := h(x) + x− 1 and h(x) := −x log(x)− (1− x) log(1− x) is the binary entropy for all x ∈ (0, 1). A
plot of the function f is given in Figure 3.1.

Figure 3.1: Plot of function f given in Equation (3.5). The part in between the dotted lines is the part of the function that is relevant for
the input x = −D/n when n ∈ {D, kD}, for k > 0.

We will further use a randomly generated binary [n, k, d]-linear code C ⊆ {0, 1}n with a fixed rate k
n . The use

of this code requires that two strings with the same syndrome have Hamming distance at least d. We denote
the function that outputs the parity-check syndrome of C, by Syn : {0, 1}n 7→ {0, 1}n−k. We further take k to
be the largest integer such that

k

n
≤ 1− h(δ) +

log(ϵ)

n
. (3.6)

We give below the MDI-RSC protocol [1, Protocol II.1]. The security proof for this protocol can be found in [1,
Theorem IV.6].

Protocol 3.2.1 (Randomised String Commitment [1, Protocol II.1]). Alice and Bob agree on the input
parameters ϵ, the length of the committed string ℓ, D and perr. Then they do the following steps.

Preparation phase:



3.2. MDI-RSC with perfect sources 13

1. Alice and Bob agree on a number N of rounds satisfyingp−
√

ln( 1ϵ )

2N

N ≥ n∗, (3.7)

where p is the probability that a round j is not discarded if both parties are honest and n∗ is the
smallest positive integer solution to the inequality

n ≥
ℓ+ 2 log( 1

2ϵ ) + ln( 1ϵ )

λ− h(δ)
, (3.8)

where λ and δ are in Equations (3.3) and (3.4).
2. For each round j ∈ [N ]:

• Alice choosesXj ∈R {0, 1} andΘj ∈R {0, 1}, prepares and sends |Xj〉Θj
to the measurement

station.
• Bob chooses X̂j ∈R {0, 1} and Θ̂j ∈R {0, 1}, prepares and sends |X̂j〉Θ̂j

to the measurement
station.

• The measurement station performs a probabilistic Bell measurement on the two states it re-
ceives and broadcasts if the outcome is of type 0 or 1, or whether the measurement failed. If
the outcome is of type 1, Bob flips his bit.

3. Alice and Bob discard all rounds with failure outcomes. Let n be the number of remaining rounds.
Alice has strings X and Θ ∈ {0, 1}n and Bob has strings X̂ and Θ̂ ∈ {0, 1}n.

4. Both parties wait for a time ∆t.
5. Alice sends Θ to Bob.
6. Bob computes the set of indices I := {j ∈ [n] : Θj = Θ̂j}. He discards all the rounds j 6∈ I. We

call X̂I the string that is formed by the remaining bits X̂j with j ∈ I.

Commit phase:

1. Bob checks if m := |I| ≥ n
2 − nζ. If not, he aborts.

2. Alice chooses a random [n, k, d]-linear code C (for fixed n and k) and computes the syndrome of X
given by w := Syn(X) and sends it to Bob.

3. Alice picks a random 2-universal hash function r from a family of hash functions R and sends it to
Bob.

4. Alice outputs C := Ext(X, r) where Ext(·, ·) is a randomness extractor from the 2-universal family
of functions.

Open phase:

1. Alice sends X to Bob.
2. Bob computes its syndrome and checks if it agrees with w he received from Alice in the Commit

phase. If they disagree Bob aborts.
3. Bob checks that the fraction of rounds j ∈ I where X and X̂I do not agree lies in the interval

(perr−ζI , perr+ζI). If not, Bob aborts the protocol, otherwise he accepts and outputs C = Ext(X, r).

If the protocol aborts, the honest parties proceed as if it did not, but at the end:

• Honest Bob rejects the commitment and outputs a uniformly random value C̃
• Honest Alice outputs a uniformly random value for C
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3.3. MDI-RSC with imperfect sources
In this section, we present the protocol and security proof of a protocol for MDI-RSC with decoy states, given
in [1, Protocol II.3] and corrected by the author and Bramas [17]. Together we also gave some parameters a
different symbol. Table 3.1 gives an overview of the differences between our notation and Ribeiro’s notation.

Ribeiro’s notation eerr α1 α2 α′′
1 α′

1 α3 βA, βB αA
4 , α

B
4

Our notation perr ζ ζI ζΓ̄ ζĪ ζI∩Γ̄ ζA, ζB αA, αB

Table 3.1: Summary of our notations compared to [1].

For this protocol, Alice and Bob use imperfect single photon sources with a quality parameter γ ∈ [0, 12 ), which
is the probability that the sources emit two or more photons, given that at least one was emitted. Alice and
Bob use decoy states to deal with multi-photon states, as described in Section 2.2.1. Let N be total number
of quantum communication rounds of protocol 3.3.1, let nkH be the number of these rounds in which party H ’s
source (H ∈ {Alice, Bob}) has produced k photons and in which the measurement station has clicked, and
let n is the length of Alice’s string that is kept in the preparation of the protocol. Besides Equation (3.1) and
Equation (3.2) we define the following parameters.

ζΓ̄ =

√
ln ϵ−1

2(1− γ − αB)n
, (3.9)

ζĪ = min

[
1
2 ;
ζ + (1− γ − αB)ζΓ̄

γ + αB

]
, (3.10)

ζI∩Γ̄ =

√
ln ϵ−1

2( 12 + ζΓ̄)(1− γ − αB)n
. (3.11)

ζA =

√
ln ϵ−1

2(nA1 + nA≥2)
, assuming ζA ≤ pbs/2, (3.12)

ζB =

√
ln ϵ−1

2(nB1 + nB≥2)
, assuming ζB ≤ pas

/2, (3.13)

αA =

(
2γ

pbs
+

1

fbs

)
ζA, (3.14)

αB =

(
2γ

pas

+
1

fas

)
ζB . (3.15)

Next to these fluctuation parameters we define

δ := 2

[(
1
2 + ζĪ

)
(γ + αB) + ζI∩Γ̄(1− γ − αB) +

(perr + ζI)(
1
2 + ζ)

1
2 + ζΓ̄

]
. (3.16)

λ := f(−D/n)− (γ + αA)− 1/n (3.17)

where f is defined as in Equation (3.5).

Next is stated the MDI-RSC protocol with decoy states from Ribeiro and Wehner [1, Protocol II.3]. An error
in the expression for δ was corrected by Bramas [17]. Note that λ and δ depend on αA, αB , ζA and ζB , which
can be evaluated only after step 2 of the Preparation phase. However, the original protocol uses λ and δ in
step 1 of the Preparation phase. We remove this inconsistency by replacing these parameters with λ̂ and δ̂
(see Section 3.4 for further explanation).

Protocol 3.3.1 (MDI-RSC with decoy states [17, Protocol 8] (adapted from [1, Protocol II.3])). Alice and
Bob agree on the following inputs: security parameters ϵ and ϵ1 (ϵ1 is used to compute the bounds using
the decoy states technique, see Lemma 3.3.1), ℓ the length of the committed string, the source quality
parameter γ ∈ [0, 12 ), the maximum size of D of Bob’s quantum memory, the expected probability of
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bit-flip errors perr, the probability distributions (pas , pad1
, . . . , padq

) and (pbs , pbd1 , . . . , pbdq ) as well as the
intensities { as, ad1

, . . . , adq
} and { bs, bd1

, . . . , bdq
}. Then they do the following steps.

Preparation phase:

1. Alice and Bob agree on a number N of rounds satisfyingp−
√

ln( 1ϵ )

2N

N ≥ n̂∗, (3.18)

where p is the probability that a round j is not discarded if both parties are honest and n̂∗ is the
smallest positive integer solution to the inequality

n ≥
ℓ+ 2 log( 1

2ϵ ) + ln( 1ϵ )

λ̂− h(δ̂)
, (3.19)

where λ̂ and δ̂ are defined as in Equations (3.45) and (3.46).
2. For round j ∈ [N ]:

• Alice chooses Xj ∈R {0, 1} and Θj ∈R {0, 1} uniformly at random, and chooses intensity
a ∈ { as, ad1

, ..., adq
} according to her probability distribution pa. Alice prepares a quantum

signal of intensity a, encoding Xj in the basis Θj , and sends |Xj〉Θj
to the measurement

station (where |0〉0 = |0〉 , |1〉0 = |1〉 , |0〉1 = |+〉 and |1〉1 = |−〉).
• Bob chooses X̂j ∈R {0, 1} and Θ̂j ∈R {0, 1} uniformly at random, and chooses intensity
b ∈ { bs, bd1

, ..., bdq
} according to his probability distribution pb. Bob prepares a quantum signal

of intensity b, encoding X̂j in the basis Θ̂j , and sends |X̂j〉Θ̂j
to the measurement station.

• The measurement station performs a probabilistic Bell measurement on the two states it re-
ceives and broadcasts if the outcome is of type 0 or 1, or whether the measurement failed. If
the outcome is of type 1, Bob flips his bit.

3. Alice and Bob publicly announce the intensities they have used for all the rounds j ∈ [N ]. They
check if the amount of rounds where the other party used the signal setting matches the probability
distribution for this setting, to check if there are f.e. not too much reported measurement failures.

• Alice checks that among the rounds where she has used intensity as and the measurement
succeeded, the fraction fbs of rounds where Bob has used intensity bs is higher than pbs − ζA.
If not, she aborts.

• Bob checks that among the rounds where he has used intensity bs and the measurement
succeeded, the fraction fas

of rounds where Alice has used intensity as is higher than pas
−ζB .

If not, he aborts.

Alice and Bob discard all the rounds where a failure has been announced, and all the rounds where
the intensities used by Alice and Bob are not as and bs. We call the remaining number of rounds n.
Note that n = fbs × (nA1 + nA≥2) = fas

× (nB1 + nB≥2).
4. Alice and Bob check separately that the number of single photon rounds that were not reported as

failure, is sufficiently high.

• Using the decoy state technique, Alice estimates a lower-boundLA1 for nA1 (given in [1, Lemma
IV.15]), the number of rounds where the Bell measurement has not been announced as a
failure and where Alice emitted 1 photon with intensity as. If UA2 := n−LA1 ≥ (γ+αA)n Alice
aborts the protocol.

• Using the decoy state technique, Bob estimates a lower-bound LB1 for nB1 (given in [1, Lemma
IV.15]), the number of rounds where the Bell measurement has not been announced as a
failure and where Bob emitted 1 photon with intensity bs. If UB2 := n− LB1 ≥ (γ + αB)n Bob
aborts the protocol.

5. Alice and Bob check that n ≥ ℓ+2 log(
1
2ϵ )+ln(

1
ϵ )

λ−h(δ) , and otherwise they abort the protocol.
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6. Both parties wait for a time ∆t.
7. Alice sends Θ over to Bob.
8. Bob computes the set of rounds I ⊆ [n] where Θj = Θ̂j . Bob discards all the rounds j 6∈ I. Let’s

then call X̂I the string formed by all the remaining bits X̂j with j ∈ I.

When there is no noise, we have that ∀j ∈ I Xj = X̂j . In practice there is noise and we call perr
the expected error rate between X̂I and X with j ∈ I.

Commit phase:

1. Bob checks whether m := |I| ∈ [n/2− nζ, n/2 + nζ]. If this is not the case, Bob aborts.
2. Alice chooses a random [n, k, d]-linear code C (for fixed n and k) and computes w := Syn(X) and

sends it to Bob.
3. Alice picks a random 2-universal hash function r ∈R R and sends it to Bob.
4. Alice outputs C := Ext(X, r) where Ext(·, ·) is a randomness extractor from the 2-universal family

of functions.

Open phase:

1. Alice sends X to Bob.
2. Bob computes its syndrome and checks if it agrees with w he received from Alice in the Commit

phase. If they disagree Bob aborts.
3. Bob checks that the fraction of rounds j ∈ I where X and X̂I do not agree lies in the interval

(perr−ζI , perr+ζI). If not, Bob aborts the protocol, otherwise he accepts and outputs C := Ext(X, r).

If the protocol aborts, the honest parties proceed as if it did not, but at the end:

• Honest Bob rejects the commitment and outputs a uniformly random value C̃
• Honest Alice outputs a uniformly random value for C

The requirement on N in the inputs is to make sure that there are enough quantum communication rounds
N to securely produce ℓ-bits of final string, by making sure there will be enough successful rounds n. With
these three parameter we can define the committed string rate R := ℓ

n and the effective committed string rate
Reff :=

ℓ
N , which we will evaluate in Chapter 4.

Taking a closer look at p, the probability that a round is not discarded in the honest scenario, this means that
both parties sent a signal state for this round, with probability pas × pbs , and the measurement station did not
report a failure. this happens with probability 1− pfail|asbs . Thus p = pas

× pbs × pfail|asbs [1].

If Alice and Bob are dishonest, the output for Alice is an n-bit stringX ∈ {0, 1}n, the n-bit stringΘ that specifies
the basis she used for qubit encryption and a substring of Bob’s bases Θ̂JA

. The output for Bob is a random
set of indices I = {j | Θj = Θ̂j}, the substring Eperr(XI) of X and his basis-specifying string Θ̂ and some
of Alice’s bases ΘJB

. He then also has a slightly larger set for I supplied with what he could intercept from
Alice’s basis information: Ĩ = I ∪ JB .

Because of the imperfect photon sources, a dishonest Alice and Bob both have more information about the
other, consisting of the basis information of the rounds in JA and JB respectively. When one of the parties
is dishonest, we assume that they also control the measurement station. If a dishonest party controls the
measurement station, they can also decide to announce extra failures when they notice that the other sent
a single state. To prevent this, honest Alice and Bob want to bound from above the fraction of multi-photon
states that they sent, that will be used for the protocol. To estimate this fraction, they use q additional decoy
states in the preparation phase. In [1, Lemma IV.15] the security analysis is done for q = 2.

Lemma 3.3.1 (Decoy states technique (from [1, Lemma IV.15] adapted in [17, Lemma 4.1])). Take ϵ, ϵ1 > 0.
Let H ∈ {A,B } denote one of the two parties, Alice and Bob. Let ε, ε̂ and LH1 be parameters whose values
are as defined in [1, Lemma IV.15]. Then, if nH1 ≥ LH1 in step 4 of Protocol 3.3.1, the proportion of multi-photon
emissions from one of the parties is at most γ + αH , except with probability 16(ϵ+ ε+ ε̂) + 8ϵ1.
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The security of Protocol 3.3.1 is stated and proved in [1, Theorem IV.14]. The correctness proof of [1] contains
some errors, therefore, we rewrite the correctness proof here.

Theorem 3.3.2 (Security of Protocol 3.3.1 [17, Theorem 4.4] (adapted from [1, Theorem IV.14])). With ϵ, ϵ1, ε, ε̂
defined as in Lemma 3.3.1 and if the sources are sufficiently good, i.e.,

p≥2|as

(1−p0|as )
≤ pbsγ,

and
p≥2|bs

(1−p0|bs )
≤ pas

γ.

(3.20)

then Protocol 3.3.1 gives a secure MDI (ℓ, 9ϵ+ 32(ϵ+ ε+ ε̂) + 16ϵ1)-RSC protocol.

Proof. The security for Alice is proved in [1, Theorem IV.17]. In particular, the protocol is (3ϵ + 16(ϵ + ε +
ε̂) + 8ϵ1)-secure for Alice. The security for Bob is given in [17, Lemma 4.2] and proves that the protocol is
(2ϵ+ 16(ϵ+ ε+ ε̂) + 8ϵ1)-secure for Bob.

For the proof of correctness, note that conditioned on not aborting, the protocol is correct. We check for each
part of the protocol with which probability at most an honest party would abort and show that when both parties
are honest, the protocol aborts with probability at most 9ϵ+ 32(ϵ+ ε+ ε̂) + 16ϵ1.

In step 3 of the protocol, the honest parties abort with probability at most 2ϵ, as we can check with Hoeffding’s
inequality (see Lemma 2.1.4). Pr[fbs ≤ pbs − ζA] ≤ ϵ. So Alice aborts with probability at most ϵ. The same
holds for Bob, the total probability of aborting in this step is 2ϵ.

In step 4 of the protocol, note that the expectation of nA≥2 can be written as

E(nA≥2) = p≥2|as,no vacuum(n
A
1 + nA≥2), (3.21)

where p≥2|as,no vacuum is the probability that Alice sends a multi-photon state, given that she used the signal
setting and sent at least one photon. We can write this probability, according to conditional probability rules,

Pr[≥ 2 photons sent | 1 ∪ ≥ 2 photons sent] = Pr[≥ 2 photons sent ∩ (1 ∪ ≥ 2 photons sent]
Pr[1 ∪ ≥ 2 photons sent]

, (3.22)

so we have
p≥2|as,no vacuum =

p≥2|as

(1− p0|as
)

(3.23)

and
E(nA≥2) =

p≥2|as

(1− p0|as
)
(nA1 + nA≥2). (3.24)

Using Hoeffding’s inequality,

Pr

(
nA≥2 ≥

p≥2|as

(1− p0|as
)
(nA1 + nA≥2) + ζA(nA1 + nA≥2)

)
≤ ϵ (3.25)

Pr

(
nA≥2

(nA1 + nA≥2)
≥

p≥2|as

(1− p0|as
)
+ ζA

)
≤ ϵ, (3.26)

where we used the same fluctuation parameter ζA as in step 3, since the probability both intervals relate to
are equivalent. Using equation (3.20) we can now derive that Alice has, except with probability at most ϵ,

nA≥2

nA1 + nA≥2

≤
p≥2|as

(1− p0|as
)
+ ζA ≤ pbsγ + ζA. (3.27)

If we divide this expression by fbs and use that, conditioned on not aborting up to this point, fbs ≥ pbs − ζA

from step 2, we get
nA≥2

fbs(n
A
1 + nA≥2)

≤ pbsγ

pbs − ζA
+
ζA

fbs
. (3.28)
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If we assume that ζA/pbs ≤ 1
2 like in Equation (3.12), we have that 1

1−ζA/pbs
≤ 1 + 2ζA

pbs
. Substituting this into

equation (3.28) and using that n = fbs(n
A
1 + nA≥2) we get

nA≥2

n
≤ γ

(
1 +

2ζA

pbs

)
+
ζA

fbs
= γ +

(
2γ

pbs
+

1

fbs

)
ζA (3.29)

except with probability at most ϵ. Use from [1, Lemma IV.15], that the honest party can always find a lower
boundLH1 on nH1 , except with probability 16(ϵ+ε+ε̂)+8ϵ1. Then, except with that same probability, UA2 ≥ nA

≥2.
With this, we get the desired result and the probability that Alice aborts is at most ϵ + 16(ϵ + ε + ε̂) + 8ϵ1. A
similar proof holds for Bob. The total probability of aborting in step 4 is at most 2ϵ+ 32(ϵ+ ε+ ε̂) + 16ϵ1.

In step 5 of the protocol, Alice and Bob check for the number of remaining rounds n ≥ ℓ+2 log(
1
2ϵ )+ln(

1
ϵ )

λ−h(δ) . Since
p is the probability that any given round j ∈ [N ] is not discarded, we have by Hoeffding’s inequality in Lemma
2.1.4

Pr

n ≤

p−
√

ln( 1ϵ )

2N

N

 ≤ ϵ. (3.30)

So except with probability ϵ we have that n >

(
p−

√
ln(

1
ϵ )

2N

)
N . At the start of the protocol we required thatN

must satisfy

(
p−

√
ln(

1
ϵ )

2N

)
N ≥ n∗ ≥ n̂∗, where n̂∗ is the smallest positive integer solution to the inequality

n ≥
ℓ+ 2 log( 1

2ϵ ) + ln( 1ϵ )

λ̂− h(δ̂)
. (3.31)

So we have that except with probability at most ϵ

n >

p−
√

ln( 1ϵ )

2N

N ≥ n̂∗ ≥
ℓ+ 2 log( 1

2ϵ ) + ln( 1ϵ )

λ̂− h(δ̂)
≥
ℓ+ 2 log( 1

2ϵ ) + ln( 1ϵ )

λ− h(δ)
. (3.32)

Thus while checking if n ≥ ℓ+2 log(
1
2ϵ )+ln(

1
ϵ )

λ−h(δ) Alice and Bob will abort the protocol with probability at most ϵ.

Again using Hoeffding’s inequality we can check that Bob will abort the protocol at step 1 of the Commit phase,
with probability at most 2ϵ, since he checks a double interval. We can similarly check that he aborts at step 3
of the Open phase of the protocol with probability at most 2ϵ. Thus overall, when both parties are honest, the
protocol aborts with probability at most 9ϵ+ 32(ϵ+ ε+ ε̂) + 16ϵ1.

3.4. Bounds on parameter definitions of [1, Protocol II.3]
In this section, we address a mistake in the MDI-RSC protocol with decoy states from Ribeiro and Wehner
[1]. The variables λ and δ rely on experimental values that are not determinable a priori, but are used at the
beginning step of the protocol. This dependence poses a challenge for the security analysis. To overcome
this issue, we introduce a set of upper and lower bounds as replacements for these variables, using terms
that can be determined in advance.

In step 1 of the Preparation phase of the original protocol, Alice and Bob agree on a number N of rounds
satisfying p−

√
ln( 1ϵ )

2N

N ≥ n∗, (3.33)

where p is the probability that a round j is not discarded if both parties are honest and n∗ is the smallest
positive integer solution to the inequality

n ≥
ℓ+ 2 log( 1

2ϵ ) + ln( 1ϵ )

λ− h(δ)
, (3.34)
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where λ and δ are in Equations (3.16) and (3.17). The problem is that λ depends on αA and δ depends on
αB , where

αA =

(
2γ

pbs
+

1

fbs

)
ζA, (3.35)

αB =

(
2γ

pas

+
1

fas

)
ζB , (3.36)

ζA =

√
ln ϵ−1

2(nA1 + nA≥2)
, (3.37)

ζB =

√
ln ϵ−1

2(nB1 + nB≥2)
. (3.38)

The variables ζA, ζB , αA, αB depend on parameters nA1 +nA≥2, n
B
1 +nB≥2, fas

and fbs which are in the protocol
determined after the quantum communication rounds are executed. To still analyse the rate of the secure
committed strings produced by the protocol, we will bound these four parameters so that they no longer
depend on nA1 + nA≥2, n

B
1 + nB≥2, fas

and fbs . With that we can also give a bound on λ and δ. Bounding these
parameters makes sure that all the intermediate steps in the security proof from Ribeiro and Wehner [1] hold.
The committed string rate is slightly reduced. However, in the asymptotic case (N → ∞), the committed string
rate remains the same.

Note that since fas and fbs are fractions and n is defined as n = fbs × (nA1 + nA≥2) = fas × (nB1 + nB≥2),
n ≤ nA1 + nA≥2 and n ≤ nB1 + nB≥2. Thus we can bound ζA ≤ ζ and ζB ≤ ζ. Then in the definitions of αA and
αB , we replace these fractions fas and fbs using that, conditioned on not aborting in step 2 of the protocol
fbs ≥ pbs − ζA and using the assumption ζA/pbs ≤ 1

2 to get ζA/pbs

1−ζA/pbs
≤ 2ζA

pbs
,

αA =

(
2γ

pbs
+

1

fbs

)
ζA ≤

(
2γ

pbs
+

1

pbs − ζA

)
ζA (3.39)

≤
(
2γ

pbs
+

1/pbs
1− 1

2

)
ζA =

(
2γ

pbs
+

2

pbs

)
ζA (3.40)

≤
(
2γ

pbs
+

2

pbs

)
ζ = (γ + 1)

2ζ

pbs
=: α̂A, (3.41)

where we used in the last inequality the bound on ζA. A similar argument holds for αB ≤ α̂B := (γ + 1) 2ζ
pas

.

Define then the statistical fluctuation variables as in Equations (3.9) to (3.11) respectively, but with α̂B instead
of αB :

ζ̂Γ̄ =

√
ln ϵ−1

2(1− γ − α̂B)n
, (3.42)

ζ̂Ī = min

[
1
2 ;
ζ + (1− γ − α̂B)ζ̂Γ̄

γ + α̂B

]
, (3.43)

ζ̂I∩Γ̄ =

√
ln ϵ−1

2( 12 + ζ̂Γ̄)(1− γ − α̂B)n
. (3.44)

Define δ̂ as in Equation (3.16) but with the variables with hats:

δ̂ = 2

[(
1
2 + ζ̂Ī

)
(γ + α̂B) + ζ̂I∩Γ̄(1− γ − α̂B) +

(perr + ζI)(
1
2 + ζ)

1
2 + ζ̂Γ̄(x)

]
, (3.45)

and similarly for λ̂ defined as in Equation (3.17)

λ̂ = f

(
−D
n

)
− (γ + α̂A)− 1

n
. (3.46)



3.4. Bounds on parameter definitions of [1, Protocol II.3] 20

Then define n̂∗ to be the smallest positive integer solution to the inequality

n ≥
ℓ+ 2 log( 12ϵ) + ln(ϵ−1)

λ̂− h(δ̂)
, (3.47)

just as in Equation (3.34). To find if n̂∗ ≥ n∗, we need to check that the denominator of Equation (3.47) is
smaller than the original, λ̂− h(δ̂) ≤ λ− h(δ). Since αA or αB always appears in these expressions as a sum
with γ, and γ does not depend on αA or αB , we define xA = γ + αA and xB = γ + αB . Note that xA, xB < 1.

First, we check the derivative of λ to see if it is increasing or decreasing with xA.

λ(xA) = f

(
−D
n

)
− xA − 1

n
, (3.48)

gives
dλ

dxA
= −1 < 0. (3.49)

For the binary entropy function we know

h′(δ) =
d

dδ
[−δ ln δ − (1− δ) ln(1− δ)] = ln

(
1− δ

δ

)
. (3.50)

For δ in the interval (0, 12 ) one finds h′(δ) > 0. Thus this is increasing. If we can find that δ̂ ≥ δ, we are done.
We have

δ(xB) = 2

[(
1
2 + ζĪ(xB)

)
xB + ζI∩Γ̄(xB)(1− xB) +

(perr + ζI)(
1
2 + ζ)

1
2 + ζΓ̄(xB)

]
. (3.51)

Note that increasing αB in xb while γ remains constant is the same as increasing γ in xb while αB remains
constant, in the expression for δ. Increasing γ implies that there is more information leakage due to multi-
photon states. This implies that we will need a code with a higher distance to detect a dishonest party. Then
by Lemma 2.1.3 δ̂ can only be higher than δ. Thus we conclude λ̂−h(δ̂) ≤ λ−h(δ). This means that n̂∗ ≥ n∗,
and it automatically obeys the bound of Equation (3.34), meaning that we can use the variables with hats in
an analysis while maintaining the integrity and validity of the original security analysis of Ribeiro and Wehner
[1].



4
Implementations of MDI Randomised

String Commitment

In this chapter we will analyse the achievable committed string rates of the MDI-RSC protocols of Chapter 3,
when they would be implemented with realistic sources that emit multi-photon states.

In Section 4.1 we analyse the achievable committed string rate of Protocol 3.2.1 implemented with a heralded
SPDC source, which heralds whenever a single photon was emitted, using perfect, fully trusted local detectors.

In Section 4.2 we analyse the achievable committed string rate of Protocol 3.3.1 with two different source
implementations: WCP sources in Section 4.2.1, and the signal output of an SPDC source in Section 4.2.2.

4.1. Using heralded SPDC sources with ideal local detectors
In this section, we evaluate Protocol 3.2.1, which implements randomised string commitment using perfect
single-photon sources. In this analysis we use heralded single-photon sources based on the SPDC source
described in Section 2.3 with ideal local detectors. We will evaluate the maximum achievable committed string
rate over varying average photon number µ and error rate perr.

When the idler photon of the SPDC source is successfully detected, this ”heralds” the presence of a signal
photon, resulting in a heralded single-photon source. This enables Alice and Bob to verify the existence of
a single photon before transmission, allowing them to discard rounds with vacuum or multi-photon emissions
and eliminating the need for decoy states.

In this protocol, the maximum committed string rate over the accepted rounds is given by

R :=
ℓ

n
= λ− h(δ)−

2 log( 1
2ϵ ) + ln( 1ϵ )

n
, (4.1)

with
λ = f

(
−D
n

)
− 1

n
−

log( 2
ϵ2 )

n
, and δ = 2perr + 4ζI , (4.2)

and n is the number of rounds that are not discarded during the protocol. To account for all rounds that were
sent during the protocol, we define the effective committed string rate as

Reff :=
ℓ

N
=
ℓ

n
· n
N
, (4.3)

where N is the total number of quantum rounds, including discarded ones. The value of N must satisfy the
input condition p−

√
ln( 1ϵ )

2N

N ≥ n∗, (4.4)

21
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with n∗ being the smallest integer satisfying Equation (3.8). For practicality, we use the relaxed criterion(
p−

√
ln(1/ϵ)
2N

)
N ≥ n in this analysis, where p is the probability that a round is not discarded.

To determine the range of average photon numbers per beam µ and error rates perr for which a positive
effective string rate is achievable, we look at the asymptotic limit N → ∞. In this regime, the square root term
in Equation (4.4) vanishes, implying n→ ∞ as well. Then, λ and δ simplify to

λ→ f(0), δ → h(2perr) (4.5)

and the committed string rate becomes

Rn→∞ = f(0)− h(2perr). (4.6)

Note that this does not depend on µ. This dependence comes up when we look at the fraction of rounds that
are not discarded, as discarding happens based on the outcome of the heralding. We have that

n

N

∣∣∣
N→∞

= p (4.7)

and the effective committed string rate for this protocol with heralded SPDC sources and ideal local detectors,
becomes

Reff,N→∞ = (f(0)− h(2perr)) · p. (4.8)

The probability p that a round is not discarded is

p = p1A,sent · p1B,sent · (1− pfail), (4.9)

where p1A,sent(p1B,sent) is the probability that Alice (Bob) successfully prepares and sends a single-photon state,
and pfail is the failure probability of the central Bell-state measurement.

Under ideal conditions, perfect detector efficiency and no dark counts , heralding ensures that only genuine
single-photon emissions are accepted. In this idealised case

p1A,sent = p1B,sent = pPDC(1, µ),

where pPDC(1, µ) is the probability that the SPDC source emits exactly one photon pair at intensity µ [9]. From
Equation (2.25) we find that this is

pPDC(1, µ) =
µ

(1− µ/2)3
. (4.10)

Now, pfail is the failure probability of the BSM given that Alice and Bob sent their single photon. This is equal to
the yield Y11. When we assume that there are no losses on the transmission channels and the measurement
station also has a perfect detector efficiency and no dark counts, this is equal to Y11 = 1

2 , [18]. Thus we find

p(µ) = 1
2

µ2

(1− µ/2)6
(4.11)

For ϵ = 10−6 andD = 1000 qubits, the effective committed string rates that can be achieved in the asymptotic
case with this protocol and source, for different settings of µ and perr are given in Figure 4.1. Indeed, as
expected the region with the best effective committed string rates lies around µ = 1, as for this setting the
component of single photons will be the highest.

4.2. Using imperfect single photon sources
In this section, we evaluate the performance of Protocol 3.3.1 which implements randomised string commit-
ment with decoy states. If we use a non-heralded source, or even a heralded source with non-ideal local
detectors, there will be a possibility that we send multi-photon states. The decoy state technique deals with
this.

In Protocol 3.3.1 the committed string rate over rounds that are not discarded is given by

R :=
ℓ

n
= λ̂− h(δ̂)−

2 log( 1
2ϵ ) + ln( 1ϵ )

n
, (4.12)



4.2. Using imperfect single photon sources 23

Figure 4.1: The effective committed string rate Reff,N→∞ of Protocol 3.2.1 with heralded SPDC sources and ideal local detectors for
different values of µ and perr. The infeasible region, where Reff,N→∞ < 0 is coloured grey. The highest rates are indicated by the

yellow region.

where λ̂ and δ̂ are defined in Section 3.4 and n is the number of rounds that are not discarded during the pro-
tocol. To account for all rounds that were sent during the protocol, we examine again the effective committed
string rate

Reff =
ℓ

N
=
ℓ

n
· n
N
, (4.13)

where N is the total number of quantum rounds, including discarded ones. The value of N must satisfy the
input condition p−

√
ln( 1ϵ )

2N

N ≥ n̂∗, (4.14)

with n̂∗ being the smallest integer satisfying Equation (3.47). For practicality, we use the relaxed criterion(
p−

√
ln( 1

ϵ )

2N

)
N ≥ n in this analysis. Here, p is the probability that a round is not discarded, given by [1]

p = pas
pbs(1− pfail|asbs), (4.15)

where pfail|asbs is the failure probability of the central Bell state measurement conditioned on both parties having
sent signal states.

The values λ̂ and δ̂ both depend on the parameter γ, which captures the proportion of multi-photon events.
This parameter is a function of the source intensity µ and the probabilities pas and pbs that Alice and Bob choose
the signal setting. FollowingWehner et al. [9], we assume a system with two decoy states and uniform random
choice of intensity settings, so pas

= pbs = 1/3. We also assume both parties use the same signal intensity µ,
i.e., as = bs = µ. The parameter gamma is defined in Equation (3.20) and has a value such that

γ ≥ max

{
p≥2|as

pbs(1− p0|as
)
,

p≥2|bs
pas

(1− p0|bs)

}
= 3 ·

p≥2|µ

1− p0|µ
. (4.16)

Here, p≥2|µ and p0|µ come from the photon number distributions of the different sources.

To determine the range of source intensities µ and error rates perr for which a positive effective string rate is
achievable, we look at the asymptotic limit N → ∞. In this regime, the statistical fluctuation term in Equa-
tion (4.14) vanishes, implying n→ ∞ as well. This means that λ̂ and δ̂ simplify to

λ̂→ f(0)− γ(µ), δ̂ → h(γ(µ) + 2perr), (4.17)
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and thus the committed string rate becomes:

Rn→∞ = λ̂− h(δ̂) = f(0)− γ(µ)− h(γ(µ) + 2perr). (4.18)

The fraction of rounds that are not discarded, converges to

n

N

∣∣∣
N→∞

= p. (4.19)

Therefore, the effective committed string rate becomes

Reff,N→∞ = (f(0)− γ(µ)− h(γ(µ) + 2perr)) · p. (4.20)

To estimate the probability p that rounds are kept, we use

pfail|asbs = pfail|µµ = 1−Qµµ, (4.21)

whereQµµ is the gain, the probability that the BSM yields a successful outcome when both Alice and Bob send
signal states of intensity µ. The gain is determined by the probability that both signals contain exactly one
photon (p21|µ) and the yield Y11, which is the success probability of the BSM given two single-photon inputs. It
is given by [13, Equation B9] for WCPs, but it can be generalised to the following definition for photon number
distributions for our sources.

Qµµ = (p1|µ)
2Y11. (4.22)

Using the decoy-state method, the honest parties can estimate Y11. For the probabilistic BSM, that is assumed
for this protocol by Ribeiro and Wehner [1], the maximum probability of success of the BSM is 1

2 [19]. Under
idealised assumptions, this yield is indeed Y11 = 1

2 [18, Equation A9].

In the following sections, we evaluate Reff for two different sources: phase-randomised WCP and SPDC. For
every source we give the definition of the source dependent γ and p, find the regions of the source intensity µ
and error rate perr for which it is possible to get a positive committed string rate in the asymptotic case. Then
we give the committed string rate as a function of the quantum communication rounds N for a few settings, to
compare with which source to get a high rate in the finite regime.

4.2.1. Phase-randomised WCP source
The photon number distribution for a phase-randomised WCP with intensity µ is given by Equation (2.24),
from which we find the specific values

p0|µ = e−µ, (4.23)
p1|µ = µe−µ, (4.24)
p≥2|µ = 1− p0|µ − p1|µ. (4.25)

Using this and Equation (4.16), we find that γ has a value such that

γ(µ) = 3 · 1− e−µ − µe−µ

1− e−µ
. (4.26)

To find the expression for p we calculate
Qµµ = µ2e−2µY11 (4.27)

and find
p(µ) = pas

pbsQµ,µ = 1
3 · 1

3 · 1
2µ

2e−2µ = 1
18µ

2e−2µ. (4.28)

For ϵ = 10−6 andD = 1000 qubits, the effective committed string rates that can be achieved in the asymptotic
case with this protocol and source, for different settings of µ and perr are given in Figure 4.2.
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Figure 4.2: The effective committed string rate Reff,N→∞ of Protocol 3.3.1 with WCP sources for different values of µ and perr. The
infeasible region, where Reff,N→∞ < 0 is coloured grey. The highest rates are indicated by the yellow region.

4.2.2. SPDC source
The photon number distribution for the signal beam of the SPDC is given by Equation (2.25), from which we
find the specific values

p0|µ =
1

(1 + µ/2)2
, (4.29)

p1|µ =
µ

(1 + µ/2)3
, (4.30)

p≥2|µ = 1− p0|µ − p1|µ. (4.31)

Then γ becomes

γ = 3
1− 1

(1−µ/2)2 − µ
(1−µ/2)3

1− 1
(1−µ/2)2

= 3
(1− µ/2)3 − (1− µ/2)− µ

(1− µ/2) ((1− µ/2)2 − 1)
= 3

(1− µ/2)3 − (1− µ/2)− µ

(1− µ/2)3 − (1− µ/2)
. (4.32)

For the gain of the BSM we get

Qµµ = p21|µY1,1 =
µ2

(1 + µ/2)6
· 1
2 . (4.33)

Therefore,

p(µ) = 1
18

µ2

(1 + µ/2)6
(4.34)

For ϵ = 10−6 andD = 1000 qubits, the effective committed string rates that can be achieved in the asymptotic
case with this protocol and source, for different settings of µ and perr are given in Figure 4.3.

4.3. Discussion
In Section 4.2, we evaluated the achievable effective committed string rate of implementations of the MDI-RSC
Protocol 3.3.1 with decoy states. Two different sources were considered: WCP and SPDC. For both sources,
there is a clear region around an optimal intensity setting µ with perr = 0, as shown in Figures 4.2 and 4.3. In
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Figure 4.3: The effective committed string rate Reff,N→∞ of Protocol 3.3.1 with SPDC sources for different values of µ and perr. The
infeasible region, where Reff,N→∞ < 0 is coloured grey. The highest rates are indicated by the yellow region.

this regime, the effective committed string rates achieved by the two implementations are comparable. Both
are of the order of 10−7 secure committed string bits per quantum communication round.

For values of µ and perr that are too high, it is no longer possible to generate a committed string with Protocol
3.3.1. These cases correspond to the grey regions in the plots. Here, the effective committed string rate
becomes negative, meaning that the protocol will abort already during the Preparation phase.

In practice, these results can serve as a guideline for choosing between the two sources. The trade-off
depends on the available intensity settings, since the optimal regions differ slightly for WCP and SPDC.

The true advantage of the SPDC source lies in the fact that it emits two entangled states. These can be used
to build a heralded single-photon source, as we explored in Section 4.1. In that implementation, we assumed
ideal local detectors that perfectly identify single photons. A real implementation, however, is more challenging.
With non-ideal local detectors, multi-photon states may still be sent, even when heralding announces a single
photon. In this case, the MDI-RSC protocol with decoy states must again be applied.

For general local detector settings, with efficiency η ∈ [0, 1] and dark count probability pdark ∈ [0, 1], the
probability of a single photon being emitted conditioned on heralding can be modelled using [9, Eq. C21].
With this model, one could perform an analysis similar to that in Section 4.2, to determine the achievable
committed string rate of a heralded SPDC source with non-ideal detectors. This, however, lies outside the
scope of the present work.

Finally, we note that in this chapter we assumed that the central measurement of the MDI setup succeeded
with maximum probability. This is a best-case scenario. In practice, the performance will also depend on the
quality of the measurement devices. For a realistic evaluation of Protocol 3.3.1, imperfections of the central
measurement station must be taken into account in addition to the bit-flip errors from transmission which we
modelled by perr



5
Phase-encoded MDI Randomised String

Commitment

In the previous chapter we analysed the rates of the MDI-RSC protocols 3.2.1 and 3.3.1 when implemented
with different sources. In this chapter we take a step further and explore an alternative way for Alice and
Bob to exchange quantum states in the Preparation phase of the RSC protocol. For this purpose, we draw
inspiration from ideas developed in different QKD regimes.

Initially, the Twin-Field QKD (TF-QKD) regime appeared promising, since its central goal is to overcome the
distance limitations of conventional QKD, which could in turn improve the performance of an RSC protocol.
However, the intricacies of TF-QKD make it difficult to adapt directly to our setting. Instead, we adopt a
coherent-state, phase-encoded MDI scheme, which shares some features with TF-QKD while remaining more
accessible for protocol design and security analysis.

In what follows, we first review the basic principles of TF-QKD in Section 5.1, before moving on in Section 5.2
to the simplified phase-encoded MDI regime that we will use as the quantum exchange phase of our new
protocol. In Section 5.3 we give a phase-encoded MDI-RSC protocol and give a sketch of a security proof.
Finally in Section 5.4 we discuss the implications and limitations of this new protocol.

5.1. Twin-Field QKD
Twin-Field QKD (TF-QKD) is a scheme in which weak coherent states prepared by two remote parties interfere
at a central, potentially untrusted, measurement station. It was proposed by Lucamarini et al. [14] as a means
to overcome the rate–distance limit of conventional QKD by exploiting single-photon interference. A key insight
is that the secure key rate can scale with the square root of the channel transmittance, rather than linearly,
thereby surpassing the traditional repeaterless bound.

The central advantage of TF-QKD is its reliance on single-photon interference, in contrast to the two-photon
interference underlying MDI-QKD. Interference can occur even when Alice and Bob each send indistinguish-
able weak coherent states that together contain, with some probability, only a single photon. This avoids
the exponential loss associated with direct single-photon transmission. The indistinguishability of the optical
pulses ensures that interference outcomes depend solely on their relative phase.

Security against an adversary controlling the central station is guaranteed because detection events are indis-
tinguishable with respect to which party emitted the optical field. Any attempt at eavesdropping disturbs the
interference pattern, creating errors that Alice and Bob can identify during post-processing.

Conceptually, TF-QKD can be regarded as an ”unfolded” phase-encoded protocol, in which both parties send
optical fields to a central station (see Figure 5.1). The bit and basis choices are encoded in the phase of
coherent states, while single-photon interference at the relay reveals only their relative phase. Next to the
three main features of TF-QKD that

1. it is measurement-device independent,

27
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Figure 5.1: Schematics of phase-based QKD unfolded into TF-QKD from [14]. The shaded regions are inaccessible to an
eavesdropper. a. Standard setup: a light source emits optical pulses with random global phase ρ. At the input of an asymmetric

Mach–Zehnder interferometer, the pulse is split; the longer path acquires a relative phase γa. The two pulses travel through a quantum
channel of length L to Bob, who applies a phase γb in his interferometer and measures the interference with detectors D0 and D1. b.
Unfolded setup: the common path of length L is replaced by two equal-length channels, with the secondary pulses travelling separately

before interfering at Bob’s detectors. c. Twin Field setup: both Alice and Bob act as transmitters, each with a laser and one
interferometer arm. Alice (Bob) prepares a pulse with random phase ρa (ρb) and encoding phase γa (γb). Their pulses are overlapped
at Charlie’s beamsplitter and detected. After Charlie announces the detection result, Alice and Bob reveal the basis choices γa,b and

the phase slices containing ρa,b.

2. it relies on single-photon interference, and
3. it uses phase-encoded coherent quantum states,

two further ingredients are essential. First, information is encoded in the relative phase of the coherent states,
while the global phase is chosen uniformly at random from [0, 2π). Phase randomisation ensures the prepared
signals are effectively mixtures of photon-number states, enabling the decoy-state method. Second, because
measurements depend only on relative phase, Alice and Bob must align their global phases. To increase the
probability of alignment, Lucamarini et al. [14] proposed discretising the phase space intoM slices and post-
selecting rounds where their global phases fall within the same slice. This ensures a maximum misalignment
of 2π/M , at the cost of a trade-off between error rate and data yield.

An alternative approach, suggested by Curty, Azuma, and Lo [20], fixes the global phase in the key-generation
basis while applying randomisation only in the parameter-estimation basis. While suitable for QKD, this strat-
egy does not translate to RSC. In RSC, Alice and Bob must generate correlated strings that agree roughly
half of the time, while the remaining positions stay random and unknown to Bob, and which positions are
correlated remains unknown to Alice. A single deterministic basis cannot achieve this: if Alice and Bob were
to perform parameter estimation in only one basis, Alice would always know which basis Bob used for his
string generation, and therefore she could determine exactly which parts of their strings coincide. For RSC,
it is essential that the committed strings are generated using two complementary bases. This ensures that
Alice can later reveal her basis information to Bob, and as a result, Bob learns about half of the bits in Alice’s
string, while Alice herself remains ignorant of which subset Bob knows.

A similar strategy is adopted by Liu et al. [21], who employ heralded single-photon sources based on SPDC in
the parameter-estimation basis. Since we also analysed heralded SPDC sources in Chapter 4, their approach
initially appeared promising. However, for the purpose of designing an RSC protocol, it was ultimately set aside
for the same reasons discussed above.

Although TF-QKD is conceptually appealing, its technical demands in mainly the last two features make it
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challenging to adapt directly to an MDI-RSC setting. For this reason, we introduce in Section 5.3 a simplified
alternative: a phase-encoded MDI-RSC protocol and give its security proof. This keeps the essential first
three features while omitting the additional complexities of phase randomisation and decoy-state analysis.

5.2. Phase-encoded MDI-RSC
Alice and Bob prepare a signal pulse and a reference pulse. Then a phase modulation is applied to the signal
pulse, randomly chosen from { 0, π/2, π, 3π/2 } where { 0, π } is the X basis and {π/2, 3π/2 } is the Y basis.
The pulses are sent to a central measurement station that aligns their global phase and establishes a quantum
correlation between the signal pulses sent by Alice and Bob, and it is announced whether the measurement
was successful and in that case, if the outcome is of type 0 or 1. The correlation measurement is done by
having Alice and Bob’s signal pulses as input to a 50:50 beamsplitter which is followed by two single-photon
threshold detectors D0 and D1 (see for example the experimental setup of [22], given in Figure 5.2).

Figure 5.2: Schematic of the experimental setup of [22, phase-encoding scheme I]. Alice and Bob each prepare a pair of pulses: signal
(A-S, B-S) and reference (A-R, B-R). The signal pulses are phase-modulated according to their choices. An optical switch (OS)

transmits the reference pulses while reflecting the signal pulses. A phase-locking unit (PL) measures the relative phase between two
polarization modes and applies the corresponding phase shift κ to one of the signal pulses. Finally, the signal pulses interfere at a

50:50 beamsplitter (BS) and are detected by detectors D0 and D1.

When we assume that Alice and Bob use the same amplitudes α for their signal pulses and also that their
global phases are aligned due to the reference pulse, their inputs look like

|eiϕAα〉 , |eiϕBα〉 (5.1)

respectively, where ϕA and ϕB are randomly chosen from the set { 0, π/2, π, 3π/2 }. Using Equations (2.34)
and (2.35) we can find for all possible inputs of Alice and Bob the outputs in D0 and D1.

Whenever Alice and Bob use a different basis, there will be non-vacuum states in both detectors. For example,
for ϕA = 0 and ϕB = π

2 we get the states | 1√
2
(1 + i)α〉

D0

and | 1√
2
(−1 + i)α〉

D1

. Whenever they use the same
basis, one detector has a state that is amplified by

√
2 compared to one of the inputs, and the other has

the vacuum state. For example, for ϕA = 0 and ϕB = π we get the states |0〉D0
and |−

√
2α〉D1

. Using
Equation (2.26), we can find the probabilities that the detectors click for each input state of Alice and Bob.
When they use a different basis

pclick(D0|ϕA = 0, ϕB = π
2 ) = 1− e

−
∣∣∣∣ 1√

2
(1+i)α

∣∣∣∣2
= 1− e−|α|2 (5.2)

pclick(D1|ϕA = 0, ϕB = π
2 ) = 1− e

−
∣∣∣∣ 1√

2
(−1+i)α

∣∣∣∣2
= 1− e−|α|2 (5.3)

and when they use the same basis

pclick(D0|ϕA = 0, ϕB = π) = 1− e−|0|2 = 0 (5.4)
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pclick(D1|ϕA = 0, ϕB = π) = 1− e−|−
√
2α|2 = 1− e−2|α|2 (5.5)

This can be summarised in the probabilities a certain click pattern is observed, given Alice and Bob used the
same bases or not. These probabilities are given in Table 5.1. In this table, we mean by a single click that
only one of the detectors clicked, and by a double click that there has been a click in both detectors D0 and
D1.

no click single click double click
same basis e−2|α|2 1− e−2|α|2 0
different basis e−2|α|2 2e−|α|2(1− e−|α|2) (1− e−|α|2)2

average pfail = e−2|α|2 p1 = 1
2 − 3

2e
−2|α|2 + e−|α|2 p2 = 1

2 (1− e−|α|2)2

Table 5.1: Probabilities for the tree different click patterns in detectors D0 and D1, given Alice and Bob either used the same basis,
different bases, or on average. Note that the probabilities per row sum up to 1.

In the phase-encoded MDI-RSC Protocol 5.3.1, all single- and double-click events are regarded as successful
events. The total probability of a successful event is given by

Pr[succ event] = Pr[single click ∪ double click] = 1− e−2|α|2 (5.6)

From Table 5.1 we see that the probability of a certain click event depends on whether Alice and Bob used the
same basis. When Alice and Bob choose their basis uniformly at random, they will have a probability of p = 1

2
to use the same basis. For Bob to check the size of set I it is useful to know what the probability is that the
two parties used the same basis, given that the central measurement station announced a successful event.
When Alice and Bob are both honest, this is

Pr[same basis|succ event] = Pr[succ event|same basis] · Pr[same basis]
Pr[succ event]

(5.7)

=
(1− e−2|α|2) · 1

2

1− e−2|α|2 =
1

2
(5.8)

This is in the ideal case. In reality Pr[same basis|succ event] also depends on noise and imperfections in the
channels and beamsplitter which might have different effects depending on the intensity of the coherent state.
For simplicity, these imperfections are disregarded.

5.3. Phase-encoded MDI-RSC Protocol
Here, we present a protocol for MDI-RSC with phase-encoded coherent states and give its security proof. For
measuring the incoming coherent states of Alice and Bob, the central measurement station uses a beamsplitter
and two threshold detectors D0 and D1. We define successful events where exactly one detector clicks as
type 0 when only detector D0 clicks, and type 1 when only detector D1 clicks. In the successful event where
both detectors click, the measurement station will announce a successful event of type 0 or type 1 uniformly
at random. The measurement station only reveals if the measurement was a failure (no click) or if it was a
successful event of type 0 or type 1. On a successful event, it does not reveal if it was a single click or a
double click.

Define the following parameters.

ζ :=

√
ln ϵ−1

2n
(5.9)

ζI :=

√
ln ϵ−1

2( 12 − ζ)n
(5.10)

ζfail :=

√
ln(ϵ−1)

2(1− pfail)n
(5.11)
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F :=
1− pfail

(1 + ζfail)2
(5.12)

λ := − 1

F
log(2Ω)− D

n
+ 1 (5.13)

δ := perr + 2ζI + e2(1− perr − 2ζI) (5.14)

e2 :=
p2 + ζ

F
(5.15)

Here 0 < ϵ < 1 is a security parameter, n is the length of the bit string with successful measurement out-
comes, perr ∈ [0, 12 ) is the expected bit-flip error probability on the quantum communication channel, pfail is the
probability that a round j is not announced as successful if both parties are honest, e2 is an upper bound on
the fraction of rounds for which the measurement station observes a double click, p2 is the probability that the
measurement station observes a double click (for ideal conditions, this probability can be found in Table 5.1),
and Ω is an upper bound on Bob’s guessing probability of one of Alice’s bits, defined in Theorem 5.3.5. Take
k to be the largest integer such that

k

n
≤ 1− h(δ) +

log ϵ

n
. (5.16)

Protocol 5.3.1 (Phase-encoded MDI randomised string commitment). After having agreed upon the in-
put parameters, Alice and Bob execute the following steps.

Preparation phase:

1. Alice and Bob agree on a number N of rounds satisfying(1− pfail)−

√
ln( 1ϵ )

2N

N ≥ n∗, (5.17)

where pfail is the probability that a round j is not announced as successful if both parties are honest
and n∗ is the smallest positive integer solution to the inequality

n ≥
ℓ+ 2 log( 1

2ϵ ) + ln( 1ϵ )

λ− h(δ)
, (5.18)

where λ and δ are in Equations (5.13) and (5.14).
2. For round j ∈ [N ]:

• Alice chooses Xj ∈R {0, 1} and Θj ∈R {0, 1} uniformly at random. She prepares a signal and
a reference pulse and applies a phase shift to the signal pulse of ϕj = πXj+

π
2Θj . Here,Xj is

the bit she encodes in the X-basis when Θj = 0 and in the Y -basis when Θj = 1. She sends
the signal pulse and reference pulse to the central measurement station.

• Bob chooses X̂j ∈R {0, 1} and Θ̂j ∈R {0, 1} uniformly at random. He prepares a signal and
a reference pulse and applies a phase shift to the signal pulse of ϕ̂j = πX̂j +

π
2 Θ̂j . He sends

the signal pulse and reference pulse to the central measurement station.
• Themeasurement station performs a beamsplitter basedmeasurement and announceswhether
the outcome is successful or not. If the outcome was successful, they announce whether it
was of type 0 or type 1.

3. Alice and Bob keep their data for the rounds in which the measurement outcomes were successful.
We call this set of indices S ⊆ [N ], |S| = n. Bob flips his bit if the outcome was of type 1. Alice has
strings XS ,ΘS ∈ {0, 1}n and Bob has strings X̂S , Θ̂S ∈ {0, 1}n.

4. Alice and Bob check if the fraction of measurement failures exceeds pfail +
√

ln(ϵ−1)
2N . If so, they

abort.
5. Both parties wait for a time ∆t.
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6. Alice sends ΘS to Bob.
7. Bob computes the set of indices I = { j ∈ [n] : (ΘS)j = (Θ̂S)j }. He discards all the rounds j 6∈ I.

We call X̂I the string formed by the remaining bits X̂j with j ∈ I. Accounting for errors that occur
during transmission, we call perr the expected error rate between Xj and X̂j for j ∈ I, thus perr is
the expected fraction of error between XI and X̂I .

Commit phase:

1. Bob checks if m := |I| ≥ ( 12 − ζ) · n. If not, he aborts.
2. Alice chooses a random [n, k, d]-linear code C (for fixed n and k) and computes w := Syn(X) and

sends it to Bob.
3. Alice picks a random 2-universal hash function r ∈R R and sends it to Bob.
4. Alice outputs C := Ext(XS , r) where Ext(·, ·) is a randomness extractor from the 2-universal family

of functions.

Open phase:

1. Alice sends XS to Bob.
2. Bob computes its syndrome and checks if it agrees with w he received from Alice in the Commit

phase. If they disagree Bob aborts.
3. Bob checks that the fraction of rounds j ∈ I where XS and X̂I do not agree lies in the interval

[perr − ζI , perr + ζI ]. If not, Bob aborts the protocol, otherwise he outputs C := Ext(XS , r).

If the protocol aborts, the honest parties proceed as if it did not, but at the end:

• Honest Bob rejects the commitment and outputs a uniformly random value C̃
• Honest Alice outputs a uniformly random value for C

We now present the security proof of Protocol 5.3.1, in particular we prove Theorem 5.3.1. Note that for the
theorem to hold true, λ has to be positive. In the later half of Section 5.3.2 we derive a lower bound on λ.
However, our lower bound is still negative.

Note that we prove the security for Bob only against a semi-honest Alice, who will only start to try to cheat
from the Open phase. This means that Alice has full control over the central measurement station, but will
act honestly during the Preparation phase and the Commit phase. In the Open phase, she will try to let Bob
accept a different string X ′

S instead of the string XS that she committed to.

Theorem 5.3.1 (Security of Protocol 5.3.1). Let ϵ > 0 and let λ and δ be defined as in Equations (5.13)
and (5.14). If (1− pfail)−

√
ln( 1ϵ )

2N

N ≥ n∗, (5.19)

where n∗ is the smallest positive integer solution to the inequality

n ≥
ℓ+ 2 log( 1

2ϵ ) + ln( 1ϵ )

λ− h(δ)
, (5.20)

and pfail is the probability that a round j ∈ [N ] is not announced as successful if both parties are honest, then
Protocol 5.3.1 implements a (ℓ, 4ϵ)-Randomised String Commitment.

Proof. When Alice and Bob are honest and conditioned on not aborting, the protocol is correct, since X and
r are chosen at random. When the two parties are honest, they can abort the protocol in three places: in the
fourth step of the Preparation phase, in the first step of the Commit phase or in the third step of the Open
phase. Alice and Bob abort the protocol in the preparation phase whe the fraction of measurement failures
exceeds pfail +

√
ln(ϵ−1)

2N . By Hoeffding’s inequality 2.15 this happens with probability at most ϵ. In the Commit
phase, Bob aborts if |I| < ( 12 − ζ)n. By the definition of ζ and Hoeffding’s inequality 2.16, this happens with
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probability at most ϵ. Similarly, in the Open phase, Bob aborts the protocol if he observes an error rate that
does not lie in the interval [perr− ζI , perr+ ζI ]. By the Hoeffding’s inequality 2.17, this happens with probability
at most 2ϵ. Putting the three potential abort events together, the honest parties have a probability at most
4ϵ to abort, which proves correctness of a (ℓ, 4ϵ)-Randomised String Commitment. Lemma 5.3.3 proves that
Protocol 5.3.1 is 4ϵ-binding. Lemma 5.3.4 proves that Protocol 5.3.1 is 3ϵ-hiding.

To derive bounds for the proofs of security for Alice and Bob, we need the following lemma.

Lemma 5.3.2. When honest Alice did not abort the protocol during the Preparation phase, the fraction of
successful rounds is at least F , i.e.

n

N
≥ F , (5.21)

except with probability at most ϵ.

The proof of this lemma can be found in Appendix D.

5.3.1. Security for Bob against a semi-honest Alice
After the Preparation phase, a semi-honest Alice has some information about I. Assume that Alice has full
control of the measurement station, so that she knows which of the successful rounds were double-click
events. Call the set of indices for which rounds there was a double-click event C2. Whenever there is a double
click, Alice knows that she and Bob did not use the same basis. She can flip any bit in this set XC2

without
detection.

Lemma 5.3.3 (Security against semi-honest Alice (based on [17, Lemma 3.8]). Protocol 5.3.1 is 4ϵ-binding,
which means that if semi-honest Alice opens a different string in the Open phase than she committed to, the
probability that Bob accepts a commitment Ĉ 6= C is less than 4ϵ, i.e.,

Pr[Bob accepts and Ĉ 6= C] ≤ 4ϵ. (5.22)

Proof. First, we show that the randomly generated [n, k, d]-code C has a distance d which satisfies d ≥ δn,
where δ is given in Equation (5.14), except with probability at most ϵ, given that k satisfies Equation (5.16).

Using Lemma 2.1.3 with δ = perr + 2ζI + e2(1− perr − 2ζI), we find

Pr[d ≤ (perr + 2ζI + e2(1− perr − 2ζI))n] ≤ 2(
k
n−1+h(δ))n. (5.23)

From Equation (5.16) we have ( kn − 1 + h(δ))n = log ϵ, thus

Pr[d ≤ (perr + 2ζI + e2(1− perr − 2ζI))n] ≤ 2log ϵ = ϵ. (5.24)

There exists a string XS such that w = Syn(XS) and Bob has a set of indices I and the substring X̂I ,
containing errors with probability perr. Let’s call X ′

S the string that Alice sends to Bob during the Open phase.

If Alice sends X ′
S = XS , Bob will accept the protocol and output the commitment Ĉ = C. This is the correct

protocol in the case of an honest Alice.

If Alice wants to cheat, she has to open a string X ′
S 6= XS . In this case, we want to know the probability that

Ĉ 6= C and Bob accepts the protocol. There are two possibilities: Syn(X ′
S) 6= w or Syn(X ′

S) = w. For the
former, the probability is 0, since Bob always rejects if Syn(X ′

S) 6= w. Thus

Pr[Bob accepts and Ĉ 6= C] = Pr[Bob accepts and Ext(X ′
S , r) 6= Ext(XS , r) | Syn(X ′

S) = w] (5.25)
≤ Pr[Bob accepts and X ′

S 6= XS | Syn(X ′
S) = w] (5.26)

Due to the properties of the error-correcting code C, X ′
S 6= XS and Syn(X ′

S) = w means that the distance
between XS and X ′

S is at least d. So Alice has to flip at least d bits in her string XS in such a way that X̂I and
XI differ by at most (perr + ζI)m bits. Alice can flip the bits Xj for j ∈ C2 for free, since she knows that these
are not in XI . Let c2 := |C2|. Among the n − c2 remaining bits, she will flip a number W of bits of XI . If she
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randomly flips d − c2 bits among the n − c2 bits in XS\C2
= XC1 , any bit has a probability of at least d−c2

n−c2
to

have been flipped, and a random number m = |I| of the n− c2 bits will be sampled by Bob.

We can use Hoeffding’s inequality from Equation (2.16). Call Y1, . . . , Ym m random Bernoulli variables that
have value 1 with probability at least d−c2

n−c2
, indicating flipped bits in XI . Then W =

∑m
j=1 Yj and E(W ) ≥

m(d−c2)
n−c2

. As Bob is assumed to be honest, conditioned on not aborting, we have m ≥ ( 12 − ζ)n. This gives

Pr

[
W ≤ m

(
d− c2
n− c2

− ζI

)]
≤ Pr

E

 m∑
j=1

Yj

−
m∑
j=1

Yj ≥ mζI

 (5.27)

≤ Pr

E

 1

( 12 − ζ)n

m∑
j=1

Yj

− 1

( 12 − ζ)n

m∑
j=1

Yj ≥ ζI

 (5.28)

≤ e−2(
1
2−ζ)nζ2

I (5.29)

= exp

[
−2( 12 − ζ)n

(
ln ϵ−1

2
(
1
2 − ζ

)
n

)]
(5.30)

= e− ln(
1
ϵ ) = ϵ. (5.31)

Now, we know that d
n ≥ perr + 2ζI + e2(1− perr − 2ζI) except with probability at most ϵ from Equation (5.24).

By Hoeffding’s inequality 2.15

c2 ≤

(
p2 +

√
ln(ϵ−1)

2N

)
N ≤

(
p2 +

√
ln(ϵ−1)

2n

)
N, (5.32)

except with probability at most ϵ, where we used that N ≥ n in the second inequality. From Lemma 5.3.2, we
know n ≥ FN except with probability at most ϵ.

Thus, except with probability at most 2ϵ,
e2 ≥ c2

n
. (5.33)

Combining this we find that except with probability at most 3ϵ

d

n
≥ perr + 2ζI +

c2
n
(1− perr − 2ζI). (5.34)

With this, we can write that m
(

d−c
n−c − ζI

)
≥ (perr + ζI)m. Thus Pr [W ≤ (perr + ζI)m] ≤ ϵ.

The event that Alice cheats without Bob detecting it, happens either ifW ≤ (perr + ζI)m or if d
n < perr + 2ζI +

c2
n (1−perr−2ζI). The first event occurs with probability at most ϵ and the second event occurs with probability
at most 3ϵ. Thus the protocol is 4ϵ-binding.

5.3.2. Sketch for security for Alice
When Bob is dishonest, we assume that he controls the measurement station and thus that Alice sends her
states directly to him. Following the proof for security for Alice by Ribeiro and Wehner [1], we first try to derive
a bound on Bob’s min-entropy of Alice’s stringXS given the coherent state sent by Alice and the basis choices
she used, which she reveals after step 4 in the Preparation phase of the protocol.

To bound the min-entropy, we will first derive a bound on the probability that Bob can guess Alice’s bit Xj ,
given the coherent state from Alice in round j ∈ [N ] and her basis choice Θj . Alice can send one of the four
different states given in Table 5.2.

A dishonest Bob without any quantum memory has to perform a measurement on the coherent state that
Alice sends before he receives Θj . There are four distinct measurement outcomes Bob can obtain, which
can be used to make a prediction of Xj (denoted as X̂j), after receiving Θj . This measurement can be
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Xj Θj

|α〉 0 0
|−α〉 1 0
|iα〉 0 1
|−iα〉 1 1

Table 5.2: The four different coherent states Alice can send, given her bit Xj and basis Θj .

X̂j Θj = 0 Θj = 1
M0 0 0
M1 1 0
M2 0 1
M3 1 1

Table 5.3: Bob’s guess X̂j of Alice’s bit Xj given his measurement outcome and the corresponding basis that Alice reveals afterwards.

described as M = {M0,M1,M2,M3}, where M0,M1,M2,M3 are positive semidefinite operators, such that
M0 +M1 +M2 +M3 = 14. Bob prediction X̂j for each possible measurement outcome is given in Table 5.3.

Bob’s probability of correctly guessing Alice’s bit Xj (i.e. when X̂j = Xj) is

Pguess(Xj) =
1
4Tr[(M0 +M2)|α〉〈α|+ (M1 +M3)|−α〉〈−α|
+ (M0 +M1)|iα〉〈iα|+ (M2 +M3)|−iα〉〈−iα|] (5.35)

= 1
4Tr[M0(|α〉〈α|+ |iα〉〈iα|) +M1(|−α〉〈−α|+ |iα〉〈iα|)
+M2(|α〉〈α|+ |−iα〉〈−iα|) +M3(|−α〉〈−α|+ |−iα〉〈−iα|)] (5.36)

We define the maximum guessing probability for Xj to be

Ω := max
0≤M0,M1,M2,M3≤1
M0+M1+M2+M3=1

1
4Tr[M0(|α〉〈α|+ |iα〉〈iα|) +M1(|−α〉〈−α|+ |iα〉〈iα|)

+M2(|α〉〈α|+ |−iα〉〈−iα|) +M3(|−α〉〈−α|+ |−iα〉〈−iα|)] (5.37)

Since each round of transmission in the Preparation phase is statistically i.i.d.,

Pguess(X)max =

N∏
i=1

Pguess(Xj)max = ΩN . (5.38)

What Bob is interested to know, however, is the string XS that Alice keeps after the Preparation phase.

Let G be the guessing strategy with which dishonest Bob (with no quantum memory) guesses XS with the
maximum probability. Define Bob’s strategy G′ to guess X as follows. Bob will use strategy G to predict XS ,
and use coin tosses to predict the N − n bits in X[N ]\S . Thus we have that

Pguess(X)G′ ≤ Pguess(X)max = ΩN (5.39)
Pguess(XS)G ( 12 )

N−n ≤ ΩN (5.40)
Pguess(XS)G ≤ ΩN 2N−n. (5.41)

(5.42)

We can now write Bob’s min-entropy per bit on Alice’s string XS .

1

n
Hmin(XS |BΘ) = − 1

n
logPguess(XS)max (5.43)

≥ − 1

n
log[ΩN 2N−n] (5.44)

= − 1

n
log

[
(2Ω)

n
f 2−n

]
(5.45)
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= − 1

n

[
n

f
log(2Ω)− n log 2

]
(5.46)

= − 1

f
log(2Ω) + 1 (5.47)

≥ − 1

F
log(2Ω) + 1 (5.48)

In Equation (5.45) we used the fraction of successful measurements f := n
N to substitute N = n/f and in

Equation (5.48) we used Lemma 5.3.2 to bound f ≥ F .

Up until now, we assumed that Bob has no quantum memory. Let Q be Bob’s quantum memory such that
log dim(Q) ≤ D. Then we can use the min-entropy chain rule to write

1

n
Hmin(XS |QBΘ) =

1

n
Hmin(XS |BΘ)− 1

n
log dim(Q) (5.49)

≥ − 1

F
log(2Ω) + 1− 1

n
log dim(Q) (5.50)

≥ − 1

F
log(2Ω)− D

n
+ 1 = λ (5.51)

Lemma 5.3.4 (Security for Alice against dishonest Bob (based on [1, Lemma IV.8])). Let 0 < ϵ < 1. Let Q be
Bob’s quantum memory such that log dim(Q) ≤ D. Let C be a random [n, k, d]-linear code. If n satisfies

λ− 1 +
k

n
> 0 and n ≥

ℓ+ 2 log( 1
2ϵ )

λ− 1 + k
n

. (5.52)

If Alice is honest, then the protocol is 3ϵ-hiding.

Proof. Using Equation (5.51) and Equation (2.10) we find that after the Commit phase, Bob’s entropy on
Alice’s string XS is

Hmin(XS |QBΘSyn(XS)) ≥ − 1

F
log(2Ω)− D

n
+ 1− n+ k, (5.53)

where the length of the syndrome Syn(XS) is n−k. Combining this with the Leftover Hash Lemma 2.1.2 gives

ρC,QBΘSyn(XS) ≈ϵ′ τC ⊗ ρQBΘSyn(XS), (5.54)

where τC is the maximally mixed state on C, and

ϵ′ = 2ϵ+ 1
22

− 1
2 (Hmin(XS |QBΘSyn(XS))−ℓ). (5.55)

If λ − 1 + k
n > 0, then by choosing n sufficiently large we can have ϵ′ ≤ 3ϵ, meaning that Protocol 5.3.1 is

3ϵ-hiding.

Finding a lower bound on λ
Note that λ is a function of Ω. Hence, we first find an upper bound on Ω (as a function of the intensity |α|2).

Theorem 5.3.5. Assume Alice transmits a coherent state |α〉 , |−α〉 , |iα〉 or |−iα〉 as in step 1 of the Prepara-
tion phase of Protocol 5.3.1 for each round j ∈ [N ]. Then the maximum probability that Bob, with no quantum
memory, predicts Xj (after receiving Θj from Alice) correctly is bounded as

Ω ≤ Ωu := min

[
1,

1

2
+

1√
2
(A0A1 +A1A2 +A0A3 +A2A3)

]
, (5.56)

where A0, A1, A2 and A3 are functions of α given by

A0 = e−
|α|2
2

√
cosh |α|2 + cos |α|2

2
, (5.57)

A1 = e−
|α|2
2

√
sinh |α|2 + sin |α|2

2
, (5.58)
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A2 = e−
|α|2
2

√
cosh |α|2 − cos |α|2

2
, (5.59)

A3 = e−
|α|2
2

√
sinh |α|2 − sin |α|2

2
. (5.60)

The proof of this theorem is given in Appendix D. The plot of Ω as a function of |α|2 is given in Figure 5.3.

Figure 5.3: Plot of the bound Ωu on Bob’s Pguess(Xi) as a function of the amplitude of Alice’s coherent pulses α

We use this bound on Ω to get a bound on λ,

λ = − 1

F
log(2Ω)− D

n
+ 1 (5.61)

≥ − 1

F
log(2Ωu)−

D

n
+ 1 (5.62)

=: λL. (5.63)

We plot λL in the asymptotic case (N → ∞) as a function of |α|2 (with pfail = e−2|α|2 ) in Figure 5.4. Note that
λL is negative for any |α|2. If we can find a better bound on Ω, which leads to a positive lower bound on λ,
this will give us a secure phase-encoded MDI-RSC protocol. However, this is still an open challenge.

5.4. Discussion
In this chapter we presented a phase-encoded MDI-RSC protocol along with a sketch of a security proof.
However, the security for Alice depends upon the parameter Ω. Finding a good upper bound on Ω which
completes the security proof is still an open challenge.

It is also important to note that the security proof for Bob relies on the assumption that Alice is only semi-
honest. Specifically, this means that during the Preparation and Commit phases of the protocol, she will act
like an honest party, and only in the Open phase she will use the extra knowledge she has from controlling
the measurement station, to convince Bob to accept a different string than the one she initially committed to.

If Alice is fully dishonest, however, she can act strategically during the Preparation andCommit phases. Similar
to dishonest Bob in the security proof for Alice, she can perform different measurements to gain knowledge
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Figure 5.4: Plot of λL in the asymptotic case (N → ∞) as a function of |α|2.

about the bases Bob used and his string X̂. Security proofs for Bob in other works [10, 1] use a virtual scenario
where dishonest Alice instead sends half of an EPR pair to Bob and use this to give the security proof. For a
full security proof for Bob for phase-encoded MDI-RSC, this approach can also be explored.

5.4.1. Application to OT
A key challenge in implementing MDI-OT with realistic physical sources comes from the unavoidable multi-
photon states that will occur. As highlighted in [1], protocols that rely on non-ideal single-photon sources are
vulnerable to attack where a dishonest party can extract additional information from the quantum communica-
tion rounds, thereby violating the security guarantees of OT.

Phase-encoded MDI protocols, inspired by TF-QKD, offer several practical advantages that have been dis-
cussed in this chapter. However, phase encoding introduces an inherent basis-dependent flaw [22]. The
value of a phase-encoded state is directly tied to the choice of basis. Physical imperfections in the source,
such as small variations in intensity or phase modulation errors, can also leak partial information about which
basis was used. Unlike polarisation-encoded states, phase-encoded weak coherent pulses naturally encode
some basis information in their physical degrees of freedom. An adversary capable of exploiting this leakage
could probabilistically distinguish rounds that were encoded in different phases and gain partial knowledge
about the transmitted string. These two effects of multi-photon leakage in weak coherent pulses and the
unavoidable basis-dependent information in phase encoding, create the same challenges for implementing
secure OT.



6
Conclusions and recommendations for

future work

This thesis investigated the feasibility and security of Measurement-Device-Independent Randomised String
Commitment (MDI-RSC) protocols under realistic assumptions, motivated by the work of Ribeiro and Wehner
[1]. The three main research goals of this study were:

1. to analyse achievable committed string rates when implementing MDI-RSC with realistic sources such
as weak coherent pulses (WCP) and spontaneous parametric down-conversion (SPDC) sources,

2. to evaluate the impact of heralding in SPDC-based implementations, and
3. to explore the design and security of a phase-encoded MDI-RSC protocol inspired by Twin-Field QKD.

The contributions of this thesis are summarised here and their limitations discussed.

First, we identified and corrected a practical error in the existing MDI-RSC protocols by properly bounding the
relevant variables. This bound ensures that the original security claims remain valid, while removing the error.

Secondly, we quantitatively analysed achievable committed string rates for WCP and SPDC sources using
decoy states. Both sources achieve comparable performance, with effective committed string rates on the
order of 10−7 bits per communication round in optimal regimes. We also explored the potential of heralded
SPDC sources, showing that they could in principle provide advantages, though realistic imperfections in
local detectors must be considered. These imperfections in the local detectors can still cause heralded single
photon sources to emit multi-photon states and require the use of a protocol that deals with this, for example
via the decoy states technique. A realistic implementation of heralded SPDC with non-ideal local detectors
and the use of decoy states was not considered in this thesis.

Furthermore, the assumption of perfect central measurement devices was adopted in this thesis to focus on
source imperfections. In practice, detector efficiency, dark counts, and alignment errors in the measurement
station will also affect protocol performance and must be incorporated into a full implementation analysis.

Finally, we designed and analysed a phase-encoded MDI-RSC protocol using coherent states, motivated by
techniques from Twin-Field QKD. A sketch for security proof for Alice was established in the bounded-storage
model. The full proof of security for Alice is still an open problem. We further discussed why extending
this approach to Oblivious Transfer (OT) remains difficult due to multi-photon leakage and inherent basis
dependence in phase-encoded coherent states. This suggests that the challenges identified in Ribeiro and
Wehner [1] persist in this new setting.

Building on the contributions and limitations identified in this thesis, several directions for future research can
be identified.

• Min-entropy with phase-encoding: A positive lower bound for the min-entropy still needs to be obtained
for a full security proof. We can study the various approaches from [23, 24, 25, 26, 27] to find a bound
which works for our protocol.
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• Incorporating imperfect measurement devices: A full performance and security analysis of MDI-RSC
protocols should include realistic imperfections of the central measurement station, extending beyond
the idealised assumptions made here.

• Heralded SPDC with non-ideal detectors: The analysis of heralded SPDC sources should be extended
to account for detector efficiency and dark counts, building on models such as those of Wehner et al. [9].
This would clarify whether heralding can provide a genuine practical advantage.

• Towards Twin-Field RSC: It will be interesting to investigate whether the full Twin-Field regime can be
adapted to Randomised String Commitment. A key challenge will be to incorporate phase randomisation
without introducing a separation between parameter-estimation and key-generation rounds.

• Extending security proof for Bob: For phase-encodedMDI-RSC, completing the full security proof for Bob
without the semi-honest assumption remains an important problem. Exploring the virtual-entanglement-
based proof techniques that are applied in related works, is recommended as an initial direction.

In conclusion, this thesis demonstrates that Measurement-Device-Independent Randomised String Commit-
ment is feasible under realistic source assumptions and highlights both the promise and the challenges of
adapting Twin-Field-QKD-inspired techniques to two-party cryptography. This work contributes to bridging
the gap between theoretical constructions and realistic implementations, by identifying practical parameter
regimes and proposing a novel phase-encoded MDI-RSC protocol using coherent states.
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A
Spontaneous Parametric Down

Conversion

Spontaneous parametric down-conversion (SPDC) is a non-linear optical process used to generate entangled
photon pairs. It occurs when a high-energy pump photon passes through a non-linear optical medium and
spontaneously splits into two lower-energy photons: the signal and the idler. This process conserves both
energy and momentum, expressed as:

Ep = Es + Ei, (A.1)
p⃗p = p⃗s + p⃗i, (A.2)

where E = ℏω is the photon energy and p⃗ = ℏk⃗ is the photon momentum, with ω the angular frequency and k⃗
the wave vector. The emission angles of the signal and idler photons are determined by the conservation of
momentum.

There are several types of SPDC, distinguished by the polarisation of the output photons. In type-0 SPDC,
the signal, idler and pump photon have the same polarisation. In type-I SPDC, the signal and idler photon
share polarisation that is orthogonal to the pump photon. In type-II SPDC, the signal and idler photons have
orthogonal polarisations and emerge in an entangled state. This the type that we are interested in. The
resulting quantum state is a two-mode squeezed vacuum state, which can be written in the Fock basis as:

|ψ〉 =
√
1− ξ2

∞∑
n=0

ξn |n〉s |n〉i ,

where ξ := tanh r, with r being the squeezing parameter related to the pump amplitude. The Fock states
|n〉s and |n〉i represent n photons in the signal and idler modes, respectively. This expression shows that the
signal and idler modes are perfectly photon-number correlated.

The probability of having n photons per mode is

P (n) = (1− ξ2)ξ2n. (A.3)

Using that |ξ2| < 1 and the sum
∑∞

n=0 nx
n = x

(1−x)2 for |x| < 1, the mean photon number per mode is

n̄ =

∞∑
n=0

nP (n) =
ξ2

1− ξ2
, (A.4)

which can be rewritten to express ξ in terms of n̄, i.e.,

ξ2 =
n̄

1 + n̄
. (A.5)
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Substituting this into the expression for P (n), we find

P (n) =
n̄n

(1 + n̄)n+1
, (A.6)

which corresponds to a Bose-Einstein distribution, common for thermal photon statistics [28].

Now consider the detailed structure of the quantum state produced in type-II SPDC. When post-selecting on
events where exactly n photon pairs are created, the shared signal-idler state can be written in the computa-
tional basis as [29, 9]:

|Φn〉 =
n∑

m=0

(−1)m√
n+ 1

|n−m,m〉s |m,n−m〉i . (A.7)

This state includes all possible symmetric arrangements of the n photons in each of the polarization modes,
and reflects the entangled nature of the type-II PDC process.

Since each n-photon-pair state |Φn〉 has (n + 1) possible mode arrangements, the total probability P (n) of
observing n photons per mode in the output must incorporate this multiplicity. Therefore the probability be-
comes:

P (n) = Nn̄
(n+ 1)n̄n

(1 + n̄)n+1
, (A.8)

whereNn̄ is a normalisation constant to make sure that the probabilities sum to 1. To computeNn̄, we evaluate
the sum:

∞∑
n=0

P (n) =

∞∑
n=0

Nn̄
(n+ 1)n̄n

(n̄+ 1)n+1
=

1

1 + n̄
Nn̄

∞∑
n=0

(n+ 1)

(
n̄

1 + n̄

)n

=
1

1 + n̄
Nn̄

∞∑
n=0

(n+ 1)(ξ2)n.

Since ξ2 < 1, this final sum is a standard power series:
∞∑

n=0

(n+ 1)xn =
1

(1− x)2
, |x| < 1. (A.9)

Setting x = ξ2 = n̄
1+n̄ , we get

∞∑
n=0

P (n) =
Nn̄

1 + n̄

1

(1− ξ2)2
. (A.10)

Since 1− ξ2 = 1
1+n̄ , this simplifies to

∞∑
n=0

P (n) = Nn̄(1 + n̄) (A.11)

Thus, the normalisation constant must beNn̄ = 1
1+n̄ and the final expression for the photon number distribution

per modes becomes:

pPDC(n, n̄) =
(n+ 1)n̄n

(1 + n̄)n+2
, (A.12)

or expressed in the intensity of the pulse µ, we define µ = 2n̄ to write (as in Wehner et al. [9]):

pPDC(n, µ) =
(n+ 1)(µ/2)n

(1 + µ/2)n+2
. (A.13)



B
Beamsplitter transformations

In TF-QKD and in the phase-encoded MDI-RSC discussed in this work, Alice and Bob have identical setups
that send photon states to a central node, which consists of a beamsplitter (BS) with threshold detectors at its
two output modes. A lossless BS is represented by a unitary operator B̂ characterised by its angle θ, which
relates to the orientation of the half-silvered mirror in the physical BS. The BS acts on the two input modes
and, in the Heisenberg picture, the annihilation operators transform as (e.g. [30]):

B̂aB̂† = a cos θ + b sin θ, B̂bB̂† = −a sin θ + b cos θ. (B.1)

The unitary transformation of the BS on the two input and two output modes is given [31]:(
âout
b̂out

)
= B̂

(
âin
b̂in

)
.

Conservation of photon number (and thus the bosonic commutation relations) requires that the transformation
matrix B̂ be unitary. A general form for the beamsplitter matrix is given by

B̂ =

( √
T eiϕ

√
R

−e−iϕ
√
R

√
T

)
,

where T = cos2 θ and R = sin2 θ are the transmission and reflection coefficients satisfying T + R = 1, and ϕ
is a phase shift.

For a 50:50 beamsplitter we have θ = π/4, so that T = R = 1
2 . If we choose the phase ϕ = 0 (a common

convention [31]), the matrix simplifies to

B̂ =
1√
2

(
1 1
−1 1

)
.

This matrix explicitly shows that the two input modes are mixed equally. The minus sign in the lower left
element ensures the unitarity of B̂ and reflects the phase difference between the two outputs. One output
port corresponds to constructive interference, while the other corresponds to destructive interference. The
transformation of the creation operators through a 50:50 BS are given as

B̂ â†B̂† = 1√
2
(â† + b̂†), B̂ b̂†B̂† = 1√

2
(−â† + b̂†). (B.2)

Alternate representations are possible (e.g., setting ϕ = π/2 may lead to factors of i in the matrix elements),
but the physical content remains the same as long as unitarity and the relation T +R = 1 are maintained [31].

We will analyse the action of a 50:50 beamsplitter on different input quantum states. First, we look at single-
photon and two-photon interference in the BS. Then we consider the case of a Fock state with n photons in
one mode and vacuum in the other. Then, we present a theorem with proof showing that a coherent state
input results in coherent state outputs with appropriately scaled amplitudes.
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Single-photon interference Suppose we have a single photon in input mode a and vacuum states in all other
modes. We analyse the single photon interference of this photon in the 50:50 BS. The state is |ψ〉in = â† |00〉
and becomes

|ψ〉out =
1√
2
(â† + b̂†) |00〉 .

The single photon is after the 50:50 BS in equal superposition of being at the a or b mode.

Two-photon interference Suppose we have a single photon in input mode a and in input mode b. We analyse
the two-photon interference of these photons in the 50:50 BS. The state is |ψ〉in = â†b̂† |00〉 and becomes

|ψ〉out =
1√
2
(â† + b̂†)

1√
2
(−â† + b̂†) |00〉

=
1

2
(−â†â† − b̂†â† + â†b̂† + b̂†b̂†) |00〉

=
1

2
(−â†â† + b̂†b̂†) |00〉 ,

a superposition of both photons emerging together at the a or b mode. Here we used that creation operators
of different modes commute.

Fock state transformation Let B̂ be the unitary beamsplitter operator (with inverse B̂†) and consider the input
state where mode a contains a Fock state |n〉 and mode b is in the vacuum state:

|Ψin〉 = |n, 0〉 = (â†)n√
n!

|0, 0〉 .

The output state is given by
|Ψout〉 = B̂ |n, 0〉 .

Under the beamsplitter transformation the creation operator in mode a transforms as

B̂â†B̂† =
1√
2

(
â† + b̂†

)
.

Thus, one may write

B̂(â†)n |0, 0〉 =
[

1√
2

(
â† + b̂†

)]n
|0, 0〉 .

Expanding via the binomial theorem, we have

B̂(â†)n |0, 0〉 = 1

2n/2

n∑
k=0

(
n

k

)
(â†)k(b̂†)n−k |0, 0〉

=
1

2n/2

n∑
k=0

(
n

k

)
|k, n− k〉 .

The output state becomes then, with normalisation factor N =
√

n!2n

(2nn )
,

|Ψout〉 = N
1√
n!

1

2n/2

n∑
k=0

(
n

k

)
|k, n− k〉

=

√
1(
2n
n

) n∑
k=0

(
n

k

)
|k, n− k〉

Thus, Fock states are divided over the two outputs, by the 50:50 BS.

Transformation of coherent states Coherent states |α〉 are defined as the eigenstates of the annihilation oper-
ator,

â |α〉 = α |α〉 ,
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and can be expanded in the Fock basis as

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 .

We now assume that the coherent state is input in mode a while mode b is in the vacuum:

|Ψin〉 = |α, 0〉 .

LemmaB.0.1. A coherent state input |α, 0〉 to a 50:50 beamsplitter yields coherent state outputs in both output
modes with amplitudes scaled by a factor of 1/

√
2.

Proof. Starting with the coherent state in mode a,

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 = e−|α|2/2
∞∑

n=0

αn(â†)n

n!
|0〉 ,

the beamsplitter transformation gives

|Ψout〉 = B̂ |α, 0〉 = e−|α|2/2
∞∑

n=0

αn

n!

[
1√
2
(â† + b̂†)

]n
|0, 0〉 .

Expanding the nth power by the binomial theorem,

|Ψout〉 = e−|α|2/2
∞∑

n=0

1

n!

(
α√
2

)n n∑
k=0

(
n

k

)
(â†)k(b̂†)n−k |0, 0〉 .

Changing the summation index by letting m = n− k, the double sum can be rearranged as

|Ψout〉 =

[
e−|α|2/2

∞∑
k=0

1

k!

(
α√
2
â†
)k
][

e−|α|2/2
∞∑

m=0

1

m!

(
α√
2
b̂†
)m
]
|0, 0〉 .

Recognizing each bracket as the expansion of a coherent state, we obtain

|Ψout〉 = |α/
√
2〉a ⊗ |α/

√
2〉b ,

which shows that the output modes are in coherent states with amplitudes α/
√
2.

Thus a coherent state at one input is divided equally by the 50:50 BS, like classical light. We will now analyse
what happens when we input two arbitrary coherent states, by using the beamsplitters transformation on the
annihilation operators. With the transformation of the creation operators given in Equation (B.2), the output
annihilation operators are given by

âout =
1√
2
(âin + b̂in), b̂out =

1√
2
(−âin + b̂in). (B.3)

First consider putting two coherent states with the same amplitude and phase

|Ψin〉 = |αeiθ〉a ⊗ |αeiθ〉b .

Since coherent states are eigenstates of the annihilation operator, we have

âin |αeiθ〉a = αeiθ |αeiθ〉a , b̂in |αeiθ〉b = αeiθ |αeiθ〉b ,

To find the eigenvalues of the output modes, we use linearity of the transformation to write

âout |Ψin〉 = 1√
2
(âin + b̂in) |αeiθ〉a ⊗ |αeiθ〉b =

1√
2
(αeiθ + αeiθ) |Ψin〉 =

√
2αeiθ |Ψin〉 .

Thus the state in output mode a becomes a coherent state with eigenvalue
√
2αeiθ.

b̂out |Ψin〉 = 1√
2
(−âin + b̂in) |αeiθ〉a ⊗ |αeiθ〉b =

1√
2
(−αeiθ + αeiθ) |Ψin〉 = 0.
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So mode b ends up in the vacuum state. Since coherent states are uniquely determined by their eigenvalues,
the output state is

|Ψout〉 = |
√
2αeiθ〉a ⊗ |0〉b .

Now we consider two different coherent states in the input modes:

|Ψin〉 = |αeiθa〉a ⊗ |βeiθb〉b .

We can simply use the same transformations of the annihilation operators given in Equation (B.3) and the fact
that coherent states are eigenstates of the annihilation operators to write

|Ψout〉 = | 1√
2
(αeiθa + βeiθb)〉

a
⊗ | 1√

2
(−αeiθa + βeiθb)〉

b
.

Thus we conclude that, when Alice and Bob send coherent states to the central node, this results in a determin-
istic click in output mode a when their states have the same amplitude and phase, and in a deterministic click
in output mode b when their states have the same amplitude and a phase difference of ∆θ = π. For all other
coherent input states, the click pattern of the output detectors is determined by some probability distribution
that depends on the input states.

Threshold detection and coherent states
An ideal single-photon threshold detector clicks if it detects one or more photons, but does not resolve how
many photons there were. It is assumed to have efficiency η = 1 and no dark counts, pdark = 0

The probability of there being no photons in coherent state |β〉 is p(0) = e−|β|2 . Thus the probability that an
ideal threshold detector clicks in the presence of the coherent state is

pclick = 1− p(0) = 1− e−|β|2 (B.4)



C
Formal definition of Randomised String

Commitment

The protocols for RSC that we show in this work consist of 3 phases: Preparation, Commit and Open. In
the Preparation phase, Alice and Bob do their quantum communication. After that, they only need to perform
classical computations and communications with the information they have to do RSC. This happens in the
Commit and Open phase of the protocol. We may write the Commit and the Open protocol as CPTPMs CAB

and OAB respectively, consisting of the local actions of honest Alice and Bob, together with any operations
they may perform on messages that are exchanged. When both parties are honest, the output of the Commit
protocol will be a state

CAB(ρin) = ρCAB (C.1)

for some fixed input state ρin, where the committed string C ∈ {0, 1}ℓ is, the classical output of Alice, and
A and B are the internal states of Alice and Bob respectively. If Alice is dishonest, she may not follow the
protocol, and we use CA′B to denote the resulting map. Note that CA′B may not have output C, and we hence
simply write ρA′B for the resulting output state, where A′ denotes the register of a dishonest Alice. Similarly,
we use CAB′ to denote the CPTPM corresponding to the case where Bob is dishonest, and write ρCAB′ for the
resulting output state, where B′ denotes the register of a dishonest Bob.

The Open protocol can be described similarly. If both parties are honest, the map OAB : B(HAB) → B(HĈF )
creates the state

ρCĈF := (1C ⊗OAB)(ρCAB), (C.2)

where Ĉ ∈ {0, 1}ℓ and F ∈ {accept, reject} is the classical output of Bob. Again, if Alice is dishonest, we
write OA′B to denote the resulting CPTPM with output ρA′′ĈF , and if Bob is dishonest, we write OAB′ for the
resulting CPTPM with output ρCB′′ .

We formalise the RSC introduced above in the following definition.

Definition C.0.1 (Randomised string commitment [10]). Let τR denote the maximally mixed state on a register
R. An (ℓ, ϵ)-Randomised String Commitment scheme is a protocol between Alice and Bob that satisfies the
following three properties.
Correctness: When both parties are honest, then there exists an ideal state σCCF such that

• The distribution of C is uniform and Bob accepts the commitment:

σCF := τ{0,1}ℓ ⊗ |accept〉〈accept|F , (C.3)

• The real state produced by the protocol ρCĈF is ϵ-close to the ideal state:

ρCĈF ≈ϵ σCCF , (C.4)

where we identify (A,B) with (C, ĈF ).
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Security for Alice: When Alice is honest, for any joint state ρCB′ created in the Commit phase, Bob is ignorant
about C before the Open phase:

ρCB′ ≈ϵ τ{0,1}ℓ ⊗ ρB′ . (C.5)

The protocol is then said to be ϵ-hiding.

Security for Bob: After the Commit phase and before the Open phase, there exists an ideal state σCAB such
that for any Open algorithm, described by OAB , in which Bob is honest, we have:

• Bob almost never accepts Ĉ 6= C:
for ρCA′′ĈF = (1C ⊗OA′B)(σCA′B) we have Pr[Ĉ 6= C and F = accept] ≤ ϵ.

• The real state produced by the commitment phase is ϵ-close to the ideal state:

ρA′B ≈ϵ σA′B . (C.6)

The protocol is then said to be ϵ-binding.



D
Auxiliary proofs for Section 5.3

Proof of Lemma 5.3.2
Proof. Given that Alice did not abort the protocol in step 4 of the Preparation phase, we know that f ≤
pfail +

√
ln(ϵ−1)

2N except with probability at most ϵ. This gives then

N − n− pfailN −
√

ln(ϵ−1)

2

√
N ≤ 0 (D.1)

(1− pfail)N −
√

ln(ϵ−1)

2

√
N − n ≤ 0 (D.2)

(1− pfail)
N

n
−
√

ln(ϵ−1)

2n

√
N

n
− 1 ≤ 0. (D.3)

Using the quadratic equation, we find

√
N

n
≤

√
ln(ϵ−1)

2n +
√

ln(ϵ−1)
2n + 4(1− pfail)

2(1− pfail)
(D.4)

≤

√
ln(ϵ−1)

2n +

√
ln(ϵ−1)

2n + 4(1− pfail) + 2
√

ln(ϵ−1)
2n

(
2
√
1− pfail

)
2(1− pfail)

(D.5)

=

√
ln(ϵ−1)

2n +

√(√
ln(ϵ−1)

2n + 2
√
1− pfail

)2

2(1− pfail)
(D.6)

=

√
ln(ϵ−1)

2n +
√
1− pfail

1− pfail
. (D.7)

Invert this fraction to find √
n

N
≥ 1− pfail

√
1− pfail +

√
ln(ϵ−1)

2n

(D.8)

=

√
1− pfail

1 +
√

ln(ϵ−1)
2(1−pfail)n

(D.9)

n

N
≥ 1− pfail

(1 + ζfail)2
. (D.10)
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Proof of Theorem 5.3.5
Proof. We can express, for ω ∈ {1,−1, i,−1},

|ωα〉 = e−
|α|2
2

∞∑
j=0

ωjαj

√
j!

|j〉 (D.11)

= e−
|α|2
2

 ∞∑
j=0,4,8,...

αj

√
j!

|j〉+ ω

∞∑
j=1,5,9,...

αj

√
j!

|j〉+ ω2
∞∑

j=2,6,10,...

αj

√
j!

|j〉+ ω3
∞∑

j=3,7,11,...

αj

√
j!

|j〉

 (D.12)

= A0 |φ0〉+ ωA1 |φ1〉+ ω2A2 |φ2〉+ ω3A3 |φ3〉 (D.13)

where Ak |φk〉 = e−
|α|2
2

∑∞
j=0

α4j+k

(4j+k)! |4j + k〉, with {|φk〉}3k=0 a set of orthonormal pure states and Ak given by

A0 = e−
|α|2
2

√√√√ ∞∑
j=0

(|α|2)4j
(4j)!

= e−
|α|2
2

√
cosh |α|2 + cos |α|2

2
(D.14)

A1 = e−
|α|2
2

√√√√ ∞∑
j=0

(|α|2)4j+1

(4j + 1)!
= e−

|α|2
2

√
sinh |α|2 + sin |α|2

2
(D.15)

A2 = e−
|α|2
2

√√√√ ∞∑
j=0

(|α|2)4j+2

(4j + 2)!
= e−

|α|2
2

√
cosh |α|2 − cos |α|2

2
(D.16)

A3 = e−
|α|2
2

√√√√ ∞∑
j=0

(|α|2)4j+3

(4j + 3)!
= e−

|α|2
2

√
sinh |α|2 − sin |α|2

2
(D.17)

The expression of the four coherent states in this manner is similar to that in Petrongonas and Andersson [27,
Equation D.21]. Simply, we can express Alice’s states in the basis {|φ0〉 , |φ1〉 , |φ2〉 , |φ3〉}.

|α〉 = A0 |φ0〉+A1 |φ1〉+A2 |φ2〉+A3 |φ3〉 (D.18)
|−α〉 = A0 |φ0〉 −A1 |φ1〉+A2 |φ2〉 −A3 |φ3〉 (D.19)
|iα〉 = A0 |φ0〉+ iA1 |φ1〉 −A2 |φ2〉 − iA3 |φ3〉 (D.20)

|−iα〉 = A0 |φ0〉 − iA1 |φ1〉 −A2 |φ2〉+ iA3 |φ3〉 (D.21)

and we can also express

ρω = |ωα〉〈ωα| =
3∑

k,m=0

ωk(ωm)∗AkAm |φk〉 〈φm| (D.22)

=

3∑
k,m=0

ωk−mAkAm |φk〉 〈φm| (D.23)

=


A2

0 A0A1ω
−1 A0A2ω

−2 A0A3ω
−3

A1A0ω A2
1 A1A2ω

−1 A1A3ω
−2

A2A0ω
2 A2A1ω

1 A2
2 A2A3ω

−1

A3A0ω
3 A3A1ω

2 A3A2ω
1 A2

3

 (D.24)

and, for any ω ∈ {1,−1, i,−i},

(ρω + ρiω) =


2A2

0 A0A1(ω − iω) 0 A0A3(ω + iω)
A1A0(ω + iω) 2A2

1 A1A2(ω − iω) 0
0 A2A1(ω + iω) 2A2

2 A2A3(ω − iω)
A3A0(ω − iω) 0 A3A2(ω + iω) 2A2

3

 . (D.25)

SinceMk are positive semidefiniteM (nm)
k = (M

(nm)
k )∗, we can write,
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Tr[Mk(ρωk
+ ρiωk

)]

=M
(00)
k 2A2

0 +M
(01)
k A1A0(ωk + iωk) +M

(02)
k A2A0(ω

2
k + (iωk)

2) +M
(03)
k A3A0(ω

3
k + (iωk)

3)

+M
(10)
k A0A1(ω

−1
k + (iωk)

−1) +M
(11)
k 2A2

1 +M
(12)
k A2A1(ωk + iωk) +M

(13)
k A3A1(ω

2
k + (iωk)

2)

+M
(20)
k A0A2(ω

−2
k + (iωk)

−2) +M
(21)
k A1A2(ω

−1
k + (iωk)

−1) +M
(22)
k 2A2

2 +M
(23)
k A3A2(ωk + iωk)

+M
(30)
k A0A3(ω

−3
k + (iωk)

−3) +M
(31)
k A1A3(ω

−2
k + (iωk)

−2) +M
(32)
k A2A3(ω

−1
k + (iωk)

−1) +M
(33)
k 2A2

3

(D.26)

= 2A2
0M

(00)
k + 2A2

1M
(11)
k + 2A2

2M
(22)
k + 2A2

3M
(33)
k

+ 2A0A1<(M (01)
k (ωk + iωk)) + 2A1A2<(M (12)

k (ωk + iωk))

+ 2A0A3<(M (03)
k (ωk + iωk)) + 2A2A3<(M (23)

k (ωk + iωk)) (D.27)

≤ 2A2
0M

(00)
k + 2A2

1M
(11)
k + 2A2

2M
(22)
k + 2A2

3M
(33)
k

+ 2A0A1

√
2|M (01)

k |+ 2A1A2

√
2|M (12)

k |+ 2A0A3

√
2|M (03)

k |+ 2A2A3

√
2|M (23)

k | (D.28)

≤ 2A2
0M

(00)
k + 2A2

1M
(11)
k + 2A2

2M
(22)
k + 2A2

3M
(33)
k

+ 2A0A1

√
2

√
M

(00)
k M

(11)
k + 2A1A2

√
2

√
M

(11)
k M

(22)
k

+ 2A0A3

√
2

√
M

(00)
k M

(33)
k + 2A2A3

√
2

√
M

(22)
k M

(33)
k (D.29)

For the inequality in Equation (D.28) we used that the last four terms can be simplified as follows, for example,

<(M (01)
0 (1 + i)) ≤ |M (01)

0 (1 + i)| = |M (01)
0 ||1 + i| =

√
2|M (01)

0 |, (D.30)

and similarly for the other terms. For the inequality in Equation (D.29) we used the fact that for positive
semidefinite matricesM (nn)

k M
(mm)
k − |M (nm)

k |2 ≥ 0 and thus |M (nm)
k | ≤

√
M

(nn)
k M

(mm)
k [32, property 7.6.12].

Note thatM (nn)
0 +M

(nn)
1 +M

(nn)
2 +M

(nn)
3 = 1 by the definition of the POVM.

The total guessing probability becomes

Pguess(Xj) =
1
4Tr[M0(ρ1 + ρi) +M1(ρ−1 + ρi) +M2(ρ1 + ρ−i) +M3(ρ−1 + ρ−i)] (D.31)
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= 1
2

[
A2

0 +A2
1 +A2

2 +A2
3 +

√
2(A0A1 +A1A2 +A0A3 +A2A3)

]
(D.34)

=
1

2
+

1√
2
(A0A1 +A1A2 +A0A3 +A2A3) (D.35)

In the second inequality, we used the Cauchy-Schwarz inequality for the last four terms. Since this bound
holds for any choice ofM0,M1,M2 andM3, it also holds for the optimal choice. This gives the bound on the
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maximum guessing probability

Pguess(Xj)max ≤ 1

2
+

1√
2
(A0A1 +A1A2 +A0A3 +A2A3). (D.36)
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