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Summary
Accurate numerical modeling of fracture in solids is a challenging under-
taking that often involves the use of computationally demanding modeling
frameworks. Model order reduction techniques can be used to alleviate the
computational effort associated with these models. However, the traditional
offline-online reduction approach is unsuitable for complex fracture phenom-
ena due to their excessively large parameter spaces. In this work, we present a
reduction framework for fracture simulations that leaves out the offline train-
ing phase and instead adaptively constructs reduced solutions spaces online. We
apply the framework to the thick level set (TLS) method, a novel approach for
modeling fracture able to model crack initiation, propagation, branching, and
merging. The analysis starts with a fully-solved load step, after which two con-
secutive reduction operations—the proper orthogonal decomposition and the
empirical cubature method—are performed. Numerical features specific to the
TLS method are used to define an adaptive domain decomposition scheme that
allows for three levels of model reduction coexisting on the same finite ele-
ment mesh. Special solutions are proposed that allow the framework to deal
with enriched nodes and a dynamic number of integration points. We demon-
strate and assess the performance of the framework with a number of numerical
examples.
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1 INTRODUCTION

The search for numerical methods capable of accurately capturing the complex mechanisms involved in the fracture of
solids is still one of the most active research fields in computational mechanics, despite its long history and vast body of
literature. Although fracture mechanics can readily predict how a single existing crack grows,1 modeling of phenomena
such as crack initiation, branching, and merging is still a challenge. At the other end of the spectrum, damage models
are well suited for predicting initiation and interaction between cracked regions but tend to suffer from spurious strain
localization2 and mesh bias. Two popular solutions for this mesh size dependency are to either use the crack band method3

to introduce a length scale in the damage formulation or to use a rate-dependent damage evolution in order to retard
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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strain localization.4 These, however, do not remove the bias introduced by the orientation of the mesh. A number of
more sophisticated damage models such as the nonlocal integral damage model5 and gradient damage models6-8 offer
alternative ways to couple damage evolution with an intrinsic material length scale. More recently, two new approaches to
couple damage and fracture mechanics in a single regularized framework based on superposed solution fields have been
introduced, namely the phase field method9 and the thick level set (TLS) method.10 The latter is the method of choice for
modeling fracture in this work.

The TLS method, first proposed by Moës et al,10 attempts to bridge the gap between damage and fracture mechanics.
In this method, cracks are represented by a level set front that can naturally represent interaction phenomena such as
branching and merging. Fracture mechanics is incorporated by making the rate of front growth dependent on the energy
release rate of the material. Furthermore, damage is incorporated by introducing a thick band of material behind the front
where the damage variable gradually increases until a zero-stiffness, completely cracked region emerges. The introduction
of a length scale represented by the thickness of this damaging band effectively introduces nonlocality in the damage
formulation, eliminating spurious strain localization. Furthermore, the use of a continuous level set field independent
from the underlying finite element discretization alleviates the issue of crack orientation bias. Since its inception, the
method has been expanded upon by multiple authors in order to deal with asymmetric constitutive behavior,11 couple
the damage formulation with plasticity12 and cohesive zone laws,13 improve the representation of traction-free sliding in
shear,14 and treat fatigue loading.15

Although being a versatile and robust method, TLS is a computationally demanding analysis approach. Accurate
modeling of front growth requires element sizes significantly smaller than the width of the damage band.11 Depending
on the geometry of the problem being modeled, this width is constrained to be smaller than the length scale of geometric
features in the domain—for example, a crack propagating between two inclusions very close to each other. Moreover,
since the level set is usually updated in a staggered fashion, numerical stability of the scheme requires that the front
does not advance for more than one element length per time step.11,14 These constraints render TLS computationally
prohibitive for a number of relevant problems. It is worth mentioning that opting for other regularized damage approaches
(eg, gradient-enhanced damage6 or phase field models9) does not alleviate the issue, as those methods also require dense
finite element meshes and involve additional degrees of freedom (eg, nonlocal strains) in the complete domain while the
TLS solves a damage update problem that involves additional unknowns only within damaged regions.

Model order reduction (MOR) techniques may be used to reduce the computational effort associated with the TLS
method. These techniques essentially consist in finding suitable lower-dimensional solution spaces that can be employed
as surrogates for full-order models. The goal is to construct surrogate models with significantly lower computational
effort while minimizing the associated loss of solution accuracy. For the equilibrium problem that constitutes the most
demanding phase of a TLS analysis,10,11 the number of degrees of freedom can be drastically reduced through the proper
orthogonal decomposition (POD) technique16 while the cost of computing the global internal forces and stiffness matrix
can be reduced through hyper-reduction techniques such as the empirical cubature method (ECM).17

However, using MOR for highly nonlinear fracture problems such as the ones treated with TLS is a complex endeavor
for which no definitive solution is currently available. MOR methods rely on an offline training phase during which rep-
resentative loading cases are executed and the resulting solution snapshots are used to compute the reduced solution
spaces. For fracture problems, a difficulty arises when choosing loading cases for training: subtle changes in bound-
ary conditions can lead to considerable differences in crack initiation and propagation behavior. In other words, the
parameter space of possible solutions that the surrogate model should be able to approximate is prohibitively large,
leading to inefficient training and a lower acceleration level through an increase in the size of the reduced-order
solution space.

In recent years, a number of strategies have been proposed in order to alleviate this issue and allow for projection-based
MOR techniques to be applied to fracture problems. In Reference 18, the authors employ a mesh morphing technique
that effectively reduces the size of the reduced space necessary to accurately approximate the solution, while authors in
Reference 19 combine POD with domain decomposition in order to allow for locally-refined bases to be used in zones
of strain localization. Although promising, these approaches still rely on the construction of a reduced basis offline. For
TLS problems, aside from the difficult task of selecting training cases, the adaptive nodal enrichment and numerical
integration schemes necessary for the accuracy and robustness of the method11 lead to stress and displacement snapshots
of variable sizes and orderings, further complicating the task of a posteriori construction of reduced bases. An alternative
class of strategies which seems more suitable to the problem at hand consists in adaptively refining the reduced basis
during the online analysis either through the use of Krylov subspaces16,20,21 or by locally solving critical mesh regions in
the full-order space.22
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It seems clear that resorting to pre-trained models would be a cumbersome and inefficient approach to reducing the
computational complexity of the TLS method. This paper is instead focused on adaptively reduced models that preclude
the need for an offline training phase. In a recent work,23 we propose an adaptive reduction framework that starts with a
fully-solved load step and combines a number of state-of-the-art MOR techniques17,19,22,24 in order to progressively build
a hyper-reduced model that allows for different levels of reduction coexisting on different subdomains of a single finite
element mesh. Here, the framework is applied and tailored to the specific needs of a TLS analysis, although it can easily
be used to accelerate other types of fracture models. We start by looking at the full-order model of a compact tension
test14,25 and reviewing the basic components of the TLS method. MOR ingredients are then gradually added to the model
while exploiting the full-field information that is a by-product of the TLS front update—the level set field, front velocities,
and parametrized front length—in order to achieve a fully-adaptive domain decomposition strategy to accommodate
the different levels (full, reduced, hyper-reduced) of MOR. The performance of the modified framework is assessed and
additional numerical examples are shown.

1.1 Mathematical notation

Throughout this work, vectors and matrices are written as boldfaced lower-case and upper-case symbols, respectively.
Sets of indices are written in upper-case calligraphic script (eg, ). Entities in the full-order solution space are indi-
cated by the subscript h, while reduced-order entities are left unmarked for compactness. A subscript with a set between
parenthesis (eg, M( , )) indicates a selection operation based on one or two sets of indices that extracts submatrices or
subvectors.

2 THE THICK LEVEL SET METHOD

In this section, we review the main analysis steps that comprise the TLS method. Let Ω be a volume in equilibrium
subjected to Dirichlet constraints at boundary Γu and Neumann boundary conditions at Γf such as Γu ∩ Γf = ∅. The TLS
method consists in using a level set function 𝜙 = 𝜙 (x, y) in 2D or 𝜙 = 𝜙 (x, y, z) in 3D to define a damage front Γ𝜙 that
divides Ω into a damaged volume Ωd and an intact volume Ωi, as shown in Figure 1.

The level set function 𝜙 is a signed distance function to the front, satisfying the eikonal equation for unit velocity,
written as:

|∇𝜙| = 1, (1)

subjected to 𝜙 = 0 on Γ𝜙. The presence of a front introduces in Ω the curvilinear coordinate system 𝜙 − s shown in
Figure 1. At distances larger than the length scale parameter lc in the direction normal to the front (along the 𝜙-axis for
every value of s), the material is considered to have lost its complete stiffness (d = 1). With these definitions, the damage
variable can be written as:

d (𝜙) =
⎧⎪⎨⎪⎩

0, 𝜙 ≤ 0
f (𝜙) , 0 < 𝜙 ≤ lc

1, 𝜙 > lc

, (2)

F I G U R E 1 The Thick Level Set method: the domain Ω is partitioned into damaged
(Ωd) and intact (Ωi) volumes by a level set 𝜙 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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where f (𝜙) is a damage profile function satisfying 𝜕f∕𝜕𝜙 ≥ 0 for 0 ≤ 𝜙 ≤ lc. In this paper, the arctangent profile proposed
by Bernard et al11 is used for all numerical examples:

f (𝜙) = c2 atan
(

c1

(
𝜙

lc
− c3

))
+ c4, (3)

with c1 = 10, c3 = 0.5, and the other coefficients given by:

c2 = 1
atan (c1 (1 − c3)) − atan (−c1c3)

, c4 = −c2 atan (−c1c3) . (4)

With the signed distance function for 𝜙, the closest distance to the damage front is known at every point in the domain.
This information will be useful for the adaptive scheme in Section 3.

The TLS implementation considered in this work is based on a staggered scheme: from an existing level set configu-
ration, an equilibrium problem with unit load* is solved for the displacement field u. The displacements are then used to
solve a second system of equations on Ωd that computes the configurational forces at the damage front Γ𝜙. By compar-
ing the configurational forces with a material resistance parameter, the evolution of the level set front is computed, along
with the load factor 𝜆 that is used to scale the unit load equilibrium solution. Finally, the level set field is updated and new
damage fronts are allowed to nucleate if the material strength is surpassed at any point on Ωi. In the following sections,
further details on each of these analysis phases (global equilibrium, front evolution, and level set update) will be provided.

2.1 Equilibrium problem

For the present study, we opt for a simple isotropic damage formulation for which the free energy can be written as:

𝜓 = 1
2
(1 − d) 𝜺TD𝜺, (5)

where D is the elastic stiffness tensor. The stresses are obtained by differentiating the energy with respect to strain:

𝝈 = 𝜕𝜓

𝜕𝜺
= (1 − d)D𝜺. (6)

It is important to note that the isotropic nature of this simple damage model leads to unrealistic predictions of damage
nucleation and propagation under compression. Although asymmetric damage models have already been proposed for
use with TLS,10,11 those are also not applicable to general loading directions, leading to spurious stiffness recovery under
shear. In Reference 14, van der Meer and Sluys propose an interphase material that eliminates this issue and allows the
TLS to capture traction-free sliding, but it can only be employed on real material interfaces. In order to keep the discussion
focused on accelerating TLS using MOR techniques, the simple and numerically robust isotropic formulation is adopted.

With the stress tensor, the full-order internal force at integration point i can be written as:

fh (xi) = BT (xi)𝝈 (𝜺i) , (7)

where B is a matrix that relates nodal displacements to local strains and fh∈ RN is the contribution of point i to the
full-order (as indicated by the subscript h) global internal force vector, with N being the total number of degrees of freedom
in the model.

In the TLS method, the region with𝜙 > lc represents a stress-free crack. Due to the discrete nature of the finite element
method, this region must be at least one element wide in order to achieve a stress-free state, which would otherwise
introduce mesh dependency to the problem.14 In order to circumvent this issue, the adaptive enrichment scheme proposed
by Bernard et al11 is employed and extra degrees of freedom are added to nodes inside the cracked region whose element
support is cut at least twice by the iso-lc. In practice, this leads to a dynamic number of degrees of freedom N, with

*This is only allowed because a linear material model is employed in the staggered solution scheme. For an alternative approach suitable for
nonlinear material models, the reader is referred to Reference 12.
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nodes being enriched or unenriched as the front moves. Furthermore, enriched elements will have a different B matrix
than regular elements. These two consequences of the enrichment scheme will be important when building the reduced
models in Section 3.

The global internal force vector fΩh is numerically integrated by combining the contribution of all M integration points
in the mesh:

fΩh = ∫Ω
fhdΩ ≈

M∑
i=1

fh(xi)wi, (8)

where wi is the integration weight of the point located at xi. In order to improve the accuracy of the TLS solution, extra
integration points are added to the elements cut by the iso-zero as well as to the elements cut by the iso-lc. This means
that M is not constant during the analysis, a fact that must be accounted for when building a hyper-reduced model for fΩ

(Section 3). Finally, the displacement vector uh∈ RN that leads to global equilibrium can be obtained by solving:

rh = fΓh − fΩh (uh) = 0, (9)

where rh∈ RN is a residual vector and fΓh∈ RN is the global external force vector.

2.2 Front evolution

As damage is directly coupled to the distance to the level set front, a movement of this front leads to changes in damage
distribution and, consequently, to energy dissipation. This dissipation is related to the configurational force Y , obtained
from Equation (5) as:

Y = −𝜕𝜓
𝜕d

= 1
2
𝜺TD𝜺. (10)

In the TLS method, the classic local dissipation measure Ξ = Yḋ is substituted by a measure of dissipation over the
complete damaged band when it moves by a distance 𝛿𝜙:

Ξ = ∫Γ𝜙
∫

l

0
Y (𝜙, s) 𝜕d

𝜕𝜙

(
1 − 𝜙

𝜌 (s)

)
d𝜙𝛿𝜙 (s) ds = ∫Γ𝜙

g (s) 𝛿𝜙 (s) ds, (11)

where g (s) is the band configurational force at coordinate s:

g (s) = ∫
l

0
Y (𝜙, s) 𝜕d

𝜕𝜙

(
1 − 𝜙

𝜌 (s)

)
d𝜙, (12)

with 𝜌 being the curvature of the iso-zero at coordinate s and 0 ≤ l ≤ lc is the width of the damaged band. Since
g (s) → 0 when l → 0, an average configurational force Y which is only a function of s is computed in such a way as to
enforce:11

∫
l

0
Y (s) 𝜕d

𝜕𝜙

(
1 − 𝜙

𝜌 (s)

)
d𝜙 = ∫

l

0
Y (𝜙, s) 𝜕d

𝜕𝜙

(
1 − 𝜙

𝜌 (s)

)
d𝜙. (13)

Numerically, this average configurational force along the front is computed by solving Equation (13) on the domain
Ωd with Y as nodal values while enforcing the constraint ∇Y ⋅ ∇𝜙 = 0 with Lagrange multipliers.11 The front prop-
agation criterion at a given point i at the front simply becomes Y i = Y ci, with Y c being the homogenized value of
a resistance parameter Yc (𝜙, s) computed by solving a system of equations similar to Equation (13) but substituting
Y by Y c.

Although a constant propagation resistance Yc could be used throughout the analysis,10,11 we follow the approach
proposed in Reference 14 instead and make Yc a function of the size of the damaged zone in order to take into account the
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difference in the stress levels necessary for damage initiation and propagation. With values for Yc related to the strength
(Y f

c ) and fracture energy (Y
G
c ), the following interpolation is adopted:

log Yc = log Y f
c + 𝜙

𝜙max

(
log Y G

c − log Y f
c

)
, (14)

where 𝜙 is the average value of 𝜙 inside Ωd, lc∕3 ≤ 𝜙max ≤ lc∕2 is the band size after which Y c ceases to increase, and the
two parameters related to initiation and propagation are given by:

Y f
c = 1

2
f 2
t

E
, Y G

c = Gc

2Alc
with A = 1

lc ∫
lc

0
f (𝜙) d𝜙, (15)

where f (𝜙) is given in Equation (3).
With values of Y and Y c at every node i on 𝜙, defined as the set of nodes on elements cut by the front Γ𝜙, the load

factor 𝜆 necessary to promote front growth can be computed by solving:

𝜆2 max
i∈𝜙

{
Y i

Y ci

}
= 1. (16)

Finally, the front velocity v in the direction perpendicular to the level set (in the negative direction along the 𝜙-axis of
Figure 1) for every node in 𝜙 can be obtained through:14

vi = k
⟨

c𝜆2Y i

Y ci
− 1

⟩
+

k = vmax

c − 1
, (17)

where the operator ⟨⋅⟩+ returns the positive part of its operand and vmax is the maximum growth the front can undergo
in a single load step. In order to guarantee the stability of the staggered analysis scheme, a value vmax = hmin∕2 is adopted
here, with hmin being the size of the smallest finite element present in the mesh. The parameter c controls the amount of
velocity spread to nodes with lower values for the ratio Y∕Y c. For c → 1, only the point used to compute 𝜆 in Equation (16)
will have nonzero velocity.

2.3 Level set update and damage nucleation

With the nodal velocities at the front, the last analysis phase consists in updating the level set field 𝜙 (and consequently
the damage distribution). This in turn involves extending the front velocities to every node not belonging to 𝜙. In order
to guarantee that the updated level set will satisfy Equation (1), the velocities are extended along the 𝜙-axis, satisfying the
constraint:

∇𝜙 ⋅ ∇a = 0, (18)

which is solved with a fast marching algorithm.26 The level set field at every node is then updated as:

𝜙i = 𝜙io + vi, (19)

with i ∈  (the complete set of nodes in the mesh) and the subscript o indicating values from the previous time
step. Even though this extension strategy is designed to guarantee the signed distance property of 𝜙, the discrete
nature of the level set update leads to increasingly larger violations of Equation (1) as the analysis progresses. A
reinitialization procedure in which Equation (1) is solved with a fast marching algorithm is therefore periodically
performed.26

During this update phase, a nucleation check is performed in order to allow for new damage fronts to emerge. The
size of a newly created damage nucleus is considered to be infinitesimal, therefore reducing the interpolated Yc value of
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F I G U R E 2 Analysis flow of a single time step in the TLS method,
showing the couplings between the three analysis phases. TLS, thick level
set [Colour figure can be viewed at wileyonlinelibrary.com]

Equation (14) to simply Y f
c and making the initiation criterion local. The check is performed at every integration point

and a new nucleus is created at coordinates:

xnucl = arg max
x

{
𝜆2 Y

(
x
)

Y f
c
(
x
)} , (20)

where Y f
c is made a function of x to take into account the general case of multiple materials being used in the same mesh.

After nucleation, the value of 𝜙 is checked at every node and updated if the distance between the node and the new
nucleus is smaller than 𝜙.

With the updated level set field, the damaged band size𝜙 at Γ𝜙 is computed in order to be used in Equation (14) during
the following time step. This is done in a similar way as in the computation of Y and Y c, by solving the following weak
form:14

∫
l

0
𝜙 (s)

(
1 − 𝜙

𝜌 (s)

)
d𝜙 = ∫

l

0
𝜙

(
1 − 𝜙

𝜌 (s)

)
d𝜙, (21)

while using Lagrange multipliers to enforce the constraint ∇𝜙 ⋅ ∇𝜙 = 0. The analysis flow of a single TLS step is shown
in Figure 2, including the information exchanged between analysis phases.

2.4 Example: Compact tension test

Before attempting to accelerate TLS simulations with MOR techniques, we show a full-order numerical example to
illustrate the method. In Section 3, the same example will be used to gradually introduce each reduction technique.

The example involves the compact tension test used by Li et al25 to investigate mode I crack growth in fiber-reinforced
polymers and later modeled with TLS by van der Meer and Sluys.14 The specimen is a square (100mm × 100mm)
plate modeled in plane stress with a notch with circular tip (r = 1mm) pulled vertically from the circular load applica-
tion points seen in Figure 3. The material parameters are E = 7GPa, 𝜈 = 0.3, Gc = 40 N∕mm2, ft = 79MPa, lc = 2 mm,
c = 2, and 𝜙max = 0.45lc. The plate is discretized with a total of 76 784 constant-strain triangles with one integration
point each, resulting in N = 77 234 degrees of freedom (DOFs) and M = 76 784 integration points. A relatively dense
discretization is employed along the expected crack path (Figure 4), with a minimum characteristic element size
hmin = 0.15 mm.

No damage fronts are present during the first time step. The unit load problem is solved and a very high 𝜆 is set in order
to guarantee that a first nucleation will occur during the level set update phase. Since the structure behaves elastically
if no damage fronts exist, this effectively promotes a jump to the moment at which the first nucleation occurs, at a load
of approximately 100 N. From the second step onwards, 𝜆 is computed according to Equation (16). The global behavior
starts with a hardening branch during which a fracture process zone of radius lc develops and transitions to a softening
branch as the crack grows towards the opposite edge of the plate. The load-displacement curve can be seen in Figure 3,
as well as the extended velocity field from a time step during the softening branch.

http://wileyonlinelibrary.com
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scheme [Colour figure can be viewed at
wileyonlinelibrary.com]

As the damage front propagates, the size of the equilibrium problem (N) changes as nodes from elements cut by the
iso-lc are enriched. Furthermore, the number of integration points of elements cut by both the iso-zero and the iso-lc
changes from 1 to 9, increasing the total number of integration points M. Figure 4 shows the damage front after the last
analysis step, as well as a zoomed-in view of the damage band indicating which nodes and elements are modified.

The analysis runs in 1670 s on a workstation equipped with a Xeon W-2123 processor running Ubuntu 18.04.2. From
this total execution time, 1494 s (92%) is dedicated to solving the equilibrium problem, with the remaining 5% and 3%
being spent on computing the front advance and updating the level set field, respectively. Since Equations (13) and (21)
are only solved inside Ωd, the equilibrium problem is the main complexity bottleneck of the TLS method.11,14

3 ADAPTIVE MODEL ORDER REDUCTION

In this section, the mechanical equilibrium problem associated with the TLS method (the first analysis phase in Figure 2)
is accelerated with a number of the MOR components presented in Reference 23. Two main reduction avenues can be
identified: reducing the number of DOFs N and the number of integration points M necessary for integrating the internal
force vector fΩ of Equation (8). As the parameter space—defined here as the space of possible load histories to which the
model can be subjected—associated with fracture problems is prohibitively large, the reduced spaces for N and M are
constructed online in an adaptive fashion.

3.1 Reduction by projection

Instead of solving for uh∈ RN , the solution to the equilibrium problem of Equation (9) can instead be sought for on
a lower-dimensional manifold defined by a set of n orthonormal basis vectors 𝝍 i. After solving for the n ≪ N mode

http://wileyonlinelibrary.com
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contributions 𝜶, the full-order displacement field can be recovered by:

uh = 𝚿𝜶 𝚿 =
[
𝝍1 𝝍2 · · · 𝝍n

]
. (22)

A popular approach for constructing the reduced solution space spanned by 𝚿 is the POD method: a set of P full-order
displacement snapshots Xu is decomposed into orthonormal contributions through a singular value decomposition (SVD)
operation:

Xu = 𝚿SVT, (23)

where the basis 𝚿 is the left-singular matrix of Xu, V is a matrix with right-singular vectors, and S is a diagonal matrix
with singular values. When the number of snapshots P is large, the SVD is usually truncated to the first n ≪ P modes,
associated with the highest singular values. The reduced version of the equilibrium problem is obtained by imposing the
Galerkin projection constraint 𝚿Trh = 0, which yields:

fΩ = 𝚿TfΩh , fΓ = 𝚿TfΓh , K = 𝚿TKh𝚿. (24)

For pre-trained models, obtaining the snapshot matrix Xu is the goal of the offline training phase. Here, Xu is updated
whenever a load step is solved in the full-order space. Since the analysis starts without an initial basis 𝚿, the very first
load step is solved fully and subsequent steps are reduced. As the analysis progresses and changes in damage distribution
occur, the reduced space 𝚿 gradually loses the ability to describe the global behavior of the structure being modeled. At
this point, even though the reduced problem is in equilibrium (fΩ = fΓ), the full-order equilibrium of Equation (9) is not
exactly satisfied. This deviation from equilibrium can be used to trigger a fully-solved retraining step if a certain tolerance
threshold 𝜖force is crossed:23

‖‖‖fΓh − fΩh
‖‖‖ > 𝜖force, (25)

where the load scaling used in Reference 23 is dropped because the mechanical equilibrium problem is based on a
unit-load solution. After the retraining step is solved, the field uh and its change from the previous time step Δuh
are added to Xu and a new basis 𝚿 is computed with Equation (23). In order to limit the computational overhead
associated with these SVD operations, Xu is only allowed to have a number nf of snapshots, with older solutions
being gradually discarded as new snapshots are added. Furthermore, the SVD operation is truncated once singular
values drop below a threshold 𝜖SV in order to guarantee that only the most relevant basis vectors are included in
the basis.

3.1.1 Compact tension example

We now return to the compact tension example of Section 2.4 and attempt to use the present adaptive POD approach
to solve it in the reduced space. With the current approach, we immediately run into a problem when using the nodal
enrichment scheme shown in Figure 4: any new enrichments occurring between two consecutive retraining steps cannot
be included in the basis, since 𝚿 can only be updated after a fully-solved step. Delaying these new enrichments would
in turn lead to an enlargement of the damage front until the region with 𝜙 > lc is at least one element wide. Since the
level set advancement is irreversible, these thicker cracked regions would persist even after a full step is triggered. The
enrichment scheme is therefore disabled until a solution for this issue is proposed in Section 3.2.

For the additional parameters related to the POD reduction, we adopt nf = 6 and 𝜖SV = 10−6. This means that the
number of reduced DOFs n is at most 6, a significant reduction when compared to the original N = 77 234. The tolerance
𝜖force is adjusted such that the crack is able to correctly propagate from the notch. For higher values of 𝜖force, the deficient
reduced basis blocks the front advance and causes the cracked band to widen. This is an unphysical effect that does not
occur if a low enough tolerance is adopted. Figure 5 shows the comparison between damage front shapes obtained with
two different tolerances.

With 𝜖force = 0.025, the load-displacement curve shown in Figure 6 is obtained. Although both the shape of the damage
front and the quasi-static equilibrium path are correctly reproduced by the reduced solution, it produces a curve with
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Full ϵforce = 0.025 ϵforce = 0.060

F I G U R E 5 Front behavior
comparison between the full solution
and POD solutions with different error
tolerances. POD, proper orthogonal
decomposition [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 6 Load-displacement behavior obtained with the adaptive POD
approach. The detail highlights the oscillatory reduced behavior caused by a high
retraining frequency. POD, proper orthogonal decomposition
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F I G U R E 7 Accumulated number of reduced steps as the analysis
progresses. A large deviation from linearity implies a large number of retraining
steps

higher numerical noise. These equilibrium path jumps occur whenever a retraining step occurs and the reduced curve
snaps back to the full one (cf23).

The noisy load-displacement response hints at a very high number of retraining steps driven by the highly non-
linear structural behavior caused by the propagating crack. Indeed, plotting the cumulative number of reduced steps
versus the total number of load steps shows that approximately half of the steps are fully solved (Figure 7). The
reduction scheme is particularly inefficient towards the end of the analysis, when the error control condition of
Equation (25) is triggered as soon as 𝚿 is updated and no more reduced steps are allowed. Nevertheless, the reduced
mechanical equilibrium model runs approximately 1.4 times faster than the full one. However, it is important to
note that even though the quantity of interest in this case (the load shown in Figure 6) is reproduced with reason-
able accuracy by the reduced model, the net benefit of reducing the problem might become negative depending on
the application: it is difficult to justify even very minor losses in accuracy when the gains in execution time are so
limited.

Finally, it is interesting to investigate the spatial distribution of the deviation from equilibrium rh that triggers retrain-
ing steps. In Figure 8, this error is plotted for a reduced load step immediately prior to a retraining step. As expected, the
reduced space obtained with information from the latest retraining step struggles to represent what happens immediately

http://wileyonlinelibrary.com
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F I G U R E 8 Deviation from full-order equilibrium from a reduced step
immediately prior to retraining. The reduced basis 𝚿 does not adequately
represent the behavior of the region immediately ahead of the crack tip

ahead of the crack tip, the area of Ωd where most of the changes in damage profile occur—that is, the region with the
highest slope 𝜕d∕𝜕𝜙 of the arctangent damage expression of Equation (3).

3.2 Equilibrium system partitioning

As illustrated in Section 3.1, two issues arise when attempting to accelerate the TLS equilibrium problem with an adap-
tive POD approach. First, the enrichment scheme proposed in Reference 11 is incompatible with the fact that the basis
𝚿 is only updated during fully-solved steps. Second, the inability of the reduced basis to correctly capture changes in
mechanical behavior immediately ahead of the crack tip leads to a high number of retraining steps, negating most of the
acceleration associated with solving an equilibrium problem of size n ≪ N. The partitioning strategy first proposed by
Kerfriden et al22 and later adopted as part of the framework in Reference 23 offers a potential solution to both of these
issues, as it allows for a group of DOFs to be detached from the reduced solution space and directly solved for in the
full-order space.

We divide the complete set of DOFs  into a set  of reduced DOFs and a set  of fully-solved DOFs ( ∩  = ∅).
The DOFs in  are solved for in the full-order space while the reduced basis 𝚿 is used to approximate the solution in .
With this partitioning, the reconstruction of uh becomes:

uh() = 𝚿()𝜶, uh( ) = uf , (26)

where uf is a vector with displacements associated to DOFs in  and 𝚿() is a submatrix obtained by selecting the rows
of 𝚿 associated with the DOF indices in . After partitioning, the reduced solution vector becomes:

u =
(
𝜶
uf

)
, (27)

By detaching  from the Galerkin projection constraint 𝚿Trh = 0, we obtain the following partially-reduced versions of
the force vectors and stiffness matrix:22,23

fΩ =

(
𝚿T

()f
Ω
h()

fΩh( )

)
, fΓ =

(
𝚿T

()f
Γ
h()

fΓh( )

)
, (28)

K =

[
𝚿T

()Kh(,)𝚿() 𝚿T
()Kh(, )

Kh( ,)𝚿() Kh( , )

]
. (29)

The question now becomes how to define  in order to minimize the number of retraining steps. In Reference 23,
we have proposed a number of strategies to populate  when the framework is applied to problems with plasticity,
including two criteria that search for regions with energy dissipation concentrations caused by plastic strain devel-
opment. Here, we devise a similar strategy while taking advantage of full-field information already computed by the
TLS method.

The region ahead of the crack tip shown in Figure 8, which concentrates most of the deviation from equilib-
rium that triggers retraining steps, is an intuitive choice for  . As this deviation is caused by the front movement
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F I G U R E 9 Definition of the fully-solved DOF set  from the intersection of the level
set curve 𝜙f with a viscous cumulative velocity field. DOF, degree of freedom [Colour figure
can be viewed at wileyonlinelibrary.com]

as the crack propagates, the extended velocity field computed in order to update the level set field becomes a use-
ful tool to identify regions undergoing changes in damage distribution. A straightforward approach would be to
include the DOFs of every node with nonzero velocity in  . However, two additional points must be taken into
account:

• The velocity field is extended to the whole domain, which means that points far away from the front also have positive
velocities (see Figure 3). This would lead to an overly large  set;

• Only points directly ahead of the crack tip have nonzero velocities. As the tip moves forward between two consecutive
retraining steps, the nodes behind it will immediately drop out of  , but the basis 𝚿 would still be unable to correctly
capture their behavior.

We address the first point by also requiring points in  to fulfill the constraint 𝜙 ≥ 𝜙f—that is,  is the intersection
between the region delimited by a level set 𝜙f and the nonzero velocity field. As for the second point, we substitute the
instantaneous extended velocity field v by a decaying cumulative velocity measure v∗ in order to retard the removal of
points behind the crack tip from  . At the beginning of every load step, the velocity field vo computed during the previous
step is used to update v∗ as follows:

v∗ = exp
(
−1
𝜏

)
v∗o + 𝜏

[
1 − exp

(
−1
𝜏

)]
vo, (30)

where 𝜏 is a decay parameter. A node i ∈  is added to  if the following conditions are satisfied:

𝜙i ≥ 𝜙f and v∗i ≥ 𝛽v∗max, (31)

where 𝛽 is a cutoff velocity parameter that controls the shape of the domain formed by nodes in  and v∗max is the value of
v∗ at the node with the highest accumulated velocity. Figure 9 illustrates how each of the parameters 𝜏, 𝛽, and𝜙f influence
the shape of  . At this point, it is important to mention that even though the deviation from equilibrium of Figure 8
is limited to the 𝜙 > 0 region, extending 𝜙f beyond the front may prove beneficial in reducing the number of retraining
steps. The region ahead of the front is where a gradual increase in configurational force takes place up to the point where
Yc is reached. The movement of the front may therefore be hindered if the reduced basis does not allow for this stress
concentration to emerge.

The partitioning strategy also allows for the reintroduction of the enrichment around 𝜙 = lc: any DOFs cre-
ated by the enrichment scheme (Figure 4) that are not already present in 𝚿 are added to  . This allows for
each snapshot xu on Xu to have a different size, depending on the value of N at the time when it is stored. The
basis computed from this set of snapshots has, therefore, a number of rows Nc = min

i
(size (xui)). As older snap-

shots are overwritten, Nc increases and the enriched DOFs now included in the basis are removed from  . With
this strategy, the enrichment scheme is allowed to operate between two consecutive retraining instances. It is worth
noting in passing that a similar scheme could also be used to combine a POD-reduced model with a remesh-
ing strategy, other methods based on nodal enrichment such as XFEM27 or overlapping domain techniques such
as CutFEM.28
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3.2.1 Compact tension example

We now apply this partitioned POD strategy to the compact tension example of the previous sections. Figure 10 shows
snapshots at two load steps of three different model executions with 𝛽 = 0.001 and different combinations of 𝜏 and 𝜙f,
resulting in different topologies for the region formed by the nodes included in . For the first model, the decay parameter
is high enough to guarantee that the size of  increases monotonically and covers the whole damaged band. In contrast,
the decay is disabled for the second model by setting 𝜏 to a very low value, which means that only points with a positive
instantaneous velocity are included in  . Finally, the third model seeks a balance between including nodes behind the
crack tip and those ahead of the damage front while keeping  relatively small throughout the analysis. It is interesting
to note that the third model, although having a smaller number of nodes in  , needs significantly less retraining steps
and is therefore more efficient in terms of acceleration than the other two. In any case, the fact that  is updated at the
beginning of every load step leads to an efficient and fully-adaptive partitioning scheme that naturally follows the crack
as it moves through the domain.

F I G U R E 10 Compact tension test
with the partitioned adaptive POD
scheme. Different topologies of  lead to
different retraining frequencies. The
models are executed for 550 load steps
[Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 11 Total number of retraining steps needed to maintain accuracy
with multiple combinations of 𝜏 and 𝜙f (𝛽 = 0.001, 550 load steps) [Colour figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 12 Maximum size of  throughout the analysis for multiple
combinations of 𝜏 and 𝜙f (𝛽 = 0.001, N = 77 234) [Colour figure can be viewed at
wileyonlinelibrary.com]

The influence of the shape and size of  on the efficiency of the reduced solution is further investigated by running
the model with different combinations of 0.01 ≤ 𝜏 ≤ 100 and −10 ≤ 𝜙f ≤ 3, with 𝛽 = 0.001. The resultant number of
retraining steps for each combination is plotted in Figure 11, while the maximum size attained by  during the analysis is
shown in Figure 12. For 𝜙f = 3 mm,  is only used to accommodate DOFs from newly enriched nodes (since lc = 2 mm)
and the same number of retraining steps (317) is obtained for all values of 𝜏. As 𝜙f decreases, an increasing number of
nodes ahead of the crack tip are added to  .

At first there is a sharp decrease in the number of retraining steps, as the critical region shown in Figure 8 is included
in , with still significant decreases for𝜙f < 0, albeit at a gradually decreasing rate. This confirms that fully solving a finite
region immediately ahead of the damage front is beneficial in reducing retraining frequency, depending on the problem
being modeled and the choice of lc (see Section 4.1 for an extended discussion on this point). For even lower values of 𝜙f,
the number of retraining steps tends to stabilize. This is consistent with the fact that the stress concentrations that drive
crack propagation gradually vanish as we move away from the damage front towards regions where deformation can be
correctly reproduced in the reduced solution space.

The decay parameter 𝜏 also has significant influence on the number of retraining steps. In general, increasing 𝜏 leads
to a decrease in retraining frequency, although no improvement is observed for 0 ≤ 𝜏 ≤ 0.1 due to the exponential nature
of Equation (30). However, increasing 𝜏 to such extent that  covers the whole damaged band (eg, the first model in
Figure 10) seems to be unnecessary. Because the basis 𝚿 is constantly being refreshed, regions of Ωd far away from the
crack tip can be well approximated by the POD solution.

It is important, therefore, to seek a balance between populating  with enough nodes both ahead and behind of the
crack tip while minimizing its size. As can be seen in Figure 12, unfavorable choices for 𝜏 and 𝜙f can lead to highly ineffi-
cient reduced models with sizes of  that quickly approach the total number of DOFs N with only negligible reductions
to the number of retraining steps.

Opting for the combination of parameters used on the third model of Figure 10 (𝜙f = −2 mm, 𝜏 = 10, 𝛽 = 0.001), we
obtain the load-displacement curve of Figure 13. In contrast to the curve obtained with  = ∅ (cf Figure 6), the reduced

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


ROCHA et al. 2161

F I G U R E 13 Load-displacement behavior obtained with the partitioned
POD approach. POD, proper orthogonal decomposition [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 14 Accumulated number of reduced steps obtained with the
partitioned POD approach with and without populating  with DOFs around the
crack tip. DOF, degree of freedom

response here is virtually indistinguishable from the fully-solved one. Furthermore, the efficient partitioning successfully
limits the number of retraining steps (Figure 14) while maintaining a relatively low number of DOFs in  (7.7%).

With this combination of parameters, the reduced equilibrium problem runs in 406.8s, accounting for 76% of the total
execution time if all TLS phases are included. Of this total time, only 0.54s is dedicated to the SVD operations used to
update 𝚿. Although the resulting speed-up of 3.7 times with respect to the full-order equilibrium problem is already more
than twice as high as the one obtained with  = ∅, in the following section we attempt to further increase the level of
acceleration by reducing the time spent on assembling Kh and fΩh .

3.3 Domain-based hyper-reduction

We now seek a way to compute fΩ—and consequently K as consistent linearization of fΩ (u)—in a faster way and with
minimum loss of accuracy. Because the basis 𝚿 reduces the size of the equilibrium problem to n ≪ N, the minimum
amount of information needed to assemble fΩ is also greatly reduced. However, in the POD model fΩ is obtained by
compressing the data gathered in a loop over all M integration points. In the final example of Section 3.2, 42% of the
total time spent on the equilibrium problem was dedicated to this assembly of fΩh and Kh. Strategies for accelerating this
assembly operation are referred to as hyper-reduction methods.

The problem becomes to choose from the complete set of M integration points a m ≪ M subset ⊂  with associated
modified integration weights𝜛 in such a way as to minimize the error between the M-integrated fΩ and its m-integrated
counterpart:

(, 𝜛) = arg min
⊂,𝜛≥0

‖‖‖‖‖‖‖𝚿
T

( M∑
i∈

fh(xi)wi

)
−𝚿T

⎛⎜⎜⎝
m∑

j∈
fh(xj)𝜛 j

⎞⎟⎟⎠
‖‖‖‖‖‖‖

2

. (32)
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In order to solve Equation (32), we use the so-called ECM originally proposed by Hernández et al17 and
later adopted in the framework of Reference 23. At the end of every fully-solved step, the reduced internal
force contribution f (xi) ∈ Rn of each integration point is used to construct a single force snapshot Xf∈ RM×n

given by:

Xf =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
w1

(
f (x1) − 1

Ω
fΩ

)
√

w2

(
f (x2) − 1

Ω
fΩ

)
⋮√

wM

(
f (xM) − 1

Ω
fΩ

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (33)

where reductions are performed with the updated 𝚿 basis. Since only a single snapshot is used to perform the reduction,
a slightly different approach than the one used in Reference 23 is adopted: instead of storing stress snapshots and using
SVD to obtain a basis matrix for stresses, here the SVD is used to decompose Xf:

Xf = 𝚲SVT, (34)

where 𝚲∈ RM×p is a basis matrix truncated to the first p singular vectors. With this basis for internal
forces, the minimization problem of Equation (32) is rewritten as the nonnegative least-squares minimization
given by:

(𝜷,) = arg min
⊂, 𝛽≥0

‖‖‖‖J()𝜷 − b
‖‖‖‖2
, (35)

where J and b are:

J =
[
𝚲

√
w
]T
, b =

[
0 Ω

]T
, (36)

and the modified integration weights are obtained through element-wise multiplication of 𝜷 by the original integration
weights w(). For more details on the formulation and implementation of the method, the interested reader is referred to
References 17, 23.

The preceding development implies that the integration of the whole volume Ω is going to be reduced (see
Equations (33) and (36)). For the current framework, this would not be desirable because:

• With ECM, the full-order force vector fΩh is only defined at a small set of nodes and the modified weights𝜛 deprive it of
its physical meaning. Reducing the whole domain Ω would therefore make computing the deviation from equilibrium
used to trigger retraining steps (Equation (25)) impossible;

• Solving for DOFs belonging to the full-order set  requires the internal forces at those nodes to be fully integrated.
Reduction of the complete domain would therefore make it impossible to use the equilibrium partitioning scheme of
Section 3.2.

It is clear that at least part of Ω should still be fully integrated even after hyper-reduction. We therefore divide Ω into
an arbitrary number† of hyper-reduced domains  and one fully-integrated domain  , as illustrated in Figure 15. With
this domain decomposition strategy, the reduced internal force vector is computed as:

fΩ = 𝚿T
⎛⎜⎜⎝

M∑
i∈

fh (xi)wi +
m1∑

j∈1

fh
(
xj
)
𝜛j +…+

mn∑
k∈n

fh (xk)𝜛k

⎞⎟⎟⎠ , (37)

†The least-squares problem of Equation (35) cannot produce a set  with more than (p + 1) ECM points, at which point J() becomes square (cf17).
This limited set of points might not be enough to accurately represent the whole volume Ω. Defining multiple  domains allows for this integration
error to be controlled.
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F I G U R E 15 Domain-based hyper-reduction scheme for TLS. A POD domain 
follows the crack tip and the remaining volume is subdivided into ECM domains . A
domain  with full DOFs is allowed to exist within  . Domain topology is updated after
every retraining step. DOF, degree of freedom; ECM, empirical cubature method; POD,
proper orthogonal decomposition; TLS, thick level set [Colour figure can be viewed at
wileyonlinelibrary.com]

and the minimization problem of Equation (35) is solved separately for each domain i. Upon retraining, the domain
configuration is updated in order to take into account changes in crack topology and new sets of points and weights are
computed for each i.

From the preceding discussion, the minimum requirement for  is that it should at least contain the elements in  ,
including those with newly-enriched nodes. For simplicity, we adopt here the same strategy used to define  but using
a value 𝜙p < 𝜙f for the minimum level set value that defines the contour of the domain. This results in a  domain that
is always larger than  in order to account for the movement of the front between two consecutive retraining steps. The
motivation behind this choice stems from the fact that  cannot cross over the boundary of  into the region where
internal forces are not defined. The difference between 𝜙p and 𝜙f should therefore be large enough as to allow the front
to grow until the next retraining step is triggered without allowing  to touch the  − border.

The cracked region (where 𝜙 > lc) is also included in  in order to correctly represent the stress discontinuity intro-
duced by the enrichment scheme. Since this is a small region composed of a single line of elements, the acceleration loss
caused by extending  to cover its whole length is negligible. Since now fΩh is only correctly defined in  , the retraining
check of Equation (25) becomes:

‖‖‖fΓp − fΩp
‖‖‖ > 𝜖force, (38)

where the subscript p refers to quantities from nodes in  .
The remaining volume Ω ∩  is subdivided into ECM domains . In Reference 23 we have proposed to use a k-means

clustering algorithm to divide the domain into clusters with similar strain and use these clusters to define . Here we
exploit the introduction of the 𝜙 − s coordinate system of Figure 1 to propose a simpler and more efficient approach: 
can either be defined as TLS bands (regions between two specific values of 𝜙) or as bands defined by a range of s values
after using a fast marching algorithm to extend the nodal s values at the front to the rest of the domain. Alternatively,
domains may be defined by combining both strategies, forming regions delimited by iso-𝜙 and iso-s curves.

It is important to recall that as the front Γ𝜙 moves and new cracked regions are created, the integration scheme of
elements cut by iso-zero and iso-lc changes (Figure 4). It follows that a scenario might arise in which the integration
of an element containing an ECM point changes between two consecutive retraining steps. Although this situation is
mostly avoided by including cracked regions and regions with positive velocity in  , it might still happen under certain
circumstances (eg, if𝜙p > 0). As an additional safeguard, we store the coordinates of the points in at the time of training
and use them when computing strains at ECM points instead of relying on the updated‡ integration point locations.

3.3.1 Compact tension example

We now revisit the compact tension example one last time. The adaptive partitioned POD strategy of Section 3.2 is com-
plemented with the present domain-based hyper-reduction approach. The parameters used are nf = 6, 𝜖SV = 1 × 10−6,
𝜙f = −2 mm, 𝜖force = 0.025,𝜙p = −4 mm, 𝜏 = 10, and 𝛽 = 0.001. A precision 𝜖greedy = 1 × 10−10 is used to truncate the SVD

‡We still allow the integration scheme in  to be updated because the two remaining analysis phases (Figure 2) are still fully integrated and rely on a
higher integration precision along the damage front.
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F I G U R E 16 Compact tension test with the
domain-based ECM scheme. Resulting domain topology
for partitioning strategies based on 𝜙 (top), s (middle),
and on both 𝜙 and s (bottom). ECM, empirical cubature
method

of Equation (34) and as stopping criterion for the Greedy algorithm used to solve Equation (35). Figure 16 shows snapshots
of three model executions with different partitioning strategies: using only the level set field 𝜙 (n𝜙 = 4), using only the
parametric coordinate s (ns = 4), and combining both 𝜙 and s (n𝜙 = ns = 4). The adaptive nature of the present domain
decomposition approach is evident: as new retraining steps are triggered, the domain topology changes and automatically
follows the damage front as it propagates to the right edge of the specimen.

The benefit of increasing the number of ECM domains can be seen in the load-displacement curves of Figure 17.
For n𝜙 = ns = 1, the global reduced behavior tends to deviate from the full-order curve in a similar way as observed in
Figure 6. Furthermore, a higher number of retraining steps are triggered, with 94 steps for n𝜙 = ns = 1 and only 48 steps
for n𝜙 = ns = 10. Since the number of POD modes is at most n = 6, the maximum number of ECM points on a single
domain is p + 1 = 7. These 7 points are not enough to accurately integrate the whole domain  = Ω ∩  , resulting in
a poor approximation for fΩ which in turn leads to a higher retraining frequency. For n𝜙 = ns = 10, the presence of 100
domains allows for a higher number of integration points to be used (up to 700 points in this case).

Regarding the numerical stability of the hyper-reduced model, ECM guarantees that the reduced-order stiffness matrix
retains its positive definiteness and thus its numerical stability.17 Furthermore, solving Equation (35) leads to the best
possible approximation (in a least-squares sense) of the reduced force vector and is found to be robust for  domains
of any size: in the lower-bound situation in which a domain  comprises only a single element, the error of the greedy
procedure drops to a value close to zero after the first point is added and the procedure is stopped.

With n𝜙 = ns = 10, the obtained response agrees very well with the full-order one while still achieving a compression
ratio of M

m
≈ 110. Even with 100 ECM domains, assembly remains a very cheap operation, meaning that the increased



ROCHA et al. 2165

F I G U R E 17 Load-displacement curves obtained with one ECM domain
(ns = n𝜙 = 1) and 100 ECM domains (ns = n𝜙 = 10). The detail highlights the
oscillatory behavior observed for the curve with one ECM domain. ECM,
empirical cubature method
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F I G U R E 18 Accumulated number of reduced steps obtained for
n𝜙 = ns = 1 domain and n𝜙 = ns = 10 domains, with the fully-integrated POD
response for comparison. POD, proper orthogonal decomposition [Colour figure
can be viewed at wileyonlinelibrary.com]

assembly time when compared to the model with one domain is easily outweighed by the consequent reduction in the
number of retraining steps.

Another way to look at differences in efficiency between the models with one and 100 ECM domains is by plotting
the cumulative number of reduced steps versus the total number of load steps (Figure 18). The model with 100 domains
behaves similar to the fully-integrated adaptive POD model of Figure 14, while the higher number of retraining steps
associated with the model with a single ECM domain makes the curve shift further away from the linear upper bound
associated with a nonadaptive pre-trained model.

The model is executed for different combinations of 1 ≤ n𝜙 ≤ 10 and 1 ≤ ns ≤ 10 and the resulting number of retrain-
ing steps is shown in Figure 19. Increasing either n𝜙 or ns in isolation leads to lower retraining frequencies, although
increasing the number of domains in the s direction seems to be slightly more beneficial in this case: for ns = 5 and n𝜙 = 1,
the number of retraining steps of the hyper-reduced model is already close to that of the fully-integrated model. Although
the retraining frequency tends to converge to the one obtained with only POD, no strict lower bound seems to exist for
the number of retraining steps after ECM, being at times lower than the one from the fully-integrated model.

Aside from affecting retraining frequency, the number of ECM domains also dictates the total number of constitutive
model computations and matrix assembly operations. Both of these aspects affect the speed-up of the hyper-reduced
model. With ns = 1 and 1 ≤ n𝜙 ≤ 100, the acceleration levels obtained for the equilibrium problem with respect to the
full-order solution are shown in Figure 20. For 1 ≤ n𝜙 ≤ 10, the acceleration sharply increases due to the decrease in
retraining frequency. After this point, the frequency stabilizes and further increases in the number of domains do not
affect the acceleration level considerably. For n𝜙 = 10, the total time dedicated to solving the equilibrium problem is 279s,
of which 4.1s are spent on updating 𝚿, , and 𝜛. Comparing the time spent by the model from Section 3.2 on updating
𝚿 (0.54s), we see that hyper-reduction significantly increases the overhead associated with updating the reduced bases,
although it still represents a very small fraction of the total execution time. Interestingly, this overhead does not increase
as we add more ECM domains, as the complexity of the minimization problem of Equation (35) scales linearly with the
total number of integration points of each domain.

http://wileyonlinelibrary.com
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F I G U R E 19 Number of retraining steps necessary to maintain precision for
models with different combinations of n𝜙 and ns. The number of retraining steps
associated with the fully-integrated POD solution is shown for comparison. POD,
proper orthogonal decomposition [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 20 Speed-ups with respect to the full-order solution for models
with different numbers of ECM domains (ns = 1). Only the time spent in the
equilibrium phase of the TLS is compared. ECM, empirical cubature method;
TLS, thick level set [Colour figure can be viewed at wileyonlinelibrary.com]

Although the acceleration level of approximately 5 times is higher than the one obtained with the fully-integrated
partitioned POD strategy (Section 3.2), the benefit of using hyper-reduction in combination with the linear material
employed here is limited: the computational effort associated with computing stresses at the integration points is already
very low. It follows that the speed-ups obtained here may be seen as the lower bound of what can be expected from the
present hyper-reduction approach. Furthermore, acceleration can be expected if nonlinear material models are employed
(cf23,29). However, it is worth mentioning that for nonlinear material models with history, an additional history recovery
component must be added to the framework since history must be known at every integration point during retraining
steps.

4 ADDITIONAL EXAMPLES

In this section, two additional numerical examples are shown in order to further assess the performance of the reduction
framework. The first is a beam loaded in three-point bending with a single straight crack. The second is a doubly-notched
plate loaded in tension with two curved cracks that eventually merge. Apart from demonstrating that the framework
can be used on models with various loading conditions and crack topologies, we investigate the effect of changing two
parameters which have been kept fixed until now, namely the thickness lc of the damaged zone and the force tolerance
𝜖force.

4.1 Three-point bending

The first example concerns the three-point bending test shown in Figure 21. The geometry is taken from Bernard et al11 but
here we model the beam in plane strain. The material properties are the same ones used for the compact tension example
(Section 2.4). The beam is discretized with 73 498 constant-strain triangles with one integration point each (N = 74 046,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 21 Three-point bending: finite element discretization,
boundary conditions, and crack topology with lc = 5 mm (dimensions in
mm) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 22 Three-point bending: number of retraining steps for multiple
values of 𝜙f and two different values for lc [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 23 Three-point bending: number of retraining steps for multiple
sizes of the  domain [Colour figure can be viewed at wileyonlinelibrary.com]

M = 73 498). For the hyper-reduced model, nf = 6, 𝜖force = 0.025, 𝜖SV = 1 × 10−6, 𝜏 = 10, 𝛽 = 0.001, 𝜖greedy = 1 × 10−10,
and n𝜙 = ns = 10.

Since the introduction of Yc values related to strength and fracture energy decouples lc from Gc (see Equation (14)
and Reference 14), we are in principle free to choose the most convenient value for lc and still obtain the same crack
propagation behavior. As the definitions of  and  are directly linked to the size of the damaged band, it is interesting
to investigate how the performance of the framework is affected by lc. We therefore solve the same problem for both
lc = 5 mm and lc = 15 mm.

We start by investigating the influence of 𝜙f on the retraining frequency of the POD-reduced model (fully integrated).
The number of fully-solved steps for −40 ≤ 𝜙f ≤ 15 is plotted in Figure 22 for both values of lc. Although the value of 𝜙f at
which the retraining frequency stabilizes changes with lc (𝜙f = −20 mm for lc = 5 mm and 𝜙f = −10 mm for lc = 15 mm),
the total width of the material band that comprises  (w = 2lc + 2𝜙f ) at stabilization seems to be the same for both
models.

Most interesting is the fact that the model with lc = 5 mm needs almost three times more retraining steps than
the model with lc = 15 mm when both are executed with an empty§  domain. This can be more clearly visualized in
Figure 23, where we plot the size of  versus the number of retraining steps. Increasing lc leads to a lower stress at the
crack tip, which in turn leads to a slower buildup of the norm of the deviation from equilibrium used to trigger retraining

§With the exception of DOFs of enriched nodes not currently covered by the basis 𝚿 (see Section 3.2).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 24 Three-point bending: load-displacement curves of the full and
hyper-reduced models (lc = 5 mm)

F I G U R E 25 Three-point bending: domain topologies at two different
load steps for lc = 5 mm (top) and lc = 15 mm (bottom). For both models,
n𝜙 = ns = 10
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F I G U R E 26 Doubly-notched plate: finite element
discretization and crack topology (dimensions in mm) [Colour
figure can be viewed at wileyonlinelibrary.com]

(Equation (25) and Figure 8). This suggests the possibility of increasing lc with the specific purpose of improving the effi-
ciency of the reduced model. However, the rate of decrease in retraining frequency is steeper for the model with smaller
lc, and any acceleration gained by increasing lc is quickly compensated by the sharp reduction in retraining steps as DOFs
are added to  .

For this specific example, the 𝜙f values that lead to the highest speed-ups are 𝜙f = −10 mm for lc = 5 mm and 𝜙f =
0 mm for lc = 15 mm. This corresponds to an  domain with w = 2lc + 2𝜙f = 30 mm for both models and leads to a
similar number of retraining steps (Figure 22).

http://wileyonlinelibrary.com
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Adopting 𝜙p = 𝜙f − 10, the time spent on the hyper-reduced equilibrium problem is 4.9 times shorter and 5.2 times
shorter than the full-order one for lc = 5 mm and lc = 15 mm, respectively. Although this measure of speed-up only
includes the time spent solving the equilibrium phase of the TLS, it is interesting to note that the model with lc = 5 mm
spends only 25% of the total analysis time on the two remaining TLS phases, while the model with lc = 15 mm spends
53% of the total time in those phases due to its larger Ωd domain.

A comparison in terms of load-displacement response between the full and reduced models is shown in Figure 24,
while domain topologies at two different load steps are shown in Figure 25.

4.2 Doubly-notched plate

The final example is the doubly-notched square plate of Figure 26, inspired by the crack merging example by Moës et al.10

Material properties are kept the same as the ones from the previous examples and a value lc = 0.6 mm is adopted. The
full-order model is discretized with 86 068 constant-strain triangles and has N = 86 696 DOFs and M = 86 068 integration
points at the beginning of the analysis. Two damage fronts nucleate at the notches and grow towards the center of the
plate. The interaction between the fronts cause their trajectory to become curved and eventually merge, leaving a region
of intact material at the center of the plate.

We initially adopt the same tolerance 𝜖force = 0.025 used in the previous examples. By running the POD-reduced model
for different sizes of  , we find that the combination 𝜙f = −1.2 mm, 𝜏 = 7, 𝛽 = 0.001 gives the best balance between the
number of DOFs in  and the number of retraining steps. The optimum value for 𝜏 we find here is different from the
one used in the previous examples (𝜏 = 10), suggesting that optimum values for the viscosity parameters used to define 
depend to some extent on the problem being solved. With n𝜙 = 100, ns = 1, and 𝜙p = −2.4 mm, the integration domain
topology at four different load steps is shown in Figure 27, together with the associated displacement utop of the top edge
of the plate.

The adaptive reduction approach is capable of automatically following the two damage fronts simultaneously while
taking into account changes in propagation direction. We note that even though some reduction domains are spatially

F I G U R E 27 Doubly-notched plate: ECM
domain topology and crack shapes at four
different load steps (n𝜙 = 100, ns = 1). ECM,
empirical cubature method
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F I G U R E 28 Doubly-notched plate: ECM
domain topology and crack shapes at four
different load steps (n𝜙 = ns = 10). ECM,
empirical cubature method

F I G U R E 29 Doubly-notched plate: load-displacement curve for the full
model and hyper-reduced models with different 𝜖force tolerances

disconnected—for example, the  domain or the domain 100 at the edges of the models—they are treated as single
domains for training and numerical integration purposes. As the damage fronts start to merge, the  domain becomes
distorted as the velocity ahead of the crack tip and towards the center of the plate start to vanish. Nevertheless, the model
is able to maintain an efficient retraining frequency, with 34 retraining steps out of a total of 440 steps. For n𝜙 = ns = 10,
the more irregular domain topology shown in Figure 28 is obtained due to the fact that a single s coordinate system is used
for both damage fronts (when switching between fronts, the value of s at the starting point of the second front is made to
be the same as the value at the final point along the first front). In any case, the performance in terms of acceleration and
retraining frequency is similar for both models.

The load versus the displacement at the top of the plate is plotted in Figure 29. Although the curve with 𝜖force = 0.025
closely follows the one from the full-order model, the precision is lower close to the onset of global softening. Although
the correct crack topology is still obtained and the post-peak behavior is correctly captured, this loss of precision might



ROCHA et al. 2171

F I G U R E 30 Doubly-notched plate: speed-ups with respect to the
full-order solution for models with different 𝜖force tolerances. The marked points
correspond to the two models shown in Figure 29

be undesirable. Running the same model with 𝜖force = 0.01 eliminates the oscillations and produces a response almost
indistinguishable from the full-order one (Figure 29).

Naturally, the increased precision obtained with a lower 𝜖force comes at the cost of additional retraining steps and
reduced speed-ups. We execute the model for multiple values of 𝜖force and plot the obtained acceleration levels in Figure 30.
The speed-up appears to decrease linearly as 𝜖force is decreased up until a value around 𝜖force = 0.005, after which point
a sharp loss in efficiency is observed. In any case, acceleration levels similar to the ones from the previous examples are
obtained even though the framework needs to cope with two cracks instead of one.

5 CONCLUSIONS

MOR techniques have been used in an attempt to accelerate the mechanical equilibrium problem that constitutes the
main computational bottleneck associated with the TLS method. The need for an offline training phase was circumvented
by resorting to adaptive reduction techniques that refine their reduced solution spaces through online retraining. The
framework is based on a domain decomposition strategy that uses the curvilinear coordinate system associated with the
level set front to adaptively define a region with fully-solved DOFs, a POD-reduced region with full integration and a
user-defined number of hyper-reduced regions.

The framework was gradually constructed starting from a POD-reduced model without partitioning. Although the
reduced model was able to capture the correct crack propagation behavior, a large number of retraining steps was nec-
essary because the reduced solution space could not represent changes in damage distribution ahead of the crack tip.
Furthermore, the unpartitioned POD solution has been found to be incompatible with the enrichment scheme used in
the TLS.

The equilibrium system was therefore partitioned in order to allow for part of the mesh to be solved in the full-order
space. The level set and velocity fields were used to define a region with full DOFs that includes enriched nodes and
regions both behind and ahead of the crack tip. The partitioning strategy allowed for the enrichment scheme to be used
and was found to drastically decrease the number of retraining steps necessary to maintain precision, leading to higher
levels of acceleration.

Domain-based hyper-reduction based on the ECM method was used to reduce the effort associated with computing
the full-order internal force vector and stiffness matrix. In order to still be able to solve DOFs in the full-order space and
estimate the error associated with model reduction, full integration was maintained on regions close to the crack tip. Using
a single ECM domain was found to yield a high integration error and increase retraining frequency. This error vanishes
as the number of domains is increased, while maintaining a reduction of several orders of magnitude in the number of
integration points.

The reduction framework was demonstrated using three different numerical examples. The method was found to be
suitable for different loading scenarios and crack topologies and the adaptive domain decomposition strategy was able to
follow multiple cracks with complex propagation paths simultaneously. However, a number of parameters were found
to be problem-dependent and had to be individually tuned for each example. The hyper-reduced equilibrium problems
ran approximately 5 times faster than their full-order counterparts, with even higher speed-ups being expected if more



2172 ROCHA et al.

complex constitutive models are used. Although the framework has been applied to the specific case of the TLS method,
it can also be employed to accelerate other failure models as long as suitable strategies for defining the domains  ,  , and
 are developed.
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