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Abstract
Wave phenomena play an important role in many different applications such as MRI scans, seismology and
acoustics [41, 49, 47]. At the core of such applications lies the Helmholtz equation, which represents the
time-independent version of the wave equation. Simulating a Helmholtz problem numerically with accurate
numerical solutions for large wave numbers is challenging. Numerical solvers for the Helmholtz problem have
to balance having accurate numerical solutions, requiring a number of iterations to reach convergence that is
independent of the wave number and solving with linear time complexity with respect to the grid nodes. Cur-
rently, there is no numerical Helmholtz solver that can satisfy these requirements at once.
We developed Schwarz domain decomposition preconditioners which leads to wave number independent con-
vergence for wave numbers in 2D and 3D, while remaining to have accurate numerical solutions. The precon-
ditioners use two-level Schwarz preconditioners, with the coarse problem being constructed using higher-order
interpolation with quadratic rational Bézier curves. The developed domain decomposition preconditioners are
designed to leverage parallel computing in the future in an attempt for the preconditioners to acquire the ability
to solve with linear time complexity.

In this research, the preconditioner resulting in wave number independent convergence and the lowest iteration
count is the two-level scaled hybrid Schwarz preconditioner with a coarse problem constructed using higher-
order Bézier interpolation. This preconditioner uses a deflation method to remove unwanted eigenvalues.
Removing these unwanted eigenvalues results in a clustering of the eigenvalues which is more favourable for
GMRES. Currently, all the developed preconditioners suffer from high computational cost for large wave num-
bers, due to the coarse problem becoming large. Decreasing the coarse problem size of the preconditioners,
while remaining to have wave number independent convergence, has shown to been unsuccessful. To better
understand the required conditions for wave number independent convergence of the preconditioners, we in-
vestigated the relationship between the number of coarse grid nodes and the wave length, too see if there is
anything generalizable about this relationship and wave number independent convergence of the solvers.
In conclusion, the balancing for a Helmholtz solver to have accurate numerical solutions, requiring a number of
iterations to reach convergence that is independent of the wave number and solving with linear time complexity
is again shown to be difficult. This work provides the initial development and testing of promising wave number
independent Helmholtz solvers, from which more research should follow that tackle its biggest computational
problems.
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1 | Introduction
The Helmholtz equation is a second order partial differential equation that models wave phenomena. The
equation appears in many applications in fields such as nuclear fusion, seismology and MRI scanners [49, 47,
41]. For example, in seismic exploration, we are interested in how waves travel through the layers of the earth’s
crust. Another example is in nuclear fusion. Electromagnetic waves are used when studying charged particle,
which is essential for the development of nuclear fusion for powering society. Also, studying the Helmholtz
equation is relevant for the study of more complex wave propagation in the time domain.
The Helmholtz equation itself seems nice and simple, but simulating the Helmholtz problem with accurate nu-
merical solutions for large wave numbers is difficult due to several problems. The one dimensional Helmholtz
linear system matrix, which arises from discretizing the one dimensional Helmholtz problem, becomes indef-
inite when the wave number becomes larger than π [42]. An error appears in the numerical solutions of the
Helmholtz problem which increases with the wave number for a fixed problem size. In order to avoid this error
the grid has to be refined when the wave number increases. This refinement of the grid results in the linear sys-
tem becoming very large as the wave number increases. Therefore, iterative solvers have to be used to solve
the linear system, since direct solution methods become rapidly computationally expensive and unusable for
large linear systems. For standard iterative methods, the number of iterations to reach convergence increases
as the wave number increases, i.e., the standard iterative solvers have wave number dependent convergence.

Despite years of research into numerical solvers for the Helmholtz problem, no iterative method has been de-
veloped that has accurate numerical solutions, requires a number of iterations to reach convergence that is
independent of the wave number and solves with linear time complexity with respect to the grid nodes. The
Complex Shifted Laplacian preconditioner (CSLP) is a good and frequently used preconditioner which acceler-
ates the convergence rate of standard iterative methods [20, 28]. But the CSLP is unusable for high frequency
Helmholtz problems, since the number of iterations required to reach convergence is wave number dependent
and the computational cost becomes high for large wave numbers.
A more recently Helmholtz solver, which makes use of multi-level higher-order deflation vectors to accelerate
the iterative solver, performs very well [43]. This solver gives accurate numerical solutions while requiring a
number of iterations to reach convergence which is close to independent of the wave number and the solver
has close to linear time complexity with respect to the grid nodes.

One of the ways of tackling the wave number dependence and time complexity problem is by making use of
domain decomposition methods to accelerate iterative solvers. This is because domain decomposition meth-
ods can provide scalability with respect to the number of grid nodes, while also being suitable for parallelization
[11, 18, 21]. Using a domain decomposition method that is suitable for parallel computing could be beneficial
in obtaining linear time complexity of the Helmholtz solver. Therefore, in this research domain decomposition
methods are studied. Specifically, using two-level Schwarz domain decomposition preconditioners which can
accelerate the iterative method are investigated.
Besides domain decomposition, this work also makes use of a higher-order approximation scheme from the
above mentioned developed Helmholtz solver [42, 43]. The idea of the higher-order approximation scheme is
suitable and promising and can be combined with domain decomposition preconditioners.

The ultimate goal is to develop a numerical Helmholtz solver which gives accurate numerical solutions, is wave
number independent and has linear time complexity with respect to the grid nodes. Developing such a solver
is done through domain decomposition methods and a higher-order approximation scheme. We call a solver
efficient if the numerical solutions are accurate with respect to the exact solution. Additionally, we call a solver
numerically scalable if the following two requirements are satisfied. Firstly, the number of iterations required for
the solver to reach convergence is wave number independent. Secondly, the solver is required to have a time
complexity with respect to the number of grid nodes of O(n), i.e. linear time complexity.
In this thesis we focus on developing a Helmholtz solver that is both efficient and has wave number independent
convergence, and choose to ignore the time complexity of the solver for now. The development of such a solver
is done by answering the following research questions:

1. Does a Helmholtz solver constructed using a two-level additive Schwarz preconditioner combined with
first-order grid coarse problem show wave number independent convergence and efficiency?

• How can the performance of the Helmholtz solver using a first-order grid coarse problem be ex-
plained?

2. Does a Helmholtz solver, constructed using a two-level additive Schwarz preconditioner and a higher-
order Bézier coarse problem, show wave number independent convergence and efficiency?

1



• What causes the solver to be inscalable if this is the case?

3. Does a Helmholtz solver, constructed using different variants of two-level Schwarz preconditioners and a
higher-order Bézier coarse problem, show wave number independent convergence and efficiency?

• For the scaled additive Schwarz preconditioner, does the solver show wave number independent
convergence and efficiency and if so, why?

• For the scaled hybrid Schwarz preconditioner, which uses deflation, does the solver show wave
number independent convergence and efficiency and if so, why?

The methodology is the following. It is split up into two phases: numerical results and eigenvalue analysis.
The first phase, is about performing numerical experiments and analysing the numerical results of the devel-
oped Helmholtz solvers. These experiments are performed by fixing the number of grid nodes per subdomain
and increasing the wave number and number of subdomains at the same time. By doing this the total number
of grid nodes increases with the wave number, i.e., the grid is refined with the wave number increasing. The
tested preconditioners impact the number of iterations that are required for the iterative method to reach con-
vergence. As the wave number and the number of subdomains grow, we look at the number of iterations that
are required for the iterative method to reach convergence and see how the number of iterations that are re-
quired changes as the wave number grows, as a consequence of changing the preconditioner. The numerical
experiments are classed into two categories with different goals. The first category are the experiments used
to see whether the solver reaches convergence in a number if iterations that is independent of the wave num-
ber while also being efficient. The other category of experiments, only used when wave number independent
convergence is found, has the goal to see how the solver performs on model problems that are more like the
real engineering problems, i.e., a nonconstant wave number or a 3D problem.
In the other phase, an eigenvalue analysis is performed to learn more about the behaviour and performance
of the developed solvers. One of the ways this analysis is done is by plotting the eigenvalues of the precon-
ditioned linear system. This gives insights into the performance of the solver, since the clustering, numerical
range and location of the eigenvalue influences the number of iterations required to reach convergence of the
iterative solver.

This thesis is structured as follows. In chapter two, the derivation of the Helmholtz equation and the one dimen-
sional analytical solution of the Helmholtz equation are given. After that, in chapter three, details on modeling
and numerically solving the Helmholtz problem are presented. Additionally, the main problems that arise when
solving the Helmholtz problem numerically are given here. Details about Schwarz domain decomposition pre-
conditioners and theory are given in chapter four, since Schwarz domain decomposition preconditioning will
be used in order to accelerate an iterative solver. In chapter five, details the construction of grid coarse prob-
lems, considered in this thesis, are given. The discussion of the numerical results of the developed solvers are
split in chapter six and seven. In chapter six, two-level additive Schwarz preconditioner using a first-order grid
coarse problem are tested and analysed. In chapter seven, the first-order grid coarse problem from the previ-
ous chapter is replaced by a higher-order Bézier grid coarse space. Additionally, different variants of two-level
Schwarz preconditioners such as the hybrid Schwarz preconditioner and scaled hybrid Schwarz preconditioner
are tested and analysed. Finally, in chapter eight a conclusion and discussion of the research in this thesis are
given. This thesis also includes several appendices where additional information can be found.
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2 | The Helmholtz Equation
This chapter is the start of the analysis of the Helmholtz equation. The Helmholtz equation is named after the
physicist Hermann von Helmholtz who is the creator of the equation. It is a second order partial differential
equation that models time harmonic wave phenomena.
The structure of this chapter is as follows: first the derivation of the Helmholtz equation with a constant wave
number from the homogeneous wave equation is given, followed by an explanation of different boundary con-
ditions and, the construing of the analytical solution to the one dimensional nonhomogeneous Helmholtz equa-
tion with a constant wave number. Finally, we show how make the boundary value problem dimensionless.

2.1 Derivation

The homogeneous wave equation with constant c is(
∂2

∂t2
− c2∇2

)
u(x, t) = 0, (2.1)

where u(x, t) denotes the wave displacement.

Let us now apply the method of separation of variables. We begin by separating the solution u(x, t) in a
time-dependent and time-independent part. This solution is then written in the following form:

u(x, t) = h(t)ϕ(x). (2.2)

Substituting (2.2) into (2.1) gives the results(
∂2

∂t2
− c2∇2

)
h(t)ϕ(x) = 0. (2.3)

By moving the time dependent parts to the left side, the space dependent parts to the right side and setting
this equation equal the separation constant which we pick to be −k2, we get the following equation

1

c2h(t)

d2h(t)

dt2
=

1

ϕ(x)
∇2ϕ(x) = −k2. (2.4)

Thus we obtain two equations

•
d2h(t)

dt2
= −k2c2h(t), (2.5)

•
∇2ϕ(x) = −k2ϕ(x). (2.6)

Now, (2.6) gives is the Helmholtz equation, which can be rewritten to the more conventional form of(
−∇2 − k2

)
ϕ(x) = 0. (2.7)

with k being the wave number, which is defined as

k =
2π

λ
, (2.8)

where λ is the wave length.

The nonhomogeneous Helmholtz equation is given when the right hand side of (2.7) is replaced by a function
f(x). For this research, the nonhomogeneous part is defined as the source function given by

f(x) = δ(x − x0). (2.9)

The nonhomogeneous Helmholtz equation is therefore given by(
−∇2 − k2

)
ϕ(x) = δ(x − x0). (2.10)

3



2.2 Boundary Conditions

In order to solve the Helmholtz equation on a domain Ω, boundary conditions are necessary for the problem
to not be ill-posed. In problems with the Helmholtz equation the following boundary conditions are generally
used. Also note that for a domain Ω the boundary of that domain is indicated by ∂Ω.

• Dirichlet Boundary Conditions:
Also sometimes called boundary conditions of the first type, are boundary conditions that specify a value
on the boundary of the domain. Nonhomogeneous Dirichlet boundary can generally be written as

ϕ(x) = g(x), for x ∈ ∂Ω. (2.11)

In the homogeneous case, so g(x) = 0∀x ∈ ∂Ω, the Dirichlet boundary conditions is sometimes referred
to as a vanishing boundary conditions

• Neumann Boundary Conditions:
or second-type boundary conditions, are boundary conditions that specify a value to the derivative on the
boundary. Generally, this is boundary conditions is expressed as

∂ϕ(x)
∂n

ϕ(x) = h(x), for x ∈ ∂Ω. (2.12)

n denotes unit vector pointing outward with respect to the boundary Ω. The homogeneous, so h(x) =
0∀x ∈ ∂Ω, Neumann boundary condition is sometimes called the reflective boundary conditions.

• Robin Boundary Conditions:
Robin boundary conditions are a weighted combination of the first two boundary conditions. Its nonho-
mogenous case is therefore expressed as(

a
∂ϕ(x)
∂n

+ bϕ(x)
)

= k(x), for x ∈ ∂Ω, (2.13)

with a, b ∈ C being the weight coefficients. Similarly as before, the homogeneous case is given when
k(x) = 0∀x ∈ ∂Ω.

• Sommerfeld Radiation Condition:
Often, the Sommerfeld radiation condition is used for the Helmholtz problem to introduce some damping
to the problem. The damping is beneficial since it allows the Helmholtz problem to be controlled more
easily. It should be easier to construct an iterative Helmholtz solver that is wave number independent
for the Helmholtz problem when the Sommerfeld radiation condition is applied to boundary, compared
to when the homogeneous Dirichlet boundary condition is applied to the Helmholtz problem. The Som-
merfeld radiation condition is a more specific version of the Robin boundary conditions. Sometimes the
Sommerfeld radiation conditions is also referred to as the absorbing boundary condition and it is repre-
sented as (

∂ϕ(x)
∂n

− ikϕ(x)
)

= 0, for x ∈ ∂Ω, (2.14)

where i is the imaginary number and k is the wave number in the Helmholtz equation.

2.3 Analytical Solution of the One Dimensional Helmholtz Equation

In this section we will give the analytical solution to the one dimensional nonhomogeneous Helmholtz equation
with a constant wave number on the domain Ω = [0, L] and with homogeneous Dirichlet boundary conditions.
From now on, we will use u(x) instead of ϕ(x). The boundary value problem is given by

−d2u(x)
dx2 − k2u(x) = δ(x− L

2 ), in Ω = [0, L] ⊂ R.
u(x) = 0 for x ∈ ∂Ω.

k ∈ N\{0}.
(2.15)

Note that the harmonic source term is placed in the middle of the domain and note that k is independent of x.
For some problems, a wave number which is dependent on x is chosen (k = k(x)). This is for example the
case when modeling the Helmholtz equation in a nonhomogeneous medium.

4



The boundary value problem of (2.15) can be expressed in terms of the Green’s function G(x, x′). First we
note that the Sturm-Liouville operator given by

L =
d

dx

[
p(x)

d

dx

]
+ q(x). (2.16)

Setting p(x) = −1 and q(x) = −k2, we find the Sturm-Liouville operator for the boundary value problem of
(2.15).
Therefore, we can now write the boundary value problem with the Green’s function, with a general location x′

instead of L
2 for the source location, as{

L(G(x, x′)) = δ(x− x′), in Ω = [0, L] ⊂ R.
G(x, x′) = 0 for x ∈ ∂Ω.

(2.17)

An eigenfunction ϕ must satisfy
L(ϕ) = −λσ(x)ϕ. (2.18)

The eigenfunctions which belong to different eigenvalues are orthogonal with the weight σ(x),i.e. ϕn and ϕm

are orthogonal with weight σ(x) for λn ̸= λm.

We take σ(x) = −1. Thus (2.18) gives us the ODE

d2ϕ

dx2
+ k2ϕ = −λϕ, (2.19)

d2ϕ

dx2
+ (k2 + λ)︸ ︷︷ ︸

α

ϕ = 0 (2.20)

d2ϕ

dx2
= −αϕ (2.21)

Independent solution can often be obtained in the form of exponential, ϕ = erx. When this expression is
substituted into the ODE of (2.21) we find the polynomial

r2 = −α. (2.22)

We can distinguish three different cases:

• α > 0,

• α = 0,

• α < 0.

α can not be complex, since α needs to be real for the boundary value problem to have nontrivial solutions.
The three cases are analysed separately.
First, α = 0. This implies that r = 0, which means that we get the only trivial solutions due to the Dirichlet
boundary conditions.

Second, α < 0. This means that r = ±
√
−α, which suggests a solution of the form

ϕ(x) = c1 cosh(
√
−αx) + c2 sinh(

√
−αx). (2.23)

Applying the boundary conditions, ϕ(0) = ϕ(L) = 0, gives us that ϕ(x) = 0. This is also a trivial solution.

Finally, we look at the case α > 0. This means that r = ±i
√
α. This suggests that the general solution is given

by
ϕ(x) = c1 cos(

√
αx) + c2 sin(

√
αx). (2.24)

Applying the boundary conditions we find that c1 = 0 and sin(
√
αx) = 0. Thus we find the eigenfunctions and

eigenvalues

ϕn = c2 sin(
nπx

L
), (2.25)

αn =
n2π2

L2
, for n = 1, 2, 3, . . . . (2.26)

5



But since α = k2 + λ, we find

ϕn = sin(
nπx

L
), (2.27)

λn =
n2π2

L2
− k2 , for n = 1, 2, 3, . . . . (2.28)

c2 is an arbitrary multiplicative constant, so we can say c2 = 1.

We will seek to solve (2.15) by using the method of eigenfunction expansion. This gives us that the solution
u(x) can be expressed as a series of sines in the following way

u(x) =

∞∑
n=1

αn(x
′) sin(

nπ

L
x). (2.29)

We also know from (2.17) that
u(x) = G(x, x′). (2.30)

G(x, x′) can now be expressed, since we know that λn ̸= 0∀n ∈ N\{0}. This give the following

u(x) = G(x, x′) =

∞∑
n=1

ϕn(x)ϕn(x
′)

−λn

∫ L

0
ϕ2
n(x)σ dx

. (2.31)

=
2

L

∞∑
n=1

sin(nπ2 ) sin(nπL x)(
n2π2

L2 − k2
) , for k2 ̸= n2π2

L2
and n = 1, 2, 3, . . . . (2.32)

Now we have expressed the solution u(x) to the boundary value problem of (2.15).

2.4 Dimensionless Helmholtz Model

Equation (2.15) can be made dimensionless. The goal is to map the problem onto the unit domain [0, 1].
Equation (2.15) uses the arbitrary domain [0, L]. To get a dimensionless model we introduce the new variable
x̂ such that

x̂ =
x

L
, (2.33)

from which it follows that
dx̂

dx
=

1

L
. (2.34)

Now equation (2.15) can be written as
−d2u(x̂)

dx2 − k̂2u(x̂) = L2δ(x̂− L
2 ), in Ω = [0, 1] ⊂ R.

u(x̂) = 0 for x̂ ∈ ∂Ω.

k̂ = Lk, with k ∈ N\{0}.
(2.35)

If not otherwise specified, we will use the notation k̂ = k and x̂ = x for the following chapters. The Helmholtz
model that are used in this thesis all have domains with L = 1. When going to real-life Helmholtz problems, the
dimensionless Helmholtz model can be useful, since it allows for better comparison between different sized
models.
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3 | Iterative Methods & Preconditioners
It becomes very difficult to solve the Helmholtz equation analytically in dimensions higher than one. Therefore,
instead of solving the Helmholtz equation analytically, it is more convenient to solve the problem by creating a
numerical model and using a numerical method to solve the problem. For the Helmholtz problem, the numeri-
cal methods of modeling that are used are the finite element method and the finite difference method. For the
research in this report we will only focus the finite difference method numerical scheme.
Modeling the problem numerically is done by discretization of the problem. The one dimensional Helmholtz
linear system matrix, which arises from discretizing the one dimensional Helmholtz problem, becomes indefi-
nite when the wave number becomes larger than π [42]. As will become clear in the next section, a large wave
number results in the size of the problem becoming large. For medium sized numerical problems, it is still
possible to use direct numerical solution methods. In the case of the Helmholtz problem using direct numerical
solution methods is not realistic anymore. Therefore, for the Helmholtz problem iterative solution methods are
used. Direct solution numerical methods can still serve a purpose as they are often used as solvers for subdo-
main problems in domain decomposition methods and in multigrid methods.

Before describing the structure of this chapter, it is important to give a few clear definitions of somewhat general
terms.

• An efficient numerical solver is defined as a iterative numerical method, often combined with a precondi-
tioner, that produces solutions very close to the exact solutions, i.e. the numerical solutions give a good
representation of the real problem and are close to the exact solution.

• A numerically scalable numerical solver is defined as a iterative numerical method, often combined with a
preconditioner, that has two attributes. First, the number of iterations needed to reach convergence does
not grow when the problem size increases. Second, the solver needs a time complexity with respect to
the number of grid nodes of O(n).

• A parallel scalable numerical solver is defined as a solver where the number of iterations needed to reach
convergence does not grow when the number of subdomains (or parallel processes) increases.

This chapter is constructed in the following way. In the first section an introduction and problems arising are
given for solver the Helmholtz problem numerically. After that, the boundary value problems are constructed
used in this thesis are given. From Section 3.3 onward, background information on general numerical solution
methods and numerical solutions methods for the Helmholtz problem are discussed.

3.1 Introduction and Complications when Solving Helmholtz Problems
Numerically

When trying to solve the Helmholtz equation numerically there are two major problems that arise [42]. The first
problem is that for large wave numbers a so-called pollution error appears in the numerical solution [13, 16,
17]. This pollution error has to do with a phase misalignment of the exact and numerical solution. To deal with
this pollution error, the grid has to be kept very fine. Specifically, when a second order finite difference scheme
is used the requirement k3h2 ≤ 1, with k being the wave number and h the mesh size, has to hold in order to
avoid the pollution error [16]. Thus, as the wave number becomes large, the grid has to be refined further.
Instead of completely avoiding the pollution error, we can also keep the error small. For second order accurate
finite difference discretizations it is a rule of thumb to have a minimum of 10 grid points per wave length λ [33],
resulting in the reduction of the pollution error. Therefore we define

κh = kh =
2π

10
≈ 0.625. (3.1)

This rule of thumb hold for wave numbers that are not too large. For larger wave number it might be necessary
to use 20 or 30 grid points per wave length. In general, this rule of thumb is not very good. In [33] it is found
that even if κh is kept small this does not avoid the pollution error appearing for high wave numbers. Instead,
the requirement k3h2 ≤ ϵ is introduced. While this requirement does avoid the pollution error entirely when
a second order accurate finite difference scheme is used, it causes the problem size to increase very quickly
when the wave number increases. Therefore, κh ≤ 0.625 is used in this work. The rule of thumb should result
in the pollution error being avoided enough and the problem size not becoming too large when k becomes
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large.
The second problem that arises when trying to solve the Helmholtz equation numerically is a consequence
of the first problem. Due to the grid being required to be refined when k increases the size of the problem
also increases and becomes large. Since the size of the problem is large, iterative methods are used as
numerical solvers for the Helmholtz problem. As the grid becomes finer the computation cost of most iterative
solvers increases, which is a problem. Therefore, a numerically scalable iterative solver has to be used for the
Helmholtz problem with large wave numbers.
An iterative Helmholtz solvers that is efficient and almost numerically scalable has been developed [43]. The
number of iterations for the solver to converge is more or less wave number independent. It is not really
numerically scalable since the solver has a nonlinear time complexity with respect to the number of grid nodes.

3.2 Problem Description

The one dimensional boundary value problem with constant wave number k > 0 and a Dirichlet boundary
condition is 

−d2u(x)
dx2 − k2u(x) = δ(x− x′), in Ω ∈ R.

u(x) = 0 for x ∈ ∂Ω,

k ∈ N\{0}.
(3.2)

This model problem is referred to 1D MP-1 for the remained of this thesis. The two and three dimensional
version of this model problem are referred to as 2D MP-1 and 3D MP-1, respectively. Since the 2D MP-1
model problem is used mostly, it is often written without the 2D notation.
The one dimensional boundary value problem for the Helmholtz equation with constant wave number k > 0
and a Sommerfeld radiation condition is given by:

−d2u(x)
dx2 − k2u(x) = δ(x− x′), in Ω ∈ R.(

∂u(x)
∂n − iku(x)

)
= 0, for x ∈ ∂Ω,

k ∈ N\{0},

(3.3)

The model problem above is referred to as 1D MP-2 and its two dimensional version is referred to as 2D MP-2,
where the 2D part is often left out. The difficulty in using Sommerfeld radiation conditions is that the eigenval-
ues of the resulting system matrix can not be expressed in closed-form and spectral analysis becomes more
difficult but it can provide useful heuristics [42]. For this reason, some of the analysis is performed on the 1D
boundary value problem without the Sommerfeld radiation condition.
For both 2D MP-1 and 2D MP-2 the domain Ω = [0, 1]× [0, 1] is used. Additionally, the right hand side function
is defined as in Equation 2.9 with the source location in the middle of the domain.

The numerical experiments performed in this thesis are mostly with MP-1 and MP-2. In order to see how
solver behave on easier numerical experiment, a model problem that does not use the Helmholtz equation is
also used. This model problem is referred to as MP-3. The problem is a two dimensional nonhomogeneous
Poisson’s equation problem on the domain Ω = [0, 1]× [0, 1], which is described by the following equation

−∇2u(x, y) = f(x, y) on Ω. (3.4)

The problem is supplied with nonhomogeneous Dirichlet boundary conditions

u(x, y) = u0(x, y) on ∂Ω. (3.5)

Now assume that the exact solution to this problem is given by uex(x, y) = sin(xy). This gives us that the
source term f(x, y) is given by

f(x, y) = (x2 + y2) sin(xy). (3.6)

And the boundary data is given by

u0(x, y) =


0 if x = 0

sin(y) if x = 1

0 if y = 0

sin(x) if y = 1

(3.7)

Finally, there are two more problem that are used in this thesis which need introduction. Both problems are
Helmholtz problems that have an element of a more real-life engineering Helmholtz problem. The first of these
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problems is referred to as the wedge model problem, which is a two dimensional Helmholtz problem with
nonconstant wave number k̇(x, y) > 0. The wedge problem is given by the following boundary value problem.

−d2u(x,y)
d(x,y)2 − k̇(x, y)2u(x, y) = δ(x− 1

2 , y − 1), in Ω = [0, 1]× [0, 1] ∈ R2.(
∂u(x,y)

∂n − ik̇(x, y)u(x, y)
)
= 0, for (x, y) ∈ ∂Ω,

k̇(x, y) ∈ R\{0} for (x, y) ∈ Ω.

(3.8)

As opposed to the previous boundary value problems, this boundary value problem has a harmonic source
term on the top boundary of the unit square domain. Additionally, the wedge boundary value problem has a
Sommerfeld radiation condition on the whole boundary and a wave number that is spatially dependant. The
following definition is given for k̇(x, y):

k̇(x, y) =


k ,if (x, y) ∈ {x, y ∈ Ω | y ≥ 0.75− 0.2x}
k − 0.5k ,if (x, y) ∈ {x, y ∈ Ω | (y < 0.75− 0.2x) ∧ (y > 0.25 + 0.2x)}
k ,if (x, y) ∈ {x, y ∈ Ω | y ≤ 0.25− 0.2x}

, with k ∈ N. (3.9)

This equation for k̇(x, y) translates to a domain that looks as given in Figure 3.1 with A = 0.75, B = 0.55, C =
0.45 and D = 0.25.

Figure 3.1: Illustration the wedge problem domain with X indicating
the location of the harmonic source term.

The second problem which has an element of a real-
life engineering Helmholtz problem is the 3D MP-1
problem, since most engineering problems are 3D
problems. The boundary value problem for this prob-
lem is not given, since it is just the 3D version of MP-
1.

The next section shows the discretization of the
domain and boundary conditions and the appli-
cation of a finite difference approximation to the
PDE. Which results in a linear system of equa-
tions that describes a certain boundary value prob-
lem. These steps are shown only for MP-1 and MP-
2.

3.3 Finite Difference Method

In this section the finite difference method in the 2D
case of MP-1 of equation (3.2) and MP-2 of equation
(3.3) are discussed. First the domain is discretized.
Suppose we discretize the domain Ω = [0, 1] × [0, 1]
uniformly with mesh size h = 1/(n − 1) with n being
the number of grid nodes in one dimension. This re-
sults in the discretized grid Gh, which has n2 nodes
including the boundary nodes and the discrete grid is defined as

Gh = {(xi, yj)|xi = (i− 1)h, yj = (j − 1)h; h = 1/(n− 1), 1 ≤ i, j ≤ n, n ∈ N} . (3.10)

And since we also need a discretization of the physics we also have

u(xi, yj) ≈ uh(xi, yj) for (xi, yj) ∈ Gh,

f(xi, yj) ≈ fh(xi, yj) for (xi, yj) ∈ Gh,

A global ordering of the grid nodes is defined in order to construct a linear system formulation. The bound-
ary nodes are included in linear system formulation. For the internal and boundary nodes x-lexicographical
ordering is introduced. The nodes with coordinates (i, j) are assigned a global index by

I = i+ (j − 1)(n), for 1 ≤ i, j ≤ n+ 1 (3.11)
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At the end of this section we want to have a linear system with the discrete solution uh which describes MP-1
and MP-2. A linear system is defined as

Ahuh = fh. (3.12)

The exact solution, evaluated on the grid nodes, is denoted by uh
ex.

On the grid Gh, a second order accurate finite difference scheme to discretize the PDE of equation (3.2) or
(3.3) is applied. The finite difference approximation for the internal nodes of the PDE is given by

−uh
i,j−1 − uh

i−1,j + 4uh
i,j − uh

i,j+1 − uh
i+1,j

h2
− k2uh

i,j = fh
i,j , for 2 ≤ i, j ≤ n− 1. (3.13)

The 5-point stencil for the internal nodes is given by:

h−2

 0 −1 0
−1 4− k2h2 −1
0 −1 0

 .

For the 2D boundary value problem of equation (3.3) with Sommerfeld radiation conditions stencils for the
boundary nodes can be given. For the boundary nodes there are two cases:

• 4 corner nodes,

• remaining boundary nodes.

Starting with the remaining boundary nodes. Looking, for example, at uh
1,j with 2 ≤ j ≤ n− 1, then we find the

stencil

h−2

0 −1 0
0 4− k2h2 − 2ikh −2
0 −1 0

 .

In order to obtain symmetry of the linear system matrix Ah later on, a rescaling is often performed. This gives
the following stencil

h−2

0 − 1
2 0

0 2− k2h2

2 − ikh −1
0 − 1

2 0

 ,

where we replace fh
1,j by 1

2f
h
1,j for 2 ≤ j ≤ n − 1. For the other boundary nodes of the remaining boundary

nodes case, the stencils can be found in the same way.
For the 4 corner nodes case something similar is done. For example, for the corner node of uh

1,1, the following
stencil is found

h−2

0 −2 0
0 4− k2h2 − 4ikh −2
0 0 0

 ,

Also for these boundary nodes rescaling is performed. This give the following stencil for uh
1,1

h−2

0 − 1
2 0

0 1− k2h2

4 − ikh − 1
2

0 0 0

 ,

where we replace fh
1,1 by 1

4f
h
1,1. The same thing is done for the other corner boundary nodes.

For the 2D boundary value problem with Dirichlet boundary conditions of equation (3.2), different stencils have
to be defined for the boundary nodes. The stencil of the boundary nodes is then simply given by0 0 0

0 1 0
0 0 0

 ,

with the value on the boundary replacing the corresponding value of fh
i,j . In the case of using homogeneous

Dirichlet boundary conditions the boundary value is 0 for the whole boundary, so all the boundary nodes get
fh
i,j replaced by 0.

Now lets define the size of Ah. For the linear system of 2D MP-2 where the boundary nodes are not eliminated
we have:

Ah ∈ Cn2×n2

, and uh, fh ∈ Cn2
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C above is replace by R for 2D MP-1.

Using the stencils, details about the matrix Ah can be given. It is straight forward to give the linear system
formulation of 2D MP-1 of equation (3.2).

Ah =
1

h2



h2Ihn+1 0 · · · · · · · · · · · · 0

0 T̂h −Îh 0 · · · · · · 0

0 −Îh T̂h −Îh 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 −Îh T̂h −Îh 0

0 · · · · · · 0 −Îh T̂h 0
0 · · · · · · · · · · · · 0 h2Ihn+1


∈ Rn2×n2

(3.14)

with

Îh =

 0 0 0
0 Ihn−1 0
0 0 0

 ∈ Rn×n , T̂h =

 h2 0 0
0 Th 0
0 0 h2

 ∈ Rn×n, (3.15)

Th =


4− k2h2 −1 0 . . . · · · 0

−1 4− k2h2 −1 0 · · · 0
...

...
...

...
...

...
0 . . . 0 −1 4− k2h2 −1
0 · · · · · · 0 −1 4− k2h2

 ∈ R(n−2)×(n−2) (3.16)

and Ihn−2, Ihn are identity matrices on R(n−2)2×(n−2)2 and Rn2×n2

, respectively. For this boundary value problem
it is also possible to give a closed-form expression for the eigenvalues of the matrix (3.14).

The linear system formulation for 2D MP-2 of equation (3.3) is given by

Ah =
1

h2



Ĩh İh 0 · · · · · · · · · 0

İh T̃h İh 0 · · · · · · 0

0 İh T̃h İh 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 İh T̃h İh 0

0 · · · · · · 0 İh T̃h İh

0 · · · · · · · · · 0 İh Ĩh


∈ Cn2×n2

(3.17)

with

Ĩh =



β − 1
2 0 . . . · · · · · · 0

− 1
2 α − 1

2 0 · · · · · · 0
0 − 1

2 α − 1
2 0 · · · 0

...
...

...
...

...
...

...
0 . . . 0 − 1

2 α − 1
2 0

0 . . . . . . 0 − 1
2 α − 1

2
0 · · · · · · · · · 0 − 1

2 β


∈ Cn×n, (3.18)

where β = 1− k2h2

4 − ikh and α = 2− k2h2

2 − ikh and

T̃h =



α −1 0 . . . · · · · · · 0
−1 γ −1 0 · · · · · · 0
0 −1 γ −1 0 · · · 0
...

...
...

...
...

...
...

0 . . . 0 −1 γ −1 0
0 . . . . . . 0 −1 γ −1
0 · · · · · · · · · 0 −1 α


∈ Cn×n, (3.19)

where γ = 4− k2h2 and α is the same as before.
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And finally,

İh =



− 1
2 0 0 . . . · · · · · · 0
0 −1 0 0 · · · · · · 0
0 0 −1 0 0 · · · 0
...

...
...

...
...

...
...

0 . . . 0 0 −1 0 0
0 . . . . . . 0 0 −1 0
0 · · · · · · · · · 0 0 − 1

2


∈ Rn×n, (3.20)

As already noted earlier, for the boundary value problem with Sommerfeld radiation conditions enforced on the
boundary it is not possible to give a closed-form expression of the eigenvalues of the coefficient matrix (3.17).

For writing convenience the discretized domain Gh is from now on just denoted with G. Also we now denote
the vectors uh and fh by u and f, respectively. Finally, the matrix Ah is denoted by A for convenience.
Thus the linear system of equation (3.12) is now written as

Au = f, on G. (3.21)

For MP-1, we find that the coefficient matrix A is indefinite real symmetric. For MP-2, which has a Sommerfeld
radiation condition on the whole boundary, the coefficient matrix A is complex symmetric, but non-Hermitian.

For the 1D MP-1 problem (Equation (3.2)) we have already found that the exact eigenvalues and eigenfunctions
are given by

ϕn = sin(nπx), (3.22)

λn = n2π2 − k2 , for n = 1, 2, 3, . . . ,with k2 ̸= n2π2 (3.23)

The discrete eigenvalues and eigenfunctions for the same boundary value problem are

λ̂l =
1

h2

[
2− 2 cos(lπh)− k2h2

]
,

l = 1, 2, 3, . . . , n
(3.24)

and

ϕ̂i = sin(iπx), 1 ≤ i ≤ n (3.25)

where x = [xi] , 1 ≤ i ≤ n represents the grid vector on the 1D version of G.

For the 2D MP-1 problem the exact eigenvalue and eigenfunction expressions are given by

ϕn,m = sin(nπx) sin(mπy) , for n,m = 1, 2, 3, . . . (3.26)

λn,m = n2π2 +m2π2 − k2 , for n,m = 1, 2, 3, . . . ,with k2 ̸= n2π2 +m2π2. (3.27)

The related discrete eigenvalue are given by

λ̂i,j =
1

h2

[
4− 2 cos(iπh)− 2 cos(jπh)− k2h2

]
i, j = 1, 2, 3, . . . , n

(3.28)

and the discrete eigenfunctions by

ϕ̂i,j = sin(iπx) sin(jπy), 1 ≤ i, j ≤ n (3.29)

with x and y being the grid vectors from the 2D discrete domain G.

3.4 Direct Method

Most of the information from this section is from the Scientific Computing lecture notes by C. Vuik and D.J.P.
Lahaye [34]. One way of solving the system of linear equations of equation (3.21)is by using direct solution
methods. These methods are often the method of choice when dealing with problems of moderate size. Often,
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direct solution methods are used as subdomain solvers when using domain decomposition methods or multi-
grid methods.

In this thesis we use the Gaussian elimination method with an LU-decomposition. The direct method consists
of two stages. First, the coefficient matrix A from equation (3.21) is decomposed into an upper triangular matrix
U and a lower triangular matrix L where the diagonal of L are all 1’s. The decomposition is done in such a way
that A = LU .
After the decomposition, the linear system of equation (3.21) can be easily solved using a forward linear solve
followed by a backward linear solve. The linear system is solved with the following algorithm

LUu = f =⇒ Ly = f, followed by Uu = y. (3.30)

This gives the solution u of equation (3.21). The computational cost of the LU-decomposition is O( 23n
3). Be-

cause of this, the speed of this method highly depends on the size of the problem. It is for this reason that
iterative methods are used when dealing with large systems of linear equations. Currently, the state-of-the-art
iterative methods are preconditioned Krylov subspace methods.

3.5 Krylov Subspace Methods

This section studies Krylov subspace methods as iterative methods for solving systems of linear equations.
The reason for using a Krylov subspace iterative method to solve a linear system is because these iterative
solution methods are faster then direct methods for large linear system. As with the previous section, a lot
of information of this section comes from [34]. Krylov subspace methods are designed to avoid matrix-matrix
operations, since these operations are computationally costly. Instead, Krylov subspace methods rely on
multiplying vectors by the matrix. For using Krylov subspace iterative methods, the sequence of iterations of is
denoted by

{uk}k≥0 where uk → u for k → ∞ (3.31)

For the Richardson iterative method, the iterative scheme can be written in terms of residuals rk := f−Auk as

uk+1 = uk +M−1rk,

with the initial guess u0 given, and where A = M −N with M assumed to exist and be non-singular. With no
additional information, it is recommended that the initial guess is zero [28]. Writing out the first few steps of the
recursion shows that

uk ∈ u0 + span
(
M−1r0,M−1A(M−1r0), ..., (M−1A)k−1(M−1r0)

)
The Krylov-space of dimension k of matrix A with initial residual r0 is then defined as

Kk(A; r0) := span
(
r0, Ar0, ..., Ak−1r0

)
The most well known Krylov subspace iterative methods are CG(Conjugate Gradient), GMRES(generalized
minimum residual) and Bi-CGSTAB(biconjugate gradient stabilized). These methods all have their require-
ments when they can be used and when they are optimal to use.

• CG: the matrix A should be symmetric positive definite (SPD). This method is one of the best iterative
methods, but is limited due to its requirements.

• GMRES type methods: These iterative method can be used for general matrices. These methods have
long recurrences, but they do have some optimality properties

• Bi-CG type methods: Applicable for general matrices. The methods have short recurrences, but do not
have an optimality property.

Because the matrix A will not be SPD for the Helmholtz problem, the CG method can not be used and will
therefore also not be discussed any further.
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3.5.1 Bi-CGSTAB

The Bi-CG Stabilized algorithms was introduced in [9]. The method is a Krylov subspace method that can
be used for general matrices. The precondtioned algorithm of the Bi-CGSTAB method can be found below.
More details about preconditioned linear systems can be found in the following section. The information about
Bi-CGSTAB given in this subsection is from [34]. More details about the method can also be found in [34].

Algorithm 1: Preconditioned Bi-CGSTAB Algorithm
u0 is an initial guess; r = f −Au0;
r̄0 is an arbitrary vetor, such that (r̄0, r0) ̸= 0, e.g. for r̄0 = r0;
ρ−1 = α−1 = ω−1 = 1; v−1 = p−1 = 0;
for i = 0, 1, 2, ... do
ρi = (r̄0)T ri;βi−1 = (ρi/ρi−1)(αi−1/ωi−1);
pi = ri + βi−1(pi−1 − ωi−1vi−1);
p̂ = M−1pi;
vi = Ap̂;

αi = ρi/
(
r̄0
)T

vi;
s = ri − αiv

i

if ∥s∥ < On where n > 0 is small, then
ui+1 = ui + αip̂;

end if
z = M−1s;
t = Az;
ωi = t⊤s/t⊤t;
ui+1 = ui + αip̂+ ωiz;
if ui+1 < On where n > 0 is small, then

ri+1 = s− ωit;
end if

end for

3.5.2 GMRES

The General Minimal RESidual (GMRES) method is based on the MINRES method. The details about the
GMRES method come from [34].
Instead of using the Lanczos method, the GMRES algorithm uses the Arnoldi method. The GMRES algorithm
can be found below.

Algorithm 2: GMRES

Choose u0 and compute r0 = f −Au0 and v1 = r0/
∥∥r0∥∥

2
,

for j = 1, . . . , k do
vj+1 = Avj;
for i = 1, . . . , j do
hij :=

(
vj+1

)⊤
vi,vj+1 := vj+1 − hijv

i,
end for
hj+1,j :=

∥∥vj+1
∥∥
2
,vj+1 := vj+1/hj+1,j

end for
The entries of upper k + 1× k Hessenberg matrix H̄k are the scalars hij .

3.6 Preconditioning

Typically, iterative methods are combined with preconditions to increase the speed of convergence. The speed
of convergence of iterative methods often depends of the condition number κ of the system matrix A. If the
eigenvalues are not well clustered, the condition number will be large which would cause slow convergence.
Preconditioning is used to cluster the eigenvalues more favorably and therefore speed up the iterative method.
In order to understand the following to section, knowledge of the reader about basic iterative methods is nec-
essary because these are the building blocks preconditioning in a Krylov subspace context.

The preconditioner is a matrix M which is similar to the matrix A. By using a preconditioner the linear system
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of Equation (3.21) is transformed into the linear system

M−1Au = M−1f. (3.32)

M−1 has the following requirements:

• the eigenvalues of M−1A needs to be clustered more favourably then the eigenvalues of A,

• computing M−1f should be low cost.

When the matrix A is SPD the condition number is given by

κ(A) =
λmax(A)

λmin(A)
. (3.33)

If the matrix is not SPD, then the condition number is more difficult to define. As noted earlier, when the
Sommerfeld radiation condition is used the coefficient matrix becomes complex symmetric, but non-Hermitian,
which introduces difficulties. The matrix A being non-normal results the condition number of the eigenvector
matrix being larger than one. For GMRES it has been shown that if the coefficient matrix A is non-normal but
diagonalizable the convergence of A behaves the same as if A was normal. This means that the convergence
rate of non-normal A for GMRES does not explicitly depend on its eigenvalues, but the eigenvalues do influ-
ence the rate of convergence significantly.

3.6.1 Complex Shifted Laplacian Preconditioner

One of the preconditioners studied for the Helmholtz problem is the Complex Shifted Laplacian Preconditioner
(CSLP) [22, 23]. The CSLP is defined as

MCSLP := −∇2
h − (β1 + iβ2)k

2Ih = −∆h − (β1 + iβ2)k
2Ih, β1, β2 ∈ [0, 1], (3.34)

where ∆h is the discrete Laplacian operator and i is the imaginary unit. β1 and β2 represent the real and
complex shift in the preconditioner, where the preconditioner is optimal for (β1, β2) = (1, 0.5) [24].
Using the CSLP greatly benefits the convergence behavior of the iterative method. The CSLP clusters the
eigenvalues on the complex plane on a unit circle with the left side of the circle being the origin, if β1 = 1
[28]. When the wave number is small only some eigenvalues lay around the origin, but when the wave number
increase the number of eigenvalues close to 0 increases. Consequentially, this makes the iterative solver with
the CSLP not numerically scalable since the smallest eigenvalue keeps becoming smaller, which causes the
number of iterations needed for convergence to keep increasing.
The matrix MCSLP can be approximately or exactly inverted. In [22, 23, 42] one multigrid iteration is used to
approximately invert the preconditioning matrix.
Specifically, one V (1, 1) multigrid iteration is often used to approximately invert the preconditioning matrix.
V (1, 1) means that the multigrid method uses a V type cycle with 1 pre-smoothing step and 1 post-smoothing
step.
It should be noted that when β1 = 1, we find that the smaller β2 the fewer eigenvalues are close to the origin.
And the fewer eigenvalues close to the origin is favorable for the convergence of the preconditioned Krylov
method. But, also note that the smaller β2 the harder it is to do an approximate inversion of the precondi-
tioner using multigrid, i.e. the higher β2, the longer it takes for the multigrid method to converge and find the
approximate inverse of the preconditioning matrix [38, 28].

3.6.2 Deflation

Deflation preconditioning is a method of removing the smallest eigenvalues. The removing is done by deflating
the small eigenvalues all the way to 0. Eigenvalues that are 0 do not harm the convergence behavior and are
ignored when computing the condition number of the preconditioned matrix Â.

Details about the deflation method are given in the case of having a 1D problem. Assume we have the one
dimensional linear system of equations Au = f, with A ∈ Rn×n. In order to describe the deflation method the
projection PD is defined as

PD = I − P = I −AZ
(
ZTAZ

)−1
ZT , Z ∈ Rn×r. (3.35)

In the equation above I is the identity matrix, and the column space of the matrix Z is the deflation subspace.
The deflation subspace is the space that is to be projected out of the residual. Furthermore, we assume that Z
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has rank r and r ≪ (n). We also define the matrix E ∈ Rr×r where E = ZTAZ. The matrix P is a projection
which projects an input vector ν ∈ Rn to the deflation subspace. But we are not interested in the deflation
subspace, we are interested in the null space of the deflation subspace. PD projects on the null space of P .
Thus PD projects on the null space of the deflation subspace.We know that another projector is defined as

PT
D = I − ZE−1ZTA. (3.36)

The solution u of equation (3.21) can be written as

u = (I − PT
D)u + PT

Du. (3.37)

Only PT
Du needs to be computed, since

(
I − PT

D

)
u is computed very easily as(

I − PT
D

)
u = ZE−1ZTAu = ZE−1ZT f.

We know that PDA = APT
D , thus the deflated system is given by

PDAũ = PDf (3.38)

Using a Krylov subspace iterative method the solution ũ can now be found. Multiplying ũ by PT
D and adding it

to equation (3.37) gives the solution to the linear system of equation (3.21).
Note that the null space never enters the iterative method. Therefore, the zero eigenvalues have no influence
on the convergence of the iterative method. This is the reason for using the deflation method.

Applying deflation preconditioning comes with some difficulties. Deflation preconditioning is often not used in
combination with the GMRES method, since the deflation method requires the original system matrix to be
positive semi definite and self-adjoint. For the Helmholtz problem these requirements do not hold. Because
the requirements do not hold it could be that the projections are ill-defined. Therefore, conditions for the matrix
A and AZ can be given such that deflation is possible when the system matrix A is not positive semi definite
and self-adjoint [31]. The following theorem is given in [31]

Theorem 1 (Deflated GMRES). Let Au = f be a linear system with A non-singular, A ∈ Cn×n, b ∈ Cn and
Z a subspace of Cn×n with dimension dim(Z) = r < n. Furthermore, let θZ,AZ < π

2 , where θZ,AZ denotes
the principle angle between the subspaces Z and AZ. Then the project matrix PD := PDu = (I − P )u =
u − AZ⟨Z,AZ⟩−1⟨Z,u⟩, u ∈ Cn is well-defined. Moreover, for all initial guesses u0, the GMRES method
applied to the deflated system is well-defined.

Proof. The proof of this theorem can be found in [31], in section 3.3 theorem 3.9

To conclude, all that is needed in order to apply the deflated GMRES to the projection matrix PD is that the
original system matrix A is non singular and that the principle angle between the subspaces Z and AZ is less
than π

2 . This condition holds for all the subspaces used in this thesis.
Because this theorem does not apply to Bi-CGSTAB Krylov method, and because there is no equivalent the-
orem for the Bi-CGSTAB, the Bi-CGSTAB iterative method will not be used or discussed any further. The
application of deflation preconditioning and Schwarz domain decomposition is essential in the work of this
study. Therefore, this study will continue by using the GMRES Krylov method as the basis of its iterative
solvers.

With the general background information about the deflation given, it is now possible to choose the deflation
vectors as the columns of Z ∈ C(n)×r for the Helmholtz problem. Many options are available for Z and the
choice of the deflation vectors is crucial for the success of the deflation method.
The goal of deflation is to remove the eigenvalues corresponding to the r smallest eigenvalues from the solu-
tion subspace. It is therefore natural to pick the eigenvectors corresponding to these r smallest eigenvalues
as columns of Z. Choosing the matrix Z as such, results in the r smallest eigenvalues becoming zero. Even
though this choice of column of Z is effective, it is also expensive. Computing the eigenvectors corresponding
to the r smallest eigenvalues is computationally hard to do for large matrices.
Instead of computing the eigenvectors exactly, it is also possible to compute approximations of the eigenvectors
corresponding to the r smallest eigenvalues. One possible approximation of the eigenvectors are the constant
deflation vectors [4]. The domain Ω is divided into subdomains and the eigenvectors are approximated with
constant deflation vectors in each subdomain. Each column of the matrix Z will then have ones at the grid
index of the corresponding subdomain and zero everywhere else.
Another possibility is to use linear deflation vectors. These require more computational work compared to the
constant deflation vectors, but they approximate the eigenvectors of the subdomains better.
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Besides eigenvalue-based deflation, it is also possible to construct physics-based deflation vectors or algebraic
deflation vectors. Only eigenvalue-based deflation is discussed in this report.
In the following chapter domain decomposition as a preconditioner is discussed. Deflation and domain decom-
position are methods with a lot of similarities.

3.6.3 Deflation-based Preconditioner

In [42] several deflation preconditions for the Helmholtz problem are given and tested numerically. The goal in
the article is to construct a preconditioner that is wave number independent. The preconditioners in the article
mostly consist of a CSLP in combination with deflation using a coarse correction operator as the deflation
matrix Z from equation (3.35). This means that Z = Ih2h. Several different definition for Ih2h varying in order and
if a weight is included in the coarse correction operator are given in [42].
Combining Deflation and CSLP preconditioning results in having to solve the following linear system

M−1
CSLPPDAu = M−1

CSLPPDf. (3.39)

When using a standard linear grid interpolation function the preconditioning scheme is referred to as a DEF-
based preconditioner. The most promising preconditioner from the article, based on the numerical results, is
given when the coarse correction operator in 1D is defined as

Ih2h [u2h]i =


(

1
8 [u2h](i−2)/2 +

(
3
4 − ε

)
[u2h](i)/2 +

1
8 [u2h](i+2)/2

)
if i is even,

1
2

(
[u2h](i−1)/2 + [u2h](i+1)/2

)
if i is odd

 (3.40)

for i = 1, ..., n and ε > 0. The definition for ε is given by

ε = 0.75−
(
cos(lπh)− 1

4
cos(2lπh)

)
. (3.41)

The method of preconditioning which uses equation (3.40) is referred to as the the Adapted Preconditioned
DEF scheme (APD). This method uses higher-order interpolation polynomials for the coarse correction oper-
ator, which is a quadratic approximation using the rational Bézier curve. Most often equation (3.41) is used to
compute the optimal value for ε, but numerical tests are also performed using ε = 0.
After some numerical testing the article shows close to wave number independent convergence using the APD
Helmholtz solver.

In order to keep track of the DEF-based scheme and the APD scheme we introduce that notation ∼ for PD

(or simply P ) of the APD scheme. In Figure 4.3 the real and imaginary eigenvalues of the two deflation
preconditioners (DEF and APD) are plotted for different wave numbers and different values of κ. One of
the things we can conclude from the figures is that for very large wave numbers both preconditioner still have
problems. This can seen since both preconditioned linear systems have eigenvalues that are not well clustered
in the right column plots. Additionally, for the middle and left column we can see that the APD preconditioner
performs better than the DEF precondtioner, since the eigenvalue clustering of the APD preconditioner is more
favourable.
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(a) κ = 0.625

(b) κ = 0.3125

Figure 3.2: The eigenvalues of the linear system with APD scheme indicated by P̃M−1A (diamond marker) and of the linear system with
DEF-based scheme indicated by PM−1A (dot marker). In the top row κ = 0.625 and in the bottom row κ = 0.3125

Building on top of the APD scheme findings, a multilevel deflation preconditioner is constructed in [43]. The
original APD is called a two-level deflation preconditioner, since it only uses a fine and a coarse grid. By intro-
ducing more layers of grids, the preconditioner becomes a multilevel deflation preconditioner.
It is important to note that instead of using a multigrid method on each level this article uses an exact solve on
the coarsest level or when n is lower then a certain threshold and a few-GMRES iterations for the other levels.
Earlier we said that due to the multigrid method β2 had to be kept large, but when it is possible to use β2 = 1/k,
which provides optimal convergence when using GMRES as an iterative method and a direct method [36].
Using the multilevel deflation preconditioner the article finds by numerical experiments that the solver is almost
numerically scalable and efficient. When Sommerfeld radiation conditions are used in the numerical experi-
ments the article finds wave number independence for the number of iterations needed for convergence. It
also find that the time complexity with respect to the number of grid nodes is somewhere between O(n1.5) and
O(n), i.e. more or less linear time complexity.
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4 | Domain Decomposition Methods as a
Preconditioner

As seen in the previous chapter, it sometimes occurs that a linear system becomes difficult to be solved as a
consequence of the problem size of the linear system. The basic idea of domain decomposition is that instead
of solving the large linear system problem, the domain is split into subdomains and these subdomain problems
are then solved. Due to the fact that domain decomposition methods solve many local subdomain problems,
the method allows for parallel computing.
Domain decomposition methods (DDMs) are either iterative methods or preconditioners for iterative methods.
For this research, we are interested in using DDMs as preconditioners to accelerate the convergence of Krylov
subspace methods. This means that DDMs are used to define M−1, which approximates the inverse of the
coefficient matrix of the linear system of equations A−1. More information about the field of domain decompo-
sition methods is found in [11, 18, 21, 35].

Figure 4.1: 2D domain with overlapping subdomains.

The first example of a domain decomposition method
is the alternating method by the mathematician H.A.
Schwarz, which was published in 1870 [1]. Schwarz
originally developed the method as a tool for prov-
ing the existence of a unique solution to the Laplace
problem for an arbitrary domain [30]. In his method
he used overlapping domains as in Figure 4.1.
For this reason, overlapping domain decomposition
methods are still referred to as Schwarz domain de-
composition methods. P.L. Lions developed abstract
theory on the alternating Schwarz method [52, 7, 53].
Domain decomposition methods are often divided
into two classes. These classes are overlapping
methods, also called Schwarz methods, and non-
overlapping methods, sometimes called substructur-
ing methods. In this thesis, only Schwarz domain de-
composition methods are used.

In the previous chapter, iterative Krylov subspace solution methods were introduced to solve a linear system of
equations arising from a finite difference method discretization. There, we saw that the convergence behavior
of a Krylov subspace method strongly depends on the condition number of the system matrix A. In order to
improve the distribution of the eigenvalues, and therefore to improve the condition number, a preconditioner is
used. Also in the previous chapter, the CSLP and deflation preconditioners were discussed as preconditioners
to obtain a more favourable spectrum for the linear system.
In this chapter, domain decomposition methods as preconditioners are explored. This means that the dif-
ferent domain decomposition methods yield definitions for the preconditioner operator M−1. Some Schwarz
domain decomposition preconditioners are well-suited for parallel computing. Ultimately, we are interested in
constructing a Helmholtz solver that is numerically scalable and efficient. Therefore, we will look at Schwarz
preconditioners that can be implemented in parallel. A solver that allows for parallelization could result in the
solver having a linear time complexity, but this is not investigated in this research.

This chapter is divided in the following way. In the first section, the Schwarz theory and one-level Schwarz
preconditioners are discussed. After that, details about two-level Schwarz preconditioners are given. Next,
different types of coarse spaces, which appear in two-level Schwarz preconditioners, are discussed. The order
of the topics is chosen such that the topics naturally build on top of each other. In Section 4.4 details are
given on using Schwarz preconditioners in a finite difference methods setting. Finally, preliminary results of the
one-level preconditioners of this chapter can be found in the final section of this chapter.

4.1 One-Level Schwarz Domain Decomposition Methods

The most simple Schwarz domain decomposition methods are the one-level Schwarz domain decomposition
methods. These methods decompose the domain into overlapping subdomains and solve the subdomain
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problems instead of the global problem. One-level Schwarz domain decomposition preconditioners were first
introduced in [2, 3].
It should be noted that the literature on domain decomposition methods is mainly written for finite element
methods (FEM). Therefore, this chapter is also written for finite element methods.

Figure 4.2: On the left a 3D mesh with non-overlapping subdomains {Ωi} is given. On the right a 3D mesh with overlapping subdomains
{Ω′

i} is given with δ = 1h. Taken from [37]

Consider an elliptic partial differential equation with homogeneous Dirichlet boundary conditions on a polygonal
domain Ω ⊂ Rd, with either d = 2, 3. Next, the domain is discretized leading to a triangulation Th of Ω, with
maximum mesh size h. A finite element approximation is applied to the problem which results in a sparse linear
system

Au = f, (4.1)

where u is the vector of which its coefficients are the discrete values of the approximate solution of the boundary
value problem in the elements of Th. The domain Ω is partitioned into N non-overlapping subdomains, which
results in the set of non-overlapping subdomains {Ωi}Ni=1 with diameter Hi indicating the maximum diameter
of the subdomains. For these subdomains non-overlapping local meshes Ti are given by the elements of Th
which belong to subdomain Ωi.
The non-overlapping subdomains {Ωi} can be extended by adding layers of elements in such a way that the
boundary of the extend subdomain does not cut through any elements of the mesh Th. For the subdomains
that adjacent to the boundary of Ω we can do the same thing, but we do not extend outside of Ω. This now
gives rise to N overlapping subdomains Ω′

i with a maximum diameter of the subdomains H ′
i. The local mesh

T ′
i of Ω′

i consist of the elements of Th which belong to the overlapping subdomain Ω′
i. This holds for all the

overlapping subdomains. Figure 4.2 illustrates non-overlapping and overlapping subdomains for a 3D mesh
where the elements have a maximum mesh size of h. The space V is a continuous, piecewise linear finite
element space on Th, where the elements vanish on the boundary ∂Ω. For T ′

i the finite element solution
spaces Vi are defined by

Vi =
{
u ∈ H1

0 (Ω
′
i) | u |K ∈ P1,K ∈ T ′

i

}
, 1 ≤ i ≤ N, (4.2)

where K indicates an element in a local overlapping mesh.
The natural extension operators are

RT
i : Vi → V, (4.3)

sometimes also referred to as prolongation operators, and respective Ri operators are often called restriction
operators. The space V is assumed to decompose as

V =

N∑
i=1

RT
i Vi. (4.4)

Note that the decomposition will not necessarily be a direct sum of subspaces. A component of V can be rep-
resented in terms of components of Vi, but its representation is not necessarily unique. This is a consequence
of Vi being subspaces related to the overlapping subdomains. Also, Vi is not necessarily subspace of V , but
{Vi} are referred to as ‘local spaces’ or ‘subspaces’.
Now, the local coefficient matrices of subdomains {Ωi} and local space {Vi} are given by

Ai = RiART
i , for i = 1, ..., N. (4.5)
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The matrix Ai represents part of matrix A corresponding to the subdomain Ωi. Equation (4.5) is for the case of
using local exact solvers, which means that a direct solution method is used for solving the local subproblems
{A−1

i }. For the Helmholtz problem, it has also been proposed to use inexact solvers to solve the local problems
[45]. Inexact solvers can be particularly useful for 3D high frequency Helmholtz problems for which the local
subdomain problem might be too large for a direct solution method. The proposed inexact solution method in
[45] is a two-level deflation preconditioner with flexible GMRES, which shows promising results.

We define Bi by
Bi = RT

i A
−1
i Ri, for i = 1, ..., N. (4.6)

Next, we define project-like operators

Pi = BiA, for i = 1, ..., N, (4.7)

which are used to define the Schwarz operators. One of the properties of the Pi operators is that an operator
is a projection, i.e. P 2

i = Pi.
Now we can define a number of different Schwarz preconditioners.

4.1.1 Multiplicative Schwarz Method

The use of alternating Schwarz methods on boundary value problems has become to be known as the multi-
plicative Schwarz (MS) method. We can now define the MS preconditioner as

M−1
MS = I − (I −BN )(I −BN−1)...(I −B1), (4.8)

with I being the appropriately sized identity matrix and {Bi}Ni=1 are as defined in Equation (4.6) [11].

The MS method requires sequential computations of the subdomain problems. Using the MS method for the
one-level part of Schwarz preconditioners is omitted from this research, since we are interested in developing
preconditioners that allow for parallelization. Without parallel computing, the MS method is faster than the
additive Schwarz method as a preconditioner, since the convergence rate is better [35]. When looking at
two-level or multilevel Schwarz DDMs, the multiplicative coupling might again be useful.

4.1.2 Additive Schwarz Method

Summing the operators {Bi} results in an additive Schwarz (AS) preconditioner. Besides just the AS method,
some other variants of the AS method are also given in the next subsection to construct other Schwarz pre-
conditioners. These other Schwarz methods are called the restricted additive Schwarz (RAS) method [12, 44]
and the scaled additive Schwarz (SAS) method [44].
The one-level AS method was first introduced in [5] and [8]. The preconditioner matrix for the one-level AS
method is defined as

M−1
AS1 =

N∑
i=1

Bi =

N∑
i=1

RT
i A

−1
i Ri. (4.9)

One of the advantages of the AS method is that it is suitable for parallel computing, because the local problems
can all be solved independently of each other. Hence, the AS method has gained popularity in the last two
decades.

An upper bound for the condition number of the matrix M−1
AS1A is given in [18, p. 95]. For the condition number

it is found that
κ(M−1

AS1A) ≤ C(
1

δ2H2
), (4.10)

where δ is the width of the overlap between two subdomains and C depends on N c, which is the maximum
number of overlapping subdomains an element can belong to. The rate of convergence of the one-level AS
method combined with a Krylov method improves as that overlap of the subdomains increase up until some
point. When the overlap becomes roughly equal to or larger than H/2 the rate of convergence often deterio-
rates again. This deterioration occurs due to N c becoming larger, which increases C in Equation (4.10).
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4.1.3 Restricted and Scaled Additive Schwarz Method

The restriction/extension operators in Equation (4.3) can be seen as the sum of two terms Ri = R0
i +Rc

i , where
R0

i only includes the non-overlapping elements and Rc
i only includes the elements in the overlapping region

[18]. Using this, Cai and Sarkis introduced a new AS preconditioner [12] called the restricted additive Schwarz
(RAS) method, for which the preconditioner is defined as

M−1
RAS1 =

N∑
i=1

B̂i =

N∑
i=1

(R0
i )

TA−1
i Ri. (4.11)

The benefit of this new preconditioner is that when a parallel implementation is used for this preconditioner,
the communication cost can be lowered. This is because computing (R0

i )u with u ∈ V does not involve data
exchange with neighbouring subdomains. Additionally, it often results in faster convergence, although the RAS
preconditioner matrix is not symmetric anymore.

Due to the overlapping subdomains the following is not true
∑N

i=1 R
T
i Ri = I with I being the appropriately

sized identity matrix. By introducing diagonal Di which satisfies
N∑
i=1

RT
i DiRi = I, (4.12)

the double, or even more, counting of the elements in the overlapping regions is resolved [44]. Using this
matrices Di, the scaled additive Schwarz (SAS) preconditioner is defined as

M−1
SAS1 =

N∑
i=1

B̄i =

N∑
i=1

RT
i DiA

−1
i Ri. (4.13)

The benefit of using the SAS preconditioners is that it often needs fewer number of iterations to reach con-
vergence, without having much extra computational cost compared with the AS Schwarz preconditioner of
Equation (4.9). At the moment there seems to be no domain decomposition convergence theory for the one-
level SAS operator. The matrix M−1

SAS1 is not symmetric anymore, which is why developing theory can be
difficult.

4.2 Two-Level Schwarz Domain Decomposition Methods

It has been shown that the one-level Schwarz domain decomposition methods are not scalable with respect
to the number of subdomains. Additionally, it is quite easy to see from (4.10) that, if H decreases due to the
increase in the number of subdomains, the upper bound for the condition number increases for a fixed overlap
δ. By using a two-level Schwarz domain decomposition method, which includes a solve of a coarse problem,
this subdomain scalability problem can be avoided [35].
One-level overlapping Schwarz methods were originally extended to the two-level form in [5, 6, 8, 50] and more
details on two-level Schwarz methods can be found in [11, 18, 21].

Two-level Schwarz methods are given in terms of partitions of the domain Ω into subdomains Ωi, which are
unions of finite elements and the subdomains have a diameter of order H. Additionally, a coarse shape-regular
mesh TCH with a maximum coarse element diameter of CH is introduced. For the purpose of explaining the
two-level Schwarz methods, we assume that coarse mesh elements are given by the subdomain meshes Ti,
i.e. the coarse mesh has elements with diameter H (CH = H). We introduce the coarse finite element space
V0, which is defined as

V0 =
{
u ∈ H1

0 (Ω) | u |K ∈ P1,K ∈ TH
}
, (4.14)

and the coarse prolongation operator is given by

RT
0 : V0 → V. (4.15)

There are different options for choosing the coarse operator RT
0 and the type of coarse space. More details on

the definitions for the coarse level can be found in the next section.
By introducing a coarse space to the one-level AS preconditioner, the convergence rate of the algorithm can
be made independent of the number of subdomains [15, 35]. Using the one-level AS preconditioner and the
one-level SAS preconditioner from the previous section, two-level Schwarz preconditioners are constructed by
adding a coarse problem to the one-level preconditioners.
Next, let us define preconditioner operators for different two-level preconditioners used in this thesis.
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4.2.1 Two-Level Additive Schwarz Methods

The first of these two-level Schwarz preconditioning operators is the two-level AS operator, which is of the form

M−1
AS2 =

N∑
i=0

Bi = RT
0 A

−1
0 R0 +

N∑
i=1

RT
i A

−1
i Ri, (4.16)

where B0 corresponds to the coarse space V0 and the remaining Bi are associated with the local problems on
the subdomains from the set {Ωi}Ni=1. B0 is defined as

B0 = RT
0 A

−1
0 R0, (4.17)

and the matrix A0 is called the coarse problem, which is given by A0 = R0ART
0 . In this thesis, both the local

subproblems and the coarse problem will be solved using a direct solution method. Specifically, the Gaussian
elimination method with LU-decomposition.

The convergence behavior of the two-level AS method can be analysed by estimating the condition number of
M−1

AS2A. For the Laplace problem, when using equation (4.16) and a coarse operator as in equation (4.15), an
upper bound for the condition number is given by

κ(M−1
AS2A) ≤ C

(
1 +

H

δ

)
. (4.18)

The upper bound of the condition number and the proof of equation (4.18) are found in [21, Theorem 3.13, p.
69]. The constant C depends again on N c. For the Laplace problem, the constant C is independent of the
mesh size of TH , the mesh size of Th, and the overlap of the subdomains δ.
Equation (4.18) indicates that the two-level AS method can be scalable with respect to the number of subdo-
mains. Take each subdomain to include a certain number of elements and a certain number of elements of
overlap. The size each element depends on h. Now, the ratio of H/δ can be kept constant by adding more
of the same subdomains. Adding subdomains with a fixed number of elements per subdomain and a fixed
number of elements per overlap results in having to decrease the mesh size h, since the total number of el-
ements increases. This shows that we can keep adding subdomains, with H/δ constant, while increasing to
total problem size and keeping the upper bound of Equation (4.18) fixed. The two-level AS method having this
subdomain scalability property is key for the development of a Helmholtz solver that is wave number indepen-
dent and efficient, since the problem size has to increase with the wave number due to κh.

Another two-level Schwarz operator can be given using Equation (4.13). The two-level SAS preconditioning
operator is defined as

M−1
SAS2 = B0 +

N∑
i=1

B̄i = RT
0 A

−1
0 R0 +

N∑
i=1

RT
i DiA

−1
i Ri. (4.19)

Also for the two-level SAS method, there seems to be no literature on convergence theory of this method at
the moment, which is not surprising since there is also nothing on the one-level SAS method.

4.2.2 Two-Level Hybrid Schwarz Methods

Up until here, all the Schwarz preconditioner, besides the one-level multiplicative preconditioner, are con-
structed by summing over the operators {Bi}. If a Schwarz method uses a computation of summing multiplying
the operators {Bi} it is called a hybrid Schwarz method. One of the possible two-level hybrid Schwarz (HS)
preconditioners is given in [26]. In this section a HS method is given that is found in [44]. It is possible to
implement deflation into two-level Schwarz operators [44]. The two-level HS preconditioner from [44] uses an
‘adapted deflation technique’ and is defined as

M−1
HS2 = B0 +

(
N∑
i=1

RT
i A

−1
i Ri

)
(I −AB0) , (4.20)

where I is the identity matrix of appropriate size and P0 = (I −AB0) is a projection. P0 is similar to the project
PD from Equation 3.35. So P0 projects onto the null space of AB0.
Finally, the scaling of the SAS operators can also be added to the HS operator, resulting in the two-level scaled
hybrid Schwarz (SHS) preconditioner, which is defined as

M−1
SHS2 = B0 +

(
N∑
i=1

RT
i DiA

−1
i Ri

)
(I −AB0) , (4.21)
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with I being the identity matrix of appropriate size. For both the two-level HS and SHS operator, no domain
decomposition convergence theory seem to be available.

With these two-level Schwarz domain decomposition preconditions, the only thing missing from them is a
definition for the coarse operator R0.

4.3 Coarse Spaces for Two-Level Schwarz Methods

Our goal in this section is to give details on types of coarse spaces that can be used in two-level Schwarz meth-
ods. Often, the poor convergence performance of the one-level Schwarz methods is caused by slow modes,
which are the eigenvectors corresponding to the low frequency eigenvalues. The goal of a coarse space is to
incorporate these slow modes into the coarse space.
The construction of a coarse space V0 can be done is several ways. The most natural way is the grid coarse
space method [44]. A coarse space that is based on a coarse mesh is called a ‘grid coarse space’. The coarse
mesh that makes most sense to use is TH . For the coarse operator RT

0 , we defining it to be an interpolation
operator from the coarse mesh to the fine mesh. Consider the mesh TH and corresponding finite element
space V0 ⊂ V . Let Ih : V0 → V be the nodal interpolation operator and RT

0 be the corresponding matrix. In this
thesis, only grid coarse spaces are used. The main ingredient missing for constructing the different two-level
Schwarz preconditioners is this interpolation operator Ih, which will be defined in the next chapter.
Different options are available to define Ih. For example, linear interpolation or higher-order interpolation can
be used. This thesis focuses on coarse interpolation such as Ih in [42]. Details about linear and Bézier coarse
interpolation is found in Chapter 5.

Another possible type of coarse space for the two-level Schwarz method is the ‘spectral coarse space’ type. In
the construction of such a coarse space, spectral information from appropriate local eigenproblems is incorpo-
rated. The goal here is to incorporate the relevant spectral information in order to prevent slow convergence.
The Dirichlet-to-Neumann (DtN) coarse space is a spectral coarse space based on local DtN eigenproblems
on the subdomain interfaces. More details about this coarse space can also be found in [29] and [40]. The
generalised eigenproblems in the overlap (GenEO) coarse space is another spectral coarse space. Using a
GenEO-type coarse space is often more flexible and robust compared to a DtN coarse space [44]. GenEO-type
coarse space are being constructed specifically for the Helmholtz problem with two-level Schwarz precondi-
tioner solvers showing reasonable results for low wave numbers [44].

4.4 Schwarz Preconditioners for Finite Difference Discretizations

As mentioned at the beginning of this chapter, the literature on domain decomposition methods is mostly writ-
ten from a finite elements method. In this thesis, we make use of the finite difference method, which means
that some time should be taken to clearly transfer the ideas from this chapter to a finite difference method
perspective.

From now on, all subdomains are quasi uniform square (2D problems) or cube (3D problems) overlapping sub-
domains. The subdomains are quasi uniform square or cube since sometimes not all subdomains are the same
size, due to the subdomain on the boundary not being able to extend outside the domain, this also means they
are sometimes not square. In Figure 4.3 we can see how the subdomain change from being uniform squares
(a), to non uniform squares and rectangles (b).
The scenario with minimum overlapping subdomains Ωi, the scenario in Figure 4.3 (a), is taken as the standard
subdomain scenario. These subdomains are called ‘standard subdomains’ and they are from now on indicated
by Ω̄i. In the scenario of Figure 4.3 (a), the subdomain diameter of Ω̄i is H and we indicate the amount of
overlap of the Ω̄i standard subdomains with δ = 0. The overlap is not 0, since from Figure 4.3 (a) it can be
seen that the standard subdomains share grid nodes on each interfaces of the standard subdomains that are
not on the boundary of Ω (∂Ω̄i\∂Ω). We can increase the amount of overlap of the standard subdomain Ω̄i,
resulting in δ > 0 and the maximum subdomain diameter now being indicated by H ′.
From now on, a standard subdomain Ω̄i with δ > 0 is indicated by Ωi and it has both a H ′ and a H diameter
with often H ′ = H + 2δ. Note that Ω̄i ⊂ Ωi ∀i ∈ {1, 2, ..., N}. H always stays unchanged when δ increases,
since it is the standard subdomain diameter. In Figure 4.3 (b) the overlap is increased to δ = 1, since we have
extended the subdomains with 1h in all possible directions. Additionally, sometimes H ′ ̸= H + 2δ, due to the
subdomain being on the boundary of Ω. This is the case for the indicated H ′ in Figure 4.3 (b). In Figure 4.3
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(b) it can be seen that for the subdomain in the middle of Ω the statement H ′ = H + 2δ does hold.

(a) 2D grid domain image partitioned in 9 subdomains with overlap δ = 0,
n̄l = nl

i = 49 and n = (n∗)2 = 192 = 361.
(b) 2D grid domain image partitioned in 9 subdomains with overlap δ = 1,
n̄l = 49, nl

i = 64 or nl
i = 72 or nl

i = 81 and n = (n∗)2 = 192 = 361.

Figure 4.3: Grid images of subdomains with δ = 0 and δ = 1. The subdomains are indicated by the coloured areas. Additionally, red lines
mark the interfaces of the standard subdomains which are not on ∂Ω. h indicates the fine mesh size, H indicates standard subdomain
diameter, H′ indicates the subdomain diameter with δ > 0.

From now on, all subdomains are quasi uniform square (for 2D problems) or cube (for 3D problems) overlap-
ping subdomains. The subdomains are quasi uniform square or cube since sometimes not all subdomains
are the same size, due to the subdomain on the boundary not being able to extend outside the domain, this
also means they are sometimes not square. In Figure 4.3 we can see how the subdomain change from being
uniform squares (a), to non uniform squares and rectangles (b).
The scenario with minimum overlapping subdomains Ωi, the scenario in Figure 4.3 (a), is taken as the standard
subdomain scenario. These subdomains are called ‘standard subdomains’ and they are from now on indicated
by Ω̄i. In the scenario of Figure 4.3 (a), the subdomain diameter of Ω̄i is H and we indicate the amount of
overlap of the Ω̄i standard subdomains with δ = 0. The overlap is not 0, since from Figure 4.3 (a) it can be
seen that the standard subdomains share grid nodes on each interfaces of the standard subdomains that are
not on the boundary of Ω (∂Ω̄i\∂Ω). We can increase the amount of overlap of the standard subdomain Ω̄i,
resulting in δ > 0 and the maximum subdomain diameter now being indicated by H ′.
From now on, a standard subdomain Ω̄i with δ > 0 is indicated by Ωi and it has both a H ′ and a H diameter
with often H ′ = H + 2δ. Note that Ω̄i ⊂ Ωi ∀i ∈ {1, 2, ..., N}. H always stays unchanged when δ increases,
since it is the standard subdomain diameter. In Figure 4.3 (b) the overlap is increased to δ = 1, since we have
extended the subdomains with 1h in all possible directions. Additionally, sometimes H ′ ̸= H + 2δ, due to the
subdomain being on the boundary of Ω. This is the case for the indicated H ′ in Figure 4.3 (b). In Figure 4.3
(b) it can be seen that for the subdomain in the middle of Ω the statement H ′ = H + 2δ does hold.

In the finite element method setting, we had a domain Ω with mesh Th being the finite element mesh of Ω.
Instead of having a finite element mesh, we now use a uniform grid Gh, as given in Figure 4.3, with values
at the grid nodes of the mesh and mesh length h = 1

n∗−1 with n∗ being the number of grid nodes in one
dimension. The same goes for the subdomains Ωi for which the grids are indicated by Gi. The mesh size of
the Gi grids are still h and the grid includes all the grid nodes from Gh which belong to the subdomain Ωi.
A standard subdomain grid of a standard subdomain Ω̄i is indicated by Ḡi. The number of grid nodes for a
standard subdomain grid Ḡi is indicated by nl. No subscript is required for nl, since the standard subdomain
grids all always have the same total number of grid nodes. The number of grid nodes of a subdomain grid
Gi depends on in how many directions the standard subdomain can extend the overlap and on the amount of
overlap. We indicated the total number of grid nodes of a subdomain Gi by nl

i, also called the ‘local subdomain
size’. For example, in 4.3 (b) all the subdomain grids Gi have nl = nl

i = 36, n∗ = 19 and n = 361.
The coarse mesh is now indicated by GCH . We do not assume that the subdomain size is the same as the
coarse mesh size anymore, which is why the CH notation for the coarse mesh size returns. Additionally, the
total number of grid nodes in a coarse mesh is indicated by nc, which is also called the ‘coarse domain size’.
The size of the matrices of the fine, subdomain and coarse problems are

A ∈ Rn×n, Ai ∈ Rnl
i×nl

i , A0 ∈ Rnc×nc

, (4.22)

and the operators RT
i ,Ri,RT

0 ,R0 necessary for the Schwarz preconditioners have the sizes

RT
i ∈ Rn×nl

i , Ri ∈ Rnl
i×n, RT

0 ∈ Rn×nc

R0 ∈ Rnc×n. (4.23)
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For κh of Equation (3.1) we need the number of grid nodes in one dimension of Gh, which is denoted by n∗.

4.5 Preliminary Results

In Chapters 6 and 7, numerical results using two-level Schwarz preconditioner are discussed. It is useful to
also get an idea of the numerical results of the one-level Schwarz preconditioners on MP-3 from Section 3.2.
These results are given in this section.

In Table 4.1, the results of the one-level Schwarz preconditioners for MP-3 are given. Having H = 4h means
that the standard subdomain has a fixed number of grid nodes per standard subdomain. In Table 4.1, the
problem size increases, which results in the number of subdomain having to increase. GMRES uses a relative
tolerance of 1e − 7. The results in Table 4.1 nicely show what is expected. For comparison, the number of
iterations required to reach convergence for GMRES without a one-level Schwarz preconditioner is given.
The amount of overlap is fixed in Table 4.1, therefore the condition number of Equation (4.10) increase. This
increasing condition number coincides with the increasing number of iterations when n∗ increases. It is clear
that using one-level Schwarz preconditioners does not result in problem size scalability. The expectation that
SAS precondtioners perform slight better is met.

n∗ NoPrecon AS4h (Subdoms) AS8h (Subdoms) SAS4h (Subdoms) SAS8h (Subdoms)
33 111 32 (8) 26 (4) 30 (8) 24 (4)
65 218 60 (16) 46 (8) 58 (16) 43 (8)
97 x 88 (24) 66 (12) 85 (24) 63 (12)
129 x 117 (32) 86 (16) 112 (32) 82 (16)
161 x 145 (40) 107 (20) 139 (40) 102 (20)

Table 4.1: Number of iterations required to reach convergence with the one-level AS and SAS precon-
ditioners on MP-3. In brackets behind the NOI results, the number of subdomains in one dimension
are given. Additionally, the minimum amount of overlap is used, δ = 0.
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5 | Coarse Grid Interpolation
In this chapter, definitions for the operators RT

0 and R0 are given. Inspired by the Helmholtz solver developed
in [42] we construct a coarse operator using higher-order interpolation with quadratic rational Bézier curves.
First, details about the construction of a first-order interpolation operator are given, followed by details on the
construction of a higher-order Bézier interpolation operator at the end of this chapter.

This chapter only gives details on the coarse grid interpolation operators with a one dimension coarse grid
size (CH) of 2h, such as the coarse grid illustrated in Figure 5.1. Also, the details interpolation operators
are introduced for a one dimensional domain. The interpolation operators for the higher dimensional domains
follow in a tensor product way. See Appendix A for details on a one dimensional coarse grid with CH = 4h and
a higher-order Bézier interpolation scheme.

Figure 5.1: Fine and coarse one dimensional grid layout with subdomain diameter of H = 4h and CH = 2h. The fine grid is partitioned
into two subdomains indicated by Ω1 and Ω2 with grid node 5 being shared by both subdomains.

5.1 First-Order Grid Coarse Interpolation

The details about the first-order grid coarse interpolation operator are straightforward and therefore given in a
brief manner. With the coarse grid G2h, the first-order extension operator is given by

Ih : G2h → Gh, (5.1)

with

Ih = Ih2h [u2h]i =

{
[u2h](i+1)/2 if i is odd,

1
2

(
[u2h](i)/2 + [u2h](i+2)/2

)
if i is even

)
(5.2)

for i = 1, ..., n and the restriction operator is given by

(Ih)T : Gh → G2h, (5.3)

with
(Ih)T = I2hh [uh]i =

1

2
[uh](m−1) + [uh]m +

1

2
[uh](m+1) (5.4)

for i = 1, ..., (n+1)
2 with m = 2i − 1 and RT

0 and R0 being the respective corresponding matrices. RT
0 and R0

are the parts necessary for a two-level Schwarz preconditioner resulting in the first-order interpolation coarse
problem now defined.
In a similar way, a first-order prolongation and restriction operator, and their corresponding matrices, can be
constructed for a coarse grid with CH = 4h.

5.2 Higher-Order Bézier Grid Coarse Interpolation

Some general definition are required, before being able to give the higher-order Bézier prolongation and re-
striction operator for G2h.

27



Definition 5.1 (Bézier Curve). A Bézier curve B(t) of degree n is a parametric curve defined by

B(t) =

n∑
j=0

bj,n(t)Pj , 0 ≤ t ≤ 1, where the polynomials

bj,n(t) =

(
n

j

)
tj(1− t)n−j , j = 0, 1, . . . , n,

are known as the Bernstein basis polynomials of order n. The points Pj are called control points for the Bézier
curve.

Definition 5.2 (Rational Bézier Curve). A rational Bézier curve C(t) of degree n with control points P0, P1, . . . , Pn

and scalar weights w0, w1, . . . , wn is defined as

C(t) =

∑n
j=0 wjbj,n(t)Pj∑n
j=0 wjbj,n(t)

.

The rational Bézier curve C(t) is just the Bézier curve B(t) but with adjustable weights added. The rational
Bézier curve can provide closer approximations to arbitrary shapes.
The Bézier coarse interpolations that are of interest in this research are coarse interpolations constructed
using a Bézier curve of degree 2 (quadratic approximation). For a 1D 2h Bézier coarse interpolation of degree
2 Definition 5.3 can be given with i = 1, 2, ..., n using Definitions 5.1 and 5.2.

Definition 5.3 (2h coarse grid quadratic approximation). Let [u2h](i−1)/2 and [u2h](i+3)/2 be the endpoints, P0

and P2 respectively, within a component span defined on the coarse grid. Then the prolongation and restriction
operator can be characterized by a rational Bézier curve of degree 2 (see Definition 5.2) with polynomials

b0,2(t) = (1− t)2,

b1,2(t) = 2t(1− t),

b2,2(t) = t2,

and control point [u2h](i+1)/2 (P1), whenever i is odd. We wish to add more weight to the centre value, Therefore
the weights are w0 = w2 = 1

2 and w1 = 3
2 . This results in the following equation

C(t) =

1
2 (1− t)2 [u2h](i−1)/2 +

3
22t(1− t) [u2h](i+1)/2 +

1
2 (t)

2 [u2h](i+3)/2

1
2 (1− t)2 + 3

22t(1− t) + 1
2 (t)

2
. (5.5)

For t = 1
2 we find

C

(
1

2

)
=

1

8
[u2h](i−1)/2 +

3

4
[u2h](i+1)/2 +

1

8
[u2h](i+3)/2 . (5.6)

For the even nodes in the fine grid, a standard equal weight average is used.

Using the upper scheme, the higher-order Bézier restriction and extension operator can be redefined in the
following way. The higher-order Bézier extension operator for a G2h coarse grid is given by

Ih = Ih2h [u2h]i =


(

1
8 [u2h](i−1)/2 +

(
3
4

)
[u2h](i+1)/2 +

1
8 [u2h](i+3)/2

)
if i is odd,

1
2

(
[u2h](i)/2 + [u2h](i+2)/2

)
if i is even

 , (5.7)

for i = 1, ..., n and with m = 2i− 1 the higher-order Bézier restriction operator is given by

(Ih)T = I2hh [uh]i =
1

8

(
[uh](m−2) + 4 [uh](m−1) + 6 [uh]m + 4 [uh](m+1) + [uh](m+2)

)
, (5.8)

for i = 1, ..., (n+1)
2 with respective corresponding matrices RT

0 and R0. Now the matrices RT
0 and R0 are defined

when a higher-order Bézier approximation is used.

In [43], an additional variable ε is added to the middle weights of equation (5.7) and (5.8). This ε can be used
in the Helmholtz solver of [42] in order to improve the distribution of the eigenvalues of the preconditioned
system. The right value of ε in [42] is found by using the analytical eigenvalue expressions for the deflated
preconditioned system. We do not have such analytical eigenvalue expressions for the two-level Schwarz pre-
conditioned linear system at the moment, and hence we will use ε = 0.
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6 | Numerical Results Using a First-Order
Grid Coarse Problem

In this chapter, numerical results are discussed with the goal of answering the following research question:
Does a Helmholtz solver that uses a two-level additive Schwarz preconditioner combined with first-order grid
coarse problem show wave number independent convergence and efficiency? Additionally, the following re-
search sub-question is attempted to be answered: How can the performance of the Helmholtz solver using a
first-order grid coarse problem be explained?

To answer the research question of this chapter, we employ GMRES with a two-level AS preconditioner (see
equation (4.18)) where the first-order coarse problem is constructed using equations (5.2) and (5.4).
Using the two-level AS preconditioner is abbreviated by ASH/P1-CSCH where H is the subdomain diameter
with minimum overlap and P1-CSCH the notation for using a first-order coarse problem with CH indicating the
coarse grid size in one dimension. An example of a specific setup for this preconditioner is AS4h/P1-CS2h. Hav-
ing H = 4h means that the standard subdomains have a fixed number of grid nodes per subdomain, i.e., nl is
fixed while n increases, resulting in the number of subdomains increasing. Also, having H = 4h means that the
subdomain diameter H decreases as the problem size increases. See Figure 6.1 for an illustration of a two di-
mensional H = 4 and H = 8h standard subdomain.

Figure 6.1: Illustration of two dimensional standard subdomains with H = 4h
and H = 8h. Above the grid nl is given, which is the total number of grid nodes
in the corresponding standard subdomain.

In this chapter, several model problems
from Sections 3.2 and 3.3 are considered.
The model problems for the numerical ex-
periments are:

• A Poisson problem with a nonho-
mogeneous Dirichlet boundary condi-
tion. This model problem is referred
to as MP-3.

• A constant wave number Helmholtz
problem with a homogeneous Dirich-
let boundary condition. This model
problem is also referred to as MP-1.

For all numerical experiments, we employ
GMRES using a relative tolerance of 1e− 7
and a maximum number of iterations (NOI)
of 250.

6.1 Two-level Additive Schwarz Preconditioner

In this section the ASH/P1-CSCH preconditioner is applied to both model problems mentioned above. Addi-
tionally, eigenvalue analysis of the preconditioned system is performed to create a better understanding of the
performance of the preconditioner and compare it to the preconditioners of the next chapter.

6.1.1 Numerical Experiment: MP-3

Subdoms AS4h/P1-CS2h AS4h/P1-CS4h AS4h/P1-CS8h
64 14 15 21
256 14 14 23
576 14 14 22

1024 13 14 22
1600 13 14 22

Table 6.1: NOI results for MP-3 using the AS4h/P1-CSCH preconditioner with varying CH. Additionally,
δ = 0 and nl is fixed.
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Table 6.1 shows numerical results when using the AS4h/P1-CSCH preconditioner on MP-3. In the table, nl is
fixed and n increases through increasing the number of subdomains. The columns show results for different
coarse grid sizes CH. Table B.1 in the appendix is the same as Table 6.1, but then with H = 8h instead of
H = 4h.
From Table 6.1 and Table B.1 it follows that the preconditioner has a NOI required to reach convergence which
is independent of the number of subdomains, i.e., the NOI results in Table 6.1 and Table B.1 stay constant while
the number of subdomains increases. This aligns with what we expect from the two-level Schwarz method the-
ory, since we are dealing with a Poisson problem. Increasing H, while keeping the coarse mesh size and
overlap fix, results in a slight improvement of the performance of the preconditioner (See Table B.1). The first-
order coarse problem with CH = 2h, CH = 4h and CH = 8h all result in a preconditioner with a NOI required
to reach convergence that is independent of the number of subdomains for varying nl.
In Appendix B.1 a similar table as Table 6.1 can be found with the AS4h/P1-CSCH preconditioner with δ = 1
(See Table B.2). Comparing Tables B.2 and 6.1, we conclude that with δ = 1 the performance of the
AS4h/P1-CSCH preconditioner becomes less dependent on CH, meaning the NOI results of Table B.2 are
more similar to each other then the NOI results in Table 6.1.

n δ = 0 δ = 1 δ = 2
64 14 14 19
256 14 15 21
576 14 15 21

1024 13 15 22
1600 13 15 22

(a) AS4h/P1-CS2h

Subdoms δ = 0 δ = 1 δ = 2 δ = 4
16 13 13 14 18
64 13 14 14 18
144 13 14 15 19
256 13 14 15 20
400 13 14 15 20

(b) AS8h/P1-CS2h

Table 6.2: Number of iterations for MP-3 for ASH/P1-CS2h preconditioners with H = 4h and H = 8h with
different degrees of overlap.

Next, we analyse the influence of δ further. In Tables 6.2 and B.3, the influence of δ on the performance of
the preconditioner for varying CH is given. For preconditioners with H = 4h, we expect to run into a problem
with δ = 2, since that amount of overlap results in the overlap being equal to H. The overlap being equal to
or larger than H results in N c increasing and thus the upper bound of Equation (4.18) increasing. Too much
overlap indeed deteriorates the performance of the precondition when looking at the results of Tables 6.2 and
B.3. The same hold for preconditioner with H = 8h, but then it happens at δ = 4.
From Tables 6.2 and B.3 we conclude that for CH = 2h, increasing the overlap only weakens the performance
of the preconditioner. Contrary to this, the performance of the preconditioner with CH = 8h improves when
the overlap increases, up until there is too much overlap.
This finding does not coincide with the theory of Chapter 4, since the theory suggests that for a fixed H and
CH, the upper bound for the condition number should decrease as δ increases. This means that increasing the
overlap should improve the performance of the preconditioner up to a certain overlap, but for the preconditioner
with CH = 2h this is not the case. The reason for this misalignment between the theory and numerical results
might be that the convergence theory for two-level AS preconditioner is based on the usage of a Laplace
problem with a homogeneous Dirichlet boundary condition. Also, the theory uses a coarse mesh that has the
same diameter as the subdomains. The numerical results above are from MP-3, which is a Poisson problem
with a nonhomogeneous Dirichlet boundary condition. Having a nonhomogeneous boundary condition could
be the reason for this unexpected result with CH = 2h. The other reason could be that H and CH are not
always the same diameter in our numerical experiments.

6.1.2 Numerical Experiment: MP-1

For the MP-3 numerical results we expected the two-level AS preconditioner to have the property of having a
NOI required to reach convergence which is independent of the number of subdomains. For the MP-1 problem
we do not expect this independence of the number of subdomains in the NOI required to reach convergence
when using the ASH/P1-CSCH preconditioner.
In order for the numerical results of the preconditioner on MP-1 to remain efficient, the aforementioned re-
quirement of κh ≤ 0.625 has to hold. The ASH/P1-CSCH preconditioner used in this section has a fixed nl

with either a H = 4h or 8h subdomain size and the first-order coarse problems has coarse grid mesh size of
CH = 2h, 4h or 8h.

In Tables 6.3 and B.4, the numerical results of MP-1 using the above mentioned preconditioner with different
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subdomain sizes and different first-order coarse grid problems are given. Additionally, the tables have different
κh requirements.
The first note that can be made about the results in Tables 6.3 and B.4 is that, in general, increasing CH for a
fixed overlap, subdomain size and κh, deteriorates the performance of the performance of the preconditioner.
The best performing preconditioners are the preconditioners with CH = 2h. Also, from the tables it is clear
that having a lower κh results in the NOI required to reach convergence to increase more slowly with the wave
number, compared to a higher κh. In Appendix B Table B.5 is given, which is similar to Table 6.3, with the
only difference being the amount of overlap. Comparing Table 6.3 and Table B.5 it is clear that increasing
the amount of overlap worsens the performance of the preconditioner. This aligns with our finding from the
previous section about CH = 2h and increasing δ.
Non of the results given in the above mentioned tables show a NOI required to reach convergence that is inde-
pendent of the wave number, i.e., the NOI of the preconditioner increases as the wave number increases for all
the preconditioner setups. The best performing setup of the preconditioner is the AS4h/P1-CS2h preconditioner
with κh ≈ 0.3125, since this preconditioner has the slowest increasing NOI with the wave number increasing.

While κh is relevant for the solver to be efficient for the Helmholtz problems, we will investigate if the number
of coarse grid nodes per wave length in relevant for wave number independent NOI results. In other words,
does lowering κh for the best performing preconditioner eventually lead to a preconditioner which has a NOI
required to reach convergence which is independent of the wave number? We define κCH = k ∗ CH. So if
CH = 2h, then κCH = 2kh = 2κh and if CH = 4h, then κCH = 4kh = 4κh.
In Figure 6.2 the NOI required to reach convergence for the AS4h/P1-CS2h preconditioner on MP-1 are given
with varying κCH . From this figure, it seems that there is no number of coarse grid nodes per wave length for
which the preconditioner has a NOI required to reach convergence which is wave number independent. This
is because in the figure it can be seen that there is no κCH for which the NOI does not increase as the wave
number increases.

Subdoms k AS4h/P1-CS2h AS4h/P1-CS4h AS4h/P1-CS8h
4 5 11 10 7
36 15 24 24 24

100 25 39 46 50
196 35 72 97 100
324 45 100 130 160
400 50 119 193 220
676 65 x x x

(a) κh ≈ 0.625

Subdoms k AS4h/P1-CS2h AS4h/P1-CS4h AS4h/P1-CS8h
16 5 13 14 14

144 15 16 21 29
400 25 17 23 47
784 35 20 41 86
1296 45 21 46 113
1600 50 22 53 145
2704 65 33 75 233

(b) κh ≈ 0.3125

Table 6.3: NOI results for MP-1/WO using the AS4h/P1-CSCH pre-
conditioner with varying CH. The wave number and the number of
subdomains increase such that κh ≈ 0.625 or κh ≈ 0.3125 remain
true. Additionally, δ = 0.

Hence, decreasing κh results in
the NOI required to reach con-
vergence to increase even slower
when the wave number increases.
But the NOI never appear to be-
come independent of the wave
number. Furthermore, in Table
B.6 in the appendix the NOI re-
quired to reach convergence are
given for the AS4h/P1-CS2h precon-
ditioner on MP-1 with slowly in-
creasing low wave numbers and a
slowly increasing number of subdo-
mains. From this table, it also fol-
lows that there is no κh for which
the NOI required to reach conver-
gence is independent of the wave
number.
Not finding a preconditioner which
has a NOI required to reach con-
vergence that is independent of the
wave number is what we expect
from a two-level AS preconditioner
with a first-order grid coarse prob-
lem.

Analyzing the eigenvalues of the preconditioned linear systems of MP-1 might give more insights into the per-
formance of the preconditioners on MP-1. Specifically, the eigenvalues might show us why the ASH/P1-CSCH

preconditioner results in the solver having a NOI required to reach convergence that is dependent on the wave
number. Here, we specifically look at the AS4h/P1-CS2h preconditioner, since this is the best performing setup
of the preconditioner.

Figure 6.3 and Appendix B.2 show eigenvalue distribution plots of the AS4h/P1-CS2h preconditioner linear sys-
tem. Additionally, in Figure 6.3 histogram plots of the eigenvalues are given, to get an understanding of the
distribution of the eigenvalues.
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Figure 6.2: κCH plot of AS4h/P1-CS2h preconditioner.

(a) n = 41, k = 25 (b) n = 81, k = 25

(c) Histogram for AS4h/P1-CS2h solver with n = 41, k = 25 (d) Histogram for AS4h/P1-CS2h solver with n = 81, k = 25

Figure 6.3: Eigenvalue plots and histograms with k = 25 and either κh = 0.625 or κh = 0.3125 with the AS4h/P1-CS2h Helmholtz solver.
Note that δ = 0

When looking at both the eigenvalue plots in Appendix B.2 and in Figure 6.3 some remarks can be made.
Firstly, the eigenvalue plots show negative eigenvalues. This is expected since the Helmholtz problem be-
comes indefinite already for small wave numbers [42]. Also, the largest eigenvalue is roughly 4 and the eigen-
value closest to 0 moves closer to 0 as the wave number and the problem size increase. These observations
apply for both the κh ≈ 0.625 and κh ≈ 0.3125 eigenvalue plots, see Figure B.2 and B.3. The largest eigenvalue
being roughly 4 is a consequence of using a Schwarz domain decomposition preconditioner since N c = 4.
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Clear differences between the eigenvalue plots with κh ≈ 0.3125 and κh ≈ 0.625 are the following. For
κh ≈ 0.3125, the overall clustering of the eigenvalues is closer together compared to the eigenvalue when
κh ≈ 0.625. Additionally, the smallest eigenvalue is more negative when κh ≈ 0.625, and for both κh ≈ 0.625
and κh ≈ 0.3125 the smallest eigenvalue decreases as the wave number increases. Furthermore it can be
noted that, in general, the positive eigenvalue do not come close to the largest eigenvalue when κh ≈ 0.3125
is used, i.e., in the eigenvalue plots with κh ≈ 0.3125, there are no eigenvalues between 2.2 and 4. There is a
gap between the eigenvalues around 4 and the area where most of the eigenvalues are clustered. This is not
the case for the eigenvalue with κh ≈ 0.625. Finally, for κh ≈ 0.625 the eigenvalue closest to zero moves closer
to zero faster when the wave number increases compared to the closest to zero eigenvalue in the κh ≈ 0.3125
plots.
Some speculations on an explanation for the results of Table 6.3 and the eigenvalue plots could be that the
numerical range (also known as field of values) has an influence on the NOI required to reach convergence of
the solvers. Another possible explanation for the results of Table 6.3 could be related to how small the eigen-
value closest to zero is. Thirdly, the eigenvalue plots do not give details about the density of the eigenvalue
distributions close to zero. The histogram plots in Figure 6.3 do give more details about the distribution, but do
not show any clear differences that could explain the performance of the preconditioners. Finally, the results
might be explained be a combination of the speculations above.

Thorough spectral analysis needs to be performed on the Schwarz domain decomposition preconditioner to
be able to draw concrete conclusions on what aspects of the eigenvalues influence the NOI required to reach
convergence of the solver.

6.2 Concluding Remarks and Summary

To finalize this chapter, some concluding remarks and summarizing notes are given in this section.

• The MP-1 numerical results show that κh, and thus also κCH , is important not only for efficiency of the
solver, but also for how fast the NOI increases as the wave number increases. Also, it seems that lowering
κCH does not eventually lead to a solver with a NOI required to reach convergence that is independent
of the wave number.

• Wave number independent convergence is not found for a two-level AS preconditioner with a P1-CS
coarse problem for the MP-1 Helmholtz model problem.

• The eigenvalue plots show the influence of κh on the eigenvalues, that is, the closest to zero eigenvalue
moves closer to zero more slowly for a lower κh.

• No clear answer can be given that explains the performance of the two-level AS preconditioner using a
P1-CS, and why it results in a NOI that is wave number dependent.
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7 | Numerical Results Using a Higher-Order
Bézier Grid Coarse Problem

In the following chapter, we first try to answer research question 2 which is: Does a Helmholtz solver, con-
structed using a two-level additive Schwarz preconditioner and a higher-order Bézier grid coarse problem,
show wave number independent convergence and efficiency? Also, the following research sub-question is
attempted to be answered: What causes the solver to be inscalable if this is the case?
After answering research question 2, we will try to answer research question 3, which is: Does a Helmholtz
solver, constructed using different variants of two-level Schwarz preconditioners and a higher-order Bézier
coarse problem, show wave number independent convergence and efficiency? With the research sub-questions
being: For the scaled additive Schwarz preconditioner, does the solver show wave number independent conver-
gence and efficiency and if so, why? And, for the scaled hybrid Schwarz preconditioner, which uses deflation,
does the solver show wave number independent convergence and efficiency and if so, why?

This chapter makes use of all five different model problems, which are 2D problems unless stated otherwise.
Details about these models are found in Sections 3.2 and 3.3. These five different model problems are the
MP-3 and MP-1 model problem, which were already used in the previous chapter, and:

• A constant wave number Helmholtz problem with a Sommerfeld radiation condition on the boundary. This
model problem is referred to as MP-2.

• A nonconstant wave number wedge-domain Helmholtz problem. The model problem has a Sommerfeld
radiation condition on the boundary. More details on this model problem can be found in Section 3.2.

• A 3D constant wave number Helmholtz problem with a homogeneous Dirichlet boundary condition. More
details on the model problem is found in Section 3.2.

MP-3, MP-2 and MP-1 are model problems which increase in difficulty for numerical solvers, with MP-1 being
the most difficult. After a preconditioner has shown to solve in a NOI independent of the wave number, the
preconditioner is then applied to the wedge Helmholtz model problem and the 3D Helmholtz model problem.

The first section of this chapter focuses on numerical results and eigenvalue analysis of the solver with two-
level AS preconditioning and a higher-order Bézier grid coarse problem. Here, we first try to find a setup for
the preconditioner that yields wave number independence and efficiency. Additionally, an eigenvalue analysis
is performed in order to get further insight into the behavior of the preconditioner for certain problems. After
finding wave number independence and efficiency with two-level AS preconditioner using a higher-order Bézier
coarse problem, numerical results of that preconditioner are presented on a Helmholtz wedge model problem
and a 3D Helmholtz model problem. Finally, results are given showing the influence of κh on the wave number
independence of the NOI required to reach convergence. In the next section, numerical results of a variety of
different two-level Schwarz preconditioners with a higher-order Bézier coarse problem are given. In particular,
we additionally consider, the SAS, HS and SHS preconditioners. Numerical results for solvers with these pre-
conditioners are first given on MP-1, to see if the preconditioners provide wave number independence for the
NOI results. Next, an eigenvalue analysis is performed to get a better understanding of the performance of the
preconditioners and compare them. Additionally, numerical results of the preconditioners on the wedge model
problem are given, to see how they deal with a more real model problem. As in the previous chapter, numer-
ical results for κh are analysed, to understand the influence of κh on the wave number independence of the
solvers better. The third section of this chapter briefly compares the convergence rate results of the different
preconditioners used in this chapter. Finally, the chapter finishes with a section which contains concluding and
summarizing remarks.

For all numerical experiments, we employ GMRES using a relative tolerance of 1e− 7 and a maximum number
of iterations (NOI) of 100. Note that, for a fixed n and CH, the number of grid nodes of the higher-order coarse
problem is the same as that of the first-order coarse problem when CH is the same, but the higher-order
coarse problem is more dense, i.e. it captures more information from the fine grid.

7.1 Two-level Additive Schwarz Preconditioner

This section focuses on numerical results for the two-level AS preconditioner and a higher-order Bézier coarse
problem. The preconditioner is abbreviate by ASH/BCSCH . An example of a specific setup for this solver is
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AS4h/BCS2h. Having H depend on h means that the number of grid nodes in a standard subdomain grid is
fixed, i.e., H = 4h means nl = 25, which is fixed (See Figure 6.1 for an illustration). More information about
the grid coarse problems can be found in Chapter 5.

7.1.1 Numerical Experiments: Wave Number Independence

The solver using a two-level AS preconditioner with a BCS is initially tested on the MP-3. The NOI results
for MP-3 are expected to be independent of the number of subdomains. In Table 7.1 and Table C.1 the NOI
results for MP-3 are given for H = 4h and H = 8h, respectively, for various CH and δ = 0 with the number of
subdomains increasing.
From Table 7.1 and Table C.1 it can be seen that the two-level AS preconditioners with a BCS yields NOI results
which are independent of the number of subdomains. NOI results with the AS4h/BCSCH preconditioner with
δ = 1 can be found in Table C.2. When the overlap of the AS4h/BCSCH preconditioner for various CH is
increased to δ = 1, the NOI results remain independent of the number of subdomain. Additionally, as with the
P1-CS, the NOI results of the AS4h/BCSCH preconditioner with δ = 1 are more similar to each other compared
to the NOI results of Table 7.1.

Subdoms AS4h/BCS2h AS4h/BCS4h AS4h/BCS8h
64 14 11 21

256 13 11 22
576 13 11 22

1024 13 11 22
1600 13 11 22

Table 7.1: NOI results for MP-3 using the AS4h/BCSCH preconditioner with varying CH. Additionally,
δ = 0.

Subdoms k AS4h/BCS2h AS4h/BCS4h AS4h/BCS8h
64 10 17 15 24
144 15 17 17 32
256 20 18 17 40
400 25 18 18 48

1600 50 18 22 x
6400 100 18 30 x
14400 150 17 38 x

(a) H = 4h

Subdoms k AS8h/BCS2h AS8h/BCS4h AS8h/BCS8h
16 10 19 16 21
36 15 19 20 29
64 20 21 22 36
100 25 23 24 44
400 50 27 32 x

1600 100 27 39 x
3600 150 27 46 x

(b) H = 8h

Table 7.2: NOI results for MP-2 using the ASH/BCSCH pre-
conditioner with varying CH and H = 4h or H = 8h. Addi-
tionally, κh ≈ 0.3125 and δ = 0.

With the preconditioner performing well on
the MP-3 numerical experiment the next
step is to increase the difficulty of the
problem by performing numerical experi-
ments with model problem MP-2. For the
number of grid points per wave length we
take κh ≈ 0.3125. The reason for taking
κh ≈ 0.3125 is that the results in Subsec-
tion 6.1.2 with the ASH/P1-CSCH precondi-
tioner with κh ≈ 0.3125 were more promis-
ing than the results with κh ≈ 0.625. κh

could also be decreased even further then
0.3125. The consequence of, for exam-
ple, taking κh ≈ 0.15625 is that the coarse
problem becomes four times as large for
a fix CH. A coarse problem with a prob-
lem size that large and rapidly increas-
ing is undesirable, since a direct solver
is used on the coarse problem. Another
consequence of using κh ≈ 0.15625 in-
stead of κh ≈ 0.3125 is that nl has to in-
crease and/or the number of subdomains
has to increase. In Subsection 7.1.2 the
choice of κh ≈ 0.3125 is investigated fur-
ther.

In Table 7.2 the NOI results are given for the AS4h/BCSCH and AS8h/BCSCH preconditioner with varying CH
and δ = 0 with an increasing wave number and κh ≈ 0.3125. In Table C.3 in the appendix κh is lowered
to κh ≈ 0.15625. From Table 7.2 we see that, increasing CH for a ASH/BCSCH preconditioner with a fixed
overlap, fixed nl and fixed κh deteriorates the performance of the preconditioner. Specifically, the results of
the AS4h/BCS2h preconditioner are wave number independent, but this property is lost when CH increases.
For the AS8h/BCS2h preconditioner with κh ≈ 0.3125 (Figure Table 7.2 (b)) it is not clear if the NOI results are
wave number independent, since there is an increase in the NOI when the wave number increases, but it also
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seems that an upper bound for the NOI is reached at 27 iterations.
From Table C.3 it can be seen that lowering κh to κh ≈ 0.15625 results in the above mentioned consequences.
In general, lowering κh results in the ASH/BCSCH preconditioner with CH = 4h showing NOI results that are
close to but not wave number independent. Hence, there is little benefit to lowering κh from κh ≈ 0.3125 to
κh ≈ 0.15625, while increasing CH = 2h to CH = 4h, since nc stays the same, but we lose wave number
independence in the NOI results. The only benefit of having κh ≈ 0.15625 and CH = 4h looks to be that the
NOI results depend less on the choice of H, which can be seen in Table C.3.

To investigate the results of using the AS4h/BCS2h preconditioner with κh ≈ 0.3125 further Table C.4 is con-
structed, which shows the NOI results for a slowly increasing wave number and a slowly increasing number
of subdomains. Something to note about Table C.4 is that there appears to be a value of κh for which the
NOI does not increase. For a fixed wave number and and fixed nl, n increases if the number of subdomains
increases and κh decreases. From Table C.4 it can be seen that increasing the number of subdomains a
certain amount every time the wave number is increased, results in the NOI required to reach convergence to
not increase. In other words, there seems to be a κh for which the preconditioner requires a NOI which is wave
number independent. Additionally, when κh is small enough such that the NOI results are wave number inde-
pendent, then the NOI needed to reach convergence is around 17 and 18. Later in this section we investigate
if κh has an upper bound such that the NOI results are wave number independent.

Subdoms k AS4h/BCS2h AS4h/BCS4h AS4h/BCS8h
64 10 18 18 21

144 15 22 21 28
256 20 25 24 35
400 25 29 27 41

1600 50 37 31 x
6400 100 38 33 x
14400 150 37 36 x

Table 7.3: NOI results for MP-2 using the AS4h/BCSCH precondi-
tioner with varying CH. Additionally, κh ≈ 0.3125 and δ = 1.

Next, we investigate increasing the
overlap of AS4h/BCSCH to δ =
1. In Table 7.3 numerical results
of the AS4h/BCSCH preconditioner
with δ = 1 are given for a fixed
nl and an increasing wave number.
From the results we conclude that in-
creasing the overlap to δ = 1 wors-
ens the performance of the precon-
ditioner with CH = 2h and CH =
4h, and improves the performance
of the preconditioner with CH = 8h
slightly. This influence of the overlap
is the same as was seen with the AS4h/P1-CSCH preconditioner. Most importantly, increasing the overlap of
the AS4h/BCS2h preconditioner results in the NOI to reach convergence to be wave number dependent. As a
final note on Table 7.3, comparing the results with Table 7.2 it appears that the NOI results are less dependent
on CH when δ = 1. This is because the results with CH = 2h and CH = 4h in Table 7.3 are all more similar
to each other. For the AS4h/P1-CSCH preconditioner, the same behaviour was seen on MP-1.

Subdoms k AS4h/BCS2h
64 10 14

144 15 17
256 20 17
400 25 17
1600 50 16
6400 100 12

14400 150 15
57600 300 14

(a) H = 4h

Subdoms k AS8h/BCS2h
16 10 13
36 15 17
64 20 20
100 25 22
400 50 25

1600 100 18
3600 150 22

14400 300 20

(b) H = 8h

Table 7.4: NOI results for MP-1 using the ASH/BCSCH preconditioner
with CH = 2h and H = 4h or H = 8h. Additionally, κh ≈ 0.3125 and
δ = 0.

The final benchmark for wave
number independence is the
model problem MP-1. From the
MP-2 results it follows that some
setups of the ASH/P1-CSCH pre-
conditioner have NOI results that
grow faster with the wave num-
ber then other. These poor
performing preconditioner setups
are omitted from the numerical
results of MP-1.

In Table 7.4 numerical results are
given of the most promising se-
tups of the ASH/BCSCH precon-
ditioner with κh ≈ 0.3125. Table
7.4 shows wave number indepen-
dence in the NOI results for both the AS4h/BCS2h and AS8h/BCS2h preconditioner setup up to at least k = 300.
The results show that, the CH size plays an important role in achieving NOI results that are wave number in-
dependent for a fixed κh.
In general, the two-level AS Schwarz theory from Chapter 4 does not hold for the Helmholtz problem, but it
might be that parts of the theory also hold for the Helmholtz problem. Looking at Equation (4.18) it is not
surprising that preconditioner with H = 4h in Table 7.4 (a) has lower NOI results then the preconditioner with

36



H = 8h in Table 7.4 (b). Having a smaller nc does appear to improve the performance of the preconditioner
for the Helmholtz problem. Also, the NOI required to reach convergence does vary more when increasing the
wave number with the AS8h/BCS2h preconditioner then with the AS4h/BCS2h preconditioner.
In Table C.5 NOI results are given for the ASH/BCS4h preconditioner with κh ≈ 0.15625 and CH = 4h. We see
from these results the NOI results are also wave number independent.

From the numerical results of MP-2 with the ASH/BCSCH preconditioner, it was concluded that for CH = 2h
the performance of the preconditioner only deteriorates when the overlap is increased. Hence, δ > 0 is not
investigated for the AS4h/BCS2h and AS8h/BCS2h preconditioner setup on MP-1.

Figure 7.1 provides the eigenvalues distributions and histograms of the eigenvalues for both the AS4h/P1-CS2h
and the AS4h/BCS2h preconditioner. Additional eigenvalue distribution plots are found in Appendix C in Figure
C.1. From these eigenvalue plot in Figure 7.1 (c) and Figure C.1, many similarities can be seen with Figure
7.1 (a). In Figure C.1 (c) the smallest eigenvalue is a lot smaller than the rest of the eigenvalues. The reason
for this outlier eigenvalue is not clear and when looking at Table 7.4 it does not appear to deteriorate the
performance of the solver. Therefore, it is assumed that the smallest eigenvalue in C.1 (c) is an anomaly. This
anomaly also appears in some other eigenvalue plots for in the next section.
Up until now, nl has not changed much. Often, we have taken H = 4h or H = 8h. Table C.6 in the Appendix
looks at the influence of nl on the NOI results for MP-1. This is done by fixing n, CH and k while changing nl.
The results in Table C.6 show that nl greatly influence the NOI results and that sticking to a subdomain size H
of 4h and 8h is good.

(a) AS4h/P1-CS2h eigenvalue plot, n = 81, k = 25

(b) AS4h/P1-CS2h histogram of eigenvalues, n = 81, k = 25

(c) AS4h/BCS2h eigenvalue plot, n = 81, k = 25

(d) AS4h/BCS2h histogram of eigenvalues, n = 81, k = 25

Figure 7.1: Eigenvalue plots and histograms with k = 25 with the AS4h/BCS2h and AS4h/P1-CS2h Helmholtz solver for MP-1. Note that
δ = 0.

7.1.2 An Upper Bound for κCH

In Section 3.1, requirements were introduced for the relationship between the number of grid points and
the wave number. When there are enough grid points per wave length, the pollution error can be mitigated
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(κh ≤ 0.625) or the pollution error can be removed all together (k3h2 ≤ 1).
k3h2 ≤ 1 is a harsh requirement which causes the number of grid nodes to increase rapidly when the wave
number increases. Therefore, the weaker requirement κh ≈ kh ≤ 0.625 is used when trying to construct a
Helmholtz solver that is wave number independent and efficient.

BCSCH with CH = 2h was used in the numerical experiments on MP-1. In the previous chapter, κCH was
defined. For some setups of the ASH/BCS2h preconditioner we will investigate the influence of κCH and see
if there is a general relationship between the number of coarse grid nodes in one dimension and the wave
number. The investigation is done using model problem MP-1 and increasing the number of subdomains and
the wave number.

We are interested in finding out how the behavior of the preconditioner changes depending on κCH . Figure 7.2
shows the influence of κCH on the performance of the AS8h/BCS2h preconditioner for MP-1. From this, we can
see that κCH is ideally lower than κCH ≈ 0.625 with CH = 2h. This explains the behavior of the AS8h/BCS2h
preconditioner in Table 7.4 and suggest that the AS8h/BCS2h preconditioner should have a κh slightly lower
then κh ≈ 0.3125. In general, it appears that there is an upper bound for κCH , but it is not yet clear if this upper
bound depends on CH and/or H.
In Appendix C in Figure C.2 a similar plot for κCH , but then for the AS4h/BCS2h preconditioner is given. This
shows that κCH = 0.625 is satisfactory for wave number independent NOI results. Comparing Figure 7.2 and
Figure C.2 also suggests that a upper bound for κCH depends on H, since the upper bound moved as a con-
sequence of changing nl.

Figure 7.2: AS8h/BCS2h on MP-1

7.1.3 Numerical Experiment: Engineering-like Problems

Now that the AS4h/BCS2h Helmholtz preconditioner is shown to be wave number independent and efficient
with κh ≈ 0.3125, the preconditioner can also be applied to numerical experiments more real model problems.

Subdoms k AS4h/BCS2h
64 10 18

400 25 18
1600 50 18
6400 100 18
14400 150 18

Table 7.5: NOI results with the AS4h/BCS2h precondi-
tioner when κh ≈ 0.3125 for the wedge Helmholtz prob-
lem. Additionally, δ = 0.

Since the AS8h/BCS2h Helmholtz preconditioner
requires κh < 0.3125 for wave number inde-
pendent convergence, the preconditioner is left
out of the following numerical results. Table 7.5
shows wave number independent NOI results for
the AS4h/BCS2h preconditioner with κh ≈ 0.3125
for the wedge model problem. In Table 7.6
the numerical results are given for the 3D MP-
1 model problem with the AS4h/BCS2h precon-
ditioner. The NOI results of Table 7.6 are also
wave number independent. Note that the number
of subdomains becomes very large very quickly,
which is a consequence of the problem being three dimensional, having small subdomains and having
κh ≈ 0.3125. From the previous numerical results in this section it was concluded that increasing H results in
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a loss of wave number independence and worse NOI results. Hence, there is no way of lowering the number
of subdomains required in Table 7.6 without deteriorating the results.
The computational time of the 3D MP-1 numerical experiment is large, which results in the wave number only
going up to k = 25. This high computational cost is mostly due to nc becoming too large, which results in the
solving the coarse problem requiring a lot of time.

Subdoms k AS4h/3D-BCS2h
4096 5 17

32768 10 19
110592 15 20
512000 25 19

Table 7.6: results with the AS4h/BCS2h preconditioner
when κh ≈ 0.3125 for the 3D MP-1 problem. Addition-
ally, δ = 0.

If we summarize the findings from the numerical
results of this section, the following can be said.
First, from the MP-2 numerical results we find that
the AS4h/BCS2h preconditioner with κh ≈ 0.3125
shows NOI results that are independent of the
wave number. Additionally, making the coarse
grid twice as coarse and κh twice as low does
also results in wave number independence, but
the coarse problem stays the same size. There-
fore, using CH > 2h does not have any benefits
to the preconditioner. The AS4h/BCS2h precondi-
tioner with κh ≈ 0.3125 is wave number independent for the MP-1 model problem, the wedge model problem
and the 3D MP-1 model problem. Next, comparing the eigenvalue plots of the AS4h/P1-CS2h preconditioner
and the AS4h/BCS2h preconditioner shows no information that can explain the wave number independent per-
formance of the AS4h/BCS2h preconditioner. Finally, the number of grid nodes per standard subdomain, nl,
has an influence on whether the ASH/BCS2h preconditioner requires a NOI to reach convergence which is
independent of the wave number.

7.2 Numerical Results with Different Schwarz Methods

For the final research question, different variants of Schwarz preconditioners are tested to see the impact on
the performance of the solver. The preconditioners using a two-level SAS, HS and SHS in combination with
BCS are respectively abbreviated by SASH/BCSCH , HSH/BCSCH , SHSH/BCSCH .
To prevent this section from being too lengthy the numerical experiments of the solvers with new Schwarz
preconditioners are only performed on MP-1 and the wedge problem. Each subsection in this section covers
one of the variants of the different Schwarz preconditioners. In the subsection, the numerical results for that
preconditioner are given. After that, eigenvalue analysis is performed on the preconditioner. Finally, each sub-
section ends with an investigation of the influence of κCH on the wave number independence.

7.2.1 Two-Level Scaled Additive Schwarz Preconditioner

The SAS domain decomposition preconditioner is introduced in Chapter 4 in equation (4.19). From the numer-
ical results of MP-1 in Table 7.7 it can be seen that the SAS4h/BCS2h preconditioner requires a NOI to reach
convergence that is wave number independent. Besides that, the NOI results are respectively lower compared
to the AS4h/BCS2h preconditioner results.

Subdoms k AS4h/BCS2h SAS4h/BCS2h
64 10 14 10
400 25 17 14

1600 50 16 13
6400 100 12 10

14400 150 15 12

Table 7.7: NOI results of SAS4h/BCS2h with κh ≈ 0.3125 for
the MP-1 compared to previous results. Additionally, δ = 0.

Figure 7.3 has the eigenvalue plots and
the eigenvalue histograms of both the
AS4h/BCS2h and SAS4h/BCS2h precondi-
tioners, so that they can be compared. In
Figure 7.3 (c) it can be seen that the eigen-
values of the preconditioner linear system
using the SAS4h/BCS2h preconditioner are
more compactly clustered. Specifically, the
high frequency eigenvalues have moved to-
wards 1 with some remaining between 1
and 2. The low frequency eigenvalues in
Figure 7.3 (c) seem similar as in Figure 7.3 (a). This more compact clustering of the eigenvalues is a possible
explanation for the lower NOI required to reach convergence of the SAS4h/BCS2h preconditioner compared
to the AS4h/BCS2h preconditioner. As a final note on Figures 7.3 (a) and (c), we see that the closest to zero
eigenvalue is not influenced by the changing the Schwarz preconditioner from AS to SAS.
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In the Figure C.3 in the appendix, a plot to investigate κCH is given for the SAS4h/BCS2h preconditioner.
From this figure it can be concluded that κCH ≈ 0.625 is satisfactory for the SAS4h/BCS2h preconditioner to
have NOI results are wave number independent, which aligns with our numerical results. Moreover, κh could
even be increased slightly, resulting in the problem size becoming less large, and the number of subdomains
increasing slower, as the wave number increases. For the SAS4h/BCS2h preconditioner the numerical results
in Table 7.8 are wave number independent on the wedge model problem. Again, comparing the results with
the AS4h/BCS2h preconditioner results, the NOI required to reach convergence is lower for the SAS4h/BCS2h
preconditioner then for the AS4h/BCS2h preconditioner.

(a) AS4h/BCS2h eigenvalue plot, n = 81, k = 25

(b) AS4h/BCS2h histogram of eigenvalues, n = 81, k = 25

(c) SAS4h/BCS2h eigenvalue plot, n = 81, k = 25

(d) SAS4h/BCS2h histogram of eigenvalues, n = 81, k = 25

Figure 7.3: Eigenvalue plots and histograms of the SAS4h/BCS2h and AS4h/BCS2h preconditioners for MP-1 with k = 25 and κh ≈
0.3125. Note that δ = 0

Subdoms k AS4h/BCS2h SAS4h/BCS2h
64 10 18 15

400 25 18 15
1600 50 18 15
6400 100 18 15
14400 150 18 15

Table 7.8: NOI results for the SAS4h/BCS2h preconditioner on the wedge model problem with κh ≈ 0.3125
compared to previous results. Additionally, δ = 0.
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7.2.2 Two-level Hybrid Schwarz Preconditioner

Subdoms k AS4h/BCS2h HS4h/BCS2h
64 10 14 10

400 25 17 11
1600 50 16 10
6400 100 12 9
14400 150 15 10

(a) H = 4h

Subdoms k AS8h/BCS2h HS8h/BCS2h
16 10 13 8
100 25 22 9
400 50 25 9

1600 100 18 8
3600 150 22 9

(b) H = 8h

Subdoms k AS16h/BCS2h HS16h/BCS2h
4 10 10 7
25 25 16 8

100 50 21 8
400 100 16 7
900 150 20 8

(c) H = 16h

Table 7.9: NOI results for MP-1 using the HSH/BCS2h preconditioner with H = 4h, H = 8h or H = 16h,
compared to previous results. Additionally, κh ≈ 0.3125 and δ = 0.

In the final research question given in the introduction, only SAS and SHS are mentioned in the sub-questions.
In this subsection the HSH/BCSCH is analysed, in order to understand the impact of the HSH/BCSCH pre-
conditioner and therefore acquire a better understand of the SHS preconditioner. With the scaling not being
applied to the preconditioner, the eigenvalue plots should nicely show the deflation of the eigenvalues.
The two-level HS preconditioner from Equation (4.20) has a higher computational cost than the two-level AS
preconditioner. This is a consequence of the additional large matrix-vector operations in the deflation part
of the preconditioner. The numerical results in Table 7.9 are wave number independent for CH = 2 with
κh ≈ 0.3125. Additionally, contrary to the results in Section 7.1, increasing the subdomain size H lowers the
NOI required to reach convergence. Being able to change nl, while remaining to get NOI results that are wave
number independent, is a big deal for making use of parallel computing, since the amount of available proces-
sors often decides the amount of subdomains.
Increasing the overlap still only deteriorates the performance of the preconditioner in the case of CH = 2h.
This can be seen from the numerical results in Table C.7 in the appendix. All the respective NOI results are
worse or the same with δ = 1.
The eigenvalue plot and the eigenvalue histogram in Figure 7.4 (c) and (d) give a nice illustration of deflation.
When comparing Figure 7.4 (a) and Figure 7.4 (c) it can be seen that the low frequency eigenvalues (in this
case {λi ∈ λ | 1 ≤ i ≤ (n2−1)/2}, due to the BCS2h coarse problem) are deflated towards 1. The remaining high
frequency eigenvalues seem mostly untouched. A slightly different eigenvalue clustering around 4 can be seen
when comparing the eigenvalue plots and histograms of the eigenvalues of AS4h/BCS2h and HS4h/BCS2h.
The clustering due to deflation is favourable and could be an explanation for the improved performance in Table
7.9, since the literature about eigenvalue clustering for Helmholtz solvers suggests that eigenvalues close to 0
could deteriorate the performance of the Helmholtz solver [42].
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(a) AS4h/BCS2h eigenvalue plot, n = 81, k = 25

(b) AS4h/BCS2h histogram of eigenvalues, n = 81, k = 25

(c) HS4h/BCS2h eigenvalue plot, n = 81, k = 25

(d) HS4h/BCS2h histogram of eigenvalues, n = 81, k = 25

Figure 7.4: Eigenvalue plots and histograms of the HS4h/BCS2h and AS4h/BCS2h preconditioners for MP-1 with k = 25 and κh ≈
0.3125. Note that δ = 0

Figures 7.5 and C.4 investigate κCH of the HS4h/BCS2h preconditioner and the HS8h/BCS2h preconditioner,
respectively. From Figure 7.5 and C.4 it can be seen that both HS4h/BCS2h and HS8h/BCS2h should perform
well with κCH ≈ 0.625. Figure 7.5 also shows that κh can even be increased for the HS4h/BCS2h preconditioner.
The results of the wedge model problem are given below in Table 7.10. The Helmholtz solver using HSH/BCS2h
solves in NOI required to reach convergence that is independent of the wave number.

Figure 7.5: HS4h/BCS2h on MP-1

42



Subdoms k AS4h/BCS2h HS4h/BCS2h
64 10 18 13

400 25 18 13
1600 50 18 12
6400 100 18 12
14400 150 18 12

(a) H = 4h

Subdoms k AS8h/BCS2h HS8h/BCS2h
16 10 13 11
100 25 22 11
400 50 25 11

1600 100 18 11
3600 150 22 11

(b) H = 8h

Table 7.10: NOI results for the HS4h/BCS2h and HS8h/BCS2h preconditioner on the wedge model prob-
lem with κh ≈ 0.3125, compared to previous results. Additionally, δ = 0.

7.2.3 Two-level Scaled Hybrid Schwarz Preconditioner

The eigenvalue analysis of using a two-level SAS preconditioner showed that such a preconditioner results in
an eigenvalue clustering with an upper bound of 2. The low frequency eigenvalues are clustered in a similar
way as with the AS preconditioner. The eigenvalue analysis of the HS preconditioner showed the deflation of
the low frequency eigenvalues (See Figure 7.7 (b)). In this subsection, the SAS and HS preconditioners are
combined into the two-level SHS preconditioner.

Subdoms k SHS4h/BCS2h
64 10 5

400 25 6
1600 50 5
6400 100 4

14400 150 5
40000 250 5
160000 500 5

(a) H = 4h

Subdoms k SHS8h/BCS2h
16 10 5

100 25 6
400 50 5
1600 100 5
3600 150 6

10000 250 6
40000 500 5

(b) H = 8h

Table 7.11: NOI results for the SHS4h/BCS2h and SHS8h/BCS2h precondi-
tioner on MP-1 with κh ≈ 0.3125. Additionally, δ = 0.

Using the SHSH/BCS2h
preconditioner on MP-1
gives results that are wave
number independent for
κh ≈ 0.3125, presented in
Table 7.11. Additionally,
the NOI required to reach
convergence is the lowest
up to this point, which al-
lows the numerical results
to go up to k = 500,
the highest wave number
up to this point. Sim-
ilarly as was seen with
the HSH/BCS2h precondi-
tioner, changing the number of nodes per standard subdomain does not result in the preconditioner deteriorat-
ing in performance.

Figure 7.6: Runtime plot for the SHSH/BCS2h preconditioner on the
wedge model problem.

While the SHSH/BCS2h preconditioner does yield
NOI results that are wave number independent and
low, the preconditioner does run into a computational
bottleneck. This computational bottleneck is the size
of the coarse problem. For k = 500 in Table 7.11
we have n∗ = 1601 , resulting in n = 16012 and
nc = 8012. The coarse problem is too large in this
case. To be more specific, when solving for k = 500,
the LU-decomposition uses more than 90% of the to-
tal computational time. Figure 7.6 gives runtime re-
sults for the SHSH/BCS2h preconditioner, which il-
lustrate the computational time problem. The eigen-
value distribution of Figure 7.7 shows what we would
expect from the SHS preconditioner. The clustering
of the eigenvalues of the preconditioned system is
favourable and coincides with the good performance
of the SHSH/BCSCH preconditioner in Table 7.11. In
Figure 7.7 (a) and (c) we see that around 1 the eigen-
values become slightly imaginary. This is a conse-
quence of using the scaled versions on the preconditioners. The preconditioning matrix of the SHS and SAS
preconditioner are not symmetric anymore due to the scaling.
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(a) SAS4h/BCS2h eigenvalue plot, n = 81, k = 25 (b) HS4h/BCS2h eigenvalue plot, n = 81, k = 25

(c) SHS4h/BCS2h eigenvalue plot, n = 81, k = 25

(d) SHS4h/BCS2h histogram of eigenvalues, n = 81, k = 25

Figure 7.7: Eigenvalue plots of the SAS4h/BCS2h, HS4h/BCS2h and AS4h/BCS2h preconditioners for MP-1 with k = 25 and κh ≈
0.3125. Note that δ = 0

Figures 7.8 and C.5 give κCH plots of the SHSH/BCSCH preconditioner. These plots show a similar behavior
as seen with the HSH/BCSCH preconditioner, since the figures show that κh can be increased, while the NOI
results stay wave number independent as the number of subdomains increase with the wave number. Figures
7.8 and C.5 also show that κCH depends on nl. As a final note on Figures 7.8, increasing CH to CH = 4h
does not seem possible for the SHS4h/BCSCH preconditioner, since Figures 7.8 suggests that this would make
the solver have wave number dependent convergence.
As is almost expected at this moment, both the SHS4h/BCS2h and SHS8h/BCS2h perform well on the wedge
problem. In Table 7.12 the NOI results are wave number independent and go all the way up to k = 500 with
κh ≈ 0.3125.
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Figure 7.8: SHS4h/BCS2h on MP-1

Subdoms k SHS4h/BCS2h
64 10 7
400 25 7

1600 50 7
6400 100 7
14400 150 7
40000 250 6

160000 500 6

(a) H = 4h

Subdoms k SHS8h/BCS2h
16 10 7
100 25 7
400 50 7

1600 100 7
3600 150 7
10000 250 7
40000 500 7

(b) H = 8h

Subdoms k SHS8h/BCS2h
4 10 6

25 25 8
100 50 9
400 100 7
900 150 9

25000 250 10
10000 500 7

(c) H = 8h

Table 7.12: NOI results for the SHS4h/BCS2h, SHS8h/BCS2h and SHS8h/BCS2h preconditioner on the
wedge model problem with κh ≈ 0.3125. Additionally, δ = 0.

7.3 Convergence Plot

Figure 7.9: Convergence plot for different preconditioners on MP-1 with κh ≈ 0.3125, H = 8h
and δ = 0.

To get a little more information
out of the developed and exist-
ing preconditioners it is valuable
to look at the convergence plot
of the preconditioners for MP-
1. The relative residuals conver-
gence plot is given in Figure 7.9.
The figure also shows the con-
vergence rate of two one-level
Schwarz preconditioners. These
are the one-level AS precondi-
tioner, indicated in the legend of
Figure 7.9 by AS1H , and the
one-level SAS preconditioner, in-
dicated in the legend of Figure
7.9 by SAS 1H . These do not
make use of any coarse problem
by definition. A clear difference
can be seen between the two-
level and one-level precondition-
ers in the figure on the right.
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7.4 Concluding Remarks and Summary

This section has the goal of capturing the main findings from the numerical experiments and additional analysis
of this chapter.

• The AS4h/BCS2h preconditioner is wave number independent for κh ≈ 0.3125 on MP-1. Also, the
ASH/BCS2h preconditioner is wave number independent for but then with κh ≈ 0.15625 on MP-1. Both
preconditioner have the same nc.

• For MP-1, comparing the eigenvalue plots of the AS4h/BCS2h and AS4h/P1-CS2h preconditioners show
no conclusive results that would allow the explanation of the better performance of the AS4h/BCS2h
preconditioner for MP-1. The upper bound for the eigenvalues on MP-1 is 4.

• the SAS4h/BCS2h preconditioner has a lower NOI then the AS4h/BCS2h preconditioner, while still having
wave number independent convergence with κh ≈ 0.3125.

• The eigenvalue plot of the SAS4h/BCS2h preconditioned system shows a clustering of eigenvalues with
an upper bound of 2.

• The HSH/BCS2h preconditioner gives NOI results that are wave number independent for κh ≈ 0.3125.

• The eigenvalue plot of the HS4h/BCS2h preconditioned system shows a clustering of eigenvalue with a
lower bound around 1, due to the deflation of the low frequency eigenvalues. Additionally, the eigenvalues
have an upper bound slightly below 4.

• The lowest number of iterations in combination with wave number independence is found when using the
SHSH/BCS2h preconditioner with κh ≈ 0.3125. Additionally, the low iteration number allows the numerical
results to go up to k = 500.

• Using the SHSH/BCS2h preconditioner results in eigenvalues clustered between approximately 1 and
1.34, which is favourable for GMRES.

• The convergence rate of the SHSH/BCS2h solver is almost linear in the semilog relative residual plot.

• A limitation of all the mentioned preconditioners is the quickly increasing computational cost when the
wave number increases. This increasing computational cost is mainly caused by solving a large coarse
problem with a direct method when the wave number becomes large. The coarse problem has a coeffi-
cient matrix which is also indefinite.
Currently, the coarse problem is becoming large when the wave number becomes large. In this thesis we
looked at ways to lower the number of coarse grid nodes, while keeping the wave number independence
in the NOI results. Unfortunately, finding a way to prevent the coarse problem from becoming large has
been unsuccessful. Using BCSCH or P1-CSCH , for a fixed number of subdomains, fixed CH and fixed nl,
changes nothing about the number of coarse grid nodes. The difference in BCSCH and P1-CSCH is not
in nc, but in the density of RT

0 and R0. Therefore, the computational cost of direct solving of the BCSCH

coarse problem and the P1-CSCH coarse problem are roughly the same.
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8 | Conclusion & Discussion
In this chapter, the conclusions of this thesis are presented and discussed. Firstly, a recap of the research
goal, questions and method are given. Next, conclusions are drawn about domain decomposition precondi-
tioner Helmholtz solvers using a first-order coarse problem and a higher-order Bézier coarse problem in Sub-
section 8.1.1 and 8.1.2. In Section methods used in this research and their results are discussed. Additionally,
recommendations for future research are given in this section.

8.1 Conclusion

While it has been possible to solve Helmholtz problems for medium sized wave numbers, it has not been
possible to simulate the Helmholtz equation with a large wave numbers on more realistic types of problems
that appear in diverse scientific and engineering disciplines. The reason for this is that all current numerical
Helmholtz solvers are not numerically scalable and efficient at the same time. The goal of this thesis was to
develop a two-level Schwarz preconditioner Helmholtz solver that is both efficient and wave number indepen-
dent. The constructed Helmholtz solvers all consists of three main parts. The first main part is the use of
GMRES as the iterative method. Another part of the solvers are the different variants of two-level Schwarz
domain decomposition preconditioners to accelerate the convergence of the iterative method. And the final
part of the solvers is the grid coarse problem, which is constructed using either first-order or a higher-order
Bézier interpolation.
Using paralellizable domain decomposition methods in a Helmholtz solver has the potential to be computa-
tionally fast when parallelization is implemented. This research only makes use of sequential computing, but
parallel computing can be essential for linear time complexity.
In the introduction of this thesis research questions and research sub-questions were given. These questions
were:

1. Does a Helmholtz solver constructed using a two-level additive Schwarz preconditioner combined with a
first-order grid coarse problem show wave number independent convergence and efficiency?

• How can the performance of the Helmholtz solver using a first-order grid coarse problem be ex-
plained?

2. Does a Helmholtz solver, constructed using a two-level additive Schwarz preconditioner and a higher-
order Bézier coarse problem, show wave number independent convergence and efficiency?

• What causes the solver to be inscalable if this is the case?

3. Does a Helmholtz solver, constructed using different two-level Schwarz preconditioners and a higher-
order Bézier coarse problem, show wave number independent convergence and efficiency?

• For the scaled additive Schwarz preconditioner, does the solver show wave number independent
convergence and efficiency and if so, why?

• For the scaled hybrid Schwarz preconditioner which uses deflation, does the solver show wave
number independent convergence and efficiency and if so, why?

One of the main conclusions of this thesis is that we developed a two-level additive Schwarz preconditioner
which leads to wave number independent convergence for wave numbers in 2D and 3D, while remaining to
have accurate numerical solutions. The preconditioner uses a coarse problem which is constructed using
higher-order interpolation with quadratic rational Bézier curves. The other main conclusion of this thesis is that
with the different two-level Schwarz preconditioner and a higher-order Bézier grid coarse problem the number
of iterations required for the iterative solver to reach convergence becomes even lower, while the number of
iterations remain independent of the wave number when increasing the number of subdomains with the wave
number.

8.1.1 Using a First-Order Coarse Problem

The goal of chapter 6 was to answer research question 1 and its sub-question. From this chapter, it can be
concluded that a Helmholtz solver constructed using a two-level additive Schwarz preconditioner combined
with first-order grid coarse problem does not show wave number independence and efficiency for MP-1, the
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Helmholtz benchmark problem. The chapter also shows that κh influences the rate at which the NOI results
increase as the number of subdomains and wave number increases.
Analyzing the clustering of the eigenvalues gives some insight into the performance of the solver using a first-
order coarse problem. It also allows for the comparison of eigenvalue distributions of the preconditioners using
a higher-order Bézier coarse problem.

8.1.2 Using a Higher-Order Bézier Coarse Problem

Chapter 7, answers research questions 2 and 3 and their sub-questions. From the findings in this chapter, the
main conclusions from above are drawn. The additional conclusions of this chapter are the following. Firstly,
for the two-level additive Schwarz preconditioner wave number independent convergence is found. The lowest
number of iterations required to reach convergence is around 15. Additionally, the eigenvalue distributions give
no clear reason that explains wave number independent convergence when comparing the eigenvalue distri-
bution to the eigenvalue distribution when using preconditioner with a first-order coarse problem.
Thirdly, when using two-level hybrid Schwarz or scaled hybrid Schwarz preconditioner on Helmholtz problems
we can be more flexible in the choice of subdomain size, which is not the case when using the two-level additive
Schwarz preconditioner. This is important for the practicality of the preconditioners when parallel computing is
used.
One of the main drawbacks of the preconditioners with wave number independent convergence in this research
is that their coarse problem size becomes large, resulting in high computational costs. However, there seems
to be no good coarsening alternative to the coarse grid size of CH = 2h. Hence, for wave number independent
convergence CH = 2h is chosen. For most of the preconditioners from this thesis, the choice of CH = 2h is
also required to be combined with κh ≈ 0.3125 in order to have wave number independent convergence. The
κCH plots of the SHSH/BCSCH preconditioner and the HSH/BCSCH preconditioner showed that κh ≈ 0.3125
can be increased up to a certain upper bound. However, this upper bound does dependent on nl. Increasing
κh results in the number of subdomains and the coarse problem size increasing less rapidly when the wave
number increases, and thus lowers the overall computational cost of the Helmholtz solver. While this does
lower the computational cost, we will run into the same computational cost problem when the wave number is
increased even more. This is why linear time complexity is important.

As with the sub-question of research question 1, it is difficult to be conclusive when answering the sub-
questions of research questions 1 and 2. Comparing the eigenvalue distributions of preconditioners with
different two-level Schwarz preconditioners provides use with insight its behaviour and performance. Using
the scaled additive Schwarz preconditioner results in the high frequency eigenvalues of the preconditioned
linear system being lower compared to the high frequency eigenvalues of the additive Schwarz preconditioned
linear system. The eigenvalue clustering, as a consequence of the scaled additive Schwarz preconditioner,
have an upper bound around 2. The Helmholtz problem numerical results of the scaled additive Schwarz pre-
conditioner show a lower number of iterations required to reach convergence, which is likely due to this more
favourable clustering.
As a consequence of using the hybrid Schwarz preconditioner, the low frequency eigenvalues of the precondi-
tioned linear system are no longer close to 0, but close to 1. This is a consequence of the deflation in the hybrid
Schwarz preconditioner. This results in an even better performance of the iterative method when it comes to
the number of iterations required to reach convergence. Again, this is likely due to the clustering of the eigen-
values, specifically, the eigenvalues are now clustered further away from 0. The literature on Helmholtz solvers
tells us that these close to zero eigenvalues are often the reason for numerical inscalability and poor perfor-
mance.
Combining both the scaled and hybrid methods into the scaled hybrid Schwarz method results in a clustering of
the eigenvalues roughly between 1 and 1.4. This eigenvalue clustering is the reason the solver using the scaled
hybrid Schwarz preconditioner requires the least amount of iterations to reach convergence, while remaining
wave number independent with κh ≈ 0.3125.

8.2 Discussion

This section focuses on discussing the research method, results and conclusion while also providing directions
for future research.
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Time Complexity

The ultimate goal in the development of a Helmholtz solver is to develop a numerical solver that is both numer-
ically scalable and efficient. As mentioned in the introduction, for this research, the choice was made to ignore
time complexity. Future research could therefore focus on investigating the time complexity of the solvers from
this research and investigate how to improve the solver’s computational cost in order to reach numerical scal-
ability.
The choice of using parallelizable Schwarz domain decomposition methods was made because it allows the
leveraging of parallel computing in order eventually get a numerically scalable and efficient Helmholtz solver. It
would be interesting to see how the solver performs in parallel and where computational gains are with parallel
computing. Solving the local subdomain problems sequentially when this can be done in parallel is inefficient
and computationally costly. However, it is not the biggest computational bottle neck in the solvers developed
in this research, and therefore it is not yet necessary to go to high performance computing and parallelization
yet. Note that, the computational cost of the local subproblems does depend on the size of the subdomains.
Currently, we solve the coarse problem by using LU-decomposition and Gaussian elimination. The coarse
problem increases in size as the wave number and fine grid increase, eventually resulting in the direct solution
method becoming very slow. The current biggest bottleneck of the preconditioners is the large coarse problem
size. Solving the MP-1 problem using the SHS4h/BCS2h preconditioner with k = 500 and κh = 0.3125 takes a
very long time, of which more than 90% is spend on the LU-decomposition of the coarse problem coefficient
matrix. Ideally, we would coarsen the coarse grid, while remaining to get NOI results that are wave number in-
dependent, but this seems impossible. Even when the coarse grid is coarsened by a factor 2 and κh is lowered
by a factor of 2, the number of iterations results are not wave number independent anymore, while the coarse
problem has actually not changed in total number of grid nodes.
The large and quickly increasing computational cost of the preconditioner when the wave number increases
influences the numerical experiments performed in this research. It would be beneficial to be able to perform
numerical experiments for larger wave number in order to make sure that the wave number independence
convergence also holds for k > 500.
In the future, the direct solution method for the coarse problem could be replaced by a flexible iterative solution
method or a multigrid method. The coarse problem matrix that results from the higher-order Bézier interpo-
lation operator is also indefinite for large wave numbers. Therefore, if a flexible iterative method is used for
the coarse problem, a wave number independent and efficient Helmholtz preconditioner needs to be used to
accelerate the flexible iterative method of the coarse problem. The other method that can replace the direct
method is the multigrid method. A multigrid method is used for approximating the coarse space in [42, 43].
Something similar could be implemented in the solvers developed in this research.
For future research it might also be interesting to look into constructing a multi-level Schwarz domain decom-
position method, similar to how a multi-level Helmholtz solver was built in [43].
As a final suggestion for future research on the topic of time complexity, using an inexact solution method
for the subdomains can be investigated and implemented [45]. If the local subproblems become too large a
direct solution method becomes too computationally costly. Specifically for 3D high frequency Helmholtz prob-
lems using a two-level deflation preconditioner with FGMRES for the subdomains shows promising results and
computational cost benefits, even for a low relative residual tolerance.

Finite Difference Method and Complex Geometries

Since this research is about developing a Helmholtz numerical solver, the choice was made to use a finite
difference method to discretize the Helmholtz boundary value problem. One of the big limitations of the fi-
nite difference method is that it is difficult to use when the problem involves complex geometries. Ultimately,
Helmholtz solvers need to be used on real scientific and industrial problems, which could include more complex
geometries.
Hence, for a numerically scalable and efficient Helmholtz solver this research can be extended to finite ele-
ment method. In order to do this, it should also be investigated if and how the higher-order Bézier coarse
interpolations can still be used in a finite element method setting.

Schwarz Preconditioner Analysis for the Helmholtz Problem

When comparing the two-level additive Schwarz preconditioner for both a first- and a higher-order coarse prob-
lem on MP-1, we see a difference in performance of the solvers in the numerical results. On the other hand,
looking at the eigenvalue distributions no clear and conclusive differences are found that would explain this dif-
ference in performance of the preconditioners. This is most likely due to the eigenvalues of the preconditioned
linear system not solely being descriptive for the performance of GMRES for the Helmholtz problem. Another
possible explanation is that the close to zero eigenvalues, which are not closely investigated in this research,
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are the reason for the varying performance depending on the coarse space.

Contrary to the first- and higher-order coarse problem, the various Schwarz preconditioners show clear differ-
ences in eigenvalue distribution. We can therefore empirically learn more about the spectral influence on the
convergence of GMRES. While this is only empirically, it appears from the results that clustering the eigen-
values more compactly and away from 0 improves the convergence of GMRES for the Helmholtz problem. In
order to get a better understanding of the performance of the preconditioners in this research, spectral analysis
of the Schwarz preconditioners has to be performed. This would lead to a better understanding of the desired
spectral properties and therefore a more focused development of a two-level Schwarz Helmholtz solvers.
The eigenvalue plots in this research are limited to the Helmholtz problem with a homogeneous Dirichlet bound-
ary condition. This problem results in a coefficient matrix of the linear system which is real, symmetric and
indefinite. For the Helmholtz problem with a Sommerfeld radiation condition the coefficient matrix becomes in-
definite, complex, symmetric, but non-Hermitian. The Schwarz preconditioner analysis could change for these
different types of matrices. For future research it is therefore also interesting to investigate the eigenvalues of
the Helmholtz problem with a Sommerfeld radiation condition.
For the Laplace problem, Schwarz domain decomposition convergence theory has been developed. Laplace
Schwarz domain decomposition convergence theory might have some content that also holds true for the
Helmholtz problem.

High Performance Computing

As already mentioned, in order to bring the solvers forward in engineering usability, it is important to look at
parallel implementation of the solver to allow for scalability. For parallel implementation, it would make sense to
make use of existing frameworks. One possibility is to make use of the FROSch package [51], which allows for
parallel scalability up to more than 100.000 cores. This way we do not have to implement a parallel Helmholtz
solver from scratch.

Additional Applications

The time-harmonic Maxwell equation and the time-harmonic elastic wave equation are similar to the Helmholtz
equation. Often, we see effective Helmholtz solvers being used or extended to these other time-harmonic
wave propagation problems. It would be interesting to see how the solvers from this research perform on time-
harmonic Maxwell equation and the time-harmonic elastic wave equation problems and see how effective the
Helmholtz solvers are.
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A | Higher-Order Bézier Coarse Grid Inter-
polation

One dimensional higher-order Bézier coarse grid interpolation operators for larger CH can be introduced sim-
ilarly as for the CH = 2h case shown in Chapter 5. The details are again given for a one dimensional domain,
since the interpolation operators for higher dimensional domains follow in a tensor product way.

Figure A.1: Fine and coarse 1D grid layout with H = 8h and CH = 4h. The fine grid is partitioned into two subdomains indicated by Ω1

and Ω2 with grid node 9 being shared by both subdomains.

The first step of constructing the higher-order Bézier coarse grid interpolation operators is to construct the
first-order interpolation. In the case of CH = 4h, the following first-order interpolation extension operators for
G4h is given by

Ih4h [u4h]i =


[u4h](i+3)/4 if i = 1, 5, 9, ..., n

3
4 [u4h](i+2)/4 +

1
4 [u4h]((i+2)/4)+1 if i = 2, 6, 10, ..., n− 3

1
2 [u4h](i+1)/4 +

1
2 [u4h]((i+1)/4)+1 if i = 3, 7, 11, ..., n− 2

1
4 [u4h](i)/4 +

3
4 [u4h]((i)/4)+1 if i = 4, 8, 12, ..., n− 1

 (A.1)

for i = 1, ..., n and with m = 4i− 3 the first-order interpolation restriction operator is given by

I4hh [uh]i =
1

4
[uh](m−3) +

1

2
[uh](m−2) +

3

4
[uh](m−1) + [uh]m +

3

4
[uh](m+1) +

1

2
[uh](m+2) +

1

4
[uh](m+3) (A.2)

for i = 1, ..., (n+3)
4

Next, the direct under that coarse grid node is replaced the higher-order Bézier approximation scheme from
Chapter 5. This results in the higher-order Bézier extension operator for G4h being The first step of constructing
the higher-order Bézier coarse grid interpolation operators is to construct the first-order interpolation. In the
case of CH = 4h, the following first-order interpolation extension operators for G4h is given by

Ih4h [u4h]i =


(

1
8 [u4h]((i+3)/4)−1 + ( 34 ) [u4h](i+3)/4 +

1
8 [u4h]((i+3)/4)+1

)
if i = 1, 5, 9, ..., n

3
4 [u4h](i+2)/4 +

1
4 [u4h]((i+2)/4)+1 if i = 2, 6, 10, ..., n− 3

1
2 [u4h](i+1)/4 +

1
2 [u4h]((i+1)/4)+1 if i = 3, 7, 11, ..., n− 2

1
4 [u4h](i)/4 +

3
4 [u4h]((i)/4)+1 if i = 4, 8, 12, ..., n− 1

 (A.3)

for i = 1, ..., n and with m = 4i− 3 the first-order interpolation restriction operator is given by

I4hh [uh]i =
1

8
[uh](m−4) +

1

4
[uh](m−3) +

1

2
[uh](m−2) +

3

4
[uh](m−1) +

3

4
[uh]m +

3

4
[uh](m+1) (A.4)

+
1

2
[uh](m+2) +

1

4
[uh](m+3) +

1

8
[uh](m+4)

for i = 1, ..., (n+3)
4 with the corresponding matrices being RT

0 and R0,respectively.
For larger CH, these steps can followed in similar manner.

51



B | More Numerical Experiment Results Us-
ing a First-Order Grid Coarse Problem

B.1 MP-3

Subdoms AS8h/P1-CS2h AS8h/P1-CS4h AS8h/P1-CS8h
16 13 13 17
64 13 13 17
144 13 13 16
256 13 13 16
400 13 13 16

Table B.1: NOI results for MP-3 using the AS8h/P1-CSCH preconditioner with varying CH. Additionally,
δ = 0.

Subdoms AS4h/P1-CS2h AS4h/P1-CS4h AS4h/P1-CS8h
64 14 15 16
256 15 15 17
576 15 15 17

1024 15 15 16
1600 15 14 16

Table B.2: NOI results for MP-3 using the AS4h/P1-CSCH preconditioner with varying CH. Additionally,
δ = 1.

In Figure B.1 the eigenvalues of the preconditioned linear systems λ(M−1
AS4h/P1-CS2h

A) are shown to for δ = 1

and δ = 2. From these plots it can be seen that when the overlap becomes too large, the largest eigenvalue
changes and the all eigenvalues become larger.

n δ = 0 δ = 1 δ = 2
64 21 16 17
256 23 17 18
576 22 17 19

1024 22 16 19
1600 22 16 19

(a) AS4h/P1-CS8h

Subdoms δ = 0 δ = 1 δ = 2 δ = 4
16 17 15 15 16
64 17 15 15 17
144 16 15 15 18
256 16 15 15 18
400 16 15 15 19

(b) AS8h/P1-CS8h

Table B.3: NOI for MP-3 for ASH/P1-CS8h preconditioners with different degrees of overlap.
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(a) eigenvalue plot with n∗ = 49, δ = 1 (b) eigenvalue plot with n∗ = 49, δ = 2

(c) Histogram for AS4h/P1-CS2h preconditioner with n∗ = 49, δ = 1 (d) Histogram for AS4h/P1-CS2h preconditioner with n∗ = 49, δ = 2

Figure B.1: Eigenvalue plots and histograms for AS4h/P1-CS2h preconditioner on MP-3 with different degrees of overlap.

B.2 MP-1

Subdoms k AS8h/P1-CS2h AS8h/P1-CS4h AS8h/P1-CS8h
1 5 2 2 2
9 15 16 17 17

25 25 25 29 32
49 35 42 57 69
81 45 62 92 101
100 50 94 128 141
169 65 170 x x

(a) κh ≈ 0.625

Subdoms k AS8h/P1-CS2h AS8h/P1-CS4h AS8h/P1-CS8h
4 5 12 12 12

36 15 18 21 27
100 25 22 24 45
196 35 22 44 80
324 45 25 47 108
400 50 24 54 138
676 65 35 75 224

(b) κh ≈ 0.3125

Table B.4: NOI results for MP-1 using the AS8h preconditioner with P1-CSCH with varying CH. The
wave number and the number of subdomains increase such that κh ≈ 0.625 or κh ≈ 0.3125 remain true.
Additionally, δ = 0.
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Subdoms k AS4h/P1-CS2h AS4h/P1-CS4h AS4h/P1-CS8h
4 5 11 12 8

36 15 18 21 19
100 25 35 36 36
196 35 106 93 90
324 45 214 139 141
400 50 x 199 178
676 65 x x x

(a) κh ≈ 0.625

Subdoms k AS4h/P1-CS2h AS4h/P1-CS4h AS4h/P1-CS8h
16 5 13 14 13
144 15 20 23 24
400 25 27 28 40
784 35 31 47 69

1296 45 35 47 95
1600 50 33 60 124
2704 65 52 72 200

(b) κh ≈ 0.3125

Table B.5: NOI results for MP-1 using the AS4h preconditioner with P1-CSCH with varying CH. The
wave number and the number of subdomains increase such that κh ≈ 0.625 or κh ≈ 0.3125 remain true.
Additionally, δ = 1.

Subdoms 36 64 100 144 196 256 324 400 484 576 676 784 900 1024 1156 1296 1440 1600

k = 1 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13
k = 5 14 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 11 11
k = 10 15 12 13 13 13 13 12 12 12 12 12 12 12 12 11 11 11 11
k = 15 24 21 18 16 16 16 15 15 15 14 14 14 14 14 14 14 14 14
k = 20 29 29 27 20 18 19 16 16 16 16 15 15 15 15 15 14 14 14
k = 25 29 38 39 33 24 20 19 17 17 17 17 16 16 16 16 15 15 15
k = 30 43 38 81 46 48 31 22 20 18 16 17 17 17 17 16 16 16 16
k = 35 58 78 64 146 72 56 40 26 23 22 19 19 19 19 19 18 18 18
k = 40 82 60 88 117 177 97 71 65 34 29 29 28 27 28 25 22 22 21
k = 45 76 104 210 70 134 182 100 92 70 36 25 25 22 22 21 21 20 20
k = 50 72 210 145 106 92 212 187 119 104 87 49 33 28 25 25 24 24 22

Table B.6: Number of iterations with the AS4h/P1-CS2h preconditioner for MP-1. Additionally, δ = 0.
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(a) n = 25, k = 15 (b) n = 41, k = 25 (c) n = 57, k = 35

(d) n = 73, k = 45 (e) n = 81, k = 50

Figure B.2: eigenvalue plots for k = 15, 25, 35, 45, 50 and κh ≈ 0.625 with the AS4h/P1-CS2h Helmholtz solver. Note that δ = 0

(a) n = 49, k = 15 (b) n = 81, k = 25 (c) n = 113, k = 35

(d) n = 145, k = 45 (e) n = 161, k = 50

Figure B.3: Numerical eigenvalue plots for k = 15, 25, 35, 45, 50 and κh ≈ 0.3125 with the AS4h/P1-CS2h Helmholtz solver. Note that
δ = 0
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C | More Numerical Experiment Results Us-
ing a Higher-Order Bézier Grid Coarse
Problem

C.1 Two-level Additive Schwarz Solver

Subdoms AS8h/BCS2h AS8h/BCS4h AS8h/BCS8h
16 13 14 15
64 13 14 16

144 12 14 15
256 12 14 15
400 12 14 15

Table C.1: NOI results for MP-3 using the AS8h/BCSCH preconditioner with varying CH. Additionally,
δ = 0 and ε = 0.

Subdoms AS4h/BCS2h AS4h/BCS4h AS4h/BCS8h
64 15 16 16

256 15 16 17
576 15 16 16

1024 15 16 16
1600 15 16 16

Table C.2: NOI results for MP-3 using the AS4h/BCSCH preconditioner with varying CH. Additionally,
δ = 1.
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Subdoms k AS4h/BCS2h AS4h/BCS4h AS4h/BCS8h
256 10 17 16 25

1024 20 17 17 29
2304 30 18 18 34
4096 40 18 19 40
6400 50 18 20 48

25600 100 18 24 x

(a) H = 4h, δ = 0

Subdoms k AS8h/BCS2h AS8h/BCS4h AS8h/BCS8h
64 10 16 16 21
256 20 16 17 25
576 30 17 18 31

1024 40 17 19 37
1600 50 16 19 45
6400 100 17 24 98

(b) H = 8h, δ = 0

Subdoms k AS16h/BCS2h AS16h/BCS4h AS16h/BCS8h
16 10 15 15 19
64 20 16 17 26
144 30 17 19 32
256 40 17 19 38
400 50 17 20 46

1600 100 17 24 99

(c) H = 16h, δ = 0

Table C.3: NOI results for MP-2 using the ASH/BCSCH preconditioner with varying CH and H = 4h,
H = 8h or H = 16h. Additionally, κh ≈ 0.15625.

The following table gives an overview of how the AS4h/BCS2h solver for MP-2

Subdoms 36 64 100 144 196 256 324 400 484 576 676 784 900 1024 1156 1296 1440 1600

k = 1 15 16 16 16 16 16 16 16 16 17 17 17 17 17 17 18 18 18
k = 5 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
k = 10 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18
k = 15 21 20 19 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18
k = 20 22 25 26 20 19 18 17 17 17 17 17 17 17 17 17 17 17 17
k = 25 27 29 31 31 24 20 18 18 17 17 17 17 17 17 17 17 17 17
k = 30 32 30 55 36 36 28 22 19 18 18 18 18 18 18 18 18 18 18
k = 35 52 54 34 115 44 43 33 24 21 19 18 18 18 17 17 17 17 17
k = 40 53 45 42 41 98 54 50 44 27 22 20 19 18 18 17 17 17 17
k = 45 60 85 164 44 59 103 66 59 51 31 24 21 19 18 18 18 17 17
k = 50 56 134 70 65 46 88 109 76 66 63 36 26 22 20 19 18 18 18

Table C.4: Number of iterations with the AS4h/BCS2h solver for MP-2 for small k. Additionally, δ = 0.
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Subdoms k AS8h/BCS4h
64 10 14
144 15 17
256 20 17
400 25 17

1600 50 16
6400 100 12
14400 150 15
57600 300 14

(a) H = 8h

Subdoms k AS16h/BCS4h
16 10 13
36 15 17
64 20 20

100 25 22
400 50 25
1600 100 18
3600 150 22

14400 300 20

(b) H = 16h

Subdoms k AS32h/BCS4h
4 10 13
9 15 17

16 20 20
25 25 22
100 50 25
400 100 18

1600 150 22
3600 300 20

(c) H = 32h

Table C.5: NOI results for MP-1 using the ASH/BCSCH preconditioner with CH = 4h and H = 8h,
H = 16h or H = 32h. Additionally, κh ≈ 0.15625 and δ = 0.

(a) n = 49, k = 15 (b) n = 81, k = 25 (c) n = 113, k = 35

(d) n = 145, k = 45 (e) n = 161, k = 50

Figure C.1: Eigenvalue plots for k = 15, 25, 35, 45, 50 and κh = 0.3125 with the AS4h/BCS2h Helmholtz solver. Note that δ = 0
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SubDoms (H) AS4h/BCS2h

16 (80h) 36
25 (64h) 32
64 (40h) x

100 (32h) 53
256 (20h) x
400 (16h) 16
1600 (8h) 18
6400 (4h) 12

Table C.6: NOI for AS4h/BCS2h for MP-1/WO problem with n = 321 and k = 100 (κh = 0.3125) when the
number of subdomains is increased, meaning nl is decreased. Additionally, δ = 0 and x denotes that
the maximum number of iterations is reached.

Figure C.2: 4h subdomain size AS4h/BCS2h on MP-1

C.2 Two-level Scaled Additive Schwarz Solver

Figure C.3: 4h subdomain size SAS4h/BCS2h on MP-1
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C.3 Two-level Hybrid Schwarz Solver

Subdoms k HS4h/BCS2h

64 10 9
400 25 8
1600 50 8
6400 100 7

14400 150 8

(a) H = 4h

Subdoms k HS8h/BCS2h

16 10 9
100 25 10
400 50 10
1600 100 8
3600 150 9

(b) H = 8h

Subdoms k HS16h/BCS2h

4 10 9
25 25 11
100 50 10
400 100 10
900 150 8

(c) H = 16h

Table C.7: NOI results for MP-1 using the HSH/BCS2h preconditioner with H = 4h, H = 8h or H = 16h.
Additionally, κh ≈ 0.3125 and δ = 1.

Figure C.4: HS8h/BCS2h on MP-1

C.4 Two-level Scaled Hybrid Schwarz Solver

Figure C.5: 8h subdomain size SHS8h/BCS2h on MP-1
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