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1. Introduction

Over the past 15 years, fruitful analogies between graphs and algebraic curves have 
been established, building on the seminal paper of Baker and Norine [5]. In that paper, 
the authors proved a version of the Riemann–Roch theorem for divisors on a finite graph, 
and showed that their result is closely related to the combinatorial theory of chip-firing 
games (e.g. [7,6]). The paper of Baker and Norine, together with another paper by Baker 
[3], have led to a flurry of research into the interplay between graphs and curves, leading 
to new problems and results in combinatorics and to new combinatorial techniques in 
geometry (e.g. a combinatorial proof of the Brill–Noether theorem, [10]).

In [3], Baker posed a number of open problems in the theory of divisors on graphs. All 
but two of these have since been solved; see [19,20,10,14]. The first and most important 
remaining open problem is the Brill–Noether conjecture for finite graphs [3, Conj. 3.9(1)], 
based on an analogous result for curves. We focus on the r = 1 case of this conjecture. 
Let dgonr(G) denote the smallest degree of a rank r divisor on G, and let dgon(G) :=
dgon1(G) denote the divisorial gonality of G (see §2 for definitions). Then the r = 1 case 
of the Brill–Noether conjecture can be stated as follows.

Conjecture 1.1 (Gonality conjecture, [3, Conjecture 3.10(1)]). Let G be a connected loop-
less multigraph, and let g := |E(G)| − |V (G)| + 1 denote its cyclomatic number. Then 
dgon(G) ≤ � g+3

2 �.

The corresponding result for metric graphs was proven by Baker [3, Thm. 3.12] using 
algebraic geometry. A purely combinatorial proof of this result was recently found by 
Draisma and Vargas [14], with many promising avenues still to be explored [15]. However, 
for discrete graphs, Conjecture 1.1 is still wide open.1 Partial results were obtained by 
Atanasov and Ranganathan [2], who proved Conjecture 1.1 for all graphs of genus at 
most 5, and by Aidun and Morrison [1], who proved the conjecture for Cartesian product 
graphs.

The most straightforward approach to Conjecture 1.1 would be to show that the 
divisorial gonality of a graph is equal to the divisorial gonality of the associated metric 
graph with unit lengths. This is the second remaining conjecture of Baker’s paper [3, 
Conj. 3.14]. Given a multigraph G and an integer k ≥ 1, let σk(G) denote the multigraph 
obtained from G by subdividing every edge into k parts. The conjecture can then be 
stated as follows.

Conjecture 1.2 ([3, Conjecture 3.14]). Let G be a connected loopless multigraph, let Γ(G)
be the corresponding metric graph with unit edge lengths, and let r ≥ 1. Then:

1 A proof of Conjecture 1.1 (and more generally [3, Conj. 3.9(1)]) was given by Caporaso [9, Thm. 6.3], but 
a gap in this proof was later pointed out by Sam Payne and reported by Baker and Jensen in [4, Rmk. 4.8 
and footnote 5]. To our knowledge, this has not been repaired.
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(a) dgonr(G) = dgonr(σk(G)) for all k ≥ 1;
(b) dgonr(Γ(G)) = dgonr(G).

The first main result of this paper is that Conjecture 1.2(a) and Conjecture 1.2(b) are 
equivalent for every graph G.

Theorem 1.3. For every connected loopless multigraph G and every integer r ≥ 1, one 
has

dgonr(Γ(G)) = min
k∈N1

dgonr(σk(G)).

A partial result in this direction was already implicit in the work of Gathmann and 
Kerber [17, Prop. 3.1] (see Theorem 3.3(a) below), but to our knowledge Theorem 1.3 is 
new. Moreover, we use a different proof technique, which can be used to give an upper 
bound on the number of subdivisions needed to get equality (see Remark 3.7).

The proof runs roughly as follows. It is already known that every rank r divisor 
on σk(G) also defines a rank r divisor on Γ(G). For the converse, we show that every 
rank r divisor D on Γ(G) can be “rounded” to a nearby divisor D′ with rank(D′) ≥ r

which is supported on the Q-points of Γ(G), and therefore on the points of some regular 
subdivision σk(G). The details will be given in §3.

As pointed out by Baker in [3], a positive answer to Conjecture 1.2 would also yield a 
positive answer to Conjecture 1.1. However, it turns out that the subdivision conjecture 
fails, and we give a counterexample to Conjecture 1.2(a) in the case r = 1 and k = 2. 
Evidently this is also a counterexample to Conjecture 1.2(b). The second main result of 
this paper is the following.

Theorem 1.4. For every integer k ≥ 1, there exists a connected loopless multigraph Gk

such that dgon(Gk) = 6k and dgon(Γ(Gk)) = dgon(σ2(Gk)) = 5k. Furthermore, Gk can 
be chosen simple and bipartite.

The proof is constructive and consists of two parts. In §4, we construct a family of 
graphs with dgon(G) = 6 and dgon(Γ(G)) = dgon(σ2(G)) = 5. The graphs Gk are then 
constructed in §5 by combining k of these graphs in a certain way.

Although the difference between dgon(G) and dgon(Γ(G)) can be large, as in Theo-
rem 1.4, the ratio between them is at most 2, as we show in Proposition 5.3. Hence, for 
the gap to get arbitrarily large, it is necessary that dgon(Γ(G)) goes to infinity.

In §6, we list a few additional counterexamples (without proof), including a 3-regular 
graph. Although all counterexamples in this paper violate Conjecture 1.2, they never-
theless satisfy the Brill–Noether bound. We do not know whether any of these examples 
can be extended to disprove Conjecture 1.1. Additional open problems are discussed in 
§6 as well.
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2. Preliminaries

Throughout this paper, a graph will be a finite, connected, loopless multigraph. In 
other words, parallel edges are allowed, but self-loops are not.

2.1. Divisors on graphs

A divisor on a graph G is an element of the free abelian group on G. In other words, 
a divisor is a formal sum 

∑
v∈V (G) avv, where av ∈ Z for all v. If D is a divisor on G

and if w ∈ V (G), then we use the notation D(w) to denote the coefficient aw of w in D. 
The support supp(D) of a divisor D is the set of all v for which D(v) �= 0.

For two divisors D and D′, we write D ≥ D′ if D(v) ≥ D′(v) for all v. A divisor D
is called effective if D ≥ 0. The sets of all divisors and all effective divisors on G are 
denoted by Div(G) and Div+(G), respectively.

The degree of a divisor is the sum of its coefficients: deg(D) :=
∑

v∈V (G) D(v). The 

set of all effective divisors of degree d on G is denoted Divd
+(G).

The Laplacian matrix LG of G defines a map ZV (G) → Div(G), x 	→ LGx. Divisors 
in the image of this map are called principal divisors. Two divisors D, D′ ∈ Div(G) are 
equivalent if D −D′ is a principal divisor.

Equivalence of divisors can also be described in terms of the following chip-firing 
game. An effective divisor D is interpreted as a distribution of chips over the vertices of 
G, where D(v) is the number of chips on v. A subset A ⊆ V (G) is valid (with respect to 
D) if D(v) ≥ |{uv ∈ E(G) | u /∈ A}| for all v ∈ A. If A is valid, then to fire A is to move 
chips from A to V (G) \A, one for every edge of the cut (A, V (G) \A). This yields a new 
divisor D′ given by D′ = D − LG1A, where 1A is the characteristic vector of A. Since 
A is valid, this new divisor D′ is again effective. All equivalent effective divisors can be 
reached in this way:

Proposition 2.1 ([12, Lem. 2.3]). Let D, D′ be equivalent effective divisors. Then D′ can 
be obtained from D by subsequently firing an increasing sequence of valid subsets

∅ � U1 ⊆ U2 ⊆ · · · ⊆ Uk � V.

The rank of a divisor D ∈ Div(G) is defined as

rank(D) := max{k ∈ Z | D−E is equivalent to an effective divisor for all E ∈ Divk
+(G)}.

We have rank(D) = −1 if and only if D is not equivalent to an effective divisor.
Given a graph G and an integer r ≥ 1, the r-th (divisorial) gonality dgonr(G) of G

is the minimum degree of a rank r divisor on G. For r = 1, this is simply called the
(divisorial) gonality of G: dgon(G) := dgon1(G).
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Input : A triple (G, D, q), where G is a graph, D ∈ Div+(G), and q ∈ V (G).
Output : The maximal valid subset A ⊆ V (G) \ {q}.

1 Burn vertex q;
2 Burn all edges incident with burned vertices;
3 If a vertex v is incident with more burned edges than it has chips, burn v;
4 Repeat steps 2 and 3 until no more edges or vertices are burned;
5 return {v ∈ V (G) | v is not burned}

Algorithm 1: Dhar’s burning algorithm for finite graphs.

2.2. Reduced divisors and Dhar’s burning algorithm

Let G be a graph, and let q ∈ V (G). A divisor D ∈ Div(G) is called q-reduced if 
D(v) ≥ 0 for all v ∈ V (G) \ {q} and every non-empty valid set contains q. Every divisor 
D is equivalent to a unique q-reduced divisor; see [5, Prop. 3.1]. A divisor D has rank at 
least 1 if and only if for every vertex v, the v-reduced divisor Dv equivalent to D has at 
least one chip on v.

Dhar’s burning algorithm [11], given in Algorithm 1, takes as input a graph G, a divisor 
D and a vertex q, and returns the maximal valid set A ⊆ V (G) \ {q}. In particular, the 
set A returned by Dhar’s burning algorithm is empty if and only if D is q-reduced.

2.3. Metric graphs

A metric graph is a metric space Γ that can be obtained in the following way. Let G
be a finite multigraph and let � : E(G) → R>0 be an assignment of lengths to the edges 
of G. To construct Γ, take an interval [0, �(e)] for every edge e ∈ E(G), and glue these 
together at the endpoints as prescribed by G. To turn it into a metric space, equip Γ
with the shortest path metric in the obvious way. The metric graph Γ defined in this way 
will be denoted Γ(G, �). If � = 1 is the unit length function, we write Γ(G) := Γ(G, 1).

If the metric graph Γ is constructed from the pair (G, �) as above, then we say that 
(G, �) is a model of Γ. We say that a model (G, �) is loopless (resp. simple) if G is loopless 
(resp. simple). The valency val(v) of v ∈ Γ is the number of edges incident with v in any 
loopless model (G, �) with v ∈ V (G).

A divisor on a metric graph Γ is an element of the free abelian group on Γ. In other 
words, a divisor is a formal sum 

∑
v∈Γ avv where av ∈ Z for all v, and av = 0 for all but 

finitely many v. The notations supp(D), deg(D), D ≥ D′, Div(Γ), Div+(Γ) and Divd
+(Γ)

are defined analogously to the discrete case.
The definition of equivalence is a bit different. A rational function on Γ is a continuous 

piecewise linear function f : Γ → R with integral slopes. For each point v ∈ Γ, let av be 
the sum of the outgoing slopes of f in all edges incident with v in some appropriate model 
of Γ. The corresponding divisor 

∑
v∈Γ avv is called a principal divisor. Two divisors D

and D′ are equivalent if D −D′ is a principal divisor.
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The rank of a divisor D ∈ Div(Γ) is defined as in the discrete case; that is:

rank(D) := max{k ∈ Z | D−E is equivalent to an effective divisor for all E ∈ Divk
+(Γ)}.

The r-th (divisorial) gonality dgonr(Γ) of Γ is the minimum degree of a rank r divisor 
on Γ. For r = 1, this is simply called the (divisorial) gonality of Γ: dgon(Γ) := dgon1(Γ).

If G is a finite graph and if Γ := Γ(G) is the corresponding metric graph with 
unit lengths, then two divisors D, D′ ∈ Div(G) are equivalent on G if and only 
if they are equivalent on Γ; see [3, Rmk. 1.3]. Furthermore, in this case one has 
rankG(D) = rankΓ(D) for every divisor D ∈ Div(G); see [19, Thm. 1.3].

2.4. Rank-determining sets and strong separators

Let Γ be a metric graph, and let S ⊆ Γ be a subset. Following [20], we define the 
S-restricted rank of a divisor D ∈ Div(Γ) as

rankS(D) := max{k | D −E is equivalent to an effective divisor for all E ∈ Divk
+(S)},

where Divk
+(S) is the set of degree k effective divisors whose support is contained in S. 

The set S is rank-determining if rankS(D) = rank(D) for all D ∈ Div(Γ). The following 
theorems are due to Luo.

Theorem 2.2 ([20, Thm. 1.6]; see also [19, Thm. 1.7]). Let Γ be a metric graph, and let 
(G, �) be a loopless model of Γ. Then the set V (G) ⊆ Γ is rank-determining.

Theorem 2.3 ([20, Thm. 1.10]). Let Γ, Γ′ be metric graphs, and let φ : Γ → Γ′ be a 
homeomorphism. Then A ⊆ Γ is rank-determining if and only if φ[A] ⊆ Γ′ is rank-
determining.

We also formulate a discrete analogue of Theorem 2.2 for the case r = 1. If G is a 
graph, then we say that a divisor D ∈ Div(G) reaches the vertex v ∈ V (G) if there is 
an effective divisor D′ equivalent to D with D′(v) > 0. Furthermore, we say that a set 
S ⊆ V (G) is a strong separator if for every connected component C of V (G) \S we have 
that C is a tree and for every s ∈ S there is at most one edge (in G) between C and s.

Theorem 2.4 ([12, Lem. 2.6]). Let G be a graph, and let S ⊆ V (G) be a strong separator. 
If D ∈ Div(G) reaches every s ∈ S, then rank(D) ≥ 1.

The following corollary is immediate from either Theorem 2.2 or Theorem 2.4.

Corollary 2.5. Let G be a loopless multigraph, and let H be a subdivision of G. If D ∈
Div(H) reaches all vertices of V (G), then rank(D) ≥ 1.
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v1 v2 v3
Γ:

v1 v2 v3
Γ′:

Fig. 1. A metric graph Γ = Γ(G, �) and a rescaling Γ′ = Γ(G, �′) with �′ �= � such that Γ and Γ′ are isometric.

3. Equivalence of the two forms of Conjecture 1.2

In this section, we prove Theorem 1.3 using a modification of the proof of [12, 
Thm. 5.1]. The main idea is the following: given a rank r divisor D on the metric 
graph Γ(G), we will change the lengths of the edges between points in V (G) ∪ supp(D)
in such a way that supp(D) is moved to the Q-points of the graph, all the while leaving 
the rank of D and the distances between the vertices of G unchanged. We will now make 
this precise.

Definition 3.1. Given a metric graph Γ and a model (G, �) of Γ, a G-rescaling of Γ is a 
metric graph Γ′ := Γ(G, �′), where �′ ∈ RE(G)

>0 is another length vector. If D ∈ Div(Γ)
with supp(D) ⊆ V (G), then D defines a divisor D′ ∈ Div(Γ′) in the obvious way, which 
we call the G-rescaling of D.

We point out that Γ and its G-rescaling Γ′ can be isometric even if � �= �′. This is 
because vertices of degree 2 can be moved around, as illustrated in Fig. 1. In that case 
the vertex set V (G) is embedded into Γ ∼= Γ′ in two different ways, and the divisor D
and its G-rescaling D′ could be different divisors on the same metric graph. This will be 
the main tool in our proof of Theorem 1.3.

To rescale from real to rational edge lengths we use the following lemma.

Lemma 3.2. Let A ∈ Qm×n and b ∈ Qm. If the linear system Ax = b has a solution 
x ∈ Rn

>0, then it also has a solution x′ ∈ Qn
>0.

Proof. Since the system has a solution x ∈ R>0, the solution space {z | Az = b} is a 
non-empty affine Q-subspace of Rn. Choose an affine rational basis y0, . . . , yd ∈ Qn for 
the solution space and write x = α(0)y0 + · · · + α(d)yd with α(0) + · · · + α(d) = 1. For 
every i ∈ {1, . . . , d}, choose a rational sequence {α(i)

k }∞k=1 such that limk→∞ α
(i)
k = α(i), 

and define α(0)
k := 1 −α

(1)
k −· · ·−α

(d)
k . Then limk→∞ α

(0)
k y0 + · · ·+α

(d)
k yd = x. Since Rn

>0
is an open neighbourhood of x, there is a K0 ∈ N such that α(0)

k y0 + · · ·+ α
(d)
k yd ∈ Rn

>0
for all k ≥ K0. This gives a sequence of solutions in Qn

>0 converging to x. �
We now come to the main result of this section, which is an extension of [12, Thm. 5.1]. 

The result of Theorem 3.3(a) was already implicit in the proof of [17, Prop. 3.1].

Theorem 3.3. Let Γ be a metric graph, and let D ∈ Div+(Γ) be an effective divisor.
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(a) There exists a loopless model (G, �) with supp(D) ⊆ V (G) and a rational length 
vector �′ ∈ QE(G)

>0 such that the G-rescaling D′ of D in Γ′ := Γ(G, �′) satisfies 
rankΓ′(D′) ≥ rankΓ(D).

(b) If Γ is a metric Q-graph, then the length vector �′ in (a) can be chosen in such a 
way that Γ′ is isometric to Γ.

Proof. (a) Write r := rankΓ(D), and let S ⊆ Γ be a finite rank-determining set. For 
every E ∈ Divr

+(S), choose a divisor DE ∈ Div(Γ) and a rational function fE : Γ →
R such that DE ≥ E and DE = D+div(fE). Furthermore, choose a loopless model 
(G, �) of Γ such that

S ∪ supp(D) ∪
⋃

E∈Divr
+(S)

supp(DE) ⊆ V (G).

Since D, DE ≥ 0 and DE − D = div(fE), we have supp(div(fE)) ⊆ supp(D) ∪
supp(DE) ⊆ V (G), so V (G) contains all points of non-linearity of fE, for every 
E ∈ Divr

+(S).
Choose an orientation of the edges of G. For every cycle C in G, choose a circular 

orientation of the edges of C, and define χC : E(G) → {−1, 0, 1} by setting

χC(e) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if e ∈ E(C) and the orientations of G and C agree on e;

−1, if e ∈ E(C) and the orientations of G and C disagree on e;

0, if e /∈ E(C).

For E ∈ Divr
+(S) and e ∈ E(G), let φ(fE , e) ∈ Z denote the slope of fE on e, 

in the forward direction of e. Note that a G-rescaling Γ(G, �′) of Γ admits rational 
functions f ′

E whose slope on e equals φ(fE , e), for all E ∈ Divr
+(S) and all e ∈ E(G), 

if and only if y = �′ is a solution to following system of equations:
∑

e∈E(G)

φ(fE , e)χC(e) y(e) = 0, for every cycle C and every E ∈ Divr
+(S). (3.4)

Since the coefficients (that is, φ(fE , e)χC(e)) and constants (that is, 0) of this linear 
system are integral, and since y = � ∈ RE(G)

>0 is a solution, it follows from Lemma 3.2
that there exists a solution �′ ∈ QE(G)

>0 .
Consider the G-rescaling Γ′ := Γ(G, �′). Let D′ be the corresponding G-rescaling 

of D, and let D′
E be the G-rescaling of DE for all E ∈ Divr

+(S). By the above, 
we may choose rational functions f ′

E on Γ′ such that the slope of f ′
E on e equals 

φ(fE , e), for all E ∈ Divr
+(S) and all e ∈ E(G). Then clearly D′

E = D′ + div(f ′
E), 

so the D′
E are equivalent to D′. Since D′

E ≥ E for every E ∈ Divr
+(S), it follows 

that rankS(D′) ≥ r. By Theorem 2.3, S is rank-determining in Γ′, so rankΓ′(D′) =
rankS(D′) ≥ r.
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(b) Choose a rational model (G̃, �̃) of Γ. We repeat the argument of (a) with the following 
modifications. First, we add the requirement that V (G̃) ⊆ V (G). Then every edge ẽ
in G̃ corresponds to a path in G, which we denote Pẽ. Second, we extend the linear 
system from (3.4) by adding the following constraints:

∑
e∈E(Pẽ)

y(e) = �̃(ẽ), for all ẽ ∈ E(G̃). (3.5)

Again, the coefficients and constants of the linear system are rational, and y = � ∈
RE(G)

>0 is a solution, so it follows from Lemma 3.2 that there is a solution �′ ∈ QE(G)
>0 . 

The rest of the proof of (a) carries through unchanged, and the extra constraints 
from (3.5) ensure that Γ′ is isometric to Γ. �

Proof of Theorem 1.3. Every rank r divisor on σk(G) also defines a rank r divisor on 
Γ(σk(G), 1/k) = Γ(G, 1). Therefore dgonr(Γ(G)) ≤ mink∈N1 dgonr(σk(G)).

Conversely, let D ∈ Div+(Γ(G)) be an effective divisor of rank r. By Theorem 3.3(b), 
there exists a divisor D′ ∈ Div+(Γ(G)) with deg(D′) = deg(D) and rank(D′) ≥ rank(D)
which is supported on the Q-points of Γ(G). Then D′ is supported on the vertices 
of the model (σk(G), 1/k) of Γ(G) for some k ∈ N1, so we have dgonr(σk(G)) ≤
dgonr(Γ(G)). �
Remark 3.6. Analogously to the proof of the main result of [8], the linear system from 
the proof of Theorem 3.3(b) forms a certificate that dgonr(Γ) ≤ d. If r and d are fixed, 
then this certificate has size polynomial in the size of Γ, so it follows that Metric 
Divisorial r-Gonality for Q-graphs belongs to the complexity class NP. (For details, 
refer to the proof in [8].) Moreover, it can be deduced from the proof of [18, Thm. 3.5]
that this problem is also NP-hard for r = 1 (see also [16, Thm. 1.3], where a different 
proof is given). We suspect that the same holds for all r ≥ 1.

Remark 3.7. The proof of Theorem 3.3(b) can also be used to find an upper bound 
on the size of the subdivision needed to get equality in Theorem 1.3. One such upper 
bound can be obtained by following the proof of [8, Cor. 6.2]. We sketch a way to 
improve this bound. Let G̃ be a graph with n vertices and m edges, let Γ := Γ(G̃) be 
the corresponding unit metric graph, and let D ∈ Div(Γ) be a divisor of degree d and 
rank r. We repeat the proof of Theorem 3.3(b) with respect to the rational model (G̃, 1)
and the rank-determining set S := V (G̃) (use Theorem 2.2). Without loss of generality, 
we may assume that D is equal to one of the DE. Then the number of variables of the 
linear system is |E(G)| ≤ m + dnr.

Note that we can also allow a solution �′ ≥ 0 instead of �′ > 0. This has the effect 
of contracting some of the edges of the model G from the proof of Theorem 3.3, but 
the equations from (3.5) ensure that the resulting graph Γ′ is still isometric to Γ. Hence 
(3.4) and (3.5) determine a linear program Ax = b, x ≥ 0, and the entries of A are 
integers which can be shown to be bounded in absolute value by d. The set of feasible 
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solutions is non-empty and bounded by (3.5), so there is a basic feasible solution x (see 
e.g. [21, Thm. 4.2.3]). Hence there is a subset B ⊆ {1, . . . , |E(G)|} such that xB = A−1

B b

and xBc = 0. Therefore the lowest common denominator of the entries of x is at most 
| det(AB)| ≤

∑
σ∈Sym(B)

∏
i∈B |Aiσ(i)| ≤ |B|! · d|B|. In conclusion, if the unit metric 

graph Γ = Γ(G̃, 1) has a divisor of rank r and degree d, then so does σk(G̃) for some 
k ≤ (m + dnr)! · dm+dnr .

4. A graph G such that dgon(σ2(G)) < dgon(G)

In this section we construct a class of graphs, which we call “tricycle graphs”. We show 
that the divisorial gonality of any tricycle graph G is strictly greater than the divisorial 
gonality of its 2-subdivision σ2(G), and thus of its associated metric graph Γ(G).

Definition 4.1. A tricycle graph is a multigraph G that can be obtained in the following 
way:

• Start with three disjoint cycles C1, C2, C3, each on at least 2 vertices (a cycle on 2
vertices consists of two vertices connected by two parallel edges).

• Choose two distinct vertices on each of these cycles, say v−i , v
+
i ∈ V (Ci).

• Add the edges v+
1 v−2 , v+

2 v−3 and v+
3 v−1 to the graph.

• Add another vertex v0 and six new edges to G, connecting v0 to the six vertices 
v−1 , v+

1 , v−2 , v+
2 , v−3 , v+

3 .
• Subdivide the six edges incident with v0.

We call the vertices v−i , v
+
i ∈ V (Ci) the transition vertices, the edges v+

1 v−2 , v+
2 v−3 and 

v+
3 v−1 the transition edges, and v0 the central vertex. The outer ring is the union of the 

cycles C1, C2, C3 and the transition edges.

Fig. 2 illustrates an example of a tricycle graph, along with the minimal tricycle Tm
and the minimal simple tricycle Tms. Note that a multigraph (resp. simple graph) G is a 
tricycle if and only if G can be obtained by taking a subdivision of the minimal tricycle 
Tm (resp. the minimal simple tricycle Tms) in such a way that the transition edges are 
not subdivided.

In what follows, we will show that every tricycle graph G satisfies dgon(G) = 6 and 
dgon(Γ(G)) = dgon(σ2(G)) = 5. First of all, we exhibit a positive rank divisor of degree 
5 on σ2(G).

Proposition 4.2. Let G be a tricycle graph. Then dgon(σ2(G)) ≤ 5.

Proof. Let D0 ∈ Div(σ2(G)) be the effective divisor with two chips on v0 and one chip 
on the midpoint of each of the transition edges v+

1 v−2 , v+
2 v−3 , v+

3 v−1 . Then deg(D0) = 5. 
In light of Corollary 2.5, in order to show that D0 has positive rank, it suffices to prove 
that D0 reaches v0 and the transition vertices v−1 , v+

1 , v−2 , v+
2 , v−3 , v+

3 .
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v0

v−1

v+
1v−2

v+
2

v−3 v+
3

C1C2

C3

(a) a generic tricycle graph;

v0

v−1

v+
1v−2

v+
2

v−3 v+
3

(b) the minimal
tricycle Tm;

v0
v−1

v+
1v−2

v+
2

v−3 v+
3

(c) the minimal
simple tricycle Tms.

Fig. 2. A generic tricycle, the minimal tricycle, and the minimal simple tricycle, with the transition vertices 
and the transition edges highlighted for emphasis.

Clearly D0 reaches v0, for we have D0(v0) > 0. Now fix i ∈ {1, 2, 3}. To reach the 
transition vertices v−i and v+

i , let Si ⊆ V (σ2(G)) be the connected component of σ2(G) \
supp(D0) that contains the cycle Ci. Then the subset Sc

i can be fired, and doing so yields 
an effective divisor Di with Di(v−i ) = Di(v+

i ) = 1. This shows that D0 reaches v−i and 
v+
i , for all i ∈ {1, 2, 3}. It follows that D0 is a positive rank divisor on σ2(G), hence 

dgon(σ2(G)) ≤ 5. �
Evidently, the divisor from Proposition 4.2 is not supported on vertices of G. The 

remainder of this section is dedicated to showing that G has no positive rank divisors of 
degree 5. Along the way, we also prove that dgon(Γ(G)) ≥ 5.

In Lemma 4.5 below, we show that every positive rank v0-reduced divisor of degree 
at most 5 on a subdivision of the minimal tricycle Tm must be of a very specific form. 
This will subsequently be used to show that dgon(Γ(G)) = dgon(σ2(G)) = 5 (see Corol-
lary 4.7) and dgon(G) = 6 (see Theorem 4.8) for every tricycle graph G.

For convenience, we use the following notation.

Definition 4.3. Let G be a graph and let H be a subdivision of G. For e = uw ∈ E(G), let 
P e

[u,w] ⊆ H denote the path uv1v2 · · · vkw in H corresponding to the subdivided edge e. 
Furthermore, let P e

(u,w) := P e
[u,w] \{u, w}, P e

[u,w) := P e
[u,w] \{w} and P e

(u,w] := P e
[u,w] \{u}

denote the corresponding open and half-open subpaths. If e is the only edge between u
and w, then we omit the superscript and simply write P[u,w], P(u,w), P[u,w) and P(u,w].

The following simple lemma is essential to our proof, and will be used repeatedly.

Lemma 4.4. Let G be a graph and let v0 ∈ V (G). Let e1, . . . , ek ∈ V (G) be the edges 
incident with v0, and let vi ∈ V (G) \ {v0} be the other endpoint of ei for every i. 
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Moreover, let H be a subdivision of G, let D ∈ Div(H) be a positive rank v0-reduced 
divisor on H, and let w ∈ V (H) be a vertex with D(w) = 0. Then an execution of 
Dhar’s burning algorithm on the triple (H, D, w) has the following properties:

(a) v0 is not burned;
(b) If I ⊆ {i ∈ [k] : vi is burned}, then 

⋃
i∈I P

ei
[v0,vi) contains at least |I| chips.

Proof. (a) Since D has positive rank and D(w) = 0, the divisor D cannot be w-reduced, 
so Dhar’s algorithm returns a non-empty subset A ⊆ V (G) that can be fired. Since 
D is v0-reduced, we must have v0 ∈ A, which means that v0 is not burned.

(b) Partition I as I = I0 ∪ I1, where i ∈ I0 if all vertices of the path P ei
(v0,vi] are 

burned, and i ∈ I1 otherwise. Since v0 is not burned, it has at most D(v0) burning 
neighbours, so |I0| ≤ D(v0). Moreover, if i ∈ I1, then vi is burned, but not all vertices 
of the path P ei

(v0,vi] are burned, so there must be at least one chip on P ei
(v0,vi). The 

conclusion follows. �
We will apply Lemma 4.4 to an arbitrary subdivision of the minimal tricycle Tm. 

For this we use the following terminology. Using notation from Definition 4.3, if H is 
a subdivision of Tm, then the three transition edges v+

1 v−2 , v+
2 v−3 , v+

3 v−1 of Tm corre-
spond to the paths P[v+

1 ,v−
2 ], P[v+

2 ,v−
3 ], P[v+

3 ,v−
1 ] in H, which we call the transition paths. 

The transition vertices of H are the images in H of the original six transition vertices 
v−1 , v+

1 , v−2 , v+
2 , v−3 , v+

3 of Tm, or in other words, the endpoints of the transition paths in 
H. (This is consistent with our definition of the transition vertices of a tricycle graph, 
which can also be seen as a subdivision of Tm.)

Lemma 4.5. Let H be a subdivision of the minimal tricycle Tm. If D ∈ Div(H) is a 
positive rank v0-reduced divisor with deg(D) ≤ 5, then D must have two chips on v0 and 
exactly one chip on each of the transition paths P[v+

1 ,v−
2 ], P[v+

2 ,v−
3 ], P[v+

3 ,v−
1 ].

Proof. First, we prove that there must be at least one chip on every transition path. 
Suppose, for the sake of contradiction, that one of the transition paths, say P[v+

1 ,v−
2 ], has 

no chips at all. We start an execution of Dhar’s burning algorithm on (H, D, v+
1 ). Let 

H+
2 ⊆ H be the union of the cycle C2 and the transition path P[v+

2 ,v−
3 ]. We claim that 

the number of chips on H+
2 plus the number of burned transition vertices in H+

2 is at 
least 3. To that end, note first of all that v−2 is burned, since there is no chip on the 
transition path P[v+

1 ,v−
2 ]. Now we distinguish three cases:

• If v+
2 is not burned, then there must be at least two chips on C2 to stop the fire 

spreading from v−2 to v+
2 . In this case, H+

2 contains at least one burned transition 
vertex (namely v−2 ) and at least two chips, for a total of at least 3.
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• If v+
2 is burned but v−3 is not burned, then there must be at least one chip on the 

half-open transition path P(v+
2 ,v−

3 ]. In this case, H+
2 contains two burned transition 

vertices (v−2 and v+
2 ) and at least one chip, for a total of at least 3;

• If both v+
2 and v−3 are burned, then H+

2 contains three burned transition vertices (v−2 , 
v+
2 and v−3 ).

Likewise, write H−
1 := C1 ∪ P[v−

1 ,v+
3 ]. Analogously, the number of chips plus the number 

of burned transition vertices on H−
1 is at least 3. Since H+

2 and H−
1 are disjoint, the total 

number of chips on the outer ring plus the total number of burned transition vertices is 
at least 6. But since the transition vertices are exactly the Tm-neighbours of v0, and since 
the half-open paths P[v0,v

±
i ) are disjoint from the outer ring, it follows from Lemma 4.4(b)

that deg(D) ≥ 6, which is a contradiction. We conclude that every transition path must 
have at least one chip.

Second, we prove that there must be two chips on v0. Since the total number of chips 
is at most 5, there must be a cycle Ci on the outer ring with at most one chip. Choose 
w ∈ V (Ci) with D(w) = 0 and start an execution of Dhar’s burning algorithm on 
(H, D, w). Since there is at most one chip on Ci, the entire cycle Ci is burned. It follows 
from Lemma 4.4(b) that there are at least two chips on P[v0,v

−
i ) ∪P[v0,v

+
i ). Therefore the 

number of chips on the outer ring is at most 3, so there must be another cycle Cj (j �= i) 
on the outer ring with at most one chip. By an analogous argument, there are at least 
two chips on P[v0,v

+
j )∪P[v0,v

−
j ). But since the outer ring has at least 3 chips (one on every 

transition path), there can be at most 2 chips on P[v0,v
−
i ) ∪ P[v0,v

+
i ) ∪ P[v0,v

−
j ) ∪ P[v0,v

+
j ). 

The only way to meet these requirements is if there are exactly two chips on v0.
To conclude the proof, note that 2 chips on v0 and at least 1 chip on every transition 

path add up to at least 5 chips in total. Since deg(D) ≤ 5, all chips have been accounted 
for. In particular, there cannot be more than one chip on each of the transition paths. �

Lemma 4.5 shows that every positive rank v0-reduced divisor D with deg(D) ≤ 5
must in fact satisfy deg(D) = 5, so the following corollary is immediate.

Corollary 4.6. Let H be a subdivision of the minimal tricycle Tm. Then dgon(H) ≥ 5.

Corollary 4.7. Let G be a tricycle graph. Then dgon(Γ(G)) = dgon(σ2(G)) = 5.

Proof. It follows from Proposition 4.2 that dgon(Γ(G)) ≤ dgon(σ2(G)) ≤ 5. Further-
more, since every subdivision of G is a also subdivision of the minimal tricycle Tm, it 
follows from Corollary 4.6 and Theorem 1.3 that

dgon(Γ(G)) = min
k∈N1

dgon(σk(G)) ≥ 5. �
All that remains is to prove that every tricycle graph has divisorial gonality 6. To do 

so, we once again use the preceding lemmas.
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Theorem 4.8. Every tricycle graph G satisfies dgon(G) = 6.

Proof. Suppose, for the sake of contradiction, that dgon(G) ≤ 5. Then we may choose 
a positive rank v0-reduced divisor D ∈ Div(G) with deg(D) ≤ 5. We interpret G as a 
subdivision of the minimal tricycle Tm. It follows from Lemma 4.5 that D has two chips 
on v0 and exactly one chip on every transition path. Since G is a tricycle graph, the 
transition edges of Tm are not subdivided. Therefore a chip on a transition edge must 
lie on one of the transition vertices.

By the above, the divisor D has between 0 and 2 chips on each of the cycles C1, C2, 
C3 on the outer ring, and all such chips must lie on the transition vertices. Since the 
total number of chips on the outer ring is odd, there must be a cycle Ci with exactly 
one chip. Assume without loss of generality that C1 is such a cycle, and that D(v−1 ) = 0
and D(v+

1 ) = 1.
We start an execution of Dhar’s burning algorithm on (G, D, v−1 ). Since there is only 

one chip on C1, the entire cycle C1 is burned. In particular, the vertex v+
1 is burned. 

The transition edge v+
1 v−2 has exactly one chip, which is on v+

1 , so the fire spreads via 
this edge to the vertex v−2 , which is also burned. But now we see that at least three Tm-
neighbours of v0 are burned (namely, v−1 , v+

1 and v−2 ), so it follows from Lemma 4.4(b)
that there must be at least 3 chips on P[v0,v

−
1 )∪P[v0,v

+
1 )∪P[v0,v

−
2 ). This is a contradiction, 

and we conclude that dgon(G) ≥ 6.
To see that dgon(G) ≤ 6, note that the set {v−1 , v+

1 , v−2 , v+
2 , v−3 , v+

3 } of all transition 
vertices is a strong separator. Therefore the effective divisor with one chip on each of 
the transition vertices has positive rank, by Theorem 2.4, so dgon(G) ≤ 6. �

This concludes the proof of validity of our counterexample. In summary, every tricycle 
graph G satisfies dgon(G) = 6 and dgon(Γ(G)) = dgon(σ2(G)) = 5.

5. A family of examples with larger gaps

In this section, we combine tricycle graphs in a certain way in order to obtain graphs 
Gk with dgon(Gk) = 6k and dgon(σ2(Gk)) = dgon(Γ(Gk)) = 5k, which shows that the 
gap between dgon(Γ(G)) and dgon(G) can be arbitrarily large. Furthermore, we show 
that dgonr(Γ(G)) and dgonr(G) differ by at most a factor 2.

Definition 5.1. Given a (connected) simple graph H and an integer t ≥ 1, an (H, t)-
skewered graph is a graph G that can be obtained in the following way:

• Start with a disjoint union of graphs G1, . . . , Gn, where n = |V (H)|.
• For every i ∈ [n], choose a base vertex wi ∈ V (Gi);
• For every edge ij ∈ E(H), add t parallel edges between wi and wj , and subdivide 

these edges in an arbitrary way.
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An example of a (K2, 12)-skewered graph is given in Fig. 3 below.

Lemma 5.2. Let G be an (H, t)-skewered graph with t ≥
∑|V (H)|

i=1 dgon(Gi). Then 
dgon(G) =

∑|V (H)|
i=1 dgon(Gi).

Proof. First, we prove that dgon(G) ≤
∑|V (H)|

i=1 dgon(Gi). For every i, choose a positive 
rank divisor Di ∈ Div(Gi) of minimum degree. This defines a divisor D ∈ Div(G) with 
deg(D) =

∑|V (H)|
i=1 dgon(Gi). We prove that D has positive rank. By Corollary 2.5, it 

suffices to prove that D reaches all vertices of every Gi. Let v ∈ V (Gi), and choose an 
effective divisor D′

i ∈ Div(Gi) equivalent to Di with D′
i(v) > 0. By Proposition 2.1, we 

can go from Di to D′
i by subsequently firing an increasing sequence U1 ⊆ · · · ⊆ Uk ⊆

V (Gi) of valid sets. Define U ′
1 ⊆ · · · ⊆ U ′

k ⊆ V (G) by

U ′
j :=

⎧⎨
⎩
Uj , if wi /∈ Uj ;

Uj ∪ V (Gi)c, if wi ∈ Uj .

Then, starting with D and subsequently firing the sets U ′
1 ⊆ · · · ⊆ U ′

k, we obtain an 
equivalent divisor D′ = D − Di + D′

i ∈ Div(G). In other words, we can play the chip-
firing game on Gi while leaving the remainder of G unchanged. This shows that D reaches 
all vertices of every Gi, so it follows from Corollary 2.5 that rank(D) ≥ 1.

Next, we prove that dgon(G) ≥
∑|V (H)|

i=1 dgon(Gi). Suppose, for the sake of con-
tradiction, that D ∈ Div(G) is a positive rank w1-reduced divisor with deg(D) <∑|V (H)|

i=1 dgon(Gi). We claim that D is wi-reduced for all i. To that end, let S ⊆ V (G)
be a subset for which there is some ij ∈ E(H) with wi ∈ S and wj /∈ S. Since there are 
t parallel paths in G between wi and wj , it follows from the max-flow min-cut theorem 
that |E(S, Sc)| ≥ t. Therefore, |E(S, Sc)| ≥ t ≥

∑|V (H)|
i=1 dgon(Gi) > deg(D), so S can-

not be fired. Thus, if S ⊆ V (G) is a subset which can be fired, then w1 ∈ S (because D
is w1-reduced), and therefore wi ∈ S for all i (because H is connected). This proves our 
claim that D is wi-reduced for all i.

Next, we claim that D restricts to a positive rank divisor on every Gi. Indeed, let 
v ∈ V (Gi) for some i, and choose an equivalent effective divisor D′ ∈ Div(G) with 
D′(v) > 0. By Proposition 2.1, we can go from D to D′ by subsequently firing an 
increasing sequence U1 ⊆ · · · ⊆ Uk of valid sets. Since D is wi-reduced, we have wi ∈ U1, 
and therefore wi ∈ Uj for all j. Since wi is the only vertex in Gi connected to anything 
outside of Gi, the firing sequence U1 ⊆ · · · ⊆ Uk only ever sends chips out of Gi, and 
never into Gi. Hence it restricts to a valid firing sequence in Gi, which shows that the 
restricted divisor D|Gi

∈ Div(Gi) reaches v. This proves our claim that D restricts to a 
positive rank divisor on every Gi. But now it follows that deg(D) ≥

∑|V (H)|
i=1 dgon(Gi), 

contrary to our assumption. This is a contradiction. �
Proof of Theorem 1.4. Let G1, . . . , Gk be tricycle graphs, and let H be an arbitrary 
connected simple graph on k vertices. Choose t ≥ 6k, and let G be an (H, t)-skewered 
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w1

w2

Fig. 3. A simple, bipartite, (K2, 12)-skewered tricycle graph G satisfying dgon(G) = 12 and dgon(Γ(G)) =
dgon(σ2(G)) = 10.

graph obtained from the graphs G1, . . . , Gk. Then it follows from Lemma 5.2 that 
dgon(G) = 6k. Furthermore, for every s ∈ N1, the subdivided graph σs(G) is an 
(H, t)-skewered graph relative to the base graphs σs(G1), . . . , σs(Gk), so it follows from 
Lemma 5.2 and Corollary 4.7 that

dgon(σs(G)) =
k∑

i=1
dgon(σs(Gi)) ≥

k∑
i=1

dgon(Γ(Gi)) = 5k,

with equality if s = 2. Therefore dgon(Γ(G)) = dgon(σ2(G)) = 5k.
A simple and bipartite realization can be obtained by choosing the tricycles G1, . . . , Gk

simple and bipartite (e.g. the tricycles skewered together in Fig. 3), and choosing an 
appropriate subdivision in the process of Definition 5.1. �

Theorem 1.4 shows that the discrete and metric divisorial gonality can be arbitrarily 
far apart. The following simple result shows that large gaps like this can only occur when 
the metric gonality is also large.

Proposition 5.3. Let G be a graph. For every r≥1, one has dgonr(G)≤2 dgonr(Γ(G)) − r.

Proof. Let D1 ∈ Div(Γ(G)) be a divisor of rank r and degree d := dgonr(Γ(G)). Choose 
some E ∈ Divr

+(G), and choose a divisor D′
1 ∼ D1 such that D′

1 ≥ E. Let D2 ∈ Div(G)
be the divisor obtained from D′

1 by replacing every chip on the interior of some edge 
uv ∈ E(G) by one chip on u and one chip on v. Since D′

1 ≥ E and supp(E) ⊆ V (G), the 
divisor D′

1 has at least r chips on vertices of G, so deg(D2) ≤ 2d −r. By firing everything 
but the interior of the edge uv, we can move the newly added chips on u and v so that 
one of the two reaches the original position of the chip in D′

1 and the other becomes 
superfluous. This shows that D2 is equivalent on Γ to a divisor D′

2 with D′
2 ≥ D′

1, so 
rankG(D2) = rankΓ(D2) ≥ r, by [19, Thm. 1.3]. �
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Additional counterexamples to Conjecture 1.2(a) for k = 2 and r = 1. The small blue hexagons 
represent the chips of an optimal divisor on the 2-regular subdivision. In each example, the divisorial 
gonality of the original graph is one higher. (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

6. Computational results and open questions

Apart from the tricycle graphs, we have found a few other counterexamples, which we 
sketch here. First of all, the proofs from §4 still hold if each of the cycles C1, C2 and C3
is replaced by any graph C which has two distinct vertices v−, v+ such that: (i) there are 
two edge-disjoint paths between v− and v+; (ii) the divisor v− + v+ has positive rank 
on C.

Second, we have found a number of counterexamples which we have verified compu-
tationally, but for which we have no formal proof. Most of these have a structure very 
similar to a tricycle graph: there are 3 cycles which are connected to one another and 
to a central vertex in some way. A small selection of these counterexamples is given in 
Fig. 4. In each of these, the optimal divisor on the 2-regular subdivision σ2(G) has 3
chips on the midpoints of certain edges, and 2 or 3 chips on the central vertex, and 
dgon(G) = dgon(σ2(G)) + 1. Note that the counterexample depicted in Fig. 4(c) is 3-
regular. We have also found counterexamples where the outer ring has 5 or 7 cycles; see 
Fig. 4(d). We have not found a counterexample with 9 or more cycles on the outer ring. 
See [13] for code and additional figures.

We have tested Conjecture 1.2(a) for k = 2 and r = 1 for all simple connected graphs 
on at most 10 vertices. These graphs were generated using the program geng from the
gtools suite packaged with nauty [22,23], and tested using custom code that we wrote 
to compute the divisorial gonality of a graph [13]. We have found that every simple 
connected graph with 9 or fewer vertices satisfies dgon(σ2(G)) = dgon(G), and that 
there are exactly 29 counterexamples with 10 vertices (and no parallel edges), including 
the minimal simple tricycle Tms and the graphs depicted in Fig. 4(e)–(h). For a list of 
all 29 minimal simple counterexamples and code to reproduce this list, see [13]. There 
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we have also included optimized code to check whether the divisorial gonality of a given 
graph satisfies the Brill–Noether bound, which we have used to verify Conjecture 1.1 for 
all simple connected graphs with at most 13 vertices. No counterexamples were found.

We close with a few open problems.

1. As mentioned before, the Brill–Noether conjecture [3, Conj. 3.9(1)] remains open.
2. What is the smallest constant c such that dgon(G) ≤ c dgon(Γ(G)) for all graphs G? 

Our examples from Theorem 1.4 show that c ≥ 6
5 , and Proposition 5.3 shows that 

c ≤ 2.
3. All counterexamples presented in this paper satisfy dgon(σ2(G)) < dgon(G). Note 

that this implies that dgon(σk(G)) < dgon(G) for every even number k. Is there a 
graph G such that dgon(σk(G)) < dgon(G) for some odd number k? Is there a graph 
G such that dgon(σ2(G)) = dgon(G) but dgon(σk(G)) < dgon(G) for some k > 2?

4. Is there a graph G such that dgon(Γ(G)) = dgon(G), but dgonr(Γ(G)) < dgonr(G)
for some r ≥ 2?
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