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summary

As the world becomes increasingly digital, cybersecurity—particularly cryptography—has become a
defining concern of this century. Beyond designing robust algorithms, it is vital to evaluate the re-
silience of devices to adversaries who exploit various aspects of algorithm execution. Side-channel
analysis targets physical leakages, such as power consumption and electromagnetic emissions, to
extract secret information. State-of-the-art research identifies machine learning attacks using Convolu-
tional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs) as the most effective. Language
Models have achieved success across diverse domains, some unrelated to language. This thesis
investigates their applicability to side-channel analysis and compares their performance with current
state-of-the-art methods. Sane or Silly, a language model - inspired framework, is introduced and used
to attack the ASCAD datasets. Results demonstrate that this approach can successfully retrieve the
key in both ASCADf and ASCADv using only one trace, regardless of whether the secret masks are
known during profiling. Desynchronization hindered but did not fully prevent successful attacks. These
findings highlight the potential of language models as powerful tools for side-channel analysis.



Nomenclature

Abbreviations and acronyms used throughout this thesis are presented here to avoid confusion

Abbreviations

Abbreviation

Definition

AES
BO
CNN
DL
GE
HD
HW
ID
LLM
ME
ML
MLP
NOPOI
NTMP
OPOI
PTMP
RPOI
SCA
SNR
SoS

Advanced Encryption Standard
Bayesian Optimization
Convolutional Neural Network
Deep Learning

Guessing Entropy

Hamming distance (leakage model)
Hamming Weight (leakage model)
Identity (leakage model)

Large Language Model

Metadata Embedding

Machine Learning

Multi-Layer Perceptron
Not-Optimized Points of Interest
Not-Trained Mask Predictor
Optimized Points of Interest
Pre-Trained Mask Predictor
Refined Points of Interest
Side-Channel Analysis
Signal-to-Noise Ratio

Sane or Silly
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Introduction

Information security and privacy are among the most important concerns of the current century. With
the constant growth in the amount of data shared daily and the ever-increasing computing power, there
is a rising demand for secure protocols to protect and transfer information. Cryptography is the field that
investigates the most secure methods of sharing data, ensuring that it remains inaccessible to potential
eavesdroppers. While cryptography—viewed from an information theory perspective—is of utmost
importance and mathematically rich, it often simplifies real-world scenarios by assuming that an attacker
has access only to the encrypted data. In reality, attackers frequently gain access to various leakages—
such as power consumption and electromagnetic emanations—and combine this information with the
intercepted ciphertext to compromise protocols that are theoretically secure.

Side-channel analysis (SCA) is a pivotal field within cryptography that studies attacks targeting the
physical implementation of security systems. Traditionally, SCA has relied on classical techniques—
such as statistical methods and hand-crafted heuristics—to interpret side-channel leakages including
power consumption, electromagnetic emissions, and timing variations [17] [41] [18]. However, with
significant advancements in computational power and the emergence of sophisticated machine learning
techniques, the state of the art in SCA (as well as in many other fields) has notably transitioned toward
the application of deep learning methodologies [30] [2].

Another notable trend in the machine learning community is the rise of language models, which have
achieved unprecedented success in processing sequential data and uncovering complex patterns
within unstructured text. Models with similar architectures have also achieved success in various do-
mains - including decision-making [23], music generation [22], protein folding [24], and time series
analysis [29] - sparking interest in studying the effectiveness of these approaches for side-channel
analysis. In this thesis, one of the first explorations into leveraging a language model-like architecture
for SCA is presented. The goal is to investigate which architectures exhibit the best performance in
SCA while comparing language model-based approaches with the current state-of-the-art techniques.

This thesis is structured as follows: Section 2 presents a comprehensive background, introducing all
the essential concepts required to understand both SCA and deep learning methodologies. Section
3 provides a review of the most relevant literature, summarizing key contributions and positioning this
work within the broader research landscape. In Section 4, the methodology employed for designing
and training the architecture is outlined, followed by Section 5 which details the experimental setup,
where most details of the experiments are described - the more cumbersome details are left for the
appendix. Section 6 presents the experimental results obtained from applying the model to a dataset,
while Section 7 discusses these findings and their implications for the field. Finally, Section 8 concludes
the thesis by summarizing the contributions, and a brief personal note is given on Section 9.

To promote transparency and facilitate future research, the entire code will be made publicly available.
This thesis, therefore, not only endeavors to advance the practice of side-channel analysis through
novel deep learning techniques but also seeks to bridge the gap between traditional SCA approaches
and modern machine learning paradigms.



Background

2.1. Machine Learning

Machine learning is a research field centered on designing algorithms that, by learning from data, can
autonomously discover general patterns through experience on a subset of the data. These algorithms
harness statistical techniques to infer the underlying structure of data, enabling tasks such as classifi-
cation, regression, and clustering without needing explicit programming [3].

Machine Learning tasks can roughly be divided into 2 mains categories: Supervised and Unsuper-
vised Learning. In supervised learning, the data X = {X;,..., X,,}, X; € X is accompanied by labels
Y ={Y¥1,..,Y,},Y; € Y, and the task that is intended to be learned is to approximate the underlying
function f : X — Y such that f(X;) = Y;. Furthermore, supervised learning tasks can be separated
into classification tasks - where the labels are discrete - and regression tasks - where the labels are
continuous. In unsupervised learning, no labels are provided, and the tasks consists of finding some
underlying patterns in X. [3]

An important notion is that the goal is not to have a model that learned all the information about the
data it was given. Instead, it is to teach the model all the underlying patterns and structure on the data,
such that not only it learned about the data it has seen, but hopefully, it can infer facts about unseen
data. A model that learned information about the data it has seen but struggles to generalize is said to
be overfitting. To evaluate this, data X is usually split into training data, which will be fed to the model,
and validation data, unseen data on which the model will be evaluated [3].

Over the last years, Machine Learning frameworks have been showing outstanding performance in
various tasks, often replacing human made functions and statistical models. On the one hand, this
replacing allows for creation of high performing frameworks that due to its complexity would not have
been created otherwise, but on the other hand, replaces explainable and intuitive models with black-box
ones.

2.2. Deep Learning

Deep learning is a specific set of techniques contained within machine learning that encompasses mod-
els whose structure is a Neural Network, structures consisting of several neurons, structures inspired
by biological neurons, assembled in various ways [3]. This framework is used for supervised learning
tasks.

Each neuron N is a simple R™ — R function whose parameters are a set of weights w = {w1, ..., w,},
a bias b, and a non-linear function o. Its usual definition is the one given on equation (2.1).

Nybo(x1,....tpn) = O’(Z w; X x; + b) (2.1)

i=1
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Neural networks themselves are structured as layers of these interconnected neurons - referred to
as the input layer, hidden layers, and the output layer, as illustrated by Figure 2.1, where each circle
corresponds to one neuron, and the whole diagram corresponds to a (very simple and shallow) neural
network. The inputs of each neuron (x4, ..., z,,) are a subset of the input data for the input layer, and a
subset of the outputs of the neurons of the previous layer, for the other layers.

N1(x1, x2)
N2(x1, x2) ) ) /
N3(x1, x2) B

Figure 2.1: Simplified Neural Network. In green, the input layer, in blue one hidden layer and in red the output layer. In this
case, there are 5 sets of weights, biases and activation functions (one in each neuron, except the ones in the input layer)

With this, neural networks are a family of parametrized functions. These parameters are the weights
and the biases of all neurons. A supervised learning task, consists of searching for a set of parameters
that results in a function that approximates fX — ) such that f(X;) = Y;. To turn this search problem
into an optimization one, the performance of a model is measured by a loss function, a function £ :
W x B — R which measures the distance between the model’s predictions and data labels. The
training process is therefore finding (W, B) € W x B that minimize £(W, B) [3].

Within this framework, different architectures can arise, resulting from a different number of neurons
assembled in a different way. Architectures are usually categorized in the way neurons are fed to
the following layer, the most widely used being Convolutional Neural Networks (CNNs) and Multilayer
Perceptrons(MLPs).

While the term parameter is usually employed to refer to the trainable weights and biases of the set of
neurons, the term hyperparameters is often used to refer to aspects of the neural network’s architecture
of training process.

2.2.1. Activation Functions

Each neuron is equipped with a non-linear function o. As the other operations executed by a neuron are
linear, the concatenation of these operations without any other function would be also linear, resulting
in a model that could only hope to correctly approximate linear functions, which in most cases would
not be useful. Instead, a non-linear function o, referred to in the ML literature as an activation function,
is applied to the neuron’s linear combination of inputs. Usually the outputs of a layer before applying
an activation function are referred to as logits. Many different activation functions are experimented
with in the literature, as tuning it is a difference maker in a model’s performance. Here are some of the
most popular choices:

Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x). (2.2)
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Scaled Exponential Linear Unit (SELU):

x, if x > 0,
ae® —a, ifx<0,

SELU(z) = A { (2.3)

where A\ =~ 1.0507 and o ~ 1.67326. These constants are chosen to ensure self-normalizing properties
in neural networks.

Cosine Similarity:

n
u-v._ Do U
hall2llvilz /57 uf /30 v
Cosine similarity is a measure of similarity between two vectors u and v. In practice, as it is often

preferred to work with values between 0 and 1, cosine similarity is usually linearly scaled to be between
0 and 1. This is true for this work.

(2.4)

cosine similarity(u,v) =

Softmax Function:

softmax(z;) = —e——, fori=1,2,...,K. (2.5)
=17

Applied to a vector z = (z1, 29, . . ., zxc) Of real numbers. Each component z; is exponentiated and then

normalized by the sum of the exponentials of all components, ensuring that the output values form a

probability distribution. Similarly to cosine similarity, the output is bounded, which usually is a desired

property in output layers.

2.2.2. Loss Functions

As mentioned before, loss functions measure the performance of a model. They are functions £ :
W x B — R that will be minimized during training. As the classification and regression tasks require
different loss functions, some examples of loss functions are presented for both purposes:

Classification Loss Functions:

Cross-Entropy Loss: For multi-class classification, given a true one-hot encoded label vector y =

(y1, 92, --.,yc) and a predicted probability vector y = (41, 92, - - . , Yc), the cross-entropy loss is defined
as:
C
Lee(y,y) ==Y yilog(di). (2.6)
=1

Hinge Loss: Often used in Support Vector Machines for binary classification, with true labels y €
{—1,+1} and prediction score f(z), the hinge loss is given by:

Lhinge (y, f(2)) = max (0,1 -y - f()). (2.7)

Regression Loss Functions

Mean Squared Error (MSE): For regression tasks with true values y; and predictions ¢; over N sam-
ples, the MSE is defined as:

N

1 N
Luse = >y — )% (2.8)
i=1
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Mean Absolute Error (MAE): The MAE is similar to the MSE, but takes the average of the absolute
values instead of the squared values:

N
1 X
Lwne = > lyi = il - (2.9)

i=1

Apart from these classical loss functions, many more loss functions arise in the literature, as there
are specific problems that call for specific loss functions. Any non-trivial distance function in R is, in
principle, a feasible loss function. Furthermore, it is possible to incorporate in the loss function the
values of y; and ¢; separately, in addition to their difference, to indicate that errors for particular values
of y; or ¢; are more severe than for others (Weighted Loss Functions).

2.2.3. Training Process and Optimizers

A training session of a model consists in feeding the model data, evaluating the loss function, and
adjusting the model’s parameters accordingly. The data is not fed all at once, but instead, in batches,
allowing the model to adjust its parameters slowly. A bigger batch size allows batches which are more
representative of the entire dataset, while a smaller batch size makes training more stochastic, with
more variability from batch to batch, making the model face more and more diverse challenges, which
can be good [16].

In machine learning, an optimizer is an algorithm that adjusts the parameters of a model to minimize a
loss function. In general, it updates weights and biases by computing the gradient of the loss function
and updating the parameters in the opposite direction (direction of steepest decline in loss function)
They are parameterized by a parameter p called learning rate, which controls how big the changes in
parameters are from batch to batch.

The data is usually fed to the model more than once - the number of times each data point is fed to the
model is usually referred to as epoch.

Stochastic Gradient Descent (SGD)

Updates the model parameters in the opposite direction of the gradient of the loss function. The update
rule for a parameter 6 is given by:

9t+1 = 9t — UVQ[,(Qf), (210)
where 7 is the learning rate and Vy£(6,) is the gradient of the loss function £ with respect to ¢ at time
step ¢ [10].

SGD with Momentum
Introduces a speed term s; that accumulates the gradient’s direction to speed up convergence:

St41 = st + Ve L(0y), 2.11)

9t+1 =0, — St+1

where s, is the speed, ~ is the momentum coefficient (typically between 0 and 1), and 7 is the learning
rate [10]. Introducing the concept of speed helps SGD incorporate past gradients, enabling it to dampen
oscillations, making it more robust when traversing complex or noisy loss surfaces [33].

AdaGrad (Adaptive Gradient Algorithm)

Adapts the learning rate for each parameter individually by scaling it inversely proportional to the square
root of the cumulative sum of squared gradients.

Gy =Gyt + (VoL(6y))?,

n
——VoL(0
TG, e VL)

212
Orir = 0, — (212)
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where G, is the sum of the squares of the gradients up to time step ¢, and ¢ is a small constant to avoid
division by zero. While AdaGrad performs well on sparse data, its aggressively decreasing learning
rate can cause premature convergence [10].

RMSProp

Improves on AdaGrad by using an exponentially decaying average E[¢?%] of squared gradients:

Elg°]: = pE[g°]i—1 + (1 — p)(VoL(6:))?,

n
VoL(0
E[gz]tJre o ( t)

2.13
i1 = 01— (213)

where p is the decay rate (typically around 0.9) and ¢ is a small constant for numerical stability [10].
Adam (Adaptive Moment Estimation)

Combines momentum and RMSProp by maintaining moving averages of both gradients and squared
gradients:

my = Bims_1 + (1= B1)VeJ(0;),
vy = Bovy_1 + (1 — 52)(v0=](9t))2a

my a Ut
= 1_ {’ Ut:?é’ (214)

my

n N
Or11 =0 — ——m
t+1 t \/Ft—f— 6 t
where 31 and 3, are decay rates (commonly set to 0.9 and 0.999 respectively), and ¢ is a small constant
[10].

2.2.4. Normalization

Neural Networks are simply a parametrized function and even though they provide immense insight
into various tasks, because of their numeric nature, they are extremely sensitive to how the data is fed.
For instance, several works have proved the effectiveness of normalizing the input data before feeding
it to the model [21] [35] [10]. In essence, this allows the model to learn the intricate patterns present in
the data instead of over focusing on the large absolute differences that can occur.

Normalization is usually done both to the inputs before they are fed to the model, and to the output
of each layer in an operation referred to as Batch Normalization. For the inputs, usually standard
normalization is used. For Batch Normalization, usually standard normalization followed by trainable
re-scale and shift is used.

Given a batch batch normalization proceeds as follows:

Standard Normalization:

1
B:{xlaan"wxm};uB:EE T,
i=1

m

1 XT; — UB

2 2 A
op = — Y (1i—pp)’ # = ===
=1 Op

(2.15)

Batch Normalization:

1. Apply Standard Normalization to each batch

2. With a trainable v and $ for each batch output x; the normalized output of the batch normalization
layer y; is calculated in the following way: y; = v&; +
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Figure 2.2: General structure of MLP [26]

2.2.5. Multi-layer perceptron
Multilayer Perceptrons (MLPs) refer to neural networks where all neurons in a layer are connected to
all neurons in the following layer, as illustrated in Figure 2.7.

We refer to a layer where all inputs are fed to all neurons as a dense layer. A MLP is a model with only
dense layers. This comes with advantages - all neurons have access to all information present in the
previous layer, all having the capability of extracting precious information from it - and disadvantages -
being the most complex layer in terms of number of trainable parameters.

2.2.6. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) address the complexity problem of MLPs by reducing the num-
ber of connections from one layer to another. This is done by restricting the connections to a neuron to
a subset of spatially close neurons - as illustrated in figure 2.3. This ensures reduced complexity while
specializing neurons on localized features [10].

Furthermore, CNNs have increased personalizability. As opposed to MLPs, where the only tunable
hyperparameter is the number of neurons, in a CNN, an important aspect is which subsets of neurons
are considered at once. This is usually parameterized by kernels, which are a given size, and determine
the chunk sizes of the input considered for each neuron of the following layer.

In the case of a one-dimensional (1D) convolutional layer, the operation is applied over an input vector
in R™, where n represents the input length. This layer is typically defined by several key parameters: the
number of filters or kernels ny, the size (or width) of each kernel, and the stride s;, which determines
how many positions the kernel shifts at each step. The convolution operation involves sliding each
kernel across the input and computing local dot products, thereby extracting features from different
regions of the input, as illustrated by figure 2.3.

The result of this process is a tensor of shape n, x m, where m is the number of positions each
kernel covers, typically approximated as - under simple assumptions (depends on padding). This
output captures n different feature maps — typically it is assumed each kernel is extracting different
information from the input [10].

OUTPUT
INPUT KERNEL (v actvason and no bias)

Q

T 1 1

Figure 2.3: Kernel illustration

2.2.7. Language Models

Language Models (LMs) are fundamental tools in natural language processing and one that has been
growing in popularity. In essence, they operate on a sequence of words to predict the most likely
word to follow. Originally used for tasks such as text generation and translation, language model—
inspired frameworks have recently gained prominence in non-language applications, demonstrating
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their competence in modeling other sequential structures[23][22][24][29].

At the core of language models is the transformation of discrete inputs into continuous representations
through embeddings. Embeddings are functions that map categorical data into dense, real-valued
vectors: £ : {1,2,...,C} — R% where d is the embedding dimension. This continuous representation
is particularly useful as it enables the model to capture similarities between categories — categories with
similar embeddings are treated as similar, while those with embeddings that are close to orthogonal
are treated as distinct. Thus, embeddings reveal underlying patterns that might be obscured in a
discrete format. This is essential in language generation, as words are discrete objects that have a
deep relationship between them which is required to be captured by the model [10].

A language model first converts words (or other discrete elements, such as symbols or categorical units)
into unique integer identifiers in a process typically called tokenization. These integer representations
are then used as the input to the embedding function £, allowing the model to operate numerically.

Language models often organize tokens into n-grams—contiguous sequences of n tokens extracted
from text. Traditional n-gram models estimate the likelihood of a token based on the preceding n — 1
tokens.

The ultimate goal of a language model is to estimate the conditional probability
P(xn I T1,T2,... ,lin_l),

that is, from a sequence of tokens, to output a probability distribution over the set of tokens that accu-
rately predicts the next token.

2.2.8. Hyperparameter Search

In a model, the weights and biases and other trainable parameters are usually referred to as the model’s
parameters, while the other variables which regulate the training process or the model’s architecture
but are not used in the model’s computations - like the learning rate and the batch size, are usually
refered to as the hyperparameters. Selecting good hyperparameters is key in the learning process of
a model. For example, setting a learning rate in a value too high can make the model not diverge due
to taking steps that are too big, while setting a learning rate too low can make the model be stuck on a
local minimum of the loss function [10].

Hence, it is common in the ML literature, and in particular in the SCA literature, to conduct hyperparam-
eter search to find suitable hyperparameters for a particular model. This consists of selecting a search
space to select the hyperparameters from, navigating these with a search algorithm, and using them
for a quick training session to evaluate how good they are.

Hyperparameters to be searched for vary, but usually consist of the optimizer, the learning rate, batch
size, weight initialization, and also characteristics of the model’s architecture.

Common algorithms for conducting hyperparameter search are:

1. Random Search
Random search involves sampling hyperparameter configurations uniformly at random from the
search space H, and using it to train until a predetermined number of epochs are completed or
a given condition is met. This can be surprisingly efficient when the search space is carefully
selected [45]

2. Grid Search
Grid search exhaustively explores H, using each hyperparanmeter set to train until a number of
epochs are completed or a given condition is met. Although straightforward and guaranteeing to
find the best set, this method becomes unfeasible as the number of hyperparameters increases.

3. Bayesian Optimization
Bayesian optimization (BO) builds a probabilistic surrogate model P(f | h) of the objective func-
tion f : H — R (e.g., validation loss) and employs an acquisition function a(h) to determine the
next hyperparameter configuration h € H to evaluate [45].
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2.2.9. Knowledge distillation
Knowledge distillation is a process that, as the name suggest, attempts to distill the knowledge acquired
by a model into a smaller one, hopefully achieving similar or better results.

Assume there already exists a trained model, which we call teacher network fr, and it is desired to
distill its knowledge into a smaller student network fs. Denote the logits by zr(x) and zg(x) on input x.
For temperature T > 1, define the softened outputs

() = exp(zr,i(z)/T) (o) = exp(zs,i(z)/T)
pril®) = > exp(zr,;(x)/T)’ Psil@) = > exp(zs,(2)/T) (2.16)
L= aCE(y7 ps(x)) +(1—a) T2 KL(pT(:L’) ||ps(ac)) (2.17)

where CE is the cross-entropy with true labels y, KL the Kullback—Leibler divergence, a € [0,1] a
balancing hyperparameter, and the T2 factor corrects for gradient scale differences [14].

The Temperature factor controls the softness of the labels - a value of T' close to 0 makes the training
data closer to hard labels (distributes the probability heavily towards the most likely category) whilst a
Temperature larger than 1 evens the probability distribution, making the labels softer. Both 7"and « are
trainable parameters, and ones for which it is not easy to heuristically select good values.

Empirically, even deep student models can match or exceed their teachers on unseen data, benefiting
from the smoother targets and implicit regularization introduced by the softened teacher outputs. Es-
sentially, it relies on the fact that training a model with soft probabilities infused more knowledge into
the model (such as that relating to uncertainty) compared to hard classification labels.

2.2.10. Important results in Linear Algebra and Machine Learning

In this section, some important results in Linear Algebra with applications in Machine Learning will be
presented. These are results that one way or another were important in some choices made in this
work, and that are important to justify some aspects.

Universal Approximation Theorem

Let K c RY be compact and let o : R — R be any non-polynomial, continuous activation function.
Then for every continuous f : K — R and every ¢ > 0, there exists an integer m, weights w; € R?,
biases b; € R and output coefficients «; € R such that the single-hidden—layer network N(z) =
Y aio(w] x + b;) satisfies

sup|f(z) — N(z)| < e. (2.18)
zeK

This result, proven in [6], is important as it gives confidence on the methods used - that is - the fact that
all functions can be approximated up to an arbitrarily small error with neural networks. Of course, one
may need an arbitrarily large number of layers in order to produce an approximation with a small error,
but this result is nevertheless important.

Concentration of Inner Products

Let x,y € R? be two independent random vectors drawn uniformly from the unit sphere S9! = {z ¢
R<: ||z|2 = 1}. Then for any ¢ > 0,

—1)e2
P(|(x,y)| > €) < 2exp <(d;)> (2.19)

This theorem formalizes the notion that in high-dimensional spaces, random vectors become nearly
orthogonal with high probability [44]. This phenomenon is fundamental to understanding the curse of
dimensionality, the effectiveness of random projections and dimensionality reduction techniques, and
the geometric properties of high-dimensional spaces that underlie many machine learning algorithms.
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Eckart-Young—Mirsky Theorem

Let A € R™*™ have singular value decomposition
T
A:Zm—um;, o1 > 09> >0.>0.
=1

Forany 1 < k < r, the matrix
k
Ak = ZO‘i ul"UiT
=1

is a best rank-k approximation to A in both the spectral and Frobenius norms:

min  ||JA—Bly = [|[A— Aillz = ory1, min A= Bllp = [|[A- Allr=,| Y o2 (220)
BER™*"™ BeR™*"™ kil
rank(B)<k rank(B)<k

This value explains the usefulness of the Singular Value Decomposition, in particular applied to the
compact representation of matrices. This can be applied to feature selection for the reduction of the
input size of a neural network.

2.3. Symmetric Key Cryptography

A cryptosystem is modeled by three sets:

» P: the plaintext space, whose elements are messages m.
» C: the ciphertext space, whose elements are ciphertexts c.
* K: the key space, whose elements are keys k.

Encryption and decryption are defined as functions

E : KxP—=C,
D:KxC—>7P,

such that

D(k7 E(kz,m)):m Vkelk, meP. (2.21)

It is required that inverting E(k, -) to recover m from a given ciphertext ¢ is computationally infeasible
without knowledge of the secret key & [42] [15].

Symmetric key cryptography is a class of cryptographic systems in which both the sender and the
receiver share the same secret key for encryption and decryption, as opposed to public key, where all
agents have a unique key pair - one public (used to cipher messages) and one private (used to decipher
messages). The security of symmetric key cryptography relies on the secrecy of the key, and also on
an existence of a safe secret sharing algorithm - an algorithm that allows 2 agents to agree on a secret
without any eavesdroppers to be able to access it [36].

In symmetric encryption, a plaintext message which is intended to be kept private, is transformed into
a ciphertext using the shared key and a defined algorithm. The receiver, who possesses the same key,
can reverse the transformation to recover the original message. On the flip side, any eavesdropper
that does not possess the secret key cannot recover the plaintext apart from using brute force. Hence,
a safe protocol of symmetric key cryptography is a function acting of the space of plaintexts which is
easily invertible by anyone who possesses the secret key used, and unfeasible to invert by anyone
else. Two factors are, therefore, indispensable: a safe algorithm and big keys.
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2.4. AES

The Advanced Encryption Standard (AES) is a symmetric key cipher standardized by the National
Institute of Standards and Technology (NIST) in 2001. AES has become the de facto standard for data
encryption due to its combination of security and efficiency, being the most widely used.

AES operates on fixed-size blocks of plaintext (128 bits) and supports key sizes of 128, 192, or 256
bits, resulting in 10, 12, or 14 rounds of processing, respectively. Each round consists of a series of
operations including substitution, permutation, mixing, and key addition. These operations need to be,
on the one hand, deterministic, and on the other hand, strongly key dependent. The design of AES
is rooted in algebra over finite fields, offering a strong mathematical foundation that resists linear and
differential cryptanalysis. From this point, the AES cipher act described is the one with key size of 256
bits.

AES operates on a 4x4 matrix of bytes called the state - initially this is the plaintext organized into
a matrix, and gets transformed as it is ciphered. Let Fys denote the finite field with 256 elements,
typically represented using polynomials with coefficients in F5 reduced over the irreducible polynomial
m(z) = 28+2*+234+2+1. This directly represents one byte and defines the operations to be computed
between bytes.

In each of the 14 rounds, the key used is a different one, generated from the initial cipher key using a
key schedule, to foster further diffusion.

Each round proceeds as follows:

1. Key Scheduling generates new keys for this round

2. AddRoundKey - using the bitwise XOR, the round key is combined with the state, creating a new
state.

3. SubBytes: A highly non-linear function (denominated sbox henceforth) is applied to each. sbox
is constructed by taking the multiplicative inverse in Fys (0 maps to 0) and then applying an affine
transformation over 5.

4. ShiftRows Cyclically shifts the rows of the state matrix to the left by 0, 1, 2, and 3 positions.

5. MixColumns: Each column of the state is transformed by multiplying it with a fixed polynomial
c(z) = 0323 + 0122 + 01z + 02 modulo z* + 1 over Fys. This can be represented as a matrix
multiplication:

02 03 01 011 [so
01 02 03 01| |[s1
01 01 02 03| |so
03 01 01 02| |s3

The final round omits MixColumns, and includes one additional XOR of the state with the last key

Of course, there is no proof that AES cannot be broken faster than by exhaustive key search. In fact,
given a plaintext P, a ciphertext C, and a candidate key k, one can verify in time polynomial in the key
length whether AES;(P) = C; therefore, proving that every algorithm requires Q(2™) time to recover
an n-bit AES key would yield a worst-case separation of P and NP—i.e. a proof that P 4 NP, which
remains one of the great open problems in theoretical computer science [38] (note, however, that AES
has not been proved to be NP hard). Nevertheless, no attack on AES-128, AES-192, or AES-256
is known that improves on brute-force, and its security has been subjected to extensive cryptanalytic
study [28].

2.5. Side-Channel Analysis

As mentioned before, the AES, as well as other modern encryption algorithms, is theoretically safe,
meaning the best way to retrieve the key when all there is available are plaintexts and ciphertexts,
is brute force. However, clever attackers with privileged access to the encryption device may exploit
unintended leakages emitted by it. Using this information to attack the device is called a Side-channel
attack.
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Side-channel attacks come in many shapes and forms, but can roughly be categorized by the nature
of the side-channel information it is looking to exploit and the whether or not the attacker has access
to a copy of the target device (profiled / non profiled attacks).

As far as the nature of the side-channel information to be exploited is concerned, the attacker can utilize
the power consumption [17], the electromagnetic emanations [2], the sound produced [13], the time
spent in an operation [18], among others. This work will focus on power consumption and electromag-
netic emanation. In these attacks, the leakage comes in the form of an electromagnetic or power signal,
which will henceforth be referred to as trace.

Access to a copy of the target device provides the attacker with greater possibilities, as they can study
the leakage and construct a strong model before attacking the target. The term non-profiled attack
is used to refer to an attack without access to such device, using only the side-channel information
obtained from the target device. The main examples of non-profiled attacks are Simple Power Analysis,
directly analyzing a single power signal, and Differential Power Analysis, comparing multiple power
signals, introduced in 1999 in Paul Kocher’s et al seminal paper [17].

On the flip side, profiled attacks refer to the scenario where the attacker has access to an identical
device as the one that they intends to attack, therefore being able to construct a framework before
attacking. This, therefore, constitutes a more powerful attack. This attack is divided into the profiling
phase, where the the clone device is used to build a model that effectively predicts the key based on the
signal, and the attacking phase, where this model is employed in analyzing one or several signals from
the target device. The attacker is usually assumed to have access to the plaintexts used - operating
in a chosen plaintext setting - and to have the goal of retrieving the key. This work focuses on profiling
attacks.

For side-channel analysis, a core assumption is that the operations that are being executed when ci-
phering with a given algorithm in some way correlate with the power signal that is being produced.
Notice however that in principle, a certain value will only leak if it is either accessed or changed. Be-
cause of this, as the key is not directly accessed in the course of the AES ciphering, it is not expected
that the key directly leaks. The common target in side-channel attacks is sbox(p; ® k;), where p; and k;
are, respectively, a byte of the plaintext and a byte of the key. With access to sbox (which is public) and
to p;, the attacker can reverse engineer and access k;. The term label will henceforth be referring to th
value sbox(p; @ k;). In spite of the key having 16 bytes, it is common to focus the attack on one byte of
the key - namely the third byte, for reasons that will be explained in the countermeasure section. Hence,
the term key refers to the third byte of the key, unless otherwise specified. Several articles state that,
even though attacking different bytes vary in difficulty, the same attacks can usually attack all bytes [7]
[46]. Hence, recovering the goal of most attacks is to recover a single key byte, as this is a proof of
concept that other bytes could probably also be recovered. Furthermore, this leakage produced by an
operation can be of various natures. This means that the information about the key that is present on
the trace can vary. This brings us to the notion of leakage model.

ASCADS, trace 1, first 1000 samples

40 4

signal Value

o 200 400 600 800 1000
Index

Figure 2.4: First 1000 time steps of the first trace of the ASCADv dataset
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2.5.1. Leakage models

In order to structure the attack, the attacker must first select a leakage model, either based on observa-
tions or the implementation details of the algorithm. This is what the attacker assumes is being leaked
in the signal, and what he will be trying to extract from the analysis of the signal. Commonly used leak-
age models are the hamming weight model (HW), the hamming distance model (HD) and the identity
model (ID). HW models the physical leakage to be correlated with the hamming weight of the target
value. HD assumes this correlation to be with the hamming distance between the target value before
and after being processed by operations of the cryptographic algorithm. The rationale behind these
models is that respectively each 1 bit or bit flip in the leaking operation will correlate with more power
usage. ID assumes that the whole target value is leaking in the signal. It is used by obvious reasons -
it is the only model that can give hopes of retrieving the key in a single trace.

Hence, in summary, in a profiled attack, the attacker has access to a number N of traces, and trains a
model to predict target (Y), as illustrated below:

Y;' = fleakage (fintermediate value(Pi» Ki))a Vi € {17 ey N}a (222)

, Where P; refers to the plaintext, K; refers to the key, fintermediate re€fers to the intermediate in AES
that is being targeted (usually sbox(ps @ k3)), and ficarage is the leakage which is the value assumed
to be producing in the trace.

2.5.2. Classical Techniques

Power traces and electromagnetic emissions can nhowadays be captured with a high frequency, result-
ing in very large datasets. This gives rise to dimensionality reduction techniques that reduce the number
of points and maximize the retained information. These are useful techniques from signal analysis that
have been used for a long time in SCA.

Let’'s assume it is desired to classify the given signal in terms of a certain class ¢ € {c1, ¢, ...,car}. This
class is usually the leakage value of the key used in producing the signal, that is, either the hamming
weight (M = 9) or the entire value (M = 256). Some points may reveal precious information about this,
and other points will contain mostly noise.

Signal to Noise Ratio

Signal to Noise Ratio is a metric computed from a dataset of signals of size N in order to get some
information about which points of the signal contains the most information and which points of the signal
contains the most noise. This depends on the information we want to extract from the signal. SNR
computes a vector of the same size as the original traces, and each value corresponds to the ratio
between signal (useful information that discerns in which class a trace belongs) and noise (useless
information).

1. Separate the traces into M sets, according to their class;

Compute the mean vector of each class u1, ..., uar;

Compute the global mean vector y = ZZM1 s

Compute variance vector within each class ¢;: 0? = |L T Diee, (t— 1i)%;

a M oeDd

256 2.
=1 03

Compute average variance vector o2 = M >

6. SNR=Zm(u=i”,

[oa

This way, SNR measures the ratio between ’useful variability’ (differences between signals of different
classes which we want to differentiate) and 'useless variability’ (differences within each class). The
points with the highest SNR value corresponds to the points carrying the most information.
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Principal Component Analysis:

Principal Component Analysis (PCA) selects the directions of the dataset that maximize the inter-class
variance - therefore selecting the principal components of the covariance matrix between each class.

1. Compute the mean vector of each class 1, ..., ur;
Compute the global mean vector i = Z,f”il i
Compute covariance matrix 5 = - Z?il(:ui — ) (s — )T

Compute eigendecomposition of S S = UDUT;

o oD

Select the largest n eigenvalues from D in absolute value, and corresponding eigenvectors from
U, forming U*;

6. From each trace t, get reduced signal t* with n points t* = U*”'s.
Linear Discriminant Analysis:
Linear Discriminant Analysis (LDA), instead of only maximizing inter-class variance like PCA, maxi-

. . . . . 0 o . . . T
mizes the ratio between inter class variance and intra-class variance, finding V' to maximize “/’Tssb‘(,

1. Compute the mean vector of each class g, ..., s
Compute the global mean vector i = Eﬁl i

Sy = Zf‘il Ni(ps — p) (s — p)* . N; number of samples of class i;
Sw = Zﬁl j‘vzl(si,j — i) (sij — )T

Get eigendecomposition of Sy, Sy, = UDUT — Sz =UD:UT;
Get eigendecomposition of S, Sb%S*le% =VEVT:

w

NS o B~ 0w N

Select the largest n eigenvalues from E, and corresponding eigenvectors from V, forming V*.
8. From each trace t, get reduced signal t* with n points t* = V*T's

Recently, with the boom in Machine Learning popularity, many of the classical techniques have been
replaced with ML techniques in profiling attacks, as itis the very setting where it is widely used - learning
patterns in a training set and gaining the ability to generalize them into new samples. This has shown to
produce great advancements in the state of the art. This thesis will mainly focus on the use of Machine
Learning techniques. In spite of this, classical techniques still provide precious help in making the job
of the ML model easier.

2.5.3. Attack, Evaluation and Metrics

When performing an attack, it is assumed that the attacker has a model, that from an attack trace, pro-
duces a probability distribution over the set of possible keys (p1, ..., p256), and one can also compute
a guessing vector, that is, an ordering of the keys according to the probability the model gives them
(g1, .-, g256), Where g; is the key the model thinks to be the i** most likely to be the correct key. An
attacker might have access to n > 1 trace samples, so it is paramount to have a way of combining
information from different traces. Furthermore, metrics can be separated into 2 classes: those com-
puted by attacking single traces and those resulting from attacking multiple traces and combining the
information gathered from them. Addressing the first case, the metrics considered are accuracy - the
fraction of traces that have g; = k£* and guessing entropy - the average i such that g, = k*, where in
both cases, k* is the correct key.

One way to evaluate this attack is to compute the accuracy over all attack traces (the fraction of traces in
which our model considered the real key as the most likely one). However, classical machine learning
metrics like accuracy have shown to be suboptimal when used in SCA scenarios [43]. This is because
the attacker does not necessarily need a correct classification of the key in 1 trace, instead, is looking
to have a good probability distribution over the set of keys that will allow him to retrieve the keys in the
least amount of traces possible. Hence, the need for metrics tailor made for SCA arises.

For metrics using multiple attack traces, independence is usually assumed between key guesses, and
the joint probability attributed to key k after n traces is calculated as Py ,, = %H?zlpm, where py ;
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is the probability that the model attributed to key k in trace i and Z = i‘iﬁl I pr:. [31]. After n
traces, with the vector P = (P ,, ..., Pasg,n), ONe can construct the same guessing vector as before
(Gin, ---, Gase.n) by sorting the possible keys by the probability given to them. For a successful attack,
after considering some number of traces n, one should arrive at G;,, = k*, and this should never
change when considering additional traces.

A useful metric used to evaluate a successful attack is N; 4z (humber of traces until average rank=1):

Nar = min{m eN ‘w >m:Vke{0,1,...,256} \ {k'}, Pu.i> P,m-}. (2.23)

To evaluate a model, several attacks are conducted, with a different set of traces used to attack, result-
ing in different N, 4 r values (in case of successful attacks). When referring to a model (and not a single
attack), the most widely used metric is NV, g, referring to the number of traces until Guessing Entropy
=1 (maximum N, 4 in that set of attacks)

2.5.4. Countermeasures

As the field of SCA developed and new exploits were discovered and developed, also were several
countermeasures specifically aimed at SCA. The two main countermeasures that we will consider in
this thesis, which are masking and desynchronization.

Masking:

In masking, intermediate values within the cryptographic computation are hidden by random variables.
This is done with a a uniformly random mask m € F,s , independent of the values v € Fqs it is hiding. It
is called boolean masking when the used mask is XOR’ed with the sensitive value, and multiplicative
masking, when the operation used is field namely multiplication.

This brings us back to the notion that only values handled directly can leak directly in the trace - by not
handling sensitive value v, and instead, v = v @& m, the values that can leak in the trace are v’ and m.
Of course, one can still recover v by recovering m and v/, but no single point can ever totally leak v.
The leakage is said to become second-order, as opposed to first-order.

In the case of AES, masking is usually applied to the output of the SBOX operation using an XOR
operation [40]. In particular, in the AES implementation attacked in this thesis, the first two bytes of the
key are unmasked and are therefore relatively easy to attack. The third byte is the first masked byte,
which is why it is chosen as the target for the attack.

The masking scheme consists of 18 bytes: (r4, ..., 716, rin, Tout), Where r; is specific to each AES round,
and rj, and roy are used to mask the key being accessed and the SBOX output, respectively. It is
important to highlight the operations performed in the first round of AES, as these reveal what is being
leaked:

« Initialization:
stateQ; = p; & r;, statel; =r; (2.24)
leaking the masks

» Accessing the key:
state0; = state0; @ (k; @ rin) © statel;

(2.25)
=p; ©k; ©rin
leaking p; ® ki @ rin
+ SBOX table lookup:
state0; = sbox[state0;] = sbox[p; ® k;] ® rout (2.26)
leaking sbox[p; @ k;] @ rout
* Final step of the round:
stateQ[i] = state0; ® statel; ® Tout (2.27)

= sbox[p; ® k;] ® r;
leaking sbox|[p; & k;] & 7
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Each of these steps is leaky and can be exploited by side-channel attacks. The intermediate values
typically targeted are sbox(ps @ k3) @ r3 and sbox(ps ® k3) @ rout.

Before executing the next operation, the output is unmasked. This does not alter the final ciphertext—
since the masking will eventually be reversed—but serves only to hide sensitive intermediate values
during computation. The masks are generally considered ephemeral (used for a single encryption) and
unknown to the attacker.

Depending on the assumed threat model, it can either be considered that the attacker has access to
the random masks during the training phase, or that the masks remain inaccessible even then.

Desynchronization

Desynchronization aims to misalign the temporal structure of side-channel traces. These techniques
disrupt the temporal correlation between internal computations and observed leakage by introducing
random delays, jitter, or random instruction reordering. In effect, desynchronization transforms the
leakage function L(t) into L(t + J), where § is a random variable, making standard correlation-based
attacks significantly harder due to misalignment.

In practice, this is done by waiting a random amount of clock cycles where dummy operations are
performed, before computing sensitive values, where the maximum waiting time is often fixed and
pre-determined.

In this work, when a given dataset is referred to having desynchronization = d, it is meant that for
every trace, a different § € Z, ¢ ~ Uniform(0, d) is sampled, and a desynchronized trace replaces the
original trace. This desynchronized trace is the same size s as the original one, its first s — ¢ values are
the same as the values from ¢ to the end of the original trace, and its last § are the first ¢ values of the
original trace. Including the final part of the original trace in the beginning of the desynchronized trace
mimmicks the dummy operations performed by the device.

2.5.5. Public Datasets

In order to foster easy contribution to the SCA community, and in particular to ML-assisted SCA, several
datasets have been made public. These datasets consist of recorded traces of power consumption or
electromagnetic emanation, each labeled with the corresponding AES-related information used during
the cryptographic operation that generated the signal. This availability enables more systematic and
standardized security evaluation. In practical scenarios, such traces could correspond to leakage of
cipher operations an attacker might observe if they possess a cloned device identical to the target

The ASCAD database is presented in [2]. The target device is an 8- bit AVR microcontroller (AT-
mega8515) running a masked AES-128 implementation. Measurements are made using electromag-
netic emanation. A boolean masking scheme is used as countermeasure, protecting the sbox compu-
tation with a 8-bit random mask. Within the ASCAD database, two distinct datasets exist: ASCADf and
ASCADv. They were obtained via the git repository https://github.com/ANSSI-FR/ASCAD .

ASCADf is a dataset with 60000 traces, each with 100000 points. Each trace is labeled with the plain-
text, key and masks used in the AES execution that generated it. The key used in all of these executions
is the same. A split of 50000/10000 between profiling and attacking traces is suggested.

ASCADVv is a dataset with 200000 traces, each with 250000 points. Each trace is also labeled with
the plaintext, key and masks used in the AES execution that generated it. A split of 200000/100000
between profiling and attacking traces is suggested. The key used is random in the profiling traces,
and fixed for the attacking traces (to allow for an attack using multiple traces), therefore, this is a harder
dataset to attack.

On top of this, the authors have studied the SNR values of several masked and unmasked values
among the trace. The SNR of unmasked values is very close to 0, which means that the masking is
successful and these values are not directly leaking. A time interval where SNR is highest is indicated,
as a suggestion of dataset to use. This interval has 700 and 1400 points, for, respectively, the ASCADf
and the ASCADv datasets.

As suggested in [30], | will refer to this smaller dataset of 700 or 1400 points as OPOI (optimized points
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of interest). Notice that using OPOI indirectly assumes the attacker has access to the masks in the
training phase, in order to compute SNR of the leaky values. | will refer as NOPOI (non-optimized
points of interest) to the dataset of the raw traces when subsampled with average pooling with a kernel
of size 40 and 50% overlap, as suggested in [30].

Also utilized in the literature are techniques of LDA analysis to extract more informative features. This
approach, referred to as Refined Points of Interest (RPOI) in [30], assumes the attacker has access
to both secret shares - namely, the intermediate value sbox(p; @ k;) @ r; and the mask r; - during
the profiling phase. RPOI are selected from the highest SNR peaks of these two signals (similarly to
the OPOI case, but not necessarily consecutive points). LDA is applied for dimensionality reduction,
producing a total of ten features (this number can vary, but ten is suggested in [30]). Because of the
strong assumptions and small resulting size, this feature selection method is more useful in classical
SCA and not in deep learning, and is not considered in this work.



Related Work

As security grows in importance, naturally, side-channel analysis is a research field which has a good
amount of research devoted to it. It is therefore paramount to investigate the work that has already
been developed and the gaps that can be filled in the existing literature. As side-channel analysis is a
broad field of research with many different exploits used to attack devices, the focus for this work will be
on Power Attacks and Electro Magnetic attacks. Hence, let the term side-channel attack/side-channel
analysis be referring to these exploits from here on.

This chapter will provide an overview of the existing literature on side-channel analysis, both giving a
historical framing by mentioning the most important papers throughout the years, but also providing
the most important state of the art results. It is important to mention that this literature review is not
meant to be a complete review of the research done in SCA - it will be mostly focused on applications
to the ASCAD dataset and on deep learning methods, as these are the results most easily comparable
to the ones achieved in this thesis. Nevertheless, some results obtained by traditional side-channel
analysis will be presented to highlight the performance of deep learning in this scenario. Furthermore,
as this thesis features an application of a LLM-like model to a non-language related setting, also some
motivating results will be presented that showcase the effectiveness of these frameworks to settings
other than language processing. Finally, this thesis will be framed among the existing literature, by
identifying the research gap which it intends to fill. The main search engine used to find literature was
google scholar, and the search conducted started from papers recommended by my daily supervisor
and expanded by navigating the papers they referenced, investigating the different approaches being
taken and searching for the state of the art.

3.1. Historical Framing and Classical Side-Channel Analysis

The inception of Side-channel analysis as a research field can be attributed in large part to Paul Kocher
et al’'s seminal paper [17], where Differential Power Attacks were first introduced. In this work, the power
consumption traces recorded during encryption operations are divided into two groups based on the
value of a specific bit computed by the device in an intermediate AES operation. By averaging the
traces in each group and computing their difference, the differences in the leakages happening in each
group emerge, which would be compared to the leakage happening when attacking. This breakthrough
demonstrated that even small, data-dependent fluctuations in power usage—previously dismissed as
mere noise—could be exploited to reveal secret cryptographic keys.

Template attacks [41] model the trace signals as a multivariate Gaussian distribution and infer the most
likely average signal and covariance matrix for each trace class (either the label or its hamming weight,
depending on the leakage model chosen), based on the available dataset. During the attack phase,
for a given trace, the class that attributes the highest probability of obtaining the trace is selected.

Later, Correlation Power Analysis was conceived as an improvement over DPA. Here, a predicted leak-
age vector is calculated and the correlation between the observed leakage and the predicted leakage
is computed for each class. The class with the highest correlation is selected as the most likely one.

18
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Finally, another common attack using classical statistics is the Stochastic Attack, where the power con-
sumption is modeled as a stochastic process. The observed trace is considered as a random variable
affected by both the leakage and noise. By maximizing the likelihood or, in a Bayesian framework, by
computing the posterior probability P(k|z1,,xx) with appropriate priors, the attacker aggregates evi-
dence across many traces to recover the key. This appears to be a superior attack to the other ones
mentioned in this section when the number of samples available for profiling is low [9].

Template attacks combined with Linear Discriminant Analysis have shown to be capable of attacking
the ASCADv dataset with less than 20 traces [5].

3.2. Deep Learning in Side-Channel Analysis and State of the Art

Similarly to most Data Analysis problems, specific techniques are being surpassed by Deep Learning,
and currently, the best results that are obtained in public dataset utilize DL [30].

With the publication of the ASCAD database, in the paper that introduces the dataset [2], the authors
offer other contributions. Firstly, they analyze the leakage of different interesting values that is found
in the traces. Specifically, they compute the snr values for sbox(ps ® k3), sbox(ps ® ks3) ® rs, sbox(ps &
k3) @ Tout, r3 @nd r,,. As expected, sbox(ps @ k3) has SNR constantly close to 0, while the other
values leak. Furthermore, they present a comparison between a template attack, a CNN and a MLP in
the scenario of attacking the ASCAD fixed key dataset with and without desynchronization. The MLP
resulted from a rough hyperparameter search and is composed of 6 dense layers with 200 neurons
each using the RelLu activation function. A similar search was conducted for the CNN, resulting in a
model with 5 convolutional layers followed by big dense layers with 4096 neurons. The template attack
was executed on 10 or 50 features, depending on the level of desynchronziation, which were extracted
by PCA. In the case where desynchronization is set to 0, the Template Attack was the most successful,
managing to achieve guessing entropy 0 in 450 traces, compared to the near 1000 needed by the
CNN and the MLP. However, as desynchronization was raised to 50 and 100, the CNN model proved
to outperform the other 2, followed by the MLP and the Template attack. In spite of this, none of the
models managed to achieved guessing entropy 0 in the 5000 traces used for attack. The CNN used
over 60 million parameters.

These results showcased that Deep Learning models seem to be much more resilient to desynchroniza-
tion countermeasures than the Template Attack. However, these results are still clearly unconvincing.

Whilst CNNs are regarded as the most resilient method to desynchronization, in [19], the resilience
to this countermeasure is said to be more dependent on dataset augmentation - generating various
desynchronized samples with different levels of desynchronization from the same original sample- than
on the architecture itself.

Better results with simpler models are achieved in [47], which interestingly searches for good architec-
tures and hyperparameters not through a search algorithm, but through employing visualization tools
and heuristically selecting the optimal architecture from the information obtained from them. The role
of hyperparameter is evaluated using Weight Visualization, Gradient Visualization and Heatmaps.

In this paper, the network is tuned from dataset to dataset, allowing for a network tailor-made for the
task’s needs, which allows for smaller networks. With no desynchronization, it achieves guessing en-
tropy O after 191 traces, and needs 270 traces with desynchronization of 100. The trainable parameters
are significantly reduced compared to the previous work, to 16960 and 142044 with 0 and 100 desyn-
chronization, respectively.

This paper is quite relevant to this work especially because the code was made fully public and because
the models were extremely simple, making them a great start point.

For synchronized traces, they recommend using only one convolutional block and minimizing the length
of the filter, and for desynchronized traces, an architecture that enables the network to focus its feature
selection on the Pol’s.

Other works employ a more systematic approach to hyperparameter and architecture search, switching
from visualization techniques to a search algorithm.
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For example, [32] attempts to find a good model, composed of a CNN followed by dense layers, in a
different way. It performs search using a Markov Decision Process where the Markov states are CNN
characteristics, and searches for the best hyperparameters with Q-learning. All aspects of the archi-
tecture were searched (number of layers, number of dense layers, size of layers, padding, layer depth,
kernel size, stride, pooling activations). It does this guided by 2 different reward functions: one simply
attempting to reach the best performance and another which also penalized the size of the network,
leading to smaller models. With no desynchronization, the networks have, respectively , 79439 and
1282 trainable parameters, and achieve rank 0 in 202 and 242 attack traces, with similar results with
100 desynchronization (slightly worse performance on both cases). On the ASCAD variable dataset,
the amount of parameters used was similar, and the number of attack traces needed was 490 and
1018 respectively. This showcases that small networks are extremely competent, and that an improve-
ment of results in the literature is usually accompanied by a decrease in network complexity. This is
especially true for the ASCAD fixed dataset, as the performance on the ASCAD variable dataset was
significantly worse for the small network. When considering the Hamming Weight leakage model in the
fixed dataset, the performance of the small network ended up being better. They also do a comparison
with random search achieving practically equal outcomes, in spite of highlighting that random search
is highly dependent on the pre-defined search space.

Both Bayesian optimization and random search are employed in [45] with the same search space.
The results suggest that Bayesian Optimization works well, but random search can also find excellent
profiling models, actually surpassing the performance of Bayesian Optimization, unless the search
space is too large, in which case random search struggles to find decent hyperparameters. This entails
that in order to use random search, a pre-selection of reasonable ranges needs to happen. If this pre-
selection is successful, random search outperforms Bayesian Optimization. On the fixed key dataset,
also using OPOI, the random search found a MLP that managed to achieve guessing entropy 0 after
80 attack traces. When searching the architecture for a CNN, the search space considered was too
large and it did not find a good model (in a CNN scenario there are many more tunable aspects of the
architecture compared to an MLP). BO found a CNN that achieved guessing entropy 0 after 158 traces.
The paper also does a comparison in which metric to use for searching the model. Results are mixed,
and the only surprise is that accuracy, which is not considered to be a good measure for SCA scenarios,
especially when in presence of a class imbalance in the HW leakage model sceneario, performed just
as good as the other measures.

In the paper [30], an extremely broad analysis is done over 4 datasets including ASCAD fixed, ASCAD
variable. Also comparisons between using OPOI, NOPOI and RPOI are done, using both HW and ID
leakage models. Apart from this, the authors compare Grid Search and Random Search for an MLP
and a CNN followed by dense layers. The considered search space was considerably smaller for grid
search compared to random search. A different search was conducted for each dataset. Each search
went through 500 different models, training each for 100 epochs and evaluating afterwards. As these
results are especially good and complete, | present them here in full. These constitute state of the art
in many of the datasets, and this work is one of the main references both for my work and also for the
SCA field:

Hyperparameter Random Search Grid Search
Optimizer Adam, RMSprop Adam, RMSprop
Dense Layers 1,2,3,4,5,6,7,8 1,2, 3
Netrons 10, 20, 50, 105060200, 300, 400, 20, 50, 100, 200
Activation Function SeLU, ReLU SeLU, ReLU
Learning Rate le-3, 5e-3, le-4, 5e-4 le-3, le-4
Batch Size 100 to 1000 (step: 100) 200, 400
Weight Initialization random, glorot or he uniform glorot
Regularization None, Dropout, 11 or 12 None
Total Search Space 5971968 192

Table 3.1: Search space for MLP in [30]
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Hyperparameter Random Search Grid Search
Optimizer Adam, RMSprop Adam, RMSprop
Convolution Layers 1,2, 3,4 1
) . 4x27 T 8% 27T 12x2"° T
Convolution Filters 16 % 20— 1 (i = conv. layer index) 5, 10
Convolution Kernel 26 to 52 with a step of 2 2,4
Convolution Stride Convolution Kernel / 2 1
Pooling Type maxpooling, avgpooling avgpooling
Pooling Size 2,4,6, 8,10 2
Pooling Stride Pooling Size 2
Dense Layers 1,2, 3,4 1,2
Neurons 10, 20, 50, 10;)60200, 300, 400, 50, 100
Activation Function SeLU, ReLU SeLU, ReLU
Learning Rate le-3, 5e-3, le-4, 5e-4 le-3, le-4
Batch-Size 100 to 1000 (step: 100) 200, 400
Weight Initialization random, glorot or he uniform glorot
Regularization None, Dropout, 11 or 12 None
Total Search Space >1B 128
Table 3.2: Search space for CNN in [30]
Neural Feature Amount Attack Search Trainable
Dataset Network Selection of POIs Traces Success (%) Parameters
Model Scenario (HW/ID) (HW/ID) (HW/ID) (HW/ID)
ASCADE MLP RPOI 200/100 5/1 99.22% /96.86% 82209/429 256
ASCADE CNN RPOI 400/200 5/1 99.23%/99.08% 499533/158 108
ASCADE MLP OPOI 700/700 480/104 82.80%/68.80% 16 309/10 266
ASCADE CNN OPOIL 700/700 744/87 55.53%/35.33% 594 305/62 396
ASCADE MLP NOPOI 2500/2500 7/1 74.50% /39.00% 2203009/5379 256
ASCADE CNN NOPOI 10 000/10 000 7/ 1 15.40%/2.45% 545 693/439 348
ASCADf CNN NOPOI desync 10000/10 000 532/36 2.44%/2.64% 268 433/64 002
ASCADr MLP RPOI 200/20 3/1 99.23%/100% 565 209/639 756
ASCADr CNN RPOI 400/30 5/1 100% /100% 575 369/636 224
ASCADr MLP OPOI 1400/1 400 328/129 71.40%/37.25% 31149/34236
ASCADr CNN OPOI 1400/1 400 53878 47.92%/23.95% 270953 /87 632
ASCADr MLP NOPOI 25 000/25 000 6/ 1 44.39%/7.02% | 5243209/12 628756
ASCADr CNN NOPOI 25 000/25 000 7/ 1 19.17%/4.35% 369109/721 012
ASCADr CNN NOPOI desync 25 000/25 000 305/73 0.71%/1.04% 22 889/90 368
CHES_CTF MLP OPOI 4000/4 000 27/1905 54.24%/0.09% 1383609/213 106
CHES_CTF CNN OPOI 4000/4 000 462/>3 000 2.99%/0.00% 666 429/593 780
CHES_CTF MLP NOPOI 3750/30 000 8/13 69.75%/11.11% 198 209/6 091 856
CHES_CTF CNN NOPOI 7500/7 500 238/>3 000 7.89% /0.00% 216 673/1 319552
CHES_CTF CNN NOPOI desync 7500/7 500 248/906 12.22%/3.05% 374 233/564 436
DPAV4.2 MLP RPOI 900/100 3/1 100%/95.25% 956 009/287 956
DPAVA.2 CNN RPOI 700/200 8/1 93.05% /97.54% 34709/697 112
DPAV4.2 MLP OPOI 800/800 11/1 93.33%/71.62% 48 159/251 856
DPAV4 .2 CNN OPOI 800/800 31/170 33.33%/2.63% 1158857/424 956
DPAV4.2 MLP NOPOI 15000/3 750 400/2 577 5.49%/0.14% 1501 009/1 603 056
DPAV4.2 CNN NOPOI 3750/15000 2767/>3000 0.16%/0.00% 578033/89 384
DPAV4.2 CNN NOPOI desync 3750/3 750 >3000 0.00%/0.00% 34836/72677

Table 3.3: Results from [30]

In all of the mentioned works, the target for the deep learning models is the usual sbox(ps®ks). However,
this value does not leak - instead, all leaky values are masked, and selecting those as target would
imply that the attacker knows these random nonces used. To address this, [25] builds an architecture
that guesses the mask and the masked sbox value separately, and these are trained either explicitly or
implicitly. In essence, supposing the attacker does not have access to the masks, it still can infuse the
knowledge of the existence of masking into the model, achieving better results.

The fact that there are several leaky intermediate variables that can retrieve the key is leveraged in [4]
a model that utilizes all of this information was built, combining it by what is called belief propagation -
essentially multiplying the probability distributions obtained by exploiting each leaky variable (product
of experts).

Finally, [46] presents a novel architecture that instead of outputting a probability distribution over the
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256 possible values, it outputs a probability distribution over 2 values for each of the 16 bits of the attack
byte. Hence, it is essentially an architecture that is resilient to all bit-wise leakage models. It managed
to achieve guessing entropy 0 after 19 and 898 traces, in the ASCAD fixed and variable, respectively.

3.3. Large Language Models in Non-Language Settings

Language models’ primary application is to interpret and/or generate text. Its key feature are word em-
beddings, which allow words to be put into context by learning a translation to a high dimensional vector
space. Although mainly used for language related tasks, language models have found applications out-
side the scope of language generation/interpretation. The key for this is to treat certain information as
one would words in a classical language model application.

As a motivation and proof of concept,here some works are presented that did exactly this. These are
merely examples and not in any way an extensive list.

Protein engineering is posed in [24] as an unsupervised sequence generation problem, where tokens
can either be an amino acid or a conditioning tag, and uses a Language Model to predict and generate
the protein’s sequence.

Time series have also been subject to LLM’s in [29]. It segments into patches as input tokens to
Transformer, using these tokens to predict the future behavior of the time series.

A pre-trained language model has also been applied to an interactive decision-making task, by tokening
all the necessary inputs - the goals, the history, and the observations, and attempting to predict the
optimal actions to take when faced with this situation [23].

Finally, [22] presents a model which learns from a vocabulary of audio tokens to generate music.

All of these achieve good results, sometimes even state of the art, in their field, hence proving that
Language models are not restricted to tasks directly linked to language.

3.4. Large Language Models in Side-Channel Analysis

Language models have been widely used in Acoustic Attacks - these are attacks that exploit, for exam-
ple, the noise made from a keyboard to reconstruct the text that was typed [13]. This task is directly
related to language, so despite interesting, it is not directly related to this thesis.

To the best of my knowledge, only 2 works have employed language models to side-channel attacks.

Firstly, [8] aimed to replace Points of Interest selection and dimensionality reduction by utilizing word
embedding, which converts power traces into sensitive vectors. Hence, the application of the language
model was directed to the analysis of the trace itself, namely in the preparation of this data. Here the
power value corresponding to each sampling point in a fixed clock is vectorized, and the word vector
is used to replace the power. Following this is a Long Short term memory, and a usual CNN or MLP
network is applied to the output.

The other one is [20]. It presents Order vs Chaos, a language-model approach for side-channel attacks
combining the strengths of multitask learning (via the use of a language model), multimodal learning,
and deep metric learning. Instead of using embeddings to represent the trace, it uses the information
about the AES execution as tokens, namely, the plaintext, the key, and the label. It is important to note
that there are no attention mechanisms in play, and that the goal of the network is not to predict the
"most likely next word” - the main purpose of the embeddings is to infuse domain knowledge into the
neural network. Hence, while it is not a real language model, because of the resembling architecture, |
refer to it as a Language Model-inspired framework. It managed to achieve a guessing entropy of zero
with 1 trace on ASCADf, both with OPOI and NOPOI, and on ASCADYv it achieved a guessing entropy
of zero with 1 and 61 traces, for the NOPOI and OPOI cases, respectively.
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3.5. Research Gap and Thesis Proposal
Here are some of the research questions that the literature has not yet approached in depth and that |
plan to study in this thesis:

» What performance can a language model-inspired framework reach in the ASCAD dataset?
» What architecture works best for this task?
* What assumptions does it need to be successful?

» How resilient to desynchronization countermeasures can a language model-inspired framework
be?

» How do different feature selection methods impact the performance of a language model-inspired
framework?

* What is the most effective way to conduct the training process of a language model-inspired
framework?

[20] will be the baseline for this work. Although its architecture is innovative and its results are extremely
good, there are several aspects which make it an incomplete work. The main one is that the code is
not public and the description of the implementation is not concrete, making it unreproducible and
most choices are justified with "heuristics”. Furthermore, the work assumes knowledge of the masks
during the training process and is not faced with desynchronization. These two aspects are important
to understand the applicability of LM’s in SCA and that | will be addressing.

In this thesis | present a model with the same skeleton as the one proposed in [20]. The specific deep
learning architecture used in each model block will go through hyperparameter search independently
of the results in [20]. So, even though the model block hames are kept the same, their architectures
are different.

Furthermore, once having built this model, there are several experiments which | plan to do to expand
the result space and deepen the understanding of how useful can language models be in side-channel
analysis, therefore investigating the answers to the research questions. Here is a rough roadmap of
the work to be developed:

» Developing a general architecture for the model, called Sane or Silly (SoS), that may or may not
have access to mask knowledge during the profiling phase;

» Conducting search in the architecture of each model block;
» Conducting search in the hyperparameters used in training;
» Experimenting with feature selection;

» Experiment with desynchronization;

» Experiment with different silliness generation methods;

» Experiment with knowledge distillation.



Methodology

4.1. Sane or Silly

In a typical standard classifier, the input consists of measurements (X), and the output corresponds to
a label (Y'), as detailed in section 2.5.1:

Xia YL VLE{]-avN}v

with:
N: The number of traces used for profiling.

X: A set of N traces, each corresponding to a signal of a certain physical leakage during a AES exe-
cution

Y': A target vector of length N with information about each trace that is to be attacked - - usually the
value sbox(ps @ ks).

The goal is to create a model that approximates as closely as possible a function f : X — Y such that,
for the given dataset, f(X;) =Y.

In this work, a different approach is taken. The input consists of measurements (X), and metadata
about the operation taking place (M). This metadata consists of the plaintext being ciphered, the
intermediate value label and the key used. In the case of the dataset ASCADf, information about
the key is not included, as the key is fixed, hence providing this information would make this task
trivial. Therefore, in ASCADf, the metadata consists only of plaintext and label, whereas in ASCADy,
information about the key is added. This metadata can either be Sane - corresponding to values present
in the dataset, or Silly - corresponding to values that do not correspond to the real ones. The goal of
Sane or Silly is to judge, from a trace and its corresponding metadata, whether this metadata is Sane
(the real values) or Silly (not the real values). It is important to note that there are several different ways
to create these Silly samples. Whilst different ones were experimented with, the plaintext was always
left unchanged, and the label value was always generated according to the plaintext and the key (either
sane or silly). Hence, both for sane and silly samples, the combination of key, label and plaintext was
possible - but in sane samples, contrarily to silly ones, it corresponded to the actual values used in the
AES execution that generated the leakage.

Foralli € {1,..., N}, the input to the model is the 3-gram together with the trace:

and its silly counterpart:
(P K, sboa (P @ K0), T2) (4.2)
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where:

» P is the third byte of the plaintext that was ciphered in the AES execution that generated the
leakage;

» K is the third byte of the key that was used in the AES execution that generated the leakage;
« K is a byte value that does not correspond to the real one;
» T represents the side-channel measurement.

The output corresponds to a label L € [0, 1] - corresponding to the probability that the model attributes
to the event of the metadata being Sane. The dataset no longer has N samples - it has N Sane samples
and a tunable amount of Silly samples (for training, a 1:1 ratio of Sane to Silly samples was maintained,
but this ratio can be tuned as it is definitely an important aspect of training).

Sane or Silly is made up of 5 blocks, as shown in Figure 4.1.. These are:

+ the pre-trained mask predictor (PTMP);
+ the metadata embedding (ME);

+ the language model (LM);

* the preprocessor (PP);

+ the deep metric learner (DML).

DML

e

— PP
ME ‘ PTMP ‘

Figure 4.1: SoS illustration

The pre-trained mask predictor (PTMP) is a pre-trained neural network with the goal of predicting the
masks. It takes the trace as input and outputs a probability distribution over the possibilities for the
used mask (256). This design choice is based on the fact that knowledge of the mask is essential to
retrieve key-related information (as all leakages are masked), however, it is not known when attacking.
Therefore, this information is as important as the information present in the metadata, and essentially
could be part of the metadata. This, however, would translate into a significant increase in complexity
for a gain that would not be significant, as the goal is not to predict the masks. Experiments were run
with this block predicting the mask r3, the mask r,,;, and both, as knowledge of one of these suffices
to retrieve the key, but knowledge of both can streamline the learning process. The results using both
masks in PTMP will be compared to the results of using each mask separately, and combining the
results afterwards similarly to what is done in [4]. It is important to note that using a block that is pre-
trained on predicting the masks is not only inconvenient (adding extra steps to the training process),
but also it assumes mask knowledge during the profiling phase, placing the attacked in a white-box
threat model. To address these issues, experiments were conducted where this block was not trained
explicitly, but instead, as part of the entire network, whilst keeping its shape, as done in [25]. Therefore,
instead of a PTMP, in these cases, a NTMP was employed.
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The metadata embedding, as suggested by the name, applied embeddings to the grams originated by
the metadata. These grams are generated by taking the 3 input values, (plaintext, label, key), which
are all integers in {0,1,...,255} and turning them into a sequence of unique words (plaintext, label +
256, key + 512). Hence, this is analogous to a language model, where, for example, the gram 611
corresponds to a word with meaning "key = 99”.

The language model takes as inputs the embedded metadata and the mask knowledge (probability
distribution over the masks). Hence, with a good mask predictor, the language model has full knowledge
about the AES operation, and simply combines it and processes it representing it in the optimal way
for the model, outputting a vector with variable shape.

The preprocessor takes as input the trace and analyzes it, outputting a vector of the same size as the
output of the language model. Its purpose is similar to the language model, to process the trace signal
in order for it to be optimally represented before it gets get to the deep metric learner.

Finally, the deep metric learner receives as input 2 vectors of the same size, one from the language
model, containing knowledge about the metadata provided which should be optimally represented, and
the preprocessor, containing knowledge about the metadata leaking in the trace which should also be
optimally represented. In this block, these 2 vectors are compared, with the goal of confirming whether
or not the information given by the language model corresponds to the information extracted from
the trace by the preprocessor. These 2 vectors are processed in parallel, with shared weights, and
the output is again 2 vectors of equal size, to be compared with cosine similarity. A cosine similarity
close to 1 means that the outputted vectors have similar directions, and in this model, corresponds
to matching information from the language model and the preprocessor, and therefore the values in
the grams being correct. A cosine similarity close to 0 means opposite directions, and therefore not
matching. A plausible observation here would be that, whilst expecting matching information to result in
similar directions in their representation seems reasonable, expecting not matching information to result
in opposite directions seems too much, considering there are many possible wrong values. Because of
this, it is important to work in relatively high dimensions, to have many near-orthogonal directions (as
highlighted by the Concentration of Inner Products). This block is composed of parallel dense layers
with shared weights.

The general idea and purpose of this design is that in essence, we infuse the model with all the informa-
tion about the operation taking place, therefore making it more informed. With this, he judges whether
or not the trace matches the information provided. Infusing the model with the metadata should make
it more able to analyze the leakage taking place, potentially resulting in better analysis of the trace
compared to a standard classifier.

There are 4 different baseline versions of SoS - corresponding to the differences in PTMP: these are
using r3, Using .., using both, using NTMP.

In spite of referring to the model as a language model, one important part of language models, the at-
tention mechanism, is not present. This is because in this scenario, context is not particularly important
- the value of a plaintext does not depend of the value of the key - and the relations between these and
label will be learned by the rest of the model.

Details about the specifics of the blocks, as well as the searchable parameters are provided in section
5.3., and the concrete description of the networks used in each scenario is provided in the appendix.

4.1.1. Silliness Generation

Because SoS’s task is simply discerning Sane samples from Silly samples, one aspect about the train-
ing process that can be experimented with is the Silly dataset. There are different aspects about it that
could make a difference in the effectiveness and speed of SoS’s training:

* When Silly samples are generated,;
» How Silly samples are generated;

» What ratio of Sane and Silly samples is employed.

Concretely, one can decide to generate the Silly samples upfront and use the same dataset throughout
the entire training process or change it every n epochs, ensuring diversity in the data that the model
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sees.

If the Silly dataset is generated upfront, the only reasonable way to generate it is randomly. However, if
data is generated not upfront but throughout the training process, one can generate it by investigating
what values cause the model to make the biggest errors and generate a new dataset using those. This
is a technique called hard negative mining, and has shown good results in several machine learning
applications [37].

Lastly, whilst the real ratio between Sane and Silly samples are 1 Sane for 255 Silly samples, because
when attacking, the probabilities are normalized, there is no strict need to employ that same ratio when
training.

In this work, a ratio of 1:1 between Sane and Silly samples was always used this is justified by simplicity
and memory constraints. Experiments were conducted with 3 different Silliness generation scenarios:
generating the data upfront, generating random Silliness every epoch, and generating Silliness with
hard negative mining every n epochs. n is definitely a parameters that strongly impacts the training
process. n = 1 ensures maximum diversity, but seriously slows down the training session, as for a
big dataset like ASCADv, generating entirely new 200000 samples is time consuming. Different values
for n were experimented with, and n = 3 ended up being chosen, but it is important to note that there
could be more optimal choices, and that this choice clearly depends of the amount of computational
resources available.

4.1.2. Bias Removal

Framing a multi-class classification problem into a binary one can cause some problems. Namely, it
is common that biases arise in the models towards some keys [12]. This is because in a multiclass
classification problem, as long as the training data is balanced, the model recieves somewhat directly
the information that all classes are equally likely (all key bytes, in this case, are assumed to be equally
likely). However, when the input is given as a trace paired with a key possibility, not only does this
information become more convoluted, but also there could be an imbalance in the amount of times the
keys are used in the dataset as Silly samples (this was not kept uniform). Furthermore, the distribution
is wildly different in the profiling and in the attack phases - while in the profiling phases there is a 1:1
ratio between Sane and Silly Samples, in the attacking dataset the model is trying to pick the one Sane
sample in a set of 256 samples.

After running some trained models, particularly on the ASCADv dataset, this problem was observed.
As a result, the models often became strongly biased toward predicting certain keys - different from
model to model.

It is important to note that this is not expected behavior - because the plaintexts and keys change with
every sample, the sbox function is highly non-linear, and the leaking value is sbox(ps @ k3) ® r3. When
the key is fixed (as in the attacking dataset), there should be no key (apart from the correct one) that
is consistently preferred by the model. This kind of bias would never happen in a standard classifier; it
arises due to the model interpreting the metadata fed to it.

This issue was frequently observed. After examining the model behaviors, it was found that all models
exhibited some degree of bias toward certain keys - which varied from model to model. To address
this, two "debiasing” methods were experimented with. Whilst several other more complex ones could
be used, the simpler methods showed superior performance in preliminary testing, so only these two
were considered:

Prior-Based Debiasing

Inspired by prior correction methods in [27], the model was evaluated on a balanced large (40k samples)
training subset with an equal number of samples per key. For each key i, we computed the total score:

N
pP = Z Pijo
Jj=1

where p; ; is the probability the model assigned to key ¢ on sample j, and N is the number of samples
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in this balanced, large subset. The outputs were debiased by scaling inversely to the key priors:

Bii = Pi,j
7,7 Pz 9

followed by normalization across all keys for each sample. This ensures the model treats all keys as
equally likely.

Model Combination

Combining the outputs of two models can also reduce bias and improve generalization, as two models
usually are observed to have different biases. Consider p(l) the probability model 1 assigns to key i

and p§2) the probability the model 2 assigns to key i. p;, the joint probability of key i can be computed
in several ways:

* Product Rule (Independent Models): Assuming independence, combine probabilities by multi-
plication:

A

Pr = DEROR
AP

» Loss-weighted Averaging: Given validation losses £, and £,, combine using:

(4.3)

(1) 2)
Pk T 5P
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This weights models by reliability, favoring lower-error predictions [27], and no longer relies on the
independence assumption.

4.2. Training Strategy and Optimization

The pipeline followed in training this model was

» Hyperparameter search for the PTMP (for r3 and r,,;), searching over training hyperparameters
and some aspects of the model’s structure;

» Training and evaluation of the PTMP with the found hyperparameters;
* Knowledge distillation with the best PTMP as the teacher model;

* Hyperparameter search for the 4 versions of SoS, using the best found PTMP, searching over
training hyperparameters and some aspects of the model’s structure.

 Training and evaluation of the 4 versions of SoS with the found hyperparameters, with appropriate
debias methods;

» Hyperparameter search, training and evaluation for the 4 versions of SoS with different Silliness
generation methods;

» Hyperparameter search, training and evaluation for the best SoS version(s) against different lev-
els of desynchronization, compared with fine tuning of the previously found models for this task.

This procedure will be conducted for every dataset considered - each different setting uses different
hyperparameters and is trained separately. With this, it is relevant to highlight that it is not intended
to search for a general framework, only to evaluate the capabilities of this network if tuned for each
setting.

The different settings considered include different feature selection methods (OPOI, NOPOI), different
levels of desynchronization (0/100/200), and different datasets (ASCADf, ASCADv).

The hyperparameter search was based on the one considered in [30] and adapted to the available
resources. Because it showed good results in [30], [45] and [32], and to foster simplicity, random
search was selected as the search algorithm. The search space is detailed in section 5.3, as well as
all details related to searching and training. The results of each hyperparameter search conducted are
presented in the appendix.
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The data available was splitinto a training set, a validation set and an attack set. Both in hyperparameter
search and in training, the values of the loss and the accuracy were gathered, both in training and in
validation. The hyperparameter selection, as well as the model selection used the validation loss as
criteria, as accuracy is usually not considered to be a great side-channel measure [43].

After having gathered competent PTMP, knowledge distillation will be applied. The models that were
identified as potentially benefiting from knowledge distillation were the PTMP’s attacking the OPOI
dataset applied to ASCADv. The OPOI scenario was deemed interesting because it is a task where
results were much worse than in the NOPOI scenario, and also a situation where it is likely that a
small model works better than a big model. Furthermore, as stated in [34], for classification tasks
with a small number of classes or binary detection (two classes) the amount of information transferred
from the teacher to the student network is restricted, thus limiting the utility of knowledge distillation.
Furthermore, some preliminary experiments conducted in SoS confirmed this statement. Hence, the
scope of knowledge distillation was restricted to PTMP in OPOI ASCADwv.

In the context of desynchronized traces, two experiments were performed: one in which a dedicated
hyperparameter search was conducted specifically for the desynchronized dataset, resulting in the
best-performing SoS configurations for this setting; and another in which the best SoS models found
for the desync=0 scenario were fine-tuned to adapt to the presence of desynchronization (an additional
training session was conducted with this dataset), in a process usually referred to as transfer learning.
Experiments were conducted with both levels of desynchronization for the models that were found the
most promising.

4.3. Evaluation

After having the trained model, it was evaluated, as in most of the literature, firstly by checking if the
correct key converges to being the one the model considers the most likely (successful attack) and
with this by investigating how many traces were needed to achieve GE=1. This is done in the following
way:

1. From the attacking dataset, 10 attack traces are randomly selected and ordered (an amount which
should allow the model to reach GE=1);

2. For each trace, 256 samples are generated - all of which use this trace. For the metadata, all
have the correct plaintext, but each has a different key (spanning over all possibilities), and cor-
responding label,

3. The model is ran in these 256 samples, outputting a Sanity probability for each. Then, these are
linearly normalized to achieve a probability distribution over the set of possible keys;

4. This process is done for all attacking traces, therefore achieving a probability distribution over the
possible keys for each trace;

5. In (random) order, the cumulative probability distribution over the set of keys is obtained by as-
suming independence - that is - Py ,, = III”;px;, Where p; ; is the probability that the model
attributed to key k in trace i and P ,,, is the cumulative probability attributed to key k considering
m traces;

6. From this, if the correct key ever becomes and remains the most likely one, N;og is computed.
If not, the attack is considered failed.

The model is considered to have failed if at least one of the attacks failed, and N,gg is the largest Ny 4 r
from the 10 attacks.

Notice, however, that in order to conduct an attack, an attacking dataset with several of samples using
the same key is needed. For instance, when attempting to predict the masks, this does not happen
(masks are ephemeral). While one could assume knowledge of the masked sbox and compute the evo-
lution of the key as normally, because this is an auxiliary task and metrics are simply used as heuristics
and not final results, when training a PTMP, simply the accuracy and average rank are computed.

Furthermore, before conducting an attack, the model was debiased used the mentioned methods, and
the results between the raw model and the debiased one were compared.
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4.4. Assumptions and Threat Model

In this work, we are assuming an attacker has full knowledge of the AES algorithm taking place, namely
assuming knowledge of which intermediate values are leaking (notice only leakage of the first round of
AES is analyzed) and of the sbox being used.

Furthermore, during the profiling phase access to a dataset of labeled traces is assumed. These labels
are either the plaintext and the key used (in the NTMP scenario), or additionally include the masks
applied (for training the PTMP). Usually incorporating knowledge of the masks leads to a a better
model, but it is desirable to achieve the best results possible with the fewest assumptions possible.

During the attacking phase, access to traces and corresponding plaintexts is assumed to retrieve the
key.

The threat model considered is a white-box model, where the attacker has full knowledge of the imple-
mentation and metadata used in training, and grey-box, when masks are assumed to be unknown in
training.



Experimental Setup

This section intends to detail all specifications about the experiments to ensure maximum reproducibility
and to foster a good understanding of the experimentation process.

5.1. Dataset Preparation

As mentioned before, the ASCAD dataset was used for this work, both its variable key and its fixed key
version.

Because deep learning is usually sensitive to absolute differences in input [21], each trace T € RM
was normalized with a standard normalizer, ensuring the resulting normalized trace T’ has mean 0 and
unit variance.

Furthermore, an important process in signal processing, particularly in signal analysis for side-channel
analysis is feature selection. Typically not all of the points in the dataset are used, and models take
advantage in using smaller inputs, balancing the trade-off between optimizing the input size with smaller
input and sacrificing the least amount of information possible . For this | followed [30] and considered
both OPOI and NOPOI.

The dataset is then split into training, testing, and attacking sets. This split was done as suggested
in the original ASCAD paper, with training/attacking split of 50k/10k (fixed key) or 200k/100k (variable
key). The training set was then split in 45k/5k and 190k/10k in training/validation, for the ASCADf and
ASCADVv datasets respectively. The validation set’s purpose was to guide the hyperparameter search
and the training, while the attacking set only served to evaluate the network after it was fully trained (it
is important not to train nor to guide the hyperparameter search according to this dataset, as this would
positively skew the results).

Using the best found model, a new training session was run with a new randomized Silly dataset every
epoch, and a new dataset every 3 epochs, with each Silly sample being generated with the Silly key
value that lead the model to attribute it the highest Sanity probability. Both the training and the validation
dataset had Sane and Silly samples in a 1:1 ratio, the attacking dataset had only Sane samples, and
they were used to conduct attacks as described in section 4.3.

Furthermore, experiments were run where a desynchronization of 100 / 200 was in place for the NOPOI
dataset. For each level of desynchronization, the models r3, r,,,- and NTMP were experimented with
(the model using both masks was left out), both through transfer learning and a dedicated hyperparam-
eter search.

For the scenario where the desynchronization countermeasure is in place, as suggested in [19], data
augmentation was employed. Specifically, for each original trace, two additional desynchronized ver-
sions were generated: one with a desynchronization value in the range [0, 50] and another in [50, 100]
(for desync=100; doubled for desync=200). This not only increases the amount of training data in a
balanced way but, more importantly, introduces the notion of shift-invariance to the model — that is, it
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implicitly learns that the relevant leakage is invariant to temporal misalignment. This strategy has been
empirically shown to be essential when training models to attack desynchronized datasets [19].

5.2. Software and Hardware

My scripts were ran on Deflt Blue, in the gpu-a100 partition. The jobs ran on 2 NVIDIA A100 Tensor
Core GPU with 80 GB of video RAM each. Some scripts also ran in an online GPU cluster with similar
characteristics. My code was written in Python 3.8.12, and the main deep learning library used was
Tensorflow 2.4.1 [1].

5.3. Training and Evaluation Pipeline Details

As mentioned in the Methodology section, the pipeline in the model development is mainly composed
of 4 stages:

* PTMP hyperparameter search;
* PTMP training and evaluating;
» SoS hyperparameter search;

» SoS training.

Each of these stages has important details to go over as well as important results to be presented, for
each dataset. In this section the details about each stage will be described, and the results will be left
for section 6.

5.3.1. PTMP Hyperparameter Search

Although there are some differences between the networks used for ASCAD fixed key and for ASCAD
variable key, the architectures are similar - they are composed of convolution layers followed by dense
layers. In both cases, the convolution layers are followed by pooling layers and by batch normalization.
After the dense layers searched for, an extra dense layer with 256 neurons with softmax is applied to
output a probability distribution over the set of possible masks. The activation functions considered
were relu and selu, searched for all layers.

Furthermore, in both cases, search was conducted over the optimizer to be employed (between Adam
and rmsprop), and the learning rate (log-Uniformly). In the fixed key scenario the learning rate was
fixed during training, this was changed in the variable key setting, where an exponential decay in the
learning rate was employed. The decay factor was searched log-Uniformly in [0.9, 0.99] for each epoch.

Hyperparameter search lasted 200 trials, each with 10 epochs, and with an early stop if no improvement
was witnessed after 3 epochs (validation accuracy < 52;).

The complete description of the search space for the mask preedictors for both datasets is provided in
table 5.1.
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Parameter ASCADf ASCADv
Convolution Layers {1,2,3} {2,3,4}

Filters (8,16, 32, 64, 128} (32,64,128)
Kernel Size (10,15, 20, 25, 30} {10, 20,30}

Stride {5,10,15} {5,10,15}
Pooling type {max, average} {max, average}
Dense Layers {0,1,2,3} {1,2,3}

Neurons (Dense) {50, 100, 256 } {64, 96,128}
Activation functions {relu, selu} {relu, selu}
Optimizer { adam, rmsprop } { adam, rmsprop }
Batch Size {32} {16,32,64}
Learning Rate {0.0001, 0.001, 0.01} [0.000001, 0.0001] xbatch size
Decay rate 1 [0.9,0.99]

Table 5.1: Comparison of architecture-related hyperparameters.

Some differences between the two scenarios were motivated by one dataset being bigger and harder
than the other. This was the case, for example, for the increased number of convolution layers, to further
reduce the dimension. Other changes were simply motivated by observation - because | worked with
the fixed key dataset first, | noticed, for example, that the number of filter per layer being chosen was
always one of the top values, leading me to exclude the smaller values in future searches, to reduce the
search complexity. Hence, | refined my approach as | worked on this problem. But because the results
were satisfying for ASCADT, | did not find the need to re-do them. The batch size value is different
because of memory restrictions.

5.3.2. PTMP Training and Evaluating

After selecting the model that performed best in terms of validation loss from the hyperparameter search,
the model is then trained for 200 epochs with the found optimizer and loss function categorical cross-
entropy. To evaluate this network, we gather measures of accuracy and mean rank.

5.3.3. Knowledge Distillation

The knowledge distillation process was also subject to hyperparameter search. In particular, the search-
able aspects of the knowledge distillation were the temperature (T € [1,5]), the alpha (« € [0.1,0.9])
and some aspects of the model’s architecture. Knowledge distillation was applied to both models in
ASCADv OPOI PTMP. All parameters were searched uniformly in their search spaces.

The complete description of the search space for the knowledge distillation process is provided in table
5.2.

Each trial trained the student for up to 10 epochs with the Adam optimizer, minimizing the combined
distillation loss

L = aT?CE(o(s/T), o(t/T)) + (1 —a)CE(o(s), y), (5.1)

where ¢ are the teacher probabilities, s the student logits, and ¢ the softmax function. Early stopping was
triggered if validation accuracy failed to exceed preset thresholds at epochs 2, 4, or 6, set empirically
to ﬁ, 2§6, % The student achieving the lowest validation loss was retained and its weights saved for
final evaluation.

The last dense layers always has shape 256 to get the probability distribution over the masks. Search-
ing lasted for 50 trials, and the final model was trained for 100 epochs.
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Parameter

PTMP ASCADv OPOI

Batch size
Initial LR

Convolution layers:

{32, 64, 128}
[0.00001, 0.0001]
{1,2}

Number of kernels: {32,48,64}
Kernel size: {10,20,30}
Number of dense layers: {1,2}
Number of neurons: {128,256}
Temperature: [1,5]
Alpha: [0.1,0.9]

Table 5.2: Searched hyperparameters for Knowledge Distillation.

5.3.4. SoS Hyperparameter Search

Once again , whilst the baseline structure of SoS for ASCADf and ASCADYv is similar, there is some
variability to the approach taken in each dataset, explained firstly by the nature of the task, and secondly
due to the knowledge that the experiments done in ASCADf gave me, making the search in ASCADv
more informed. Furthermore, as the task of attacking ASCADv is much harder than attacking ASCAD(,
some parameters relating to the architecture of SoS were searched for, to ensure the model is optimized
to the task, as opposed to the ASCADf case, where only training hyperparameters were searched for.
A different hyperparameter search was conducted for each pair of SoS version and Silliness generation
method. The detailed architecture of SoS can be found in the appendix, for organization purposes it is
not detailed here.

The complete description of the search space for SoS is provided in table 5.3.

Parameter ASCADf ASCADv

Batch size {32, 64, 128} {16, 32}

Initial LR {0.0001, 0.001, 0.01} [0.0000005, 0.00005] x batch size
Decay Rate [0.9, 0.99] [0.9, 0.99]

Loss Function: {hinge, binary crossentropy} {hinge, binary crossentropy}
Dense layers: 4 [4, 6, 8, 10]

Embedding size: 32 [12, 24, 36]

Output size: 100 [50, 100, 200]

Table 5.3: Comparison of architecture-related hyperparameters.

The number of epochs per trial and number of trials was different in the 2 datasets, due to hardware
limitations. In the ASCAD fixed dataset, a more thorough search of 100 trials and 20 epochs per trial
was conducted. This was, however, not possible to run within the 24 hour time limit for the ASCAD
variable dataset, and instead, the number of epochs per trial was set to 15, with early dropouts in epochs
3, 6, 9 and 12 (to combat the time limit imposed by the cluster and the complexity caused by the large
dataset and the hyperparameter search), in case the validation accuracy was below thresholds 0.5,
0.55, 0.6 and 0.65 respectively. These thresholds were set empirically. The maximum number of trials
that ran during the 24 hours of running time | had was between 10 (hard silliness generation) and 40.

An important note is that the hinge loss function expects outputs between -1 and 1, which needed some



5.3. Training and Evaluation Pipeline Details 35

slight adaptation of the output of the model, which by default is bounded by 0 and 1. After witnessing
binary cross-entropy out performing the hinge loss function consistently, and because of the more
convoluted approach it needed, eventually only the binary crossentropy function was considered.

5.3.5. SoS Training and Evaluating

After selecting the model that performed best in terms of validation loss from the hyperparameter search,
the model is then trained for 200 epochs with the Adam optimizer and the found loss function, and found
decay rate each epoch. With the best trained model, the attacking set was attacked as described in
section 4.3, and N;gr was computed.

One challenge that was found when working with ASCADv was that hyperparameter search trained the
network for a maximum of 15 epochs. This network was then intended to be trained for 200 epochs,
but because the learning rate and the decay rate were chosen specifically for a short training session,
these were not optimal for a longer one, and the model usually showed no improvement past epoch
50. To address this, a cyclical learning rate schedule was employed [39]. This reset the learning rate
every 15 epochs to 0.95 of its value 15 epochs back, ensuring more longevity of the improvement of
the model. A generic evolution of the learning rate when cyclical learning rate is in place is plotted in
figure 5.1.
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Figure 5.1: Example of cyclical learning rate evolution starting at 1 with decay rate 0.98 and resetting to 0.95 of its value 15
epochs back.

5.3.6. NTMP

As mentioned before, one of the experiments conducted was forfeiting the need of pre-training a part
of the model for predicting the masks. In this experiment, PTMP was replaced by NTMP, with similar
structure but no previous training. Similarly to the other cases, the structure for this block was searched
for, with certain simplifications due to limited resources. Namely, all the convolution layers have the
same number of filters and the same kernel size. Also, all the dense layers have the same number of
neurons. The activation functions are all relu and the pooling layers are all average. Furthermore, one
different aspect between this scenario and the other ones, is that the output of NTMP does not have
shape 256. Instead, it has the same shape as the embeddings. Hence, the model is implicitly learning
not only to predict the mask (hopefully) [25], but also how to represent this information in the best way.
Apart from this, its structure is equal and search space similar to previous scenarios:

The complete description of the search space for the NTMP block of SoS is provided in table 5.4.
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Parameter ASCADf/ASCADv
Convolution Layers {2,3}

Filters (32,64, 128}
Kernel Size {10, 20, 30}

Dense Layers {1,2,3,4}
Neurons (Dense) {32,64,128}

Table 5.4: NTMP search space



Experimental Results

In this section the results of the most relevant experiments conducted are presented. Its main purpose
is not to discuss them and analyze them, but simply to display them, as their discussion is left for the
next chapter.

6.1. Mask Predictors

Firstly, the results of the Pre-trained Mask Predictors will be presented. These correspond to the mod-
els eventually incorporated in the corresponding version of SoS, that has its results presented in the
following section. As mentioned before, whilst when attacking the key, one possesses a dataset with
an attacking set always using the same key, that is not true for when attacking a mask, which is always
variable. It is relevant to notice that there is a way to work around this: one can assume the masked
sbox output is known to the attacker, and with that and the predicted mask, reconstruct the sbox output
and attack the key, computing N;¢ . Because this is a relatively easy task, simply the accuracy on sin-
gle traces is presented. In table 6.1 and 6.2, the results of the mask predictors acting on ASCADf and
ASCADv (respectively) are presented. Table 6.2 has an additional row, corresponding to the results
of Knowledge Distillation. Furthermore, in table 6.2. in the desynchronization rows, a comparison is
made between naive training and training with data augmentation.

Parameter T3 Tout

NOPOI 0.843 (1.31) 0.844 (1.30)
NOPOI desync100 0.156 (7.50) 0.1335 (8.25)
NOPOI desync200 0.1462(7.98) 0.0961(9.51)
0POI 0.0266 (45.20) 0.0195 (61.94)

Table 6.1: Accuracy (average rank) of best networks predicting masks in ASCADf

6.2. SoS

Here the best results obtained for each dataset are presented. The values of N, are presented, and
X denotes an unsuccessful attack. In table 6.3 the results of the 4 SoS versions attacking ASCADf are
presented. Tables 6.4 through 6.7 refer to the various experiments conducted with ASCADv : Table
6.4 presents the results of the 4 base models on NOPOI/OPOI, while the next one shows the results of
those same models after debiasing. The last 2 tables have the results of SoS attacking the ASCADv
dataset with desynchronization : table 6.6 refers to the scenario where a dedicated hyperparameter
search was conducted, while Table 6.7 displays the results of the experiments with transfer learning
from the original models to the dataset with desynchronization.
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Parameter r3 Tout

NOPOI 0.998 (1.0) 0.990 (1.0)

NOPOI desyncl100 0.8355[0.8245](1.2) 0.8381 [0.8039] (1.2)
NOPOI desync200 0.9527[0.8421](1.1) 0.775[0.6639](1.3)
0POI 0.0248 (46.9) 0.0127 (78.8)

OPOI student 0.0281 (42.3) 0.0166 (64.9)

Table 6.2: Accuracy (average rank) of best networks predicting masks in ASCADv. In [ ] are the results without data

augmentation
Parameter T3 Tout
NOPOI 1 1
NOPOI desync100 1 1
NOPOI desync200 1 1
0POI 1 1

Table 6.3: N,g g of SoS in ASCADf

Parameter 13 r,,; both NTMP
NOPOI 4 3 3 X
0POI X X X X

Table 6.4: N, g of raw SoS in ASCADv

Parameter 1, +r3 both (prior) ntmp (prior)
NOPOI 1 16 1 (ch)
0POI X X X

Table 6.5: N, g of the debiased SoS in ASCADv

Parameter r3 Tour NTMP
NOPOI desync100 X X X
NOPOI desync200 X X X

Table 6.6: N;gr of SoS in ASCADv desync - dedicated search

Parameter r3 rout NTMP
NOPOI desyncl00 ~ 900 (debiased) X X
NOPOI desync200 X X X

Table 6.7: Ny of SoS in ASCADv desync - transfer learning



Discussion and Future Work

This chapter reflects on the key findings and limitations of the work presented in this thesis, drawing
connections to broader trends in side-channel analysis and deep learning. It examines the implications
of architecture choices, data preprocessing, data generation, and countermeasures, highlighting how
these factors influence performance. Additionally, the chapter outlines several promising directions for
future work that aim to further enhance attack robustness and efficiency.

7.1. Mask Predictors

Regarding mask predictors, a significant decline in performance is seen when going from NOPOI to
OPOQI, in both datasets. This is in line with the state-of-the-art, where N, goes from 1 to 78/87 in
ASCADV/ASCADf [30]. By examining the SNR plots presented in [2], this can be interpreted by the fact
that, even though the selected interval contains information on the two pairs of (sbox(ps®ks)Prs, r3) and
(sbox(ps @ k3) @ rout, Tout), there are significant spikes on the SNR of the masks outside this interval
that are not considered, especially for r,,;. This mask was also the one with worst performance in
OPOI - whilst having similar performance in NOPOI. In addition, subsampling brings the advantage of
shortening the input size, making the full trace not overwhelmingly big, and therefore "mimicking” the
advantage of picking OPOI, without sacrificing as much information. Nevertheless, this work shows
that the mask itself is hard to predict in OPOI, and explains the hardness of attacking it. It could be
interesting to investigate if the masked sbox value sbox(ps @ k3) @ rs is also significantly harder to
predict in OPOI compared to NOPOI, or if, in contrast, the hardness of attacking OPOI comes solely
from the hardness of predicting the mask. This should be relatively straightforward, but falls outside
the scope of this thesis, so it is left for future work.

Results achieved for ASCADf were significantly worse than the ones attained in ASCADv. Although
this, at first, seems counterintuitive, as ASCADv should be a harder dataset than ASCADf, there are
clear explanations for this: firstly, the fact that the key is variable for each trace does not directly make
predicting the mask harder - the masks are variable in both scenarios. Secondly, as ASCADv is a larger
dataset, and experiments were ran for a longer time, it is expected that results will be better. Thirdly,
as my experiments began with ASCADf and then evolved for ASCADYv, the search space and overall
training process were more refined when | was working with ASCADYv, which also explains part of the
improvement. | believe if more work was devoted to improving the mask predictors in ASCAD(, there
was room for improvement. However, as the results achieved by SoS were already optimal, this was
not considered to be a top priority within this project.

One important remark about mask predictors is the fact that while desynchronization caused a decline
in accuracy and average rank, the resulting models were still quite competent. In fact, one surprising
result was that the model guessing mask r3 actually improved in performance when faced with a desyn-
chronization of 200, compared to 100, both with and without data augmentation. Sanity checks were
performed and the experiments were repeated, but this kept happening. Although counterintuitive (the
task of desync=200 is harder than desync=100), the model might be benefiting from training on higher
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desynchronization, making it more robust. Also, the fact that this happened with mask r3; and not mask
rout 1S UNEXpected, as a priori no significant differences in the nature of their leakage was considered.
This might be because of the nature of the leakage of mask r3, making desynchronization not a good
countermeasure to hide it. Furthermore, it is important to note that indeed data augmentation proved to
be a useful step to enhance performance, and that, while desynchronization made performance worst,
this was only slightly, and results were still good both for guessing r3 and r,,,;.

Finally, regarding knowledge distillation, a marginal improvement was observed when comparing the
student model to its teacher counterpart. This aligns with findings in the literature, where KD typically
yields moderate gains, particularly because the effectiveness of the student model is inherently limited
by the performance of the teacher [14] [11]. Nevertheless, KD remains a useful tool, especially in
scenarios where model compression or generalization is desired [34].

The experiments presented in this thesis serve as a proof of concept. It may therefore be worthwhile
to further explore knowledge distillation in the context of standard label classifiers, rather than models
trained to predict the mask values.

Another important remark is the high variance in model performance that was observed during hyper-
parameter search, both for PTMP and across SoS models. For the same task, different iterations even
with similar hyperparameters had significantly different results. Hence, even though the different archi-
tectures that resulted from hyperparameter search in two similar tasks (for example, predicting r3 and
rout) Were sometimes extremely different, and this difference does seem arbitrary, the results observed
during hyperparameter search indicated that indeed these differences were important and that different
leakage entails a different optimal model. Of course, the models found are not necessarily optimal, and
the differences in performance could be simply derived from the random initialization of weights, but
nevertheless, it is an indicator that this task is extremely sensitive to model architecture.

7.2. Sane or Silly

Firstly, it is noticeable that the results when using the ASCADf dataset were overwhelmingly good, in
spite of the desynchronization considered and feature selection method chosen. This, however, is
easily explained when examining the nature of the dataset and the architecture of the model.

The key is fixed throughout the training process, the model receives the plaintext as input, as it is
looking to predict sbox(ps @ ks). Because the model has access to ps via input, and sbox() and ks
are fixed throughout the training process, all that the model really needs to do to perform highly is
to learn the simple function f(xz) = sbox(ks @ x) during the training process and apply them to input
ps3. With effect, after the model is trained, its efficacy is independent of the trace fed to it - it can
discern a sane combination of label and plaintext from a silly one without considering the trace. This
also explains why the model is not affected by varying performances of PTMP, as this prediction also
becomes independent of the mask used.

Interestingly, although performance is stable across all experiments, the model’s confidence varies with
the desynchronization chosen and with the feature selection method. This indicates that the model
is using the trace in some parts of the training process, or at least is being confused by the PTMP
undecided-ness.

Considering ASCADy, the results are quite satisfying: SoS was able to attack ASCADv with only 1 trace,
both when mask information was assumed to be available during training, but also with no assumption
of knowledge of masks in the profiling phase.

Furthermore, it is interesting to note that mixing information from both masks seems to be more effective
when done in different models, rather than in one. There are two main reasons for this: firstly, the
information of 1 mask only suffices to retrieve the key, so extra information can lead to unnecessary
complexity and confusion. However, the main reason attributed to this phenomenon is that combining
different models is inherently better. Models appeared to have an intrinsic and independent bias, which
was the main problem with the models. Combining models after training will cancel the biases, solving
2 problems at once, and arriving at a better model.

Because there is much information leaking that may be useful to retrieve the key, | believe this is also
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something fairly unexplored in the literature - building separate models to attack the key by exploiting
different leaky information, and combining the information extracted with them in different ways.

When experimenting with different data generation methods, it was observed that generating hard
samples through hard negative mining never enhanced performance. There is a clear trade-off here,
between larger training times and a better dataset. Because the ASCAD dataset is quite big, raising
the training time was never worth it. Changing the dataset each epoch was a crucial improvement for
the NTMP SoS. This model always showed a different learning curve from others, as shown in figure
7.1: while other (r3 and r,,;) would often reach peak performance early on in training (sometimes even
during hyperparameter search), the NTMP model always improved in a less smooth manner, achieving
peak performance later on in training - probably due to it having the additional task of learning the masks
and learning a good way to represent them. Perhaps because of this added difficulty, the static dataset
version was unable to attack ASCAD, even when debiased. Only in the changing silliness version, with
prior debiasing, was it able to attack ASCAD, and only requiring 1 trace. Hence, it was observed that
while ASCAD was a big dataset that did not usually need extra diversity in it, changing the silly samples
every epoch was crucial for this particular model to achieve good performance.
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Figure 7.1: Evaluation of validation loss and accuracy in the training process of models r3 and NTMP

Left for future work is experimenting with other data generation methods. In particular, these generation
methods were heuristically selected and not searched for. Hence, there is room for improvement here,
namely by searching the frequency of new silliness generation (here 3 epochs, chosen heuristically) or
by implementing evolutionary algorithms. Furthermore, it may also be beneficial to tweak the ratios of
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Sane and Silly samples. Due to time and memory constraints, a ratio of 1 was maintained. This, again,
may be subject to search.

Regarding the debiasing method used, important conclusions may be drawn. Firstly, the prior based
method was the single-model debiasing method that performed the best, and was the only one used
in practice. In the best-performing models — those able to attack ASCADv with very few traces —
debiasing made the model perform the same or slightly worse. However, in the less effective models,
which required dozens or hundreds of traces to attack ASCADv, debiasing had quite a positive effect.
In fact, prior-based debiasing made the NTMP model go from not being able to attack ASCADv to
attackingitin 1 trace. This suggests that learning to remove bias is part of the training process itself, and
a challenge independent from the rest of the learning process. Models that had good raw performance
(no debias) rarely benefited from prior-based debiasing (like r3, r,,; and both). Instead, when their
information is combined, the bias is diluted due to their independence, attacking ASCADv in 1 trace
only. The combination method used to combine the r3 and r,,; models was loss-weighted averaging.

Finally, it is worth noting that although desynchronization significantly increased the difficulty of attack-
ing the dataset, SoS was still able to successfully attack ASCADv at a desynchronization level of 100.
This was only possible when the data augmentation process described in [19] was applied. Additionally,
model debiasing was necessary; two debiasing methods were tested and yielded similar results. Be-
sides the standard prior-based method, another effective approach involved combining knowledge from
two SoS iterations: one using the mask model trained with desync=100 and another with desync=200
- both trained on the dataset with desync=100 (based on the assumption that a model robust against
desync=200 should also perform well against desync=100). Although both models performed similarly,
neither could conduct a successful attack on their own. It is important to mention that when N;qg is
large, this figure fluctuates depending on the attacking set chosen. Because the attacking set is quite
large and the attacking traces are randomly chosen from this set in a random order, this figure was
kept as an estimate of 900.

A similar strategy was attempted for attacking the dataset with desync=200 -both using the prior method
and combining iterations with mask models trained on desync=200 and desync=400. However, these
attempts were unsuccessful. Overcoming this countermeasure more effectively, as well as experi-
menting with higher desynchronization levels and additional countermeasures such as noise injection,
shuffling, and multiplicative masking, are left as directions for future work.

In the OPOI scenario, none of the attacks were effective, which aligns with the poor performance of
mask predictors. Literature also supports the idea that smaller models tend to perform better under
OPOI conditions [47, 32]. Thus, while testing the SoS approach in this setting was valuable, the archi-
tecture likely exceeded the optimal model complexity for this scenario, and this approach seems too
involved.



Conclusion

To conclude this work, the initial research questions are revisited to assess the progress made in ad-
dressing them, as well as the broader impact on the field of side-channel analysis.

The most important contribution of this thesis is that it demonstrates that language models can be
effectively applied in an SCA setting. The proposed framework, Sane or Silly, achieved optimal results
when attacking both the ASCADf and ASCADv datasets, successfully retrieving the key using only a
single trace. Moreover, this work addresses the main future work proposed in [20], eliminating the
need for a pre-trained mask predictor and thereby relaxing the profiling assumptions required to attack
ASCADf and ASCADwv.

Desynchronization proved to be a somewhat strong countermeasure, changing the amount of traces
needed to conduct an attack from 1 to 900 with a desynchronization level of 100, and completely
avoiding exploits with desync = 200. This is another achievement and novelty of this work.

Interestingly, while desynchronization made it harder to retrieve the key, masks proved to be relatively
easy to recover under desynchronization. This might be attributed either to the leakage model or to
model-specific vulnerabilities.

Other important insights obtained from this project arise from the separation of mask and key predic-
tion. This separation revealed that predicting masks under OPOI is challenging, likely due to useful
SNR peaks lying outside the selected range. This hardness, and perhaps hardness in predicting the
remaining values, prevented SoS from attacking the OPOI dataset.

Different architectures were explored depending on the dataset characteristics, with final models rang-
ing between 100k and 2 million trainable parameters. Although an extensive hyperparameter search
might initially seem excessive, results showed that SoS is highly sensitive to hyperparameter tuning.

In summary, this thesis proposes an alternative framework for profiling SCA, demonstrates its efficacy
on ASCADv even against desynchronization, and removes the dependency on secret mask knowl-
edge during profiling. These results open new doors for further exploration of language-model-based
methods in side-channel analysis.
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Specifically, future work could consider:

1. Investigating whether or not the OPOI hardness comes solely from mask prediction;
Conducting Knowledge Distillation to a standard classifier;

Applying attention mechanisms to the input embeddings;

Exploring alternative Silly sample generation methods;

Exploring alternative hyperparameter seach methods;

Designing new architectures with a higher resilience to desynchronization;
Attacking different key bytes with SoS with a similar architecture;

© N o o s DN

Attacking the ASCADv2 dataset, with different countermeasures in place (shuffling and multiplica-
tive masking).

This approach does not seem to be particularly well-suited for OPOI, as no attack in this work was
successful, and the literature suggests simpler models. Furthermore, because using them assumes
mask knowledge during training, improving the performance of SoS with this point selection method is
not considered a priority.

Knowledge distillation showed promising results but is yet to be tested on a standard classifier. This
is unexplored in the literature and could lead to interesting results, particularly in the development of
simpler models. Hence, this is identified as one of the most promising aspects for future work.

It is important to test SoS against other bytes of AES. From a practical standpoint, this would confirm
the idea that SoS can not only retrieve the second byte of the key but the entire key. According to
the literature, this should be a challenge of similar difficulty to retrieving the second byte of the key [7].
However, as this work confirmed, different leaky values with different leakage patterns can result in
very different tasks for the model to learn, so | believe this task should be a priority. Also, even though
attacking ASCADv2 with all countermeasures seems extremely difficult (only accomplished once in the
literature, to the best of my knowledge), experimenting with SoS on it (perhaps without some of its
countermeasures) could potentially yield valuable insights.

The rest of the future work consists of guidelines for possible improvements to SoS. These are the
ones | would attempt if | had more time to work on it. There are certainly other aspects that could be
improved, but these serve as recommendations for anyone wishing to further improve SoS.

From a bird’s-eye view, this work showed that an attacker could exploit electromagnetic emanations to
attack an AES device with the help of a language model. Success is demonstrated to be possible if the
target behaves like an ATMega8515 (used in the ASCAD databases) and if the attacker has access to
a cloned copy of the device. Desynchronization under 100 time ticks—about 50 nanoseconds—proved
to be an insufficient countermeasure. This finding opens the door to new architectures that could pose
practical threats to AES.
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Appendix

1. Detailed description of SoS

.1.1. SoS layer description and hyperparameter search

It is important to firstly mention that the architecture for SoS was considered fixed in the ASCAD fixed
dataset, and was subject to search in the ASCAD variable dataset. Once again, this was due to on
the one hand the dataset being more complicated, but furthermore to the knowledge gained with the
earlier experiments, which allowed the search space to be reduced. | will be describing the exact
structure of each block, comparing the scenarios for each dataset and highlighting which parameters
were searched in the ASCAD variable scenario:

Metadata embedding

The metadata embedding take as input either 2 or 3 values in the range (0,1,...,255), corresponding
to plaintext, label, and key, in the case of ASCADv. These are turned into n-cryptograms by adding
256 and 512 to the second and third values, therefore creating unique words, as explained in section
4. Hence, this part of the input can be interpreted as a 3-word description about the trace information,
from a vocabulary of 768 words. These are embedded into dimension 32 (ASCAD() or between 12, 24
and 36 (ASCADv). The 3 embeddings are then concatenated and normalized, constituting the output
of this block, which is fed to the Language Model.

Preprocessor
In the ASCAD(, the preprocessor is composed of 2 1D convolution layers with 5 filters, kernel size 40
and strides 20. Afterwards, 2 dense layers are applied.

For the ASCADy, there are 3 convolution layers with 6 filters, with kernel size 40 and strides 20, followed
by either 2,3, 4 or 5 dense layers .Similarly to the ASCADf scenario, dense layers are applied. The
number of layers is variable - a total number of dense layers is searched, and the DML block, the
language model and the preprocessor all have half of this number of dense layers (in order for a given
input to go through this number of layers in total). As suggested in [10], the number of neurons in
each layer is defined by the initial dimension and final dimension, being the number of neurons in
intermediate layers in geometric progression. In this case, the final dimension is searchable (output
size) and the initial dimension is the size of the output of the convolution layers - which varies depending
on the embedding size.

All layers are followed by normalization.

Language Model

The language model is simply dense layers followed by normalization: 2 in ASCADf and the same
number as Preprocessor in ASCADv. The input is the output of metadata embedding and preprocessor,
concatenated. All layers are followed by batch normalization.

Deep Metric Learner

The deep metric learner has 2 dense layers in ASCADf, and the same number of layers as preprocessor
in ASCADv. The output size is 100 in ASCADf, and either 50, 100 or 200 in ASCADv. The layers are
applied in parallel with the same weights to the output from the language model and the output from
the preprocessoe (which are the same size) and then the 2 resulting vectors are compared with cosine
similarity, resulting in a float output in [0,1].
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2. Hyperparameter search results

.2.1. PTMP ASCADf

Parameters NOPOI OPOI
desync=0 | desync=100 | desync=200 | desync=0
Convolution layers: 3 2 2 2
Filters: (16,64,128) (32,64) (16,32) (32,8)
Kernel size: (20,25,30) (30,20) (30,20) (10,15)
Stride size: (10,5,10) (15,15) (5,10) (5,5)
Activation function: (s,s,8) (s,8) (s,8) (r,s)
Pooling type: (a,a,a) (m,m) (a,a) (max,av)
Dense layers: 2 1 1 1
Neurons: (256,50) (256) (50) 32
Activation function: (s,r) (s) (s) (s)
Optimizer: adam adam rmsprop adam
Learning rate: 0.0001 0.001 0.001 0.0001
Table 1: PTMP parameters for mask rs.
Parameters NOPOI OPOI
desync=0 desync=100 desync=200 | desync=0
Convolution layers: 3 3 2 1
Filters: (64,128,128) | (128,64,64) (128,64) 8
Kernel size: (20,30,30) (20,15,10) (20,10) 15
Stride size: (15,10,15) (5,15,10) (15,15) 10
Activation function: (s,r,8) (s,s,8) (r,r) (n
Pooling type: (m,m) (m,m,a) (a,a) (max)
Dense layers: 0 3 3 2
Neurons: - (256,100,256) | (256,50,256) | (128,64)
Activation function: - (r,s,s) (s,s,r) (s,s)
Optimizer: adam rmsprop adam rmsprop
Learning rate: 0.0001 0.0001 0.0001 0.001

Table 2: PTMP parameters for mask ro4¢.-
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.2.2. PTMP ASCADv

Parameters NOPOI OPOI OPOI (student)

desync=0 desync=100 desync=200 desync=0 desync=0

Convolution layers: 3 4 4 3 2

Filters: (128,64,128) | (64,128,128,64) | (64,128,128,64) (32,64,64) (32,32)

Kernel size: (20,10,20) (30,20,10,30) (30,20,10,30) (10,10,20) (30,10)

Stride size: (5,10,15) (5,10,15,10) (5,10,15,10) (10,5,10) (15,5)

Activation function: (r,r,r) (r,r,s,s) (r,r,s,s) (s,r,r) (r,r)

Pooling type: (a, m, m) (a,m,m,m) (a,m,m,m) (a,m,m) (a,a)

Dense layers: 1 2 2 1 2

Neurons: (128) (256) (256) (256,128,128) (128,256)

Activation function: (s) (s) (s) (r,r,s) (r,r)

Optimizer: Adam rmsprop rmsprop adam adam

Learning rate: 0.000649 0.0000283 0.0000283 0.0000198 0.000276,

Batch size: 32 32 32 32 16

Decay rate: 0.971 0.966 0.988 a=0.66,T =3.5

Table 3: PTMP parameters for mask r3 (ASCADv).
Parameters NOPOI OPOI OPOI (student)
desync=0 | desync=100 | desync=200 | desync=0 desync=0

Convolution layers: 2 2 2 3 2

Filters: (64, 128) (64, 32) (64, 64) (64,64,32) (32,32)

Kernel size: (20,20) (30,30) (10,20) (20,10,10) (20,20)

Stride size: (5,10) (5,5) (5,10) (20,10,10) (10,10)

Activation function: (s, s) (r,s) (s,8) (r,r,s) (r,r)

Pooling type: (m,m) (m,m) (m,m) (a,a,a) (a,a)

Dense layers: 1 2 1 2 1

Neurons: (256) (128,64) (128) (128,256) (128)

Activation function: (s) (s,s) (s) (r,r) (r

Optimizer: rmsprop rmsprop rmsprop rmsprop adam

Learning rate: 0.0000202 | 0.0000766 0.000173 0.00000799 0.000311

Batch size: 32 64 64 16 32

Decay rate: 0.911 0.978 0.968 0.943 a=0.68T=1.64

.2.3. SoS ASCADf

Table 4: PTMP parameters for mask 7o+ (ASCADV).

Parameters | NOPOI (desync=0) | OPOI (desync=0)
Batch size 64 64
Initial LR 0.01 0.01
Decay Rate 0.921 0.968
Loss Function hinge hinge

Table 5: SoS parameters attacking ASCADf using mask r3
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Parameters | NOPOI (desync=0) | OPOI (desync=0)
Batch size 64 64
Initial LR 0.01 0.01
Decay Rate 0.949 0.980
Loss Function hinge hinge

Table 7: SoS parameters attacking ASCADf with desync using mask r3

Table 8:

.2.4. SoS ASCADv

Table 6: SoS parameters attacking ASCADf using mask roqt.

Parameters NOPOI
desync=100 | desync=200
Batch size 128 128
Initial LR 0.01 0.01
Decay Rate 0.98 0.98
Loss Function hinge CE

Parameters NOPOI
desync=100 | desync=200
Batch size 128 128
Initial LR 0.01 0.01
Decay Rate 0.96 0.94
Loss Function hinge hinge

SoS parameters attacking ASCADf with desync using mask 74t

Parameters NOPOI (desync=0)
Batch Size: 32
Initial LR: 0.000322
Decay Rate: 0.939
Dense Layers: 4
Embedding size: 36
Output size: 100
Loss Function: CE

Table 9: SoS parameters attacking ASCADv using mask r3.
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Parameters NOPOI (desync=0)

Batch Size: 32

Initial LR: 0.000130
Decay Rate: 0.988
Dense layers: 4
Embedding size: 36

Output size: 100

Loss Function: CE

Table 10: SoS parameters attacking ASCADv using mask 7oy¢.-

Parameters NOPOI (desync=0)
Batch size 32
Initial LR 0.000298
Decay rate 0.986
Dense layers 4
Embedding size 36
Output size 100
NTMP convs 3
NTMP filters 128
NTMP kernel size 10
NTMP dense layers 4
NTMP neurons 128
Loss Function CE

Table 11: SoS parameters attacking ASCADv for NTPM configuration (changing silliness).

Parameters NOPOI (desync=0)
Batch size 32
Initial LR 0.000194
Decay rate 0.981
Dense layers 4
Embedding size 36
Output size 200
Loss Function CE

Table 12: SoS parameters attacking ASCADv with both masks.
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