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A B S T R A C T   

To aid decision making about environmental systems under deep uncertainty, robustness metrics are commonly 
used to represent system performance over a number of scenarios. However, there are many robustness metrics 
and many ways of generating scenarios, making it difficult to know which to choose in order to quantify system 
robustness and to make robust decisions. To address this shortcoming, we introduce a generic guidance 
framework to assist with the identification of the most robust decision alternatives, as well as the RAPID 
(Robustness Analysis Producing Intelligent Decisions) software package which is a consistent and easy-to-use 
implementation of the framework. We illustrate the framework and software package on a hypothetical lake 
pollution problem, known as The Lake Problem, showing how the framework and software package apply to 
several situations where decision-makers may or may not know which scenarios or robustness metrics to use.   

1. Introduction 

The long-term planning of environmental systems presents major 
challenges, as it requires decisions to be made despite significant un
certainty about the future state of the world. Frequently, decision- 
makers are operating at the level of deep uncertainty, which refers to 
when deterministic and probabilistic approaches are insufficient for 
representing future states, and the consideration of multiple plausible 
futures (scenarios) is required (Bradfield et al., 2005; Herman et al., 
2014; Kwakkel et al., 2010; Kwakkel and Haasnoot, 2019; Lempert, 
2003; Little et al., 2018; Maier et al., 2016; Schwarz, 1991; van der 
Heijden, 1996; Varum and Melo, 2010; Walker et al., 2013; Wright and 
Cairns, 2011). Implicit in the deep uncertainty paradigm is that proba
bilities cannot be placed on these scenarios, and therefore traditional 
risk-based performance metrics such as reliability, vulnerability, resil
ience, or expected value cannot be used to quantify the overall level of 
system performance across all scenarios (Maier et al., 2016). Rather, 
deep uncertainty requires robustness metrics to be used, which aim to 
quantify the (relative) level or variation of system performance across all 
or targeted scenarios (Bartholomew and Kwakkel, 2020; Giudici et al., 
2020; Herman et al., 2015; Kwakkel and Haasnoot, 2019; Lempert, 
2003; Maier et al., 2016; McPhail et al., 2018). As with traditional 

performance metrics in deterministic and probabilistic paradigms, 
decision-makers aim to choose a solution that has maximal performance 
(robustness) or a solution that has an appropriate tradeoff between 
performance metrics (e.g. robustness vs. cost). 

There is a multitude of approaches to quantify system robustness, 
generally by treating the scenarios as a distribution and making implicit 
probabilistic assumptions, including: (i) expected value metrics (Wald, 
1951), which indicate an expected level of performance across a range of 
scenarios; (ii) metrics of higher-order moments, such as variance and 
skew (e.g. Kwakkel et al. (2016a)), which provide information on how 
the expected level of performance varies across multiple scenarios; (iii) 
regret-based metrics (Savage, 1951), where the regret of a decision 
alternative is defined as the difference between the performance of the 
selected option for a particular plausible condition and the performance 
of the best possible option for that condition; and (iv) satisficing metrics 
(Simon, 1956), which identify the range of scenarios that have accept
able performance relative to a threshold. A common conclusion from 
recent research is that different robustness metrics can sometimes lead 
to decision alternatives being ranked differently, making it difficult to 
determine which decision alternatives are most robust (Borgomeo et al., 
2018; Drouet et al., 2015; Giuliani and Castelletti, 2016; Hall et al., 
2012; Herman et al., 2015; Kwakkel et al., 2016a; Lempert and Collins, 
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2007; McPhail et al., 2018; Roach et al., 2016). For example, a case 
study by Kwakkel et al. (2016a) on the transition of the European energy 
system towards a more sustainable future concluded that “there is no 
clearly superior single robustness metric. Case specific consideration 
and system characteristics affect the merits of the various robustness 
measures. This implies that an analyst has to choose carefully which 
robustness measure is being used and assess its appropriateness.” 

Given that robustness metrics are calculated over a set of scenarios, 
the choice of scenarios that are used in this calculation can also have an 
impact on the robustness value obtained (in addition to the choice of 
robustness metric) (McPhail et al, 2018, 2020). A common categoriza
tion of scenarios is given by Börjeson et al. (2006), including the 
following three types:  

• Predictive scenarios – where the aim is to determine “what will 
happen?” For example, the future state of the world could be based 
on some future trajectory or change in trajectory due to some event;  

• Explorative scenarios – where the aim is to determine “what could 
happen?” Generally, this is done by framing the future in terms of the 
uncertainties that have the largest effects on system performance, 
but the future can also be unframed (Maier et al., 2016); and  

• Normative scenarios – where the aim is to determine “how can a 
specific future be realized?” This is generally focused on interesting 
future outcomes or failure points for decision alternatives. 

Each of these types of scenarios can be created in different ways. For 
example, a set of scenarios for a particular problem could be created in a 
largely qualitative manner through a participatory process with stake
holders with the aim of producing generalizable scenarios (e.g. Wada 
et al. (2019)), while a different set of scenarios for the same problem 
could be created through a largely quantitative process by varying the 
inputs to the system model of interest (e.g. using an approach such as 
Latin hypercube sampling (LHS)) (Culley et al, 2016, 2019; Hadka et al., 
2015; Hall et al., 2012; Herman et al., 2015; Kasprzyk et al., 2013; 
Kwakkel, 2017; Kwakkel et al, 2015, 2016b; McPhail et al., 2018; Quinn 
et al, 2017, 2018; Singh et al., 2015; Trindade et al., 2017; Watson and 
Kasprzyk, 2017; Weaver et al., 2013; Zeff et al., 2014). Each of these 
approaches can lead to vastly different scenarios being produced 
(Shepherd et al., 2018); for example, a participatory approach will 
generally result in a small number of scenarios in targeted regions of the 
uncertain inputs space, while quantitative approaches (e.g. LHS of sce
narios) would lead to a large number of scenarios with even coverage of 
the space. Recent studies have shown that, as is the case for the use of 
different robustness metrics, the use of different sets of scenarios can 
also result in different robustness values of decision alternatives 
(McPhail et al., 2020; Quinn et al., 2020; Reis and Shortridge, 2020), 
adding further uncertainty to the way the robustness of decision alter
natives is quantified. 

In order to assist analysts and decision makers in performing 
appropriate robustness analyses, McPhail et al. (2018) and McPhail et al. 
(2020) developed generalizable, quantitative approaches to assessing 
the sensitivity of the absolute and relative robustness of decision alter
natives (e.g. designs, policies) to the selection of robustness metrics and 
scenarios, respectively. However, there is still a lack of a holistic pro
cedure that provides guidance to analysts on the best way to identify 
which of the available decision alternatives is likely to be the most 
robust. Consequently, the overarching aim of this paper is to develop a 
generic guidance framework to help identify the robustness of decision 
alternatives. This paper also introduces the RAPID (Robustness Analysis 
Producing Intelligent Decisions) software package, implementing the 
proposed guidance framework in a consistent and user-friendly manner, 
that enables the most robust decision alternatives to be identified for a 
given problem. The software package complements existing software 
packages in this robust decision making space including the Exploratory 
Modelling (EM) Workbench (Kwakkel, 2017) and Rhodium (Hadji
michael et al., 2020). We illustrate the guidance framework and 

software package on a hypothetical lake pollution problem, known as 
The Lake Problem, as it is a simple and well-represented case study in 
the literature (Carpenter et al., 1999; Eker and Kwakkel, 2018; Hadka 
et al., 2015; Kwakkel, 2017; Lempert and Collins, 2007; Quinn et al., 
2017; Singh et al., 2015; Ward et al., 2015). 

Consequently, the specific objectives of this paper are to:  

1. develop a generic guidance framework to help identify the most 
robust decision alternatives for a given decision context;  

2. describe a software package that enables the guidance framework to 
be implemented in a consistent and user-friendly manner; and  

3. illustrate the application of the framework and software package on 
the Lake Problem. 

The remainder of this paper is organized as follows: Section 2 in
troduces the guidance framework for analyzing the robustness of a set of 
decision alternatives, including how to create a custom robustness 
metric and how to assess the impact of the selection of scenarios and 
choice of robustness metric; Section 3 introduces a software package 
that can be used to implement this guidance and quantitatively and 
visually assess the impact of the choice of scenarios and robustness 
metric on the robustness values and rankings of decision alternatives; 
Section 4 introduces the Lake Problem and provides a simple illustration 
of how the guidance and software package can be applied to an envi
ronmental model; and conclusions are presented in Section 5. 

2. Guidance framework for identifying the most robust decision 
alternatives 

At the heart of the proposed framework for assisting with the iden
tification of the robustness of decision alternatives is the calculation of 
different robustness metrics. The calculation of these metrics requires 
scenarios, decision alternatives (i.e. plans, policies, solutions), and one 
or more quantitative metrics (e.g. reliability or vulnerability), which can 
be used to determine the level of performance of each decision alter
native in each individual scenario (Herman et al., 2015; McPhail et al., 
2018). Fig. 1 shows the processes through which these three inputs are 
used to calculate the robustness of each decision alternative (i.e. the 
system performance across all scenarios). Calculation of robustness 
consists of two main steps: (1) the use of a system model to calculate 
each decision alternative’s performance in each scenario, followed by 
(2) the combination of these performance values in order to calculate a 
single robustness value. While these steps are identical for each 
robustness metric, different robustness metrics require the selection of 
different options at each of one of three transformations: (1) perfor
mance value transformation; (2) scenario subset selection; and (3) ag
gregation of performance values (McPhail et al., 2018) (Fig. 1). At the 
first transformation, the options are whether to use the raw values of 
system performance or whether to alter these values using regret or 
satisficing transforms. At the second transformation, the choice is which 
subset of the available scenarios to use in the calculation of the 
robustness metric. At the third transformation, the options are whether 
to combine the transformed performance values over the selected sce
narios using a measure of the level of performance, such as the mean, or 
a measure of variability in performance, such as the standard deviation. 

The proposed guidance framework for assisting with the identifica
tion of the most robust decision alternatives is given in Fig. 2. The 
framework is designed to be as generic as possible, catering to the level 
of knowledge of the decision-makers, including the following situations:  

• where the most appropriate robustness metric for a particular 
problem is already fixed or pre-selected (Section 2.1),  

• where a range of robustness metrics are to be considered (e.g. where 
decision makers are either interested in understanding multiple as
pects of robustness via different robustness metrics, or cannot decide 
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on which robustness metric is most appropriate from some set of 
robustness metrics) (Section 2.2), or  

• where the most appropriate robustness metric is yet to be determined 
based on the different attributes of the decision context (i.e. the 
properties of the problem, such as system thresholds) and the pref
erences of the decision-maker(s) (e.g. preferred levels of risk aver
sion) (Section 2.3). 

The framework also caters to situations where the scenarios under 
which system performance is to be calculated are already selected, and 
situations where the influence of different sets of scenarios on the 
robustness of decision alternatives is to be considered (e.g. situations 
where one wishes to know the sensitivity of a particular decision 
outcome to the selection of scenarios for analysis). It should be noted 
that the proposed framework assumes that the decision alternatives to 
be considered have already been selected and that the relevant perfor
mance metrics for these decision alternatives have been calculated. 

2.1. Robustness metric is already pre-selected 

The process of identifying the decision alternative that has the 
highest relative robustness commences with the candidate set of deci
sion alternatives for which the relative robustness is to be calculated. 
The first decision point in this process is whether the robustness metric 
to be used in the assessment has been pre-selected (Fig. 2, Box 2). If an 
appropriate metric has already been selected, the next decision point in 
determining the robustness of decision alternatives is whether the set of 
scenarios to be used to determine the performance of the decision al
ternatives under consideration is fixed/pre-selected or not (Fig. 2, Box 
6). If the set of scenarios is pre-selected, the robustness of each decision 

alternative can be calculated by combining its performance over the 
selected scenarios with the aid of the selected robustness metric. Then 
the alternative with the highest robustness value can be selected (Fig. 2, 
Boxes 10 and 15). 

If it is not clear which scenarios should be used for the robustness 
calculation, the sensitivity of the relative robustness values of the 
different decision alternatives can be determined for different user- 
defined scenario sets, using the approach of McPhail et al. (2020) 
(Fig. 2, Box 13). Visualizations of the relative ranking of the decision 
alternatives can be used to determine (using human judgement) whether 
the choice of candidate scenario set matters (Fig. 2, Box 14), as illus
trated in McPhail et al. (2020). If the choice of candidate scenarios does 
not matter because the visualizations indicate that the decision alter
natives are ranked similarly regardless of which scenarios are selected, 
then the decision alternative that is considered most robust can be easily 
selected (Fig. 2, Box 15). However, if the choice of scenarios does affect 
the relative robustness of the decision alternatives of interest, then, 
depending on the degree of sensitivity of the relative robustness of the 
different decision alternatives to the selected scenario sets, some degree 
of judgement will be required to determine which decision alternative is 
considered most robust or which decision alternatives have an accept
able level of robustness (Fig. 2, Box 16), or it might be concluded that it 
is not possible to identify which decision alternative is most robust. Note 
that in the situation where a robustness metric is known or pre-selected, 
it may still be useful to consider the pathways through Fig. 2 where the 
robustness metric is not known. This would provide extra information 
about the system and the impact of the selected robustness metric on the 
robustness and rankings, as described below. 

Fig. 1. Inputs and processes for calculating system performance and robustness. Transformations 1–3 are the components of the robustness metric, explained further 
in the main text. 
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2.2. There is a range of robustness metrics under consideration 

If the robustness metric to be used is not known or pre-selected, the 
key decision point is whether there is a known or pre-selected set of 
alternative robustness metrics to be considered in the analysis (Fig. 2, 
Box 3). If there is a pre-selected set of robustness metrics for consider
ation, the next decision point is whether there is a fixed/pre-selected set 
of scenarios or not (Fig. 2, Box 5). If there is a pre-selected set of sce
narios, the stability of the relative robustness of the decision alternatives 
under consideration can be calculated for the selected robustness met
rics over the selected scenarios, using the approach of McPhail et al. 
(2018) (Fig. 2, Box 12). Visualizations of the relative ranking of the 
decision alternatives can be used to determine whether the choice of 
candidate robustness metrics matters (Fig. 2, Box 14), as illustrated in 
McPhail et al. (2020) and further discussed in Sections 3 and 4. If the 

choice of robustness metrics does not matter because the visualizations 
indicate that the decision alternatives are ranked similarly regardless of 
which robustness metric is used, then the decision alternative that is 
considered most robust can be selected easily (Fig. 2, Box 15). However, 
if the robustness metric does affect the relative robustness of the decision 
alternatives of interest, then, depending on the degree to which this has 
an effect, some degree of judgement will be required to determine which 
alternative is most robust (or which decision alternatives have an 
acceptable level of robustness), and it is recommended that the process 
for identifying the most appropriate robustness metric for the decision 
context under consideration introduced in Fig. 3 and discussed below be 
applied and that the analysis be repeated for the selected robustness 
metric (Fig. 2, Box 16). 

If the set of scenarios to be used are not fixed or pre-selected, the 
sensitivity of the relative robustness values of the different decision 

Fig. 2. Proposed generic guidance framework for assisting with the identification of the most robust decision alternative.  
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alternatives to the different user-defined scenario sets and robustness 
values can be determined using the approach of McPhail et al. (2020) 
(Fig. 2, Box 11). Again, the visualizations (as illustrated in McPhail et al. 
(2020) and further discussed in Sections 3 and 4) allow the 
decision-maker to see whether the candidate sets of scenarios and 
candidate robustness metrics have a significant effect on relative 
robustness (Fig. 2, Box 14). If the selection of scenarios and robustness 
metrics has an insignificant effect on the rankings, the most robust de
cision alternative can be selected easily (Fig. 2, Box 15). However, if 
scenario and robustness metric selection have an effect on relative 
robustness, then, depending on the degree to which this is the case, some 
degree of judgement will be required to determine which decision 
alternative is most robust or which decision alternatives have acceptable 
levels of robustness, and it is recommended that the most appropriate 
robustness metric is used to help determine this (Fig. 2, Box 16). 

2.3. The robustness metric(s) are yet to be determined 

If the set of alternative robustness metrics to be considered in the 
analysis is yet to be determined (Fig. 2, Box 3), the most appropriate 
robustness metric to be used for each individual performance metric can 
be determined by selecting the most appropriate options at each of the 
three transformations in Fig. 1 with the aid of the guidance in Fig. 3 and 
the corresponding equations in Table 1 (Fig. 2, Box 4). It should be noted 
that this guidance and corresponding equations can be used to derive 
many of the established robustness metrics, but other pathways through 
the guidance frameworks may lead to novel robustness metrics. The first 
step in this process is to determine whether there is a meaningful per
formance threshold in the problem under consideration. For example, in 
a water supply system, the sustainable yield must be greater than de
mand and thus the required demand becomes a constraint for the 
problem. In this case, the question then becomes whether solutions can 
be assessed using a pass or fail criterion, or whether the magnitude of the 

Fig. 3. Guidance for the creation of a robustness metric for each performance metric according to the problem being analyzed and the preferences of the decision- 
maker. (Note that the equations assume the objective here is to maximize system performance). 

C. McPhail et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 142 (2021) 105059

6

failure is important. In the previous example, a water supply system 
would be deemed to fail if demand was greater than the sustainable 
yield, so all decision alternatives could be classified as passing or failing 
in each scenario. Alternatively, a decision-maker looking at a water 
supply system could choose to set a threshold as the point where supply 
is low enough to cause water restrictions, in which case the magnitude of 
failure does matter, since less water would mean greater water 
restrictions. 

If there is no performance threshold, then the question is whether the 
aim is to maximize performance or avoid making the “wrong” decision. 
By avoiding making the “wrong” decision, we are referring to some 
decision-makers who may have a desire to avoid selecting decision al
ternatives if there is a potential that, with hindsight, the decision-maker 
could be criticized for having made the wrong decision, even if at the 
time of making the decision, it appeared to be a reasonable option with 
the available information. For example, many publicly owned water 
authorities face intense public scrutiny, and for that reason some 
decision-makers may want to avoid making decisions (e.g. large capital 
expenditure projects, such as a desalination plant for water security) 
that could be perceived to be “wrong” after the fact (e.g. an unnecessary 
expenditure because climate change or population growth eventuates to 
be less than expected). Decision-makers in this situation may prefer to 
choose a decision alternative that is not the best in any single scenario 
but is never far from the best decision alternative in extreme good or bad 
scenarios. 

The next step in Fig. 3 is to determine whether it is most important to 
get an indication of the level of performance, or the range (or variability) 
of performance across multiple plausible futures. Generally, the former 
is of greatest importance, but the latter may also be important as an 
additional robustness metric given that decision makers would generally 
prefer to know the precise outcome of a particular decision rather than a 
highly uncertain outcome. Nevertheless, if the range of performance is 
considered important, it would generally be considered as a secondary 
metric to be used in addition to a robustness metric that indicates the 
level of performance. For example, in a water supply system, it would be 
most important for decision makers to have an indication of how much 
water each decision alternative will supply. But, as an additional metric, 
the decision makers may opt to choose a decision alternative with a 
slightly lower performance if the range of performance values is smaller 
across the different scenarios, since they would have greater confidence 

in the outcome of their decision regardless of which scenario is realized. 
In this case, decision makers could consider both robustness metrics in 
their decision-making. 

In the case where an indication of the level of performance is chosen 
as being most important, this is based on the level of risk tolerance or 
risk aversion required for the problem or preferred by the decision- 
maker. Often, a high level of risk aversion is warranted when the con
sequences of failure are very high. For example, the design of a water 
supply system would require a high level of risk aversion. In contrast, the 
level of risk aversion associated with the design of a stormwater system 
for a road in a remote area would generally be considerably less. 
Alternatively, the level of risk aversion may also be a matter of personal 
preference, with some decision-makers being more tolerant of risk than 
others, or it may be a matter of regulation, where government set some 
minimum level of risk aversion. This scale of risk aversion and risk 
tolerance can be represented in the selection of an appropriate robust
ness metric by choosing a percentile between 0% and 100%, with 0% 
reflecting the worst-case scenario (extreme risk aversion) for each de
cision alternative (i.e. 0% of scenarios have worse performance) and 
100% reflecting the best-case scenario (extreme risk tolerance). It must 
be noted that unlike a probabilistic assessment of level of performance, 
percentiles that are used for robustness metrics are reflective of relative 
(not absolute) risk. For example, the 50th percentile does not reflect the 
median level of performance that can be expected in future, however, it 
does represent a level of performance that is worse than the 90th 
percentile and therefore is more risk averse than selecting the 90th 
percentile. 

Once the most appropriate “custom” robustness metric has been 
determined based on the attributes of the decision context (the prop
erties of the problem) and the preferences of the decision-maker with the 
aid of the process in Fig. 3, the next decision point is whether the sce
narios under which the performance of the decision alternatives under 
consideration should be evaluated are known or not (Fig. 2, Box 5). 
From here, the same process is followed as if the robustness metric was 
known in advance (as described above), leading to a scenario analysis 
(Fig. 2, Box 13) if the scenarios are unknown, and the selection of the 
most robust decision alternative or decision alternatives of acceptable 
levels of robustness if the scenarios are known (Fig. 2, Boxes 10 and 15). 
As with the selection of a performance metric in any problem (including 
deterministic and probabilistic problems), it is entirely possible that 
decision-makers will not be able to agree on which metric to use (i.e. in 
the case of selecting a robustness metric, which transformations are most 
appropriate for creating a robustness metric). Decision makers may 
choose to use multiple metrics to consider multiple points of view, such 
as using both reliability and vulnerability to measure performance in a 
probabilistic uncertainty problem. 

3. The RAPID software package 

The RAPID (Robustness Analysis Producing Intelligent Decisions) 
Python software package implements the generic guidance framework 
introduced in Fig. 2 in a user-friendly and consistent manner, including 
functionality to guide the user through the process of creating a custom 
robustness metric as described in Fig. 3. RAPID is implemented in Py
thon, which is being used increasingly for scientific modelling because it 
is a high-level, general-purpose, and open source programming lan
guage with an emphasis on code readability. It also has a very large 
standard library, and a significant repository of third-party Python 
packages. The fact that the RAPID package is written in Python also 
makes it easier for it to interact with many other software packages, 
including two packages for robust decision making analysis, the 
Exploratory Modelling (EM) Workbench (Kwakkel, 2017) and Rhodium 
(Hadjimichael et al., 2020), which are also written in Python. As the EM 
Workbench includes functionality for the generation of decision alter
natives (i.e. policy options, solutions, etc.), the generation of scenarios 
(i.e. states of the world, plausible futures) and vulnerability analyses 

Table 1 
Equations for the robustness metric transformations (assuming the aim is to 
maximize performance).  

T1 (performance value transformation) 

Identity transform f1(la, si) = f(la, si)(performance metric f ; decision alternative 
a, la; scenario i, si)  

Regret transform f1(la, si) = argmax
j

f(la, sj) − f(la, si)

Satisficing regret 
transform f1(la, si) =

{
0, f(la, si) ≥ c
c − f(la, si), f(la, si) ≤ c (constraint of c)  

Satisficing 
transform f1(la, si) =

{
1, f(la, si) ≥ c
0, f(la, si) ≤ c  

T2 (scenario subset selection) 

Select a single 
percentile 

f2(la,S) = f1(la, sp)(pth percentile; S is full set of scenarios)  

Select bounds of 
range 

f2(la,S) = {f1(la, sup), f1(la, slp)}(where T3 is magnitude of 
range) 
(up is the upper percentile, lp is the lower percentile)  

Select range of 
scenarios 

f2(la,S) = {f1(la, si) ∀ i ∶ 
f1(la, slp)≤ f1(la, si)≤ f1(la, sup)}

T3 (performance value aggregation) 

Identity transform f3(la,S) = f2(la,S)
Magnitude of range f3(la,S) = f2(la, sup) − f2(la, slp)

Mean f3(la,S) = (
∑n

i=1
f2(la, si))/n   
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(including scenario discovery, feature scoring, and sensitivity analyses), 
the EM Workbench can be used for the creation of all of the inputs 
needed for the generic guidance framework (Fig. 2) implemented by the 
RAPID software package. The gap in the EM Workbench that the RAPID 
software package fills is to provide simple building blocks for robustness 
metrics that allow robustness metrics to be constructed in a consistent 
manner that corresponds to the guidance framework introduced in this 
paper. This also conforms to software best practices such as the Unix 
philosophy which emphasizes smaller, more modular software packages 
rather than one large software package. 

As shown in Fig. 4, the processes from the guidance framework are 
implemented across two sub-packages, metrics and analysis (colored 
purple and green, respectively, in Fig. 4). The sub-package metrics con
tains functions implementing each of the three transformations required 
for the calculation of robustness metrics (Fig. 1) (see Table 2 for avail
able options at each of the three transformations). This enables user- 
defined “custom” robustness metrics to be developed (see Table 2 for 
available options at each of the three transformations), including those 
obtained by following the process outlined in Fig. 3 (either by manually 
selecting the transformations and combining them using the custom_R_
metric function, or by interacting with the guidance helper function, 
guidance_to_R, which steps through the process in Fig. 3). A number of 
commonly used robustness metrics have also been pre-programmed (see 
Table 3 for these metrics, as well as the corresponding choices at each of 
the three transformations). These robustness metrics can then be used to 
calculate the robustness values for given decision alternatives, scenarios, 
and performance metrics, as highlighted in Fig. 1. 

The analysis sub-package (colored green in Fig. 4) contains the 
quantitative methods and visualizations for assessing the sensitivity of 

the relative robustness values of different decision alternatives to the 
choice of robustness metrics and/or scenario sets. For the assessment of 
the impact of scenario selection on robustness values, the software 
package uses the approach outlined by McPhail et al. (2020). That is, the 
software package calculates the difference in robustness values when the 
robustness is calculated using two different sets of scenarios. First, for 
each decision alternative, li, one can calculate robustness, R, using one 
set of scenarios, Sa, then calculate the robustness again with a second set 
of scenarios, Sb, and finally compare the relative difference between the 
two robustness values. We use the average relative difference, Δ, across 
all n decision alternatives: 

Δ=
∑n

i=1

|R(li, Sa) − R(li, Sb)|(
|R(li ,Sa)|+|R(li ,Sb)|

2

)

/

n × 100% 

Similarly, for the assessment of the impact that scenario selection has 
on the rankings of the decision alternatives, we follow McPhail et al. 
(2020), using Kendall’s Tau-b ranking correlation to determine the 
difference in rankings when robustness is calculated using two different 
sets of scenarios. Kendall’s Tau-b ranking has a range between − 1 and 
+1 (inclusive), where − 1 indicates that all decision alternatives have 
opposite rankings, +1 indicates that the rankings are exactly the same, 
and 0 implies that there is no correlation between the rankings. Spe
cifically, Kendall’s Tau-b metric is used to compare two sets of robust
ness values, one calculated using a set of scenarios, Sa, and the other 
calculated using a different set of scenarios, Sb: 

{R(l1, Sa), R(l2, Sa),…,R(ln, Sa)}

Fig. 4. The general guidance framework introduced in Fig. 2, with an explanation of how the RAPID software package assists in the implementation of this guidance 
and one way that it can interact with the EM Workbench package. 
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{R(l1, Sb), R(l2, Sb),…,R(ln, Sb)}

Similarly, Kendall’s Tau-b ranking can be used to assess the differ
ence in rankings when robustness is calculated using two different 
robustness metrics (rather than two different sets of scenarios, as consid
ered above), as recommended by McPhail et al. (2018) as a quantitative 
alternative to the comparison of robustness metrics using visual methods 
such as parallel axes plots (Giuliani and Castelletti, 2016). Specifically, 
Kendall’s Tau-b metric is used to compare two sets of robustness values, 
one calculated using a robustness metric, R1, and the other calculated 
using a different robustness metric, R2: 

{R1(l1, S), R1(l2, S),…,R1(ln, S)}

{R2(l1, S), R2(l2, S),…,R2(ln, S)}

Note that since we are comparing different robustness metrics, they 
can be in different scales or units. Therefore, the relative difference in 
robustness values cannot be calculated, unlike when assessing the 
impact of scenario selections on robustness values, where a single 
robustness metric is used and therefore the values can be compared 
directly. 

The structure of the two sub-packages mentioned above (i.e. metrics 
and analysis) is as follows:  

• metrics; a sub-package containing functions for each of the three 
robustness metric transformations, common metrics from the liter
ature, functions to help build custom robustness metrics, and a 
helper function which asks the user the questions from the guidance 
provided in Section 2. This sub-package is structured as:  
o transforms; a sub-package, split into the three transformations (T1, 

T2, T3) as three separate modules (the t1, t2, and t3 sub-packages), 
which implement the transformations listed in Table 2. Note that if 
the aim is to minimize the performance value (e.g. if cost is the 
measure of performance), the sign of the performance values is 
inverted in all T1 functions, because this ensures that the value of 
all robustness metrics is maximized.  

o common_metrics; a sub-package that calculates the following 11 
commonly used robustness metrics (McPhail et al., 2018): 
Maximin, Maximax, Hurwicz’s Optimism-Pessimism Rule, Lap
lace’s Principle of Insufficient Reason, Minimax Regret, Percentile 
Minimax Regret, Mean-Variance, Undesirable Deviations, 
Percentile-based Skew, Percentile-based Kurtosis, and Starr’s 
Domain Criterion, implementing the three transformations from 
the transforms sub-package (as listed in Table 3).  

o custom_metrics; a module that includes a function (custom_R_metric) 
for creating a custom robustness metric composed of three trans
formations (from the transforms sub-package), and also provides a 
helper function for stepping users through the flowchart in Fig. 3 
to create a custom robustness metric that is most appropriate for 
the decision context under consideration (the guidance_to_R func
tion). This helper function asks questions of the user and uses the 
responses to create the resulting custom robustness metric (using 
the custom_R_metric function).  

• analysis; a sub-package that enables the influence of different sets of 
scenarios and robustness metrics on the robustness values and 
rankings to be determined (the scenarios_similarity and robustness_si
milarity functions, respectively). This module also produces plots to 
visualize the influence that the scenarios and robustness metrics 
have, including (i) the delta_plot function for plotting the relative 
difference in robustness values (i.e. the deltas) caused by different 
scenario selections or robustness metrics and (ii) the tau_plot function 
for plotting the ranking similarity (i.e. the Kendall’s Tau-b correla
tion) from different robustness metrics (both functions explained in 
more detail above). 

A number of examples using the software package are also contained 
within the package, including a multi-objective robust optimization of 
the Lake Problem (also explored in Section 4); a common, hypothetical 
environmental modelling problem used in the environmental systems 
modelling literature. 

Table 2 
Options for each of the three robustness metric calculation transformations included in the software package.  

Transformation number Transformation name Used in traditional 
metrics 

Used in proposed 
guidance 

Software package function 

T1 (performance value 
transformation) 

Identity ✓ ✓ t1.identity 
Regret ✓ ✓ t1.regret_from_best_da (regret from best decision alternative) 
Satisficing regret ✓ ✓ t1.satisficing_regret 
Regret from median ✓  t1.regret_from_median 
Regret from value ✓ ✓ t1.regret_from_value used to calculate the other regret metrics (which are all 

calculating regret with respect to different values) 
Satisficing ✓ ✓ t1.satisfice 

T2 (scenario subset 
selection) 

Select a single 
percentile 

✓ ✓ t2.select_percentiles, 
t2.worst_case (for 0th percentile), or t2.best_case (for 100th percentile) 

Worst- and best-case 
scenarios 

✓  t2.worst_and_best_cases 

Select bounds of range  ✓ t2.select_percentiles 
Select range of 
scenarios 

✓ ✓ t2.range, t2.worst_half, or t2.all_scenarios 

T3 (performance value 
aggregation) 

Identity transform ✓ ✓ t3.f_identity 
Magnitude of range  ✓ t3.f_range 
Mean ✓ ✓ t3.f_mean 
Sum ✓  t3.f_sum 
Weighted sum ✓  t3.f_w_sum 
Variance ✓  t3.f_variance 
Mean-variance ✓  t3.f_mean_vairance 
Skew ✓  t3.f_skew 
Kurtosis ✓  t3.f_kurtosis  
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4. The Lake Problem 

4.1. Background 

The examples directory in the RAPID package includes the Lake 
Problem as an example of common usage of the package. The Lake 
Problem is a hypothetical, stylized model that is well-represented in the 
literature (Carpenter et al., 1999; Eker and Kwakkel, 2018; Hadka et al., 
2015; Kwakkel, 2017; Lempert and Collins, 2007; McPhail et al., 2020; 
Quinn et al., 2017; Singh et al., 2015; Ward et al., 2015), and represents 
a city that must decide the amount of pollution that it releases into a 
lake. There are four competing objectives: (1) the average concentration 
of phosphorous in the lake; (2) the frequency of pollution levels 
exceeding a critical threshold (i.e. the reliability) (3) the economic 
benefit (i.e. economic utility); of polluting the lake; and (4) a penalty for 
if the change in level of pollution is too high from year to year (i.e. a 
measure of inertia of the pollution) to help achieve more realistic and 
appropriate solutions. Both deep and stochastic uncertainties are present 
for the natural inflows of pollution into the lake, the natural removal and 
recycling rates of pollution in the lake, and the discount rate for the 
economic benefits. To illustrate the generic guidance framework on the 
Lake Problem, we follow several different pathways through the 
framework (Fig. 2), including the situations where:  

1. Section 4.2 – The robustness metric is unknown, and there are no 
candidate robustness metrics under consideration. The method for 
generating the scenarios is known.  

2. Section 4.3 – The robustness metric is unknown and there are no 
candidate robustness metrics under consideration. There are multi
ple candidate sets of scenarios.  

3. Section 4.4 – The robustness metric is unknown, however, there are 
multiple candidate robustness metrics. The method for generating 
the scenarios is known. 

4.2. No candidate robustness metrics but scenario generation method 
known 

Following the guidance framework, we consider a situation in which 
we aim to use an optimization process (Fig. 4, Box 18) to determine a set 
of robust decision alternatives. In this situation, we also assume that the 
robustness metric is unknown (Fig. 4, Box 2) and that there are no 
candidate robustness metrics (Fig. 4, Box 3), leading to Box 4 in Fig. 4. 
Here, we deviate from the EM Workbench (Kwakkel, 2017) example of 
the Lake Problem, which used standard robustness metrics for each of 
the objectives. In our example, we create a custom robustness metric by 
following the guidelines in Fig. 3. Note that the creation of these custom 
robustness metrics is illustrative of how to follow the guidance and uses 
many assumptions about decision maker preferences that are not 

present in previous formulations of the Lake Problem. Also, note that we 
have created one robustness metric for each of the four Lake Problem 
performance metrics, but this need not be the case. 

First, for the average concentration of the phosphorous in the lake, 
we decide that there is no meaningful threshold (note that some studies 
have created a threshold for this objective), and that we are most 
interested in making the best decision, which gives us the identity 
transform for T1. We are looking for an indication of the level of per
formance, leading to the identity transform for T3, and are relatively risk 
averse, so the 25th percentile is used for T2 (also see summary in 
Table 4). 

For the reliability, we assume a situation where a requirement for the 
project is a minimum of 80% reliability (i.e. a decision alternative per
forms satisfactorily in an individual scenario only if pollution remains 
below the critical threshold for 80% of the time) and that this require
ment should be met in as many scenarios as possible. Thus, the T1 
transformation is the satisficing transform and the T3 transformation is 
the mean. It is also decided that the aim is to understand what per
centage of all scenarios under consideration have acceptable perfor
mance, and so all scenarios are selected for T2. 

For the economic utility, it is assumed that a level of 0.75 is required 
(the economic utility is dimensionless in this study, but 0.75 represents 
some minimum economic benefit that must be achieved), and that any 
level lower than this will have significant consequences. Therefore, the 
satisficing regret transform is used, since this can accommodate the 
threshold of 0.75 and penalizes decision alternatives in each scenario 
that fail to achieve this. The level of performance (i.e. the level of po
tential regret) is most important, and therefore the identity transform is 
used for T3. It is also assumed that the decision-maker has a moderate 
level of risk aversion for this objective, and T2 is the 50th percentile of 
performance (i.e. regret). 

The inertia is a measure of how much the decision alternative options 
vary from year to year (it is preferred that there are no significant 
changes in the level of pollution from one year to the next). We are not 
using a specific threshold for this (although some other studies have), 
and the objective of the decision-maker is to make the best decision 
regarding the level of performance (level of inertia). Therefore, the 
identity transform is chosen for T1 and T3. Again, the level of risk 
aversion is moderate for this objective, and thus the 50th percentile is 
chosen for T2. 

Returning to the overarching guidance framework for robustness 
analysis (Figs. 2 and 4), now that we have the robustness metrics (Fig. 4, 
Box 4) and the scenarios are known (Fig. 4, Box 6), we can calculate 
robustness using the selected scenarios and selected (custom) robustness 
metrics (Fig. 4, Box 10). To illustrate this with the RAPID software 
package, we build upon an example of the Lake Problem that is included 
in the EM Workbench (Kwakkel, 2017), with the following 
methodology: 

Table 3 
Commonly used robustness metrics included in the software package, as well as corresponding choices at each of the three transformations.  

Metric name T1 (performance value 
transformation) 

T2 (scenario subset selection) T3 (performance value 
aggregation) 

Software package 
function 

Maximin Identity Worst-case Identity maximin 
Maximax Identity Best-case Identity maximax 
Hurwicz’s Optimism-Pessimism Rule Identity Worst- and best-cases Mean hurwicz 
Laplace’s Principle of Insufficient 

Reason 
Identity All scenarios Mean laplace 

Minimax Regret Regret Worst-case Identity minimax_regret 
Percentile Regret (e.g. 90th percentile 

regret) 
Regret Percentile Identity percentile_regret 

Mean-variance Identity All scenarios Mean-variance mean_variance 
Undesirable deviations Regret from median Worst-half Sum undesirable_deviations 
Percentile-based skew Identity 10th, 50th, and 90th percentiles Skew percentile_skew 
Percentile-based kurtosis Identity 10th, 25th, 75th, and 90th 

percentiles 
Kurtosis percentile_kurtosis 

Starr’s Domain Criterion Satisfice All scenarios Mean starrs_domain  
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1. Using the EM Workbench, we formulate the model (e.g. uncertain 
parameters, objectives, etc.).  

2. Using the RAPID package, we create the custom robustness metrics 
defined above in Table 4.  

3. Using the EM Workbench, we formulate an optimization problem 
with the formulated model (from Step 1) and custom robustness 
metrics (from Step 2).  

4. Using the EM Workbench, we run the optimization to determine the 
most robust decision alternatives. Note that this means we begin 

with random decision alternatives in Fig. 4, Box1, but then the EM 
Workbench refines these decision alternatives using the feedback 
loop with Box 18. 

For Step 1, the Lake Problem was specified in the same manner as in 
the EM Workbench example (i.e. the uncertain parameters, options for 
the decision alternatives, and the performance objectives were defined 
in the same way) using the EM Workbench functionality for defining a 
model.    

For Step 2, the custom robustness metrics defined in Table 4 were 
first specified using the RAPID package and then put into the form 
required for the EM Workbench. Note that when defining these custom 
metrics, it was possible to use any combination of the three robustness 

Table 4 
Custom robustness metrics created for the Lake Problem.  

Performance metric T1 T2 T3 

Average 
phosphorous 

Identity 25th 
percentile 

Identity 

Reliability Satisfice (threshold 80%) All scenarios Mean 
Economic utility Magnitude below threshold of 

0.75 
50th 
percentile 

Identity 

Inertia Identity 50th 
percentile 

Identity  

Fig. 5. Example of the dialogue provided by the metrics.guidance_to_R function in the RAPID package.  
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metric transformations (from the guidance for decision-makers Fig. 3, 
and defined in Table 1). These metrics can be defined using code as 
shown or can also be created using the metrics.guidance_to_R function. 
This function asks the user the questions from the flow chart in Fig. 3, 
guiding them to the creation of the robustness metric best suited for the 
problem that can then be used in subsequent analyses (as shown in 
Fig. 5). The output from the metrics.guidance_to_R function is the same as 
the output from the metrics.custom_R_metric function in the example 
code.  

As per the EM Workbench example (which uses Many-Objective 
Robust Optimization (MORO)), once the model has been formulated 
and the robustness metrics have been defined, the next step is to use the 
EM Workbench to create a set of scenarios, formulate an optimization 
problem, and then run that optimization problem to find optimally 
robust decision alternatives. This corresponds to the loop formed by Box 
18 in Fig. 4. The results found from this process are shown in Fig. 6. Note 
again that the robustness metric transformations from the RAPID soft
ware package ensure that a higher robustness value is always better (e.g. 
we seek to minimize vulnerability, but the sign for the robustness metric 
for vulnerability is switched so that we are aiming to maximize the 
robustness value). The Pareto front (Fig. 6) shows expected relationships 
between objectives. For example, better vulnerability also results in 
better reliability but a worse result for the economic utility. The rela
tionship between the inertia and the other three objectives is weaker. 

In this example of following the guidance framework (Figs. 2 and 4), 
we showed that with no known robustness metric or set of candidate 
robustness metrics we could create a set of custom robustness metrics 
that were best suited to the problem (Table 4) using the guidance for 
creating a custom robustness metric (Fig. 3) to determine the appro
priate robustness metric transformations from Table 2. We then created 
these robustness metrics in a systematic manner using the RAPID soft
ware package and used these newly created robustness metrics in 
conjunction with another software package, the EM Workbench, to run a 
robust optimization and develop a Pareto front of optimal decision 
alternatives. 

4.3. No candidate robustness metrics and multiple candidate scenario sets 

Again, following the guidance framework, we use the optimal deci
sion alternatives from the previous section and assume a situation in 
which the robustness metric is unknown (Fig. 4, Box 2) and there are no 
candidate robustness metrics (Fig. 4, Box 3), leading to Box 4 in Fig. 4. 
Here, we create custom robustness metrics as per Section 4.2, leading to 
the robustness metrics in Table 4. Unlike in Section 4.2, in this section, 
we consider a situation where there are multiple candidate sets of sce
narios (Fig. 4, Box 6) (e.g. in order to increase the diversity of considered 
uncertainties (Xexakis et al., 2020)). This situation could occur where 
the decision makers have identified different sets of scenarios that could 
all be appropriate for the problem, or the situation where different de
cision makers create different sets of scenarios for the problem. We note 
that while we will refer to the decision alternatives from the previous 
section as “optimal”, they were optimal for the scenarios and robustness 
metrics in the previous section and for the specific formulation of this 
optimization problem (Maier et al., 2018). They may not be optimal in 
this proceeding section. 

Different sets of scenarios correspond to different sets of points 
within the space of uncertain model inputs (McPhail et al., 2020). 
Because these points are inputs to the calculation of robustness (see 
Fig. 1), different sets of scenarios can lead to differences in robustness. 
As a simplified illustration of this, we create five candidate sets of 20 
scenarios, where each set is sampled from the uncertain variable space 
using the EM Workbench package with Latin hypercube sampling. We 
then evaluate the optimal decision alternatives (from Section 4.2) in all 
100 scenarios using the EM Workbench package and calculate the 
robustness for all 5 scenario sets and all decision alternatives using the 
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Fig. 6. Example results that can be produced using custom robustness metrics from the RAPID package and multi-objective optimization functionality from the EM 
Workbench package. The axes are the robustness metrics and each point represents the robustness of a single solution from the 4-dimensional Pareto front. 

C. McPhail et al.                                                                                                                                                                                                                                



Environmental Modelling and Software 142 (2021) 105059

13

custom robustness metrics created in Section 4.2 using the RAPID 
package (Fig. 4, Box 9). Note that for simplicity, we only focus on the 
vulnerability objective from here on. The same analysis could be applied 
to each of the four objectives.

Returning to the robustness analysis guidance framework, this brings 
us to Box 13 in Fig. 4, where we use the analysis module of the RAPID 
package to evaluate the relative difference in robustness values and the 
Kendall’s Tau-b rank correlation (for determining the ranking similarity, 
as described in Section 3). The analysis module also enables us to visu
alize the influence of the scenarios by creating heatmaps that show all 
combinations of candidate sets of scenarios (see Fig. 7 (a) and (b)). The 
diagonal of the heatmaps is each candidate scenario set compared to 
itself, and therefore the relative difference is 0% (indicated by purple in 
Fig. 7 (a)) and the ranking correlation is 1 (indicated by blue in Fig. 7 
(b)), as expected. From Fig. 7 (a), we can see that for the other com
parisons of the scenario sets, the relative difference in robustness values 
is very high in general (indicated by mostly orange squares, ~30% 
difference in robustness values). However, there are some cases (e.g. 
scenario sets 1 and 5, and scenario sets 4 and 5) that are more similar 
than the rest (indicated by the green). Note that despite a high difference 
in robustness values, Fig. 7 (b) indicates that the rankings of the decision 

Fig. 7. Example of outputs produced by the RAPID package. For the Lake Problem analyzed as described above: (a) relative difference in robustness for pairs of 
scenario sets (5 sets of 20 scenarios); (b) ranking similarity for pairs of scenario sets (5 sets of 20 scenarios); (c) relative difference in robustness for pairs of scenario 
sets (5 sets of 100 scenarios); (d) ranking similarity for pairs of robustness metrics (one set of 100 scenarios). 
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alternatives are very stable (consistent with McPhail et al. (2020)). 
Given that all five candidate sets of scenarios were sampled using 

Latin hypercube sampling, it is interesting that the relative difference in 
robustness is so high in Fig. 7 (a). If the robustness values were impor
tant for the decision-making process, it would be difficult to be sure of 
the actual robustness values because the values would depend on which 
set of scenarios is being considered (leading to Fig. 4, Box 16). There are 
many reasons why the relative difference could be high, including 
dissimilarity in the coverage of the scenario space, and discontinuities in 
performance space (McPhail et al., 2020). In this example, it is likely to 
be the former of these reasons because the number of scenarios in each 
set is small. Running the same code as above, but with a larger number 
of scenarios (100 scenarios per set, rather than 20 scenarios per set in 
Fig. 7 (a)), we produce the heatmap shown in Fig. 7 (c). With the larger 
number of scenarios, the relative difference is significantly lower in 

general (likely due to a more similar coverage of the scenario space), 
indicated by the greater number of blue and green squares and the 
smaller number of orange squares. In this case, we move from Box 14 to 
Boxes 15 and 17 in Fig. 4, being able to accurately determine the 
robustness of the decision alternatives. Note that a greater number of 
scenarios will not always allow a decision-maker to accurately deter
mine the robustness of the decision alternatives, as indicated by the 
comparisons of scenario sets 4 and 5 in Fig. 7 (c). In this case, we move 
from Box 14 to Box 16 in which case we need to use human judgement to 
determine which decision alternatives are the most robust. Alterna
tively, if we are simply interested in the rankings of the solutions (see 
Fig. 7 (b)), then we would be able to move from Box 14 to Boxes 15 and 
17 without increasing the number of scenarios (assuming that we judge 
the Kendall’s Tau-b values (approximately in the range between 0.7 and 
1.0) to be sufficiently high for our purposes). 

In this second example of following the guidance framework (Figs. 2 
and 4), we showed that, with multiple candidate sets of scenarios, we 
could use the RAPID software package to evaluate the influence these 
candidate sets of scenarios had on both the robustness values and 
rankings. Using the visualizations produced by the software package, we 
were then able to determine that the relative robustness values of 
different decision alternatives was not substantially affected by the 
different scenario sets (Fig. 7 (b)), giving confidence to decision makers 
and enabling the most robust decision alternative to be identified. 

4.4. Multiple candidate robustness metrics and a known set of scenarios 

In this situation, we assume that the robustness metric is unknown 
(Fig. 4, Box 2), but that there are multiple candidate robustness metrics 
(Fig. 4, Box 5) and that the set of scenarios is known, leading to Box 8 in 

Fig. 4. Note that if there were multiple candidate sets of scenarios, the 
analysis would be a combination of the following method and the 
method in Section 4.3. We create the candidate robustness metrics using 
the RAPID software package, retaining the original robustness metric for 
the vulnerability determined in Section 4.2 (Table 4) using the metrics. 
custom_R_metric module, and four traditional robustness metrics as the 
other candidate metrics, including the Maximax, Laplace’s Principle of 
Insufficient Reason, Minimax Regret, and Percentile-Based Kurtosis 
robustness metrics (all included in the metrics.common_metrics module). 
As with the previous examples, these metrics were calculated, evaluated 
(this time across a known set of 100 scenarios, sampled using Latin 
hypercube sampling), and visualized using the RAPID package (see 
Fig. 7 (d)).    

In the visualization of the similarity in rankings (Fig. 7 (d)), the di
agonal shows full ranking similarity (a value of 1, indicated by blue) 
because that is where each robustness metric is being compared to itself. 
Most of the metrics also show high levels of ranking similarity with each 
other, with the exception of the percentile-based kurtosis metric, which 
shows a slight negative correlation with all other metrics (indicated by 
the slightly red squares). This potentially leads us from Box 14 to Box 16 
in Fig. 4, because it is unknown which ranking is the one that we should 
follow: the rankings provided by the percentile-based kurtosis or the 
rankings provided by the rest of the metrics. Again, using our judge
ment, we decide that the percentile-based kurtosis does not reflect the 
needs of the decision-makers as much as the other robustness metrics do, 
because the T3 transformation does not reflect the need to get an indi
cation of the level of performance (as explained by Fig. 3 and by McPhail 
et al. (2018)). Also, since all of the other candidate solutions generally 
agree with the custom robustness metric, it follows that we can rely on 
this custom metric to determine which decision alternative is most 
robust (Fig. 4, Box 16). 

In this final illustration of using the guidance framework (Figs. 2 and 
4) and RAPID software package, we showed that with multiple candi
date robustness metrics, we can use the software package to evaluate the 
influence these robustness metrics have on the rankings of the decision 
alternatives. Using the visualizations produced by the software package, 
we were then able to determine whether or not the influence was suf
ficiently large to affect these rankings. 

All three of the simple examples considered show that the RAPID 
package is easy to use and can be used in conjunction with related 
software packages, such as the EM Workbench. They also show that the 
RAPID package is a practical tool for systematically following the 
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guidance framework in Figs. 2 and 4, the guidance for creating robust
ness metrics in Fig. 3 (shown in Section 4.2), assessing the influence of 
candidate sets of scenarios on the robustness values and rankings 
(shown in Section 4.3), and assessing the influence of candidate 
robustness metrics on the robustness rankings of decision alternatives 
(shown in Section 4.4). Note that since this is a multi-objective problem, 
there is no single most robust decision alternative and decision-makers 
can only narrow down the choice of decision alternatives to those that 
represent the best trade-offs between the four objectives. It is likely that 
the decision of a final decision alternative would require further analysis 
by other (potentially more senior) decision-makers to determine which 
trade-off represents the best strategic choice. 

5. Summary and conclusions 

Robustness is important in the long-term planning of environmental 
systems. However, there is a variety of metrics that can be used to 
calculate the robustness of a set of decision alternatives, and recent 
research has shown that the choice of metric can affect the ranking of 
decision alternatives. Similarly, there is a variety of approaches to 
selecting or generating scenarios (which are an input to the calculation 
of robustness), and the chosen approach has also been shown to have an 
effect on the robustness values and rankings of decision alternatives. 
Despite the uncertainty associated with the selection of scenarios and 
robustness metrics when determining the rankings of decision alterna
tives under deep uncertainty, no guidance exists for decision-makers on 
which choices to make. 

As a response to this need for guidance, this paper proposes a generic 
guidance framework to assist decision-makers in the identification of 
robust decision alternatives (Fig. 2). This framework caters to a variety 
of situations where the scenarios and/or robustness metrics are known 
or not known. The framework includes guidance on how to create a 
custom robustness metric for the problem at hand (Fig. 3), based on the 
attributes of the problem (e.g. the presence of performance thresholds/ 
tipping points, or the objectives of the problem), as well as the prefer
ences of the decision-maker (e.g. the level of risk-aversion). The output 
from the guidance for the creation of a custom robustness metric is three 
robustness metric transformations (Table 1), which form the robustness 
metric when combined (Fig. 1). The overarching guidance framework 
also identifies situations where quantitative analyses can be used to 
determine the influence that the selection of scenarios and/or the choice 
of robustness metric has on the rankings of decision alternatives. 

This paper also introduces an open-source software package, the 
RAPID (Robustness Analysis Producing Intelligent Decisions) package, 
to assist with the consistency and ease-of-use of implementing the 
guidance framework (see Fig. 4). The software package includes a 
module for the creation of custom robustness metrics using a wide range 
of robustness metric transformations (Table 2), including a function that 
leads the user through the guidance of how to create the robustness 
metric most suited for the problem at hand (Fig. 3). It also includes a 
variety of commonly used traditional robustness metrics from the 
literature (Table 3). The software package also contains a module for the 
calculation and visualization of the impact of the selection of scenarios 
and choice of robustness metric on robustness values and rankings. 

To illustrate the implementation of the guidance framework and 
RAPID software package, we consider the Lake Problem, a hypothetical 
lake pollution problem, commonly used in literature. We use the guid
ance in Fig. 3 to create custom robustness metrics for The Lake Problem, 
based on hypothetical problem attributes and decision-maker prefer
ences (Table 4). In conjunction with the EM Workbench (Kwakkel, 
2017), we use these robustness metrics as objectives in a robust opti
mization to create a set of robust decision alternatives. As an example of 
the utility of the guidance framework and software package, we use 
these optimal decision alternatives to consider a situation where there 
are multiple sets of scenarios under consideration. Using the RAPID 
software package, we visualize the impact of these different sets of 

scenarios, showing that the robustness values are affected (Fig. 7 (a)), 
but rankings of the decision alternatives are not (Fig. 7 (b)), providing 
confidence to decision makers that the most robust decision alternative 
has been identified. We also show that when using a larger set of sce
narios, the impact of the set of scenarios on the robustness values is 
greatly decreased (Fig. 7 (c)). In another example to highlight the utility 
of the guidance framework and software package, we consider a situa
tion where there is a variety of candidate robustness metrics. We use the 
framework and software package to visualize the impact of the choice of 
robustness metric (Fig. 7 (d)), showing that most of the metrics agree on 
the rankings of the decision alternatives, again providing confidence to 
decision makers that the most robust solution has been identified. 

This guidance framework and software package assist decision- 
makers in the identification of robust decision alternatives. It does so 
in a systematic way, and the software package increases the consistency 
and ease-of-use of implementing the guidance. The guidance framework 
and software package are generic and cater to a wide variety of cir
cumstances where the robustness metrics and/or scenarios may or may 
not be known, greatly increasing the accessibility of robustness analyses 
and techniques to decision-makers. After identifying the most robust 
decision alternatives or those decision alternatives that represent the 
best trade-offs across multiple objectives, decision-makers are able to 
then explore those decision alternatives in more detail. With these 
selected decision alternatives, decision-makers can better understand 
what makes some decision alternatives more robust, explain to other 
stakeholders what it is about these decisions that makes them robust, 
based on the information obtained from the guidance framework. 

Software availability 

The Lake Model is widely available on GitHub in multiple re
positories, including in the EMAworkbench: https://github.com/quaq 
uel/EMAworkbench. 

The RAPID (Robustness Analysis Producing Intelligent Decisions) 
software package is available on GitHub (https://github.com/c 
ameronmcphail/RAPID) and in the Python Package Index (PyPI) (htt 
ps://pypi.org/project/rapidrobustness/) (archived at doi.org/ 
10.5281/zenodo.4171495). 
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