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SUMMARY

Turbulent flows can be found in many industrial applications, and have a profound im-
pact on the drag resistance and heat transfer characteristics of engineering equipment.
While the behavior of turbulence is well-documented for canonical flow cases, its be-
havior under complex conditions is largely unknown. This poses a significant challenge
when designing engineering equipment, since it is essential to accurately predict the
impact of variable property flows and surface roughness on pressure losses and heat
transfer rates. Yet such practical cases are beyond the scope of canonical flow data. Dur-
ing recent years, the combination of advances in machine learning and GPU-accelerated
flow solvers has yielded promising results in the fields of turbulence and scalar transport.
Using a few modern GPUs and state-of-the-art algorithms, it is now possible to simulate
highly complex turbulent flows in short periods of time. This has enabled further progress
in the field of machine learning for fluid mechanics, since high-fidelity turbulent flow
databases can be easily generated, and new models can be trained to predict increas-
ingly complex flow effects accurately. In this project, multiple challenges are addressed,
such as optimizing GPU-accelerated DNS solvers for extreme-scale simulations, creating
data-augmented RANS turbulence models for flows with strong variations in their ther-
mophysical properties, and developing machine learning models for turbulent flows past
rough surfaces.

Prior to working in GPU-accelerated simulations, the sub-project about machine
learning for variable property flows focused on building data-augmented RANS turbu-
lence models using a technique known as FIML (Field Inversion Machine Learning). In
this framework, non-linear optimization is first performed to obtain an ideal set of correc-
tions, after which a neural network (or another model) is trained to predict the observed
corrections. When working with variable-property flows, several challenges arise, such as
not knowing beforehand the local fluid properties due to thermal changes. This makes it
difficult, for instance, to calculate the input features for the neural network. The solution
created is a feedback loop, where CFD predictions are used to re-calculate the local fluid
properties and to update the neural network input features, etc. The results show that
the data-augmented RANS model can accurately improve the predictions for unique flow
cases, which need unusually high corrections not observed in the training set. Addition-
ally, a weighted relaxation factor methodology is proposed, to ensure convergence of the
RANS models after inserting neural network corrections. The final results show that, for
the most challenging CFD case identified, our machine learning system is able to reduce
the L-infinity error on the velocity profile from 23.4% to 4.0%.

To generate the required amounts of data for machine learning studies regarding
complex geometries like roughness, it was necessary to develop a GPU-accelerated DNS
solver. This work focuses on the implementation of a parallel tridiagonal solver for
extreme-scale simulations, and the creation of a new cross-platform communication
library for supercomputers with either AMD or NVIDIA GPUs. In general terms, turbulent

vii



viii SUMMARY

flow simulations in GPUs can be highly efficient, since all operations can be mapped to
different GPU threads. However, large-scale data transfers are the main performance
bottleneck of GPU-based simulations. While halo exchanges between GPU sub-domains
have a minimal impact, the large-scale transpose operations needed for 3D arrays in-
side Poisson/Helmhotz solvers occupy most of the total running time. Therefore, any
transpose operation avoided will drastically improve the running times for the entire
DNS solver. By using a parallel tridiagonal solver, it is possible to reduce the number
of transposes (for full 3D arrays) by 50% for 2D pencil decompositions inside the Pois-
son/Helmhotz solvers, and to replace these avoided transposes by simplified operations
with a computational cost resembling halo exchanges. Additionally, in this work, a new
opportunity to speed up simulations was found, by re-deriving the coefficients of parallel
tridiagonal solvers to substantially improve the efficiency and the GPU parallelization
of the DNS solver for implicit 1-D diffusion equations. Based on these improvements, it
is observed in the results that the efficiency of the DNS solver is substantially improved
for extreme-scale simulations in the LUMI and Leonardo supercomputers. Moreover, we
show that the entire DNS solver can operate using 2D pencil decompositions without
performance degradation compared to most optimal 1D decompositions available for
smaller systems. Therefore, the parallel tridiagonal solver enables high-performance in
extreme-scale simulations, where 1D decompositions are not feasible.

To enable extreme-scale simulations in AMD GPUs, a new cross-platform commu-
nication library was created, named diezDecomp. This library is able to achieve high
performance working with both CPUs and GPUs in NVIDIA or AMD-based supercom-
puter. The underlying algorithm corresponds to an advanced implementation that works
by directly intersecting the x/y/z bounds of all MPI tasks and scheduling data transfer
operations. This allows the implementation of any-to-any transpose operations between
mismatched 2D pencil decompositions, with complex communication patterns beyond
the scope of traditional all-to-all operations. In extreme-scale simulations, direct x-to-z
transposes can improve efficiency while solving for implicit 1D diffusion, but they are not
available in existing libraries. Thanks to the flexibility of the diezDecomp library, x-to-z
transposes can be easily implemented, and the running times of implicit 1D diffusion
solvers were improved up to 55% for extreme-scale simulations in the LUMI supercom-
puter with 1024 GCDs.

The benefits of machine learning to predict the thermal and hydrodynamic behavior
of turbulent flows past rough surfaces are explored in Chapter 4. Due to the complexity
of this task, a convolutional neural network was used to (independently) scan the input
height maps of rough surfaces, and to generate detailed 2-D maps with the local skin fric-
tion factors (Cr) and Nusselt numbers (Nu). The proposed neural network is optimized
to have linear time complexity while creating 2D maps, instead of quadratic complexity
as in naive approaches. The validation study using randomized surfaces with the Fourier
spectrum of grit-blasted surfaces shows that machine learning can make accurate 2D
predictions for both the local skin friction factors and Nusselt numbers of rough surfaces,
with median deviations of 28.43% (Cy) and 6.37% (N u) respectively. The averaged errors
in the predictions for C_f and Nu were reduced from 24.9% and 13.5% using traditional
correlations to only 8.1% and 2.9% thanks to machine learning.

Since the neural network predictions for the thermal behavior of rough surfaces
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were particularly promising, a further optimization study is presented in Chapter 5.
Here, the objective is to combine the benefits of machine learning and GPU-accelerated
simulations to improve convective heat transfer in dimpled-surfaces. Remarkably, it
was found that machine learning can find a highly optimized dimpled-surface with a
53% higher Nusselt number using cross-aligned dimples after being trained with only
random surfaces (displaying lower thermal performance). After the second iteration of
the reinforcement learning loop, it was confirmed that the surface found by machine
learning created a flow pattern with helical structures inside the dimples. All other tested
parameters had lower thermal performance.

In summary;, it is concluded that GPU-based DNS solvers can be optimized to en-
able extreme-scale simulations with minimal performance degradation. Creating highly
flexible communication frameworks, such as the diezDecomp library, is also possible
while keeping identical running times as traditional libraries. This research project also
showcases how machine learning can be an effective tool in fluid mechanics, to predict
the behavior of turbulent flows past complex geometries or to account for changes in
flows with strong variations in their thermophysical properties.






SAMENVATTING

Turbulente stromingen komen voor in veel industriéle toepassingen en hebben aanzien-
lijke invloed op de warmteoverdrachtskenmerken van technische apparatuur. Hoewel
het gedrag van turbulentie goed is gedocumenteerd voor canonieke stromingsgevallen, is
het gedrag onder complexe omstandigheden grotendeels onbekend. Dit vormt een aan-
zienlijke uitdaging bij het ontwerpen van technische systemen, aangezien het essentieel
is om nauwkeurig het effect van variabele materiaaleigenschappen en ruwe oppervlaktes
op de drukval en warmteoverdracht te voorspellen. Zulke praktische gevallen vallen
echter buiten het bereik van canonieke stromingsgegevens. In de afgelopen jaren heeft de
vooruitgang in machine learning en GPU-versnelde stromingssimulaties veelbelovende
resultaten opgeleverd op het gebied van turbulentie en scalair transport. Met slechts
enkele moderne GPU'’s en geavanceerde algoritmen is het nu mogelijk om zeer com-
plexe turbulente stromingen in korte tijd te simuleren. Dit heeft verdere vooruitgang
mogelijk gemaakt in het gebruik van machine learning binnen de stromingsmechanica,
aangezien hoogwaardige databases van turbulente stromingen eenvoudig gegenereerd
kunnen worden en nieuwe modellen getraind kunnen worden om steeds complexere
stromingsfenomenen nauwkeurig te voorspellen.

In dit project worden meerdere uitdagingen aangepakt, zoals het optimaliseren van
GPU-versnelde DNS-oplossers voor extreme schaalgroottes, het creéren van data-verrijkte
RANS-turbulentiemodellen voor stromingen met sterke variaties in thermofysische ei-
genschappen en het ontwikkelen van machine learning-modellen voor turbulente stro-
mingen over ruwe oppervlakken.

Voorafgaand aan het werk met GPU-versnelde simulaties richtte het subproject over
machine learning voor variabele-eigenschappenstromingen zich op het bouwen van
data-verrijkte RANS-turbulentiemodellen met behulp van een techniek genaamd FIML
(Field Inversion Machine Learning). Hierbij wordt eerst een niet-lineaire optimalisatie
uitgevoerd om een ideale set correcties te verkrijgen, waarna een neurale netwerk (of
ander model) wordt getraind om de waargenomen correcties te voorspellen. Bij stromin-
gen met variabele eigenschappen ontstaan meerdere uitdagingen, zoals het vooraf niet
weten van lokale vloeistofeigenschappen door thermische veranderingen. Dit bemoeilijkt
bijvoorbeeld de berekening van invoerkenmerken voor het neurale netwerk. De oplossing
bestaat uit een terugkoppelingslus, waarbij CFD-voorspellingen worden gebruikt om de
lokale vloeistofeigenschappen opnieuw te berekenen en de invoerkenmerken voor het
neurale netwerk te updaten. De resultaten tonen aan dat het data-verrijkte RANS-model
de voorspellingen voor unieke stromingsgevallen nauwkeurig kan verbeteren, zelfs wan-
neer deze gevallen ongewoon hoge correcties vereisen die niet aanwezig waren in de
trainingsdata. Daarnaast wordt een methode met gewogen relaxatiefactor voorgesteld
om convergentie van het RANS-model te garanderen na invoeging van de neurale net-
werkcorrecties. De eindresultaten tonen aan dat voor het meest uitdagende CFD-geval de
L-infinity fout in het snelheidsprofiel kon worden teruggebracht van 23,4% naar 4,0%.

xi
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Om de benodigde hoeveelheid data te genereren voor machine learning-studies rond
complexe geometrieén zoals wandruwheid, was het nodig een GPU-versnelde DNS-code
te ontwikkelen. Dit werk richt zich op de implementatie van een parallelle tridiagonale
oplosser voor simulaties op extreme schaal en het maken van een nieuwe cross-platform
communicatiebibliotheek voor supercomputers met AMD- of NVIDIA-GPU's. Over het
algemeen kunnen turbulente stromingssimulaties op GPU’s zeer efficiént zijn, omdat
alle bewerkingen op verschillende GPU-threads kunnen worden gemapt. Echter, groot-
schalige datatransfers vormen de belangrijkste prestatiebeperking van GPU-gebaseerde
simulaties. Hoewel halo-uitwisselingen tussen GPU-subdomeinen een minimale impact
hebben, nemen de grootschalige transpositie-operaties die nodig zijn voor 3D-arrays in
Poisson-/Helmholtz-oplossers het grootste deel van de totale rekentijd in beslag. Elke
vermeden transpositie-operatie leidt daarom tot een drastische verbetering van de reken-
tijd voor de gehele DNS-code. Met behulp van een parallelle tridiagonale oplosser is het
mogelijk om het aantal transposities (voor volledige 3D-arrays) met 50% te verminderen
bij 2D pencil-decomposities in Poisson-/Helmholtz-oplossers en deze vervangen door
vereenvoudigde bewerkingen met berekeningskosten die lijken op halo-uitwisselingen.
Verder werd in dit werk een nieuwe mogelijkheid ontdekt om simulaties te versnellen,
door de coéfficiéenten van parallelle tridiagonale oplossers opnieuw af te leiden om de
efficiéntie en GPU-parallelisatie aanzienlijk te verbeteren voor impliciete 1D-diffusie-
vergelijkingen. Op basis van deze verbeteringen laten de resultaten zien dat de efficiéntie
van de DNS-code aanzienlijk is verbeterd voor simulaties op extreme schaal op de super-
computers LUMI en Leonardo. Bovendien tonen we aan dat de volledige DNS-oplosser
kan werken met 2D pencil-decomposities zonder prestatienadeel ten opzichte van de
meest optimale 1D-decomposities voor kleinere systemen. De parallelle tridiagonale
oplosser maakt dus hoge prestaties mogelijk voor simulaties op extreme schaal, waarbij
1D-decomposities niet haalbaar zijn.

Om simulaties op extreme schaal mogelijk te maken op AMD-GPU's is een nieuwe
cross-platform communicatiebibliotheek ontwikkeld, genaamd diezDecomp. Deze bi-
bliotheek kan hoge prestaties behalen op zowel CPU’s als GPU'’s in NVIDIA- of AMD-
gebaseerde supercomputers. Het onderliggende algoritme is een geavanceerde imple-
mentatie die werkt door direct de x/y/z-grenzen van alle MPI-taken te kruisen en gege-
vensoverdrachten in te plannen. Dit maakt de implementatie van willekeurige transpo-
sities mogelijk tussen niet-overeenkomende 2D pencil-decomposities, met complexe
communicatiepatronen die buiten het bereik vallen van traditionele all-to-all-operaties.
In simulaties op extreme schaal kunnen directe x-naar-z-transposities de efficiéntie ver-
beteren bij het oplossen van impliciete 1D-diffusie, maar deze zijn niet beschikbaar in
bestaande bibliotheken. Dankzij de flexibiliteit van de diezDecomp-bibliotheek kunnen
x-naar-z-transposities eenvoudig worden geimplementeerd en is de rekentijd van impli-
ciete 1D-diffusie-oplossers met maximaal 55% verbeterd in extreme schaal simulaties op
de LUMI-supercomputer met 1024 GCD’s.

De voordelen van machine learning om het thermische en hydrodynamische gedrag
van turbulente stromingen over ruwe oppervlakken te voorspellen worden onderzocht in
Hoofdstuk 4. Vanwege de complexiteit van deze taak werd een convolutioneel neurale
netwerk gebruikt om (onafhankelijk) de hoogtekaarten van ruwe oppervlakken te scan-
nen en gedetailleerde 2D-kaarten te genereren met lokale wrijvingscoéfficiénten (Cy) en
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Nusselt-getallen (Nu). Het voorgestelde neurale netwerk is geoptimaliseerd om lineaire
tijdcomplexiteit te hebben bij het creéren van 2D-maps, in plaats van kwadratische com-
plexiteit zoals bij naieve benaderingen. De validatiestudie met willekeurige oppervlakken
gemaakt met behulp van het Fourierspectrum van grit-blasted oppervlakken toont aan
dat machine learning nauwkeurige 2D-voorspellingen kan maken voor zowel lokale C¢
als Nu, met mediaan afwijkingen van respectievelijk 28,43% (C¢) en 6,37% (Nu). De
gemiddelde fouten in de voorspellingen voor C_f en Nu werden teruggebracht van 24,9%
en 13,5% met traditionele correlaties naar slechts 8,1% en 2,9% dankzij machine learning.

Omdat de voorspellingen van het neurale netwerk voor het thermische gedrag van
ruwe oppervlakken veelbelovend waren, wordt een verdere optimalisatiestudie gepresen-
teerd in Hoofdstuk 5. Hier is het doel om de voordelen van machine learning en GPU-
versnelde simulaties te combineren om convectieve warmteoverdracht te verbeteren op
oppervlakken met dimples. Opmerkelijk is dat machine learning een geoptimaliseerde
dimpled-oppervlakte kon vinden met een 53% hoger Nusselt-getal door kruisgewijs uit-
gelijnde dimples, na getraind te zijn op enkel willekeurige oppervlakken (met lagere
thermische prestaties). Na de tweede iteratie van de reinforcement learning-lus werd
bevestigd dat het door machine learning gevonden oppervlak een stromingspatroon met
helixstructuren binnen de dimples genereerde. Alle andere geteste parameters leverden
lagere thermische prestaties op.

Samenvattend kan worden geconcludeerd dat GPU-gebaseerde DNS-codes geop-
timaliseerd kunnen worden om simulaties op extreme schaal mogelijk te maken met
minimale prestatiedalingen. Het creéren van flexibele communicatieframeworks zoals
de diezDecomp-bibliotheek is eveneens mogelijk zonder prestatieverlies ten opzichte
van traditionele bibliotheken. Dit onderzoeksproject toont bovendien aan dat machine
learning een effectief hulpmiddel kan zijn in stromingsmechanica, om het gedrag van
turbulente stromingen over complexe geometrieén te voorspellen of om rekening te
houden met variaties in stromingen met sterk wisselende thermofysische eigenschappen.






INTRODUCTION

1.1. TURBULENT FLOWS

Turbulent flows can be found in many engineering applications. The presence of turbu-
lence can drastically increase the drag resistance, fuel consumption and heat transfer
characteristics of industrial equipment. Despite its relevance, predicting the behavior
of turbulence corresponds to one of the most important unsolved problems in physics.
While laminar flows can be studied using relatively simple numerical or analytical meth-
ods, turbulence corresponds to a chaotic (nonlinear) phenomenon, which can only be
resolved though high-resolution unsteady flow simulations. These simulations require
massive computational power, since the eddies found in turbulence can reach micro-
scopic sizes for real-world applications. Moreover, the length scale of turbulent eddies
becomes smaller for flows at high Reynolds numbers. Mathematically, the grid refinement
for turbulent wall-bounded flows scales with Re%” 4 where Re; is the friction Reynolds
number. Simplifying the physics of turbulent flows is difficult, because turbulence can
be seen as an energy cascade, where large eddies drive the generation of smaller eddies,
with sizes varying across many orders of magnitude. All these eddies are intricately inter-
connected though the non-linear Navier-Stokes equations, and they cannot be analyzed
separately.

During the last decades, the amount of computing power available in the world has
increased exponentially. This has enabled the simulation of flows at significantly higher
Reynolds numbers, starting from the work of (Orszag & Patterson, 1972). The recent ad-
vances in GPU technology have enabled a new breakthrough in flow simulations. Today,
a single GPU in a desktop computer can be as fast as an entire supercomputer from a
decade ago. This has increased the feasibility of studying turbulent flows under com-
plex conditions, and the generation of rich databases for model assimilation. However,
predicting turbulence is a complex task. Due to their nonlinear nature, mathematical
models for turbulence must be carefully designed to achieve numerical robustness, and
extrapolating to new scenarios might be challenging. Moreover, GPUs have different
characteristics than CPU architectures, and different algorithms are necessary to fully
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utilize their capacity. Therefore, modern research focuses both on the development of
GPU-accelerated fluid solvers, and the generation of new physical models using turbulent
flow databases. Within this context, machine learning is a promising technique for model
assimilation, since neural networks and other data-driven approaches can be trained
using the rich turbulent flow databases generated by GPUs. Moreover, research shows that
high-fidelity turbulent flow data usually contains a large variety of complex non-linear
effects that are beyond the scope of traditional (simplified) models. Thus, using machine
learning is necessary to develop accurate models that fully take into account the complex
phenomena observed in practice.

In the classical literature, the behavior of turbulence is mainly well-documented for
canonical cases, such as flows around simple geometries, or flows with limited variations
in their thermophysical properties. However, many engineering applications involve
complex geometries (Busse et al., 2015; Flack & Schultz, 2010; Peeters & Sandham, 2019),
or flows with strong property gradients (Pecnik & Patel, 2017). Due to the increased
amount of computing power available, it is now more feasible to study these types of flows
than before. In the case of flows with strong variations in their thermophysical properties,
traditional RANS turbulence models can be inaccurate even for smooth channels, unless
new correction terms are introduced (Rodriguez et al., 2018).

For flows around complex geometries, the main challenge is that traditional RANS
turbulence models have been calibrated using simple cases (pipelines, free-shear lay-
ers, etc.), and their differential equations may be inaccurate for non-trivial geometries.
Moreover, if the walls are hydrodynamically rough, another issue is the estimation of
the equivalent Nikuradse sand-grain roughness height (k) needed by wall functions in
RANS models. Mathematically, ki depends on the drag resistance generated by the rough
surface, and thus converting 2-D surface features into an accurate k; estimation is a great
challenge. When heat transfer is considered, similar issues are encountered to estimate
the Nusselt number of rough surfaces. Additionally, thermal equations in RANS models
require closure models for the turbulent Prandtl number, which is only an approximation,
and it may change through the geometry of the flow. Due to the previous circumstances,
innovative solutions are needed to create improved models for fluid mechanics.

1.2. MACHINE LEARNING

In order to build new predictive models for fluid mechanics, one of the main challenges is
to process large amounts of data, and to create models with enough flexibility to account
for a large variety of complex flow cases. The behavior of turbulence rarely follows simple
trends, and the observed behavior (in non-trivial cases) is usually caused by nonlinear
interactions between many factors. Due to these reasons, machine learning is an ideal
technique to build new models for fluid mechanics. Machine learning has achieved
state-of-the-art results across many fields of science in the last decade. Moreover, the
recent advances in GPU technology have greatly increased the availability of computing
power for scientific applications. In the field of machine learning for fluid mechanics,
different approaches have been studied. For instance, (Ling et al., 2016) developed a deep
neural network with embedded Galilean invariance to predict anisotropic Reynolds stress
tensors for various flow cases. To improve existing RANS models, (Parish & Duraisamy,
2016) proposed a framework known as field inversion machine learning (FIML). In this
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technique, field inversion is first performed to obtain an ideal set of corrections that
minimize the discrepancy between the target RANS model and the DNS data. Then,
a neural network is trained to replicate the corrections identified by field inversion,
and the results are injected in a data-augmented CFD solver. The FIML technique has
been applied successfully to various turbulence models and flow geometries (Fang & He,
2024; Singh, Duraisamy, & Zhang, 2017; Singh, Medida, & Duraisamy, 2017). Another
interesting technique is to use machine learning to identify new algebraic terms for
existing nonlinear models (Brunton et al., 2016; Weatheritt & Sandberg, 2017). The main
benefit of this approach is that the optimization process (replacing field inversion) already
yields a new model, which can be tested. However, the quality of the results depends
on the compatibility of the proposed algebraic terms with the original RANS model, and
the complexity of the dataset studied. In the case of rough surfaces, multiple authors
have used machine learning to determine which surface metrics are best to predict the
equivalent Nikuradse sand-grain roughness height (k) (Jouybari et al., 2021; Ma et al.,
2023). Further applications of machine learning in fluid mechanics involve topics, such
as: 3-D flow reconstruction, reduced order modelling, Proper Orthogonal Decomposition
(POD), etc. A detailed review of different types of applications can be found in (Brunton
et al., 2020; Sharma et al., 2023).

1.3. OBJECTIVES

The main goals of this thesis are: (1) to create new machine learning models for com-
plex applications involving fluid mechanics or heat transfer, and (2) to optimize GPU-
accelerated DNS solvers for extreme-scale simulations. The combination of machine
learning and GPU simulations is ideal, since GPU-based DNS solvers make it feasible to
generate rich databases with high-fidelity data regarding complex flows, whereas machine
learning can extract patterns from this data and create low-cost models for evaluation.
Given this context, different lines of work are considered, which are divided into the
following broad categories:

* Improve the performance and scalability of existing DNS solvers for extreme-scale
simulations in GPU-based supercomputers (Leonardo, Snellius, LUMI). This is
accomplished though the implementation of a parallel tridiagonal solver with
an additional 2-D pencil decomposition for simulations at very high Reynolds
numbers.

* Create a new high-performance communication library for extreme-scale DNS
studies in supercomputers, which is cross-platform compatible with CPUs and
either NVIDIA or AMD GPUs.

e Develop a FIML framework for data-augmented RANS turbulence models, which
is able of handle flows with strong variations in their thermophysical properties.
Also, build a robust stabilization methodology to avoid spurious oscillations in such
flows.

¢ Create a novel convolutional neural network architecture, with optimized time and
space complexity, which can process the height maps of rough surfaces directly, and
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perform detailed 2-D predictions about their local Nusselt numbers or skin friction
factors. This technique avoids relying on traditional surface metrics (skewness,
effective slope, etc.), and it can process much more complex cases.

¢ Build a novel machine learning framework for the optimization of convective heat
transfer in dimpled surface configurations. The methodology corresponds to a
reinforcement learning framework that is trained with the results of various DNS
cases, and it uses the previous convolutional neural network to make predictions.

1.4. THESIS OUTLINE

Based on the previous objectives, the thesis chapters are organized as follows:

e Chapter 2 presents the general numerical methods used in this work, together
with the improvements made for DNS solvers running extreme-scale simulations in
GPU-based supercomputers. The new communication library for supercomputer
simulations is also discussed in this chapter.

¢ Chapter 3 describes the generation of data-augmented RANS turbulence models
for flows with strong variations in their thermophysical properties, using a FIML
framework.

¢ Chapter 4 explains the details of the new convolutional neural network to pre-
dict detailed 2-D maps with the local Nusselt numbers and skin friction factors
generated by rough surfaces.

¢ Chapter 5 is dedicated to the novel machine learning framework to optimize dim-
pled surfaces for convective heat transfer enhancement, using the convolutional
neural network described in Chapter 4.

¢ Chapter 6 summarizes the current thesis, and presents the conclusions of the study.
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OPTIMIZED DNS SOLVER FOR
EXTREME-SCALE CALCULATIONS

We present a computational method for extreme-scale simulations of incompressible tur-
bulent wall flows at high Reynolds numbers. The numerical algorithm extends a popular
method for solving second-order finite differences Poisson/Helmholtz equations using a
pencil-distributed parallel tridiagonal solver to improve computational performance at
scale. The benefits of this approach were investigated for high-Reynolds-number turbulent
channel flow simulations, with up to about 80 billion grid points and 1024 GPUs on the
European flagship supercomputers Leonardo and LUMI. An additional GPU porting effort
of the entire solver had to be undertaken for the latter. Our results confirm that, while
1D domain decompositions are favorable for smaller systems, they become inefficient or
even impossible at large scales. This restriction is relaxed by adopting a pencil-distributed
approach. The results show that, at scale, the revised Poisson solver is about twice as fast as
the baseline approach with the full-transpose algorithm for 2D domain decompositions.
Strong and weak scalability tests show that the performance gains are due to the lower
communication footprint. Additionally, to secure high performance when solving for wall-
normal implicit diffusion, we propose a reworked flavor of parallel cyclic reduction (PCR)
that is split into pre-processing and runtime steps. During pre-processing, small sub-arrays
with independent 1D coefficients are computed by parallel GPU threads, without any
global GPU communication. Then, at runtime, the reworked PCR enables a fast solution of
implicit 1D diffusion without computational overhead. Our results show that the entire
numerical solver, coupled with the PCR algorithm, enables extreme-scale simulations with
2D pencil decompositions, which do not suffer performance losses even when compared to
the best 1D slab configurations available for smaller systems.

This chapter has been published in Computer Physics Communications, vol. 316, p. 109811, 2025.
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2.1. INTRODUCTION

Turbulent flows at high Reynolds numbers are among the most complex and prevalent
problems in engineering and physics. While numerous flows at low Reynolds numbers
may be studied using simple analytical or numerical models, many flows found in nature
and industry operate at high Reynolds numbers in a turbulent regime. These flows exhibit
complex behavior, which is difficult to predict using existing correlations or upscaled
models. Fundamental understanding of turbulence that can improve engineering models
requires direct numerical simulations (DNS), where the chaotic and multi-scale flow
dynamics are fully resolved up to the smallest temporal and spatial scales. While this
has alarge computational cost, the exponential growth in computing power during the
last decades, along with the development of efficient numerical methods, have enabled
the simulation of flows at increasingly high Reynolds numbers. Indeed, following the
developments since the first DNS of isotropic turbulence by (Orszag & Patterson, 1972), it
is now possible to perform large-scale simulations with trillions of grid points in modern
supercomputers (Ishihara et al., 2009; Yeung & Ravikumar, 2020). In the context of this
thesis, large-scale DNS is necessary to study both turbulent flows past rough surfaces and
variable-property flows. In the case of rough surfaces, large DNS grid sizes are required
to fully resolve the flow patterns near irregular surfaces; even at moderate Reynolds
numbers. For variable-property flows, the simulation time steps are usually smaller
than incompressible flows with similar grid sizes, and thus it is ideal to speed-up the
simulations using the well-optimized parallelization techniques found in large-scale DNS
solvers.

We are currently experiencing another breakthrough, thanks to the proliferation of
general-purpose GPU-based supercomputers (Nickolls & Dally, 2010; Reed et al., 2023).
GPUs are known to perform well in tasks that only require simple arithmetic operations
or RAM access patterns (“CUDA Fortran for Scientists and Engineers”, 2014), which are
common in computational fluid dynamics (CFD). They have much higher throughput
than CPUs by allowing many parallel threads to perform the same operation per clock
cycle. Thus, when successfully ported, GPU-accelerated solvers can easily outperform
multi-core CPU solvers (Y. Kim et al., 2023; Salvadore et al., 2013), enabling the numerical
solution to complex problems at much lower costs. However, large-scale CFD problems
need to operate at scale, in a distributed-memory paradigm where the data is distributed
among many GPUs. This introduces new challenges, as many-GPU systems are more
prone to feature performance bottlenecks associated with intra and internode communi-
cation, which may require adjustments in the numerical algorithm. Let us consider the
current European pre-exascale flagship supercomputers Leonardo and LUMI. A summary
of the GPU specifications for both supercomputers can be found in Table 2.1. In the case
of LUMI, it is important to highlight that each MI250x is split into two Graphics Com-
pute Dies (GCDs)! (AMD Instinct MI250X Accelerators, 2025), each with roughly similar
characteristics as a NVIDIA A100 GPU in terms of memory and processing power. The
internal memory bandwidths for both AMD and NVIDIA GPUs are much faster than intra-
and inter-node communication. Therefore, algorithms that minimize device-to-device
communication can be optimal, even if they slightly increase the number of arithmetic

n this work, we consider each GCD in LUMI to be an independent GPU (unless explicitly noted), since they
are exposed to the user’s software as separate devices.
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operations or HBM (High Memory Bandwidth) usage per device. Additionally, opportuni-
ties for code optimization can be found by selecting algorithms that replace inter-node
communication with faster intra-node data transfers.

Table 2.1: Specifications for the GPU nodes in the Leonardo and LUMI supercomputers (AMD Instinct MI250X
Accelerators, 2025; De Sensi et al., 2024; Nvidia A100 Tensor Core GPU: Unprecedented Acceleration at Every Scale,
2024; Schieffer et al., 2025). The data formally corresponds to the Booster partition in Leonardo, and the LUMI-G
nodes for LUMI. The abbreviation “Gb” refers to Gigabit, whereas “GB”/“TB” corresponds to Gigabyte/Terabyte.

Leonardo LUMI
GPU model NVIDIA A100 AMD MI250X
Number of devices 4 GPUs 8 GCDs (2 per GPU)

Inter-node bandwidth 100 Gb/s 100 Gb/s’

Intra-node bandwidth 800 Gb/s 400 - 1600 Gb/s'
Internal memory bandwidth 1.6 TB/s 1.6 TB/s'

HBM 64 GB 64 GB'
FP64 Peak Performance 9.7TELOPs 23.95 TFLOPs'

19.5 TFLOPs with Tensor Cores

T Data for each GCD in LUMI.

Several works have performed large-scale turbulent flow simulations using multi-GPU
configurations. Compressible flow solvers, for instance, contain many fully explicit calcu-
lations that can be readily parallelized using GPUs. The DNS solver STREAmS (Bernardini
et al.,, 2021) can use multi-GPU systems to simulate compressible wall-bounded flows,
taking into account complex effects such as shock-wave interactions. In URANOS (De
Vanna et al., 2023), a compressible flow solver is developed for large-scale simulations
using various modelling frameworks, and several possible choices for the discretization
schemes. In incompressible flow solvers, GPU porting for distributed-memory calcu-
lations at scale faces an extra challenge. Typically, a major performance bottleneck is
solving a large linear system associated with the pressure Poisson equation to ensure
incompressibility. Nevertheless, several recent works have shown great progress in the
development of multi-GPU solvers. Focusing on spectral or finite-difference approaches,
an example is the AFiD-GPU code (Zhu et al., 2018) for large-scale simulations of wall-
bounded flows using multi-GPU (or multi-CPU) configurations. Another example is the
CaNS code, which is used in the present study (Costa, 2018; Costa et al., 2021). CaNS
is an incompressible DNS solver, which is compatible with various types of boundary
conditions for canonical flow cases in rectangular grids, such as isotropic turbulence or
wall-bounded flows. This solver is compatible with both multi-GPU and multi-core CPU
architectures, and has been recently re-ported to GPUs porting using OpenACC and the
hardware-adaptive cuDecomp library for GPU communications at scale (Romero et al.,
2022). This library allows pencil-distributed solvers that require collective transpose oper-
ations to perform runtime autotuning and determine the optimal domain decomposition
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and GPU communication backend. A simple FFT-based finite-differences numerical
solver like CaNS requires two types of communication operations: halo exchanges and
transposes. Halo exchanges are relatively simple, standard operations, where each task
exchanges boundary values with its neighbors. Transposes are more expensive all-to-all
collective operations, where 3D data of a field is redistributed among MPI tasks such
that all cells aligned in a specific dimension are local to a single process/task. This is
important while performing, for instance, fast Fourier-based transformations in spectral
Poisson/Helmholtz solvers, since FFT algorithms require frequent access to the arrays
being transformed. Naturally, all transpose operations involving 3D arrays are expensive,
and often the major performance bottleneck.

Second-order FFT-based finite-difference solvers such as those used in AFiD and CaNS
require performing FFTs along two directions, and the solution of a resulting tridiagonal
system along the other direction, which is typically the wall-normal one in the case of
wall-bounded flows with one inhomogeneous direction. The solution of the tridiagonal
system has been typically performed using transpose operations, such that the whole
system is local to each task and serially solved. However, there is possible room for
improvement here by exploiting a parallel tridiagonal solver that avoids this collective
operation. Notably, an interesting approach was presented by (Laszl6 et al., 2016) and
exploited in (Gong et al., 2022; K.-H. Kim et al., 2021; Yang, Kang, et al., 2023; Yang, Oh,
etal., 2023), which showed compelling performance gains at scale. In short, this method
uses a hybrid Thomas-parallel cyclic reduction (PCR) algorithm that effectively converts
the tridiagonal system to be solved in parallel into a series of smaller systems that can be
solved independently, coupled to a smaller problem to be solved collectively for the first
and last unknowns of each small system (Gong et al., 2022).

Most works exploring PCR in this context have adopted a 1D parallelization (K.-H.
Kim et al., 2021; Yang, Oh, et al., 2023), with slabs parallel to directions of FFT-based
synthesis. This is efficient and was proven to work up to a certain scale. However, as the
flow Reynolds number increases, it becomes impossible to resort to a 1D parallelization.
As an example, Figure 2.1 presents the total memory requirement in a DNS solver (CaNS),
to simulate turbulent channel flows at increasing friction Reynolds number (Re;), as well
as the total size of a single n, x n; wall-parallel slice. Expectedly, as Re; increases, in
addition to stricter time steps restrictions, the number of grid cells increases roughly
as Ny, < Re; in the streamwise (x) and spanwise (y) directions of the channel flow,
and N, Regl 4 in the wall-normal direction (z) (Pirozzoli & Orlandi, 2021; Pope, 2001).
Hence, as the Reynolds number increases, the thickness of a wall-parallel slab that fits a
fixed amount of grid points (e.g., dictated by the RAM constrains of a GPU or CPU device)
becomes ever thinner, until it becomes impossible to decompose the domain further.
This is particularly problematic in wall-bounded turbulence, where the number of grid
points along the wall-parallel directions should be larger than in the wall-normal one
(Pirozzoli & Orlandi, 2021). Yet, the same is bound to happen in other turbulent flows
(e.g., homogeneous isotropic turbulence) at sufficiently high Reynolds number.

Consequently, even with the ever-increasing memory capacity of GPUs, for DNS of
high Reynolds number flows with this type of approach, one may be bound to adopt a 2D
pencil-like domain decomposition. Leveraging a less communication-intensive approach
for solving the Poisson equation, while retaining a pencil-distributed decomposition, is
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precisely the motivation of the present work. One alternative within this context is to
replace serial TDMA (tridiagonal matrix algorithms) by parallel methods, with a lower
communication footprint. We develop such an approach based on a PCR-TDMA method
(named P-TDMA hereafter), and test it on the CaNS solver with a focus on many-GPU
calculations at scale. To run our solver on an AMD-based system like LUMI, an additional
porting effort was undertaken, which we will also describe here. We report the revised
solver’s performance and scalability for large-scale DNS of turbulent channel flow at
high Reynolds number. Moreover, we show that particular care should be taken for wall-
normal implicit diffusion, to secure high performance at scale. Our results show an almost
2x speedup at scale for the Poisson solver with 2D decomposition, which significantly
improves the overall solver performance on large-scale GPU-based supercomputers.

This chapter is organized as follows. Section 2.2 describes the governing equations,
the discretization scheme, and the implementation of the Poisson/Helmholtz solver,
including the cross-platform effort to run on AMD-based systems. Then Section 2.3
discusses the study and the scalability benchmarks. Finally, Section 2.4 presents the
conclusions.
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Figure 2.1: Estimates of the total memory requirements for double-precision DNS runs of turbulent channel
flowsona Ly x Ly x Lz = 12.8 x 6.4 x 2 domain at different friction Reynolds numbers (Rey), as well as
the size of a single slice ny x ny of the DNS domain in HBM for all points in the streamwise (x) and spanwise
(y) directions. The calculations are performed using the domain partition algorithms of the DNS solver CaNS
(Costa et al., 2021) and the parallel decomposition library cuDecomp (Romero et al., 2022). The symbols denote
the limits where a 1D slab decomposition becomes impossible for GPUs with 64 GB and 128 GB of memory,
respectively, which is typical of current high-end HPC GPUs, along with the total GPU memory of the largest
supercomputer as of 2025: El Capitan (“TOP500 list - november 2024”, 2024). This marks an upper bound of the
maximum Reynolds number that could be investigated with current computational resources: Re; = 50,000.
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2.2. METHODOLOGY

2.2.1. GOVERNING EQUATIONS AND NUMERICAL DISCRETIZATION
The current numerical framework solves the incompressible Navier-Stokes equations,

V-u=0, (2.1)

J:u+u-Viu= —Vp+vV2u, (2.2)

where u and p correspond to the fluid velocity vector and the pressure scaled by the
fluid density; v is the fluid kinematic viscosity. The numerical scheme is based on an
incremental pressure correction scheme or fractional-step method (Chorin, 1967; J. Kim
& Moin, 1985), where a prediction velocity u* is first calculated by integrating the momen-
tum equation in time, and continuity is imposed using a correction pressure ®, which
is obtained from the solution of a Poisson equation. The equations were solved on a
rectangular box using a structured Cartesian grid with a staggered (MAC) arrangement
for the velocity and pressure grid cells. As per the restriction of the Poisson solver, we
employ uniform spacing along two Cartesian directions (x,y) and non-uniform spacing
in the third spatial direction (z). Second-order finite differences are used for spatial dis-
cretization. This has several advantages with respect to higher-order methods, such as
being computationally efficient while still enabling simulations with similar fidelity as
spectral discretization methods in practice (Moin & Verzicco, 2016), and being flexible
and easily extended with numerical techniques for handling complex geometries like the
immersed-boundary method (Breugem & Boersma, 2005; Fadlun et al., 2000; Uhlmann,
2005), or multi-fluid flows (Tryggvason et al., 2011). Finally, Wray’s low-storage Runge-
Kutta scheme (Wray, 1986) is used for temporal discretization. The numerical scheme is
presented below in semi-discrete form:

u* =uf+ At(ak (ﬂuk + vxuk) + Bk (,azfuk_l + vxuk_l) —ykfgpk_l/z) , 2.3)
9u*

=", (2.4)
YEAt

u“tl = ut —y A 19D, (2.5)

Pz Z k112 gy 2.6)

where a, B, and y refer to the coefficients of the RK3 scheme, which are given by:
a =1{8/15, 5/12, 3/4}, $ =1{0, —17/60, —5/12} and y = a + B; the index k refers to the RK3
sub-iteration index k = {0,1,2}, and At is the time step. For flows at very low Reynolds
numbers, or highly refined grids, the time step size At can be prohibitively small if
diffusive terms are integrated in time explicitly. In such cases, it may be preferable to
perform an implicit discretization of the diffusion terms at the cost of solving an extra
Helmholtz equation per velocity component, as illustrated below:

u** =uf+ At(akduk +Brduf 4y (—E@pk_”z + vxuk)), 2.7
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VAL VAL

u' -y’ :u**—Ykauk, (2.8)

2u*
® = , (2.4)

}kaf
utl = Ut -y ALGD, 2.9)

VAL

pk+1/2 _ pk—1/2+q)_yk73q>, (2.10)

Note that, indeed, Eq. (2.8) is a Helmholtz equation for the prediction velocity u*, which is
implicit in the three spatial directions (x,y,z). While this equation can be solved efficiently
using the fast direct methods presented in Section 2.2.2, the computational overhead
is still considerable. Fortunately, in many cases, the time step constraints for At are
due to fine grid spacing only along the non-uniform grid direction (here, z). This is
particularly true for wall-bounded flows with one inhomogeneous direction, such as
pipes or channels, which require fine grid spacing near the walls (Costa, 2018; Zhu et al.,
2018). In these cases, one can discretize only the wall-normal diffusion term implicitly,
and replace Eq. (2.8) with a one-dimensional system per velocity component:

" vAt " . vAt k
u —ykazu =u —ykazu, (2.11)

where £, denotes the discrete Laplacian term associated with the z direction. This is
numerically much cheaper, as the second-order finite-difference discretization of this
equation requires the solution of a simple tridiagonal system.

2.2.2. NUMERICAL SOLUTION OF THE POISSON/HELMHOLTZ EQUATION
FOURIER-BASED SYNTHESIS

The solution of the Poisson equation for the pressure comprises some of the numerical
algorithm’s most computation and communication-intensive steps. Here, Eqs. (2.4)
and (2.8) are solved using the method of eigenfunctions expansions, which allows for
fast, direct solutions by leveraging the FFT algorithm (Costa, 2018; Schumann & Sweet,
1988). After performing a Fourier-based synthesis of the Poisson/Helmholtz equation
along directions x and y, the following system of tridiagonal equations can be obtained
along the non-uniform grid direction z for a grid cell with index i, j, k:

(Ai/ AP + A IAY?) Dy i+ (M1 @i o1 + k@i ok + N1 P jokr1) = Fiojeo (2.12)

where the tilde (") denotes two successive discrete Fourier-based (i.e., Fourier/cosine/sine)
transforms applied to a variable along the x (index i) and y (index j) directions. Note
that each (i, j) pair corresponds to a tridiagonal system along the non-uniform direction
(z, index k). The coefficients A; and A; are the second-order accurate eigenvalues (or
modified wavenumbers); see, e.g., (Schumann & Sweet, 1988); Ax and Ay correspond
to the uniform grid spacing in the x and y directions, whereas the set of coefficients
represent the finite-different discretization of the £, operator along z. While the method
of eigenfunctions expansions aims at exploiting the FFT algorithm, it still allows for multi-
ple combinations of boundary conditions representative of different classes of canonical
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turbulent flows, from isotropic turbulence to several boundary-free and wall-bounded
shear flows.

After obtaining <i>l~, ik from Eq. (2.12), the final solution (®;, k) is easily computed
from the inverse Fourier-based synthesis. The numerical methods and algorithms to solve
Eq. (2.12) are the key parts of the present work and will be discussed next in Section 2.2.2.
Finally, there are noteworthy nuances in implementing fast real-to-complex/complex-to-
real (Fourier) and real-to-real (sine/cosine) transforms on GPUs in a unified framework,
which we describe in A.1.

ORIGINAL DISTRIBUTED-MEMORY SOLUTION

The numerical solution of the second-order finite-difference Poisson/Helmholtz equa-
tions in rectangular grids is solved using FFT-based methods in a distributed-memory
setting. The original approach used to solve this problem is described below?, and illus-
trated in Figure 2.2. The following steps are taken:

1. Compute right-hand side term d; j x of eq. (2.12) in z-aligned pencils.

2. Transpose data to x-aligned pencils and perform N, N, Fourier-based transforms
along x.

3. Transpose data to y-aligned pencils and perform N, N, Fourier-based transforms
along y.

4. Transpose data to z-aligned pencils and solve the resulting Ny N, tridiagonal sys-
tems of equations along z.

5. Perform the reciprocate transpose operation as in step 4.
6. Perform the reciprocate inverse transforms and transpose operation as in step 3.

7. Perform the reciprocate inverse transforms and transpose operation as in step 2, to
obtain the final solution in z-aligned pencils.

Here, Ny/y/. are the local number of grid cells along x/y/z during the different steps
of the algorithm for each MPI task. The transpose operations are an all-to-all collective,
which may be very expensive. Within this approach, the FFT-based transforms and solu-
tion of the tridiagonal systems can be trivially mapped to different parallel (GPU) threads.
Note that, whenever a 1D slab-like parallelization is possible, some of the transpose
operations shown above would turn into a no-op, making it often desirable. In this regard,
the best-performing slab configurations are those partitioned along y. This is convenient,
since each GPU can perform Fourier transformations along the x-direction, and solve
tridiagonal systems of equations along the z-direction, without performing additional
collective operations. Even with 1D implicit diffusion, only one pair of transposes is
required per step: the x — y transposes shown in Figure 2.2.

21t is important to note that, while the code CaNS allows for an arbitrary default pencil orientation (i.e.,
outside the pressure solver), we start from Z-aligned pencils since this minimizes the number of collective
communications when solving the momentum equation with z-implicit diffusion. Starting from x-aligned
pencils would avoid transpose operations in the Poisson solver, but many additional transpose operations
would be required for inverting a tridiagonal system per velocity component.
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Figure 2.2: Schematic representation of a FFT-based linear solver using a 2D pencil decomposition for the DNS
domain. The black arrows indicate the global transpose operations for the data stored among different MPI
tasks. The color of each 2D pencil represents a different MPI task. Forward (fwd.) operations are first performed
from left to right following the direction of the black arrows. Then, all transpose operations are reversed, and
inverse/backward (bwd.) Fourier-based transforms are performed, as indicated by the gray arrows. Note that
the first transpose operation is often implemented as two consecutive transposes: z — yand y — x.
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Figure 2.3: Modified parallel tridiagonal solver for large-scale DNS. The first two sub-images follow the same
conventions as Figure 2.2, where the color of each partition indicates a different MPI task. In the third and

fourth sub-images, the process of cyclic reduction is highlighted, by applying a different color to the boundary
values for each partition.

While the approach presented in Figure 2.2 enables GPU-accelerated DNS of fluid
flows on many CPUs/GPUs, the transposing operations may result in a major performance
loss. This may be particularly problematic in modern GPU-based systems at scale, as the
inter-node bandwidth is orders of magnitude slower than the GPU memory bandwidth
or the intra-node communication. Hence, we need an approach that: (1) keeps a 2D
parallelization, which is unavoidable at scale, and (2) reduces the amount of data used

in collective communications to a reasonable minimum. We will explain this approach
below.

SOLUTION WITH PARALLEL TRIDIAGONAL SOLVER

In this approach, we split the computational domain along the z direction, and exploit
a parallel tridiagonal solver as in (K.-H. Kim et al., 2021, 2023; Laszl6 et al., 2016) to cir-
cumvent the large all-to-all operations in the previous section. This approach is shown in
Figure 2.3. This algorithm starts with a cyclic reduction step, such that only information



16 2. OPTIMIZED DNS SOLVER FOR EXTREME-SCALE CALCULATIONS

regarding the boundaries of every slice in the z-direction must be communicated to other
MPI tasks. Subsequently, a tri-diagonal system for the boundary values is constructed.
While an all-to-all type of collective is still needed, internal data points are not commu-
nicated, which can drastically reduce the communication overhead. The steps of this
algorithm are summarized as follows:

1. Compute right-hand side term d; j x. of eq. (2.12) in x-aligned pencils.
2. Perform Ny N, Fourier-based transforms along x (see Figure 2.3).

3. Transpose data to y-aligned pencils and perform N, N, Fourier-based transforms
along y.

4. Perform NN, cyclic reductions along z, pack 2N, N), boundary values, and trans-
pose the packed boundaries to z-aligned pencils.

5. Solve NN, reduced systems of tridiagonal equations along z, with local size 2p,.

6. Transpose data to y-aligned pencils, unpack 2N, N, boundary values, and recon-
struct the internal solution fields.

7. Perform the reciprocate inverse transforms and transpose operation as in step 3.
8. Perform the reciprocate inverse transforms as in step 2.

In the previous steps, Ny/y,. is again the local grid size for each MPI rank in each
Cartesian direction, whereas p, is the number of divisions of the computational domain
along the z-direction, which would correspond to p, = 4 in Figure 2.3. The details of
the parallel tridiagonal algorithm, and the modifications proposed in this work for the
computation of its internal coefficients, are explained in Sections 2.2.2. Clearly, the
amount of data transferred among MPI tasks is substantially reduced (K.-H. Kim et al.,
2021). The tridiagonal system of equations found in the right-side of Figure 2.3 have a
size of 2p,, where p; is the number of partitions of the computational domain along
the z-direction. Therefore, the parallel tridiagonal solver should be efficient as long as
2p. < Nz, where N, is the total number of grid points in the z-direction.

Interestingly, in the parallel tridiagonal solver, increasing the number of lateral divi-
sions (py) favors strong scalability: When py, is increased, the size of the boundaries (per
MPI task) is reduced as 2nyny/ p,. Therefore, doubling p, halves the data communicated
per task, leading to excellent scalability. In contrast, increasing the number of vertical
partitions (p,) does not reduce the MPI workload, and thus it is unfavorable for scalability.
This is particularly relevant for 1D slab configurations where p), = 1 and p_ is the total of
GPUs. Still, 1D slab configurations are optimal when p, < N;.

PARALLEL TRIDIAGONAL ALGORITHM

Numerous approaches may be considered to parallelize the Thomas algorithm to solve
a tridiagonal system (see, e.g., the survey in (K.-H. Kim et al., 2021)). Here we adopt the
method proposed by (Laszl6 et al., 2016), which uses cyclic reduction, combined with a
Thomas algorithm for a reduced system. We have illustrated the approach in Figure 2.3,
and summarize it below.
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First, the distributed tridiagonal systems of this form (cf. eq. (2.12))

ag Pr-1+ b Gi + ck Py = dy, (2.13)

are locally reduced to a problem where inner unknowns within the computational subdo-
main are only a function of the values at its top and bottom boundary:

ay o+ P+ Ch pmo1 =d'i, (2.14)

using a cyclic reduction step. The original set of coefficients and right-hand-side (a, b, c, d)
are then reduced to the (&, ¢/, d’), where the main diagonal is normalized to have unit
weight. Algorithm 1 describes this approach for completeness, and more details can be
found in (K.-H. Kim et al., 2021, 2023; Laszl6 et al., 2016).

Second, the sets of values (d', ¢, d’) at the boundaries of every domain k = {0, m — 1}
can be grouped and transposed in a collective operation (recall Figure 2.3). Then, the
standard Thomas algorithm solves the reduced systems of tridiagonal equations for
the boundary values of all subdomains. Finally, the boundary data for ¢; j x can be
globally transposed, and the values of ¢; j x in the interior of every sub-domain can be
reconstructed using eq. (2.14).

A few important notes should be considered to secure parallel performance at scale
when combining the pressure Poisson equation with z-implicit diffusion. While the
same computational approach may be taken for solving both cases, the straightforward
implementation of Algorithm 1 would be far from optimal in both cases. Note that: (1)
the reduced tridiagonal system for the Poisson equation is time-invariant (eq. (2.4)), with
a problem that changes for each (i, j) index, yet (2) the z-implicit matrix is constant
for each (i, j) index, but time-dependent (eq. (2.11)). Hence, a key optimization for the
Poisson equation is to perform the transpose operations associated with the reduced
system coefficients (a’,b’, ¢') only once as an initialization step (recall the penultimate
step in Figure 2.2), as only d' varies with the right-hand-side of eq. (2.4). Regarding
implicit z diffusion, (a’,?’,c’) are time-dependent, but identical for all (i, j) indexes
mapped to different GPU threads to solve the equations along z. Thus, rather than
communicating (a’,b’, ¢') through MPI operations, it is much faster to have each GPU
computing the global (@, b’, ¢’) coefficients corresponding to all MPI tasks aligned in the
z-direction, and locally copy the values pertaining to its own subdomain. This is done on
the GPUs with unnoticeable computational overhead, and effectively avoids expensive
MPI communication operations.

Accordingly, to efficiently handle implicit z diffusion, Algorithm 1 was re-derived
in a flavor that splits the solution into an initialization with pre-computed coefficients
and a runtime step. This approach is presented in Algorithm 2. A major advantage of
this approach is that only the array d’ is modified in-place at runtime. This marks a
large contrast to Algorithm 1, which requires thread-private arrays (or memory buffers)
to track intermediate changes in the arrays (a’, ¢’). This change is particularly relevant
when solving for implicit 1D diffusion, since only 1D arrays with precomputed (a’, V', ¢)
coefficients can handle the solution process.

From a mathematical perspective, the new algorithm is derived by analyzing the cyclic
reduction process, and carefully tracking which references to the (a’,b’, ¢') arrays can be
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Algorithm 1 Cyclic reduction step of the parallel tridiagonal algorithm (K.-H. Kim et al.,
2021; Laszl6 et al., 2016), where d corresponds to the right-hand-side of the system (see
Eq. (2.12)).
: Step 1: Initialization
: Input: a,b,c,d
:agp <—a0/b0 ; Co <—C()/b() ; d() <—d0/b()
a) <—a1/b1 ; C1 <—Cl/b1 ;dl <—d1/b1
fori=2,...m-1do
r—1/(b;-ajc;1)
d; —r(d; -a;d;—1)
C; — IcC;
a; — —ra;a;—1
: end for
: fori=m-3,...,1 do
d; —d;—c;id;+;
a; —a; —c;a;4]
Cj — —CiCi11
: end for
: r—1/(1-ajcp)
: do — r(dp — cod;)
: ag — rag
: Cp — —rcpC
:b=1

—

© XN DO R N

DN DN DN = e e et b b e e e
N H O © ® N gh W =O

: Step 2: Solve reduced system of equations for boundary values

NN
»w

: Step 3: Reconstruct the solution in-place
: Input: a, c,d, Xy, X;;—1

: do —xp

s dp-1 —Xm-1

: fori=1,...,m-2 do

d; —d; —a;Xo —€;Xp—1

: end for
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replaced by either their input or output values. After making this distinction, it becomes
evident that the reduction process for the array d’ does not depend on intermediate
values for (a', ', ¢’) being over-written. Therefore, it is natural to split the process into
initialization and runtime stages. Moreover, it is important to highlight that only the
initial values of (@', ¢') are used. In the DNS solver, the variables (a’, ¢) always correspond
to 1D vectors, even for Poisson or Helmholtz solvers. As a result, storing the initial values
of (a, c) creates a negligible performance overhead.
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Algorithm 2 Alternative flavor of the cyclic reduction method proposed in this work,
with a separation between initialization and runtime operations. The variables (A, B, C)
correspond to the original coefficients of the tridiagonal equations, whereas (a, b, c) are
the modified coefficients after cyclic reduction.

: Step 1: Initialization

: Input: A,B,C,a,b,c

a) < A1

b1 —B;

fori=2,...,m-1 do
b; —B;—A; Ci—1/b;j—;
a;——Aja;1/b;

: end for

© XN AR edh

Cm-1< Cm-1

p—
(=]

: Cp—2 — Cp—2
: fori=m-3,...,1 do
a;—a;—Cjaj1/biy
c; ——Ciciy1/biy
: end for
:ag— Ao
: b() <—B0— C() a1/B1
: Co— —C() Cl/Bl
> Note: To avoid GPU divisions in Steps 2 and 4, optimized implementations can store
1/b instead of b.
18:
19: Step 2: Runtime reduction
20: Input: A,B,C,a,b,c,d
21: fori=2,...,m-1do
22: d;—d;-A;d;_1/b;_;
23: end for
24: fori=m-3,...,0 do
25:  dj—d;=Cidij11/bjyq
26: end for
27:
28: Step 3: Solve reduced system of equations for boundary values
29:
30: Step 4: Reconstruct the solution in-place
31: Input: a,b,c,d,xg,X;;,—1
32: dp — X
33: dm_1 —Xm-1
34: fori=1,...,m-2 do
35:  d; —(d; —a;X9 — €;Xp-1)/b;
36: end for

e e e e e




2.2. METHODOLOGY 21

2.2.3. IMPLEMENTATION

As previously noted, the approaches we have presented are implemented in the open-
source code CaNS (Costa, 2018; Costa et al., 2021). CaNS is written in Modern Fortran,
and since its version 2.0 offloads data and computation to GPUs using OpenACC. At
the fine-grained parallelization level of the TDMA implementations, each i, j index is
assigned to a thread, which serially performs operations along the third domain direc-
tion. The CPU implementation uses the 2DECOMP&FFT library (Rolfo et al., 2023) to
perform transposes. Conversely, the multi-GPU implementation uses the cuDecomp
library for pencil-distributed calculations at scale that feature transposes and halo ex-
changes (Romero et al., 2022) is used in CaNS. The main advantage of cuDecomp is its
runtime autotuning capabilities, which allows to confidently select a well-performing
combination of 2D processor grid and communication backend (with several low-level
implementations of the transposing algorithm in CUDA-aware MPI, NCCL, or NVSH-
MEM). cuDecomp’s flexibility allowed for a very straightforward implementation of the
communication operations that can be visualized in Figure 2.2. Indeed, the all-fo-all
operations needed to communicate the boundary values for each sub-group of slices
along the z-direction could be replaced by the existing transpose operations available in
the cuDecomp or 2DECOMP libraries.

The distributed-memory implementation of CaNS, using cuDecomp and cuFFT, al-
lowed for very efficient calculations at scale on NVIDIA-based systems. However, in the
present work we decided to benchmark our approach on the supercomputers Leonardo
(NVIDIA-based) and LUMI (AMD-based). We summarize our implementation approach
for the latter, which we plan to incorporate in the CaNS public repository in the near
future.

Regarding the verification of the implementation, CaNS has been extensively validated
in the past (Costa, 2018; Costa et al., 2021). Therefore, the correctness of the current
implementation can be trivially verified, since only the parallel tridiagonal solvers have
been touched. An explicit comparison with respect to the output of the full-transpose
method is accurate up to machine precision for the modified subroutines, which verifies
the correctness of the implementation.

MANY-GPU IMPLEMENTATION ON LUMI

On LUM]I, the Cray Fortran compiler is readily compatible with OpenACC, and GPU-aware
MPI is supported to perform data transfer among GPU devices (or GCDs). However, since
LUMI has AMD cards, some work was required to port the transpose and halo exchange
algorithms for LUMI. One approach would be to adjust cuDecomp such that the NVIDIA-
specific features of the library are masked out of the build workflow. In the present work,
we took a different route and developed a cross-platform communication library based
on Fortran and OpenACC named diezDecomp. Its source code is available on GitHub
under an MIT license (Diez, 2025). This implementation uses OpenACC and GPU-aware
MPI to perform transpose and halo exchange operations. During transpose operations,
diezDecomp has been optimized to pack and unpack data related to different MPI ranks
simultaneously (in parallel GPU threads), and it supports conversions between different
indexing orders (e.g., x/y/z to y/x/z). As further verification, the performance of the
diezDecomp library was tested in the Leonardo supercomputer, achieving nearly identical
running times as the cuDecomp library.
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Finally, it is important to highlight that the current distributed Poisson/Helmholtz
solver is able to work with various types of FFT libraries, such as cuFFT (“cuFFT API
Reference”, 2024), hipFFT (“hipFFT documentation”, 2024), or even in-house FFT imple-
mentations. In this context, our porting effort uses the hipFFT library for simulations
in AMD GPUs using the bindings provided by the hipFort project (hipFort), whereas
cuFFT is enabled for NVIDIA GPUs via the CUDA toolkit (“CUDA Fortran for Scientists
and Engineers”, 2014). Since both FFT libraries have similar APIs, our implementation
uses CPP macros to switch between libraries depending on the target platform.

2.3. RESULTS

2.3.1. STRONG AND WEAK SCALABILITY

We consider a large-scale turbulent plane channel flow setup, which exercises all impor-
tant steps presented in this chapter, including z-implicit diffusion. Figure 2.4 presents
a strong scalability test for a Ny x N, x N, =7168 x 7168 x 1594 grid, containing
approximately 80 billion grids points. This corresponds to a channel with a domain size of
Ly x Ly x L, = 12.8 x 6.4 x 2, with a friction Reynolds number Re; ~ 5000 (Lee & Moser,
2015). Note that, in many GPU-resident workloads, a strong scaling test likely shows
performance deterioration, as the occupancy of each GPU is being lowered (Romero et al.,
2022). The tests were performed on the Leonardo and LUMI supercomputers, which
again, feature NVIDIA A100 and AMD MI250X GPU cards, respectively. In the figure, we
compare the full transpose method (FTM) to the approach with the parallelized tridi-
agonal matrix algorithm (P-TDMA), for both 1D (slab) decompositions (as in Figure 2.2
without decomposing along x, and in Figure 2.3 without decomposing along y) and for
2D pencil decomposition schemes with different levels of process decomposition along z:
pz =2 and 128. The number of partitions along the y-direction (p,) are set from the total
number of GPUs: ng = py, x p.. These configurations are intended to show how the solver
scales in the two limits where the 2D pencil decomposition has either the least number
of partitions along z, or very high values. Clearly, the P-TDMA algorithm is far more
efficient than FTM when 2D pencil decompositions are considered. This is explained by
Figures 2.2 and 2.3, because the P-TDMA algorithm transposes a significantly smaller
amount of data than the FTM method. Focusing on the performance of the Poisson solver
(bottom panels of Figure 2.4), there is a consistent 1.5x improvement in wall-clock time
per step. While strong scaling deterioration is expected, it is interesting to note that some
of the curves show reasonably mild deviations from the ideal scaling curve.

The P-TDMA method shows great efficiency for p, = 2, and almost matches the best-
performing 1D slab configurations in the FTM case. This is expected, as the P-TDMA
method only transfers data along one small boundary in the z-direction when p, = 2,
with a computational cost roughly similar to a halo exchange.

Let us now consider the difference between the wall-clock time of the Poisson solver
and the full time steps. The most important difference here is the solution of three
separate systems of 1D implicit diffusion equations in the wall-clock time of the full
time step. Therefore, configurations that transfer more data when solving for 1D implicit
diffusion tend to have worse performance, such as the FTM approach with a 2D pencil
decomposition.
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The wall-time per steps for the Poisson solver with 1024 GPUs/GCDs converge to a
similar value for both the best FTM configurations and the P-TDMA cases with 2D pencil
decompositions, since their performance is dominated by the transpose operations in the
x-y directions. Interestingly, one can notice a major performance gain for the P-TDMA
when p, = 128 on LUMI, which corresponds to a special case where 50% of the required
data after the x-y transpose is already present in the GPU, requiring only a local copy.

In the case of the P-TDMA algorithm with 1D slabs, it can be observed in Figure 2.4
that the running times remain nearly constant when the number of GPUs/GCDs increases
from 256 to 512. This is due to the P-TDMA method having boundaries with a fixed
size of (N x N x 2), and thus, the data transferred per GPU/GCD remains equal as the
number of processes is increased. Despite this, the P-TDMA method with 1D slabs still
outperforms the FTM approach, when the number of grid points along the z-direction
is very large for every 1D slab. This is illustrated in Figure 2.5, where a strong scalability
benchmark is presented for 1D slabs for Re; = 2500 and a grid size of Ny x N, x N, =
3200 x 3456 x 900. In this benchmark, the P-TDMA method outperforms the FTM
approach with 32 GPUs/GCDs, yet its performance decreases as the number of processes
grows. For cases at lower Reynolds numbers, the performance improvements can be
expected to grow in favor of the P-TDMA method, since the number of grid points per
GPU along z increases for the 1D slabs.
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Figure 2.4: Strong scalability chart for a wall-bounded flow with grid size (Nx x Ny x Nz) =
(7168 x 7168 x 1594), which roughly corresponds to a friction Reynolds number of Re; = 5000. The vari-
able p; corresponds to the number of divisions along the z direction for the pencil decomposition scheme.
The abbreviation "FTM" refers to the original DNS solver, which was based on the full-transpose method. All
simulations were performed in the Leonardo and LUMI supercomputers. Please note that P-TDMA method
with 1D slabs (filled black triangles) cannot be run with 1024 GPUs/GCDs, due to an insufficient number of grid
points in the z-direction: N;/p; < 2.
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Figure 2.5: Strong scalability chart for a wall-bounded flow with grid size (Ny x Ny x Ny) =
(3200 x 3456 x 900), which roughly corresponds to a friction Reynolds number of Re; = 2,500. All runs
correspond to 1D slab configurations, as in Figure 2.2 without decomposing along x, and in Figure 2.3 without
decomposing along y.

The results from the weak scaling tests are shown in Figure 2.6. Weak scaling is the
most important scaling indicator in large-scale GPU-resident DNS, as optimal resource
usage requires maximizing GPU occupancy, which is kept fixed in these tests. We fixed the
local domain sizes to about 318.5 million grid points per GPU, by considering a grid with
3456 x 3072 x 30 points per GPU, which saturates the GPUs (GCDs) on Leonardo (LUMI).
For the P-TDMA method, the number of partitions p, along the z-direction is equal to
the number of GPUs/GCDs, since this corresponds to the most challenging scenario for
the weak scaling analysis; for FTM, we use the optimal configuration for 1D slabs. Clearly,
the performance of the P-TDMA approach is superior, not only being approximately 2 x
faster in wall-clock time per step, but also in terms of weak scaling. An 8-fold increase
in the GPUs/GCDs used results in a 3% (13%) performance degradation on Leonardo
(LUMI), while the full transpose method shows a major weak scaling loss of 35% (52%) on
Leonardo (LUMI). This shows that, indeed, the proposed improvements are important
for efficient wall turbulence simulations at scale.
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Figure 2.6: Weak scalability analysis for DNS cases with a fixed grid size (Ny x Ny x Nz) = (3456 x 3072 x 30)
per GPU device. For the P-TDMA method, the pencil decomposition scheme only considers one partition along
the y-direction (py = 1), and a number of z-partitions (pz) equal to the number of GPUs. The FTM approach
considers the 1D slab configuration as in Figure 2.2 without decomposing along x.

2.3.2. BREAKDOWN OF PARALLEL PERFORMANCE

Let us now understand in more detail the results presented in the previous sections. Fig-
ure 2.7, compares the workload distribution of the current approach and the previous
algorithm based on the full-transpose method. The DNS cases chosen for comparison
are simulations with 1024 GPUs/GCDs, shown in the strong scalability chart (Figure 2.4).
Consistently with the previous observations, the performance differences in the super-
computers we have tested show similar trends overall. The 2D pencil decomposition
considered for comparison s (py, x p;) = (512, 2), which has the lowest running times
overall for the P-TDMA algorithm. Not surprisingly, the P-TDMA approach is much faster
than the full-transpose algorithm while solving for the pressure-Poisson equation. How-
ever, the P-TDMA algorithm is slower when solving for 1D implicit diffusion alongside
each velocity component (u, v, w). This is also expected, as again, the FTM uses an initial
z-aligned decomposition, where the full tridiagonal problems are local to each MPI task.
Both algorithms show similar overhead associated with halo exchanges, which is also
expected.

AVERAGE TIMINGS

When inspecting the contributions to the mean total wall-time per step in Figure 2.7, it
becomes clear that all-to-all operations are the main performance bottleneck of the full-
transpose method, whereas the P-TDMA approach is far less communication-intensive.
Interestingly, the Poisson solver with the P-TDMA algorithm spends 81.7% (89.6%) of the
time on Leonardo (LUMI) performing local transposes along the x-y plane, which are
required between the Fourier-based transforms described in Section 2.2.2. The all-to-all
operations associated with the parallel tridiagonal solver only require 0.2% (0.6%) of the
computing time in Leonardo (LUMI), as this collective operation only communicates
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boundary values for each MPI task (recall the penultimate step in Figure 2.2). Note
that, while the time spent performing x — y transposes can be (partially) reduced by
minimizing the p,, divisions along the y-direction (e.g., py = 2), the overall performance
degrades in Figure 2.4 when the number of vertical partitions p, is increased for this
case. This trend is valid for both the FTM approach and the P-TDMA methods, since the
cost of performing y-z transposes increases as p, grows. Therefore, a careful trade-off
must be considered. Moreover, the optimal DNS domain decomposition is not only
problem-dependent but also hardware-dependent, which makes runtime tuning of the
computational setup very relevant (Romero et al., 2022).

Finally, in Figure 2.7, it can be noticed that the P-TDMA approach also performs
x — y transposes when solving for implicit 1D diffusion, with a small but noticeable
communication footprint. This is not strictly necessary, since cyclic reduction can be
directly performed using the initial x-aligned pencils (Figure 2.3, left), and then a direct
x — ztranspose could be used to obtain z-aligned pencils (Zhu et al., 2018). This direct
transpose is less trivial to implement and is not featured in cuDecomp or 2DECOMP&FFT.
Yet, since the diezDecomp communication library supports x — z transposes for any
desired 2D decomposition, we tested the performance gains of this direct transpose. The
results of this additional benchmark are shown in A.2 for LUMI. While the computational
overhead of the additional x — y transpose is small for the cases shown in Figure 2.7 with
the decomposition (p, x p;) = (512 x 2), we identified that other pencil decompositions
suffered from higher performance losses. For instance, the benchmark shows that the
DNS case with (py x p;) = (8 x 128) is about 55% faster during the calculation of
z-implicit diffusion when using direct x — z transposes. This results in savings of about
18% in the total wall-clock time per step.



2.3. RESULTS 27

0.8 - Leonardo
3 0.6 A
£
E 0.4 ~ QJ§ &>
g &
o
T 02 -
=
0.0 - == U u U
FTM P-TDMA FTM P-TDMA  FTM P-TDMA FTM P-TDMA
Poisson solver Implicit diffusion Other Overview
LUMI
0.8 1
5 06 1 6&&‘
£
= .Q
T 04 - &
Q
2
o
S 02 A
=
0.0 -
FTM P-TDMA  FTM P-TDMA  FIM P-TDMA FTM P-TDMA
Poisson solver Implicit diffusion Other Overview
I Transposes x-y [ Transposes y-z Halo Exchange @ Computation

Figure 2.7: Comparison between the GPU timer profiles for the DNS solver with the P-TDMA and FTM methods
on Leonardo and LUMI. For each profiled operation, the left bars correspond to the average wall-time per step
(mean), while the right bars are the aggregated results considering the best elapsed times per operation (min).
The data was extracted from the DNS runs with 1024 GPUs (Leonardo) or GCDs (LUMI), which are presented
in the strong scalability chart (Figure 2.4) for a fixed grid size (Nx x Ny x Nz) = (7168 x 7168 x 1594). For
the DNS solver with P-TDMA, the data further corresponds to the case with (py x pz) = (512 x 2) partitions
along the y and z directions, which has the fastest running times in the strong scalability chart. Both GPU timer
profiles correspond to the averaged results for a single RK3 sub-step within the DNS solvers. Please note that
the y — z transposes for the P-TDMA algorithm transfer much less data, and thus their impact on the plotted
budgets is minor.
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BEST ELAPSED TIMES PER OPERATION

To better explain the differences between systems, we included in Figure 2.7 the aggre-
gated best elapsed times per operation (right bars). Remarkably, the total running times
for the FTM (P-TDMA) method are decreased by about 28% (37%) for LUMI, and by
8% (9%) for Leonardo. It appears that the average wall-clock time per step on LUMI is
significantly suboptimal compared to that on Leonardo.

Significant performance differences between these machines for all-fo-all collective
operations have been reported in (De Sensi et al., 2024), where Leonardo outperformed
LUMI by almost 50% in goodput benchmarks at scale. We argue that the analysis con-
sidering the best elapsed times per operation resembles a goodput benchmark better,
since these results contain the smallest levels of network delays possible. Interestingly,
when inspecting the aggregated best elapsed times (min) in Figure 2.7, it can be noticed
that LUMI is only 31% (45%) slower than Leonardo for the total running times of the FTM
(P-TDMA) method, consistently with the trends in (De Sensi et al., 2024). We verified that
this trend is robust across other cases (not shown).

2.4. CONCLUSIONS

We have presented a numerical approach for GPU-based massively-parallel DNS of tur-
bulent wall flows with one inhomogeneous direction. Using the CaNS solver as base, we
extended it with a parallel tridiagonal algorithm for solving the pressure Poisson equation,
and to handle implicit integration of the wall-normal diffusion term. To achieve this,
we adopted a recently-proposed approach for solving distributed tridiagonal systems
(K.-H. Kim et al., 2021; Laszl6 et al., 2016), and implemented it in a pencil-decomposed
framework. Allowing for two-dimensional decompositions is key, as slab-decomposed
approaches are bound to breakdown for DNS at sufficiently high Reynolds number.
Carefully handling z-implicit diffusion was key to secure the improved parallel perfor-
mance at scale. To this end, we have proposed a re-worked flavor of the original parallel
cyclic reduction - TDMA approach presented in (Laszl6 et al., 2016). We have shown that,
by re-working the algorithm into a pre-processing and runtime step, one can easily solve
the three linear systems per time iteration associated with this implicit discretization.
We have tested the different approaches at scale, using up to 1024 GPUs/GCDs on the
supercomputers Leonardo and LUMI. The results of the scalability tests reveal that the new
distributed Poisson solver shows compelling performance gains for 2D pencil decomposi-
tions, being approximately twice faster in the LUMI and Leonardo supercomputers than
the original CaNS version based on the full-transpose approach using 1024 GPUs/GCDs.
A detailed analysis of the GPU timer profiles reveals that the performance improvements
are largely due to the reduced size of the global all-to-all transpose operations among MPI
tasks. The scalability of the DNS solver was also tested in large-scale simulations of wall-
bounded flows, benchmarking the performance of entire physical time steps. At scale,
the new approach was found to be approximately 1.5x faster in the LUMI and Leonardo
supercomputers with a 2D pencil decomposition of (p, x p;) = (512 x 2) while com-
pleting entire physical time steps. The observed performance differences between the
two machines were understood by inspecting the best recorded times per algorithm step,
showing that LUMI runs experienced higher latency than Leonardo. In general, we find
that minimizing the number of p, partitions in 2D pencil decompositions reduces the
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running times for the DNS solver with either the full-transpose method or the parallel
tridiagonal algorithm. This is attributed to the reduced cost of performing transposes
in the y-z directions. Additionally, we highlight that the DNS solver, coupled with the
parallel tridiagonal algorithm, can be configured to work with 2D pencil decompositions
achieving identical running times as the most optimized 1D slab configurations available
for medium-scale systems.

Regarding implementation, while the underlying numerical solver works on Leonardo
out-of-the-box, some work was required to successfully run it on LUMI. As a by-product
of the present effort, a cross-platform communication library diezDecomp was devel-
oped for halo exchanges and any-to-any transpose operations between MPI ranks with
mismatched local problem sizes. While we could have achieved the same by modifying
cuDecomp, we found some advantages in having a simpler library in Modern Fortran as
an alternative with fewer dependencies.

Overall, this approach will enable DNS of turbulent wall flows at unprecedented scales,
helping to bridge the gap between current setups that can be studied using first-principles
simulations, and important applications in environmental and engineering systems.
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DATA-DRIVEN RANS TURBULENCE
MODELS FOR VARIABLE PROPERTY
FLOwS

This chapter presents a machine learning methodology to improve the predictions of tra-
ditional RANS turbulence models in channel flows subject to strong variations in their
thermophysical properties. The developed formulation contains several improvements
over the existing Field Inversion Machine Learning (FIML) frameworks described in the
literature. We first showcase the use of efficient optimization routines to automatize the
process of field inversion in the context of CFD, combined with the use of symbolic algebra
solvers to generate sparse-efficient algebraic formulas to comply with the discrete adjoint
method. The proposed neural network architecture is characterized by the use of an initial
layer of logarithmic neurons followed by hyperbolic tangent neurons, which proves numer-
ically stable. The machine learning predictions are then corrected using a novel weighted
relaxation factor methodology, that recovers valuable information from otherwise spurious
predictions. Additionally, we introduce L2 regularization to mitigate over-fitting and to
reduce the importance of non-essential features. In order to analyze the results of our deep
learning system, we utilize the K-fold cross-validation technique, which is beneficial for
small datasets. The results show that the machine learning model acts as an excellent
non-linear interpolator for DNS cases well-represented in the training set. In the most
successful case, the L-infinity modeling error on the velocity profile was reduced from 23.4%
10 4.0%. It is concluded that the developed machine learning methodology corresponds to a
valid alternative to improve RANS turbulence models in flows with strong variations in
their thermophysical properties without introducing prior modeling assumptions into the
system.

This chapter has been published in Computers & Fluids, volume 255, p. 105835, 2023.
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3.1. INTRODUCTION

3.1.1. TURBULENCE MODELLING

The governing equations of fluid flow have long been established, yet modelling tur-
bulence remains one of the biggest challenges in engineering and physics. While it is
possible to resolve the smallest scales of turbulent flows using direct numerical simu-
lations (DNS), DNS is still unfeasible for real-world engineering applications. Due to
this reason, engineers must rely on RANS turbulence models to describe turbulent flows.
However, most of the development of turbulence models has focused on isothermal
incompressible fluids. Therefore, these models can be inaccurate when applied to flows
with strong variations in their thermophysical properties (He et al., 2008; Rodriguez et al.,
2018), such as supercritical fluids or hypersonic flows. Understanding the behaviour of
flows subject to strong property gradients is critical for several engineering applications,
such as heat exchangers, supersonic aircraft, turbomachinery, and various applications
in the chemical industry (Nemati et al., 2015; Pecnik & Patel, 2017; J. W. R. Peeters et al.,
2016; J. Peeters, 2022; Yoo, 2013). Even incompressible fluids, such as water, can present
large changes in viscosity when subjected to temperature variations.

For incompressible constant-property flows, the governing parameter in the descrip-
tion of turbulent boundary layers is the Reynolds number. For compressible flows, the
Mach number and the associated changes in properties become additional parameters
that characterize turbulent wall-bounded flows. From past studies, it is known that dif-
ferences between a supersonic and a constant-property flow can be explained by simply
accounting for the mean fluid property variations, as long as the Mach number remains
small (Smits & Dussauge, 2006). This result is known as Morkovin’s hypothesis (Morkovin,
1961). DNS of compressible channel flows (Coleman et al., 1995) also suggest that in
the near-wall region most of the density and temperature fluctuations are the result of
solenoidal 'passive mixing’ by turbulence. Previous work by (Patel et al., 2015) has pro-
vided a mathematical basis for the use of the semi-local scaling as proposed by (Huang
et al., 1995). It was concluded that under the limit of small property fluctuations in
highly turbulent flows, a change in turbulence is governed by wall-normal gradients of
the semi-local Reynolds number, defined as

Rer, 3.1

where p is the density, ¢ dynamic viscosity, the bar denotes Reynolds averaging, the
subscript w indicates the value at the wall, and Re; is the friction Reynolds number based
on wall quantities and the half channel height, h. Thus, Re} provides a scaling parameter
which accounts for the influence of variable properties on turbulent flows.

With the semi-local scaling framework and the fact that variable property turbulent
flows can be successfully characterized by Re, two main developments followed. First,
in (Patel et al., 2016), a velocity transformation was proposed which allows to collapse
mean velocity profiles of turbulent channel flows for a range of different density and
viscosity distributions. Although following a different approach, this transformation is
equivalent to the one proposed by (Trettel & Larsson, 2016). Second, this insight has
later been used in (Pecnik & Patel, 2017) to extend the semi-local scaling framework
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to derive an alternative form of the turbulent kinetic energy (TKE) equation. It was
shown that the individual budget terms of this semi-locally scaled (TKE) equation can
be characterized by the semi-local Reynolds number and that effects, such as solenoidal
dissipation, pressure work, pressure diffusion and pressure dilatation, are indeed small
for the flows investigated. Based on the semi-locally scaled TKE equation, (Rodriguez
et al., 2018) derived a novel methodology to improve a range of eddy viscosity models.
The major difference of the new methodology, compared to conventional turbulence
models, is the formulation of the diffusion term in the turbulence scalar equations.

While these corrections improve the results of RANS turbulence models significantly,
they can still be subject to further improvements. Due to these reasons, the present
investigation will focus on building ML models to improve the performance of existing
RANS turbulence models.

3.1.2. MACHINE LEARNING

In recent years, machine learning has been successfully applied in fluid mechanics and
heat transfer due to its inherent ability to learn from complex data, see for instance
(Chang et al., 2018). While different ML methods are available, deep neural networks
have emerged as one of the most promising alternatives to improve turbulence modelling
(Brunton et al., 2020). These systems are able to approximate complex non-linear func-
tions by using nested layers of non-linear transformations, which can be adapted to the
context of every application to optimize the usage of computational resources and to
mitigate over-fitting. Different types of neural networks currently hold the state-of-the-art
accuracy record in challenging domains, such as computer-vision or natural-language
processing (LeCun et al., 2015). During the last decade, one of the main reasons behind
the success of deep learning has been the ability of neural networks to approximate
general non-linear functions while still providing multiple alternatives to optimize their
design.

Significant works in the context of deep learning applied to CFD can be found in the
studies of (Ling et al., 2016), who developed deep neural networks to model turbulence
with embedded Galilean invariance, or in the work of (Parish & Duraisamy, 2016), where
field inversion machine learning (FIML) is proposed in the context of CFD. Despite the
abundance of recent works, significant research is still required regarding the application
of ML in the context of CFD, and rich datasets to study turbulence in complex condi-
tions must still be outlined. The future availability of datasets to study turbulence in
complex geometries is particularly promising, as this could yield new models with strong
applications to industrial and environmental problems.

The methodology for the present study is based on the FIML framework proposed
by (Parish & Duraisamy, 2016). This methodology focuses on building corrections for
existing RANS turbulence models instead of attempting to rebuild existing knowledge
entirely. In the FIML framework, the process of building machine learning models is
split into two stages. In the first stage, a data gathering process known as field inversion
is performed, where the objective is to identify an ideal set of corrections for the RANS
turbulence model under study. Then, in the second stage, a machine learning system
is trained in order to replicate the corrections identified. The main advantage of this
procedure is that the training process of a neural network is effectively decoupled from
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the CFD solver, thereby improving the efficiency of the procedure by several orders of
magnitude.

For the present work, several modifications are proposed with respect to the study
made by (Parish & Duraisamy, 2016) and the subsequent publications of (Singh, Du-
raisamy, & Zhang, 2017; Singh, Matai, et al., 2017; Singh, Medida, & Duraisamy, 2017). The
modifications considered cover different stages of the problem; such as the optimization
methods employed in field inversion, the generation of automatic formulas to compute
the gradients of the CFD system, the possibility to automate the process of generating
feature groups for the ML system, and novel methods to improve the stability of the FIML
methodology while making predictions.

3.2. FULLY DEVELOPED TURBULENT CHANNEL FLOWS

In this work we consider fully developed turbulent channel flows for which a large number
of available DNS studies exist, and for which the time and space averaged conservation
equations can be substantially simplified.

3.2.1. DNS DATABASE

The DNS database of turbulent planar channel flows, which we will consider, consists of
three different sets of simulations. The first set represents variable property low-Mach
number channel flows with isothermal walls, heated by a uniform volumetric source to
induce an increase of temperature within the channel (Patel et al., 2016; Patel et al., 2017;
Pecnik & Patel, 2017). Using different constitutive relations for viscosity i, density p and
thermal conductivity A as a function of temperature, different DNS cases are used to study
the effect of varying local Reynolds and Prandtl number on near wall turbulence. The
cases with their respective relations for the transport properties and their corresponding
wall-friction velocity based Reynolds number and local Prandtl number are summarized
in table 3.1 (low-Mach number cases). Most of the cases have a friction based Reynolds
number at the wall of Re;=395. Depending on the distribution of density, viscosity, and
conductivity, the semi-local Reynolds number Re} and the local Prandtl number are
either constant, increasing or decreasing from the walls to the channel center. More
details on the cases can be found in Refs. (Patel et al., 2016; Patel et al., 2017; Pecnik &
Patel, 2017). The second set of DNS consists of high-Mach number compressible channel
flow simulations with air modeled as a calorically perfect gas (Trettel & Larsson, 2016)
(high-Mach number cases). The Mach number ranges from 0.7 to 4 and the corresponding
constitutive laws for the transport properties, Re; and Prandtl number Pr are summarized
in Table 3.1 as well. The third set of simulations contains incompressible channel flows
(Jiménez & Hoyas, 2008) (incompressible cases). These cases been added as an additional
set to train the FIML framework to account for a large range in Reynolds numbers.

For all of the variable property DNS cases, it is possible to show that Morkovin’s hy-
pothesis applies (Patel et al., 2015). This hypothesis establishes that only the averaged
values in thermophysical properties can be used to characterize the changes in turbu-
lence, and that any higher-order correlations of turbulent fluctuations observed in these
properties have a negligible impact in the mean balances (Coleman et al., 1995; Patel
etal., 2015).
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Table 3.1: DNS database of turbulent channel flows with variable properties (low-Mach) (Patel et al., 2016; Pecnik

& Patel, 2017), with ideal gases at high-Mach numbers (Trettel & Larsson, 2016), and with constant properties

(incompressible) (Jiménez & Hoyas, 2008).

Number CaseID o u A Rer,w Pry Ecr,w [7)
Low-Mach number cases (Patel et al., 2016; Patel et al., 2017; Pecnik & Patel, 2017)
1 CP150 1 1 1 150 0
2 CP395 1 1 1 395 17.55
3 CRef ! 7705 1 395 17.55
4 SReX:, 1 T2 1 395 18.55
5 GL -1 707 1 395 17.55
6 LL1 1 -1 1 150 29
7 SReX, 06 7707 1 150 315
8 SRe?.., 1 7705 1 395 ) o 17.55
9 Cv -1 T-1 1 395 16
10 LL2 1 T-1 1 395 17.55
11 CReXcpr* 171 7705 1705 395 17.55
12 GLCPr* T-1 707 707 395 17.55
13 VASPrf, 1 1 T! 395 17.55
14 JFEM.CRef 71 7705 1 395 95
15 JFM.GL T-1 707 1 950 75
16 JFM.LL 1 T-1 1 150 62
High-Mach number cases (Trettel & Larsson, 2016)
17 MO0.7R400 437 5.736-1074
18 MO0.7R600 652 5.190-1074
19 M1.7R200 322 2.804-1073
20 M1.7R400 663 2.394.1073
21 M1.7R600 Tt 707 075 972 0.7 21351073 0
22 M3.0R200 650 4.751-1073
23 M3.0R400 1232 4.185-1073
24 M3.0R600 1876 3.752-1073
25 MA4.0R200 1017 5.574-1073
Incompressible cases (Jiménez & Hoyas, 2008)

26 IC.Rel80 180
27 IC.Re550 550
28 IC.Re950 - - - 950 - - -
29 IC.Re2000 2000
30 IC.Re4200 4200
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3.2.2. RANS EQUATIONS

To model the turbulent channel flows described above, we use the Reynolds/Favre av-
eraged Navier-Stokes equations. For a fully developed turbulent channel flow, the only
in-homogeneous direction of the averaged flow corresponds to the wall-normal coor-
dinate, leading to a set of one-dimensional partial differential equations for the mean
momentum, mean energy and any additional transport equations for the turbulence
quantities used to close the RANS equations. The Reynolds/Favre averaged streamwise
momentum and energy equations for a fully developed turbulent channel flow read

21,2
0y |\ Rer,w He oy
0

o b ]
— + — | ==Ec;pw|—
o0y [\Re;,wPry Pr; )0y ’

=-1, (3.2)

[
He ay Re; ,Pry’ '

with the variables u and T referring to the Favre-averaged streamwise velocity and the
cross-sectional temperature profiles, respectively. The variables c,, Pr; and ¢ refer to the
isobaric heat capacity, the turbulent Prandtl number, and an arbitrary volumetric heat
source term. The coordinates x and y further refer to the streamwise and the wall-normal
directions for the channel flow. The wall based friction Reynolds number, the Prandtl
number and the friction based Eckert number are defined as

Ur wh c
Rep =220 pr, = ““jl P Eerw=12 )/ (cpuwTu) = (y-1)Ma?,, (3.4

Hw w

with u; ,, = \/7Tw/pw the friction velocity, k the channel half width, y the ratio of specific
heats and May,,, = u;,,,/ a,, where 7, is shear stress and a,, the speed of sound at the
wall. Given these non-dimensional groups, the non-dimensional density, temperature,
viscosity, thermal conductivity are one at the wall, while the non-dimensional isobaric
heat capacity is ¢, = 1 in the whole domain.

The mean momentum and energy equations make use of the Boussinesq approxima-
tion and the strong Reynolds analogy to model the turbulent shear stress, the turbulent
heat transfer, and the turbulent dissipation in the energy equation (first term on the
right-hand-side). As such, a turbulent eddy viscosity p; appears in egs. (3.2) and (3.3),
which is commonly provided by an eddy viscosity model. While many eddy viscosity
models exist in literature, in this work we choose the Myong-Kasagi k — ¢ turbulence
model (MK) (Myong & Kasagi, 1990), which has also been used in our previous studies to
model turbulence in variable property turbulent channel flows (Rodriguez et al., 2018).
The equations for the turbulent kinetic energy k and turbulent dissipation € read

(a—“)z_ er 2 [( “f)ak] 0 (3.5)
ilgy) ~et |1t oy .
N~——~— D N
Py
Cslpkk Cezfep k 0_}/[( o )ay =0, (3.6)
€

—_—
P




3.3. IMPROVED FIELD INVERSION MACHINE LEARNING METHODOLOGY FOR VARIABLE
PROPERTY TURBULENCE 39

with the supporting damping functions

2 2 «/5)2 . 3.45
= 1——e“Rer/6)) 1-e V), fu=|1-e7"'7 (1+ ) 3.7
Je ( 9 ( Vo b= ) VRe, e

and the definition of the turbulent Reynolds number, the semi-locally scaled wall distance
and the eddy viscosity, respectively,

p kz * + P Hw kz

Re; = ne’ y =y 0w 1 /Jt—cufupg- (3.8)
The constants take the following values: C¢; = 1.4, Ce2 = 1.8, C,; = 0.09, 0 = 1.4 and
o = 1.3. Note, the original model uses the wall distance based on viscous wall units y*
in the damping functions. Here, we replaced y* with y* to account for the changes in
viscous length scales due to changes in density and viscosity close to the wall (Rodriguez
et al., 2018). The turbulent Prandtl Pr; is set to unity in all cases. For the high-Mach
number cases, a detailed analysis showed that Pr; = 1 in the buffer layer, where the largest
turbulent heat fluxes can be found. Similarly, (Patel, 2017) found that Pr; = 1 in the buffer
layer for the low-Mach number cases in our database. The Python and the Matlab source
codes to solve the set of RANS equations with the associated boundary conditions can be
found on Github (Pecnik et al., 2018).

The velocity profiles for a few selected cases with the original MK turbulence model
are shown in Fig. 3.1. Large deviations occur in flows subject to strong variable-property
gradients. The largest deviations found in such regimes can be found in the DNS case
JEM.C Re;‘ from Table 3.1. Here, it can be noted that the maximum error margin reaches
amagnitude of 22.8% at the channel center (y = H). Based on these results, it can be noted
that the MK turbulence model corresponds to an interesting target for ML optimization,
since there exist large deficits to be mitigated.

3.3. IMPROVED FIELD INVERSION MACHINE LEARNING METHOD-

OLOGY FOR VARIABLE PROPERTY TURBULENCE
In this section we present an improved methodology of the FIML as proposed by (Parish
& Duraisamy, 2016), which is also suitable to account for turbulence in variable-property
flows.

3.3.1. FIELD INVERSION

In order to minimize the difference between the DNS and the modeled velocity obtained
with the RANS approach, the original k — € equations are modified by introducing field
inversion multipliers B. The turbulent kinetic energy k and the turbulent dissipation ¢,
egs. (3.5) and (3.6), can then be written as

Py —PBxDy+ T =0, (3.9
P.—B:D:+T:=0. (3.10)

Contrary to (Parish & Duraisamy, 2016), we multiply the dissipation rather than the pro-
duction terms, in order to adhere to energy conservation, i.e. turbulent kinetic production
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Figure 3.1: Velocity profiles obtained with the original MK turbulence model using the density and viscosity
profiles obtained from DNS. The black dashed lines correspond to the DNS data, whereas the red solid lines
correspond to the RANS simulations.

also appears in the mean kinetic energy equation with an opposite sign (Durbin & Reif,
2011). On the other hand, introducing B in the k-equation can lead to an imbalance of
turbulent production and dissipation in the log-layer region. Therefore, we also present
results where only f3; is used to perform the field inversion, since the e-equation contains
the largest amount of empiricism. Another reason to modify the dissipation instead of
the production terms is because the production is active in a smaller region of turbulent
boundary layers. This implies that field inversion optimizers modifying the dissipation
term have a larger capacity to build corrections in regions where other budget terms of
RANS turbulence models are still active, such as the diffusion terms.

It is important to note that field inversion optimizers build corrections, which are
ideal with respect to the cost function formulated. As a result, the cost function for the
field inversion process must be carefully designed, to minimize not only the differences
between the velocity profiles, but also the shape of the corrections that will be applied to
the turbulence model. A suitable cost function _¢ is defined as

N wi—ut 2
f:ZIU(—l ‘) +Ik(?) + 1

2
&) ) (3.11)
k

Se

with individual weights I, Iy and I, for each term in the cost function. The first term
represents the difference between the RANS velocity profiles (1) and the DNS data (1),
whereas the subsequent terms are equivalent to source/sink terms in the turbulence
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modelling equations. It can easily be shown that ¢ is related to § as

8 =Dy (Br—-1), (3.12)
8: =D (Be—1). (3.13)

Finally, Sy, Sx and S, are used to normalize the variations in the cost function, and
they are defined as

Sy = max(|u*), (3.14)
Sk = max(IPkl, |Dil, I Tg), (3.15)
Se = max (|Pel, |Del, I Tel). (3.16)

6y and 6, are normalized such that the importance factors, I, are easier to interpret
among all DNS cases considered in this study. As it can be seen in the present formulation,
the final field inversion study must include an hyper-parameter optimization analysis
for the values of Iy, I and I.. The selection method is based on the elbow method
(Thorndike, 1953), since it was found that each field inversion shows clear inflection
points (discussed in detail later).

OPTIMIZATION ALGORITHM

To solve the field inversion problems, we will use gradient-descent (GD) algorithms. In
general, GD algorithms are preferred over Hessian methods to solve complex non-linear
optimization problems across different fields. Moreover, for our specific application,
it can be shown that the Hessian matrix is non-invertible at the channel center due to
the vanishing gradients near the symmetry plane. Accordingly, the § multipliers at the
channel center have a negligible effect on the solution, and thus their influence on the
cost function _¢ is nearly zero. Another favorable property of GD algorithms is that their
results yield continuous spatial distributions due to the smoothness of the gradients
associated with the turbulence model. Furthermore, GD algorithms tend to leave the
multipliers near the channel center at their initial values (8 = 1), since these algorithms
do not modify parameters which are not relevant to the cost function _#.

The GD algorithm used in the present study is based on the traditional bold drive
method (Battiti, 1989). However, we also introduced gradient inertia to increase the
convergence speed. The final approach for the optimizer is shown in algorithm 3. In this
algorithm, the optimizer starts by taking a traditional step using gradient-descent with
added momentum. The values generated for the gradient inertia and the optimization
parameters are stored using the auxiliary variables m’ and g’ respectively. If the updated
value for the cost function _# (') is lower than before, the temporary values for m’ and f/
are accepted as the new state of the system. Additionally, the learning rate « is increased
according to the expansion ratio k*. This allows the optimizer to dynamically search for a
learning rate schedule that maximizes the convergence speed. If divergence is detected
(Z (B') > #n-1), the optimizer retains the § parameters from the previous iteration (f,-1),
resets the gradient inertia (m) to the current Jacobian, and decreases the learning rate
according to the ratio k~. These simple steps allow the optimizer to perform a line-
search process, seeking optimal values for the learning rate a. Gradient inertia must be
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Algorithm 3 Modified bold drive method with added momentum to accelerate optimiza-
tion.
1: while a,,—; > Threshold do
2: m' —c-mp1+1-c)Vg Zn
B —PBn-1—an-1-m'
if #(p')<_#n-1 then
Pn—F
my, —m'
an—k*-ay—,
else
,Bn - ,Bn—l
10: my — Vﬁfn—l
11: ap,—k™-ap
12: end if
13: end while

L XN DD R

necessarily removed from the system during the line-search process, since otherwise it
cannot be guaranteed that the algorithm will converge to an optimized g distribution.

The recommended values from literature for the parameters k* and k™ are 1.1 and 0.5,
respectively. However, in the present study, we employ a more aggressive expansion value
of k* =1.2. The constant ¢ corresponds to the gradient inertia hyper-parameter. For this
variable, a recommended value of ¢ = 0.9 can be found across a wide variety of algorithms
described in the literature (Kingma & Ba, 2015; Mitliagkas et al., 2016). It was found that
the introduction of the gradient inertia decreased the running times by a factor three
with respect to the original bold drive method. The proposed algorithm allows to fully
automatize the process of field inversion, and to subsequently run over 450 optimization
cases in total.

JACOBIAN MATRIX CALCULATION

The Jacobian associated with the field inversion process is computed using the discrete
adjoint method. In this method, the discretized RANS equations are written as a resid-
ual vector Z(W (), B) = 0, that contains one entry per every discretized cell and scalar
equation. The variable W () corresponds to the vector of dicretized degrees of freedom
present in the RANS equations, such as the velocities (u) or the turbulent scalar quantities
k and €. According to the discrete adjoint method, the Jacobian Vg_¢ can be calculated as

0% 0¢
Ve g =vT.— 4=, 3.17
pF o5 " op (3.17)
where the vector ¥ can be obtained from the following system of linear equations
oz T oz "
—_— =— i (3.18)
ow ow

The main advantage of the discrete adjoint method is that only the vector ¥ must be
calculated from Eq. (3.18), whereas a direct calculation method based on chain-rule
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differentiation would require the computation of the rank 2 sensitivity matrix 0W/ap.
Since the latter matrix is orders of magnitude larger than the vector ¥, the discrete adjoint
method constitutes a better alternative.

In order to generate explicit formulas for all the entries present in the matrices 02 /6W
and 022/0 6, we utilize symbolic algebra packages, such as Sympy (Meurer et al., 2017). Asa
result, the coefficients of these matrices are described by long arithmetic formulas, which
can be inserted into the source code of a function written in any programming language.
The use of explicit formulas increases the speed of our optimizer as any zero coefficients
are immediately cancelled by the algebraic package. Moreover, commonly repeated
algebraic sub-terms, such as the eddy viscosity y; = C, fu p k?/e, can be replaced by
auxiliary variables to avoid redundant calculations.

3.3.2. NEURAL NETWORKS
In order to complete the FIML methodology, we construct a predictive system using
neural networks. Our neural networks utilize hyperbolic tangent neurons in their deeper
layers, due to their inherent ability to produce smooth output distributions and since
they fulfill the universal approximation theorem (Cybenko, 1989; Hornik, 1991). An early
reference to the use of hyperbolic tangent neurons in the context of fluid mechanics
can be found in the work of (Milano & Koumoutsakos, 2002). In the first layer of our
neural networks we introduce logarithmic neurons (Hines, 1996), which reduce the
dimensionality of the input features, identifying the best parameter groups relevant
to a regression problem. Therefore, the introduction of logarithmic neurons in neural
networks allows the optimizer to determine which feature groups are optimal in the
context of fluid mechanics, even in the absence of previous modelling knowledge.

All the neural networks trained during the current study are based on a mean-squared
error (MSE) loss function for the § corrections, plus an additional L2 regularization term
for the weights w in the neural network:

! i b S 47 ~ % 3.19)
ftrainzﬁ (6nn,i —6Fri) M . .
i=1 j=1
-~ \ﬁ,_/
18errorll? lwl?

In Eq. (3.19), the variables 6 yy and § ¢y correspond to the corrections predicted by
each neural network and the reference field inversion data, respectively. The hyper-
parameter A corresponds to a constant which must be calibrated to mitigate over-fitting
in the system. During the current study, the values for A were calibrated by applying the
elbow method to the training datasets exclusively, without considering external cross-
validation datasets. This is possible, since the inflection point in the residual errors
16 ¢rror Il with respect to the training data can be tracked to establish the magnitude at
which 1 is able to produce changes, and likely mitigate over-fitting. Therefore, all DNS
cases which are not included in the training set of a neural network can be considered as
purely held-back test cases.

Beyond reducing over-fitting, another important consequence of introducing 1.2
regularization is that the final neural networks will assign small weights, and thus low
importance, to the input features X; which do not facilitate the regression process. There-
fore, the feature importance rankings generated after using L2 regularization will display
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more consistent trends regarding the most valuable features to perform predictions. The
methodology used to rank the importance of every feature in the neural networks is
presented later in Section 3.3.4.

K-FOLD VALIDATION

Due to the relatively small size of our database for the machine learning procedure, in
combination with the diversity of cases, it proved difficult to split the data between train-
ing, cross-validation (CV) and test sets. Picking relevant CV sets that were unbiased by
prior turbulence modelling knowledge is difficult, since the uniqueness of many DNS
samples contained in our database implied that the cases picked for cross-validation
could greatly underestimate the error margins found in the test set. As a result, employing
CV sets proved to be ineffective. Therefore, the study was performed using the K-fold
validation method (Mosteller & Tukey, 1968). This method assesses the robustness of ma-
chine learning models by picking "K" random training sets, and subsequently evaluating
the results with the remaining test set. If a large variance is detected among the K-fold
trials, this may indicate that more data is required to train the ML system effectively, or
that a different ML architecture is required. The K-fold validation method corresponds to
one of the best alternatives available to assess the performance of ML systems trained
with small datasets (Nie et al., 2020).

The test sets for the different K-fold combinations are listed in Table 3.2. The DNS
cases for testing the machine learning framework are picked randomly, except for the
K-1 set. The test set K-1 contains cases with the most extreme property variations, such
as JFM.CRe} and M4.0R200. As a result, the K-1 set represents a scenario where chal-
lenging predictions are required, despite the absence of adequate training samples. The
incompressible DNS cases from the work of (Jiménez & Hoyas, 2008) are added to the
test sets of the K-fold validation trials (K-2 to K-10) in order to assess the response of the
ML system for different Reynolds numbers. Each trial in the K-fold methodology is an
independent machine learning study, with five or six completely unknown test cases for
model validation; see Table 3.2. All the hyper-parameters in the model were calibrated by
using only the training set in conjunction with the elbow method. The test cases were not
used for the calibration of any of hyper-parameter in the study.

The selection procedure to determine the final machine model for the study is based
on finding the smallest neural network architecture which is capable of fitting the training
data available for the K-fold combination (K-1) listed in Table 3.2. According to the
principles of the elbow method, the smallest system which can fit the training data is
less likely to produce over-fitting than larger machine learning models. The K-fold set
(K-1) is chosen, since this combination represents a realistic scenario where a selection
of the most challenging CFD cases remain hidden from the training data. In summary,
the neural network architecture is not pre-conditioned to perform well under the most
complex test conditions available.

WEIGHTED RELAXATION FACTOR

In a preliminary analysis of the ML methodology, spurious oscillations could occur in
the predicted § corrections. Such oscillations could result in numerical instabilities in
the CFD-solver. To avoid this behaviour, a novel weighted relaxation factor method is
introduced, which is able to filter spurious oscillations in the predicted é corrections. To
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Table 3.2: Configuration considered during the implementation of the K-fold validation methodology. All test
cases are marked with checkmarks.

Case ID K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Low-Mach number cases
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explain this, we show in Fig. 3.2 the turbulent kinetic energy budgets (P, Dy, Tx) and
three profiles of § corrections for the DNS case JFM.CRe}. The variable §r; presents
the ground-truth labels obtained through field inversion, whereas §;,; corresponds to a
fictitious set of corrections with added noise in the form of A = 0.6 y3 sin (87y). The goal
of the weighted relaxation factor is to obtain corrections 6 ,;, that closely represent 6 gy,
without any significant oscillations.

The derivation of the weighted relaxation factor starts by noting that the magnitude of
the final corrections that will be applied to the RANS model, § 57, only corresponds to a
fraction, a, of the original corrections predicted by a neural network, §;,;. This relation
can be stated as

N6mLll = a 116;n:ll, (3.20)
or alternatively,
N N )
Is=2 6%,:=2 (a8inii)” (= constant). (3.21)
i=1 i=1

In order to assess the true compatibility of the final 6 ;7 corrections with a given RANS
turbulence model, we express 6 y1, in eq. (3.21) as f times the production term P, namely

Smr = BP (3.22)

in the corresponding turbulence modelling equations. The key idea to build a robust
methodology is to recognize that spurious machine learning corrections, such as §;,;
in Fig. 3.2, create large oscillations in the § multipliers defined by Eq. (3.22). As a result,
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Figure 3.2: Turbulence budgets for the optimized k-equation of the MK turbulence model after applying the
independent set of 6. corrections obtained during the field inversion study for the DNS case JFM.CRe}.
The initial machine learning predictions (d;5;), shown in blue, contain the ficticious perturbation term:
A=0.6 y3 sin (87[ ¥). The red line 6 sy, corresponds to the corrections obtained after applying the weighted
relaxation factor methodology.
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the introduction of a L2-regularization hyper-parameter, A, for these § multipliers would
immediately penalize the presence of large oscillations in regions where RANS turbulence
models are inactive. The cost function associated with this problem is

(6mri— 5im',i)2 +AB3

|
.MZ

Il
—

Fp=
(3.23)

=z

(Pifi—8inii)* + ABE.
1

i

Eq. (3.23) states that the final g multipliers must produce the greatest degree of similarity
between &/, and 6;,;, while minimizing the magnitude of || || according to a regular-
ization hyper-parameter A. In order to minimize the cost function defined in Eq. (3.23),
its Jacobian can be forced to form a null vector:

Vs Zp=0. (3.24)

Replacing Eq. (3.23) into the previous condition, yields the following element-wise array
equation:

P(PB-8ini)+AB=0. (3.25)
Re-arranging the terms of Eq. (3.25) further reveals that
Oini P
= . 3.26
p A+ P? (3:26)

Note, eq. (3.26) is evaluated element-wise. Replacing eq. (3.26) back into eq. (3.22) gives a
direct residual equation for A

2

N pi2
Ry =Y |Oimii ——
AT e A+ P2

N
=Y (@binii)’ =0. (3.27)
j=1

1

Since Eq. (3.27) only contains one unknown (1), a simple root-finding algorithm can
be used to solve this optimization problem, such as the Newton-Raphson method. For
reference, the gradient of the previous residual equation (£,) is given by the following
formula:

(3.28)

After obtaining the regularization hyper-parameter, A, the final ML corrections (6 5s1) are
given by:
_ 8ini P?
S A+PZ
Egs. (3.27-3.29) constitute the only required components to implement our weighted
relaxation factor methodology in a computer environment. The results depicted in Fig. 3.2,
show clearly that the weighted relaxation factor method is able to filter the added noise.
The final distribution obtained, effectively resembles the ground-truth labels, 6 r;, which
were hidden from the system.

oML (3.29)
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3.3.3. FINAL FRAMEWORK

The final machine learning framework for the study can be found in Fig. 3.3, which
is split into two stages. In the first stage, shown in Fig. (3.3.a), DNS data is used to
generate 0 ry field inversion corrections for each case, and to subsequently train neural
networks that can predict the identified §(y) distributions. The predictions of the neural
networks are based on stacks of input features X ¢ extracted from the uncorrected version
of the MK model (6 = 0). One of the main differences between the framework described
in Fig. (3.3.a) and the original approach proposed by Parish & Duraisamy (Parish &
Duraisamy, 2016) is that our field inversion corrections § are subject to L2-regularization
based on their absolute magnitude as a fourth budget-term in the RANS equations,
instead of their values as relative  multipliers with respect to existing RANS terms. This
enables the field inversion optimizer to build corrections that follow patterns which are
not captured by the baseline RANS models. Additionally, the framework described in
Fig. 3.3(a) has been adapted to account for the changes observed in flows subject to
strong variations in their thermophysical properties, namely, p, 1t and A. The approach
effectively decouples the analysis of the RANS momentum equations from the energy
equation or any associated equation-of-state for fluids. This is achieved by passing the
DNS profiles for the density and dynamic viscosity to the baseline RANS turbulence
models during the field inversion process. However, one challenge introduced by this
procedure is that the stack of input features X¢ to predict the field inversion corrections §
must be based on accurate estimations of the profiles for the thermophysical properties
of fluids.

This challenge was solved in the second stage of the ML framework presented in
Fig. 3.3(b), where an iterative feedback loop is used to create predictions for unknown
CFD cases. At the start of this feedback loop, the uncorrected version of the MK turbulence
model is solved, which yields an initial estimate for p and p. Then, a stack of input features
Xy is created to describe the behavior of the uncorrected MK model, and to subsequently
generate neural network predictions for the optimal § 5/ (y) corrections. Before injecting
these d s corrections into a CFD solver, the weighted relaxation factor methodology
described in Section 3.3.2 is applied. The final § s1.(y) corrections are then inserted back
into the MK turbulence model as an explicit source term (+ 6 377.(y)). The feedback loop
described in Fig. 3.3(b) is completed by generating a new estimate for the thermophysical
properties p and p, and by repeating the previous steps until convergence is achieved.

The final neural network architecture is depicted in Fig. 3.4. The neural network con-
tains only three logarithmic neurons in the initial layer and 77 trainable parameters. The
initial stack of features, presented in Fig. 3.4, corresponds to different physical quantities
that may be considered by the neural network. The previous quantities are intended to be
computed based on the initial turbulence budgets found in the uncorrected RANS equa-
tions. The sub-scales M. and M, correspond to references used to normalize the scalar
fields k and ¢ based on the magnitude of the destruction terms in the RANS equations:

S M?
Mg=—k, Mk:Pw_g.

(3.30)
Pw Se
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Figure 3.3: Final framework established for the FIML methodology. The dashed lines indicate the additional
steps which are necessary to handle the presence of variable-property flows, with respect to the original scheme
proposed by (Parish & Duraisamy, 2016). The diagram on the left (a) presents the methodology employed
to obtain field inversion corrections and to train deep learning systems, whereas the scheme on the right (b)
corresponds to the feedback loop used to perform predictions at runtime.

3.3.4. INTERPRETATION OF MACHINE LEARNING RESULTS

Regarding the interpretation of the final machine learning results, the integrated gradients
(IG) (Sundararajan et al., 2017) was used to estimate the importance of every feature
passed to the neural network shown in Fig. 3.4. This method performs a numerical
integration for the gradients of the ML predictions (6(X)) with respect to the stack of
input features X, following a linear path starting from a common baseline state X, (Martin
Abadi et al., 2015; Sundararajan et al., 2017):

19
I1G; = (X; - X ) f — [0(Xo + a(X — Xp))] da. (3.31)
a=0 6Xl

In eq. (3.31), the term IG; corresponds to the importance score assigned to every feature
X; passed to the neural network. Here, Xy represents the average values of every feature
at each y-location Xy = Xp(y). The main benefit of this method is that the final scores are
not subject to the sensitivity of the ML predictions with respect to infinitesimal changes
in Xj, but rather represent the importance of global changes in the input features.

3.4. FIELD INVERSION RESULTS

This section will describe the results of the FIML study for the MK turbulence model. First,
the different hyper-parameter combinations for the field inversion study will be analyzed.
Then, the observed trends in the final machine learning predictions will be presented,
followed by a brief discussion of the results.

The field inversion study of the MK turbulence model focuses on determining the
values of the hyper-parameters Iy, I and I in eq. (3.11). In the first combination, an
equal importance is assigned to the corrections used in each scalar equation (k and &)
by setting I = I, = 1. The value of Iy was calibrated by applying the elbow method to
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Figure 3.4: Neural network architecture created to predict the field inversion corrections (0) required by the
MK turbulence model.
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Figure 3.5: Application of the elbow method to determine the magnitude of I;; during the initial field inversion
study for the MK turbulence model (I} = I = 1). The black dashed line represents the position where I;; = 100.

the system. The results obtained can be found in Fig. 3.5, where it can be seen that clear
inflection points exist for each case. For any subsequent ML analysis, it is possible to
either choose the Iy values located at the inflection point of each DNS case, or to pick
a common value of Iy for all cases. It was decided to pick a common value of Iy = 100
for all DNS cases, since this creates smooth trends across the whole dataset. Additionally,
selecting a unique value for Iy can simplify the creation of deep learning models, since
all the target 6y corrections correspond to the solution of a single optimization problem.
If different I;; values were picked for each DNS case, additional training data might
be required to allow the deep learning system to approximate the selection criterion
employed.

The second stage of the hyper-parameter optimization study consists in analyzing
the effect of changing the individual values of I} and I, in the field inversion results.
The effects of varying these hyper-parameters are depicted in Fig. 3.6 for the DNS case
CRe}, which corresponds to the case with the highest modelling errors using the MK
turbulence model. The results show that different combinations for the values of I; and
I, yield similar shapes for the corrections, since only the magnitude of the peaks change.
Moreover, even building independent sets of either 6 or §, corrections yields similar
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Figure 3.6: Effect of the cross-interactions between I and I for Iy = 100 during the field inversion study
for the MK turbulence model considering the DNS case JF M.CRe;‘ . The corrections (I, I¢) = (1,-) and
(I, I¢) = (—,1) refer to studies where independent sets of §; and d, corrections were generated without their
counterpart in the MK turbulence model.

results. It was verified that the trends observed in Fig. 3.6 are also present across all the
other DNS cases.

Based on the results presented in Fig. 3.6, it was decided to study the effect of building
independent sets of 0 and . corrections. Employing a unique set of corrections can
simplify the subsequent ML study, since the need to produce two-dimensional output
pairs (0, 0,) is avoided. By applying the elbow method to calibrate the values of Iy for
each set of independent predictions, it is found that I;; = 100 corresponds to a reasonable
approximation as well. The individual corrections of ;. and d, can be found in Fig. 3.7 for
all DNS cases, categorized in incompressible, high- and low-Mach number cases. Here,
it must be noted that the maximum corrections for the low-Mach number cases are up
to 4.5 times larger than the maximum of the corrections in the incompressible cases.
Moreover, the different peaks and valleys found in the § corrections for each DNS case
present different shapes, relative magnitudes and even Y * locations. For a few low-Mach
number cases (right column), the 6 distributions have values which are almost entirely
positive.

While both § and 8, corrections appear similar in Fig. 3.7, a detailed analysis revealed
that the 6./S, corrections contain gradients up to 83.5% higher than the maximum
gradients observed for 6/Sk. Such sharper gradients would result in training a neural
network which yields large changes in the predicted § corrections based on smaller
variations in the input features. Therefore, we decided to build a system based in § /S
corrections only.

3.5. MACHINE LEARNING PREDICTIONS

The final ML predictions were obtained by training the neural network architecture
described in Fig. 3.4, and subsequently applying a weighted relaxation factor of @ = 0.95
in Eq. (3.27). This hyper-parameter was found to yield numerically stable CFD predictions
for all cases, without modifying the 6 corrections significantly. The variations in the error
margins for every test case defined within the K-fold validation trials can be found in
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Figure 3.7: Independent set of field inversion corrections d and . obtained for the MK turbulence model

while employing I = 100.
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Table 3.3. Here, the percentages for every validation case refer to the L-infinity norm of
the differences between the velocity profiles for the baseline MK model (left) and the
ML predictions (right) with respect to the DNS data. As can be seen, the ML predictions
reduce the error margins in almost all CFD cases.

The best improvement margin can be found in the case JFM.CRe} from the K-fold
trial K-1, where the L-infinity norm of the errors was reduced from 23.4% to 4.0%. This
result is important, since the DNS case JFM.CRe} contains with the highest modelling
errors with respect to the baseline MK model, and it requires the highest level of /Sy
corrections according to Fig. 3.7. On the other hand, the worst deep learning predictions
can be found in the case IC.Re4200 from the K-fold trial K-8, where the L-infinity norm is
increased from 2.3% to 14.0%. This increase in error was expected, since the DNS case
IC.Re4200 has the highest Reynolds number in our database: Re;,,, = 4200. The closest
Rez,,y value found in the remaining cases of the DNS database is Rer,;, = 2000, which is
2.1 times lower. Thus, the large error is simply the result of extrapolation. From a broader
perspective, it can be concluded that our ML system is more accurate than the baseline
MK model for the majority of the DNS cases in our database. In the few cases where deep
learning performs slightly worse, the predictions are still reasonable.

A selection of the results for the K-fold trials with the best (K-1) and the worst (K-8)
deep learning predictions can be found in Fig. 3.8. Here, the DNS cases shown contain
the highest errors in the ML predictions for the velocity profiles within each K-fold trial.
As can be observed in the sub-figures, the ML predictions (blue) for the velocity profiles
are substantially closer to the DNS data (black) than the baseline MK model (red). The
only exception in the sub-figures is the case IC.Re4200 within the K-fold trial (K-8), where
the ML system was required to extrapolate as it was discussed before. Furthermore,
Fig. 3.8 also presents the § 1, corrections predicted by deep learning (blue), together
with the reference 6 ¢y . field inversion data (black). In most cases, the 0z, corrections
are qualitatively similar to 6, although significant differences can be observed at a
given y* location. However, these differences are small in magnitude, and the results
indicate that they only produce minor changes in the velocity profiles.

The results for the DNS case JFM.CRe} are analyzed in greater detail in Fig. 3.9. Here,
a comparison is presented for the distribution in the errors of the velocity profiles between
the baseline MK model and the ML predictions. The results for the ML predictions were
sampled across all K-fold trials where the case JF M.CRe} appeared as a validation case.
The shaded area (gray) corresponds to the maximum and minimum bound of the ML
errors observed across all the different K-fold trials. As can be observed, all the deep
learning predictions are substantially more accurate than the baseline MK model. As
it was discussed before, the JFM.CRe} case is the most challenging. Therefore, the
stability observed in the deep learning predictions for this DNS case shows that our ML
architecture is able to achieve a robust behavior even in the presence of adverse modelling
conditions.

The results of the non-dimensional feature importance ranking can be found in
Fig. 3.10, which is determined using the integrated gradients (IG) method described in
Section 3.3.4. The eddy viscosity u;/p,, is the most important feature in the ranking.
From a physical perspective, the eddy viscosity is the leading parameter that determines
the diffusion of momentum, the turbulent kinetic energy and its dissipation. Other fea-
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Table 3.3: Error margins for each test case in the different K-fold trials. The percentages under each case name

indicate the error margins for the baseline MK turbulence model (left), and the deep learning predictions (right).
All error percentages are calculated using the L-infinity norm for the difference between the velocity profiles of

the models and the respective DNS data.

1 JEM.CRe} Cv CRe}CPr* M3.0R200 M4.0R200
23.4% — 4.0% 7.8% —2.9% 8.3% —22% 9.4% —52% 11.6% — 2.2%
K2 JEM.CRef SRe},, GLCPr* M1.7R200 M4.0R200 IC.Re950
23.4% — 6.3% 4.6% —2.8% 6.6% — 1.3% 6.6% —2.4% 11.6% —5.4% 2.4% — 0.7%
K3 JFM.CRef JFM.GL JFM.LL M3.0R600 M4.0R200 IC.Re550
23.4% —5.2% 9.6% —4.8% 4.8% —5.8% 10.0% —59% 11.6% —2.8% 2.4% — 1.0%
- JEM.CRef LL2 CP150 VASPr}, M3.0R200 IC.Re950
23.4% — 102% 2.4% — 0.6% 2.9% — 1.1% 3.3% — 1.5% 9.4% — 7.4%  2.4% — 0.6%
5 JEM.LL LL1 Cv CP395 MO0.7R400 IC.Re550
4.8% —3.4% 2.8%—24% 7.8%—3.2% 24%—12% 3.2% —14%  2.4% — 0.9%
K6 JFM.GL Cv CRey CPr* MO0.7R400 M4.0R200 IC.Re2000
9.6% —3.3% 7.8% —4.1% 83%—2.8% 3.2%—15% 11.6% —2.7% 2.4% — 2.5%
7 JFM.CRe¥ GL CReXCPr* GLCPr* M1.7R200 IC.Re550
23.4% — 4.2% 8.0% —3.5% 8.3%— 1.5% 6.6% —3.4% 6.6% —23% 2.4%— 1.1%
8 JEM.GL N SReX; VASPr}, M1.7R400 IC.Re4200
9.6% — 1.0% 3.9% —3.8% 4.6% —3.8% 3.3%—16% 4.7%—16% 2.3% — 14.0%
9 JEM.LL GLCPr* CP395 CP150 M1.7R600 IC.Re180
4.8% —34% 6.6%—14% 24%—1.3% 2.9%—22% 50%—3.0% 3.0%— 1.6%
K-10 JEM.CRef SRe., CRey CPr* CP395 MO0.7R400 IC.Re950
23.4% — 8.6% 2.3% — 1.6% 8.3% —2.5% 2.4% — 1.4%  3.2% —22%  2.4% — 0.6%
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Figure 3.8: Selection of results at the extreme ends of the test error ranking for the K-fold validation trials after
generating ML predictions for the independent sets of 5. corrections required by the MK turbulence model. The
upper U™ curves represent the initial RANS velocity profiles (red lines), the deep learning velocity predictions
(blue lines) and the reference DNS data (black dotted lines). The lower 6./ Sy curves present the deep learning
predictions after applying a weighted relaxation factor of 0.95 (blue lines) and the ground-truth labels for the

field inversion values (black dotted lines).
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Figure 3.9: Results of the uncertainty quantification process followed for the DNS case JFM.CRe} while
employing the results of the K-fold validation runs K-1, K-2, K-3, K-4, K-7, K-10 after the prediction of the
independent set of . corrections for the MK turbulence model. The gray area corresponds to the maximum
deviations observed in the neural network predictions across all K-fold trials.

tures, such as the turbulent production rate Py /S, the turbulent kinetic energy k/ My,
the specific dissipation rate ¢/ M, show less importance. On the other hand, the relatively
low importance of the density and dynamic viscosity indicate that their variations are ac-
counted for in Y*. This is in agreement with the modeling work performed by (Rodriguez
etal., 2018).

3.6. CONCLUSIONS

In this chapter we used machine learning to improve the predictions of RANS turbulence
modelling in channel flows subject to strong variations in their thermophysical proper-
ties. The methodology is based on a technique known as FIML proposed by (Parish &
Duraisamy, 2016). In order to apply this method for our study, we have introduced several
adaptations. For the field inversion methodology, we suggested a bold drive method
with added momentum to drive the field inversion optimization proved to be stable
and numerically efficient in over 450 optimization runs. As a result, this method can
operate automatically requiring minimal attention from the user. The use of symbolic
algebra solvers to generate expressions for the entries present in the matrices required

20%
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T, S, Dip Mg Sy L
Sk Sk Su

Figure 3.10: Feature importance ranking according to the integrated gradients method (Sundararajan et al.,
2017).



REFERENCES 57

by the discrete adjoint method in CFD is a valuable alternative, since the closed-form
expressions generated are sparse-efficient. The overall shape of the corrections obtained
can be controlled by employing cost functions containing adequate conversion terms
(e.g., Bvs. §). Furthermore, L2 regularization helped to mitigate over-fitting and to reduce
the importance of non-essential features.

Regarding the machine learning methodology, the use of an initial layer of logarithmic
neurons followed by layers of hyperbolic tangent neurons resulted in a robust architecture,
which was able to yield accurate predictions in nearly every case tested. By introducing a
weighted relaxation factor methodology, the model was able to recover valuable trends
from otherwise spurious predictions. It was demonstrated that our final deep learning
predictions coupled with a CFD solver remained stable during all the cases tested. The
overall behavior of the ML models indicates that the system is able to act as an excellent
non-linear interpolator between DNS cases which are well-represented in the training set,
and that the majority of the predictions for DNS cases sparsely represented in the dataset
also show positive improvements. For the most challenging case, the baseline turbulence
model produced an error of 23.4%, while the deep learning model displayed an average
error of only 6.2%. Here, the error refers to the L-infinity norm of the difference between
mean velocity of the model and the mean velocity of the DNS case. The case with the
highest modelling errors only presented minor deviations in its velocity profile, and it
corresponded to a case where the neural network was performing an extrapolation.

Finally, the importance of every feature in our system was ranked using the integrated
gradients (IG) method. The IG method showed that the dimensionless eddy viscosity
el py corresponded to the most important feature, and that the semi-locally scaled wall
distance y* had greater importance than the individual values of y/y,, or p/p, since
the variation in thermophysical properties is already accounted for in y*.
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NEURAL NETWORK FOR TURBULENT
FLOWS PAST ROUGH SURFACES

Turbulent flows past rough surfaces can create substantial energy losses in engineering
equipment. During the last decades, developing accurate correlations to predict the thermal
and hydrodynamic behavior of rough surfaces has proven to be a difficult challenge. In this
work, we investigate the applicability of convolutional neural networks to perform a direct
image-to-image translation between the height map of a rough surface and its detailed
local skin friction factors and Nusselt numbers. Additionally, we propose the usage of
separable convolutional modules to reduce the total number of trainable parameters, and
PReLU activation functions to increase the expressivity of the neural networks created. Our
final predictions are improved by a new filtering methodology, which is able to combine
the results of multiple neural networks while discarding non-physical oscillations likely
caused by over-fitting. The main study is based on a new DNS database formed by 80 flow
cases at a friction Reynolds number of Re; = 180 obtained by applying random shifts to
the Fourier spectrum of the grit-blasted surface originally scanned by (Busse et al., 2015).
The results show that machine learning can accurately predict the skin friction values and
Nusselt numbers for a rough surface. A detailed comparison with existing correlations
in the literature revealed that the maximum errors generated by deep learning were only
8.1% for the global skin friction factors C_f and 2.9% for the Nusselt numbers Nu, whereas
the best classical correlations identified reached errors of 24.9% and 13.5% forC_f and Nu
respectively. The deep learning results also proved stable with respect to rough surfaces with
abrupt changes in their roughness elements, and only presented a minor sensitivity with
respect to variations in the dataset size.

This chapter has been published in the International Journal of Heat and Fluid Flow, volume 103, p. 109204,
2023.
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4.1. INTRODUCTION

Turbulent flows past rough surfaces can be found in a large variety of engineering appli-
cations. Irregular surfaces are often caused by external processes, such as bio-fouling,
abrasion, machining, or corrosion. In most engineering applications, the presence of
rough surfaces can substantially increase the drag resistance of transportation systems,
and lower the efficiency of thermodynamic cycles. Despite these drawbacks, some rough
surfaces under specific flow conditions can yield positive contributions. For example, cer-
tain rough surfaces can enhance heat transfer significantly, while having only a relatively
small increase in pressure losses (Dipprey & Sabersky, 1963; Nilpueng & Wongwises, 2015;
Ventola et al., 2014). Other surfaces were shown to reduce the total drag resistance of a
turbulent flow (Golovin et al., 2016; Gong et al., 2021). One of the main challenges while
working with rough surfaces is to predict the impact of a given surface topography on the
dragresistance and heat transfer rates. Most correlations available in the literature predict
the global skin friction factor C_f or the Stanton number St of a rough surface based on
standard surface metrics, such as the root-mean-squared height variations, skewness,
kurtosis, effective slope, forward-facing angles, or different auto-correlation functions
(Jouybari et al., 2021; Napoli et al., 2008; Schultz & Flack, 2009; Thakkar et al., 2017). In this
work, the operator (...) refers to the average across the whole surface. While traditional
surface metrics offer a simplified framework to describe the geometry of rough surfaces,
it has been shown in the literature that obtaining accurate predictions for the drag resis-
tance of a generic rough surface remains an open challenge (Chung et al., 2021; Flack,
2018). The correlations found in the literature tend to be valid only for specific datasets,
and the trends observed cannot be extrapolated to rough surfaces with widely varying
characteristics. Moreover, several surface metrics, such as the skewness or the kurtosis,
present mixed results across different studies (De Marchis et al., 2019; Flack & Schultz,
2010; Jouybari et al., 2021). As a result, a small group of surface features that produces a
universal collapse of all known measurements for C_f or St with a low degree of dispersion
has not been identified. One important reason behind the previous difficulties is that both
the unique shape of roughness elements and their spatial organization affect turbulent
flow fields differently (De Marchis et al., 2019; Forooghi et al., 2018; Yuan & Piomelli, 2014).
The previous factors cannot be accounted for using traditional surface metrics, such as
the skewness or the kurtosis, since these metrics do not encode information regarding
the spatial organization of the roughness elements. An example of this issue can be found
in Figure 4.1, where two irregular surfaces with identical roughness elements located at
different positions are presented; both rough surfaces will have identical skewness or
effective slope, but they will have a substantially different hydrodynamic behavior due to
the alignment of the roughness elements (Forooghi et al., 2018).

Flow AQA %

Figure 4.1: Example of two rough surfaces with identical roughness elements and averaged local quantities,
such as their skewness or their kurtosis, but different hydrodynamic behavior (Forooghi et al., 2018).

Machine learning may provide a robust alternative to traditional modelling for the
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hydrodynamic behavior of rough surfaces. Machine learning for fluid mechanics has
already proven useful in other applications, such as correcting existing RANS turbulence
models (Parish & Duraisamy, 2016) or predicting the Reynolds stress tensor (Ling et al.,
2016; Sandberg & Zhao, 2022; Weatheritt & Sandberg, 2016). In the context of rough
surface modelling, (Jouybari et al., 2021) investigated the possibility to utilizing neural
networks and Gaussian process regression to predict the equivalent Nikuradse sand-
grain height k; of rough surfaces based on traditional surfaces metrics. The parameter
ks corresponds to a length-scale that describes the hydrodynamic behavior of rough
surfaces, and it can be used in combination with other correlations to predict the skin
friction factor of a pipeline or channel flow (Moody, 1944; Nikuradse, 1933). However,
correlations based on k; can only predict the global behavior of a rough surface (C_f or
Nu), and thus they do not provide information regarding the local behavior of turbulence.

In this work, we investigate the applicability of machine learning systems based on
convolutional neural networks to predict the local behaviour of turbulent flows past
irregular surfaces. These systems present several advantages over traditional correlations,
such as being able to process the input height map H(x,z) of a rough surface directly,
and to perform predictions without requiring traditional surface metrics. Deep learning
systems can perform predictions taking into account both the detailed shape of every
roughness element, as well as their spatial distribution. Furthermore, deep learning
systems can be modified to not only predict global quantities, such as C_f or St, but also
distributed local quantities. Additionally, ML systems can perform direct predictions for
the thermal behavior of rough surfaces, without requiring previous estimations for Cy
that could lead to additional uncertainty.

This chapter is organized as follows. In Section 4.2, the details of the DNS database are
presented, including the methodology used to generate rough surfaces, the formulation of
the CFD solver and all relevant physical parameters. Section 4.2.5 describes the numerical
routine used to interpolate the wall forces and heat fluxes generated by a DNS solver
using staggered grids and the immersed boundary method in CFD. In Section 4.3, the
details of the machine learning systems developed are presented, as well as techniques
used to improve the baseline architecture identified. In Section 4.4, the final results of the
machine learning study are described, together with a comparison between the current
results and traditional correlations found in the literature. In Section 4.5, the conclusions
of the study are presented, along with future recommendations.

4.2. DNS DATABASE

4.2.1. METHODOLOGY FOR THE DNS SIMULATIONS

The methodology used to simulate turbulent flows past rough surfaces is based on the
DNS framework described by (Peeters & Sandham, 2019). This formulation starts by
considering a simple planar channel flow geometry to study the hydrodynamic behavior
of rough surfaces. A schematic representation of the planar channel geometry with
rough walls is shown in Figure 4.2. Here, the (x,y, z) coordinates correspond to the
streamwise, wall-normal and spanwise directions respectively. Only one half of the
computational domain is presented, since the upper section of the channel corresponds
to a reflection of the bottom part with respect to the symmetry plane located at the
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channel half-height y = §. The height function H(x, z) shown in Figure 4.2 is defined
such that [, H(x,z) dx dz = 0 across the entire domain. Periodic boundary conditions
are considered in the x — z directions in order to close the computational domain. The
incompressible Navier-Stokes equations and the energy equation for fluids are solved in
dimensionless form,

V-u=0, (4.1
du+u-Vu=-Vp+Re;'Vu+Sy, 4.2)
0, T+u-VT =Pe;'V*T +5,. 4.3)

In egs. (4.1-4.3), the variables u, p, T correspond to the dimensionless velocity, the
pressure and the temperature fields respectively. The parameter Re; = u;8/v found
in the momentum equations is the friction Reynolds number, which is defined using
the average friction velocity u; at the rough walls, the channel half-height 6§ and the
kinematic viscosity v. The scaling factor Pe; = Re; Pr corresponds to the friction Peclet
number, where Pr is the molecular Prandtl number. The parameter Sy found in eq. (4.2)
is a constant pressure-gradient term to force fluid motion, whereas S, in eq. (4.3) is
a constant volumetric heat source term to induce thermal gradients in the fluids. The
usage of constant source terms in turbulent channel flows, such as S o1 Sg, has been
extensively validated during the last decades (Busse et al., 2015; Kim et al., 1987; Orlandi
& Leonardi, 2006; Peeters & Sandham, 2019; Thakkar et al., 2017). In order to account
for the presence of rough surfaces H(x, z) inside the computational domain, the DNS
solver uses an implementation of the immersed boundary method based on the direct-
forcing approach proposed by (Fadlun et al., 2000). In the first grid point inside the fluid
domain, the velocity u and the temperature T are enforced by quadratic interpolation in
the wall-normal direction. A detailed validation of this numerical method can be found
in (Peeters & Sandham, 2019). While the DNS simulations are solved using dimensionless
variables, it is important to note that the velocity and temperature fields are originally
scaled by the friction velocity u; = /7, /p and the friction temperature T; = g,/ (pcpr).
Here, the properties p and ¢, refer to the fluid density and the specific heat capacity
respectively, while the variables 7, and gq,, are the equivalent shear stresses and heat
fluxes with respect to a smooth wall configuration.

Flow

Figure 4.2: Schematic representation of the planar channel flow geometry considered for the DNS simulations.
The variable H(x, z) corresponds to the height function of the rough surfaces, which is defined based on the
average plane at y = 0. The parameter § is the half-channel height: 6 = Ly, /2.
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During all DNS simulations, it is assumed that the reference variables Pr, Sy and
S are equal to unity. Due to global momentum and energy conservation, this further
implies that the equivalent shear stresses 7,, and heat fluxes g,, also have unitary values:
Ty = g = 1. Therefore, the present DNS simulations have well-defined momentum and
energy balances. The goals of the DNS simulations are to quantify the variations in the
bulk flow properties of turbulent flows, the changes in their boundary layer parameters,
and the distribution of their local skin friction factors Cy(x,z) and Nusselt numbers
Nu(x, z) across the rough surfaces. The formulas used to compute the values of C r(x,2)
and Nu(x, z) in Table 4.1 are the following,

¢y z) = 202, (4.4)
3 PUy
Nu(x,z) = — %2 4.5)

A(Tp—Ty)/ Ly

In eqgs. (4.4-4.5), the variables U}, and T, correspond to the bulk velocity of the fluid
and its bulk temperature respectively. The bulk Reynolds number is defined as Re, =
UpLy/v,where Ly corresponds to the channel size and v = 1/ Re; is the kinematic viscosity
considered for all DNS simulations. The parameters A = 1/(Re; Pr) and T, = 0 are the
thermal conductivity for each fluid and the Dirichlet temperature boundary condition
imposed at the rough walls respectively. The variables f,(x,z) and g(x, z) are the local
forces and heat fluxes per unit of area distributed across the rough surfaces.

As areference, the local Stanton numbers S#(x, y) distributed across the rough surfaces
are defined as,

Nu(x,z)
St(x,2) = ————. (4.6)
Rey, Pr
In principle, it is possible to reconstruct the thermal behavior of turbulent flows past
rough surfaces by considering either the local Nusselt numbers Nu(x,z) or Stanton
numbers St(x,z). However, deep learning systems designed to reconstruct the local
Nusselt numbers Nu(x, z) can predict the bulk temperature of a fluid T}, directly if the
average heat flux g acting over the boundaries is known. This marks a large contrast
with respect to deep learning systems designed to predict the local Stanton numbers
St(x, z), since these systems require explicit information regarding the bulk velocity of
a fluid U}, before predicting its bulk temperature Tj,. Therefore, predictions for T} can
only be obtained after coupling deep learning systems trained to reconstruct the local
Stanton numbers S¢(x, z) with an additional ML system to estimate U}, which increases
the uncertainty of the final predictions. Due to the previous reason, the current study
focuses on predicting the local skin friction factors C¢(x, z) and Nusselt numbers Nu(x, z)
for all the rough surfaces considered.

For each DNS case, the domain size has dimensions (Ly x Ly x Lz) = (5.63 x 2 x 2.815)
in the streamwise, vertical and spanwise directions respectively. The half-channel size is
thus assumed to be equal to unity in all simulations: § = L, /2 = 1. The reference length
scale chosen for the rough surfaces (k) has a value ranging from k/6 = 16.12% to 17.44%
across all the rough surfaces considered for simulation. This length scale corresponds
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to the mean-peak-to-valley height (S;5«5) defined by (Thakkar et al., 2017). Based on
this configuration, the grid size considered by (Peeters & Sandham, 2019) was employed
during the current study, which has dimensions (Ny x Ny x N;) = (280 x 280 x 140) for a
friction Reynolds number of Re; = 180. This grid size further ensures that approximately
12 grid points are used to discretize the smallest wavelength found in the definition of the
height function H(x, z) using a Fourier spectrum (Peeters & Sandham, 2019; Thakkar et al.,
2017). The global statistics for the DNS simulations are presented later in Section 4.2.4,
after the different types of rough surfaces considered in the study have been defined.

4.2.2. CATEGORIES OF ROUGH SURFACES

In order to create machine learning models, a DNS database was generated with 80 flow
cases simulated with a friction Reynolds number of Re; = 180. Numerical simulations
are used instead of experimental measurements, since the machine learning formulation
requires detailed information regarding the local skin friction factors C¢(x, z) and Nusselt
numbers Nu(x, z) distributed across the rough surfaces. All the rough surfaces considered
are generated by introducing phase shift variations ¢; to the Fourier spectrum of the
grit-blasted originally surface scanned by (Busse et al., 2015). The height function H(x, z)
considered for the rough surfaces is the following,

M; N;
H(x,z):ZR,- cos(Zn(x—+z—)—(/)i). 4.7)
7 Ly L,

In eq. (4.7), the terms R;, M; and N; correspond to constants extracted from the Fourier
spectrum defined by (Busse et al., 2015) in order to represent the grit-blasted surface
scanned. Based on this formulation, the DNS database was generated by considering
two categories of rough surfaces with a different methodology to define the phase shift
component ¢; of every rough surface. The first group of rough surfaces, named Category
I, was generated by considering 40 rough surfaces with random phase shift variations
¢; according to eq. (4.7). Despite the simplicity of the methodology used, the rough
surfaces found in Category I contain different types of morphological features and clusters
of roughness elements, as it can be observed in the left side of Figure 4.3. Therefore,
predicting the local skin friction factors C¢(x, z) and Nusselt numbers Nu(x, z) generated
by each rough surface is a challenging machine learning task, where it is necessary to
predict the impact of each cluster of unique roughness elements in the local turbulent
flow fields. The rough surfaces found in Category I are the main database used to train
deep learning models during the current study.
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Category I Category II

Sample 0 Sample 1 15 rank 2nd

rank

T 13%
F 6.5%
F 0%

I -6.5%
L -13%

m 1.6
0.8
0

-0.8
- -1.6

H

0H/0x

Figure 4.3: Examples of rough surfaces belonging to Categories I and II of the DNS database. All height
percentages are scaled with respect to the half-channel height § = L /2. The magnitude of the gradients 0 H/0x
is based on the reference length scales defined for the DNS simulations. Each height map presented corresponds
to the entire DNS domain, which is periodic in the streamwise and spanwise directions.

I Categoryl
I Category II

Frequency
— —_ —_ —_
S 9 S S
o L w no
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Figure 4.4: Distribution of local |0 H/0x| gradients for rough surfaces belonging to Categories I and II of the DNS
database.

The second group of rough surfaces, named Category II, corresponds to a special
selection of rough surfaces with unusually high slope angles in the streamwise direction
@y = tan~! (0H/0x). These rough surfaces serve as a challenging validation scenario to
test the robustness of the deep learning systems trained, since they contain roughness
elements with abrupt changes in their shape, as well as substantial modifications in their
local turbulent flow fields. The methodology used to generate these rough surfaces is
presented in Section 4.2.3.

A graphical comparison between the height maps H(x, z) and the gradients 0 H/dx for
the rough surfaces contained in Categories I and II can be found in Figure 4.3. The rough
surfaces found in Category II contain regions with higher gradients than the examples
shown from Category I. In Figure 4.4, a detailed histogram is presented regarding the
distribution of |0 H/0x| gradients for all rough surfaces belonging to Categories I and II of
the DNS database. According to the distributions shown, the rough surfaces from Category
II contain significantly steeper slopes than any sample from Category I. Therefore, the
rough surfaces from Category II correspond to outlier cases with large distortions in their
roughness elements, which can be used to test the robustness of the deep learning system
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to adverse conditions. Although it would be possible to include surfaces from Category
II in the training sets, no significant improvements were observed in the validation
performance during a preliminary study. Therefore, the surfaces from Category II are
used exclusively to test the performance of the neural network for rough surfaces with
features that fall outside Category I of the training sets.

4.2.3. GENERATION OF ROUGH SURFACES WITH HIGH SLOPE IN THE STREAM -

WISE DIRECTION

The rough surfaces found in Category II of the DNS database were generated by using a
methodology specifically designed to detect rough surfaces with high slope in the stream-
wise direction 0 H/0x across multiple regions of the DNS domain. The methodology starts
by considering a collection of 1,000,000 rough surfaces, which contain purely random
phase shift variations ¢ according to the definition of the height function H(x, z) back
in eq. (4.7). Then, all rough surfaces are ranked using an evaluation metric .#, which is
defined using the highest values for |0 H/0x| found in every quadrant shown in Figure
4.5. The grey zones between the quadrants in Figure 4.5 correspond to regions where the
values for |0 H/dx| are not evaluated. This helps the algorithm to avoid selecting rough
surfaces where a single peak can represent the highest value for |0 H/dx| across multiple
quadrants, since the idea is to obtain surfaces with multiple sharp roughness elements.
The formula for the evaluation metric ./ is the following,

_ ILQi

min(Q;)’
In eq. (4.8), the variables Q; correspond to the largest values for |0 H/0x| found in every
quadrant of Figure 4.5. The term min(Q;) found in the denominator of eq. (4.8) is used
to create an evaluation metric, which effectively only depends on the three highest values
registered for Q;. This allows the algorithm to select rough surfaces that might also
contain one quadrant with smooth roughness elements, and thus it helps to increase the
diversity of the surfaces selected. Despite the previous fact, the product term []; Q; found
in eq. (4.8) implies that the remaining three quadrants of the surfaces must contain sharp
roughness elements, or that at least one of the peaks found in the rough surfaces has very
large |0 H/0x| values. Other formulas were also tested as a replacement for eq. (4.8), such
as # =Y ; Q; —min(Q;). However, the empirical results proved that many of top-ranked
surfaces found by both methodologies corresponded to the same samples, and that the
remaining surfaces had a similar morphology.

(4.8)
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,

L=

Figure 4.5: Quadrants used to evaluate the absolute value of |0 H/dx| while selecting rough surfaces belonging
to category II of the DNS database. In the diagram shown, the horizontal and the vertical axis correspond to the
streamwise and spanwise directions respectively.

4.2.4. BULK FLOW PROPERTIES AND BOUNDARY LAYER PARAMETERS FOR THE
DNS DATABASE

In Table 4.1, the variations in the bulk flow properties and boundary layer parameters for
the DNS simulations found in Categories I and II are presented. Here, it can be noted that
all DNS cases for each category only present minor differences in the parameters being
analyzed . However, the rough surfaces found in Category II present higher maximum
values for all turbulent flow parameters, such as C_f, Nu, AU, AT*. This implies that
the distorted roughness elements found in these surfaces are able to produce minor
changes in turbulence globally. The slightly lower values for the bulk Reynolds numbers
Rey, found in rough surfaces from Category II can be explained since all DNS simulations
are performed using a fixed momentum source term Sy = 1. This implies that rough
surfaces which further enhance turbulence, and thus drag resistance, can reach the same
target forces using slightly lower bulk velocities Uy, as it is observed in Table 4.1.

For more information, B.2 presents detailed sub-plots for each quantity reported in
Table 4.1, as well as the values of different traditional surface metrics. Regarding these
results, it must be noted that all the rough surfaces found in our dataset have a constant
the root-mean-squared height of 0.0358. This implies that the phase shift components
¢; of the height function H(x, z) do not influence its root-mean-squared value when
integrated inside a periodic domain. However, other surface metrics contain substantially
different values. For example, the skewness of the rough surfaces varies up to 662% with
respect to its median value within the dataset.

The parameter kj,, listed in Table 4.1 corresponds to the dimensionless Nikuradse
sand-grain roughness height for the irregular surfaces considered. Please note that the
flows in the current DNS simulations are in the transitionally rough regime. Obtaining
the equivalent sand-grain roughness size k; for all DNS cases would require many more
simulations in order to find the fully-rough asymptote for each surface. Instead, to
find ki = ksu; /v, we compare our results with Nikuradse’s equations (Nikuradse, 1933)
directly, using the time-averaged velocity U} = U,/ u; obtained from the DNS simulations
at the channel center (y = 9):

U} —5.75 logy, (6/ks) = A(ky ), 4.9)

s,eq
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5.5+5.75 logo (k7 if kg, q <3.55
6.59 +3.5 log( (k7 ) if3.55 < ky ,, < 7.08
Alk{eq) =41 9-58 if7.08 < k{,, <14.13 (4.10)
11.5-1.62 logyo(ky,,)  if14.13 <kJ,, <67.61
8.48 if 67.61 < k7,

Egs. (4.9-4.10) yield a 2.3% error when compared to the findings of (Thakkar et al., 2018)
for a grit-blasted surface with ki = 26.1.

Table 4.1: Variations in the bulk flow properties and boundary layer parameters for the DNS simulations
present in Categories I and II. All variations are calculated with respect to the middle value for each range:
(max—min)/((min+ max)/2).

Variable Category I Category II

Min. Max. Range Min. Max. Range

k;:eq 25.30 3515 32.59% 25.49 3712 3715%
Uy 10.69 11.54 7.68 % 10.49 11.53 9.44 %
Rey, 3848 4156 7.68 % 3776 4150 9.44 %
C7f 0.0150 0.0175 1534 % 0.0150 0.0182 18.83%
Ty 12.14 12.84 5.65 % 12.04 12.81 6.15 %
Nu 28.02 29.66 5.65 % 28.12 29.9 6.15 %
St 0.0068  0.0077  13.03 % 0.0068  0.0079 15.54 %
AU* 4.09 5.07 21.46 % 4.14 5.26 2391 %
AT 3.63 4.47 20.58 % 3.68 4.55 20.95 %

4.,2.5. WALL FORCE AND HEAT FLUX INTERPOLATION

In order to calculate the local skin friction factors C r(x,2) and Nusselt numbers Nu(x, z)
acting over irregular surfaces, a post-processing routine was first developed to estimate
the local forces F and heat fluxes Q distributed across the rough walls. This step is
necessary, since the DNS solver uses a staggered grid to represent the velocity components
Uy, Uy, Uz in the computational domain, and the immersed boundary method applied
to CFD is used to account for the presence of the rough surfaces. Therefore, the local
forces F and heat fluxes Q distributed across the rough surfaces are not readily available.
The post-processing routine is mainly based on a Gauss integration scheme with face
elements located over the rough walls. The integral equations are the following,

1
F:f (—P n+ (Vu+VuT)-n) dA, (4.11)
A Re;

Q f VT-n dA. (4.12)
A

- Pe;
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Here, A refers to the area of the rough surfaces in contact with the fluid, and n denotes
the normal of the rough surfaces. The normal for the bottom side of the channel can be
determined using,

-1
0H? OH? 0H o0H
ox oz [ ox ' oz

T

n= 1+ (4.13)

For the top side of the channel, this vector needs to be mirrored. The differential area d A
for the face elements located over the rough surfaces is given by,

H? 0H?
dA= 1+6_ +a— dx dz. (4.14)
0x 0z

When combining eqgs. (4.11-4.14), the expression V1+0H/0x* + 0H/dz* cancels. There-
fore, a Gauss-Legendre scheme with a sufficient number of integration points can be
used to find the solution of the resulting polynomial integrals for the drag forces and heat
fluxes.

In order to perform integration, the variables (u, B, T, H) were reconstructed using
shape functions based on a symmetric stencil of data points surrounding each face
element. The degree of the polynomial terms chosen for every variable in each direction is
listed in Table 4.2, whereas a graphical representation of original shape functions is given
in Figure 4.6. Here, it can be noted that all interpolation schemes considered linear terms
in the wall-normal direction (y), whereas mixed-order linear or quadratic terms were
considered in the horizontal directions (x — z). The latter was necessary because the DNS
solver employed a staggered discretization scheme to handle the velocity components
u = (uy, uy, uz). Therefore, the number of data points required to form a symmetric
stencil was different in each direction. The usage of linear interpolation schemes in
the wall-normal direction was validated empirically, since it was noted that quadratic
terms yielded slightly higher errors with respect to both the global force and heat transfer
balances. All integration areas considered for egs. (4.11-4.12) were centered around the
original x — z coordinates for the pressure and temperature fields (P, T). The pressure field
was extrapolated in the wall-normal direction (y) by considering the first two data points
available above the rough surfaces. However, the velocity and temperature fields (u, T)
considered that the first layer of data points was located exactly over the rough surfaces
at the corresponding H(x, z) locations, with a value equal to the homogeneous Dirichlet
boundary conditions (u= T = 0).
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Table 4.2: Order of the polynomial terms considered for the shape functions in every direction while interpolating
the local forces and heat fluxes.

Streamwise  Vertical = Spanwise

Variable
(x) (y) (z)

P 2 1 2
T 2 1 2
Uy 1 1 2
uy 2 1 2
Uz 2 1 1
H 2 - 2

Uy uy

Uz P

T
z
X y

Figure 4.6: Schematic representation of the shape functions described in Table 4.2 for every flow variable
considered. The red nodes correspond to data points extracted from the staggered grid of the DNS simulations,
whereas the blue nodes are fixed points (with a value of zero) considered over the rough surfaces.

The numerical implementation of the current post-processing routine was written in
PyTorch, since the entire procedure can be expressed as a sequence of parallelizable array
operations. The process of gathering data points located in neighboring x — z locations
can be expressed using standard array shift operations due to the presence of periodic
boundary conditions for the rough surfaces.

Finally, it is important to note that the local skin friction factors C r(x,2), Nusselt
numbers Nu(x, z) and Stanton numbers S¢(x, z) for each face element can be computed
using the formulas described back in eqs. (4.4-4.5). Within the context of these formulas,
the local forces fx(x, z) and heat fluxes g(x, z) per unit of area are given by,

Fulxs 2= Fhix (4.15)
TSI Ax AZj' '
Qi,j
Xi,2j) = ———. 4.16
q(x; ]) Ax; AZ]' ( )

In eqgs. (4.15-4.16), the sub-indexes (i, j) refer to the 2-D array position of each finite



4.3. MACHINE LEARNING 73

element integration area considered. The variables F; j and Q;,j correspond to the results
of the global integrals for the drag forces and heat transfer rates defined in eqs. (4.11-
4.12) for each face element. The term e, corresponds to the unitary vector in the x-
direction, whereas the variables Ax; and Az; refer to the size of each integration area in
the x — z directions. Regarding the denominator term (Ax; Az;) found in egs. (4.15-4.16),
this expression corresponds to the projected area of each finite element with respect to
the x — z plane, or a smooth wall configuration. This definition is consistent with the
definitions given in eqs. (4.4-4.5) for the skin friction values and Nusselt numbers, since
in most engineering applications, the wetted area of a rough surface corresponds to an
unknown quantity. Therefore, traditional definitions for the skin friction factor (C ) or the
Nusselt number (Nu) are given with respect to an equivalent smooth wall configuration.

4.3. MACHINE LEARNING

In general, the relationship between the input height map H(x, z) of a rough surface
and its local skin friction values C¢(x, z) or Nusselt numbers Nu(x, z) corresponds to a
complex non-linear function. This Section presents a detailed description of the machine
learning systems employed during the current study. First, in Section 4.3.1, a detailed
overview of the neural networks created is given, together with a description of the training
procedure and its cost function. Additionally, a novel smoothing procedure is introduced
in Section 4.3.2.

4.3.1. NEURAL NETWORKS AND TRAINING PROCEDURE

During the current study, convolutional neural networks are employed since these models
have been specifically designed to process images and to predict any target quantity of
interest. The input height maps for rough surfaces H(x, z) are processed as 2-D arrays
formed by pixels, which correspond to grid points on the rough surface. These pixels
are then translated into the corresponding local skin friction values Cy(x, z) or Nusselt
numbers Nu(x, z) located at the center of each input image.

The deep learning systems employed during the study are formed by layers of depth-
wise separable convolution (DSC) modules (Chollet, 2017). The main benefits of this
approach are that the total number of trainable parameters contained by convolutional
neural networks is substantially reduced. Furthermore, an additional layer of non-linear
activation functions is added between the depthwise and pointwise convolutional opera-
tors to increase the expressivity of the neural networks. For a convolutional operator with
C internal channels and kernel size K x K, the total number of parameters employed by
DSC modules is reduced from C?K? for a traditional kernel into only C? + CK? parameters.
Since C > K inside the majority of deep learning systems, the previous analysis implies
that the total number of trainable parameters is reduced by a factor of almost K2.

The configuration of each DSC module employed during the study can be found in
Figure 4.7. Here, it can be noted that traditional RELU activation functions have been
replaced by PReLU operators (He et al., 2015). PReLU operators are able to rescale negative
input values by a trainable parameter «, whereas RELU operators simply cancel negative
values (a = 0). As a result, PReLU operators can increase the expressivity of neural
networks with a minimal computational cost, and they can facilitate the convergence
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of the training procedure. Batch normalization is applied before each PReLU activation
function to rescale the internal layers of the deep learning system and to train independent
bias factors associated to every non-linear classifier. Furthermore, the usage of max-
pooling operators was discarded during the current study. While max-pooling can extract
physically relevant features generated by the internal layers of neural networks, we found
during a preliminary study that neural networks with max-pooling or average-pooling
operators did not yield higher accuracy. Due to this reason, we believe that max-pooling
should only be considered as an alternative among other options while designing a neural
network. In our final deep learning system, all reduction layers replaced max-pooling
operators by additional convolutional modules.

Depthwise Pointwise
Convolution BN + PReLU Convolution BN + PReLU BN + PReLU
3x3 1x1

Figure 4.7: Schematic representation of the depthwise separable convolution (DSC) modules employed in the
machine learning study. The abbreviation BN refers to the 2-D batch normalization operations applied before
each PReLU activation function.

The global configuration of the deep learning architectures used to predict the local
skin friction values C r(x,2) and Nusselt numbers Nu(x, z) are listed in Tables 4.3 and 4.4
respectively. In these Tables, the columns C;;,, Cyy;, K, D, AF refer to the number of input
channels, output channels, kernel size, dilation and the presence of activation functions
respectively. The increasing dilation levels found in Tables 4.3 and 4.4 correspond to
a modification introduced into the neural networks to improve their time and space
complexity by orders of magnitude, while still producing the same output as a classical
convolutional neural network. A detailed explanation of this modification can be found in
B.1. Figure 4.8 presents the total image size employed by the ML system described in Table
4.3 to predict C r(x,2) ata particular (x, z) location. As it can be observed, this ML system
considers 0.48 Ly x 0.49 L, of the total domain size. Similarly, the ML system to predict
Nu(x,z) covers 0.91 Ly x 0.92 L, of the total domain. From a physical perspective, using
the entire image size (L x L;) as input would be ideal. However, increasing the image
size can lead to neural networks using an increased number of parameters, which in turn
could result in over-fitting. Therefore, a trade-off must be considered between the input
image size of a convolutional neural network and its number of trainable parameters.
The architectures presented in Tables 4.3 and 4.4 were discovered by a simple neural
architecture search algorithm based on greedy optimization (Lupo Pasini et al., 2021)
for the leading ML configuration. Our algorithm aimed at optimizing the total number
of layers, the number of internal convolutional channels, and the configuration of the
dilation levels inside the neural networks for both Cr(x,z) and Nu(x, z). The smaller
image sizes used to predict Cr(x, z) are potentially caused by the fact that modelling this
quantity is a more challenging task than predicting heat transfer, due to the non-locality
of pressure drag effects. Therefore, the optimizer may have allocated a large number of
trainable parameters to process small input images for C¢(x, ), and it avoided using larger
images to prevent over-fitting. For future reference, both of the deep learning architectures
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described in Tables 4.3 and 4.4 have a total of 5,621 trainable parameters. While the greedy
optimizer contained multiple options to increase the number of trainable parameters in
each neural network separately, the final architectures chosen by the optimizer contained
the same number of layers and trainable parameters.

It is important to highlight that our convolutional neural network always considers
input images which are centered with respect to the prediction location. Therefore, the
relative position of every roughness element is clearly defined in the streamwise and
spanwise directions. Moreover, each pixel in the input images always represents the same
physical size (in length units) within the DNS domain, and the row and column indexes
of every 2-D image are aligned with the streamwise and spanwise directions respectively.

Table 4.3: Deep learning architecture to predict the local skin friction values C (x, z). The parameters Ciy, Cour,
K and D refer to the number of input channels, output channels, kernel size, dilation and the presence of an
activation function respectively.

Layer Cin Cour K D AF
DSC 1 20 3 1x1 Yes
DSC 20 20 3 2x1 Yes
DSC 20 20 3 4x2 Yes
DSC 20 20 3 4x2 Yes
DSC 20 20 3 8x4 Yes
DSC 20 20 3 16x8 Yes
DSC 20 20 3 32x16  Yes
Conv. 1D 20 1 1 - -

Table 4.4: Deep learning architecture to predict the local Nusselt numbers Nu(x, z).

Layer Cin Cour K D AF
DSC 1 20 3 1x1 Yes
DSC 20 20 3 2x1 Yes
DSC 20 20 3 4%2 Yes
DSC 20 20 3 8x4 Yes
DSC 20 20 3 16x8  Yes
DSC 20 20 3 32x16  Yes
DSC 20 20 3  64x32  Yes
Conv. 1D 20 1 1 - -
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(%)

Figure 4.8: Physical image size (shaded region) employed by the deep learning architecture described in Table
4.3 to predict Cy(x, z) at a particular (x, z) location (black circle). The shaded region must always be centered
with respect to the predicted point, and thus it must be translated to obtain predictions for other (x, z) locations.

The training procedure for the deep learning systems was based on a L1 cost function
instead of a traditional L2 penalization scheme,

7=y ‘Yl”;] dns _ Yi[’ljc.1 mil| 4.17)
ki,j

In eq. (4.17), the variables Yyans and ym! correspond to the reference DNS data and
the deep learning predictions respectively. Depending on the target of the study, the
labels Y; ; can correspond to the local skin friction factors Cyr(x;, z7) or the local Nusselt
numbers Nu(x;, z;). The sub-index k refers to the identifier of the DNS case belonging
to the training dataset that is being processed. The choice of a L1 cost function given by
eq. (4.17) allows optimizers to train deep learning models which more accurately focus
on minimizing the average errors for the local skin friction factors C r(x,2) or Nusselt
numbers Nu(x, z) than L2 loss functions, which tend to over-penalize small outlier re-
gions. Additionally, during the training procedure, physics-informed data augmentation
is performed to account for the fact that mirrored rough surfaces should have identi-
cal local skin friction values C r(x,2) and Nusselt numbers Nu(x, z). Moreover, since all
rough surfaces are subject to periodic boundary conditions, the deep learning systems
presented in Tables 4.3 and 4.4 utilize circular padding (Paszke et al., 2017) to account for
the periodicity of the rough surfaces.

4.3.2. SMOOTHING PROCEDURE TO COMBINE THE PREDICTIONS OF MULTI-
PLE NEURAL NETWORKS

In order to avoid spurious oscillations in the final ML predictions, the results of the study
were obtained by combining the results of two independently trained neural networks
as shown in Figure 4.9. All neural networks were trained by splitting the DNS cases from
Category I of the database into 32 training cases and 8 test cases. For each DNS case, only
neural networks which included such case in their test set were considered. To explain
the smoothing procedure, we consider two different sets of predictions, Y"! and Y,
generated by independent neural networks as shown in Figure 4.9. We imagine now that
Y and Y can be combined such that a smoothed field B is obtained. In other words,
B can be written as a weighted combination of multiple Y* fields,

A Ll
Bi,j _;aw Yo (4.18)
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DNS Category I DNS Category I

T |ED | mmeei

Egs. (16-20)

Filter

Predictions
Ci

Figure 4.9: Schematic representation of the filtering procedure considering two neural networks. The variable
C; refers to the DNS case being predicted, which must belong to the test set of both neural networks. Only DNS
cases from Category I of the database are included in the training sets. However, the case C; may belong to
Category I or II.

Ineq. (4.18), the variable Yl.“]“.] represents the predictions of each individual neural network

(k]

with sub-index [k]. The multipliers a; i

subject to the following constraints,

represent the weight factors. These factors are

o<afi<1, (4.19)
[k _
%ai, =1 (4.20)

Egs. (4.19-4.20) imply that the value of each point in the combined field §; ; must be
obtained though interpolation between the existing sets of predictions Yi[ljc.]. To comply

with these conditions, the values of the ai.k} coefficients were expressed using the softmax
function,

[k]
exps;
alF! = LJ

A . (4.21)
b Yk expsy“}

In eq. (4.21), the variable sy‘]] corresponds to an internal set of parameters employed by
the softmax function. In order to create a smooth field §;, ;, the following cost function is

used,
Js= Y 0°Bi,; 2+ B\’
h= =\ 0x? 0z |’ (4.22)

Bi,j = argmin(Jp).

In eq. (4.22), the second-order derivatives of the target f8; ; distribution are minimized
by the cost function Jg. This formulation has favorable numerical properties, such as
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being able to avoid isolated spikes in the target f;,; distributions, while still preserving
physically meaningful peaks or gradients in the solutions generated by machine learning.
All the ground-truth values for C r(x,2) and Nu(x, z) in our DNS database contain smooth
gradients, which implies that the previous formulation is well-suited to capture the trends
observed in the physical data. Finally, the second-order expressions 0°f;, il 0x? and
B, il 0z? in eq. (4.22) were approximated using central finite difference expressions,

0°Bi,j _ PBi+1,j =2 Pij+Pi-1,

, (4.23)

2 2

ox Ax;
0*Bi,;j _Bijs1=2Bij+PBij w
022 AZ? ’ (4.24)

]

The optimizer chosen to find §; ; corresponds to a gradient-descent scheme with
adaptive learning rates (Battiti, 1989; Sanhueza, Smit, et al., 2023). This algorithm has
several advantages, such as converging at optimal speeds using learning rates dynamically
adjusted at run-time, or preventing divergence by performing line search until a smaller
learning rate is found. From a practical perspective, another important property of the
previous algorithm is that an early stopping criterion can be applied after a fixed number
of iterations Ny, 4y, since the changes observed in §; ; decrease exponentially over time.
An example of the results generated by the filtering methodology can be found in Figure
4.10. Here, it can be seen that spurious predictions are filtered by the methodology and
that a smooth combined field is obtained as a result.
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Field A Field B Combined Field
1 2
Yi[,j] v Bi,j

Figure 4.10: Synthetic example presenting the results of the filtering methodology described in Section 4.3.2.

Regarding the number of candidate predictions Y'¥ passed to the algorithm, it is
important to note that the current methodology is intended to work with only two pre-
diction candidates Y and Y?'. While more Y'¥ fields could be considered in theory,
the optimization algorithm will always try to choose the smoothest part of every input
distribution. Therefore, using only two predictions candidates allows the algorithm to
avoid numerical spikes in isolated regions, while still preserving physically meaningful
gradients for Cf(x, z)or Nu(x, z).

4.4. RESULTS

4.4.1. LOCAL PREDICTIONS

The local skin friction factors C r(x,2) and Nusselt numbers Nu(x, z) were computed by
combining the machine learning systems and filtering methodology described in Section
4.3. The results for the local skin friction factors C¢(x, z) can be found in Figure 4.11. Here,
a comparison is presented between the machine learning predictions with the highest
and the lowest accuracy with respect to the DNS data for rough surfaces belonging to
Categories I and II of the DNS database. At it can be seen in Figure 4.11, the deep learning
predictions show physically realistic trends, with the majority of the errors located in
areas where extreme values of C¢(x, z) are found. The latter is especially evident for the
DNS cases with the highest prediction errors. Moreover, the machine learning predictions
for rough surfaces belonging to Categories I and II of the DNS database show similar
patterns, which implies that the deep learning system is able to handle irregular surfaces
with larger local height gradients in the streamwise direction. However, it can also be
noted that the deep learning system tends to under-predict negative Cy(x, z) values in
recirculation zones, such as the region indicated by the pairs of markers (A, A) or (B,
B’) in Figure 4.11. One possible reason for this behavior is that large negative Cr(x,2)
values rarely occur in our database, and thus the neural network can be biased towards
predicting positive quantities.

The results of the deep learning predictions for the local Nusselt numbers Nu(x, z)
are presented in Figure 4.12. As it can be observed, there is a high degree of similarity
between all machine learning predictions and the reference DNS data. Even for the worst
case scenarios, the differences between the predicted Nu(x, z) values and the DNS data
are much smaller than the differences calculated for C r(x,z). However, it should be noted
that the deep learning predictions for Nu(x, z) tend to be more diffusive near regions
with extreme values; see the regions indicated by the pairs of markers (4, A) or (B, B) in
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Figure 4.12, for instance.

The results of the sensitivity analysis for the deep learning predictions with respect to
the dataset size can be found in Figure 4.13. Here, histograms are presented comparing
the distribution of local L1 errors for deep learning systems trained using 32, 16 and 8
rough surfaces. As it can be observed in the histograms, increasing the training set size
from 8 to 16 or 32 rough surfaces has a positive effect on improving the accuracy of the
momentum and heat transfer predictions. Moreover, it can be noted that predictions for
the local Nusselt numbers Nu(x, z) tend to have lower L1 errors than predictions for the
local skin friction factors C¢(x, z). One potential reason for the higher accuracy of the
local Nusselt number Nu(x, z) predictions is that heat transfer tends to occur mainly in
peaks of the rough surfaces with high exposure to the incoming bulk flow, which can be
easily identified by the deep learning system. In contrast, the local skin friction factors
C¢(x, z) are directly influenced by both pressure and viscous drag (Chung et al., 2021),
which correspond to different physical processes. While viscous drag tends to occur close
to the windward sides of local peaks, pressure drag can also occur in near stagnant regions
due to the non-local pressure changes upstream or downstream with respect to large
roughness elements. Therefore, predicting heat transfer may correspond to a simpler
regression task than predicting momentum quantities.

It should also be noted that the magnitude of C r(x,2) can reach values up to 48.1
times higher than the average. This marks a large contrast with respect to the values for
the local Nusselt numbers Nu(x, z), which only reach magnitudes up to 14.0 times higher
than the average in the datasets analyzed. Therefore, small relative differences between
the deep learning predictions and the DNS data in regions where strong drag forces are
expected will create much greater L1 errors than similar percentual differences in regions
where large heat fluxes occur. The average error of the local ML predictions for C_f and
Nu are 46.55% and 10.25% respectively. The worst 10% percentile of all local predictions
have errors higher than 109.3% and 23.49% for C_f and Nu respectively. Note that these
values are scaled with respect to the global values for C_f or Nu extracted from the DNS
simulations. Due to this reason, the previous machine learning errors only correspond
to a reference, and it is possible to reach values higher than 100% (of the average) in
regions with large peaks for C r(x,2) or Nu(x, z). For example, the peaks in the local skin
frictions factors and Nusselt numbers can easily reach magnitudes of C¢(x, 2) /C_f =48.1
and Nu(x, z)/ Nu = 14.0 within the DNS dabatase. Under these conditions, a machine
learning prediction with a magnitude of Cy(x, z)/ C_f = 43.29 in the region with the highest
recorded values for the local skin friction factors would only have a 10% local error, yet
a 481% error with respect to the average value of C_f While the previous analysis may
suggest that using local relative errors would be a better alternative, the opposite case can
also occur. For instance, in a region with low Cr(x, z) /C_f =~ 0.001 values, a ML prediction
of Cr(x,2) /C_f ~ 0.01 would be off by a factor of 10 locally, but only have a 0.9% error with
respect to the global C_f value. Due to this reason, it was decided to always report the ML
errors performing a comparison with respect to the average C_f values.

After a detailed analysis, it was found that the local slope angles of the rough surface

and the errors in the machine learning predictions were only weakly correlated. However,
the highest errors in the machine learning predictions are correlated with the presence of
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Figure 4.11: Comparison between the local skin friction factors C (x, z) predicted by deep learning and the DNS
data. The cases presented correspond to the highest and the lowest values for the L1-norm of the local errors.
The values in the colormap indicate the ratio between Cy(x, 2) at every spatial location and the average skin

friction factor C7f calculated according to the DNS data.

large clusters of roughness elements blocking the path of the incoming flow. The machine
learning errors can occur either upstream or downstream with respect to these elements,
due to pressure drag effects. This observation is not directly quantified by traditional
metrics, but it can be clearly observed in examples, such as Figure 4.14. The cluster of
roughness elements shown in this image creates multiple recirculation zones, which are
not well-predicted by machine learning. Additionally, discrepancies can be observed at
the top of the rough surfaces, and upstream of the cluster of roughness elements.
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Figure 4.12: Comparison between the local Nusselt numbers Nu(x, z) predicted using machine learning and the
reference DNS data. The colormap indicates the ratio between the local values of the Nusselt numbers Nu(x, z)
and the average Nusselt numbers Nu given by the DNS data.
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Figure 4.13: Changes in the distribution of the absolute errors for the local skin friction factors Cg(x, z) and
the Nusselt numbers Nu(x, z) with respect to the training dataset size. All errors are scaled using the average
DNS values for Cr or Nu within each case. The legend indicates the number of DNS cases used to train the
deep learning models, which were extracted from Category I of the database. The title of each subplot indicates
to which category the test cases plotted in each histogram belong. For the DNS cases from Category I of the
database, multiple deep learning models were trained, such that each sample could be considered as a held-back
test case in a separate study.
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Figure 4.14: Example of the correlation between large clusters of roughness elements blocking the incoming
flow and large errors in the machine learning predictions distributed nearby.

4.4.2. GLOBAL PREDICTIONS

A study was conducted to analyze the errors observed for the global skin friction factors
(C_f) and Nusselt numbers (Nu) for every rough surface. The results were compared with
traditional correlations found in the literature, which are based on the dimensionless
Nikuradse sand-grain roughness height k7, ¢- After performing a preliminary analysis,
it was determined that the correlation developed by (Flack & Schultz, 2010) yielded the
most accurate predictions,

Kseq =443 Sq (1+Ssp)*7. (4.25)

In eq. (4.25), the variables S; and S are the root-mean-squared height variations of the
rough surface and its skewness, respectively (Thakkar et al., 2017),

Sq= (4.26)
3 Ny, Nz 3
Ssk=S, H: .. 4.27

In egs. (4.26-(4.27), the variable H; ; corresponds to a 2-D array with the height of the
rough surfaces at discrete [i, j] locations in the x—z directions respectively. After obtaining

the Nikuradse sand-grain roughness height k.4, the value of k, 4 can be computed from:

Ur

kgeq = Kseq (4.28)

v
In order to obtain the skin friction factorC_f associated with kj, 4 in the Nikuradse diagram
(Nikuradse, 1933), the following formulas can be used (Peeters & Sandham, 2019; Thakkar
etal, 2017):

— 2
Cr= 5 (4.29)
(Uy)
U, =U, —AU", (4.30)

AU =U; - U;. 4.31)
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In egs. (4.29-4.31), the variable U, corresponds to the dimensionless bulk velocity. The
parameters U/ and U;’ , correspond to the dimensionless time-averaged velocity of
a turbulent channel flow with smooth walls at the channel center (y = §) and its bulk
velocity respectively. Based on existing DNS data (Peeters & Sandham, 2019), these
variables were assigned values of U, ; = 18.64 and U;, = 15.79 for a turbulent channel flow
at Re; = 180. The dimensionless velocity at the channel center (UCJr ) can be calculated
using eqs. (4.9-4.10) from Section 4.2.4 based on the value of k;eq in eq. (4.28). The
Nusselt number for the rough surfaces is then calculated from the correlation for the
Stanton number given by (Dipprey & Sabersky, 1963),

Cyrl2
1+ /CrT2{ky [Rey /CrT2 (es/ D)|** Pro44 — 8 .48}

In eq. (4.32), the parameters ky has a value of 5.19. The ratio €5/ D found in eq. (4.32) is
given by,

St= (4.32)

€ _ 433
p_ P 25 (4.33)
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The Nusselt number Nu associated to the correlation of (Dipprey & Sabersky, 1963) is
then calculated from the Stanton number using the formula Nu = St Re;, Pr given by
eq. (4.6). The bulk Reynolds number found in eq. (4.32) can be calculated from the
dimensionless bulk velocity U, given by eq. (4.29), since u; = 1 in all DNS cases.

The results of the study regarding the accuracy of the global skin friction factors C_f
and Nusselt number predictions ‘Nu can be found in Figure 4.15. As it can be observed,
the deep learning system is substantially more accurate than traditional correlations
while predicting both momentum C_f and heat transfer Nu parameters. The maximum
errors for the skin friction coefficients C_f in the deep learning system reached values of
8.07%, whereas the system with traditional correlations reached errors up to 24.9%. In
the case of heat transfer, the maximum errors for the local Nusselt numbers were 2.87%
and 13.5% for the deep learning system and the traditional correlations respectively. Both
of these results are satisfactory for machine learning. Moreover, only small differences
were found between the accuracy of the deep learning system while making predictions
for rough surfaces belonging to both Categories I and II of the DNS database.

Additionally, it is important to analyze the ratio between the errors in the machine
learning predictions and the variations observed in the DNS database for C_f and Nu. If
the machine learning errors have an absolute value smaller than the variations observed
for C_f and Nu in the DNS data, it means that machine learning is accurately predicting
the physical changes observed. Given this context, the results of Table 4.1 indicate that
the maximum variations observed in the DNS data for C_f and Nu are 18.8% and 6.5%
respectively. Therefore, the maximum errors found in the machine learning predictions of
8.1% for C_f and 2.9% for Nu can be regarded as small. The ratio between the maximum
variations observed in the DNS data and the deep learning predictions is 2.3 for both C_f
(18.8%/8.1%) and Nu (6.5%/2.87%). Therefore, it can be concluded that deep learning
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constitutes a valid alternative to generate improved predictions for flow parameters, such
as C_f or Nu, if enough training data is collected.

To further put the neural network predictions into perspective, the maximum and the
mean relative errors are compared with other predictive methods in Table 4.5, namely, the
correlations of (Flack & Schultz, 2010) and (Dipprey & Sabersky, 1963), the re-calibrated
versions of the latter, and simply considering the average values found in the training
sets. The last method refers to averaging the ns — 1 samples found in the training set of a
predictive model for a target rough surface. The re-calibrated version of the correlation by
(Flack & Schultz, 2010) has the following form: ks eq =a S; (1+S sk)b , where a varies from
4.114 to 4.129 in every trained model, and b varies from 0.272 and 0.322. Additionally, in
order to analyze heat transfer, the correlation from (Dipprey & Sabersky, 1963) was also
re-calibrated to fit our training data, the parameterized version of the correlation has the
form:

5 Crl2
. - b ) (4.34)
1+/Cr72{a[Rey\/CrT2 (e5/ D))" Prodt - ¢}
d-1//C;T2
E_Ds —oP (%) (4.35)

In eqs. (4.34-4.35), the re-calibrated parameters have the following values after train-
ing: a € [5.213,5.222], b € [0.230,0.234], ¢ € [8.453,8.461], d € [3.011,3.016] and
e € [2.562,2.589]. The mean relative errors are calculated as follows:

——I[k] pred _C—[k] dns

1 & |Cr f
Lig = k; s (4.36)
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In eqgs. (4.36-4.37), ns refers to the number of samples in our dataset. As it can
be observed in Table 4.5, our machine learning model significantly outperforms the
traditional correlations from (Flack & Schultz, 2010) and (Dipprey & Sabersky, 1963).
However, the machine learning model for C_f only displays a marginal improvement
compared to the predictions of the re-calibrated correlation and the n; — 1 averaged
values. This result stems from the fact that the machine learning model was not trained
to predict C_f and Nu directly, but it was rather trained to predict the local C r(x,2) and
Nu(x, z) values. Therefore, the deep learning predictions for C_f and Nu reported in Table
4.5 correspond to an emergent quantity, rather than an objective.
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Table 4.5: Comparison of the maximum and the mean relative errors in the predictions for the global skin
friction factors C¢ and Nusselt numbers Nu of the rough surfaces using different models for rough surfaces
belonging to Categories I and II of the DNS database.

L L L

1¢; 1N LooNu

Machine learning 2.69% 8.07% 0.94% 2.87%

Correlation by (Dipprey & Sabersky, 1963;
Flack & Schultz, 2010)

Re-calibrated correlations from (Dipprey &
Sabersky, 1963; Flack & Schultz, 2010)

ns— 1 averaged values 2.95% 11.12% 1.03% 3.86%

T

7.89%  24.88% 10.05%  13.49%

2.78% 8.92% 1.02% 3.74%

Regarding the generalizability of the model, we believe that the current convolutional
neural network requires training data with similar flow characteristics, or boundary
conditions, as the target test cases to make accurate predictions. In order to utilize
different Reynolds numbers Re; or Prandtl numbers Pr, further research is required to
establish the best methodology to include these quantities as input to the neural network.

Category I Category I
‘E’ 20+ 40
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Figure 4.15: Histograms comparing the distribution of errors for the skin friction values C7f and the Nusselt

numbers Nu between the deep learning model and the traditional correlations of (Flack & Schultz, 2010) and
(Dipprey & Sabersky, 1963). The title of each subplot indicates the category of the DNS database to which the
test cases found in each histogram belong. For rough surfaces belonging to Category I of the DNS database,
the mean relative errors in the machine learning predictions are 2.92% for C7f and 0.90% for Nu. Similarly, for

Category II, the mean relative errors are 2.46% and 0.97% for C7f and Nu respectively.

4.5. CONCLUSIONS

This study presented a deep learning architecture capable of predicting detailed maps for

the local skin friction factors C r(x,2) and Nusselt numbers Nu(x, z) of irregular surfaces.
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The results show that machine learning is able to achieve reliable results while predicting
both global force and heat transfer parameters. A sensitivity study with respect to the
dataset size also revealed a significant reduction in the errors for the momentum and
heat transfer predictions once the dataset size is increased from 8 to 32 DNS cases. The
comparisons performed with respect to traditional correlations proved that deep learning
is a valid alternative to generate improved predictions for important flow parameters,
such as the skin friction factors C_f or the Nusselt numbers Nu. Moreover, the machine
learning systems trained were able to obtain reliable predictions while working with rough
surfaces containing abrupt changes in their roughness elements. The maximum error for
C_f using traditional correlations was 24.9%, whereas deep learning only reached errors of
8.1%. Similarly, the maximum errors for Nu were reduced from 13.5% using traditional
correlations to only 2.9% using deep learning. Regarding the local errors for C¢(x, z) and
Nu(x, z), the probability density functions revealed that the median of the errors were
lower than 28.42% and 6.37% respectively. The reason for the higher errors observed in
Cy is likely related to non-local effects caused by pressure drag, as there is no analogous
phenomenon for heat transfer. Therefore, it is recommended to perform further research
regarding the creation deep learning models to predict the behavior of turbulent flows
past rough surfaces.
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OPTIMIZATION OF DIMPLED
SURFACES FOR HEAT TRANSFER
ENHANCEMENT

Dimpled surface designs are known to be effective at enhancing convective heat transfer.
However, optimizing these surfaces can be challenging due to the large parameter space
created by the different combinations between geometrical features. In this chapter, we
combine a machine learning framework with a GPU-accelerated DNS solver to quickly
assess the performance of a very large number of surface configurations, and to identify
optimal designs. Our neural network can be trained to predict 2-D images with the local
Nusselt numbers of rough surfaces within a few hours (in a single GPU), based on their
original height maps. During evaluation, our neural network coupled with our parame-
terized geometrical formulation can evaluate one million dimpled surface designs in less
than 45 minutes using a 64-core CPU architecture; with a low RAM memory footprint
per core. Moreover, the GPU-accelerated DNS solver can calculate the Nusselt number
of a rough surface within a few hours as well. The study considers a diverse parameter
space including dimples with multiple depth profiles, major radiuses, corner effects, and
inclination angles. To predict optimal designs, a basic reinforcement loop is created. In the
first stage, only randomly chosen dimpled surface designs are selected as training data. The
Nusselt numbers for each design are extracted from Direct Numerical Simulations (DNS),
performed by the GPU-accelerated turbulent flow solver. Then, a convolutional neural
network is trained, and different surface designs in our parameter space are evaluated. In
order to advance the reinforcement learning loop, additional DNS cases are run for the
optimal predicted surface, and other closely related geometrical variations. After adding
these new DNS cases to the training set, the neural network is re-trained, and the process is
repeated. Starting from the first iteration of the reinforcement learning loop, our results

This chapter has been published in the International Journal of Heat and Mass Transfer, volume 251, p. 127313,
2025.
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shows that machine learning can predict remarkably optimized dimpled surface designs,
with high Nusselt numbers verified through DNS. Moreover, we find that machine learning
chooses dimple configurations that enhance the interaction between roughness elements,
even if other dimples with shorter radius (and equal depth) have more heat transfer area.
The optimal surface has elongated dimples with opposite inclination angles, which create
a zig-zag pattern for the flow near the walls. Additionally, we have shown that at different
Reynolds numbers, the optimal geometry is different as well. We analyze other plausible
optimal dimpled surface designs within our parameter space, and we find that machine
learning correctly identified the adequate parameters to maximize heat transfer. Therefore,
we conclude that machine learning is a highly effective tool to identify optimized designs
for convective heat transfer enhancement.

5.1. INTRODUCTION

Turbulent flows past rough surfaces can be found in different engineering applications. In
most cases, rough surfaces tend to increase the drag resistance of transportation systems,
leading to higher energy losses and fuel consumption. However, certain categories of
rough surfaces can produce favorable results, such as enhancing heat transfer while only
producing a modest increase in pressure losses (Chung et al., 2021; Dipprey & Sabersky,
1963). Therefore, it is possible to design special patterns for rough surfaces that maximize
heat transfer inside engineering equipment. Maximizing the mean Nusselt number Nu of
arough surface is important for engineering applications, since heat transfer equipment
can be made smaller overall. Different families of rough surfaces have been studied to
accomplish this goal, such as riblets (Walsh & Weinstein, 1979) or dimples (P. M. Ligrani
et al., 2003). Under special conditions, it has been shown that it is even possible to
increase the net ratio between the Stanton number (S7) and the skin friction factor (C_f)
of a rough surface (Chung et al., 2021; P. M. Ligrani et al., 2003). An extensive review
of rough surface patterns for heat transfer enhancement can be found in (P. M. Ligrani
etal., 2003; P. Ligrani, 2013; Rouhi et al., 2022). In many studies, it has been noted that
dimples have a high potential to increase heat transfer in a system (Afanasyev et al., 1993;
Choi et al., 2023; Kumar et al., 2017; P. Ligrani, 2013; Rao et al., 2020). Moreover, dimpled
surfaces are easy to manufacture, and different modifications can be considered, such
as elliptical elements, rotated shapes (Rao, Feng, et al., 2015), vortex generators (Jeong
etal., 2019; Xia et al., 2014). Other studies have further considered elliptical protrusions
(Xie et al., 2018), trapezoidal geometries (Dagdevir et al., 2019), staggered arrangements
(Abdus Samad & Kim, 2010), teardrop shapes (Rao, Li, & Feng, 2015), tubes with large
dimples or protrusions (Cheraghi et al., 2020; Li et al., 2016).

One challenge while optimizing dimpled surface designs is that the parameter space
created by the combinations between all geometrical features is very large. It is well-
known that modifications in the dimple shapes can lead to substantially different results
(P. M. Ligrani et al., 2003; P. Ligrani, 2013). Therefore, employing machine learning is
necessary to assess the heat transfer performance of different dimple shapes. The current
study uses a previously developed neural network architecture (Sanhueza et al., 2023),
which is trained using existing DNS data, and it is capable of scanning the height map of
arough surface, and then predicting the local distribution of Nusselt numbers Nu(x, z)
or skin friction factors C r(x,2). While traditional convolutional neural networks must
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process an entire image for each predicted scalar quantity, our neural network architecture
(Sanhueza et al., 2023) can recycle the results of intermediate convolutional layers, and
thus it is capable of generating 2-D maps with all Nu(x, z) predictions after processing
an image only once. Theoretically, this reduces the time and space complexity of the
problem from quadratic to linear complexity, during both the training and evaluation
stages. In our practical application, we indeed observe that the wall clock times for the
training and evaluation of the neural network are reduced by several orders of magnitude.
An example showcasing our convolutional neural network architecture, together with the
filtering methodology previously developed (Sanhueza et al., 2023), can be found in this
Github repository (Diez, 2025).

Thanks to the efficiency of the machine learning system, it becomes possible to create
areinforcement-learning study, where millions of rough surface designs are evaluated in a
short time searching for optimal designs. Within this context, one important advantage of
machine learning over gradient-based algorithms like the discrete adjoint method, is that
the impact of large discrete changes in surface features can be assessed directly, without
relying on infinitesimal gradients. Estimating the gradients with respect to changes in
surface features is computationally expensive (Garai & Murman, 2021), especially for DNS
with large grid sizes. Moreover, gradient-based optimizers also risk running into other
numerical issues, such as convergence to local minima close to the starting configuration.
About the usage of other optimization methods, we highlight that in Section 5.3, our
current machine learning framework is able to find optimized dimpled surfaces using
only 20 training samples, which is less than the number of degrees of freedom in the
system. Classical optimization methods would require hundreds, or even thousands, of
surface design evaluations (through DNS) before converging.

To further strengthen our computational framework, we use a GPU-accelerated DNS
solver written in Fortran, allowing for fast and accurate generation of high-fidelity data.
The GPU-based DNS solver is used both for generating training data, and for verifying the
heat transfer performance of selected dimpled surface designs. In general, GPU-based
DNS solvers can be substantially faster than even multicore CPU algorithms (Salvadore et
al., 2013). Therefore, this work combines for the first time the neural network architecture
developed by (Sanhueza et al., 2023) with a GPU-accelerated DNS solver to generate
optimized dimple surface designs. This chapter is organized as follows: in Section 5.2, the
methodology of the study will be presented, along with the parameter-space created for
the rough surfaces. Then, in Section 5.3, the results of the study are described, which is
followed by the conclusions in Section 5.4.

5.2. METHODOLOGY

5.2.1. GEOMETRICAL VARIATIONS

During the current study, a diverse collection of dimpled surface designs is considered,
including variations in different types of relevant features. A schematic representation of
the geometrical variations available for every dimple can be found in Figure 5.1. In this
scheme, different shape modifications are highlighted, such as the radial profiles (R1_4),
dimple curvature (C,_p), inclination angle (a), and depth profile (D). The values con-
sidered for each of these parameters are listed in Table 5.1. Regarding the depth profiles
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shown in Figure 5.1(c), each spline is internally controlled by an anchor point located at
R(0)/2. The first profile (blue) is a nearly sinusoidal shape, which resembles a classical
dimple study, whereas the second profile (red) has a sharper inclination angle. Either
of these shapes can be chosen during the machine learning optimization study. As a
side-note, more shape variations were initially considered. However, during a preliminary
study, intermediate depth profiles only produced gradual variations in our subsequent
DNS results, and the optimum Nusselt number Nu was found for one of the two ex-
treme depth profiles (round/sharp). Regarding the dimple curvature effects shown in
Figure 5.1(b), the “elliptical” shape is obtained by considering four different ellipses, with
major radiuses Rj_4 spaced at 90° intervals. In contrast, the “circular corner” effect uses
the smaller dimple radius to draw a circular arc at 90°. From a physical perspective, this
circular corner effect can increase the windward area of the dimples, where the maximum
heat transfer typically occurs. However, this profile could also have the opposite effect,
and expand the region with recirculation inside the dimples, which is detrimental for heat
transfer. Therefore, the variations in the curvature profiles pose an interesting challenge
for the machine learning study. The inclination angle () is physically relevant as well,
since inclined dimples can enhance vortex generation compared to spherical dimples
(Isaev et al., 2023; Rashidi et al., 2019). However, the machine learning system must
determine the optimal inclination angle (@), and how different dimple shapes will affect
vortex interactions. Finally, regarding the depth of the dimples d,.y, this parameter is
kept at a fixed value of d;.r = 6/10, where § is the half channel height: § = Ly/2. If dyer is

changed, our DNS analysis showed that the Nusselt number Nu tends to increase mono-
tonically, even for very large d,. /6 ratios. Such DNS cases require more grid cells, and the
identification of adequate initial conditions to avoid divergence. Good initial conditions
are often obtained by running preliminar DNS cases with less pronounced geometrical
features. However, the process of running additional simulations is computationally
expensive, and it requires the formulation of empirical selection criteria. Therefore, all
DNS simulations were performed only for d,.r = §/10. As a general note, our dimpled
surfaces with d,.y = §/10 can display Nusselt numbers up to 53% higher than smooth
wall channel flows under equal pressure losses (at Re; = 180), and the simulations can
start from almost any initial condition.

Table 5.1: Parameters considered for the dimpled surfaces. The variable « is the inclination angle for the dimples,
whereas Rj 4 are the four major radiuses for each dimple. The parameters C,_j, are the two different curvature
variations, and D is the depth profile for every dimple. The influence of the previous parameters in the dimple
geometry is sketched in Figure 5.1.

Variable Alternatives

a -45° -30° -15° 0° 15° 30° 45°
Ri_4 30% 50% 70%

Cup Elliptical Rounded corner

D Rounded Sharp
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Figure 5.1: Schematic representation of the parameters considered for the dimples. The sketch (a) highlights the
location of the radiuses Rj_4 within the dimples and their inclination angle (a) with respect to the x — z plane.
The legend of subplot (a) indicates the different curvature effects available for the dimples. Finally, the subplot
(b) shows the two possible depth profiles for the dimples. Within this plot, d is the reference depth for the
dimples, whereas R(6) is the local dimple radius at any given angle 6. Please note that R(0) is interpolated from
subplot (a) taking into consideration the local curvature effects.
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Figure 5.2: Representation of the staggered dimple arrangement for the simulations. The shape of each dimple
(A/B) is given by the alternatives listed in Table 5.1.

Regarding the global dimple arrangements, the final study consists in optimizing two
rows of staggered dimples that are periodically repeated, as is it shown in Figure 5.2. Each
row of dimples has a unique shape, according to the alternatives listed in Table 5.1. The
total number of configurations available for the system is approximately 3.5 million, after
removing repeated entries due to periodicity and physical symmetry in the spanwise
direction. The dimples within each row (in the z-direction) have identical shape, since a
preliminary study showed that the flow across the dimples mainly interacts with other
elements aligned in the streamwise direction. Moreover, adding more dimple variations
in the spanwise direction (per row) exponentially increases the number of combinations
available, and it was not found the change the outcome of preliminary ML optimization
studies. Regarding the spacing between the dimples, all shapes are packed as closely as
possible, while preserving the staggered grid arrangement. The center of every dimple
was chosen to be the average position of the region with a position deeper than 75% of the
nominal depth (d;.r). This formula does not change the center of uniform dimples, and
it ensures that the deepest parts of asymmetrical dimples follow a staggered arrangement.
This is important to reduce flow obstruction, since the deepest area of the dimples has a
large impact in flow circulation, and the regions with the highest amount of heat transfer
are usually located in front of them. Therefore, the current formula ensures that the
dimples have a good alignment within our dataset, although other methods could be
tested in the future.
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5.2.2. MACHINE LEARNING FRAMEWORK

The overall framework of the machine learning study corresponds to a basic reinforcement-
learning loop, as it is shown in Figure 5.3. In this framework, a DNS database is generated
first (5.3.A), containing purely random dimpled surfaces. Then, a neural network is
trained (5.3.B) to predict the local Nusselt numbers Nu(x, z) distributed across the rough
surfaces. Using the newly trained neural network, the mean Nusselt numbers Nu are
predicted for all possible dimpled surface combinations (5.3.C) according to Table 5.1.
Considering the best performing dimpled surface (5.3.D), new, yet closely related designs
are generated randomly, according to the sub-steps of (5.3.E). Additional channel flow
cases are run for each of these new dimpled surfaces, and their results are added to the
DNS database (5.3.F), in order to repeat the reinforcement-learning loop. Beyond the
framework presented in Figure 5.3, it is important to note that the size of the neural
network trained in step (5.3.B) was increased starting from the third iteration of the rein-
forcement learning loop. This modification was necessary to fit the increasing amount
of training data available, since the size of our DNS database approximately triples by
the third stage of the reinforcement learning study. Otherwise, the neural network would
display a relatively high bias even when performing predictions for the training dataset.
The details of the neural network architecture are discussed at the end of this sub-section.

| A) DNS Database ‘

’ B) Train Neural Network ‘

’ Q) Evaluate All Surface Designs ‘

’ D) Predict Optimal Surface ‘

E) Generate Geometrical Variations

i.  Start from (predicted) optimal surface
ii. Pickrandom dimple attribute

iii. Assign random values to each dimple

F) Run DNS Cases (optimal + variations)

Convergence?

No — Add new cases to
DNS database
Exit

Figure 5.3: Steps of the basic reinforcement-learning loop for the current study.

In steps (i-iii) of Figure 5.3.E, the methodology to choose variations of the optimal
dimpled surface configuration predicted by machine learning is described. In this method-
ology, the dimple configurations are changed, by picking one parameter, and giving it
random values for both dimples. The main benefit of this approach is that the influence
of each physical feature is tested separately. If more parameters were changed at the same
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time, many configurations would have a distorted shape, which is physically far from
the optimal predicted configuration. For example, the dimples configurations can be
highly sensitive to changes in their depth profile, or their radii. Therefore, the current
methodology establishes a better trade-off between exploring new design characteris-
tics, and keeping a shape that is reasonably related to the best predicted configuration.
The total number of possible variations is 93, according to Table 5.1. Only 20 of these
random dimple configurations are sampled in every stage of the reinforcement learning
loop. Therefore, the machine learning system must still use sparse information to make
predictions at any given stage.

Regarding the details of the neural network architecture, the system is based on the
optimized convolutional neural network (CNN) architecture described in (Sanhueza
et al., 2023). This machine learning system is able to scan the height map of a rough
surface H(x, z) and predict its local Nusselt number distribution Nu(x, z) with linear time
complexity, during both the training and evaluation stages. In our target application,
this is thousands of times faster than a traditional convolutional neural network, which
must process an entire image for every scalar quantity predicted. Predicting the local
Nu(x, z) values can be beneficial, because it forces machine learning to build a predictive
model that accounts for local flow effects. Moreover, this methodology also provides a
one-to-one ratio between the input data (H(x, z)) and the predicted quantities (Nu(x, z))
for the neural network, which otherwise would be very unbalanced if Nu was predicted
directly. Regarding traditional surface metrics to predict Nu, such as the skewness or
the effective slope, these quantities only correspond to averaged values, and they do
not take into account the alignment between the roughness elements (Forooghi et al.,
2018). During the current study, it was observed that identical roughness elements with
optimized alignment could substantially increase heat transfer. Therefore, traditional
surface metrics do not form a good basis for the optimization study. Our machine learning
framework to predict local Nu(x, z) distributions is well suited to take into account how
local flow effects influence heat transfer.
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Table 5.2: Neural network architectures to predict the local Nusselt numbers Nu(x, z). The parameters C;,,
Cout, K and D refer to the number of input channels, output channels, kernel size, dilation and the presence
of an activation function respectively. The total number of trainable parameters is 4,461 for the initial neural
network, and 8,161 for the larger ML model.

Layer Cin GCour K D AF
Initial neural network
DSC 1 20 3 1x1 Yes
DSC 20 20 3 2x2 Yes
DSC 20 20 3 4x4 Yes
DSC 20 20 3 8x8 Yes
DSC 20 20 3 16x16  Yes
DSC 20 20 3 32x32 Yes
Conv. 1D 20 1 1 - -
Large neural network
DSC 1 20 3 1x1 Yes
DSC 20 20 3 1x1 Yes
DSC 20 20 3 2x2 Yes
DSC 20 20 3 2x2 Yes
DSC 20 20 3 4x4 Yes
DSC 20 20 3 4 x4 Yes
DSC 20 20 3 8x8 Yes
DSC 20 20 3 8x8 Yes
DSC 20 20 3 16x16 Yes
DSC 20 20 3 16x16 Yes
DSC 20 20 3 32x32 Yes
Conv. 1D 20 1 1 - -
Depthwise Pointwise
Convolution BN + PReLU Convolution BN + PReLU
3x3 1x1

Figure 5.4: Schematic representation of the depthwise separable convolution (DSC) modules mentioned in
Table 5.2. The abbreviation BN refers to the 2-D batch normalization operations applied before each PReLU
activation function.

The overall neural network architecture for the current study is described in Table 5.2.
Here, two neural networks are presented. The first network has a reduced number of
layers, which is used during the first two optimization stages of the study, due to the
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smaller amount of training data available in the DNS database. In the third reinforcement
learning iteration, a larger neural network is employed, in order to fit the increasing
amount of training data. The details of each DSC module mentioned in Table 5.2 are
sketched in Figure 5.4. This architecture follows the principles described in (Sanhueza
et al., 2023), although the number of activation functions inside the network was reduced.
This minor modification was made to reduce the number of trainable parameters, and
because small empirical differences were found in the context of the current study. The
neural networks listed in Table 5.2 have a total of 4,461 and 8,161 trainable parameters,
for the smaller and the larger neural network respectively.

5.2.3. GPU-ACCELERATED DIRECT NUMERICAL SIMULATIONS (DNS)

In this study, the dimpled surfaces are simulated as rough walls within rectangular channel
flows. The numerical framework is primarily based on the dimensionless form of the
incompressible Navier-Stokes equations:

V-u=0, (5.1)
1
0u+u-V)ju=-Vp+ Veu+ Sy, (5.2)
Re;
0,T+u-V)T = V2T +S,, 5.3
t (u-v) Re, Pr q (5.3)

In egs. (5.1, 5.2, 5.3), the variables u, P, T refer to the fluid velocity vector, pressure and
temperature respectively. The parameter Re; is the friction Reynolds number of the fluid,
whereas Pr is the molecular Prandtl number. The constants Sy and S4 are source terms
that induce fluid motion and heat transfer in their respective equations (Busse et al., 2015;
J. Kim et al., 1987; Orlandi & Leonardi, 2006; Peeters & Sandham, 2019; Thakkar et al.,
2017). The geometry considered for the study is a planar channel flow with dimpled
walls, as it is shown in Fig. 5.5. In this scheme, H(x, z) is the height function for the
dimpled surface, the y-coordinate is the wall-normal direction, and Ly corresponds to
the full-channel height. Periodic boundary conditions are considered in the streamwise
(x) and spanwise directions (z). The challenge of the heat transfer optimization problem
is to maximize the mean Nusselt number (Nu), which is given by:

~ qw

TR 5.4
AT, -TIL, 6-4)

where A = 1/(Re; Pr) is the dimensionless conductivity of the fluid, T,, is the wall temper-
ature, and Tj, is the bulk temperature of the fluid. As it can be observed, maximizing the
Nusselt number of the system (Nu) is equivalent to decreasing the temperature difference
(Tp — Tyw), since all other parameters are fixed in the current study. The mean heat flux
Gy is also fixed, because the energy balance must be in equilibrium with respect to the
volumetric source term S.

From the global simulation settings, it is important to highlight that the channel flows
operate with a constant mean pressure loss AP, since the friction drag losses at the rough
walls are compensated by the momentum source term Sy. As a consequence, in this study,
the Nusselt number for the channel flow is maximized without changing the average
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pressure losses. This marks a contrast with respect to other formulations, where the
highest Nusselt number might be found for configurations with very high pressure losses.
Another implication of the current settings is that the skin friction factor C_f is not a direct
target of optimization for the study.

In practical terms, our optimization study resembles cases like the design of a heat
exchanger. We seek to provide a constant heating load Q with fixed pressure losses AP,
and the objective is to maximize the Nusselt number Nu to ensure that the system can
operate with the lowest temperature difference: (T, — T,,). Here, the drag losses should
be measured in terms of the hydraulic pumping power, which is proportional to AP Uy,
among other fixed parameters (Ly, L, etc.). Based on these settings, dimpled surfaces
with higher hydraulic resistance will have a lower bulk velocity (Uj) and Reynolds number
(Rep), and hence their pumping power will not be greater. Despite this fact, since the
Nusselt number Nu is highly correlated with Re;, surfaces with high hydraulic resistance
will be subject to a trade-off, where their Nu values are penalized by their lower bulk
velocity. Therefore, the results of the optimization study are physically-relevant.

In the literature, most studies tend to address a different challenge, which is maximiz-
ing the thermal efficiency (Nu/Nug)/(Cy/Cy o) with respect to a smooth wall (sub-index
0); for a fixed bulk Reynolds number (Rep) (P. M. Ligrani et al., 2003; P. Ligrani, 2013).
While surfaces with high thermal efficiency are valuable, this metric is not directly ap-
plicable to this study, because the changes in the skin friction factor (Cy) will modify
the pressure losses AP, and hence the channel flow will reach another equilibrium with
different Rej,. As a result, we highlight that maximizing Nu is the right optimization target
for the current study (with fixed AP and Q values).

y=Lyl2

/ H(x,z)

Figure 5.5: Scheme of the channel flow geometry, with the height function H(x, z) representing the dimpled
surfaces. The wall-normal direction is given by the y-coordinate, where x is the streamwise direction. The
z-coordinate, perpendicular to the image, is the spanwise axis. The plane y = 0 is coincident with the average
height for the dimpled surface (H(x, z)). The variable Ly is the full channel height, and thus y = L,/2 is the
symmetry plane at the channel center.

y=0

Regarding the discretization and simulation parameters, the study is performed con-
sidering air with Pr = 0.71, Sp=1,84=1and L, =2. The friction Reynolds number
(Re;) can be either 180 or 395, depending on the simulation settings. The grid size
is (Nx x Ny, x N;) = (800 x 256 x 400) in each spatial direction for the simulations at
Re; =180, whereas the Re; = 395 use a grid size of (N x Nj, x N;) = (1920 x 592 x 960).
The size of the channel flows in the streamwise (Ly) and spanwise directions (L) varies
between L, = [5.66, 7.50] and L, = [2.82, 4.13], depending on the size of the dimples
simulated. These domain sizes are consistent with other works about DNS for turbulent
flows past rough surfaces (Leonardi et al., 2015; Peeters & Sandham, 2019; Thakkar et al.,
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2018). In order to simulate the behavior of the rough surfaces, the immersed boundary
method (IBM) is used. Our IBM implementation is inspired by the Fadlun scheme (Fadlun
et al.,, 2000), although we use a ghost point inside the solid instead of forcing the first
(fluid) point above the rough surfaces. Extensive validation benchmarks were performed,
obtaining identical results as (Peeters & Sandham, 2019). Due to the refined grid, all the
current DNS cases have dimensionless cell sizes in the range Ax* < 1.69, Az* < 1.86,
and a uniform mesh size of Ay* = 0.9 is kept near the rough surfaces. The mesh size is
small in the x and z directions, since the dimples have a significant curvature, and this
helps to reduce the distance at which interpolation points are considered. The grid size
further complies with the basic discretization requirements of similar simulations (Busse
et al., 2015; Peeters & Sandham, 2019; Thakkar et al., 2017), which can be expressed as
(Ax*, Ay*, Az*) < (5, 1, 5). Other discretization constraints related to the length-scale
of the rough surfaces do not apply to the current study, since the dimples are substantially
larger than the smallest grid scales. More details about the validation of the GPU-based
DNS solver can be found in C.1.

From a fluid mechanics perspective, it is important to mention that all DNS cases
with dimpled surfaces operate in turbulent regimes. Both smooth wall and rough surface
cases display turbulent flow behavior at Re; = 180 for moderate roughness heights (Busse
et al., 2015; Peeters & Sandham, 2019; Thakkar et al., 2017).

About the software implementation, our GPU-accelerated DNS solver is written in
Fortran, using GPU-aware MPI and OpenACC for cross-platform compatibility. The nu-
merical algorithm uses the fractional-step method, following the methodology used by
(Peeters & Sandham, 2019). Finite difference expressions are used for the spatial dis-
cretization of the Navier-Stokes equations, whereas the temporal discretization is given
by an Adams-Bashford scheme. The immersed boundary method uses ghost points along
fixed Cartesian directions, as previously mentioned. To fulfill the continuity equation, a
pressure-Poisson equation is implicitly solved using spectral FFT-based methods, achiev-
ing G(n log n) time complexity for large-scale applications. In the Poisson solver, Fourier
transformations are applied in the streamwise (x) and spanwise (z) directions, whereas
the wall-normal direction (y) retains its finite difference discretization and a tridiagonal
solver is used instead. To ensure high-performance in multi-GPU configurations, the
computational domain is divided into 1D slabs along the y-direction for each MPI task.
This implies that all FFT operations along the x-z directions are local to each GPU device.
To solve tridiagonal equations along the y-direction, we incorporate a parallel solver,
based on the parallel cyclic reduction (PCR) algorithm (Sanhueza et al., 2025; Yang et al.,
2023).

5.2.4. SCALABILITY ANALYSIS

Regarding the scalability of our optimization framework, only the running times of the
DNS solver are affected by the higher Reynolds number (Re;). The input images passed to
the machine learning system, with the local Nusselt number distributions Nu(x, z), can
be rescaled to a lower resolution similar to the DNS grid for Re; = 180. In our experience,
this resolution is enough to capture both the geometrical features of the dimpled surfaces
and the changes in the local Nu(x, z) distributions, even for flows at higher Reynolds
numbers. Therefore, the running times of our machine learning framework are constant
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for flows at different Reynolds numbers. In the case of the DNS solver, the Poisson
solver tends to be the main performance bottleneck for large-scale simulations, since
the remaining subroutines of the DNS solver either perform halo exchanges or local
kernel computations. Despite these challenges, our DNS code incorporating a parallel
tridiagonal solver is able to achieve strong scalability (by grid size) when comparing
simulations at either Re; = 180 or Re; = 395. Detailed benchmarks about the scalability
of DNS solvers with PCR algorithms can be found in (Costa, 2025; K.-H. Kim et al., 2023;
Sanhueza et al., 2025; Yang et al., 2023).

5.3. RESULTS

5.3.1. OPTIMIZATION FOR DIMPLES SURFACES AT Re; = 180

In order to initialize the reinforcement-learning loop, described in Figure 5.3, a DNS
database with completely random dimple variations is generated first. The dimpled
surfaces found in this initial database are plotted in Figure 5.6. Here, it can be verified
that all the 20 DNS cases have unique patterns and different surface topologies. Using
the GPU-accelerated DNS solver, the local Nusselt number distributions Nu(x, z) for
each of these 20 random surfaces are calculated. Based on these results, the smallest
neural network described in Table 5.2 is trained. From the 20 DNS cases available, 18
DNS cases are used as training data, and 2 DNS cases are left as a small cross-validation
set to monitor over-fitting. After training the neural network, approximately 3.5 million
different surface designs are evaluated, seeking to maximize the mean Nusselt number
Nu. The best three performing configurations predicted by the neural network in the
first reinforcement-learning generation are shown in Figure 5.7. Here, it can be seen that
machine learning predicts that the optimal surface consists of two elongated dimples
with opposite inclination angles (a). This result is very interesting, since none of the
shapes in the training data (Fig. 5.6) had a similar pattern. The Nusselt numbers predicted
by machine learning, and the DNS verification for the top-3 configurations are also shown
in Figure 5.7. From these results, it can be noted that the ranking assigned to the dimpled
surface designs is correct with respect to their Nusselt numbers Nu extracted from the
DNS data, even though the neural network slightly under-predicts the mean Nusselt
number Nu compared to the DNS results.
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Figure 5.6: Dimpled surfaces found in the DNS database for the first generation of the reinforcement-learning
framework. The sub-images are drawn at scale to represent their size in physical coordinates: (Ly x Lz).
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Figure 5.7: Top ranked dimpled surfaces found during the first generation of the reinforcement learning loop at
Re; =180. The bulk flow moves from left to right.
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For the second iteration of the reinforcement learning loop, new dimpled surfaces
are generated, according to the methodology described in steps (i-iii) of Figure 5.3. The
surfaces created can be found in Figure 5.8. Here, it can be noted that the new surfaces
contain large variations from a physical perspective, despite only changing one parameter
at a time. The neural network is thus re-trained using an extended dataset with 41 DNS
cases: the 20 original surfaces shown in Figure 5.6, the top-1 ranked surface identified
by machine learning (first row in Fig. 5.7), and the variations shown in Figure 5.8. After
re-training the neural network, the results shown in Figure 5.9 are obtained. The main
difference with respect to the first generation of the reinforcement learning loop is that
inclination angle of the dimpled surfaces was changed from 45° to 30°. The variations in
the top predicted configurations are minor, and they follow the same patterns observed
back in Figure 5.7.
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Figure 5.8: Additional dimpled surfaces added to the DNS database for the second generation of the
reinforcement-learning framework.
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Figure 5.9: Top ranked dimpled surfaces found during the second generation of the reinforcement learning loop
at Re; = 180. The bulk flow moves from left to right.
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In the third generation of the reinforcement-learning study, 20 additional surfaces
are considered. Now the DNS database contains a total of 62 DNS cases, since the
optimal design from the second generation (Fig. 5.9) is also added to the database. Due
to the increased amount of training data, the size of the neural network was increased.
Otherwise, the bias of the neural network can be higher, even for training samples. The
results of the machine learning study are found in Figure 5.10. Here, it can be seen that
the top predicted configurations have a very similar topology to the second reinforcement
learning stage, although small variations in the curvature of the perimeter for the dimples
are observed. All dimpled surfaces still have high potential for heat transfer, according
to the DNS results. However, it is observed that the minor topological changes observed
among the top dimpled surfaces do not further influence the outcome of the study, and
the reinforcement-learning iterations are concluded.

To investigate which surface features contribute the most to heat transfer enhance-
ment, Figure 5.11 presents a comparison between multiple variations from the optimal
surface predicted in the second generation of the reinforcement learning study. Here, the
geometry of the dimpled surfaces is shown along with their respective Nusselt numbers
Nu extracted from DNS data. From this comparison, it can be noted that the configu-
ration predicted by machine learning is substantially better than similar designs. This
result indicates that the neural network correctly found an optimized dimpled surface
design starting from low-quality random training data, which had little relation with the
optimal patterns. Many reinforcement learning frameworks would require hundreds, if
not thousands, of iterations before they can converge to an adequate design. In contrast,
our machine learning system quickly found correct geometrical parameters, such as
the inclination angle a = 30°, corner profiles, depth and aspect ratio for the dimples
among similar alternatives. Regarding these surfaces, it can also be highlighted that the
dimples with a circular perimeter, or lower aspect ratio, are more closely packed and have
more heat transfer area. Therefore, machine learning took into account the interactions
between roughness elements while assessing the potential for heat transfer of different
surface designs.
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Figure 5.10: Top ranked dimpled surfaces found during the third generation of the reinforcement learning loop
at Rey = 180. The bulk flow moves from left to right.

Finally, itis interesting to investigate if the performance of the optimal dimpled surface
can also be explained by investigating the local flow structures. Flow patterns are generally
important for dimpled surfaces, since most heat transfer takes place in the windward
faces, whereas backflow areas (with recirculation) have a negligible contribution. Due to
this reason, the averaged Nusselt numbers Nu of dimpled surfaces are greatly dependent
on any heat transfer enhancement effects at the windward faces, due to factors such as
the shape or alignment of dimple elements. Based on this context, the higher Nusselt
numbers for dimpled surfaces with opposite inclination angles can be attributed to the
creation of a zig-zag pattern in the flow near the surfaces. This phenomenon is visualized
in Figure 5.12, where the streamlines for the top surface from the second generation of
the reinforcement learning loop (Figure 5.9) are compared with the dimples with circular
perimeter shown in Figure 5.11 and other closely related geometrical variations. Here, it
can be clearly observed that the dimples with opposite inclination angles have minimal
fluid recirculation, since the streamlines inside each dimple follow a spiral pattern (Isaev
et al,, 2019), where the flow from previous dimples is deviated resulting in a large heat
transfer rate in the frontal faces. In contrast, the circular dimples suffer from significant
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flow recirculation in their interior (Chen et al., 2012; Elyyan et al., 2008; Turnow et al., 2012;
Zhengyi Wang & Khoo, 2006), which is detrimental for local heat transfer. Another reason
for the lower thermal performance of circular dimples is that the flow perturbations
created by one element do not have a significant impact on the upcoming dimples. This
phenomenon lowers the thermal performance of aligned roughness elements in general.
Beyond the alignment of the roughness elements, the larger Nu values observed for
dimples with sharper corners, or steeper depth profiles, is related to the increased size of
the frontal area where the highest local Nusselt numbers Nu(x, z) are found.

Regarding the influence of the dimple inclination angle, Figure 5.12 shows that dim-
ples with a moderate inclination of 15° have a much higher degree of recirculation than
the optimal configuration (30°). This is evidenced by the additional loops of the spiral
vortices inside these dimples. Dimples with a higher inclination angle of 45° display
minimal recirculation, yet it can be observed that the spiral vortices inside the dimples are
highly distorted. Finally, the dimples in aligned arrangement at 30° present a drastically
different flow pattern, where the flow tends to hover above the dimples, which is less than
optimal for heat transfer. In summary, it can be observed that both the inclination angle
of the dimples and the staggered arrangement have a large impact in the flow patterns for
every configuration, and the resulting heat transfer.

Therefore, our machine learning framework can be a useful tool to predict surface de-
signs that maximize heat transfer, and we provide a framework to iterate using additional
results obtained from DNS simulations. Moreover, the local Nusselt numbers Nu(x, z)
predicted for each configuration serve as an additional verification tool, to check whether
the distributions follow physically plausible patterns, or if the mean Nusselt number Nu
are affected by spurious non-physical oscillations. Further design insights can also be
obtained from Nu(x, z) to predict optimal heat transfer patterns, or to understand the
sensitivity of the neural network to changes in the dimple geometry.

To provide a broader context, the performance metrics reported by (P. M. Ligrani et al.,
2003) and the Reynolds analogy factor (25¢/Cy) (Bons, 2005) were computed for the top
dimpled surface from the second generation of the machine learning study, and other
canonical flow cases. These values are reported in Table 5.3, along with the dimensionless
ratio between heat transfer (Q) and pumping power (Wp,) for each configuration. Here, it
can be observed that the top dimple configuration also has a significantly higher ratio
Q/W,1(Qo/ Wp,0). Furthermore, the metric Nu/Nug/(Cy/Cy,)''? is also higher for the
optimized surface. However, according to the Reynolds analogy factor and the thermo-
hydraulic efficiency, the optimized surface performs less well. Thus, we conclude that the
optimization method yields an improved ratio of thermal load to pumping power. The
latter is the direct result of the Nusselt number being much higher for the top dimpled
surface than it is for the circular dimple surface. Moreover, our channel flow simulations
have fixed pressure losses AP, which implies that the bulk Reynolds number Re, is subject
to change. Therefore, the value reported by the thermo-hydraulic efficiency does not
necessarily reflect the final performance of the system.

Finally, to emphasize that the computed flows at Re; = 180 operate in the turbulent
regime, Figure 5.13 presents a snapshot of the instantaneous velocity field U™ at the
plane z = L;/2 for the top-performing dimpled surface from the second generation of
the reinforcement learning study. Here, it can be seen that the velocity field displays the
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Table 5.3: Thermal performance metrics for the highest performing dimpled surface found in the second
generation of the reinforcement learning study at Re; = 180, and other closely related alternatives. The sub-
index “0” refers to a flat-plate channel case at identical bulk Reynolds number (Rey,) as the target configuration.

Q/Wp — 28t Nu/Nugy Nu/Nug
Case —_— Nu o —_
Qo/Wp,o Cr (Cf/Cf,O)“a CrlCro
Top dimpled surface (gen. 2) 1.63 28.0  0.024 1.00 1.54 0.81
Circular dimples (same Rep,) 1.25 17.8  0.014 1.10 1.17 0.88
Smooth walls, Re; = 110 (same Rey,) 1 13.2  0.0091 1.25 - -
Smooth walls, Re; = 180 (same AP) - 18.1  0.0079 1.13 - -

similar characteristics as turbulent flow snapshots reported in other studies (Peeters &
Sandham, 2019).
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Figure 5.11: Comparison between the optimal dimpled surface found in the second generation of the reinforce-
ment learning loop with other closely related geometries at Re; = 180. The bulk flow moves from left to right.
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Figure 5.12: Streamlines for the dimples with circular perimeter (left) shown in Fig. 5.11, and the top-ranked
dimpled surface (right) obtained in the second generation of the reinforcement learning loop (Figure 5.9). The
color-maps for each dimple indicate the averaged temperature (7) for their respective streamlines.
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Figure 5.13: Instantaneous snapshot of the velocity field in the streamwise direction (U™") for the highest-
performing dimpled surface of the second generation of the reinforcement learning study at Re; = 180. The
slice shown corresponds to the plane at z= L;/2. Please note that U = U* in our numerical framework. The
bulk flow moves from left to right.

5.3.2. OPTIMIZATION FOR DIMPLES SURFACES AT Re; =395

In the previous section, it was shown that machine learning can accurately predict op-
timized dimpled surface designs for flows at a friction Reynolds number of Re; = 180.
However, to further demonstrate the ability of the optimization method, we repeated
the procedure for flows at Re; = 395. To begin this new phase of the study, a new DNS
database was generated, considering the randomized dimpled surfaces previously shown
in Figure 5.6. Then, the neural network was re-trained using the new DNS database with
flows at Re; = 395, and the evaluation procedure with millions of combinations was
repeated. The top configurations predicted by machine learning are shown in Figure 5.14.
Here, it can be seen that the top-ranked dimpled surface resembles the previous optimal
design for Re; = 180. However, instead of sharper (rounded) corners, elliptical corners are
chosen instead. To further investigate this outcome, an additional DNS was performed
at Re; = 395, but with sharper corners instead. The last row of Figure 5.14 shows a com-
parison with respect to a dimpled surface with sharper (rounded) corners. From the
DNS results, it can be seen that the elliptical corners are indeed beneficial to increase the
Nusselt number (Nu) at Re; =395.

The streamline patterns for DNS cases with both corner effects can be found in Fig-
ure 5.15. Here, it can be observed that the elliptical corners create spiral vortices more
closely aligned with the dimple geometry, and that most streamlines are ejected together
towards the end of each dimple. In contrast, the dimples with sharp (rounded) corners
have a more dispersed flow pattern, with the streamlines spilling over the dimples and
being ejected at different locations. This implies that the geometry is not closely aligned
with the vortices generated, and thus it is natural to expect a higher Nusselt number from
the dimples with elliptical corners at Re; = 395.

A comparison between the performance metrics for the newly optimized surface at
Re; =395 and other relevant cases can be found in Table 5.4. Here, the Nusselt numbers
Nu tend to be higher than before (Table 5.3), since this quantity grows together Rej, or
Re; in our physical formulation. However, we highlight that the newly optimized surface
(with elliptical corners) has higher values for Q/W)/(Qo/ Wp ) than the previous study at
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Re; =180. This indicates that the dimpled surface is operating efficiently, achieving both
a high Nusselt number and a good ratio of heat transfer to pumping power. Again, the

ratio m/mo/(C r1C f,o)” 3 has a favorable value for the optimized surface.

Table 5.4: Thermal performance metrics for the highest performing dimpled surface during the optimization
study with Re; = 395, and other closely related alternatives. The sub-index “0” refers to a flat-plate channel case

at identical bulk Reynolds number (Rey,) as the target configuration.

Q/Wp — 28t Nu/Nug Nu/Nug
Case _— u Cf —
Qo/Wp,o Cr (Cf/Cf,())”3 CrlCro
Top dimpled surface (Re; = 395) 1.78 52.8  0.023 0.88 1.65 0.77
Circular dimples (same Rey,) 1.65 46.8 0.0199 0.9 1.54 0.79
Smooth walls, Re; = 222 (same Rey,) 1 21.7  0.0073 1.14 1 1
Smooth walls, Re; =395 (same AP) - 36.6 0.0063 1.16 - -
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Figure 5.14: Top ranked dimpled surfaces found during the optimization procedure for a friction Reynolds
number of Re; = 395. The label “previous best” refers to the top-ranked dimpled surface from the second
generation of the reinforcement learning study for Re; = 180. The bulk flow moves from left to right.
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Figure 5.15: Streamlines for the dimples with elliptical corners (top) shown in Fig. 5.14, and the top-ranked
dimpled surface (bottom) obtained in the second generation of the reinforcement learning loop (Figure 5.9)
at Re; = 180. The color-maps for each dimple indicate the averaged temperature (T) for their respective
streamlines.
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5.3.3. DISCUSSION OF RESULTS

Regarding the quantitative results presented here, it should be mentioned that the topolo-
gies found will only be optimal for the investigated Reynolds numbers. Moreover, the
optimized topology was found using Dirichlet boundary conditions. This modeling as-
sumption may not always be correct when dealing with heat transfer equipment. A good
example would be a heat exchanger without any multiphase phenomena on either the
hot or cold side. However, the study’s methodology can be extended to the point where
the surface topology is not only optimized on one side, but on both the hot- and cold-
side in tandem. In such a case, only the configuration of the DNS solver would need to
change to allow for conjugate heat transfer, but the convolutional neural network would
still work and thus, the methods in this chapter could be used to optimise topologies
that are more relevant to industry. In subsequent studies, the dimple depth should be
included in the parametrization of the dimple geometry. Furthermore, the same general
methodology can be used for different designs such as transverse bars or riblets, as long
as the parametrization is changed accordingly. Finally, to include much higher Reynolds
numbers, Large Eddy Simulations could be used instead of Direct Numerical Simulations
to extend the applicability of the methods to a wide range of industrial cases.

5.4. CONCLUSIONS

In this study, we present a machine learning framework to optimize rough surfaces
for convective heat transfer enhancement. The procedure starts by considering a DNS
database with purely random surface designs. Then, a neural network is trained using the
existing DNS data, and a new optimal design is predicted within our parameter space. To
advance in the reinforcement learning loop, the DNS database is augmented by simulating
both the new optimal surface, as well as closely related random variations of this design.
The neural network can predict highly optimized dimpled surface designs, starting from
the first iteration of the reinforcement learning loop. The rough surfaces identified by
machine learning contain elongated dimples with opposite inclination angles, which
create a zig-zag pattern for the flow near the walls. This design is highly effective for heat
transfer enhancement, and further analysis shows that it is substantially more effective
than other plausible alternatives within our parameter space. For instance, smaller
dimples with high packing density can have more heat transfer area, yet their Nusselt
number is inferior since their shapes do not enhance local heat transfer. Additionally, we
have shown that at different Reynolds numbers, the optimal geometry is different as well.
This showcases the ability of our machine learning system to prioritize the alignment of
roughness elements, and to select other appropriate surface features. Achieving similar
results using traditional correlations would be difficult, since standard surface metrics
(e.g. skewness) correspond to global averages, which are not sensitive to the exact location
of roughness elements. Thus, traditional correlations are not well-posed to predict how
the alignment between dimples would enhance heat transfer.

In summary, we conclude that machine learning can be an effective tool to optimize
rough surfaces for convective heat transfer enhancement. While typical reinforcement
learning problems can require hundreds, if not thousands, of iterations to converge, our
system can build highly effective surface designs in only a few iterations. Beyond the
machine learning framework, our DNS analysis also shows that elongated dimples with
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opposite inclination angles are an interesting alternative to consider in optimization
studies, since they produce a large enhancement in the average Nusselt number under
equal pressure losses. Moreover, the local Nusselt numbers Nu(x, z) predicted for each
configuration serve as an additional verification tool, to check whether the distributions
follow physically plausible patterns, or if the mean Nusselt number Nu are affected by
spurious non-physical oscillations. Further design insights can also be obtained from
Nu(x, z) to predict optimal heat transfer patterns, or to understand the sensitivity of the
neural network to changes in the dimple geometry.
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CONCLUSIONS AND PERSPECTIVES

The work performed in this thesis addressed multiple challenges in the field of machine
learning for fluid mechanics. The topics included: improving GPU-accelerated DNS
solvers for extreme-scale simulations, developing accurate machine learning models for
variable-property flows, predicting the behavior of turbulent flows past rough surfaces,
and optimizing dimpled surface configurations for convective heat transfer enhancement.
The combination of machine learning and GPU-accelerated flow solvers is seen as a
promising technique. Experience shows that GPUs can quickly generate large turbulent
flow databases, with a large variety of complex physical effects beyond the scope of
(simplified) traditional models. Machine learning models can then be trained using large
flow databases, and complex physical effects can be fully taken into account to make
accurate predictions.

GPU-ACCELERATED DNS SOLVERS FOR EXTREME-SCALE SIMULATIONS

This work addressed two important topics regarding GPU-accelerated DNS solvers. First,
a parallel tridiagonal solver (P-TDMA) with reduced MPI communication footprint for
extreme-scale GPU simulations was implemented. Then, a new cross-platform communi-
cation library, named diezDecomp, was created for DNS studies in either AMD or NVIDIA
GPUs. This library supports highly complex data transfer operations, maintaining high
performance at extreme-scales. The results show that the parallel tridiagonal solver is
highly effective in extreme-scale simulations with up to 1,024 GPUs/GCDs in both the
Leonardo and LUMI supercomputers. More concretely, the P-TDMA algorithm enables
the DNS solver to use a 2-D pencil decomposition, while retaining the same levels of speed
observed in high-performing 1-D slabs decompositions. Additionally, while P-TDMA
algorithms are often conceived as handling large-scale simulations by adding more 1-D
slabs along the vertical direction, the results clearly showed that it is better to minimize
the number of vertical partitions, and to add more lateral divisions for extreme-scale
simulations. This insight is consistent with theoretical analysis, since DNS solvers with
more lateral partitions have lower interface area in the vertical direction, and thus the
MPI communication footprint of the P-TDMA algorithm is effective halved when the
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number of GPUs is duplicated. In contrast, P-TDMA algorithms with 1-D slabs have a
constant interface area, and their communication footprint and running times do not
necessarily improve by adding more GPUs. Still, P-TDMA algorithms with 1-D slabs can
be highly effective for medium-sized DNS simulations when the number of grid points in
the vertical direction is very large for every MPI task. In general, the optimal DNS solver
configuration is a hardware-dependent choice that is also influenced by the DNS grid size
and the (non-uniform) communication bandwidth observed between intra-node and
multi-node data transfers. The P-TDMA algorithm with a 2-D pencil decomposition and
a minimum number of vertical partitions always offers good performance, yet in some
cases, either the P-TDMA algorithm with 1-D slabs or the full-transpose algorithm with
1-D slabs can be (slightly) more effective.

The new cross-platform communication library for NVIDIA or AMD GPU-based super-
computers, named diezDecomp, proved to be highly effective at performing data transfer
in large-scale simulations. The working principle of this library is to intersect the x/y/z
bounds of all MPI processes and to schedule data transfers. Therefore, highly complex
communication patterns are natively supported. Thanks to this flexibility, a new type of
transposes in the x-z direction was added to the DNS solver, which enable one-step data
transfers between x-aligned pencils and any type of z-aligned pencil arrangement. Due to
technical reasons, x-z transposes are beneficial when solving for 1-D implicit diffusion
equations inside DNS solvers, yet they require a complex communication pattern that is
not possible to achieve with operations resembling all-to-all collective operations. The
results showed that x-to-z transposes can substantially reduce the total running times for
DNS solvers using 2-D pencil decomposition schemes with a high number of partitions
in the z-direction.

In summary, the previous advances in GPU-based DNS solvers are important, since
they enable the generation of high-fidelity data (regarding complex flows) in short periods
of time. This works well in combination with machine learning, which can be used to
quickly build new low-cost models for engineering purposes.

MACHINE LEARNING FOR VARIABLE PROPERTY FLOWS

In the field of machine learning for variable property flows, the analysis focused on im-
proving the behavior of existing RANS turbulence models, showing significant errors due
to the presence of strong property gradients. It is well-documented in the literature that
CFD solvers naively enabling property variations (density, viscosity, conductivity, etc.)
can still have large errors due to variable-property effects, such as density gradients. The
machine learning framework is based on the FIML (Field Inversion Machine Learning)
technique proposed by Parish & Duraisamy (2016) to account for strong property varia-
tions. Modelling variable-property flows has additional challenges, such as not knowing
beforehand the thermophysical properties of the flows studied, since they vary strongly
with the temperature.

To solve this challenge, a feedback loop was added, where the data-augmented RANS
predictions are used to estimate the fluid temperature and to update the local thermo-
physical properties. These changes are propagated even through the input features given
to the machine learning system. Additionally, to avoid adding non-physical corrections to
RANS turbulence models, a weighted relaxation factor is proposed, which can effectively
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filter spurious oscillations in real-time by solving a single scalar equation. The final results
showed that machine learning system was highly effective at improving CFD predictions,
and it even had good performance when it was forced to extrapolate to a higher Reynolds
number.

TURBULENT FLOWS PAST ROUGH SURFACES

Another challenge was to predict the thermal and hydrodynamic behavior of turbulent
flows past rough surfaces. This is a complex task, as it requires the evaluation of many
complex features found in rough surfaces. In general, traditional surface metrics over-
simplify the characteristics of a rough surface, and they are not sensitive to the original
location of the roughness elements being processed. Due to the previous challenges,
it was decided to use a convolutional neural network architecture, which is capable of
(independently) scanning the height map of a rough surface, and to make predictions
for the local skin friction factors and Nusselt numbers. This approach is well-posed
numerically, since predicting detailed 2-D maps for the entire surface creates a one-to-
one ratio between the height map of the rough surface (input features) and the target
predictions (local 2-D skin friction or Nusselt numbers). This is beneficial for the training
procedure of the neural network, and it allows the machine learning system to extract
more physical information from smaller databases. Additionally, an advanced system
is proposed to recycle the intermediate results of all convolutional layers, such that
2-D surface maps can be predicted with linear time complexity, instead of quadratic
complexity as in naive approaches.

The results show that machine learning can accurately predict the skin friction factors
and Nusselt number distributions for rough surfaces in the dataset. Yet, more generally,
the results are exceptionally accurate for the thermal predictions, regarding the Nusselt
numbers. This is attributed to the relatively simpler nature of the scalar transport equation
for the temperature, which is not influenced by complex effects, such as the buildup of
pressure drag near roughness elements that influences the skin friction factor predictions.

DATA-DRIVEN OPTIMIZATION OF ROUGH SURFACES FOR CONVECTIVE HEAT TRANSFER EN-
HANCEMENT

Based on the success of the optimized convolutional neural network architecture for
thermal predictions, a data-driven optimization system was developed for convective
heat transfer enhancement in dimpled-surfaces. The system is based on a (basic) rein-
forcement learning approach. First, a database is created with random dimpled-surface
examples, which are used to train a neural network to make heat transfer predictions.
Then, millions of dimpled surface designs are evaluated, seeking the optimal heat transfer
configurations, and a new optimized surface is predicted. The results show that machine
learning is very accurate at predicting highly optimized surface designs starting from
low-quality training data. A database with only 20 randomized dimpled-surfaces dis-
playing sub-optimal Nusselt numbers was enough to enable machine learning to extract
meaningful physical patterns and predict that cross-aligned elongated dimple elements
would yield the most heat transfer. This prediction was found to be highly accurate, and it
is indeed one of the highest-performing dimpled-surfaces in the current parameter space.
Physically speaking, cross-aligned elliptical dimples deviate the flow in coordinated zig-
zag patterns, which enhance the heat transfer downstream instead of blocking the flow.
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This solves a problem typically occurring in circular dimples, where the main flow hovers
over the top of the dimples, and only secondary recirculation vortices are found inside.
This recirculation causes a region with low Nusselt numbers.

After extending the dataset of the machine learning system, to complete a second
reinforcement learning iteration, it was found that machine learning again predicted
improved dimpled surface parameters. This time machine learning identified the correct
dimensions for multiple dimple features, such as the corner effects, inclination angle, etc.
Multiple DNS runs were performed to test other plausible dimpled-surface configurations,
yet it was found that machine learning had identified the best parameters among such
alternatives. The best dimpled surface found using reinforcement learning has a Nusselt
number 53% higher than a flat plate configuration. Therefore, machine learning is a useful
tool both to predict turbulence flow quantities, and to optimize engineering equipment
for enhanced thermal performance.

FINAL REMARKS

GPU-accelerated DNS solvers are creating a new breakthrough in turbulent flow simula-
tions, where it is now possible to simulate highly complex flows in short time periods. This
creates significant opportunities to study complex physical effects, and to use machine
learning to extract patterns from rich databases. The work performed has shown that
machine learning is an effective tool to make accurate predictions for complex flows
with strong gradients in their thermophysical properties, or flows that are influenced by
the presence of rough surfaces. Our work optimizing dimpled surfaces for heat transfer
enhancement also shows how machine learning can enable the direct optimization of
engineering equipment for improved thermal performance. Therefore, machine learning
is a promising tool in the field of fluid mechanics.

PERSPECTIVES

In broad terms, machine learning can be applied in fluid mechanics to solve important
challenges, such as designing complex machinery, building data-driven CFD solvers, or
generating low-cost (fast) turbulent flow predictions for process control and optimization.
Within this context, several guidelines should be considered. First, it is essential to
create a well-defined parameter space for each machine learning application, where all
degrees of freedom can be represented by scalar quantities within closed intervals. This
enables the identification of relevant training and validation cases for the study. Even if
there are millions of combinations in the parameter space, our work showcased how an
optimized dimpled surface (with 53% higher Nusselt number) could be identified after
training a neural network with 20 randomly chosen simulations. Each simulation with a
refined grid took less than 20 hours using a single GPU, and training the neural network
again took a similar amount of time. Therefore, it is possible to use machine learning
to identify optimal solutions in less than a week, among millions of alternatives. Using
random training cases tends to be effective, because each sample contains non-linear
interactions between many factors, and thus machine learning is always being trained
to work with non-trivial cases. In constrast, choosing edge cases as training data can be
useful, if they correspond to optimized configurations, but otherwise it may not be as
effective. To regularize machine learning systems, a technique we found to be effective
was to systematically reduce the size of the machine learning system, while retaining
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a similar training and validation accuracy. This can be seen as an application of the
Elbow Method, where redundant parameters that may cause over-fitting are eliminated.
Additionally, the ratio between the number of trainable parameters and the size of the
dataset is improved. For enhanced accuracy, classical L1 or L2 regularization can be
used in combination with the experiments to reduce the size of the machine learning
system. Finally, regarding the usage of standalone machine learning systems, or data-
augmented physical models, several trade-offs should be considered. On one hand,
physical models may only need fine-tuning for isolated constants, and physical laws (e.g.,
mass or momentum conservation) are automatically fulfilled. However, some frameworks
over-simplify the flow physics, and they cannot replicate the experimental data with high-
fidelity. Moreover, physical models can create numerical stability or scalability issues;
especially when optimizing parameters in non-linear PDEs. Thus, using standalone
machine learning systems can be feasible, unless a physical framework provides strong
benefits.

In summary, machine learning has great potential in fluid mechanics, yet the right
mathematical techniques are problem-specific and should be chosen carefully.
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APPENDIXES CHAPTER 2

A.1. GPU IMPLEMENTATION OF FOURIER-BASED TRANSFORM

While a real-to-complex Fourier transform of a signal x with #» numbers has n/2 +1
complex numbers, the imaginary parts of the first and last elements (for even n) are zero.
Let us consider the output of the real-to-complex Fourier transform of

XZ[.X,'() X1 xn_l], (A.l)

given by

_|xr i zr sz =T i .
x_[xo X0 X1 Xy o Xposr Xlazsy | (A2)

X has [n/2+1] elements, with || denoting the integer floor operation. Since each complex
number is represented by two real ones, ¥ is represented by (2 [n/2+1]) real numbers,
with fcé =0, and icfn j241) = 0 for even n. Hence, the real-to-complex transform can be
uniquely represented by a set of n numbers. This property is explored in several FFT
packages (e.g., FFTPACK, and the half-complex format of FFTW used in the CaNS code for
CPU-based runs). Unfortunately, popular GPU-based FFT libraries like cuFFT, hipFFT, or
MCKL do not support this format (“cuFFT API Reference”, 2024; “hipFFT documentation”,
2024; “Intel oneAPI Math Kernel Library (oneMKL)”, 2024).

Representing the output of the real-to-complex transforms in arrays of size n is de-
sirable, as it allows us to handle the output of a real-to-complex transform in the same
manner as a real-to-real transform, greatly simplifying the implementation of different
transform types in the Poisson solver. Hence, since the first GPU version of the CaNS code
(Costa et al., 2021), X is packed in the following format:

=T =i vl 2l . .
‘ X0 Xy Xiniz+1) | Xpsz+1y | if nis even,
- ——
= (A.3)
=r ~i =r =i . .
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It is easily seen that both cases have n real elements. This operation has &(1) time com-
plexity, while re-arranging the signal such as [X{, ..., 56{, ...], would have @' (n) complexity.
With this cheaper re-arrangement of the arrays, the Fourier eigenvalues A; and A; in
eq. (2.12) must be consistently re-ordered to comply with this format. This is an inex-
pensive operation that is performed during the initialization of the Poisson/Helmholtz
solver.

Finally, the reciprocate unpacking operations are done for performing the inverse
complex-to-real transform to have an input array with [7/2 + 1] elements, resulting in an
output signal with n-elements in the correct order.

A.2. PERFORMANCE GAINS FROM DIRECT X — zZ TRANSPOSES

WITH IMPLICIT 1D DIFFUSION

When the GPU profiling results from Figure 2.7 are analyzed, it can be noticed that the
implicit 1D diffusion solver performs two consecutive transposes in the x-y and y-z
directions, which will be denoted as x — y — zin this section. This is suboptimal.
Ideally, the cyclic reduction process should be performed using the original x-aligned
pencils for the velocity components u/v/w, and then direct x — z transposes should be
used before solving the reduced systems of tridiagonal equations.

To better understand the benefits of performing a direct x — z transpose instead of
two consecutive transposes, we used the diezDecomp library created for the LUMI porting
effort. The implementation intersects the x/y/z bounds of different MPI tasks, with no
strong restrictions, and thus it is trivial to implement any variant of x — z transpose.
This allowed for an implementation of this more complex communication operation with
minimal changes in the DNS code.

While avoiding x — y — ztransposes has a small impact in the GPU profiling results
shown in Figure 2.7, we identified other DNS cases where the impact of this transpose
sequence was much higher. For instance, the DNS cases with (p, x p;) = (8 x 128) have
a much higher MPI workload for the parallel tridiagonal solver (due to the reduced size
of py), and thus they benefit more from removing x — y — z transposes. In Figure A.1,
the results of the scalability tests using x — z transposes are presented for a 2D pencil
decomposition with p, = 128 vertical partitions. The configuration p, = 128 was chosen,
since its parallel tridiagonal solver works with larger arrays and the unnecessary x — y
transposes have a significant impact in the results previously shown in Figure 2.4. In the
subplot (a), it can be seen that the running times for the implicit 1D diffusion solver are
55% slower when successive x-y and y-z transposes are used. The scalability chart at
the right reveals that the system with x — z transposes is more efficient in large-scale
simulations, reducing the running times of the entire DNS solver by 18% for the P-TDMA
algorithm with 1024 GCDs.
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Figure A.1: Comparison between the standard P-TDMA approach and the optimized version using direct
x — z transpose operations for implicit 1D diffusion (subplot a) using 8 x 128 GCDs and a grid size of
(Nx x Ny x N) = (7168 x 7168 x 1594). The subplot (b) corresponds to a strong scalability test for the
entire DNS solver using the same grid size, but a different number of GCDs in the LUMI supercomputer.
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B.1. TIME AND SPACE COMPLEXITY OPTIMIZATION

During the current study, one of the main challenges encountered while using traditional
convolutional neural networks is that their architecture has been adapted to reduce
an input image until a single prediction point is obtained, and to discard the results
of all intermediate convolutional layers. This process is highly inefficient, as it can be
observed in Figure B.1. Here, an example is presented regarding the sub-images required
to perform predictions for the local skin friction values C r(x,2) or Nusselt numbers
Nu(x, z) associated with two neighboring data points P; and P, inside a rough surface.
The large overlapping area highlighted in Figure B.1 corresponds to the shared portion of
both sub-images which must be scanned redundantly once predictions are required for
a second data point P,. From a mathematical perspective, this implies that in order to
obtain predictions for the local skin friction values C r(x, z) or Nusselt numbers Nu(x, z)
associated to a rough surface discretized using images with N, x N pixels, the total
numbers of pixels to be processed by the deep learning architecture is proportional
to @ (N2N?). In practical terms, a traditional convolutional neural network replicating
the behavior of the deep learning systems presented in Tables 4.3 or 4.4 would require
processing a total of 365,148,000 pixels for each DNS case considered.
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Figure B.1: Example regarding two prediction points P1 and P2 obtained as output from a traditional convolu-
tional neural network. The shaded area corresponds to the shared portion of the input images passed to the
convolutional neural network, which must be reprocessed again.

However, an efficient alternative can be developed to solve the previous problem, and
to reduce the total number of pixels to be processed from quadratic complexity 6 (N2N2)
to linear complexity € (N N;) with respect to the total image size Ny N. The approach
is based on the idea of sharing the results of all intermediate convolutional layers by
using an advanced dilation system that replaces the reduction strides found in traditional
convolutional neural networks by a unified matrix system. A schematic representation of
this approach can be found in Figure B.2. Here, it can be noted that, instead of reducing
images using convolutional strides, the efficient deep learning system proposed uses
increased levels of dilation to replicate the effect of using reduction strides. The main
benefit of this approach is that neighboring data points, such as P; and P, back in Figure
B.1, can share the results for the intermediate convolutional layers, and all the predictions
for the local skin friction values Cy(x, z) or Nusselt numbers Nu(x, z) associated to a
rough surface can be obtained after only one pass through the neural network. As a result,
the total number of pixels to be processed for each DNS case is reduced from 365,148,000
pixels into only 39,200 pixels, which is equivalent to a reduction factor of 9,315. Moreover,
the running times required to train deep learning systems can be reduced from months
of GPU-time into only a few hours. The optimized architecture described in Figure B.2 is
highly compatible with GPU’s, since most machine learning frameworks contain efficient
implementations of the dilation operator for convolutions.

a) Standard System b) Efficient System
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2 2
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Figure B.2: Comparison in 1-D between a standard convolutional neural network and the efficient computer
vision system developed.
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B.2. AVERAGED FLOW QUANTITIES AND SURFACE METRICS FOR
THE DNS DATABASE

In this Appendix, subplots are presented regarding the distribution of the flow quantities
reported in Table 4.1, as well as the value of traditional surface metrics for our DNS
database. For improved transparency, the results of Figure B.3 are split for rough surfaces
belonging to Categories I and II of the DNS database. As mentioned in Section 4.2.4, all
the rough surfaces found in our DNS database have a constant root-mean-squared height
0f 0.0358.
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Figure B.3: Distribution of averaged flow quantities reported in Table 4.1 for our DNS database, as well as other
traditional surface metrics. For improved readability, all values shown for Categories I and II are sorted in
ascending order according to their global skin friction factors C7f All the rough surfaces shown in the subplots
have a root-mean-squared height of 0.0358.
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C.1. VALIDATION OF THE TURBULENT FLOW SOLVER

In order to validate the new GPU-based DNS solver, a comparison was first performed
with respect to the channel flow with a grit-blasted surface simulated by (Busse et al., 2015;
Peeters & Sandham, 2019; Thakkar et al., 2018). This DNS case uses a friction Reynolds
number of Re; = 180 and a Prandtl number equal to unity. The grid size considered
was (Ny x Ny x N;) = (560 x 280 x 280) in each Cartesian direction, whereas the
domain size is (Ly x Ly x L;) =(5.63 x 2 x 2.815). These settings are equivalent to a
dimensionless grid size of Ax* = Az* = 1.81 in the streamwise and spanwise directions,
respectively. In the wall normal direction, a constant value of Ay* = 0.65 is kept near
the walls. The validation data is plotted in Figure C.1. Here, a comparison is performed
with respect to the DNS data of (Busse et al., 2015; Peeters & Sandham, 2019). As it can
be seen in the sub-plots, the new GPU-based DNS solver closely matches the turbulence
statistics reported, and the associated changes in the velocity (AU") and temperature
(AT) profiles.

To further validate the accuracy of our DNS solver, an additional DNS case was run
replicating the work of (Maall & Schumann, 1996). This case corresponds to a turbulent
flow past a wavy surface. The results of the benchmark can be found in Figure C.2.
Here, it can be observed that the velocity profiles near the wavy surface are extremely
close to the reference data. This is a strong validation of our implementation for the
immersed boundary method, since the DNS case of (MaaR & Schumann, 1996) operates
at a relatively low Reynolds number with effects like flow separation.
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Figure C.1: Comparison between the turbulence statistics for the new GPU-based DNS solver and existing
literature (Busse et al., 2015; Peeters & Sandham, 2019; Thakkar et al., 2018).
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Figure C.2: Validation of the GPU-accelerated solver with respect to the DNS case from (Maal§ & Schumann,
1996). Here, H is the height of the channel and A is the wavelength of the sinusoidal surface.

REFERENCES

Busse, A., Liitzner, M., & Sandham, N. D. (2015). Direct numerical simulation of turbulent
flow over a rough surface based on a surface scan. Computers & Fluids, 116, 129-147.
https://doi.org/https://doi.org/10.1016/j.compfluid.2015.04.008


https://doi.org/https://doi.org/10.1016/j.compfluid.2015.04.008

REFERENCES 143

Maal, C., & Schumann, U. (1996). Direct numerical simulation of separated turbulent
flow over a wavy boundary. In Flow simulation with high-performance computers ii:
Dfg priority research programme results 1993—-1995 (pp. 227-241). Vieweg+Teubner
Verlag. https://doi.org/10.1007/978-3-322-89849-4%5C_17

Peeters, J., & Sandham, N. (2019). Turbulent heat transfer in channels with irregular
roughness. International Journal of Heat and Mass Transfer, 138, 454-467. https:
//doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.013

Thakkar, M., Busse, A., & Sandham, N. (2018). Direct numerical simulation of turbu-
lent channel flow over a surrogate for nikuradse-type roughness. Journal of Fluid
Mechanics, 837. https://doi.org/10.1017/jfm.2017.873



https://doi.org/10.1007/978-3-322-89849-4%5C_17
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.013
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.013
https://doi.org/10.1017/jfm.2017.873




LIST OF PUBLICATIONS

JOURNAL PUBLICATIONS

1. R.Diez, ].JWR. Peeters and P. Costa, “A pencil-decomposed numerical algorithm for many-
GPU calculations of turbulent wall flows at high Reynolds number”. Computer Physics
Communications, vol. 316, pp. 109811, Nov 2025. (Chapter 2)

2. R.Diez, S. Smit, ].W.R. Peeters and R. Pecnik, “Machine learning for RANS turbulence model-
ing of variable property flows”. Computer & Fluids, vol. 255, pp. 105835, Apr 2023. (Chapter
3)

3. G. Otero, A. Patel, R. Diez and R. Pecnik, “Turbulence modelling for flows with strong varia-
tions in thermo-physical properties”. International Journal of Heat and Fluid Flow, vol. 73,
pp. 114-123, Oct 2018.

4. R.Diez, I. Akkerman and J.W.R. Peeters. “Machine learning for the prediction of the local skin
friction factors and Nusselt numbers in turbulent flows past rough surfaces”. International
Journal of Heat and Fluid Flow, special issue on 127 " International Symposium on Turbulence
and Shear Flow Phenomena (TSFP12), vol. 103, pp. 109204, Oct 2023. (Chapter 4)

5. R.Diez and J.W.R. Peeters, “Data-driven optimization of rough surfaces for convective heat
transfer enhancement”. International Journal of Heat and Mass Transfer, vol. 251, pp. 127313,
Nov 2025. (Chapter 5)

INTERNATIONAL CONFERENCE PRESENTATIONS

1. R.Diez, I. Akkerman and J.W.R. Peeters, “Machine learning for the prediction of the local skin
friction factors and Nusselt numbers in turbulent flows past rough surfaces”, full presentation,
in 12! International Symposium on Turbulence and Shear Flow Phenomena (TSFP12),
Osaka, Japan (Online), Jul 2022.

2. R.Diez, I. Akkerman and J.W.R. Peeters, “Data-driven optimization of rough surfaces for
convective heat transfer enhancement”, full presentation, in 18¢ h European Turbulence
Conference, Valencia, Spain, Sep 2023.

3. R.Diez, ].W.R. Peeters and P. Costa, “A pencil-decomposed numerical algorithm for many-
GPU calculations of turbulent wall flows at high Reynolds number”, full presentation, in
gth European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAYS), Lisbon, Portugal, Jun 2024.

145






	Summary
	Samenvatting
	Introduction
	Turbulent flows
	Machine learning
	Objectives
	Thesis outline

	Optimized DNS solver for extreme-scale calculations
	Introduction
	Methodology
	Governing equations and numerical discretization
	Numerical solution of the Poisson/Helmholtz equation
	Implementation

	Results
	Strong and weak scalability
	Breakdown of parallel performance

	Conclusions
	Acknowledgements

	Data-driven RANS Turbulence Models for Variable Property Flows
	Introduction
	Turbulence modelling
	Machine Learning

	Fully developed turbulent channel flows
	DNS database
	RANS equations

	Improved field inversion machine learning methodology for variable property turbulence
	Field inversion
	Neural networks
	Final framework
	Interpretation of machine learning results

	Field inversion results
	Machine learning predictions
	Conclusions

	Neural network for Turbulent Flows Past Rough Surfaces
	Introduction
	DNS Database
	Methodology for the DNS simulations
	Categories of rough surfaces
	Generation of rough surfaces with high slope in the streamwise direction
	Bulk flow properties and boundary layer parameters for the DNS database
	Wall force and heat flux interpolation

	Machine learning
	Neural networks and training procedure
	Smoothing procedure to combine the predictions of multiple neural networks

	Results
	Local predictions
	Global predictions

	Conclusions

	Optimization of Dimpled Surfaces for Heat Transfer Enhancement
	Introduction
	Methodology
	Geometrical variations
	Machine learning framework
	GPU-accelerated direct numerical simulations (DNS)
	Scalability analysis

	Results
	Optimization for dimples surfaces at Re=180
	Optimization for dimples surfaces at Re=395
	Discussion of results

	Conclusions

	Conclusions and Perspectives
	Acknowledgements
	Appendixes Chapter 2
	GPU implementation of Fourier-based transform
	Performance gains from direct x  z transposes with implicit 1D diffusion

	Appendixes Chapter 4
	Time and space complexity optimization
	Averaged flow quantities and surface metrics for the DNS database

	Appendixes Chapter 5
	Validation of the turbulent flow solver

	List of Publications

