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Abstract
We present a scalable solution to render complex scenes from a large amount of viewpoints. While previous approaches rely either
on a scene or a view hierarchy to process multiple elements together, we make full use of both, enabling sublinear performance
in terms of views and scene complexity. By concurrently traversing the hierarchies, we efficiently find shared information among
views to amortize rendering costs. One example application is many-light global illumination. Our solution accelerates shadow
map generation for virtual point lights, whose number can now be raised to over a million while maintaining interactive rates.
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1. Introduction

Recent work has shown that producing many views simultaneously
can be very beneficial for realistic rendering [DKH*14]. For exam-
ple, when many light sources are present in a scene, each requires
its own shadow map. Similarly, indirect illumination can be well
approximated when first distributing virtual point lights (VPLs) that
each illuminate the scene [Kel97, WFA*05, HPB07]. Also, reflec-
tive objects can be simulated by creating cube maps from various
locations on the surface [BN76, SKALP05, HREB11]. Unlike typ-
ical multi-view rendering, such as stereoscopy, soft-shadow map-
ping and motion or defocus blur [ABC*91, CPC84, HA90], indirect
lighting scenarios show less coherence among the views. Further-
more, the number of views has to be high to ensure a convincing
quality, while maintaining a high framerate for interactive appli-
cations. This many-view rendering problem is addressed by our
work.

The use of a hierarchy is the most common way to obtain sublinear
rendering scalability. Coarse representations [RGK*08] or scene
hierarchies are widely used [LWC*03]. For each view, an adequate
level of detail (LOD) can be chosen, typically represented by a cut
through the hierarchy that determines the nodes whose content will
be rendered. However, the use of only a scene hierarchy does not

scale well with the number of views. The cost per view is reduced,
but the total cost stays linear in the amount of viewpoints.

MegaViews is a novel scalable many-view rendering algorithm. It
provides sublinear performance on both the scene complexity and
number of views. The idea is to rely on two hierarchies: one on the
scene and one on the views. We concurrently traverse both hierar-
chies, with pairs of scene and view nodes fed into the double traver-
sal. This way, we can exploit coherence among different views,
which enables us to employ early culling techniques, as well as
shared rendering. A double-hierarchy traversal has been used for ef-
ficient intersections in ray tracing or visibility processing [JWSP05,
RAH07, MBWW07, MBJ*15]. However, we focus on the rendering
of complete images for many views. Our solution is well adapted to
GPUs and achieves interactive rates for a large amount of views (we
demonstrate a million 162 views) in complex scenes on standard
hardware. We show the benefit of our solution in several applica-
tions, including many-light global illumination [Kel97]. The major
contributions of this paper can be summarized as:

� a scene-view hierarchical representation;
� an efficient traversal method;
� a shared rendering solution; and
� many-light applications using our approach.
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2. Related Work

LOD representations can reduce the rendering workload per view.
A well-explored area, there are many surveys [DFKP05] and
books [LWC*03] on this topic, and we refer the interested reader to
this literature. Here, we will discuss only approaches closer to our
work that amortize costs over several views.

Rendering many views is naturally required for devices such
as stereoscopic displays [ABC*91]. Realistic rendering also ben-
efits from many views over time, lenses and area or volume
lights [CPC84, HA90]. For some of these problems either a small
number of views is sufficient, or they follow a certain regular pat-
tern, leading to many approaches that exploit this predictable con-
sistency [Hal98, HAM06, LES10]. Nevertheless, other scenarios
show less coherence. For example, indirect illumination requires
rendering thousands of relatively random views, making it much
harder to propose an efficient solution [HPB07].

A relatively direct way to handle visibility for many views is
the use of imperfect shadow maps [RGK*08]. Here, the scene is
sampled and the points are distributed randomly over all views. In
this way, the rendering time is independent of the number of views,
but the quality becomes increasingly worse if the sampling rate is
not increased. The approach relies on hole filling to complete sparse
images [MKC07]. A key insight is that low-resolution shadow maps
tend to work well for low-frequency indirect lighting, and even
imperfections do not necessarily create visible artefacts. We build
upon these insights to share rendering between views in our work.

Other approaches [REG*09, Chr08] produce mostly accurate ren-
derings for many views, by relying on a scene hierarchy that is tra-
versed for each view individually. While the solution is well suited
for mapping it onto the GPU [REG*09], the workload distribution
is not optimal, as each view can take a very different path through
the hierarchy. ManyLoDs [HREB11] build upon this insight and
enforce a traversal that takes one step at a time. All node-view
pairs have the same cost per iteration, making it much more effi-
cient on modern GPUs. Still, the cost remains linear in the number
of views.

To reduce the workload further, there are attempts to reduce the
number of VPLs or cluster their contributions. Lightcuts cluster
VPLs, defining a cut through a light hierarchy [WFA*05, WABG06].
The number of VPLs can also be reduced by choosing an effective
subset [GS10, REH*11]. The effect of VPLs is also the basis of ma-
trix row-column sampling (MRCS), which sparsely samples combi-
nations of senders (light sources) and receivers (scene) via shadow
maps, organized in a matrix [HPB07]. This solution can be combined
with lightcuts [OP11] and extended to animated scenes [HVAPB08],
as the sparse view evaluation by itself leads to flickering. However,
the involved matrix analysis is often too costly for real-time perfor-
mance. Furthermore, their goal is to choose a low number of good
views, while we actually consider many views.

Light culling and selection is also used by screen-space clus-
tering methods, linked to tiled shading [OA11, OBA12, HMY12].
Views are then produced for each tile instead of each light in the
form of a cube map that can be organized into a tiled virtual shadow
map, which facilitates resolution optimizations [OSK*14, OBS*15].
Nevertheless, the method is mostly limited to light gathering, as

no actual renderings are produced for the VPLs. Furthermore, the
performance gain depends on the effectiveness of the employed
resolution heuristics, which can overestimate. Tiled methods usu-
ally build upon a cutoff of the VPL influence in screen space.
However, this leads to lower quality compared to randomized sam-
pling [TH16], which benefits from higher resolution shadow maps
and a shadow map per VPL. Our solution can produce many shadow
maps and is more general in terms of view placement and the choice
of resolution.

Image-space clustering is also employed in point-based global
illumination (PBGI) [WHB*13], where tiles are repartitioned using
a k-means clustering. Assuming coherence of grouped pixels, a
baseline cut through the scene hierarchy is established per tile. This
cut is rendered into a texture, which is shared per tile. It is then
refined per cluster and new views are stored. The performance gain
lies in the incremental cut refinement [HREB11], which requires
additional memory, and the shared map. Still, sharing information
in this way can lead to artefacts if a cluster covers a large extent of
the scene and depth fusion can be incorrect. Furthermore, at least
one full traversal is performed per tile; the cost per generated view,
hence, remains linear in the number of views. Our solution handles
arbitrary views and lowers the rendering cost.

Finally, ray-space hierarchies and their traversal have been exten-
sively used in conjunction with object-space hierarchies, including
impostor placement [JWSP05], ray tracing [RAH07], potential visi-
bility sets [MBWW07], ray-packet reordering [BWB08] and coher-
ent hierarchical culling [MBJ*15]. They commonly achieve high
efficiency by addressing the double-hierarchy traversal with dif-
ferent subdivision criteria (render cost, memory cost, distance and
visibility) on the ray-object pair. Similar to our approach, CHC+RT
subdivides the ray-object pair node with the largest normalized area
in screen or object space, respectively [MBJ*15]. In contrast, we
consider both node volumes in object space, and rather than being
a heuristic, our subdivision is constrained to facilitate shared ren-
dering, as explained in Section 3.2. Furthermore, previous methods
typically render for a single view and frustum [RAH07, MBWW07,
BWB08, MBJ*15], whereas we produce full images for thousands
of viewpoints. We generate the renderings on the fly, rather than stor-
ing the association to the object hierarchy in a preprocess [JWSP05].
Here, our shared rendering leads to high efficiency in terms of both
rendering and memory costs.

3. Scalable Many-View Rendering

In this section, we present MegaViews, our solution to process mul-
tiple scene elements and views together to render images with sub-
linear performance. Figure 2 shows an overview of the algorithm.

3.1. Scene and view hierarchies

3.1.1. Scene hierarchy

We assume the scene to be provided in the form of a multi-resolution
spatial tree structure, such as an octree. Each node stores scene at-
tributes: colour (or material), position and a surface normal (or
normal cone, hierarchically grouping a set of normals). The mate-
rial property or colour is typically chosen to be the average of its

c© 2018 The Authors
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Figure 1: Indirect illumination computed from 1M animated virtual point lights (VPLs) with shadow maps of 162 resolution generated at
interactive rates (100 ms, out of 194 ms for the image in total) by our many-view rendering algorithm (a). We show shadow maps of a subset
of 2048 VPLs, for which many pixels are shared and rendered only once for multiple views (b). We highlight two close VPLs in (a) and (b),
which can share a large part of their rendering (c). We note that faraway pixels are logically shared by more views.

Applica�on (e.g., global illumina�on)

Renderings for all views

View hierarchy

Many-view renderingPair 
queue

Scene hierarchy

TopologyUnstructured views

s0

s1 s2

s3 s4 s5 s6

     while (!queue.empty())
pair = queue.pop()
if (cull(pair)) con�nue
if (equivalentView(pair))

pair.view.render(pair.scene)
else

newPairs = subdivide(pair)
queue.push(newPairs)

     for (view : viewHierarchy)
mul�PixelFill(view)

     for (view : viewHierarchy)
if (!view.isLeaf())

fuseWithChildren(view)

P00 = 
(s0,v0)

P01

P02

P11

P21

P12

P22

. . . . 
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Figure 2: Overview of our framework. Many unstructured views are organized in a hierarchy. Together with the scene hierarchy, this serves
as the input to our many-view rendering solution. It keeps a work queue, initialized with a pair of both roots, to efficiently process scene-view
node pairs in parallel. Pairs are either culled, rendered or subdivided. The resulting renderings can be applied, e.g. for global illumination.

children. For each node, a bounding volume is assumed available,
which is typically a box or bounding sphere enclosing all children.
Such scene hierarchies can be generated offline, but dynamic solu-
tions exist [CG12]. In this sense, our approach is not limited to a
static scene hierarchy, although we consider this problem orthogonal
to our approach.

3.1.2. View hierarchy

Besides a scene hierarchy, we also rely on a view hierarchy, which
groups views spatially in a tree structure. Each view node stores
attributes similar to a scene node, but the normal (view direction) is
now defined by a cone [WFA*05, JWSP05, RAH07] encompassing
the view directions of all contained cameras (Figure 3). Then, for
each node, we have vj := (pj , nj , θj , φj ), where pj is the centre of
projection, nj the viewing direction, θj half the angular extent of
the bounding cone and φj half the field of view of the frustum. If a
view is omnidirectional, we assume φj = π , and we refer to a global
variable φ if all cameras share the same opening angle. Again, we
assume bounding volumes are available for each node (the yellow
circle in Figure 3).

View node vjUnstructured views

n2

n0

n1

φ 
φ 

φ 

nj

θj

φ 

pj

n0
n1

n2 θj

Figure 3: Cone-based representation of a multi-view node.

3.1.3. Rendered-image representation

It might sound counterintuitive at first, but instead of rendering the
actual image that corresponds to each camera, we always produce
an omnidirectional map from the camera’s position. We rely on the
actual view direction to then query the relevant information from
this omnidirectional map. The globally consistent parametrization
is crucial to facilitate the shared rendering among many different
views, as each node in the view hierarchy will contain an omni-
directional map that is a partial rendering of the scene, shared by
all its children. Several options exist for view parameterization, and

c© 2018 The Authors
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Culling

     func�on cull(pair) 
vs = pair.scene.posi�on - pair.view.posi�on
α = acos(dot(pair.view.normal, normalize(vs)))
ψ = min(π, pair.view.θ + φ)
fs = sin(α - ψ) * length(vs)
return α > ψ && fs > pair.scene.radius + pair.view.radius

1:
2:
3:
4:
5:
6:

Figure 4: Pseudocode for culling with spherical bounding volumes.

we only need to impose that all views are parameterized in the
same way, including the orientation. In practice, we opted for dual
paraboloid maps [BAS02], which are the spherical expansion of a
paraboloid map [HS98]. Nevertheless, our solution can be imple-
mented with different representations and we will simply refer to
omnidirectional maps in the following.

3.2. Many-view rendering

Given the scene and view hierarchies, we concurrently traverse
them in a top-down fashion during rendering. To keep track of the
cut through the double hierarchy, we rely on scene and view node
pairsPij = (si , vj ), where si and vj are scene and view nodes in their
own hierarchies, respectively. A breadth-first traversal is employed,
maintaining a work queue of these pairs, initialized with P00 =
(s0, v0), corresponding to the roots of both hierarchies (Figure 2).

A naive traversal would subdivide pairs (by popping them from
the queue and pushing its children) when either of the nodes have
children, and renders once both nodes are leaves. This process how-
ever does not take advantage of redundancy and does not scale
well; a million scene nodes with as many views can produce a tril-
lion pairs. We therefore want to process and render for multiple
elements from both hierarchies at once, which means sharing ren-
derings among many views. Using only scene [HREB11] or view
hierarchies [WFA*05] misses a large amount of this shared infor-
mation, and cannot lead to sublinear rendering performance over
both the scene complexity and the number of views.

We improve the traversal as follows. As shown in Figure 2, for
each pair Pij = (si , vj ), we conservatively test if si would contribute
to any of the views in vj , and if not, cull it. Otherwise, if si projects
to less than a pixel for all children of vj , we verify if the rendered
result would activate the same pixel in all views of si . If so, we
render si into the omnidirectional map of vj , which is shared by
all of its children. Otherwise, we subdivide in a way favouring the
aforementioned conditions, and process the new pairs in the next
iteration. In what follows, we describe the details of our algorithm.

3.2.1. Culling

Each view will typically only see a part of the scene, which enables
us to cull scene nodes, similar to frustum culling. The test should be
conservative and light-weight to minimize any overhead. Figure 4
shows pseudocode for the case of spherical bounding volumes; see
Figure 5 for symbols.

s0

v0

v2

s1

φ 

φ 
θ2

s0

s1

s1

v1
φ 

θ1

s0

non-culled scene node
unsafe zone
misclassifica�on

culled scene node 
view node posi�on
view node bound

vs

α 
fs

ψ1= min(π,θ1+φ)

ψ0= min(π,φ)

ψ2= min(π,θ2+φ)
(a)

(b) (c)

Figure 5: Culling. For a single view (a), we can cull scene nodes
outside the view frustum. For multiple views (b), we test by virtually
enlarging the scene node bound (large green area behind misclas-
sification). Hereby, we avoid incorrect culling, as for s0. We use the
same process for nodes with an angular extent 2(θj + φ) > π (c).

For a single view, culling means ignoring a scene node if its
bounding volume lies outside the view frustum (e.g. s0 in Figure 5a).
To ensure we only cull nodes that are entirely outside the frustum, we
require α > ψ and fs (line 5) larger than the scene node’s bounding
radius (line 6); the bounding radius of a single view is zero since
it only needs to encompass a single point. The extension to other
bounding volumes is straightforward; we can either take a sphere
encompassing the bounding volume, or use a tighter bound, resulting
in a more complex computation.

For multiple views in a hierarchy node, we want to avoid an
individual test per view. While the stored normal cone conserva-
tively contains all children’s view directions, the assumption that
all centres of projection coincide with the centre of the view node’s
bounding volume can lead to misclassifications (s0 in Figure 5b).
In the worst case, child views are located on the bounding surface
with a view frustum parallel to that of the parent (the unsafe zones
in Figure 5 indicate where incorrect culling can occur). The extent
of this unsafe zone is at most equal to the view node bound radius.

To avoid misclassifications, the tests with bounding spheres can
efficiently be made conservative. We can cull as before, with the
additional requirement that fs is larger than the scene node radius
plus that of the view node (the large green area behind s0 in Figure 5
b). This addition of the view node radius is not smaller than the
extent of the unsafe zone, resulting in a conservative test (line 6).
Figure 5(c) shows that we can apply the same strategy with angular
frustum extent 2(θ2 + φ) > π .

3.2.2. Shared rendering

In addition to culling, we employ a second acceleration technique.
The idea is to avoid rendering a scene node si into each individual
view of a view node vj if the rendered result would be the same
for all children of vj . In other words, for a view node vj , we will
test if the projection of the scene node si would fill the exact same
single pixel in the omnidirectional map of each child view. If so,

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.
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Equivalent view

     func�on equivalentView(pair) 
vs = pair.scene.posi�on - pair.view.posi�on
vsConserva�veLength = max(0, length(vs) - pair.view.radius)
α = acos(abs(normalize(vs).x))
ps = projectedSize(pair, vsConserva�veLength, α)
return ps < pixelSize || (pair.scene.isLeaf() && pair.view.isLeaf())

1:
2:
3:
4:
5:
6:

Figure 6: Pseudocode for view equivalence computation for dual
paraboloid mapping and spherical bounding volumes.

projec�on sampling point
single-pixel projec�on angle
scene node projector
scene node projec�on

spherical projec�on surface
scene node bound
view node bound

(a) (b) (c)

Figure 7: Discrepancies of scene-node projections for vertical (b)
and horizontal (c) displacement of a child view against the projec-
tion for the centre of the view node (a).

we render si directly into the omnidirectional map of vi (and not
into that of its children) and remove the pair from the queue. This
technique quickly becomes effective, as distant geometry will only
have minimal parallax if views differ slightly.

Figure 6 shows pseudocode to test the view equivalence, in the
case of bounding spheres and dual paraboloid mapping. We test
for the projected size of si , which needs to be less than a pixel.
We can directly compute the projection (line 5) using the length of
vs, which is the vector from the camera to the scene node (line 2),
and the angle α between vs and the camera direction. For a dual
paraboloid parameterization with the front view looking down the
positive x-axis, α is the angle between vs and the positive or negative
x-axis, depending on whether si projects into the front or back view,
respectively (line 4). To compute the projected size (line 5), we need
to take the camera parameterization into account.

To handle a view node vj that contains multiple cameras, we need
to give a conservative upper bound on the projected size of si for all
child views in vj . Again, the individual views are not guaranteed to
be at the centre of vj ’s bounding volume. As shown in Figure 7(b),
the result is that the projected size of si can vary depending on the
child view’s displacement, with the worst case being a vertical offset
in the direction of vs. A conservative test for bounding spheres is
then to shorten the length of vs by the bound radius of vj , which
results in a larger projected size and a conservative upper bound
(line 3).

Given that the projection is smaller than a pixel (line 6), we
want to predict if it projects to the same pixel for all views in vj .
A conservative assumption is to consider any position inside of
vj ’s bounding volume as a potential view location. A horizontal
displacement towards the bound surface as in Figure 7(c) is a worst-
case scenario. When the bounding volume of si is not smaller than
that of vj , the horizontal offsetting results in filling the same pixel,
since si is sampled for all views in vj and its projection remains

Pair subdivision

     func�on subdivide(pair) 
if (pair.scene.level < pair.view.level)

for (child : pair.scene.children)
newPairs.add(createPair(pair.view, child))

else
for (child : pair.view.children)

newPairs.add(createPair(pair.scene, child))
return newPairs

1:
2:
3:
4:
5:
6:
7:
8:

Figure 8: Pseudocode for pair subdivision for octree structures.

identical (Figure 7c). Our view equivalence algorithm is therefore
valid, if we keep the view node bound at most equal to the scene
node’s. As shown in Figure 2, if the equivalence test fails, the pair
is subdivided. However, this is only possible when one of the scene
and view nodes is not a leaf, which we confirm on line 6.

3.2.3. Pair subdivision

Whenever a scene-view pair Pij = (si , vj ) is taken from the queue
and a subdivision is required, it is not obvious whether to descend
into the scene hierarchy from si or into the view hierarchy from vj .
Always subdividing the scene node first would negate the benefits
of the scene hierarchy, while first subdividing the view node reduces
the approach to a scene-only hierarchy. To benefit from our double
hierarchy, we instead opt for a strategy that allows us to optimize
for shared rendering.

To validate our aforementioned determination of view equiva-
lence, our subdivision strategy compares the node bounds. If the
smallest bounding volume of the children of si is smaller than that
of vi , we subdivide vi . Otherwise, we subdivide si . In other words,
the view node’s bounding volume is always ensured to be smaller
than or equal to that of the scene node. For two identical octree
structures encoding the view and scene hierarchies, this strategy
results in an alternating subdivision; see Figure 8 for pseudocode.

3.2.4. Multi-pixel filling for nearby geometry

Our view equivalence test ensures that most rendered scene nodes
project to less than a pixel. However, a pair of leaf nodes cannot
be subdivided further, forcing us to potentially falsely report equiv-
alence (line 6 in Figure 6). If a leaf node is very close, it might
project to an area larger than a single pixel, especially when us-
ing high-resolution renderings. If the view node represents multiple
views, the projection of the scene node can then potentially differ.
Consequently, we would need to render the scene nodes into each
view individually. While this degrades performance, it is relatively
uncommon; in practice, it occurs for < 5% of the rendered pairs
and only for scene nodes in direct proximity. We observe no real
perceivable difference when rendering into the leaf node rather than
the individual views, as long as we fill all pixels the scene node
projects to.

We could fill the pixels one by one. However, mipmap splat-
ting [LH13] is more efficient. Here, render targets are defined in
multiple levels of coarser resolutions. Whenever a scene node pro-
jection is larger than a pixel, we splat it into a higher mipmap level.

c© 2018 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.
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L0

L1

L2
L3L4 ...

L0

L1

L2 L3L4 ...(a) (b)

Figure 9: Multi-level point-only renderings at a 2562 resolution for
a single view (a) using mipmap-based hole filling (b).

If desired, we can postprocess each map after rendering by pushing
the higher level pixels down to the lower levels, which is a push-only
application of a pull-push synthesis [SKE06, RGK*08] (Figure 9).

3.2.5. Image queries

After the entire rendering is completed, we can query any pixel of
any view in the scene. To this extent, we first map the pixel of the
view to its corresponding pixel in the omnidirectional map. Then,
we descend the view hierarchy from the root and look up the values

in this location in each view node’s map. The last encountered non-
empty value corresponds to the wanted pixel value.

If many queries are performed, it can be beneficial to perform
a fusion of the omnidirectional maps to produce a complete image
per single view. To this extent, it is sufficient to perform a top-down
processing, where the pixel values of the parent node are fused with
the map of the child nodes, which means that we fill up holes in
the child map with the content of the parent map. Ultimately, this
process results in a completely filled image for each leaf view.

Finally, some applications, like shadow mapping, require depth
information. Initially, we use the distance to the centre of vj as the
depth value for its omnidirectional map. If we query an individual
view v, there would then be a small discrepancy with regard to
the actual depth value. This difference is easily rectified during the
fusion step by taking the actual positions of v and vj into account.

4. Results

We implemented our solution entirely on the GPU using the OpenGL
API, with no CPU–GPU communication at runtime. We tested it on
a GeForce GTX 1080 Ti at a 1920 × 1080 resolution. We made use
of sparse voxel octrees with 11 levels for both hierarchies. We use
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Figure 10: View render timings for four scenes against the number of views (a). We compare our method to not using a view hierarchy
(ManyLoDs [HREB11]). To test two distributions of views, we initialized the view set as 1- and 4-bounce VPLs. Additionally, a brute-force
sequential rasterization without any hierarchy is presented. Dotted lines represent an extrapolation for missing data due to memory limitations
on the pair queue. Data labels denote the average number of single views that share a scene node rendering in (a). We break down the results
for individual components of our method (b) and ManyLoDs (c), and show our GPU memory consumption (d) and that for ManyLoDs (e).
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Single-bounce VPLs Randomly in space

Figure 11: Different distributions of 64K views in the Sponza
scene.

bounding sphere volumes encompassing the cubical voxels for our
culling and view equivalence computation. Further, we use a 162

resolution for single views. At this resolution, multi-pixel filling is
not necessary in practice and therefore excluded in timings except
when specifically mentioned. Fusion is always enabled, however.

The scene SVO is generated in a few seconds with an unoptimized
depth peeling preprocess [KSA13], which builds the hierarchy down
to the specified maximum depth of 11 levels. We consider more
efficient voxelization an orthogonal problem. Using advanced solu-
tions [ED06, SS10, CG12] would significantly reduce construction
time and could even enable animated scenes, since our many-view
rendering does not rely on any pre-computation on the hierarchies.

We construct the view hierarchy each frame and support fully
dynamic lights. After initialization with a root node, the view hi-
erarchy is generated from a set of single views. For each view, we
refine the tree down to the deepest level, such that it ends up in a
leaf node. We count the number of views per leaf node, which is
used to construct an offset into a global array, containing all infor-
mation about single views. We then compute view node attributes in
a bottom-up fashion, after which the global array can be discarded.

4.1. Many-view rendering performance and memory

We tested four scenes: Sponza (Figure 1, 6M leaf nodes), Sibenik
(Figure 13, 3.1M leaf nodes), Hairball (Figure 14, 6.9M leaf nodes)
and San Miguel (Figure 17, 1.6M leaf nodes). As indicated in Sec-
tion 3, the views are rendered using an omnidirectional map with
the same coordinate system regardless of the view direction. We
tested two different view distributions of up to 1M views. The first
are 1M VPLs generated directly from the light source, the second
are 4-bounce VPLs. Here, 256K VPLs were released from the light
and bounced three times, leaving one VPL behind at each bounce
and at the final impact point, storing their propagated radiance as
attributes. Each VPL has a hemispherical frustum (φ = π/2), which
is taken into account for our culling.

4.1.1. Total timings

We compare to ManyLoDs [HREB11] and a brute-force rasteriza-
tion (not relying on any hierarchies) in Figure 10(a). We also tested
a solution with a view hierarchy but no scene hierarchy. Here, com-
putation times became unfeasible as soon as more than a hundred
views were used. Other previous work operates in screen space, or
focuses on ray tracing or visibility processing instead of generating
complete views, preventing a direct comparison. Since ManyLoDs

suffer from high memory consumption, we extrapolate data where
memory grew out of bounds, denoted by the dotted lines.

Our approach achieves sublinear performance in all scenes,
whereas the competing method shows a clearly worse scalabil-
ity with respect to the number of views. For a million views, our
solution outperforms ManyLoDs by roughly an order of magnitude
on average. Single-bounce VPLs in close proximity of a smaller
part of the scene, like in the Sponza and San Miguel scenes, have
a high correlation and result in the largest speedup. We can see a
clear link between performance and the degree of shared rendering;
we show the average number of views that share a single rendered
scene node as data labels for 128K , 256K , 512K and 1M VPLs.
The only exception is the Hairball scene, which has slightly better
performance for 4-bounce VPLs due to light rays leaving the scene.

As we can already partly see from the Hairball scene, in the worst
case, views are distributed more uniformly in space, reducing the
coherence. We show an extreme case for the Sponza scene in Fig-
ure 11, where the random distribution here results in rendering times
a factor of four slower than those for single-bounce VPLs. Still,
we observe sublinear performance as we scale up to many views.
Naturally, if the number of views is sufficiently reduced, we lose
opportunities for shared rendering, which causes our performance
to roughly match that of ManyLoDs for VPL numbers below 2048.

4.1.2. Individual analysis

We break up our timings into individual components for single-
bounce VPLs in Figures 10(b) (ours) and 10(c) (ManyLoDs). Sub-
division relatively takes up a lot of time due to the writing of new
pairs to memory. However, its performance is greatly improved in
comparison to ManyLoDs thanks to our shared rendering. We splat
the scene nodes of valid pairs into the corresponding renderings,
which are subsequently fused down to the leaf views. While fu-
sion adds a significant overhead, querying without it is an order of
magnitude slower, since each query visits a number of potentially
sparse renderings up to the hierarchy depth. For VPLs, querying is
often a bottleneck, which makes fusion a valuable option. We in-
clude the hole filling to show the behaviour of all components, with
data labels denoting the total rendering time. We show the merit of
our culling by displaying the overhead if it were to be disabled. In
our tests, culling reduces the frame time by 20% at most. In cases
such as the Hairball scene, where each VPL on the wall potentially
sees the entire scene, culling provides only little gain, but our tests
never indicated a negative impact. In these scenarios, the speedup is
mostly due to our double-hierarchy traversal and shared rendering.
Finally, we show the performance for our view hierarchy generation
in Figure 10(b), which includes VPL placement.

4.1.3. Memory consumption

We identify four major components that consume GPU memory
during runtime; Figures 10(d) (ours) and 10(e) (ManyLoDs) show
their memory uses for single-bounce VPLs, with the combined us-
age denoted by data labels. The pair queue that is kept for the
double-hierarchy traversal contains 64 bits per pair, and we report
the peak memory usage. For the rendered images themselves, we

c© 2018 The Authors
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look at fused 162 shadow maps with 32-bit depth values. For our
method, the unfused renderings associated with non-leaf view nodes
can be discarded after fusion. The scene and view hierarchies con-
tain 512 and 256 bits of information for non-leaf and leaf nodes,
respectively. We report their combined memory use, since the view
hierarchy’s consumption is typically negligible compared to that of
the scene. For ManyLoDs, we report the sum of the scene hierarchy
and individual view information, with 256 bits per view. Thanks to
our early subdivision termination due to shared rendering, we can
keep the pair queue memory usage to a minimum, while our hier-
archy reduces the number of views for which we need to produce
a shadow map. Without any further optimization, we again note on
average an order of magnitude of memory reduction, with sublinear
scalability with respect to the number of views.

4.2. Multi-pass many-view rendering

Our previous experiments showed that our MegaViews far outper-
form ManyLoDs for low-resolution renderings. To assess the scala-
bility of our solution, we investigate performance and memory usage
for higher resolutions. However, memory usage easily grows beyond
hardware limitations. To be able to evaluate performance without
overflow, we devise a multi-pass solution similar to [RAH07].

For our method, we effectively split the work into eight sequen-
tial sub-jobs on the octree structures, taking each of the view root’s
child nodes separately as starting points for our double-hierarchy
traversal. If this still proves to be insufficient, we split the chil-
dren again, until we reach a level (which we call the multi-pass
level) at which the pair queue fits into memory. For ManyLoDs to
roughly match our algorithm, we define a multi-pass level as subdi-
viding the unordered set of individual views into eight equal-sized
parts to be treated sequentially. While the work subdivisions can be
different for both methods, we observe no major change in perfor-
mance for different subdivision schemes, so that a comparison is still
valid.

4.2.1. Total timings

In Figure 12, we compare our method to ManyLoDs, much in the
spirit of Figure 10, using the multi-pass solution for higher render-
ing resolutions. We use 1M 1- and 4-bounce VPLs. Here, we always
enable hole filling, which is necessary for the higher resolutions. As
we can see in Figure 12a, after a small constant overhead, frame
times roughly quadruple for a doubled resolution for both meth-
ods, corresponding to the increase in pixels. We do note a slight
increase of the multiplication factor for our approach in most cases,
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Figure 12: View render timings for four scenes against the rendering resolution (a). We compare our method to not using a view hierarchy
(ManyLoDs [HREB11]). Again, we initialized the view set as 1- and 4-bounce VPLs. Data labels denote the average number of single
views that share a scene node rendering in (a). We break down the results for individual components of our method (b) and ManyLoDs (c),
additionally showing the multi-pass levels as data labels, and show our GPU memory consumption (d) and that for ManyLoDs (e).
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Figure 13: Effect of hierarchy resolution in the Sibenik scene. While the shadow map rendering cost is significantly reduced, using a too low
hierarchy resolution causes inaccurate shadow maps, resulting in missed or exaggerated occlusions and artefacts.
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Figure 14: Effect of shadow map resolution in the Hairball scene.

since there is no shared rendering possible between different passes.
Noting the logarithmic scale, however, we still clearly outperform
ManyLoDs, and at a degree only slightly less than what we observed
for a 162 resolution. The reduced effectiveness stems from the de-
creased shared rendering, which we denote again by data labels for
resolutions of 322, 642, 1282 and 2562.

4.2.2. Individual analysis

Figures 12(b) (ours) and 12(c) (ManyLoDs) show the individual
timings for single-bounce VPLs. We show total frame times, and
multi-pass levels for subdivided view sets as data labels.

4.2.3. Memory consumption

Figures 12(d) (ours) and 12(e) (ManyLoDs) show memory con-
sumption in a logarithmic scale. The fluctuations we see at low
resolutions are caused by the pair queue’s peak memory decreasing
as the multi-pass level increases. While we use significantly less

memory than ManyLoDs, due to the renderings, in-core storage be-
comes infeasible. Therefore, results need to be written to the disk,
or queried on the fly. For instance, VPL gathering can be done for
those in the current subdivision, after which the results of each pass
are composited. Note that all techniques producing high-resolution
renderings for 1M views face this problem.

5. Applications

Our algorithm is general but particularly well suited for low-
resolution views or an extreme amount of views, as the amount
of shared information increases. For this reason, real-time global
illumination techniques are a very good test case for our solution.

5.1. Instant radiosity

We rely on our MegaViews approach to generate shadow maps for
many VPLs, but producing a final image still requires gathering
the VPL contributions for each screen pixel. Recovering all con-
tributions would be too costly for an interactive application. For-
tunately, our algorithm enables an acceleration. We can apply our
culling during the gathering step as well. For this traversal, we stop
at a coarse level in the hierarchies, and cull pairs as before. Ad-
ditionally, we enable an optional distance-based cutoff to prevent
gathering from distant, often negligible VPLs, which is a common
approximation [OBS*15]. This test can be conveniently accelerated
using the view hierarchy by culling faraway view nodes.

For interactive performance, we employ a per-pixel random
subsampling of the VPLs, after which we apply a cross-bilateral
filter [ED04, PSA*04, MML12], which generates smooth results
due to the very large number of VPLs that we sample from.

We illustrate the effect of reducing the resolution of both hier-
archies for the Sibenik scene in Figure 13, while maintaining 64K
4-bounce VPLs. Reducing from 11 to only 8 levels speeds up shadow
map (SM) rendering from 31 ms to 7 ms due to the faster hierarchy
traversal. Nevertheless, the resulting shadow maps lose precision,
which translates to missed or exaggerated occlusions. Consequently,

c© 2018 The Authors
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Figure 15: Effect of shadow map resolution in the Sibenik scene.
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Figure 16: Hierarchical culling in VPL gathering. By only sam-
pling from non-culled VPLs, noise is significantly reduced.

artefacts start to appear, stemming from the increased number (15
times more) of scene leaf nodes that project to more than a pixel
for view leaf nodes containing multiple individual views. These
potentially introduce errors, as discussed in Section 3.2.4.

The effect of changing the shadow map resolution is shown for
the Hairball scene in Figure 14, where we compare a 162 resolu-
tion for 64K single-bounce VPLs to a 10242 resolution. For the
latter, an equal-time comparison results in 18 VPLs. Such a small
amount of views cannot deliver a convincing quality. Low-resolution
shadow maps are very fast to compute, and can still deliver good
quality, as the light energy is distributed across many VPLs. How-
ever, we do see some over-estimation of occlusion due to the lower
precision of the shadow maps. We show an structural similarity
(SSIM) [WBSS04] and peak signal-to-noise ratio (PSNR) compar-
ison to a reference solution, and absolute difference images. These
shortcomings are not due to our method, but are shared by all VPL-
based solutions when relying on low-resolution shadow maps.

Low resolutions work relatively well for the Hairball scene, with
its large indirect shadow. However, in the presence of indirect shad-
ows cast by thinner geometry, such as the pillars in the Sibenik scene,

very low resolutions may fail to sufficiently capture the details. As
shown for 8K single-bounce VPLs in Figure 15, this can result in
over-estimating the indirect shadow for an unfortunate placement
of the light source. Here, a resolution of 642 produces much better
results, as illustrated by the comparison. As we have demonstrated
in Section 4.2, our algorithm still easily outperforms ManyLoDs
under these resolutions. We also show a direct visual comparison to
ManyLoDs. Our method is only slightly more prone to errors due to
the aforementioned scene leaf nodes projecting to more than a pixel.
As expected, it has more impact for nearby geometry, as we can see
from the indirect shadow of the closest pillar in the difference im-
ages. Furthermore, for low resolutions in particular, the grouping
of VPLs in a leaf node can produce discrepancies when compared
to ManyLoDs. However, grouping geometry in a scene leaf node,
which is employed by both methods, is an approximation of the
same magnitude, since both hierarchies use the same resolution.
Indeed, it does not make our results look less plausible.

We also evaluate our culling and the distance-based cut-off during
gathering. Here, we use 64 random samples per pixel from 1M
single-bounce VPLs for the Sponza scene, which were all rendered
using our solution. We can eliminate on average 94% of the leaf
view nodes during our concurrent traversal up to a hierarchy level
of 6. Consequently, mostly samples are used that in fact contribute to
a pixel’s indirect illumination. This significantly reduces the noise,
as becomes apparent from the comparison in Figure 16.

5.2. Glowing particles

Similar to instant radiosity, we can perform many-light rendering.
Again, we build the view hierarchy on the lights each frame to
enable animation. Our many-view rendering enables us to efficiently
approximate visibility for many light sources, which results in higher
realism compared to not evaluating the resulting shadow maps.

We show results for glowing particles in Figure 17. Since they
represent omnidirectional lights, each node’s view frustum is now a
complete sphere, making it impossible to use culling. Additionally,
since the particles are randomly distributed in space, performance
is reduced compared to VPLs, since there is less coherence. In fact,
this is a worst-case scenario for our approach. In the San Miguel
scene, our solution requires 21 and 184 ms for rendering shadow
maps for 4K and 64K particles, respectively. Still, our approach
is nearly twice as fast as ManyLoDs for 64K views, with better
scaling as we increase the number of glowing particles.

6. Discussion and Limitations

Our method scales well with the amount of views and scene nodes.
We presented sublinear performance for both dimensions, which
makes our solution very effective and future oriented. Several
applications could benefit from our solution. We presented indi-
rect illumination using our method, but other examples, such as
visibility for crowd simulation, fast collision detection or reflec-
tions via cube maps are also possible applications. Our method is
relatively easy to implement and can be entirely executed on mod-
ern graphics hardware in an efficient manner, since our hierarchy

c© 2018 The Authors
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125 ms total
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Figure 17: Examples of glowing-particle rendering without (left)
and with (right) shadows. By simply setting the view volume to a
sphere, we can render shadow maps for glowing particles.

traversal ensures just one operation per thread: culling, rendering or
subdivision.

A limiting factor of our approach is memory consumption. While
we already reduce the pair queue size using our multi-pass solution at
a small decrease in performance, the other components can also take
up a lot of memory. The renderings themselves can be compressed
using texture compression, sparse-texture extensions (typically 30%
of the fused maps are non-filled even for a spherical frustum) or,
in the case of shadow maps, precision reduction; our 32-bit depth
values can be reduced to 16 bits. When using SVOs, the scene hier-
archy can be compressed using directed acyclic graphs [DKB*16,
DSKA17], while the view hierarchy overhead is typically negligible,
since it is a sparse subset of the scene hierarchy.

As for micro-rendering solutions, choosing a low resolution can
lead to aliasing and occlusions can be overestimated (e.g. sub-pixel
objects still fill entire pixels). One remedy is to increase resolu-
tion, but it results in additional compute time. While our approach
scales linearly in resolution, adequate anti-aliasing solutions are an
interesting avenue for future work. Similarly, the resolution of the
hierarchies needs to be carefully chosen to find an acceptable trade-
off between visual quality, and requirements on performance and
memory. In our experiments, we could no longer perceive any visual
difference for hierarchy resolutions above 11 levels.

Furthermore, as in all VPL approaches, temporal coherence is
an interesting factor. It is possible to reuse information over time
if scene and view changes are insignificant. Our shared rendering
solution seems like a good starting point by keeping high-level
omnidirectional maps in the hierarchy stable over several frames.

Our approach is compatible with a different parametrization of
the omnidirectional maps. Our choice was inspired by its usefulness
in an instant radiosity context. An interesting direction would be
adaptively controlling the resolution based on the image content.

7. Conclusion

We have presented MegaViews, a scalable algorithm to efficiently
render complex scenes from a very large number of viewpoints.
Our concurrent traversal on both scene and view hierarchies

enables shared rendering and early culling. Consequently, we reach
sublinear performance over the scene complexity and the amount
of views. Our algorithm is general enough to be applied to many
multi-view problems, and fits well with real-time many-light ren-
dering. For future work, we want to exploit coherence in ani-
mation. A first solution could reuse cuts from previous frames
[HREB11].
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WALTER B., NOVÁK J.: Scalable realistic rendering with many-light
methods. Computer Graphics Forum 33, 1 (2014), 88–104.

[DSKA17] DOLONIUS D., SINTORN E., KÄMPE V., ASSARSSON
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