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ABSTRACT: A key computational challenge in maintenance planning for deteriorating structures is to
concurrently secure (i) optimality of decisions over long planning horizons, and (ii) accuracy of real-
time parameter updates in high-dimensional stochastic spaces. Both are often encumbered by the pres-
ence of discretized continuous-state models that describe the underlying deterioration processes, and the
emergence of combinatorial decision spaces due to multi-component environments. Recent advances in
Deep Reinforcement Learning (DRL) formulations for inspection and maintenance planning provide us
with powerful frameworks to handle efficiently near-optimal decision-making in immense state and ac-
tion spaces without the need for offline system knowledge. Moreover, Bayesian Model Updating (BMU),
aided by advanced sampling methods, allows us to address dimensionality and accuracy issues related to
discretized degradation processes. Building upon these concepts, we develop a joint framework in this
work, coupling DRL, more specifically deep Q-learning and actor-critic algorithms, with BMU through
Hamiltonian Monte Carlo. Single- and multi-component systems are examined, and it is shown that the
proposed methodology yields reduced lifelong maintenance costs, and policies of high fidelity and sophis-
tication compared to traditional optimized time- and condition-based maintenance strategies.

1. INTRODUCTION art threshold-based approaches (Frangopol et al.

Maintenance planning for deteriorating systems ex-
posed to corrosive environments, e.g. coastal, ma-
rine, highly acidic conditions, is essential for
resource-efficient management of structural risks.
The most beneficial sequence of maintenance deci-
sions strikes the best balance between life-cycle in-
tervention costs and expected failure losses. This
can be sought as the solution to an optimiza-
tion problem, characterized by high complexity
due to non-stationary environment dynamics, data
and model uncertainties, and non-periodic ac-
tions over long planning horizons and multiple
components. Therefore, classic and state-of-the-

(1997)); Bayesian networks with risk-based thresh-
olds (Straub and Faber (2005), Luque and Straub
(2019)); renewal processes (Castanier et al. (2005));
and evolutionary optimization schemes for single-
and multi-objective configurations (Yang and Fran-
gopol (2019), Unal and Warn (2017)) manifest sev-
eral limitations as they often rely on static op-
timization formulations and can not easily cap-
ture and control combinatorial system-level com-
ponent interactions in a closed-loop fashion. Re-
cently, Deep Reinforcement Learning (DRL) agent-
based frameworks combined with Partially Observ-
able Markov Decision Processes (POMDPs) princi-
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ples, provided unmatched capabilities to tackle such
problems in high-dimensional multi-component
systems (Andriotis and Papakonstantinou (2019),
Andriotis and Papakonstantinou (2021), Morato
et al. (2023)). Large state-spaces are reparame-
terized through deep neural network architectures,
and near-optimal strategies are derived by letting
the agent(s) directly interact with the environment.
To handle uncertainty in the deterioration process,
current approaches successfully relied on environ-
ment dynamics described by dynamic Bayesian net-
works with discrete random variables (Morato et al.
(2022), Luque and Straub (2019)) leading to closed-
form updating strategies of the latent uncertain sys-
tem parameters. However, this approximation can
lead to inaccuracies since fine discretization is not
always computationally feasible, whereas coarse
discretization cannot capture the true nature of the
deterioration process. Bayesian inference, aided by
sampling techniques, is able to account for a con-
tinuous deterioration model. In particular, model
updating techniques can update our knowledge of
the uncertainties of latent variables, by combin-
ing physics-based models, and measurements carry-
ing information on the uncertain system parameters
(Lye et al. (2021), Kamariotis et al. (2022)).

In this work, an integrated framework is devel-
oped that combines DRL and BMU to determine an
optimal sequence of maintenance decisions over the
lifespan of continuously monitored deteriorating en-
gineering systems. This approach exploits physics-
based models of the system and of the deterioration
process, and information obtained via vibration-
based monitoring. Single- and multi-agent DRL
architectures are considered, trained through Dou-
ble Deep Q-Network (DDQN) and Proximal Pol-
icy Optimization (PPO). The updating of the un-
certain continuous-valued system parameters is per-
formed through Hamiltonian Monte Carlo (HMC)
with No U-turn Sampling (NUTS). The applica-
bility of the proposed workflow is investigated
by considering a mass-spring system and a multi-
component structural frame. It is then compared
against optimized time- and condition-based heuris-
tic approaches, with the obtained results confirming
that the integrated framework can yield solutions of
significant cost-efficiency and policy sophistication.
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2. BACKGROUND
2.1. Sequential decision-making processes
2.1.1. Partially Observable Markov Decision Pro-

cesses (POMDPs)
The problem of optimal stochastic control is han-

dled using POMDPs, which address the uncer-
tainties of planning maintenance strategies, includ-
ing uncertain action outcomes and observations in
a unified framework (Corotis et al. (2005), Pa-
pakonstantinou and Shinozuka (2014)). The basic
POMDP components are the environment and the
agent. In each decision step ¢, the decision-maker,
cannot observe the exact state of the system, s; € S,
but forms a belief, b;, i.e. a probability distribution
over the system’s states. Based on by it takes an ac-
tion a, € A, receives a reward R;(b;,a;) € R and
an observation o;; € O, which is used to derive
b;+1, through a Bayesian update. The sequence of
chosen actions defines the policy, 7. An optimal
policy aims to maximize the sum of the discounted
rewards, i.e. the total return, G":

Gﬂ: = R(bt7a1‘> +ot YTitR(bT7aT)
T
=Y v R(bi,a))
i=t

where ¥ is a discount factor, denoting the impor-
tance of the current reward over future ones. The
action-value function, Q"(b;,a,) is defined as the
expected return over both 3 and A.

Qn(btvat) = Eb,ﬂ,a,ﬂ [Gn ‘ blaat] (2)

Decomposing Q” into the immediate reward and the
discounted value of the successor belief-state leads
to the following recursive formula:

Qﬂ(bl‘aal‘) = R(blaat) + ’}/Eb,+1,al+] [Qn(sl+17at+l)]

3)
The value function V*(b;) corresponds to the ex-
pected return starting from belief b; and traversing
life-cycle trajectories under policy 7.

VE(b) = Eq, [Q (br,a1)] 4)

During each decision step ¢, the next belief b, is
calculated using Bayes’ rule:

(1

b(Sz+1) = P(St+1 | Ot+17at;bt)

P(oy1 | si41,a:)
= P(s Se,a:) b(s 5
P<0t+l |b;,(l;) SIZG:S ( t+1 ‘ t t) ( l) ( )
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where Y csP(si41 | 81,a:) b(s;) refers to the prior
distribution, P(o;+1 | b;,a;) to the evidence, and
P(0;4+1 | St+1,a;) to the likelihood function. Al-
though POMDP solutions have been applied to in-
vestigate infrastructure maintenance, often along
with point-based algorithms (Papakonstantinou
et al. (2018), Andriotis et al. (2021)), they can face
limitations when it comes to large and/or continu-
ous action- and state-spaces. For continuous cases
Eq (5) is transformed into:

P<0t+1 |Sz+1,az)
P b(s;)d
P(oi41 | by, ar) A (st | 52,0) (St)(;;

where P denotes probability density functions. The
integral in Eq (6) contains the multiplication of two
continuous distributions with no analytical expres-
sion, hence it can not be calculated in a closed form.
The same integral appears in the calculation of the
evidence, making it often intractable to define in a
closed form, resorting to sampling techniques.

b(si11) =

2.1.2. Deep Reinforcement Learning

Recently developed DRL approaches offer major
computational advantages to this end. By using
model-free methods there is no need to have an
analytical description of the transition dynamics,
and with the POMDP functions being reparameter-
ized and expressed in terms of some parameters 0,
the computational cost of large state- and action-
spaces is alleviated. Two major families of DRL
approaches are incorporated in this work: deep Q-
learning and actor-critic schemes. The former is
used for single-agent solutions whereas the latter is
also used for multi-agent solutions related to multi-
component environments.

In deep Q-networks the training aims to deter-
mine the parameters 6 of the Q-function Q(b;,a; |
0) that minimize the loss function:

L(0) =By, [(i—0bia | 0)7] ()

with y; being the target for decision step ¢:

Yr = R(b,,a,)

+YQ (bry1,argmax Q (by 41,441 0) [ 67)  (8)
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Parameters 6~ correspond to a target network,
which takes the values of the original one with a pre-
defined delay. Moreover, a replay buffer is used in
deep Q-networks, where (b;,a;,R;,b;+1) tuples are
stored and then used in batch training. Each tuple
is potentially used in many weight updates, leading
to the use of non-consecutive uncorrelated samples,
hence, reducing the variance through the updates.
Using both the target and the original network for
computing y;, with parameters 6~ and 6, respec-
tively, is a key concept of DDQN that reduces insta-
bilities and avoids over-optimistic value estimates.

Actor-critic methods are based on computing the
policy gradient:

80 =By | Y. Vologn(a, | b,6) 0% (ba)| )

t>0

To reduce the variance of the sampling-based esti-
mator of Eq (9), a baseline is subtracted from the
Q-function, introducing the advantage value, which
refers to how advantageous a specific action is at the
given belief:

A(b,,a,) :R(b,,a,)—l—}/V(b,H)—V(b,) (10)

To compute all terms in Eq (9), two different neural
networks are used, which act as policy (actor) and
value (critic) approximators.

To avoid large policy updates, the trust region
methods were implemented, whereas off-policy
methods were proposed to address sample complex-
ity. In our analysis, we test the PPO introduced in
Schulman et al. (2017). Denoting r;(6) as the ratio
of the new over the old policy, 7y /7y, the policy

old”
is updated based on the clipped objective:

LCLIP(g) =k [min(r,(B)A[,

clip (r:(6),1—¢,1 +e)A,)} (11)

2.2.  Bayesian Model Updating

Model updating constitutes an inverse problem,
where observations of the system’s behavior are
used to update unknown system properties using
Bayes’ rule. An extensive review of model updat-
ing about damage assessment, including BMU can
be found in Simoen et al. (2015).
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When dealing with continuous parameters, the
posterior distribution, i.e. the distribution of the
updated system parameters, can not be expressed
in a closed form, but only implicitly, point-wise,
using a Monte Carlo approach or a numerical in-
tegration scheme. To overcome this obstacle, ad-
vanced sampling methods have been developed (Lye
et al. (2021)). Two of the most well-known Markov
Chain Monte Carlo (MCMC) algorithms, namely
Metropolis-Hastings and Gibbs sampling, often fail
to converge to the posterior distribution, especially
for continuous model parameters. HMC approaches
sampling by using an auxiliary variable scheme
and simulating Hamiltonian dynamics (Neal et al.
(2011)). HMC is not widely used due to its de-
pendence on user-defined tuning parameters, but it
provides the foundation for NUTS, a state-of-the-art
self-tuning sampling algorithm introduced in Hoff-
man et al. (2014). NUTS is integrated into the pro-
posed workflow.

3. PROPOSED FRAMEWORK

The conceptual breakdown of the complete prob-
lem along with the integration of the various meth-
ods and the interaction of the different computa-
tional blocks are displayed in Figure 1.

The belief b; contains partially observable infor-
mation over the continuous deterioration states. It
can be the bin values that form a discrete distribu-
tion, its statistical moments, or even the needed pa-
rameters to form a known continuous distribution.

A schematic representation of the framework, in-
cluding the neural network architecture, is depicted
in Figure 2, for a Q-function approximation method
and a multi-agent actor-critic method.

For multi-component cases, Q-function approxi-
mation can become impractical due to the immense
amount of possible actions that are formed in a com-
binatoric fashion. This is not the case for actor-critic
algorithms, which return the probability distribution
of the actions as an output, instead of the action-
state value function. Thus, assuming that the actions
of the system’s components are conditionally inde-
pendent, the policy derived from an actor-network,
7o (a; | by ), can be decomposed and expressed as the
product of multiple policies which refer to each of

the n components individually, a;,a?,...a} instead
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Engineering System
Maintenance by
Deterioration Sequential
Process Decision byl oy —> t=1
Modeling Problem
Vibration-based l ﬂ
Monitoring
POMDP
Bayesian Model b
Updating l +
by| 0, —> t=2
Sampllng} ‘ i
Q-learning .
Actor-critic : s

(a)

Figure 1: (a) Problem conceptual breakdown and (b)
probabilistic POMDP decision graph.

of the full action vector, a;. We can, therefore, write:

(b)

mo(a; | bi) = mg(a; | by) 7o (a? | by). .. me(al

n .
=[17e(a; | &)
i=1

| 1)

(12)

The performance of the proposed framework is
highlighted using benchmarks. A fine grid of dete-
rioration thresholds and maintenance time intervals
was exhaustively tested, to determine the most ben-
eficial damage state and/or time to act.

BMU |]T,\

041
b =b, | 0111}

Critic Network

= b: | 04 1] H b,

Qo(b;, a,
=8
Actor (& b))

a; = dl"l1]dXQ (b}, a) DRI, Network 0
a;in A San]ple 4

(a) (b)

Figure 2: Neural network architectures for a single- and
multi-component system (a) Q-function approximation
for discrete action space (b) Actor-critic for centralized
states and centralized discrete actions
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4. NUMERICAL EXPERIMENTS
4.1. Single Degree of Freedom (SDOF) oscillator
The system’s deteriorating parameter is the spring

stiffness, with its deterioration for a given age, or
deterioration rate, 7, following the power law:

D(t)=A1P (13)

A ~ InN(0.008,0.004), B ~ N (1.5,0.5), are re-
sponsible for the model’s uncertainty, being updated
during each step. As in Kamariotis et al. (2022), the
stiffness K(7) at a given deterioration rate, , is:

Ko Ko
C1+D(t) 1+A7B
A clear distinction should be made between the de-
cision step ¢, i.e. the running time variable of the
system’s lifespan, increasing with a unit step, and
the deterioration rate T, which characterizes the sys-
tem’s age that can be affected by the agent’s actions.

A monitoring system is assumed to provide the
decision-maker with noisy measurements that can
be used to extract the system’s eigenfrequency for
every decision step ¢. Numerically, these values are
obtained by using sampled values for A, B. This
measurement is further contaminated with Gaussian
white noise, through the coefficient €y, yielding
the observation used for the updating process.

K(7)

(14)

Model output: @(7) k(@) %o
- 0(T) = =
odel outpu p” (1A
- From measurement: @ = (7)|mpled 4 5

- Observation: O = @ + N (0, &yps - @)

Three actions are considered, namely "do nothing",
"partial repair", and "replacement". Regarding the
deterioration rate 7, doing nothing does not affect it,
a partial repair reduces it by two steps, and a total
replacement resets it to zero. The reward that the
agent receives in every decision step, i.e. the costs
of maintenance, consists of the cost of the chosen
action and the cost of the risk of failure.

R(b,a;) = Cq,(a;) + Crisk (by) (15)

The partial observability of the system’s damage in
every decision step is expressed by having continu-
ous distributions instead of deterministic values or
discrete distributions for the system parameters A,
B, and subsequently for the deterioration D(7).
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4.1.1. Results

The DRL agents are trained with DDQN and PPO,
obtaining Q-learning and actor-critic policies, re-
spectively. Both approaches outperform benchmark
decision rules, with the exact details about the costs
and the achieved reduction shown in Table 1. Apart
from the lower mean cost, the heuristic approach re-
sulted also in a greater standard deviation, meaning
that the stochasticity of the environment can lead
to worse performance and higher maintenance costs
when following a threshold-based policy.

Valuable conclusions are drawn from the realiza-
tion of the learned policies. Due to the high stochas-
ticity, each episode is considerably different, thus,
multiple policies are plotted for both algorithms, in
Figures 3, 4, along with optimal repair and replace
thresholds derived through exhaustive realizations.

Policy trends are identified, highlighting the
agent’s ability to diverge from traditional strategies
and act at unexpected deterioration stages. Actor-
critic acted more consistently compared to deep Q-
learning, with limited policies passing the replace
heuristic value and most of the repair actions lo-
cated lower than the heuristic’s repair threshold. In
deep Q-learning, the agent was stricter during the
first decision steps, which aligns with real-life poli-
cies about brand-new components. The damage val-
ues lie mostly below the replace and even the re-
pair threshold, especially when further in the exam-
ined time horizon. This difference between the two
algorithms can be justified by the way each agent
chooses actions. In DDQN the agent picks deter-
ministically the most beneficial action, based solely
on the action-state value functions Q(a;,b;). There-
fore, early interventions are not considered/explored
as much by the decision-maker. However, the PPO
agent, even for high damage values, chooses the ac-
tion based on a probability distribution, i.e. 7(q, |
b;), which allows any action, no matter how "good"
or "bad" it is, to be picked, leading to more conser-
vative on average, yet similarly optimal policies.
Table 1: Costs achieved after 50 policy realizations.

Algorithm | Mean | St. Dev. | Decrease
Benchmark | 100.0% | 100.0% -
DDQN 79.0% | 65.2% 21.0%
PPO 80.0% | 57.3% 20.0%
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Figure 3: 50 deep Q-network policy realizations
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Figure 4: 50 actor-critic policy realizations

Another interesting outcome is the updating pro-
cess toward discovering the true parameters of the
environment (in this case Byye = 2.0). In Figure
5, the evolution of parameter B is plotted for 4
different policy realizations based on near-optimal
weights. Incorporating more observations generated
using the “true” values for B reduces the uncertainty,
with the inferred B converging to the ground truth
over time with a decreasing variance.

25 Episode 1 Episode 2
2.0
1.5
1.0
2 6 10 14 18 2 6 10 14 18
Decision Step Decision Step
25 Episode 3 Episode 4
20 Mg * 0
T MB
1.5 —— True value
1.0
2 6 10 14 18 2 6 10 14 18

Decision Step Decision Step

Figure 5: Updating parameter B in inference time.
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4.2.  Three-storey 2D frame

A multi-component structure is now considered, i.e.
the three-storey plane frame illustrated in Figure
6. The structure is exposed to a corrosive environ-
ment, that causes section losses to the 6 vertical ele-
ments of the frame. The damage increment of each
component for every deterioration rate 7;, follows a
Gamma process of shape v(7;) and scale u:

AD; ~Ga(v(t) —v(ti—1),u), i=1,...,6 (16)

The scale u is assumed known and constant for
all components, while the shape v(7) is a stochas-
tic parameter described by the power law v(7) =
A7B. A, B are random variables (as defined for the
SDOF case) shared by all components. In each de-
cision step ¢, these are sampled from the distribu-
tions P(A),P(B), for every component, leading to
different Gamma step distributions. Thus, the total
damage for each component at any given decision
step is the sum of all the Gamma distributions of
the intermediate damage increments. It is known
that the sum of gamma (v;, ) random variables has
a gamma (Y v;,u) distribution, hence:

tot
Dz,i ~

t
T=

Ga(- |Ag; T8 — A (T—1)% u)
1

1
=Ga(-| Y At —Agi(v— 1) u) (A7)
=1

The partially observable state contains the shape pa-
rameter v, ; and the deterioration rate 7; for every i
component. Similarly to the SDOF case, the first

gq = 3.6kN/m Opil = 24 cm
= HEA300
2
First eigenmode
i
A - L L

Figure 6: Three-storey plane frame
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eigenmode extracted from measurements is used as
an observation. Its similarity with the eigenmode of
the deteriorated frame, results in the updating of the
stochastic parameters A, B, through NUTS. Sam-
pled damage values are used to numerically create
the noisy measurements, which are further contam-
inated with noise to create the observations, i.e. the
modal displacements. The same actions, as in the
SDOF case, are considered, referring to each com-
ponent, composing the 6 x 1 action vector, a;.

4.2.1. Results

Despite the underlying uncertainties that lead to a
different deterioration for every episode, an indica-
tive policy realization is presented in Figure 7. The
agent is stricter when it comes to the deterioration
of the base columns, which is a reasonable strategy
since the middle and upper columns contribute less
to the global failure of the frame.

Lastly, in Figure 8, policy realizations are plotted
for different levels of training. The agent initially al-
lows the deterioration to grow significantly, follow-
ing completely uninformed strategies. This trend
changes over the course of training episodes, with
the agent ending up limiting the damage to lower
values, thereby reducing the risk of failure and sub-
sequently the total maintenance cost.

Component 3

D03
he]
202
3
%0.1
i 0.0

Component 2 Component 5

e

Component 1

Component 6

&5 0.0
Component 4
—— Expected damage
replace
repair

d,/\//\///J\,//\/

4 8 12 16 20 O 4 8 12 16 20
Decision Step Decision Step

0.2
®

go1
@ 0.0

Figure 7: Policy realization for all components
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Figure 8: Policy realizations for all components for dif-
ferent training episodes

5. CONCLUSIONS

A joint Bayesian Model Updating (BMU) and Deep
Reinforcement Learning (DRL) framework is de-
veloped to determine optimal maintenance strate-
gies. Hamiltonian Monte Carlo (HMC) with No
U-turn Sampling (NUTS) is coupled with two dif-
ferent DRL approaches, namely deep Q-learning
and actor-critic, which are both able to outper-
form traditional maintenance approaches in terms
of maintenance costs and policy sophistication over
the structural service life. Continuous inference
through NUTS was incorporated instead of simpli-
fied state discretization assumptions, thus embrac-
ing utmost modeling fidelity for the studied prob-
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lems. Bayesian updating was identified as the main
computational bottleneck in the joint maintenance
planning and parameter inference problem, and not
DRL. Further advances in Bayesian inference tech-
niques, therefore, control the biggest lever in boost-
ing the overall sequential optimization process, even
when advanced DRL algorithms are involved.
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