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1

General introduction

Understanding how the human brain works is one of the biggest challenges of

the 21st century. This quest not only involves researchers in many scientific

fields, but also vast numbers of measurements on the brain. These meas-

urements have and will be done in animal models and in humans, both in a

healthy state and when things go wrong. At the moment, much research fo-

cuses on the morphology and electrophysiology of brain cells, to get a grasp of

the cellular interactions that lead to a working mind. In this thesis, however,

we focus on the molecular level of genes and their activation patterns in the

brain.

The activities of genes have been measured on post-mortem brains using

micro-arrays and RNA sequencing. Tissues for these studies have been ob-

tained from general or brain specific biobanks in the United States (Lonsdale

et al., 2013), Sweden (Sjöstedt et al., 2015) and the United Kingdom (Trabzuni

et al., 2011). However, some of the most comprehensive databases of gene ex-

pression in the brain have been made by the Allen Institute for Brain Science

in Seattle. In 2003 the Allen Institute set out to provide the world with

molecular data of the brain. They produced gene expression atlases: over-

views of anatomically and spatially labelled gene expression in the healthy

brain. The data is presented in a public data portal (www.brain-map.org),

and can be downloaded freely. The portal contains the genome-wide adult

mouse atlas, obtained with a high-resolution in situ hybridisation technique

(Lein et al., 2007). For a subset of 2000 genes, the same technique was ap-

plied to prenatal and postnatal mouse brains in seven stages of development

(Thompson et al., 2014). Although these data have been used to study human

brain function and disease (Vied et al., 2014), mouse brain anatomy strongly

7



8 CHAPTER 1. GENERAL INTRODUCTION

differs from that of humans. A more closely related model organism is the

rhesus macaque. The non-human primate atlas includes in situ hybridisation

data for subsets of genes and brain regions in the developing macaque brain

and it includes genome-wide expression measurements of dissected prefrontal

cortex, visual cortex, hippocampus, amygdala and striatum samples in the

same developmental stages (Bakken et al., 2016). Samples of human brains

are more difficult to obtain than those of mouse and macaque. Nevertheless,

the Allen Institute provides two human brain gene expression atlases. The

developmental human atlas contains measurements of 16 dissected regions in

42 brains ranging in age from 8 weeks post conception to 40 years after birth

(Miller et al., 2014). Finally, for the adult human brain the Allen Institute

provides genome-wide gene expression with a much higher spatial resolution

(Hawrylycz et al., 2012). This atlas contains data from 6 carefully screened

healthy brains from which in total 3702 samples were dissected. The exact

sampling differs per brain, but 105 anatomical regions were sampled at least

once in each of the brains.

The Allen brain atlases have been used to study transcriptional activities

in the healthy brain, for which they provide several types of information. In

the first place, they show where each gene is expressed, which can tell us about

the importance of individual genes for specific brain functions. Secondly, the

atlases provide spatial co-expression information. Genes that are expressed

together (are active in the same brain regions) may be involved in the same

processes. We will see in Chapter 3 of this thesis that groups of co-expressed

genes are often involved together in known biological pathways, have similar

molecular functions, or can be linked to specific cellular components or cell

types. In addition to the information about genes of interest, the gene expres-

sion atlases contain information about anatomical brain regions. Which genes

are active in a region is strongly indicative of the locations samples were taken

from, and anatomical similarities are reflected in transcriptional similarities

(Mahfouz et al., 2015). These observations can be explained at least partly

by the cell-type composition of brain regions (Grange et al., 2014), since gene

expression is highly cell-type specific (Darmanis et al., 2015).

The samples in the Allen atlases and many of the other databases were ob-

tained from healthy brains. However, that does not mean the data is of no use

for disease studies. The information about gene-gene similarities and region-

region similarities can be used to inform models on brain-disease data. Brain
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associated diseases such as Alzheimer’s disease (Gaiteri, Mostafavi, Honey, De

Jager & Bennett, 2016), migraine (Schu & Lrp, 2012), and several psychiatric

disorders (Consortium et al., 2013) have a high heritability. This means their

occurrence in human populations can be linked to genetic variation. The ge-

netic variants associated with complex diseases are often located in regulatory

elements that impact gene expression (Roadmap Epigenomics Consortium et

al., 2015). Both gene expression (Lonsdale et al., 2013) and regulatory ele-

ments can be highly tissue-specific (Roadmap Epigenomics Consortium et al.,

2015). As a result, we pose that gene-gene similarities and region-region sim-

ilarities obtained from brain specific gene expression data provides valuable

information for genetic studies in brain specific diseases. So we arrive at an

over-arching topic of this thesis: how to improve brain disease studies with

prior knowledge about gene expression in the healthy brain.

1.1 Data types

A common goal in disease studies is to find genetic variations that have an

effect on some outcome (a phenotype). These studies started in the 19th

century, when the general principals of inheritance were described by Gregor

Mendel (Abbott & Fairbanks, 2016). Ronald Fisher and his contemporar-

ies combined the ideas about inheritance with statistical models to start the

field of population genetics (R. A. Fisher, 1932), in which genetic variation

is mathematically linked to variation in phenotypes on a population level.

Thomas Hunt Morgan’s research on linkage led to the first studies that linked

phenotypic variation to specific parts of chromosomes (Morgan, Sturtevant,

Muller & Bridges, 1915), and after the discovery of the structure of DNA it

was understood how changes in DNA can impact cells through transcription

into RNA and translation into protein. After the advent of sequencing in the

1970’s and the completion of the human genome in 2004 (International Hu-

man Genome Sequencing Consortium, 2004), phenotypic variation could be

linked to variation in specific nucleotides in the chromosome. In genome wide

association studies (GWAS) variants across the full genome are screened for

these associations. However, observing the association between genetic vari-

ation and a phenotype is not enough to understand the molecular causes of

this phenotype. To get some understanding, variations are often linked to

genes, and these genes to functions. Now, if we return to our topic of brain
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disease, we can see how spatial gene expression data can help us in that last

step. Genome wide expression in the brain can inform us about gene function

in the brain.

We have not yet addressed the nature of the phenotypes. These can be

a simple label (disease vs. healthy) as in Chapter 2, but also a quantitat-

ive measurement like body height. A relevant type of measurement in brain

disease is obtained by brain imaging techniques such as magnetic resonance

imaging (MRI). A structural MR scan produces a three-dimensional image

reflecting mainly the ratio between fat and water content across the brain tis-

sue. By anatomically labelling structures in these images (segmentation) we

can derive relevant measurements, for instance the volumes of specific brain

regions. Linking such imaging features to genetic variation is the topic of

the field of imaging genetics. In many ways, imaging genetics is no different

from other genetic research, but it presents the issue of a high-dimensional

outcome (instead of a single measurement). These studies have to deal not

only with many genetic features, but also a large number of imaging features.

In Chapters 4 and 5, we will deal with this challenge. To do this, we again

make use of the gene expression data in the healthy brain, specifically the

region-region similarity information that this data provides.

1.2 Methods

Now we have considered the type of data we have at out disposal, we will focus

on methodological considerations. Modern molecular technology can provide

genetic variation data for the whole genome, with several million variants

measured in a regular GWAS. In a common association testing scheme, each

of these variants is tested for association with a phenotype. As is often the case

in empirical research, we perform our analyses on a sample of individuals and

generalise our results to the population. Due to the randomness this introduces

in the results of the analyses, performing a large number of tests can yield a

large number of false positive test outcomes. This should be prevented using a

(multiple testing) correction procedure. Commonly used corrections (Goeman

& Solari, 2014) reduce the number of false positives, but they make it hard to

find variants of interest.

One way to deal with the challenges that come with multiple testing cor-

rection, is to increase the sample size. However, this can be expensive or
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practically impossible, as it would be for very rare diseases. A statistical solu-

tion to the problem is to use prior knowledge. In the most simple way, we can

restrict the number of variations we consider to a candidate set. In Chapter 2

we use the spatial gene expression data of the brain to identify these candidate

genes (in local co-expression networks), and in Chapter 4 we use external as-

sociation study results to narrow down the set of variants that are considered.

An alternative approach to reduce the testing burden, is to group variants

first, and then look for groups of interest. In a second method of Chapter 2

we split up the genome in modules of genes with a similar expression in the

healthy brain and try to find modules that are enriched in phenotype associ-

ated variants. Chapter 5 is similar in that respect, but here the modules of

genes are not considered fixed, but are sampled from a distribution. In these

examples, prior knowledge about gene expression in the brain is incorporated

in the methodology.

Most of the data analyses presented in this thesis combine data of different

types, such as gene expression measurements and genetic variations. This

means our methods are examples of data integration techniques. There are

several ways to integrate variation and expression data, and to relate both

to phenotypic traits (Gusev et al., 2016). In many applications the different

types of data can be integrated either by a simple concatenation, by first

performing some transformation and then concatenating, or combing them

directly in a model (Kim, 2015). However, for these approaches to work, the

measurements have to be obtained from the same individuals. We use gene

expression measurements of a small number of healthy individuals to inform

models on a disease study population, as illustrated in Chapters 2, 4 and

5. The approaches in these chapters therefore use the expression data on the

healthy individuals to calculate gene-gene and region-region similarities, which

are used as an input to the models fitted on the disease population data.

The explosion in data availability in molecular biology has led to an in-

crease in data driven research (Wang, Zhang & Chen, 2018). Data driven

research is exploratory, and can be contrasted with more traditional hypo-

thesis driven confirmatory research. A hypothesis driven study starts with a

specific hypothesis about a process, and is followed by data collection to test

it. But molecular techniques now allow for collecting data on variations in

the whole genome, or on the activity of all genes. A GWAS is somewhat ex-

ploratory by definition, since it tries to answer the question what could cause
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a phenotype. It could be considered a search for a suitable hypothesis or,

alternatively, a test of a very large set of hypotheses simultaneously. If we

consider it a search for a hypothesis, this means a (hypothesis driven) valid-

ation experiment is needed. If we consider a GWAS to be a test of a large

set of hypotheses, we return to the issue of the multiple testing problem. If

we report all statistically significant results without any correction, many of

those will be false positives. A wide range of correction methods is used to

solve this (Goeman & Solari, 2014).

Both for exploratory and more hypothesis driven research two distinct

statistical paradigms are available. The most common one uses frequentist

inference. In frequentist inference, data is commonly considered to be a result

of a random process, while this underlying process is considered fixed. A

frequentist test makes use of a precisely specified (parametrised) model for this

process. Now, if the observed data is not in line with the proposed hypothesis,

this hypothesis can be rejected. The somewhat philosophical basis for this

is the idea that a hypothesis is either false or true, and the process that it

describes will in the long run give data that follows the probability distribution

of this process. Chapters 2, 3 and 4 contain frequentist tests. The second

paradigm is based on Bayesian inference. Bayesian inference results from

a different view of probability, which is often termed subjective. The idea

is that we usually do not want to make statements about a frequency with

which something occurs, but rather about our belief in a hypothesis. We have

ideas about the truth and use data to adjust those beliefs. As a result, we can

talk about probabilities for hypotheses, by attaching probability distributions

to model parameters. To calculate these probabilities in the data analysis,

one needs to define what they were before the data was observed: the prior

probabilities. Often prior distributions for the parameters are picked to be

uninformative (Gelman, 2008). However, we can also make use of this property

of Bayesian inference by incorporating information from external data into

our models. In Chapter 5 we use the gene expression data of the healthy

human brain to define a prior distribution for an imaging genetics model for

schizophrenia.

Regardless of the type of research and statistical testing, to understand

data we need to visualise it. In the simplest form, this can be done by making

scatter plots of continuous measurements or boxplots of variables measured in

groups of samples. Each of the studies that form a part of this thesis makes
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use of these simple data visualisations, but Chapter 3 is all about visualisa-

tion. The gene expression data of the Allen Brain Atlas contains a wealth of

information that is used in each chapter of the thesis. We saw a need to get a

visual overview of this data. Our visualisation has helped us to quickly answer

small questions in our research and will hopefully spawn new hypotheses for

other researchers.

Throughout the chapters of this thesis, we look at brain disease data, and

try to go beyond the initial data analysis. By using measurements of gene

expression across the healthy human brain, we extend the data interpretation

to coherent groups of genes and brain regions of interest. And, in this process,

we explore methodology for data integration and face the challenges in multiple

testing correction.
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Gene co-expression analysis identifies brain regions and cell types

involved in migraine pathophysiology: a GWAS-based study

using the Allen Human Brain Atlas

Abstract

Migraine is a common disabling neurovascular brain disorder

typically characterised by attacks of severe headache and associated

with autonomic and neurological symptoms. Migraine is caused by an

interplay of genetic and environmental factors. Genome-wide

association studies (GWAS) have identified over a dozen genetic loci

associated with migraine. Here, we integrated migraine GWAS data

with high-resolution spatial gene expression data of normal adult

brains from the Allen Human Brain Atlas to identify specific brain

regions and molecular pathways that are possibly involved in migraine

pathophysiology. To this end, we used two complementary methods.

In GWAS data from 23,285 migraine cases and 95,425 controls, we first

studied modules of co-expressed genes that were calculated based on

human brain expression data for enrichment of genes that showed

association with migraine. Enrichment of a migraine GWAS signal was

found for five modules that suggest involvement in migraine

pathophysiology of: i) neurotransmission, protein catabolism and

mitochondria in the cortex; ii) transcription regulation in the cortex

and cerebellum; and iii) oligodendrocytes and mitochondria in

This chapter has been published as: Eising, E., Huisman, S. M. H., Mahfouz, A.,
Vijfhuizen, L. S., Anttila, V., Winsvold, B. S., . . . Reinders, M. J. T. (2016). Gene
co-expression analysis identifies brain regions and cell types involved in migraine patho-
physiology: a GWAS-based study using the Allen Human Brain Atlas. Human Genetics,
135 (4), 425–439. https://doi.org/10.1007/s00439-016-1638-x

All supplemental materials can be found in the online publication.
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16 CHAPTER 2. GENE CO-EXPRESSION ANALYSIS IN MIGRAINE

subcortical areas. Second, we used the high-confidence genes from the

migraine GWAS as a basis to construct local migraine-related

co-expression gene networks. Signatures of all brain regions and

pathways that were prominent in the first method also surfaced in the

second method, thus providing support that these brain regions and

pathways are indeed involved in migraine pathophysiology.

2.1 Introduction

Migraine is a common neurovascular brain disorder characterised by attacks of

severe, unilateral headache, often accompanied by nausea and phono- and pho-

tophobia (Headache Classification Committee of the International Headache

Society (IHS), 2013). Two main migraine types are distinguished based on the

presence or absence of an aura, which consists of transient neurologic symp-

toms including visual and sensory disturbances that can precede attacks in up

to one-third of patients. Migraine is a complex genetic disorder with an estim-

ated heritability of approximately 50% (Mulder et al., 2003) and thought to

be caused by an interplay of multiple genetic variants, each with a small effect

size, and environmental factors. Numerous candidate gene association studies

have been performed for migraine, however, their value turned out rather low

as none could be replicated in a large genome-wide marker dataset of thou-

sands of migraine patients and controls (de Vries et al., 2016). Genome-wide

association studies (GWAS) investigating the common forms of migraine have

identified 13 disease susceptibility loci (Anttila et al., 2010, 2013; Chasman et

al., 2011; Freilinger et al., 2012). These loci identified genes that are involved in

glutamatergic neurotransmission (MTDH, LRP1, MEF2D), neuron and syn-

apse development (MEF2D, ASTN2, PRDM16, FHL5, PHACTR1, TGFBR2

and MMP16 ), brain vasculature (PHACTR1, TGFBR2, C7orf10 ), extracel-

lular matrix (MMP16, TSPAN2, AJAP1 ), and pain-sensing (TRPM8). These

findings support knowledge that came from investigating disease mechanisms

in monogenic migraine-related disorders including familial hemiplegic migraine

(FHM ), a monogenic subtype of migraine with aura (Ferrari, Klever, Ter-

windt, Ayata & van den Maagdenberg, 2015; Tolner et al., 2015). Notably,

transgenic knock-in (KI) mouse models that express human pathogenic FHM1

(A. M. van den Maagdenberg et al., 2004; A. M. J. M. van den Maagdenberg

et al., 2010) or FHM2 (Leo et al., 2011) mutations revealed increased suscept-
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ibility for experimentally induced cortical spreading depression (CSD), the

electrophysiological correlate of the migraine aura (Lauritzen, 1994), which

could be directly linked to increased cortical glutamatergic neurotransmis-

sion in FHM1 KI mice (Tottene et al., 2009). Other monogenic disorders in

which migraine is prevalent are cerebral autosomal dominant arteriopathy with

subcortical infarcts and leukoencephalopathy (CADASIL) and retinal vascu-

lopathy with cerebral leukodystrophy (RVCL) that indicate a role for dysfunc-

tion of the brain vasculature in migraine (Tolner et al., 2015). Migraine genes

identified by GWAS are primarily identified based on their location near top

hits, so true causality of (at least some of) them remains uncertain, which is not

different from other disorders. Furthermore, current GWAS top hits explain

only a small part of the disease heritability, and, therefore, genes identified in

this way reflect only a fraction of the pathways conferring genetic disease risk.

Hence, pathway analysis methods that harvest a larger portion of the GWAS

data (i.e. not only loci with significant P-values) may give more valuable in-

sight into disease genetics, as has been tried for other diseases (Atias, Istrail

& Sharan, 2013; Sun, 2012).

Commonly used tools to explore disease-associated pathways in GWAS

data make use of functional enrichments (MAGENTA Gene Set Enrichment

Analysis (Segrè, Groop, Mootha, Daly & Altshuler, 2010)), protein interac-

tions (DAPPLE (Rossin et al., 2011)) or text-mining (GRAIL (Raychaudhuri

et al., 2009)), but did not successfully identify overrepresented molecular path-

ways involved in migraine (Anttila et al., 2013). One explanation why it may

be difficult to confidently identify disease pathways from GWAS data is that

loci often contain multiple genes, of which only (one or) a subset might in-

fluence the trait of interest. Moreover, each of these genes can be expressed

in multiple cell types and may have different functions in each of them. We

envisaged that gene expression data can be used to preselect genes for func-

tional analysis based on their expression in disease-relevant tissues, thereby

increasing the chance of identifying disease-relevant genes and pathways. In

addition, gene co-expression analysis can be used to identify genes with a sim-

ilar expression patterns. Previous studies have shown that gene co-expression

can infer a wide range of meaningful biological information, e.g. shared gene

functions, biological pathways or cell type-specific expression (Grange et al.,

2014; Hawrylycz et al., 2012; Kang et al., 2011).

Gene co-expression analysis has been applied successfully to identify disease



18 CHAPTER 2. GENE CO-EXPRESSION ANALYSIS IN MIGRAINE

mechanisms from GWAS or other genomics data for other disorders, including

allergic rhinitis and autism spectrum disorder (Ben-David & Shifman, 2012;

Bunyavanich et al., 2014; Parikshak et al., 2013; Willsey et al., 2013). Ad-

mittedly, these studies benefited from having available gene expression data

obtained under disease-specific conditions (Bunyavanich et al., 2014) or the use

of causal genetic variants with large effect sizes (Ben-David & Shifman, 2012;

Parikshak et al., 2013; Willsey et al., 2013). For migraine, no gene expression

data from disease-conditions are available. A few gene expression profiling

studies have been carried out for migraine, i.e. in whole blood of episodic and

chronic migraine patients (A. D. Hershey et al., 2004) and menstrual migraine

patients (A. Hershey, Horn, Kabbouche, O’Brien & Powers, 2012), in immor-

talized cell lines of migraine with aura patients (Nagata et al., 2009), and in

brain material of transgenic KI FHM1 mice (de Vries et al., 2014), but no

overlapping deregulated genes or pathways have been identified. Nor is there

a large set of causal genes, except for three genes (CACNA1A, ATP1A2 and

SCN1A) (De Fusco et al., 2003; Dichgans et al., 2005; Ophoff et al., 1996)

that have been identified for FHM, that can guide gene identification efforts

in the common forms of migraine. Therefore, we focused our analyses on gene

expression data from the normal human brain.

Here we used two complementary methods to connect gene expression data

from adult human brain, the most relevant tissue for migraine, with GWAS

data in order to identify migraine-related pathways. To this end, spatially-

mapped gene expression data of the adult human brain, obtained from the

Allen Human Brain Atlas (Hawrylycz et al., 2012), was used to calculate

brain-specific co-expression levels between genes. We used GWAS data, avail-

able through the International Headache Genetics Consortium, of 23,285 mi-

graine cases and 95,425 population-matched controls (Anttila et al., 2013) to

calculate gene-based associations with migraine. This enabled the inclusion of

below-threshold association signals that did not reach genome-wide signific-

ance (P-value < 5 · 10−8) due to lack of power (Gibson, 2012; Mooney, Nigg,

McWeeney & Wilmot, 2014). For our first method, we grouped all genes into

co-expression modules and studied the enrichment of genes with nominally sig-

nificant gene-based associations with migraine in the different modules. For

our second method, we constructed local co-expression networks around ‘high-

confidence genes’ (i.e. those genes with gene-based P-values that survived

multiple testing correction) that we combined into a local migraine-related
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co-expression gene network. By studying the modules enriched for migraine-

associated genes (method 1) and the local migraine-related co-expression gene

networks (method 2), we identified multiple brain regions, cell types and path-

ways overlapping between the two methods that are possibly involved in mi-

graine pathophysiology.

2.2 Results

2.2.1 Spatial co-expression network of the adult human

brain

To identify brain regions and pathways involved in migraine pathophysiology,

we performed co-expression network analysis using spatial gene expression

information of the Allen Human Brain Atlas (Hawrylycz et al., 2012). We

focused on the adult human brain transcriptome, since migraine is a brain-

related disorder that affects mostly the adult population. Microarray data

were available from six healthy adult human brains; five males and one fe-

male, aged 24 to 57 with a mean age of 42 years, each dissected into 363 to

946 samples (3,702 in total) from well-defined brain regions. We used the gene

expression data of 29,374 microarray probes that could be mapped unambigu-

ously to 19,972 genes. Gene co-expression levels were calculated separately

for each brain (across the samples), and subsequently averaged (per gene) to

obtain a single spatial co-expression network not affected by individual brain

differences (see Material and Methods). Note that these levels, therefore, re-

flect brain-wide spatial co-expression. Differences in expression values between

the female brain and five male brains were not more pronounced than the dif-

ferences between any of the male brains and all other brains (see Supplemental

Materials and Methods; Figure S1), justifying the unbalanced gender compos-

ition of the Allen Brain Atlas for our analyses. In fact a recent publication by

(Hawrylycz, Sunkin & Ng, 2015) showed that functionally relevant genes seem

to have a stable expression across the six donors. Using hierarchical clustering

analysis, we identified 18 modules in the spatial brain-wide co-expression net-

work, with module sizes varying from 179 to 2,007 genes (Figure 2.1). Each

module thus contains genes that have similar expression patterns across the

different brain samples. Clustering the gene expression data can be done in

various ways (see Supplemental Material and Methods). The final clustering
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tree showed strongest enrichment for migraine genes. Modules enriched for

migraine genes are further investigated for these spatial patterns across brain

regions and for functional enrichments of the migraine genes.

2.2.2 Genes associated with migraine

We used summary statistics data from the GWAS meta-analysis for migraine

(Anttila et al., 2013) performed by the International Headache Genetics Con-

sortium to calculate gene-based P-values for the association with migraine.

The 2,116 genes with nominal gene-based P-values below 0.05 were considered

to have a potential link to migraine and are therefore referred to as mi-

graine ‘candidate genes’. The 14 genome-wide significant genes, with multiple

testing corrected gene-based P-values below 0.05, are referred to as ‘high-

confidence genes’. The high-confidence gene set contained 10 genes located at

or near genome-wide significant GWAS loci: ASTN2, C7orf10, FHL5, MEF2D,

TRPM8, LRP1, STAT6, NAB2, PRDM16 and UFL1 (Anttila et al., 2013).

LRP1, STAT6 and NAB2 at chromosome 12q13 share the same genome-wide

significant SNP, and the top SNPs for FHL5 and UFL1 at chromosome 6q16

are in strong linkage disequilibrium (LD). The remaining high-confidence genes

LEPROTL1, DCLRE1C, SUV39H2, and MBOAT4 are located near SNPs

that did not reach the level of genome-wide significance in the migraine GWAS,

and gain from a reduced multiple testing burden in our gene-based analysis

compared to a SNP-based analysis. GWAS hits MTDH, PHACTR1, TGFBR2,

MMP16, TSPAN2 and AJAP1 did not reach a multiple testing corrected gene-

based P-value below 0.05, possibly due to a larger distance between the GWAS

locus and the gene, and were therefore not designated as high-confidence gene.

2.2.3 Migraine-associated loci converge into five

co-expression modules

We performed an enrichment analysis of the 2,116 migraine candidate genes in

the 18 co-expression modules to identify the modules that have the strongest

link with migraine. Five modules labelled A to E showed enrichment of can-

didate genes in a Fisher exact test (P < 0.05) (Figure 2.1; Table S1). To

verify that the identified enrichments were not the result of bias in the Fisher

exact test introduced by LD between SNPs in the GWAS data and by SNPs
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assigned to multiple genes, we performed a second, LD-corrected Fisher exact

test. These results confirm the association of modules A – E with migraine

(Table S1).

Module A showed the highest enrichment of migraine candidate genes (en-

richment P = 9.44 · 10−4, LD-corrected enrichment P = 5.47 · 10−4) and con-

tains 1,556 genes with high expression in cerebral cortex, very low expression

in cerebellum, and low expression in hippocampal formation and subcortical

cerebrum (Figure 2.2). Module B (enrichment P = 0.015, LD-corrected en-

richment P = 7.18 · 10−3) consists of 1,595 genes with high expression in cere-

bellum, low expression in subcortical regions and an intermediate expression

in cerebral cortex (Figure 2.2). Module C (enrichment P = 0.02, LD-corrected

enrichment P = 7.77 · 10−3) contains only 497 genes. Genes from module C

have an expression pattern similar to that of module A with higher expression

in hippocampal formation and claustrum (Figure 2.2). Module D (enrichment

P = 0.024, LD-corrected enrichment P = 5.82 · 10−3) is the largest module

with 1,984 genes that are preferentially expressed in subcortical regions and

the white matter, with low expression in cerebellar and cerebral cortex (Fig-

ure 2.2). Module E (enrichment P = 0.03, LD-corrected enrichment P = 0.04)

contains only 179 genes with high expression in cerebellar cortex, pons and

hypothalamus (Figure 2.2).

2.2.4 Migraine-associated modules show enrichment of

functions involved in neurotransmission,

mitochondria, gene expression regulation and

oligodendrocytes

Next, we performed a functional enrichment analysis of modules A – E to

identify gene functions associated with migraine pathophysiology (Figure 2.2;

Tables S2-S5). We studied pathways from KEGG, Reactome and PANTHER,

and gene ontology (GO) terms from PANTHER and the GO FAT database us-

ing the Functional Annotation Clustering tool in DAVID. GO term and path-

way groups were considered significant when Benjamini-corrected P-value was

below 0.05 (reflected in an EASE score of 1.3 or higher). Functions enriched

in module A included energy metabolism, protein catabolism and synaptic

functions (Table S2). Genes in module B showed enrichment of multiple func-

tions all involved in gene expression regulation (Table S3). Module C contains
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a large set of genes involved in purine nucleotide binding, and also showed

enrichment for several brain developmental and synaptic functions (Table S4).

Genes in module D showed highest enrichment of functions involving energy

supply, apoptosis and myelination (Table S5). Module E did not show any sig-

nificant functional enrichments. Most enriched functions are module-specific;

of modules A-D only module C shares most of its enriched functions with other

modules (A, L and P) (Figure S2).

2.2.5 Enrichment of oligodendrocytic and neuronal genes in

migraine-associated modules

Expression patterns in the brain are co-determined by cell type composition

(Grange et al., 2014; Hawrylycz et al., 2012). Consequently, we expected

to find enrichment of cell type-specific genes in the co-expression modules

(Figure 2.1). Notably, modules A and C showed significant enrichment of

genes specifically expressed in neurons (119 genes, P = 8.00 · 10−15; 40 genes

P = 3.12 · 10−6, respectively), which is in line with the preferential expression

in cerebral cortex of genes in this module and the enrichment for synaptic

functions. Module D is significantly enriched for oligodendrocyte-specific genes

(103 genes, P = 1.37·10−55), and also showed enrichment for genes specifically

expressed in microglia and endothelial cells. This finding seems well in line

with the observed high expression in white matter of genes in this module

and the enrichment of several functions related to myelination. Module E is

enriched for neuron-specific genes (18 genes, P = 1.09 · 10−4). Module B did

not show enrichment of cell type-specific genes.

2.2.6 Confirmation of the association of modules A – D

with migraine using a local seed network

The association of modules A – E with migraine may be the result of low

migraine association signals, and may therefore not have a direct link to the

genome-wide significant GWAS loci, as only module B (LRP1 ) and mod-

ule D (UFL1 ) contain a high-confidence gene (Figure 2.1). To leverage the

information in the high-confidence genes, we used them as seeds for a local co-

expression network. The local co-expression network therefore contains only

the high-confidence genes and their co-expression partners (Figure 2.3).
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Figure 2.1: (A) Heat map of the clustered gene expression data, with the 3,702 con-

catenated human brain samples in columns and the 19,972 genes in rows, ordered

according to their clustering. The brain samples are ordered based on their location

in the brain, which is noted above the heat map and illustrated with the colour cod-

ing from the Allen Brain Institute below the heat map. The colour coding is also

illustrated in the three coronal brain sections below the heat map (for brain region

names in the coronal sections, see Figure S3). Low expression is shown as blue, high

expression is shown as red. The genes are clustered into 18 modules, here separated

by white rows. (B) Log-transformed gene-based P-values for the association with mi-

graine are shown for all genes with: 1) genes with P-values below 0.05 in the colour

corresponding to modules A – E or in grey for the other modules; 2) migraine candid-

ate genes in black; and 3) high-confidence genes circled and named. Gene modules

A – E are the five modules enriched for candidate genes. (C) the table shows the

enrichment of cell type-specific genes in the 18 modules from white (P-value > 0.05)

to black (P-value < 10−7).
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Figure 2.2: Average gene expression levels are shown for each module from blue (low)

to red (high) in the different brain regions represented in the three coronal brain

sections (for brain region names in the coronal sections, see Figure S3). Regions

that lack gene expression information are depicted in grey. The lists on the right

show: 1) the numbers of genes and migraine candidate genes; 2) the P-values for the

enrichment of migraine candidate genes; and 3) the top 5 enriched functions in each

module, as identified using the Functional Annotation Clustering tool in DAVID,

with their corresponding EASE score. The EASE score is the geometric mean of the

Benjamini-corrected negative log (base 10) P-values of its pathways and GO terms, so

a score above 1.3 corresponds to a Benjamini-corrected P-value below 0.05. Module

E has no significant functional enrichments.
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Figure 2.3: (Previous page) (top) The network consists of the high-confidence genes

and their co-expression partners that are connected if they have a co-expression value

> 0.6. Each gene is shown as a circle and named with its gene name, with the size of

both corresponding to its gene-based P-value (larger size corresponding to a lower P-

value). The colours of the circles correspond to those of modules A – E in Figure 2.1:

blue for module A, yellow for module B, green for module C, red for module D, purple

for module E and grey for all other modules. The edge colours are matched to (a

mixture of) the colours of the connecting genes. (bottom) For each high-confidence

gene and its co-expressing partners are shown: 1) the number of genes in the local

co-expression network around the high-confidence gene; 2) the average brain gene

expression level from blue (low expression) to red (high expression) mapped in the

three coronal brain sections (for brain region names in the coronal sections, see Figure

S3); 3) the enrichment of cell type-specific genes in the table from white (P-value

> 0.05) to black (P-value < 10−7); and 4) the top five enriched gene functions. Not

shown are boxes for high-confidence genes TRPM8, SUV39H2 and FHL5 because

these genes have no or only few co-expressed genes. Ne: neuron; As: astrocyte; Ol:

Oligodendrocyte; Mi: microglia; En: endothelial cell.

The most highly connected high-confidence gene is STAT6, which has

strong co-expression with genes from module A (connections marked in blue

in Figure 2.3) and two genes from module C (connections marked in green),

but is not part of either of these modules. Genes DCLRE1C and LRP1 lie

in a sub-network containing genes from module B (connections marked in yel-

low). LEPROTL1 and UFL1 are directly connected to genes from module

D (marked in red). SUV39H2 and TRPM8 have no strongly co-expressed

genes in the Allen Human Brain Atlas and remain unconnected. MBOAT4

lies in a disconnected sub-network. The remaining 6 high-confidence genes are

indirectly connected to the genes of modules A – D. The smallest module of

interest, module E, has no genes in the local seed network.

2.2.7 Local seed network shows enrichment of functions and

cell types similar to modules A – D

We performed a functional enrichment analysis in the local seed network,

thereby focussing on each high-confidence gene and its co-expressing part-

ners (Figure 2.3; Table S6). Briefly, a local network for each high-confidence

gene was constructed by connecting it to genes with which it has a spatial

gene co-expression larger than 0.6. The network around STAT6, C7orf10 and
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MBOAT4 showed enrichment of functions involved in the synapse and signal

transduction. The network around LEPROTL1 showed enrichment of mito-

chondrial genes. Functions involved in gene expression regulation were found

in the networks around DCLRE1C, LRP1 and UFL1. Other enriched func-

tions were “circadian rhythm” (NAB2 network), “apoptosis” (UFL1 network),

and “protein catabolism” (LEPROTL1 network).

Finally, we investigated the enrichment of brain cell type-specific genes

in the local seed network (Figure 2.3; Table S7). The co-expression network

around STAT6, that shares many genes with module A, is highly enriched

for neuron-specific genes (P = 4.37 · 10−32), as is the network around NAB2

(P = 2.50 · 10−4). The sub-network connected to UFL1, overlapping with

module D, contains many oligodendrocyte-specific genes (P = 1.26 · 10−8).

The sub-networks connected to PRDM16 and to C7orf10 are enriched for

astrocyte-specific genes (P = 3.82 · 10−7 and 4.34 · 10−10, respectively).

2.3 Discussion

We performed a gene-based analysis of migraine GWAS data from a large

meta-analysis of in total 23,285 migraine cases and 95,425 population-matched

controls available through the International Headache Genetics Consortium

(Anttila et al., 2013) aimed at identifying brain regions, cell types and path-

ways involved in migraine pathophysiology. To this end, we used detailed spa-

tial brain gene expression data from 3,702 samples of six normal adult human

brains from the Allen Human Brain Atlas to group genes into co-expression

modules. We identified five modules enriched for migraine-associated genes

that show involvement in cortical neurotransmission, protein catabolism and

energy supply (Modules A and C); in gene transcription regulation in cortex

and cerebellum (Module B); and in myelination and energy supply in subcor-

tical areas (Module D) (Figure 2.4).

The lack of causal variants with large effect sizes for common migraine

may explain, at least partly, the low enrichments of candidate genes in the

co-expression modules. The conversion of the migraine GWAS data to the

gene-based P-values may have caused inaccuracies as we may have associated

SNPs to genes just because they are nearby these genes, although they may

not have a functional effect on them; and, similarly, we may not have asso-

ciated SNPs to genes simply because we considered them too far away to be
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Figure 2.4: The migraine-associated modules A – D, which also overlap with the local

migraine-related co-expression gene network, point to three distinct locations in the

brain: the cortex (modules A, B and C), the cerebellum (module B) and the white

matter and subcortical regions including the thalamus (module D), and multiple gene

functions or cell types. Several brain regions overlap between the migraine-associated

modules and the trigeminovascular system that is thought to generate the migraine

headache. This system consists of trigeminal afferents that innervate the blood vessels

in the meninges, whose signals are transmitted through the trigeminal ganglion (TG),

the trigeminal nucleus caudalis (TNC), and the thalamus to the cortex where they

can produce the sensation of pain.

functionally involved. To reduce these limitations we chose a 15-kb boundary

around the genes, as it was shown that most SNPs that affect gene expression

are located within this boundary (Pickrell et al., 2010). However, currently, no

methods are available to calculate gene-based P-values that can fully surmount

these limitations. To increase the reliability of our results, we used the largest

migraine GWAS dataset currently available (Anttila et al., 2013). Further-

more, we used a second method to confirm the link between migraine and the
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brain regions and gene functions identified by building a migraine-related co-

expression gene network around the high-confidence migraine genes. Although

the enrichment of migraine associated genes in the modules cannot proof that

these brain regions, cells and pathways are dysfunctional in migraine patients,

it can provide genetic evidence for processes already implicated in migraine,

and may indicate new areas of interest for migraine research.

Two modules enriched for migraine-associated genes contained genes highly

expressed in cortex that are largely involved in neurotransmission and that

are highly enriched for neuron-specific genes (Modules A and C). Further-

more, module A contains many components of the glutamatergic system (GLS,

GRIK3, GRIN2A and GRM7 ). The cell type enrichments in the modules were

based on gene expression data from isolated mouse brain cells (Y. Zhang et

al., 2014). Similar data from mouse studies have been used previously for

characterization of human brain co-expression modules (Hawrylycz, Miller et

al., 2015). These results confirm the link between cortical neurotransmission

and migraine that had previously been identified in genetic studies in FHM

(Ferrari et al., 2015). Several genes (MTDH, LRP1, MEF2D) identified by

GWAS hits for common migraine could also be linked to glutamate signalling

(Tolner et al., 2015), although these genes are not part of modules A or C.

The enrichment of genes involved in mitochondria in modules A and D form

the first genetic link between mitochondrial function and common migraine.

As neurotransmission requires a large amount of energy, it is not surprising

that mitochondrial deficiencies have been implicated in a wide range of neur-

ological disorders, including migraine (Sparaco, Feleppa, Lipton, Rapoport &

Bigal, 2006). In migraine patients, magnetic resonance spectroscopy studies

have consistently identified a depletion of brain high-energy phosphates, in-

dicative of a disturbed energy metabolism (Reyngoudt, Achten & Paemeleire,

2012). Impaired mitochondrial activity has also been found in muscle and

platelets of migraine patients (Reyngoudt et al., 2012; Sangiorgi et al., 1994).

Also the efficacy of riboflavin and coenzyme Q10, two enhancers of mito-

chondrial function, in migraine prophylaxis in two small clinical trials points

towards a possible causal role for mitochondria in migraine (Sandor et al.,

2005; Schoenen, Jacquy & Lenaerts, 1998).

Module B shows high expression in cerebellum and medium expression in

cortex, and is highly enriched for genes involved in aspects of gene expression

regulation (i.e. transcription factors, chromatin remodellers, RNA processing).
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Migraine pathophysiology has already been associated with actions of a spe-

cific set of transcription factors, i.e. female hormone receptors and receptors

for the stress hormone cortisol (MacGregor, 2004; Sauro & Becker, 2009). Al-

though the stress hormone receptor gene NR3C1 is a member of module B, the

other stress hormone receptor gene NR3C2 and the female hormone receptor

genes ESR1, ESR2, RXFP1, RXFP2 and PGR are members of modules F,

N, M, P, R and H, respectively. These transcription factors can thus not ex-

plain the association of module B with migraine. As to the high expression

in the cerebellum, there are several lines of evidence that indicate a role for

the cerebellum in migraine. (Subclinical) cerebellar abnormalities have been

recognised in migraine patients, including lack of fine coordination (Sándor,

Mascia, Seidel, De Pasqua & Schoenen, 2001) and vestibulocerebellar problems

(Harno et al., 2003). Furthermore, studies using magnetic resonance imaging

(MRI) identified cerebellar infarcts (Kruit, 2004) and microstructural cere-

bellar abnormalities (Granziera et al., 2014) in migraine patients. Cerebellar

mechanisms causative of migraine are not known, but may possibly include

signalling cascades that regulate gene expression as identified in module B.

Module D contains genes highly expressed in several subcortical brain re-

gions and in the white matter and is enriched for gene functions involving

myelin formation and genes specifically expressed in oligodendrocytes. Oligo-

dendrocytes play key roles in the formation of axons and neuronal connections

(Debanne, Campanac, Bialowas, Carlier & Alcaraz, 2011), and can also act-

ively communicate with neurons in order to regulate their activity (Butt, Fern

& Matute, 2014; Fields, 2008; Stys, 2011). The genes from module D are

expressed in multiple brain regions that are implicated in the processing of

migraine pain signalling: the trigeminovascular pathway (Noseda & Burstein,

2013)(Noseda and Burstein 2013). This pathway transmits nociceptive signals

from meninges to thalamus and higher brain areas via several brainstem nuclei,

including the trigeminal nucleus caudalis (TNC), (Figure 2.4). A recent study

identified disrupted myelin sheets in the trigeminal nerve of migraine patients

(Guyuron et al., 2014), providing first evidence for disturbed oligodendrocyte

functioning in the trigeminovascular pathway. Furthermore, a high-field MRI

study identified thalamic microstructural abnormalities in migraine patients

that could indicate an increase of myelin (Granziera et al., 2014).

In summary, we performed a gene-based analysis of the migraine GWAS

data, using detailed spatial gene expression data to define gene modules with
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similar expression patterns in the normal human brain. Our results showed

enrichment of migraine-associated genes in modules involved in cortical neuro-

transmission, mitochondrial and oligodendrocyte function that provide further

evidence that these mechanisms play a causal role in migraine and deserve to

be investigated in more detail by (functional) studies in patients and experi-

mental animal models.

2.4 Materials and Methods

2.4.1 GWAS dataset

Summary statistics of migraine GWAS data from 23,285 cases and 95,425

controls from the meta-analysis available through the International Genetics

Headache Consortium (Anttila et al., 2013) were used for this study. The

quality control of the genotype data was described previously (Anttila et al.,

2013). Autosomal SNPs were imputed against the HapMap CEU population

(release 21-24 depending on the cohort). To convert the genomic coordinates

of the SNPs from human reference genome build 36 to build 37, we used Cross-

Map (http://crossmap.sourceforge.net/) (Zhao et al., 2014). A total of

1,853,579 SNPs with high quality GWAS data and converted to build 37 were

used in the calculation of gene-based P-values.

2.4.2 Gene-based P-values

Gene-based P-values were calculated from GWAS data using the gene-based

test GATES (M.-X. X. Li, Gui, Kwan & Sham, 2011) implemented in the

whole-genome analysis platform Fast ASsociation Test (FAST) (Chanda, Huang,

Arking & Bader, 2013). GATES is a Simes test extension that integrates SNP

P-values into a gene-based test statistic, based on SNP positions and LD in-

formation (1,000 Genomes data (Phase 1)) by taking the top SNP per gene

and correcting its P-value for the effective number of independent tests. Gene

location information based on the GRCh37.p13 build reference sequence was

obtained from Biomart (version 75: Feb 2014 archive site). A flanking region

of 15 kilobase (kb) up- and downstream of the gene was used to include SNPs

located in regulatory regions. The size of the flanking region was based on the

identification that most SNPs that influence the expression of a gene are loc-

ated within 15 kb of the gene (Pickrell et al., 2010). Genes with a gene-based

http://crossmap.sourceforge.net/
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P < 0.05 were considered migraine ‘candidate genes’; genes with a Bonferroni

corrected P < 0.05 were considered ‘high-confidence genes’.

2.4.3 Spatial gene expression

Spatial gene expression data from six healthy adult human brains was ob-

tained from the Allen Human Brain Atlas (http://human.brain-map.org/)

(Hawrylycz et al., 2012). For each brain, RNA had been extracted from 363

to 946 different brain samples and measured on custom Agilent microarrays

containing the 4x44K Agilent Whole Human Genome probes as well as an

additional 16,000 custom probes. The expression data was matched to the

GATES output based on Biomart associations of 4x44K Whole Genome mi-

croarray probe IDs with genes. If a probe was matched to multiple genes, it

was excluded from the analysis. If multiple probe IDs were associated with the

same gene, average expression levels were calculated for that gene. The spatial

expression of a gene for a particular brain is thus described by the expression

levels of that gene across all samples in that brain. Since the number of brain

samples differs per brain, the spatial gene expression vector of a gene differs

in length between brains.

2.4.4 Spatial gene co-expression and hierarchical clustering

Spatial co-expressions between genes were first calculated for each brain sep-

arately. For this, robust bi-weight mid-correlations were calculated across all

brain samples for each of the six donors separately (Langfelder and Horvath

2012). Subsequently, these correlations were averaged across the donors to

obtain co-expression values that only reflect spatial expression patterns and

ignore between-brain differences. We then performed hierarchical clustering

to obtain modules of spatially co-expressed genes. The linkage and distance

measures, and the threshold at which the tree is cut, were chosen to maximise

the enrichment of migraine candidate genes (see Supplementary Material and

Methods for different combinations of linkage and distance measures). We

chose for this independent evaluation over traditional cluster evaluation meas-

ures (like WGCNA (B. Zhang & Horvath, 2005)) as we are interested in finding

modules (clusters) that are related to migraine genes. Eventually, clustering

was done with complete linkage, with one minus the bi-weight mid-correlation

as a distance measure, and the tree was cut into 18 clusters.

http://human.brain-map.org/
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2.4.5 Enrichment of candidate genes in the modules

Enrichment of migraine-associated genes within a module was determined us-

ing a Fisher exact test, that calculated whether the number of migraine can-

didate genes in a module is higher than expected based on the total number

of genes and migraine candidate genes. Neighbouring genes on the genome

might have similar expression patterns due to local regulatory DNA elements,

as well as similar gene-based P-values due to LD between their top SNPs or

overlapping flanking regions. Therefore, we performed a second LD-corrected

Fisher exact test in which we included only the number of independent genes

in the calculation. As a measure for the number of independent genes in a

gene set, we took the top SNP of each gene and used the Genetic type I Error

Calculator (GEC) (M.-X. X. Li, Yeung, Cherny & Sham, 2012) to calculate

the effective number of independent SNPs based on LD information from the

HapMap project release 23. In this way, the LD-corrected Fisher exact test

had as input the corrected estimates for the number of independent genes with

gene-based P-values below and above 0.05, both in the cluster of interest and

in the full set of genes. See Supplemental Material and Methods for additional

information on the enrichment analysis.

2.4.6 Functional annotation

Gene Ontology (GO) term and pathway enrichment analysis in the mod-

ules was performed with DAVID (version 6.7; http://david.abcc.ncifcrf

.gov/). We used the Functional Annotation Clustering tool in DAVID to

group significant GO terms and pathways based on co-associated genes to re-

move redundant terms (D. Huang et al., 2007). Pathway information from

KEGG, Reactome and PANTHER, and GO term information (biological pro-

cesses, molecular functions and cellular components) from PANTHER, and

the FAT subsets of GO terms was used. GO term and pathway groups were

considered significant when the EASE score was larger than 1.3 (correspond-

ing to a geometric mean Benjamini-corrected P-value of the clustered GO

terms and pathways below 0.05). Significant groups were named after the

most significant term in the group. Comparison of GO term and pathway

enrichments between modules was performed in ToppCluster, a multiple gene

list feature enrichment analyser (Kaimal, Bardes, Tabar, Jegga & Aronow,

2010). In ToppCluster, we performed GO term (biological processes, molecu-

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
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lar functions and cellular components) and pathway enrichment analyses for

all modules, which were considered significant when Bonferroni-corrected P-

values were below 0.05. Functional enrichments and overlap in enrichments

between modules were visualized in Cytoscape (version 3.2.1).

2.4.7 Cell type enrichment

For enrichment analysis of cell type-specific genes we made use of cell type-

specific genes identified in gene expression data from isolated mouse brain

cells (Q. Zhang, Burdette & Wang, 2014). We selected the gene expression

data from neurons, astrocytes, myelinating oligodendrocytes, microglia, and

endothelial cells. Genes were considered cell type-specific if they had more

than 10-fold higher gene expression (reads per kilobase per million (RPKM))

levels compared to the mean expression in the other cell types. We obtained

818 neuron-, 380 astrocyte-, 198 oligodendrocyte-, 692 microglia-, and 546

endothelial-specific genes for which human orthologs were present. Enrichment

was determined with Fisher exact tests.

2.4.8 Local modules from seed genes

Local co-expression networks were built from high-confidence genes by adding

genes to the network whose co-expression exceeds a threshold (similar to Will-

sey et al. (2013)). Genes were only selected if they had co-expression values

higher than 0.6 with a high-confidence gene. The threshold was chosen to: 1)

maintain only reasonably strong links between genes, especially given the fact

that we use robust bi-weight mid-correlations; and 2) have linking genes for

most of the seed genes (see Supplementary Material and Methods for informa-

tion on how the threshold value was selected). Co-expressions were measured

as bi-weight mid-correlations, the same co-expression values which were used

to determine the genome-wide co-expression modules, and local modules were

defined as all genes connected to a single high-confidence gene. If a gene is

connected to two high-confidence genes, it is part of the modules of both genes.
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BrainScope: interactive visual exploration of the spatial and

temporal human brain transcriptome

Abstract

Spatial and temporal brain transcriptomics has recently emerged

as an invaluable data source for molecular neuroscience. The

complexity of such data poses considerable challenges for analysis and

visualization. We present BrainScope: a web portal for fast, interactive

visual exploration of the Allen Atlases of the adult and developing

human brain transcriptome. Through a novel methodology to explore

high-dimensional data (dual t-SNE), BrainScope enables the linked,

all-in-one visualization of genes and samples across the whole brain

and genome, and across developmental stages. We show that densities

in t-SNE scatter plots of the spatial samples coincide with anatomical

regions, and that densities in t-SNE scatter plots of the genes represent

gene co-expression modules that are significantly enriched for biological

functions. We also show that the topography of the gene t-SNE maps

reflect brain-region specific gene functions, enabling hypothesis and

data driven research. We demonstrate the discovery potential of

BrainScope through three examples: 1) analysis of cell type specific

gene sets, 2) analysis of a set of gene co-expression modules that are

stable across the adult human donors, and 3) analysis of the evolution

of co-expression of oligodendrocyte specific genes over developmental

stages. BrainScope is publicly accessible at www.brainscope.nl.

This chapter has been published as: Huisman, S. M. H., van Lew, B., Mahfouz, A.,
Pezzotti, N., Höllt, T., Michielsen, L., . . . Lelieveldt, B. P. F. (2017). BrainScope: inter-
active visual exploration of the spatial and temporal human brain transcriptome. Nucleic
Acids Research, 45 (10), e83. https://doi.org/10.1093/nar/gkx046

All supplemental materials can be found in the online publication.
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3.1 Introduction

The field of molecular neuroscience has seen a sharp rise in the availability of

spatially mapped molecular data, accessible through public databases. Gen-

eral databases such as GTEx (Lonsdale et al., 2013) and Encode (Dunham

et al., 2012), but also brain-specific databases like PsychENCODE (Akbarian

et al., 2015), contain anatomically annotated gene expression and epigenetic

data across the brain. Where some projects focus on specific diseases (such

as Huntington’s disease (Neueder & Bates, 2014) and autism spectrum dis-

order (Voineagu et al., 2011)), others aim to capture general patterns in the

healthy brain. A strong example of the latter are the efforts of the Allen Insti-

tute for Brain Science (Sunkin et al., 2013) to measure spatially mapped gene

expression in mouse, macaque and human brain, both in the healthy adult

individual and throughout brain development. These genome-wide studies of

the transcriptome aim to elucidate relationships between brain structure and

brain function, and identify genes that play a role in this.

Understanding brain transcriptome data is challenging, since it encom-

passes RNA expression over all genes, across many spatial coordinates of the

brain, and through development in time. A powerful way to obtain insight

into such complex multi-way data sets is by visually exploring the data using

principles of presenting, browsing, and selecting. Currently available tools for

analyzing gene expression in the brain that incorporate visualization include

the Allen Institute’s AGEA (L. Ng et al., 2009) and Neuroblast (Hawrylycz et

al., 2011). These two portals represent two distinct views on the data. With

AGEA, researchers can explore the interplay between anatomical connections

and the gene expression similarities of brain areas. It shows sample-sample

similarities and provides a parcellation of the brain entirely based on transcrip-

tome data. A different view on the same data is offered by Neuroblast. Here,

the focus lies on gene-gene comparisons: it shows which genes have similar

spatial expression patterns in the healthy brain. Both AGEA and Neuroblast

are valuable tools that have been used to study, for instance, bipolar disorder

(McCarthy, Liang, Spadoni, Kelsoe & Simmons, 2014). However, these tools

focus either on relationships between genes, or on the relationships between

brain regions, while the interplay between these two is an essential part of

the data. A suitable representation of brain transcriptome data that links a

gene-centric and a sample-centric view is currently lacking.
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The relationships between genes or samples can intuitively be represented

in plots, where these elements are shown as points. The closeness of the points

then represents their similarity. However, with a large number of samples

and thousands of genes, a plot that reflects similarities needs to capture a

high-dimensional space in a two-dimensional map. Common ways to reduce

this dimensionality are multi-dimensional scaling (MDS) (Tzeng, Lu & Li,

2008) and principle component analysis (PCA) (Ma & Dai, 2011). A more

recently introduced non-linear dimension reduction method is t-distributed

stochastic neighborhood embedding (t-SNE) (Maaten & Hinton, 2008). The

power of t-SNE comes from the fact that it tries to accurately represent the

local neighborhoods of points, so neighbors in the plot match those in the

original high dimensional data. In return, the distances between dissimilar

points are less well-preserved. This is in marked contrast to, for example,

PCA where the important components capture the direction of the largest

variance across the points, which is generally reflected in distant (dissimilar)

points. t-SNE has been used to produce transcriptional maps of brain regions

in the Allen Brain Atlas (ABA) (Ji, 2013; Mahfouz et al., 2015), and it is

popular in the analysis of single-cell molecular data (Macosko et al., 2015;

Shekhar, Brodin, Davis & Chakraborty, 2014; van Unen et al., 2016; Wong et

al., 2015).

Here, we present BrainScope, a portal that uses t-SNE maps of both

samples and genes in an interactive visualization of the transcriptional land-

scape of the brain. It gives a brain- and transcriptome-wide view of gene co-

expression and transcriptional similarity of brain regions, based on the human

brain data of the Allen Institute (Hawrylycz et al., 2012; Miller et al., 2014).

It allows for interactive analysis of gene expression in the human brain, in an

intuitive visual way. To connect the gene-centered and the sample-centered

views, we make use of linked maps: t-SNE plots where a selection of points

is rendered as a visual change in the linked plots. The first instance of this

is the dual explorer (see Figure 3.1a), which has a single transcriptome-wide

gene map and a brain-wide sample map. Users can select genes or samples

and show their mean expression patterns in the other map. In addition, this

part of the portal contains brain choropleths: user-selected slices of the hu-

man brain that are used to localize samples and illustrate spatial expression

patterns. In addition to the dual explorer, the portal contains the comparative

explorer (see Figure 3.1b), which focuses on the comparison of several gene
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maps, representing distinct donor brains. Therefore, the comparative explorer

reveals inter-donor similarities in co-expression. Using the adult human data

it shows robustness of co-expression modules, while for the developmental hu-

man data it shows changes in co-expression through time. Each part of the

portal contains a direct link to enrichment tools Enrichr (E. Y. Chen et al.,

2013) and ToppGene (J. Chen, Bardes, Aronow & Jegga, 2009), to provide a

functional interpretation of selected gene sets.

The linked t-SNE maps of the BrainScope can conceptually be used in

several ways. Selection of a single point reveals the corresponding expression

pattern, either of a gene throughout the spatially mapped samples, or of a

sample across all genes. Selection of points in the sample map reveals gradi-

ents of expression in the gene map, which elucidate gene-gene relationships.

In addition to single point selection, a set of points can be selected to study

the relationships between these points (co-expression or transcriptional sim-

ilarity) and characterize sub-clusters by their mean expression patterns. In

the comparative explorer, any selection of genes is carried over to all gene

maps, showing differences in co-expression between brains. We demonstrate

the usefulness of BrainScope by exploring the major patterns of gene expres-

sion in the adult human brain, and the way these reflect gene function and

cell type composition of brain samples. In addition, user-supplied gene sets

can be examined for structure. With the comparative explorer, we highlight

the stability of the gene t-SNE maps over the six donor brains of the Allen

Brain Atlas, in line with recently published consensus modules (Hawrylycz,

Miller et al., 2015). Finally, the spatio-temporal transcriptome shows that the

changes in expression of oligodendrocyte marker genes reflect the development

of the brain. Combined, these applications enable a unique view of the rich

gene expression data of the Allen Human Brain Atlases.
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Figure 3.1: BrainScope views: (a) In the dual explorer, the gene expression data is

visualized in two directions: a map for genes and a map for samples. Points that

are close in the map have a high similarity. The portal allows for selection of points

in either of the maps and shows the expression in the other map (red is high, blue

is low): a set of genes has a profile across samples, which is averaged; and a set

of samples has expression values in all genes, which are also averaged. When genes

are selected, their average expression is also shown on brain slice choropleths; and

when samples are selected, their location is shown on the same choropleths. (b) In

the comparative explorer, only gene t-SNE maps are shown, but it contains data for

multiple donor brains (replicates, or developmental stages). A t-SNE map is made

for each donor and, in addition, one map is made for the combined data sets. When

a selection of genes is made in either of the maps, this selection is carried over to the

other maps and the average regional expression of these genes is shown in a heatmap.
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3.2 Materials and methods

3.2.1 Gene expression data

Gene expression data was obtained from the Allen Institute for Brain Science.

The Adult Human Brain Atlas (Hawrylycz et al., 2012) contains gene expres-

sion measurements of six healthy adult donors. Samples were taken using

macro- and microdisection of anatomically annotated regions. The number of

samples differs per donor, from 363 to 946, with a total of 3 702 samples. The

expression values in each sample were determined with a customized micro-

array chip, measuring 58 692 probes. Initial data processing was performed

by the Allen Institute, and the data were made available on their website

(http://human.brain-map.org/static/download).

The Developing Human Brain Atlas (Miller et al., 2014) has a lower spatial

resolution, but samples were taken from human donors of a broad range of ages.

In total 42 brains were sampled, ranging in age from 8 weeks post-conception

to 40 years old. The number of samples per brain ranges from 1 to 16, with a

total of 524 anatomically annotated samples. Gene expression was determined

using RNA sequencing, and RPKM values are available online for 52 376 genes

(http://www.brainspan.org/static/download).

3.2.2 Data preprocessing

In the adult human brain data the 58 692 probes were mapped to 19 992 genes,

using their Entrez identifiers. For genes that have two probes, the probe with

the highest variance was selected. For genes with more than two probes, we

picked the probe with the highest connectivity to all other probes (defined as

the sum of Pearson correlations). The number of samples differs per donor

brain. To enable combination of the data for dual t-SNE, all expression sets

were reduced to have 105 values per gene, corresponding to the annotated

regions that were sampled in each brain. Finally, to obtain a single gene and

sample map in the dual explorer, the expression values for each combination

of sample and gene were averaged over the six donors. The comparative ex-

plorer of the adult brain instead uses processed data for all brain samples

(Hawrylycz, Miller et al., 2015). To enable a direct comparison between dens-

ities in the gene t-SNE maps and previously defined WCGNA-based gene
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modules (Hawrylycz, Miller et al., 2015), both were computed from identical

gene-sample data matrices.

In the developing human dataset samples were pooled into eight age win-

dows, to obtain subsets with higher sample sizes. Supplementary Table S1

shows which donor brains were combined into each age window, with sample

sizes and donor characteristics. Anatomical regions were required to have at

least one sample for each age group, giving 16 regions with eight measurements

each. From the 52 376 genes, only the 18 233 genes were selected that had an

RPKM-value above 1 in at least 20% of all samples.

The dimension reduction results of t-SNE are dependent on scale and loca-

tion of the data. For the gene maps all genes were z-score normalized, to have

zero mean and a standard deviation of 1. For the sample maps the values for

each sample were instead z-scored.

3.2.3 Dimension reduction

Dimension reduction was performed with t-distributed stochastic neighbor-

hood embedding (t-SNE), a non-linear embedding technique (Maaten & Hin-

ton, 2008). It creates a low-dimensional map of high-dimensional data, while

preserving as much of the local structure as possible. The method has one

main parameter, the perplexity value, which determines the variances of the

Gaussian kernels that are used to calculate similarities in the high-dimensional

space. The higher the perplexity value, the larger the number of neighboring

points to which similarities are preserved. Because t-SNE only aims to pre-

serve neighborhoods, the rotation of the maps is arbitrary. In the comparative

explorers, the maps were rotated to be as similar as possible (defined by the

mean Euclidean distance of all points). In many applications a PCA reduction

to a somewhat lower dimensional space is performed, for computational and

noise reduction reasons. In our analyses we did not perform this step, in order

to retain the original neighborhoods. The gene t-SNE maps were made with

the default perplexity value of 30. The sample t-SNE maps were made with a

lower perplexity value of 10, due to the lower number of points.

3.2.4 Gene set clustering and analyses

We characterized the 3 000 genes in the regions of highest density of the gene

map for the adult human data. These were identified in a Gaussian density
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estimate of the map, with an identity covariance matrix. The 3 000 genes

with highest local densities were then hierarchically clustered with Euclidean

distance and complete linkage. The optimal number of clusters (27) was de-

termined by maximizing the silhouette score, and the 23 clusters with more

than 30 genes were characterized by their expression patterns and enrichments

in ToppGene (J. Chen et al., 2009).

To define cell-type marker genes, we made use of a database of gene ex-

pressions from fluorescence-activated sorted cells of the mouse cerebral cortex

(Y. Zhang et al., 2014). Genes were selected as markers when they had a 20

fold higher expression in the cell type of interest than the geometric mean of

the other cell types. Mouse gene identifiers were matched to human orthologs

using builds GRCm38.p4 and GRCh38.p3 in BioMart (Smedley et al., 2015).

Clustering of post synaptic density related genes (Bayés et al., 2011; Hawrylycz

et al., 2012) in the gene t-SNE map was performed with a Gaussian mixture

model, where the number of clusters was optimized using the Bayesian inform-

ation criterion. The reported gene set enrichment analyses were performed in

ToppGene (J. Chen et al., 2009).

3.3 Results

3.3.1 Dimension reduction of gene expression in the brain

BrainScope aims to visualize gene expression data of the brain, in an interact-

ive and intuitive way (see Supplementary Video S1-3). It is built on spatially

resolved gene expression data in the adult human brain, and the Brainspan

atlas of the developing human brain, both provided by the Allen Institute for

Brain Science. The adult human brain atlas contains genome-wide expression

values of six donors, five males and one female, aged 24 to 57 years old. The in

total 3 702 samples cover a wide range of anatomical regions, with 105 distinct

regions that are sampled at least once in every donor. For the dual explorer,

we averaged the expression values to these 105 regions for 19 992 genes (see

the Materials and Methods section). For the comparative explorer of the de-

veloping human atlas, we grouped the measurements of 16 brain regions in

eight developmental stages (see Supplementary Table S1). To produce two-

dimensional maps of the expression data, we made use of t-SNE (Maaten &

Hinton, 2008). A comparative analysis between t-SNE and PCA is provided
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in the Supplementary Text and Supplementary Figure S2.

3.3.2 The dual explorer shows localized transcriptional

similarity in human neuro-anatomy

The dual explorer contains two maps: a sample map and a gene map. In the

sample map, samples are close together if they are similar in their gene expres-

sion profiles. By coloring samples with anatomical annotation colors, this map

shows both anatomical relationships between samples, and their transcrip-

tional similarity. For the adult human data, Figure 3.2a shows that samples

of close spatial proximity are more likely to have similar expressions, so the

sample t-SNE map reflects the anatomy of the brain. Note that this map was

produced using only the transcriptional profiles of the samples, not their loca-

tions. All samples of the cerebral cortex are co-located in the map (cluster 8),

while sub-clusters can be recognized for example for the frontal lobe and the

hippocampal formation (cluster 7). The six regions of the amygdala cluster

together (cluster 6), as do the five striatum regions (cluster 5), the three hy-

pothalamus regions (cluster 4), and the seven dorsal thalamus regions (cluster

3). The ventral thalamus, on the other hand, is more similar to the anatom-

ically adjacent globus pallidus and midbrain. The samples of the cerebellar

cortex form a distinct cluster in the map (cluster 9), whereas the cerebellar

nuclei (represented by the dentate nucleus) are most similar to samples from

medulla and pons, the structures that anatomically connect the cerebellum to

the midbrain.

The sample map reflects the similarities between samples, but the same

transcriptome data can be used to infer gene-gene similarities. Figure 3.2b

shows the transcriptional activity of 19 992 genes in the nine sets of samples

that are selected in the sample map. The positions of the points (genes) in this

t-SNE map capture brain-wide expression profiles, so the co-expression over

the 105 selected regions. The colors of the points, on the other hand, show

the activity of the genes in a selected subset of samples. For example, Figure

3.2b9 shows the average expression in cerebellar cortex samples, where we see

a strong expression gradient from left-to right. These patterns of expression

reflect how the gene map was made: genes with a similar expression across

brain regions should be nearby in the t-SNE map.

The dual use of sample and gene maps (dual t-SNE) can give valuable
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insights. The differences between anatomical annotation and the sample map

highlight the importance of exploring similarities in the characterization of

brain regions. For example, the cerebellar nuclei samples (which are part of

cluster 1 in Figure 3.2) are very different from those of the cerebellar cortex

(all part of cluster 9). If one were to look at the average expression pattern

of the full cerebellum, this would be a mixture of two distinct expression

patterns (that of Figure 3.2b1 and 3.2b9). The interplay between gene and

sample map allows for quick exploration of brain region specific expression.

For example, one group of spatially co-expressed genes are highly expressed

in the hypothalamus samples (of cluster 4). When these genes are analysed

for GO-term enrichment, we find they comprise several genes with hormone

activity (Figure 3.2c). In addition to these specific analyses, one can also

directly see large-scale patterns in the maps, such as the fact that few genes

are highly expressed in both brain-stem and cerebral cortex (Figure 3.2b1 and

3.2b8).

As we have seen in the hypothalamus example, similarities in gene ex-

pression may point to similarities in function. The gene map captures gene

co-expression networks, which may consist of functionally related genes. To

test this, we considered parts of the gene map with large numbers of genes,

so with a high density. Figure 3.3 shows the gene ontology enrichments and

spatial expression patterns of 3 000 genes with the highest density values in

the density map. Where Figure 3.2a shows similarities between neighboring

brain regions, Figure 3.3 captures spatial co-expression networks. The results

confirm the hypothesis that co-expression is related to shared functions, and it

provides a global annotation of the gene map. The link between co-expression

and function can also be used to characterize a gene by its neighbors in the

gene map, as is illustrated for the APOE gene in the Supplementary Text and

Supplementary Figure S1.

Gene-expression reflects cell type composition.

Gene expression measurements in the brain are partly determined by cell type

composition of the samples (Grange et al., 2014). Therefore, the similarities

between genes in their expression patterns may reflect cell type specific ex-

pression. As a result, cell type specific genes are likely to be co-located in the

t-SNE map of the genes. To test this hypothesis, we obtained expression data
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Figure 3.2: Characterization of the gene and sample maps in the dual explorer: (a)

The samples show a clustered pattern, matching the anatomical annotation shown

in the color coding of the brain slices on the right. Nine groups of samples are

highlighted in the map. (b) The mean expression of the nine groups of samples

shown on the gene map. Each cluster of samples has its own distinct expression

pattern, where red is high expression and blue is low expression. The dual explorer

facilitates exploration of gene-sample relationships. The hypothalamus samples that

are selected in a4 have a high expression in the gene cluster highlighted in b4. (c)

The five strongest GO-term enrichments in the hypothalamus related gene cluster,

which point to well-known hypothalamus functions.

from a cell-sort experiment of mouse cerebral cortex samples (Y. Zhang et

al., 2014). We selected expression data of five major cell types present in the

brain: astrocytes, endothelial cells, microglia, neurons and oligodendrocytes.

Genes are labelled as cell type specific if they have at least a 20-fold expression

in a specific cell type compared to the geometric mean of the other cell types.

The cell type specific genes (or cell type “markers”) are co-located in the

gene t-SNE map. Figure 3.4a shows the location of these genes, where neur-

onal markers are found at the top of the map, which contains genes with high

expression in cerebral cortex (Figure 3.4b,c1). The endothelial cell markers
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are also strongly co-expressed, with high average expression in thalamus, stri-

atum and medulla (3.4b,c3). The microglia and oligodendrocyte markers form

distinct clusters that share a high expression in the white matter (3.4b,c2 and

3.4b,c4). Microglia are known to be prevalent in the corpus callosum, which

contains the “fountain of microglia”, from which these cells migrate to other

parts of the brain (Gehrmann, Matsumoto & Kreutzberg, 1995). Compared to

the microglia markers, the oligodendrocyte markers have a somewhat higher

expression in cerebral cortex and thalamus, but lower in hippocampal form-

ation and amygdala. Oligodendrocytes are responsible for myelination in the

central nervous system, so they are prevalent in white matter of the brain.

Combined, these results show that the maps in the BrainScope portal pick up

the detailed patterns of cell type specific expression that partly underlie the

transcriptome of the brain.
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Figure 3.3: Functional characterization of the gene map: 3 000 genes within the

highest densities were clustered, and clusters containing over 30 genes were char-

acterized using ToppGene. Only the most significant GO-term is shown for each

cluster, while the 10 clusters with strongest enrichments are provided with spatial

expression choropleths. Most high-density areas in the gene map contain genes with

common functions. All p-values are Bonferroni corrected in ToppGene, and the gene

modules are provided in Supplementary Table S2.
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Figure 3.4: (Previous page) Gene sets show cell type specificity of spatial gene expres-

sion and clusters of post synaptic density related genes: (a) The adult human gene

t-SNE map, with highlighted cell type markers. The cell type markers were picked

based on data from fluorescence-activated cell sorted brain cells from mouse Y. Zhang

et al. (2014), as genes with 20-fold expression in one of the types compared to the

geometric mean in the other types. In the map, 4 groups of genes are highlighted,

which correspond to areas of the map with high numbers of cell type markers. (b)

The mean expression of all genes in the 4 groups in the gene map, shown by point

sizes in the sample maps. (c) The mean expression of all genes in the same 4 groups,

shown on a brain slice. (d) The adult human gene t-SNE map with highlighted post

synaptic density (PSD) related genes Hawrylycz et al. (2012). Three clusters of co-

expressed PSD related genes are highlighted. (e) and (f) The expression patterns of

the three clusters, shown in the sample t-SNE map and choropleths. Clusters 1 and 2

contain genes mostly expressed in the cerebral cortex, where cluster 2 is distinct from

cluster 1 because of its stronger expression in cerebellar cortex. Genes in cluster 3

are expressed most strongly in subcortical regions such as thalamus, hypothalamus,

and brain stem.

Dual explorer is an instrument for visual exploration of a set of

genes of interest.

The dual explorer captures robust patterns of spatial co-expression in the

brain. This allows for characterization of sets of genes with respect to their

shared expression, and therefore potentially shared brain specific functions.

To illustrate this, we selected the 74 genes that were identified to have strong

regional expression in the brain and presence in post synaptic density (PSD)

(Hawrylycz et al., 2012), using data from a proteomic profiling of human neo-

cortex (Bayés et al., 2011). Post-synaptic densities connect neuronal cells and

are essential to signal transmission in the brain. The 74 genes may all be spe-

cific to the PSD, but they do not all have identical spatial expression patterns

in the brain. Figure 3.4d shows the PSD related genes in the gene map, where

they can be separated into three clusters (and a remainder of unclustered

genes). Cluster 1 contains 28 genes that are preferentially expressed in the

cerebral cortex, and compared to all genes in the genome are enriched for the

GO-term synapse part (GO:0044456, p = 4.52 · 10−23). Cluster 2 contains

15 genes that are similar in expression pattern, but have lower expression in

the cerebellar cortex. They have the strongest GO-enrichment for synapse
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(GO:0045202, p = 8.82 ·10−8). The 8 genes in cluster 3 have low expression in

the cerebral cortex and cerebellum and high expression in subcortical regions,

such as the thalamus and brainstem. This cluster is enriched for GO-term my-

elin sheath (GO:0043209, p = 6.94 · 10−9). In fact, 5 out of the 8 genes share

this annotation, which is surprising for genes that have been identified as being

PSD related. Hence, the dual explorer gives a clear view of the clusteredness

of this gene set of interest and the number of discernible clusters. In general,

it allows for rapid interactive exploration of spatial expression patterns and

gene function.

3.3.3 Comparative explorer shows expression stability

across donors in the adult human brain

The Allen Brain Atlas contains gene expression measurements for six adult

brains. We compared the gene t-SNE maps of these donors, using the com-

parative explorer. The explorer contains a consensus gene map, made by

concatenating all samples before dimension reduction, and six per-donor gene

maps that use all samples taken from a single donor. Details on data pro-

cessing can be found in the Materials and Methods section. Figure 3.5 shows

all seven gene maps side-by-side. To allow for visual comparison, the genes

are labeled using gene modules that have been found to be consistently co-

expressed in each of the six donor brains (Hawrylycz, Miller et al., 2015).

These previously published modules were created by first assessing each gene

for stability, defined as the correlation between the expression vectors for each

pair of donor brains. The 50% of genes with the highest differential stability

were then selected for an initial clustering of genes. Subsequently, weighted

gene co-expression analysis (WGCNA) (B. Zhang & Horvath, 2005) was used

to obtain 32 modules, which were characterized by module eigengenes. To

obtain genome-wide gene modules, the remaining genes (with lower differen-

tial stability) were then linked to their most similar modules, defined on the

correlation with the module eigengenes. Figure 3.5 shows that many of the

previously reported WCGNA modules consistently form clusters in the con-

sensus t-SNE map, as well as in the per-donor maps, pointing to the robustness

of these maps. The t-SNE method, with only one main parameter, offers a

visual representation of the data that is strongly in line with the results of the

more parameter sensitive WGCNA algorithm. The relative positions of the
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Figure 3.5: Gene t-SNE maps are robust and reproducible across donors: (a)

The combined gene t-SNE map, showing previously reported stable gene modules

Hawrylycz, Miller et al. (2015). The map separates the 32 modules and shows their

relationships. (b) The gene maps for each of the 6 donor brains. The maps are made

using independent data sets, so they reflect the robustness of spatial gene expression

patterns in the human brain. Data was pre-processed as in the original publication

Hawrylycz, Miller et al. (2015) to enable direct comparison of the WGCNA modules

to the gene t-SNE maps.

modules in these maps vary to some extent, which is a result of the limited

importance of large distances in t-SNE. In addition, the differences in brain

region sampling may account for variability between donors.

3.3.4 Developmental comparative explorer captures

spatio-temporal co-expression patterns

Thus far, we have only considered spatial gene expression patterns in the adult

human brain. The Brainspan atlas of the developing human brain contains

spatially and temporally resolved transcriptome data. To visualize this atlas,

we developed the Brainspan comparative explorer (Figure 3.6). The Brain-
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span human developmental atlas contains gene expression data for 42 brains,

ranging in donor age from 8 weeks post-conception to 40 years after birth.

From each brain, up to 16 anatomical regions were sampled. We summarized

the data to contain mean expression values for each of the 16 anatomical re-

gions, for 8 developmental stages: early second trimester of pregnancy, late

second trimester, third trimester, infancy, early childhood, late childhood, ad-

olescence, and adulthood.

This summarized data set is visualized with the comparative explorer in

Figure 3.6a, i.e. genes are close together in the map if they behave similarly

through time and anatomical regions simultaneously. It also shows gene maps

for each developmental stage individually (Figure 3.6b), i.e. genes are close

together in a map when they behave similarly across anatomical regions within

that developmental stage. The comparative explorer gives insight in the tran-

scriptional background of development. For example, Figure 3.6 shows that

oligodendrocyte marker genes are spatio-temporally co-expressed, but before

birth these genes are not co-expressed. In fact, these marker genes have a very

low expression before birth, which reflects the fact that myelination is largely

a post-natal process. The rise in expression of myelination related genes after

birth has been observed before (Kang et al., 2011), and BrainScope’s compar-

ative explorer shows that this is also reflected in changes in co-expression over

time.
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Figure 3.6: Developmental gene expression patterns show oligodendrocyte activity

after birth: (a) The gene t-SNE maps per developmental stage. These maps reflect

spatial co-expression of genes at each stage of development from early second tri-

mester to adulthood. Oligodendrocyte marker genes are highlighted by their average

expression across the brain at that stage of development. The oligodendrocyte marker

genes have a low pre-natal expression ( blue) and, as a result, a weak co-expression.

After birth these genes become more active ( red), and more co-expressed, which re-

flects the formation of white matter after birth. (b) The spatio-temporal gene t-SNE

map of gene expression. Genes cluster together if they have a similar expression

pattern through developmental time and anatomical space. The highlighted genes

( green) are those that are oligodendrocyte specific.

3.4 Discussion

We present the BrainScope portal for interactive visual analysis of gene expres-

sion in the brain. Through the use of linked t-SNE maps both global and local

patterns in the data can be elucidated. Specific cell types give rise to expres-
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sion patterns, which can be explored in both the sample and gene map using

cell type marker genes. Users can upload their own gene sets of interest to find

the spatial expression and co-expression patterns in the healthy human brain.

The fact that neighboring genes in the gene map reflect co-expression, and

therefore possible functional links, means that genes can be studied in their

co-expressional context. In addition, the comparative explorer for the adult

brain allows for the assessment of inter-donor stability of co-expression. The

maps show transcriptomic robustness over donors, in a similar manner to the

widely-used WGCNA algorithm. Finally, the developmental comparative ex-

plorer captures transcriptional patterns through development and age. Taken

together, BrainScope gives an instant overview of similarities of all genes and

of all brain regions.

The non-linearity and focus on local neighborhood structure of t-SNE make

it well-suited for the visualization of similarities between samples and between

genes in 2D plots. A practical advantage of t-SNE is that it has only one

main parameter, the perplexity value, which controls the relative size of the

neighborhood that is taken into account. It performs better in separating

co-expression gene modules than PCA.

The gene and sample maps in BrainScope are based on all samples, and

hence are affected by the anatomical distribution and sampling density. In

addition, the portal is genome-wide. This means users are likely to find their

brain regions and genes of interest represented in the portal. A filtering of

genes could, however, give a stronger signal for specific applications, and a

selected gene set may provide tailored sample-sample relationships. In addi-

tion, the current maps are affected by the strong difference between cerebellar

cortex and cerebral samples. Therefore, an extension to the portal would be

the option to recalculate the t-SNE maps on a subset of samples or genes, in

an interactive manner (Pezzotti et al., 2017). A user could select points based

on prior knowledge or visual inspection of expression and update the maps.

This would require more investment in server-side calculations.

Currently the portal contains only the gene expression data for the Allen

Atlases of the adult human and developing human brain. However, the Allen

Institute also provides spatial transcriptomic data for mouse (Lein et al., 2007),

developing mouse (Thompson et al., 2014), macaque (Bernard et al., 2012),

and developing macaque (Bakken et al., 2016). In addition to these large scale

datasets by the Allen Institute, spatially resolved epigenetic data of the brain
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is now available from the PsychENCODE project (Akbarian et al., 2015). The

concepts of the BrainScope portal are applicable to these datasets as well. To

illustrate this, we have applied the methodology to the spatial gene expression

data of the UK Brain Expression Consortium (Ramasamy et al., 2014) (see

Supplementary Text and Supplementary Figure S3).

The amount of data available to molecular neuroscientists is rapidly grow-

ing. The availability of increasingly high-dimensional data, even on a single-

cell level, calls for visualization tools that can offer both a birds-eye view of the

full data, and an entry point to formulating specific questions. Consequently,

BrainScope is a valuable tool for neurologists to gain a deeper understanding

of the interactions between brain anatomy and molecular function.
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A structural equation model for imaging genetics using spatial

transcriptomics

Abstract

Imaging genetics deals with relationships between genetic variation

and imaging variables, often in a disease context. The complex

relationships between brain volumes and genetic variants have been

explored both with dimension reduction methods and model based

approaches. However, these models usually do not make use of the

extensive knowledge of the spatio-anatomical patterns of gene activity.

We present a method for integrating genetic markers (single nucleotide

polymorphisms) and imaging features, which is based on a causal

model and, at the same time, uses the power of dimension reduction.

We use structural equation models to find latent variables that explain

brain volume changes in a disease context, and which are in turn

affected by genetic variants. We make use of publicly available spatial

transcriptome data from the Allen Human Brain Atlas to specify the

model structure, which reduces noise and improves interpretability.

The model is tested in a simulation setting, and applied on a case

study of the Alzheimer’s Disease Neuroimaging Initiative.

This chapter has been published as: Huisman, S. M. H., Mahfouz, A., Batmanghelich,
N. K., Lelieveldt, B. P. F., Reinders, M. J. T. (2018). A structural equation model for
imaging genetics using spatial transcriptomics. Brain Informatics, 5 (2), 13. https://

doi.org/10.1186/s40708-018-0091-0

All supplemental materials can be found in the online publication.
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4.1 Introduction

The aim of imaging genetics studies is to find associations between genetic

variants and imaging features, often in a disease context (J. Liu & Calhoun,

2014). This scheme extends beyond traditional genome wide association stud-

ies (GWAS) by identifying genetic associations of imaging biomarkers with

the assumption that these biomarkers are a more direct reflection of the ge-

netic effects. Thus, they could provide a stronger association signal (Hibar,

Kohannim, Stein, Chiang & Thompson, 2011). Additionally, the identified as-

sociations are likely to provide new insights into the underlying disease mech-

anisms as well as new hypotheses about the anatomical and/or functional

locations involved in complex diseases (Franke et al., 2016).

So far, imaging genetics studies have been largely focused on the brain

(Calhoun, Liu & Adalı, 2009; Franke et al., 2016; J. Liu & Calhoun, 2014;

Stein et al., 2012; Vounou et al., 2012), despite efforts to extend their ap-

plication to other fields (Batmanghelich, Saeedi, Cho, Estepar & Golland,

2015). Several large consortia have gathered data from thousands of subjects

to understand the effects of genetic variants on brain structure and function

(Medland, Jahanshad, Neale & Thompson, 2014). One of the hallmark sources

for imaging genetics studies is the Alzheimer’s Disease Neuroimaging Initiat-

ive (ADNI) database (Mueller et al., 2005). This database contains single

nucleotide polymorphism (SNP) and structural MRI data for Alzheimer’s pa-

tients, individuals with late mild cognitive impairment, and cognitive normal

controls.

One of the largest challenges facing imaging genetics studies is the stat-

istical power needed to identify reliable associations. In a typical GWAS, re-

searchers have to correct for the number of independent tests performed (i.e.

number of independent SNPs tested) in order to limit the number of false pos-

itive discoveries. However, a genome-wide brain-wide imaging genetic study

will not only have to correct for the number of independent SNPs, but also for

the number of independent imaging features tested. This requirement yields

most of the studies underpowered to identify reliable associations. One of the

largest imaging genetics studies (Hibar et al., 2015) analyzed over 30,000 indi-

viduals within the Enhancing Neuro Imaging Genetics through Meta-Analysis

(ENIGMA) consortium. They performed a genome wide association of SNPs

with seven brain volumes, and identified only eight genome wide significant
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SNPs.

Despite the high dimensionality of the imaging data (millions of voxels),

the actual number of independent tests for which we need to correct in an ima-

ging genetics study is far smaller than the number of voxels. Due to the spatial

relationships between voxels, measurements from neighboring voxels are usu-

ally highly correlated. A common approach is to test genetic associations for

anatomically defined brain regions (Hibar et al., 2011). Several studies have

shown that both neuroanatomical parcellation and connectivity of the brain

are strongly reflected in gene expression patterns across the brain (Hawrylycz

et al., 2012; Ko et al., 2013; Richiardi et al., 2015). The public availability of

brain transcriptome atlases from the Allen Institute for Brain Science (Sunkin

et al., 2013) provides an opportunity to use these transcriptional signatures to

group brain regions, limiting the number of effective tests.

Several methods have been proposed to identify associations between ge-

netic variants and imaging features by applying dimension reduction, such as

variations of canonical correlation analysis (Du et al., 2016), and independent

component analysis (commonly used in a functional MRI context) (Calhoun et

al., 2009). Others have opted to model the interactions between the different

data types explicitly. Both Stingo, Guindani, Vannucci and Calhoun (2013)

and Batmanghelich, Dalca, Quon, Sabuncu and Golland (2016) pose graphical

Bayesian models which capture a more mechanistic causal view of the data.

These models consist of a directed acyclic graph, which can easily be made to

incorporate covariates, including possible confounding factors. Both studies

use relatively small candidate SNP sets, because they aim for understanding

SNP brain relationships rather than the discovery of genome wide associations.

However, these Bayesian models are quite challenging to specify and fit.

In this work, we propose a method to identify associations between can-

didate genetic variants and imaging features allowing for the incorporation

of prior knowledge. The proposed method combines a graphical model with

dimension reduction to model the effect of SNPs on brain imaging features

through a set of latent variables. We use a maximum likelihood structural

equation modelling (SEM) approach to find the edge weights of our model

(Bollen, 1989). By performing dimensionality reduction within the model, we

reduce the number of parameters to be estimated. In addition, the model al-

lows for easy incorporation of information from the Allen Human Brain Atlas

(Hawrylycz et al., 2012) to inform the grouping of brain regions based on the
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similarity of their transcriptional profiles.

Our model uses the transcriptional profiles for grouping because we con-

sider gene expression to be an intermediate phenotype, that links SNPs to

brain imaging features. Most disease associated SNPs are located near regu-

latory regions of the genome (Maurano et al., 2012), and the effects of SNPs on

expression tend to be tissue and cell type specific (Ardlie et al., 2015). Gene

expression data of brain regions reflects cell type composition and anatomical

similarity (Hawrylycz et al., 2012), and captures a wide range of brain specific

molecular pathways (S. M. Huisman et al., 2017). For these reasons, the region

groups in the dimension reduction are based on spatial gene expression data

of the brain.

4.2 Materials and methods

The interplay between genetic variation, brain anatomy, and disease symptoms

is complex. We use a structural equation model with latent variables (Bollen,

1989) to model these relationships. We pose that the genetic variation is

exogenous, in other words: the genetic variation in a study population is not

caused by disease or brain anatomy. This variation does have an effect on the

brain. For example, in Alzheimer’s disease, genetic variants may influence the

immune response and amyloid β concentrations in the brain, which may in turn

lead to shrinkage in several brain areas (Bettens, Sleegers & Van Broeckhoven,

2013). Large scale imaging initiatives, such as ADNI, offer a possibility to

study this shrinkage of brain regions. This can be estimated from MRI data

of diseased individuals and controls, and expressed in cortical thickness and

subcortical volume measurements.

In our graphical model, we define groups of brain regions, based on the

transcriptional profiles of these areas in the healthy brain. Areas that share

patterns of gene expression in a normal brain may be similarly affected by

genetic variations. For each of the region groups, we introduce one latent

variable. This latent variable is affected by the genetic variations, and causes

changes in relevant brain regions. This makes our model similar to principal

component analysis (PCA) on sets of brain regions, combined with a regression

for the latent variables. However, in our model the weights are estimated

together, and the latent variables reflect not only the correlations between the
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regions (as in a conventional PCA), but also those between regions and SNPs

and among the SNPs.

4.2.1 Variables used

We model the relationship between single nucleotide polymorphisms (SNPs)

and brain region measurements. Let gi ∈ Rp be a vector of centred (zero-

mean) SNP values (originally coded as 0, 1, 2), and xi ∈ Rq a vector of centred

(zero-mean) and scaled (sd = 1) brain region measurements, both for indi-

vidual i. The reason both types of measurements are centred, is to eliminate

intercepts from the model. The brain measurements are, in addition, scaled to

unit variance to compensate for the considerably larger variance in thickness

or volume for larger brain areas. The genetic variants and brain measurements

are connected in the model by a set of latent variables, zi ∈ Rm.

In addition to the variables included in the model, we have two other

sources of information. In defining the model structure, we make use of ex-

ternal information on the brain region measurements, in the form of brain

region groups with a shared transcriptional profile. These brain regions can

be defined based on spatial gene expression data of the healthy adult brain.

Finally, the goal is to understand disease related phenotypes. The disease

labels are not used in the modelling stage. However, we hypothesize that

if the variation in the data is related to a disease state, the latent variables

will reflect this. After model fitting, we therefore associate each individual’s

estimated latent variable score to his or her disease status.

4.2.2 The graphical model

We model the relationship between brain SNP values and brain region meas-

urements in a structural equation model (SEM). It consists of two parts. The

first part is a linear model for brain region measurements as a function of the

latent variables,

xi = Bzi + ζi, (4.1)

where xi contains the observed brain region measurements, zi the latent

variables, and ζi is a zero-mean normally distributed error variable. The

matrix B contains the weights of the latent variables that explain the brain
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Figure 4.1: The graphical structural equation model. Observed variables are shown

in grey circles, latent variables in white circles, and error variables without circles.

This example contains two latent variables, both with their own set of observed brain

region measurements. This structure, where the latent variables define groups of

region measurements, is defined by prior knowledge on these brain regions. We use

spatially resolved gene expression data of the healthy human brain to define these

region groups.

region measurements. The second part of the SEM is a linear model for these

latent variables as a function of the SNP values,

zi = Agi + εi, (4.2)

where gi contains the observed SNP measurements, and εi is a zero-mean

normally distributed error variable. The matrix A contains regression weights,

representing the effects of the SNPs on the latent variables. Combined, these

equations mean that region changes are viewed as a manifestation of the latent

values, while the SNP values are considered causal to them. The latent vari-

ables represent some intermediate phenotype, related to the molecular state

of the connected brain regions.

The number of latent variables is equal to the number of brain region

groups, which are defined based on external spatial gene expression data. A

region group contains the brain regions with a similar transcriptional profile,

as these may react similarly to differences in genetic background. We restrict
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each latent variable to only predict the brain region measurements for its own

region group. This results in a restriction on the weight matrix B, where each

latent variable (corresponding to a column in B) has a unique set of non-zero

entries. Fig. 4.1 shows the model for two latent variables, where we can see

that each latent variable is connected to its own set of brain regions.

4.2.3 Model implied covariance

In linear Gaussian structural equation modelling, we learn the parameters of

a model by optimising the correspondence between the observed covariance

S (from the data), and the model implied variance Σ. The model implied

variance can be divided in a block matrix, by defining

Σ =

[
Σgg Σgx

Σxg Σxx

]
.

Note that this implied covariance does not contain any components for the

latent variables in z. The latent variables are not observed, and therefore we

cannot use their observed covariance in fitting the model.

The elements of the implied covariance can be parametrised in terms of

the model coefficients. The first element is

Σgg = E[ggT ].

This is the covariance of the SNPs (since these values are centred). The

SNPs are exogenous in our model: g does not have any causal variables within

our model. As a result, the implied covariance of the SNPs is not parametrised

in terms of model coefficients. We can estimate this covariance term simply

by taking the observed covariance between the SNPs.

The next element of the implied covariance matrix is

Σxg = E[xgT ]

= E[BAggT + εgT + ζgT ],

and similarly

Σgx = E[(xgT )T ]

= E[ggTATBT + gεT + gζT ].
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The final element of the implied covariance matrix is the model implied

covariance among the brain regions. This is given by

Σxx = E[xxT ]

= E[BAggTATBT + BAgεTBT + BAgζT

+ BεgTATBT + BεεTBT + BεζT

+ ζgTATBT + ζεTBT + ζζT ].

4.2.4 Model assumptions and estimation

Some elements of the implied covariance are often assumed to be zero. These

assumptions lead to a strong simplification of the implied covariance. It is

common in a regression setting to pose that the predictor variables and error

variables are independent. In our case, the error independence assumption

leads to gεT = εgT = 0. In addition, we assume that the errors in the

brain region predictions (equation (4.1)) are independent of the errors in the

latent variable predictions (equation (4.2)). This means that ζεT = εζT = 0.

Finally, we assume that the errors in brain region prediction are independent

of the SNPs, so gζT = ζgT = 0.

As a result of these assumptions, the full implied covariance matrix of the

model reduces to

[
Σgg Σgx

Σxg Σxx

]
=

E

[
ggT ggTATBT

BAggT BAggTATBT + BεεTBT + ζζT

]
.

(4.3)

For normally distributed data, the maximum likelihood estimate of the

covariance matrix is

max
Σ

(− log(|Σ|)− tr(SΣ−1)), (4.4)

where is S the observed covariance matrix. The SNP data we use is discrete,

and can therefore not be considered normally distributed. To compensate for

this, we will estimate robust standard errors. In equation (4.4), the covari-

ance Σ is parametrised according to equation (4.3), so we can perform the

optimisation over the parameter values.
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Model fitting is performed in the lavaan package in R (Rosseel, 2012). For

identifiability, we fix the loading of the first brain region measurement per

region group (latent variable) to 1. This does not only fix the scales of the

latent variables, but it also has the advantage that the resulting latent variables

will have the same direction of effect as the first brain region measurement.

For example, a reduction in volume of the first brain region will result in a

reduction in the corresponding latent variable. All the error variances on the

brain region measurements (variance of ζ) are assumed to be equal, which is

the same as in principal component analysis.

The model fit in lavaan yields estimates for B, A, and the covariance

matrices of the error variables ε and ζ. Each of these parameter estimates is

provided with robust p-values (for the hypothesis of being equal to zero), when

using the MLM estimation procedure (Rosseel, 2012). Using the estimated

model parameters, one can then calculate unbiased Bartlett scores for the

latent variables (Distefano, Zhu & Mı̂ndrilă, 2009).

4.2.5 Data

Simulated data The model is evaluated both on simulated and real data. In

the simulation, we first generated SNP values (gi) in accordance with Hardy-

Weinberg equilibrium. The minor allele frequencies were independently drawn

from a beta distribution with shape parameters α = 1 and β = 2. Then we

simulated latent variables (zi) as a linear combination of the SNP values,

with Gaussian noise (sd = 2). Each of these latent variables determined the

region measurements (xi) of a set of regions (a region group), with added

Gaussian noise (sd = 2). This part of the simulation is in line with equations

(4.1) and (4.2) and Fig. 4.1. Finally, we used a logistic model in which a

linear combination of some of the latent variables determined the probability

of observing a phenotype. These binary phenotypes (disease versus healthy)

were then drawn from a Bernoulli distribution.

We simulated 100 independent datasets for 500 individuals. Each time,

we set the number of SNPs to 20 and the number of latent variables (and

therefore region groups) to 5. We randomly selected 10 SNP-to-latent weights

(A) to be either 1 or −1. The 5 region groups contain 20, 10, 10, 5, and

5 regions respectively, for a total of 50 brain region measurements. Each

latent variable has latent-to-brain-region weights (in B), which were uniformly
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sampled between 0.5 and 1.5. All other elements of B were set to zero, which

effectively restricts each latent variable to affect only its own region group.

Finally, two out of the five latent variables were randomly selected to affect

the disease probability, with weights of either 10 or −10. All other latent-to-

phenotype weights were set to zero.

To test the robustness of our method, we also simulated data for a range

of alternative parameter settings. We varied the amount of noise in the latent

variables (zi) and the region measurements (xi) between 1 and 5. The number

of non-zero SNP-to-latent weights (in A) was varied from 2 to 20. Finally, we

constructed data sets with misspecified latent-to-brain-region weights (in B).

For this end, we swapped links between latent variables and regions. In each

swap, a region was disconnected from its original latent variable and instead

connected to another latent variable. To retain the sizes of the regions groups,

another region of that second latent variable was then connected to the first

latent variable. Each swap therefore resulted in two misspecified links. We

made sure not to swap regions back to their original latent variables.

ADNI data and preprocessing The real data used in the preparation

of this article were obtained from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) database (adni.loni.usc.edu) (Mueller et al., 2005). The

ADNI was launched in 2003 as a public-private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been

to test whether serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and neuropsycholo-

gical assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date inform-

ation, see www.adni-info.org.

The ADNI database contains measurements on a large number of cog-

nitive normal (CN) controls, individuals with late mild cognitive impairment

(LMCI), and individuals with Alzheimer’s disease (AD). The measurements

in the database include patient demographics, raw and processed MRI data,

biomarker data and SNP data. For the brain volumes we made use of the

UCSF cross-sectional FreeSurfer (Version 4.3) cortical thickness and white

matter parcellation measurements. For the SNPs we made use of the ADNI

1 Illumina Human 610-Quad BeadChip data, with imputation as previously

described (Batmanghelich et al., 2016). In the end, we selected volumes, SNPs

adni.loni.usc.edu
www.adni-info.org
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and diagnoses for 746 individuals. This data was split in two equal parts of 373

individuals, one as a training and one as a validation, to prevent over-fitting

in the modelling process.

Our methodology is not suited to genome wide analysis. Instead, it tries to

find the effects of specific SNPs on a set of latent variables. As candidate SNPs

we selected a set of 35 polymorphisms associated with Alzheimer’s disease ac-

cording to the International Genomics of Alzheimer’s Project (IGAP) study

results (Lambert et al., 2013). IGAP is a two-stage GWAS on individuals of

European ancestry for Alzheimer’s disease. In stage 1, IGAP used genotyped

and imputed data on 7,055,881 SNPs of 17,008 Alzheimer’s disease cases and

37,154 controls. In stage 2, 11,632 SNPs were genotyped and tested for as-

sociation in an independent set of 8,572 Alzheimer’s disease cases and 11,312

controls. Finally, a meta-analysis was performed combining results from stages

1&2. We selected the known SNPs, stage 1 discoveries, and stage 1&2 dis-

coveries from table 2, and the suggestive SNPs from supplemental table 4 of

Lambert et al. (2013).

The volume data was present for 112 regions. We corrected it for individual

age, gender, and whole brain volume (using linear regression), with the goal of

maintaining all meaningful variation in brain region volumes, possibly related

to the disease phenotype. For our latent variable model, the brain regions

volumes were linked to region groups. We defined these regions groups based

on the transcriptional profiles in the healthy adult human brain, as provided

by the Allen Atlas (Hawrylycz et al., 2012). This gene expression resource

contains anatomically labelled measurements taken from six human brains.

Regions with measurements in each of the six brains were selected, and the

expression values were averaged to obtain a single value for each of the 19 992

genes in each of the 105 regions of the Allen Atlas (S. M. Huisman et al.,

2017). We then performed a t-distributed neighbourhood embedding (t-SNE)

analysis to obtain a two-dimensional map of the brain regions. Brain regions

are placed nearby in this map if they have a similar expression profile across

all genes. This map was then used to manually define nine groups of brain

regions, as is shown in figure 2 of S. M. Huisman et al. (2017). The regions

of the ADNI data were manually linked to the nine region groups, as shown

in Supplemental Table 1. The anatomical atlas used for the Allen Atlas is

hierarchical: it has a tree-like structure with large regions containing smaller

regions. Table 4.1 shows a higher level description of the regions in the nine
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region groups. In most cases the Allen Atlas regions were more general (larger)

than the FreeSurfer regions of the ADNI data. Out of the 112 regions, 105

regions were linked to a region group, while the other 7 regions did not have

corresponding samples in the Allen Atlas data and were therefore left out.

Table 4.1: The nine region groups (corresponding to the latent variables), with the

brain regions they contain. These are higher level labels of the Allen Atlas (Hawrylycz

et al., 2012). A full subdivision of the ADNI FreeSurfer regions into these region

groups is provided in Supplemental Table 1.

Region group code ABA region

CrCortex cingulate gyrus

CrCortex frontal lobe

CrCortex insula

CrCortex middle frontal gyrus

CrCortex occipital lobe

CrCortex parahippocampal gyrus

CrCortex parietal lobe

CrCortex temporal lobe

Hippocam hippocampal formation

Amygdala amygdala

Striatum striatum

DorsThal dorsal thalamus

SubCort1 myelencephalon

SubCort2 globus pallidus

SubCort2 white matter

ClCortex cerebellar cortex

SulcSpac sulci & spaces
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4.3 Results

4.3.1 Simulation

To evaluate the performance of our model, the SEM was fitted to each of

the simulated datasets. We considered two measures for model comparison.

First, we set out to assess the prediction of phenotypes (disease status) from

the latent variables, with a logistic regression. In each of the 100 simulated

datasets, we estimated the latent variable scores, and used only those to pre-

dict the phenotype. For each of these 100 models, we obtained an Akaike

information criterion (AIC) value. We compared our model to several logistic

regression models that use only the simulated data, instead of the SEM estim-

ated latent scores. The first alternative model uses only all the brain region

measurements, the second only all the SNP measurements, and the third a

combination of all regions and SNP measurements. As a fourth alternative

model, we performed a PCA on the volume measurements, and extracted the

first five principal components. Fig. 4.2 shows that, on average, our latent

variables obtain a lower AIC than models using either all brain region data,

all SNP data, or both. The model using the first five principal components of

the brain region data is most similar to our model, and it only has a slightly

lower AIC on average than our model.

The second measure for model comparison is the ability to retrieve the

correct SNPs. In each of our simulation datasets, two of the five latent vari-

ables have an effect on the phenotype (disease status). All SNPs that affect

either of these two latent variables effectively impact the phenotype. We con-

sider those SNPs to be the SNPs with a true effect. We now consider how

these SNPs are ranked for importance in our SEM analysis, and two altern-

ative approaches. From our SEM fit, we extracted the robust SNP p-values

for predicting the latent variables (so the p-values for the estimates in A).

These give an impression of the importance of a SNP in predicting the latent

variables. In addition, we used the latents’ logistic regression p-values for the

phenotype. These show the importance of a latent variable in predicting the

phenotype. As a result, the path from a SNP to the phenotype contains two

p-values per latent variable: one for the latent variable prediction, and one for

the phenotype prediction.

We considered combining these p-values in two ways: 1) for each SNP
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Figure 4.2: Simulation AIC model fit. The logistic regression models use either

the SEM estimated latent variable scores ( Fitted latents), the first five principal

components of the brain region data ( 5 PCs regions), all brain region data, all SNP

and brain region data, or all SNP data.

we took the maximum p-value of the two per latent variable, and then the

minimum p-value over the five latent variables; or 2) for each SNP we used

Fisher’s method (R. Fisher, 1950) to combine the two p-values per latent

variable (−2
∑

log(pi)), and then took the minimum p-value over the five

latent variables. Note that Fisher’s method is meant for p-values testing the

same null-hypothesis, which is not the case here. Both methods yield a score

(p-value) for SNP importance. We varied a threshold for this score from 0 to

1 and compared the set of SNPs with values below this threshold to the set of

SNPs with a known true effect. In this way, we constructed a receiver operating

characteristic curve for SNP retrieval, and calculated the corresponding area

under the curve (AUC).

We compared the performance of our methodology to a straightforward

modelling approach: a logistic regression to predict the disease status phen-

otype from the SNPs. This was performed both in a univariate way (as in

a GWAS), and a multivariate way. Fig. 4.3 shows the performance of our

SEM based methods, using the maximum p-value per SNP-latent combination

(SEM max ) or using Fisher’s method (SEM Fisher), and of the GWAS-like
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Figure 4.3: Simulation AUC for SNP selection. Shown are the results for two meth-

ods of p-value integration for our model ( SEM max and SEM Fisher), for multivari-

ate logistic regression, and univariate logistic regression. A high AUC means that the

method correctly ranks the importance of the SNPs for the phenotype (disease state).

approaches. The SEM max method has the highest average AUC, indicating

that it is best able to rank the SNPs on their importance for the phenotype.

Note that the SEM Fisher method has the disadvantage that either a strong

SNP-to-latent or a strong latent-to-phenotype effect can lead to a low com-

bined p-value, regardless of the other value. The observed difference between

the univariate an multivariate approach is very small, which is to be expected

since the simulated SNP values are independent.

To test the robustness of our model, we also compared the models for

a range of alternative simulation settings. Supplemental Fig. 2 shows the

results of these simulations. The amount of noise on the latent variables has

a similar impact on all compared methods. With a large amount of noise

on the brain region measurements, the prediction of phenotypes remains best

with our model, but the identification of SNPs is better with methods that do

not make use of this region volume data. The number of SNPs with a non-

zero effect on the latent variable has little impact on the simulation results.
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Misspecification of the region groups, on the other hand, has a negative impact

specifically on the performance of our method. This shows that our approach

is somewhat sensitive to the specification of brain region groups.

4.3.2 ADNI application

We apply our methodology to the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data (Mueller et al., 2005). We selected 35 SNPs and 105 brain region

volumes for 746 individuals. The brain regions were divided into nine region

groups based on the gene expression patterns of matching brain areas in the

healthy human brain (Hawrylycz et al., 2012; S. M. Huisman et al., 2017).

Each of the nine brain region groups has one corresponding latent variable, and

each latent variable has a unique set of brain region measurements attached

to it. Supplemental Fig. 1 shows the volume loadings for each of the latent

variables. Since the first loading for each latent variable is set to 1, the latent

variables will have the same direction of effect as this variable. All but two

of the region volumes have a positive loading. Two regions in the subcortical

group 2 (SubCort2 ) are negatively correlated to the latent variable scores,

reflecting a more heterogeneous signal in this group.

Fig. 4.4 shows the association between the nine latent variables and the

selected SNPs. Only those SNPs are shown that have a nominally signific-

ant (p < 0.05) association with at least one of the latent variables. After

correction for multiple testing, the only significant effect is that for rs429358,

located in APOE, on the hippocampal region group (Bonferroni corrected

p = 2.28 · 10−4). In the validation set, here used as a replicate, this effect

was again significant (Bonferroni corrected p = 8.66 ·10−3). None of the other

associations are significant after multiple testing correction. This APOE al-

lele is known to be associated with a decrease in the hippocampal volume,

both in individuals with mild cognitive impairment (Farlow et al., 2004) and

in Alzheimer’s disease (Schuff et al., 2009).

The latent variables reflect differences in brain region volumes across the

ADNI dataset. To test whether these differences in brain region volumes

are related to the disease phenotype, we compared the latent variable scores

between the CN, LMCI, and AD individuals. Fig. 4.5 shows the distribution

of latent variable scores for the validation set. To calculate these, we used

the fitted SEM of the training data, and used its parameter estimates to cal-
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Figure 4.4: Association between SNPs and latent variable scores, as found by the

robust maximum likelihood fit of the SEM. All nominally significant associations (p <

0.05) are coloured by their robust z-statistic values (Rosseel, 2012). The linked genes

(Lambert et al., 2013) are shown in brackets. (A) The results for the training set.

After Bonferroni correction for the 315 tests, only the effect of rs429358 ( APOE)

on the hippocampus region group remains significant. (B) The validation results

confirm the significant effect of rs429358 ( APOE) on the hippocampus region group.

culate latent variable scores for the validation data. For three region groups

the latent variable scores were significantly lower in LMCI than in controls,

and even lower in AD. These regions are the cerebral cortex, the hippocampal

formation, and the amygdala. This reflects significant shrinkage in these areas

during Alzheimer’s disease progression. The region group of sulci and spaces

(SulcSpac) has a latent variable that significantly increases in LMCI and AD.

The significant association between the SNP rs429358 and the latent vari-

able scores for hippocampus reflects the importance of APOE for Alzheimer’s

disease.
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Figure 4.5: Association between the validation latent variable scores and diagnosis.

Diagnosis is cognitive normal (CN), late mild cognitive impairment (LMCI), or

Alzheimer’s disease (AD). Nominally significant differences (ANOVA p < 0.05) are

indicated with asterisks. The cerebral cortex (CrCortex), hippocampus (Hippocam),

and amygdala (Amygdala) latent volume variables are lowered with disease progres-

sion, while the latent variable score for sulci and spaces (SulcSpac) is increased.

4.4 Conclusion

We have proposed the use of a maximum likelihood structural equation model

for combining SNP data and structural brain area measurements. The model

makes use of external gene expression data, to define groups of brain regions

that may respond similarly to genetic variation. For each of these region

groups, we define a latent variable, which captures the relationship between

the regions in a group and genetic variation. We have applied the model on

a simulated dataset, to show it can capture disease relevant variation and

identify causal SNPs. In addition, we have applied the model to the ADNI

dataset, containing Alzheimer’s patients, individuals with late mild cognitive

impairment, and cognitive healthy controls. One SNP, linked to APOE, shows

a reproducible significant relationship to the latent variable that captures hip-

pocampal volume change. This latent variable, and that of the cerebral cortex,

amygdala, and sulci & spaces also significantly associate with the disease dia-

gnosis. This shows that our approach can be used to integrate several data

types, and yield interpretable results.

The fitting process of the structural equation model has relatively high
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computational cost. It is truly multivariate, which makes it infeasible at the

moment to perform genome-wide analysis. It does have advantages for in-

corporating a large number of variables, since it allows for straightforward

inclusion of constraints on the parameter estimates (Rosseel, 2012). With a

constraint on the sum of squared weights, one could for instance implement a

ridge regression. In addition, the model allows for the inclusion of additional

data. This can be done either in the specification of the model structure, as we

have done for the region groups, or by adding observed variables to the model.

In our model, we chose to group brain regions based on the similarity of their

expression profiles in the healthy brain. An interesting extension to the model

would be to incorporate a layer of latent variables to reflect a grouping of the

SNPs. These groups could also be based on the similarity of the brain-wide

expression patterns of the associated genes.

These results show that maximum likelihood SEM is a versatile approach

for data integration, which can be used to elucidate the relationships between

genetic variation, structural brain phenotypes, and brain disease.
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A spatial transcription based model search in schizophrenia

imaging genetics

Abstract

The main goal in neuroimaging genetics studies is to find the

relationships between genetic markers and brain imaging

measurements. To do this, they have to deal with a large number of

variables on both the genetic and the imaging side. This leads to

challenges in multiple testing correction, and in the interpretation of

results. We propose to use brain-specific prior information on the

activity of genes, to find a set of promising multivariate models that

predict imaging measurements from single nucleotide polymorphism

(SNP) data. First, the prior information is used to obtain biologically

meaningful cross-clusters of genes and brain regions, and then these

are utilised in a Bayesian analysis of SNP and MRI measurements

from a schizophrenia case study.

5.1 Introduction

Neuroimaging genetics studies try to find relationships between genetic mark-

ers and image derived measurements of the brain (J. Liu & Calhoun, 2014).

These brain measurements can be based on functional or structural magnetic

resonance imaging (MRI) scans for instance. The analyses can aim to study

normal brain function or to find out what goes wrong in a disease context.

If the analyses are genome-wide, this presents a practical challenge. If every

variable, i.e. genetic variation, is tested for association, the statistical multiple

testing burden is high. Therefore, genome-wide studies require large sample

sizes. For polygenic phenotypes the required number of samples to detect

79
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small univariate effects ranges from tens of thousands, to several orders of

magnitude more if the minor allele frequencies are low (Visscher et al., 2017).

In genome-wide and brain-wide imaging genetics studies this problem is even

bigger. On the one hand, the number of univariate tests to consider now also

grows with the number of brain measurements. On the other hand, it is more

time consuming and expensive to obtain a large sample size if individuals’

brains are to be scanned.

In addition to this lack in statistical power, standard genome wide associ-

ation studies (GWAS) are univariate. They therefore ignore the inherent ad-

ditive effect that variations in functional groups of genes have. These groups of

genes can be specific pathways or very large collections (Boyle, Li & Pritchard,

2017). To address these challenges, several methodologies have been proposed.

Partial least squares regression (Beaton, Kriegsman, Dunlop, Filbey & Abdi,

2016; Bouhaddani et al., 2016; Le Floch et al., 2012), parallel independent

component analysis (Pearlson, Liu & Calhoun, 2015) and sparse canonical

correlation analysis (Du et al., 2016) all assume some latent space in between

the genetic and imaging features. These latent variables can also be modelled

in a Bayesian network (Bouhaddani et al., 2016; Chekouo, Stingo, Guindani

& Do, 2016) or a structural equation model (S. M. H. Huisman, Mahfouz,

Batmanghelich, Lelieveldt & Reinders, 2018). The methods proposed in these

studies may use candidate gene sets obtained from other studies to reduce the

number of considered features. However, they usually make no use of prior

knowledge on gene-gene or brain region-region similarities. Here, we propose

an alternative approach, where we use external data of gene expression in the

brain to search for promising Bayesian multivariate linear regression models.

We will apply our method on data of the Genetics of Endophenotypes of

Neurofunction to Understand Schizophrenia (GENUS) consortium (Blokland

et al., 2017). Schizophrenia has a high heriability, with estimates varying from

41 to 87% (Chou et al., 2017; Hilker et al., 2017), and it involves a large num-

ber of genes (Kavanagh, Tansey, O’Donovan & Owen, 2015), which are part

of a range of molecular pathways (C. Liu et al., 2017). In addition, the sizes

of several subcortical brain regions have been found to differ between schizo-

phrenia patients and healthy controls, with schizophrenia patients having for

instance smaller hippocampus, amygdala and thalamus, and a larger pallidum

(Haijma et al., 2013; Van Erp et al., 2016). The links between genetic variants

and brain region measurements in schizophrenia are less clear (Franke et al.,
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2016).

We developed a methodology to find multivariate linear regression mod-

els that predict brain region volume and thickness measurements from single

nucleotide polymorphisms (SNPs). We set out to find the specific combina-

tions of brain regions and SNPs where a linear multivariate relationship can

be found. The space of possible models is far to large to analyse extensively,

so we propose models that have an a-priori interest. For this end, we ana-

lyse gene expression data of the healthy adult human brain (Hawrylycz et al.,

2012). Co-expression of genes across the brain reflects functional similarities

between these genes, specially for brain specific molecular processes and phen-

otypes (Hawrylycz, Sunkin & Ng, 2015). On the other hand, transcriptional

similarities between brain regions reflect anatomical and functional similar-

ity (Mahfouz et al., 2015; Richiardi et al., 2015). Therefore, we performed

a cross-clustering, making groups of genes and brain regions simultaneously

with a consistent expression pattern. For each of the cross-clustering parti-

tions in the gene expression data, we fitted a single regression model in the

imaging genetics data. As a result, we explore an informative subspace of all

possible models, and find groups of genetic variants that predict brain region

measurements in a schizophrenia setting.

5.2 Methods

We modelled the effects of genetic variation on the volumes or thicknesses of

brain regions in the context of the GENUS schizophrenia study. This was

done in a multivariate way, where multiple SNPs can effect a part of the

brain together. To find out which sets of variations have a combined effect,

we linked all variations to genes and sampled groups of genes based on their

co-expression in the healthy human brain. At the same time, we grouped

brain regions into sets of regions with a similar transcriptional profile in the

healthy brain. Since the most biologically relevant grouping of brain regions

may depend on the genes of interest, we performed a cross-clustering (D. Li

& Shafto, 2011). This cross-clustering divides a matrix of gene expression in

the brain into partitions (cross-clusters) of genes and and brain regions. In

a cross-clustering, each set of genes can have a unique subdivision of brain

regions.
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Figure 5.1: The Allen Brain Atlas gene expression data forms the basis of a cross-

clustering of genes and brain regions. We sampled 385 cross-clusterings (4 shown in

the figure), each of which provides a full partitioning of the gene expression matrix.

For each of the partitions (in each cross-clustering) we selected the linked SNPs and

FreeSurfer regions from the GENUS data to fit a Bayesian regression model.

A single cross-clustering cannot capture the complexity of gene expression

in the brain. Genes may play a role in several pathways at the same time,

in a complex network. As a result, a single partitioning of all genes does not

contain all the meaningful groups of genes. To deal with this complexity, we

repeated the cross-clustering a number of times (385) to obtain a distribution

of cross-clusterings. Each clustering consists of a full partitioning of all genes

and brain regions. Genes that cluster together in one clustering, may not do

so in another clustering. The cross-clustering method (D. Li & Shafto, 2011)

provides a likelihood for each clustering, which reflects the extent to which it

can describe the gene expression data.

For each partition (cluster) of the Allen Brain Atlas data, we fitted a single

Bayesian regression model on the GENUS data. Each gene was linked to SNPs

that were either identified as one of that gene’s expression quantitative trait

loci (eQTLs) or located inside that gene. Each brain region of the Allen Brain

Atlas was manually linked to its corresponding FreeSurfer region. By applying

these mappings, a partition of genes and brain regions in the Allen Brain Atlas

can be translated into a set of SNPs and a set of brain regions in the GENUS

data. These GENUS subsets were then used in the Bayesian regression models.

Figure 5.1 gives a graphical overview of this methodology.
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5.2.1 Allen Brain Atlas data

Our model makes use of gene expression measurements of the healthy human

brain from the Allen Institute for Brain Science (Hawrylycz et al., 2012). This

dataset, the Allen Brain Atlas, consists of genome-wide micro-array measure-

ments of 3 702 samples taken from across six postmortem adult human brains.

These donor brains were selected to be unaffected by disease or substance

use. The number of samples differed per brain, but in total 105 regions were

sampled at least once in each of the six brains. Preprocessing of the microar-

ray data was performed by the Allen Institute. We averaged the expression

values across probes and samples to a transcription matrix containing 19 992

genes and 105 brain regions, as described in S. M. Huisman et al. (2017). This

matrix of spatial gene expression was used as an input to the cross-clustering

algorithm (D. Li & Shafto, 2011) to obtain partitions of genes and brain re-

gions.

5.2.2 GENUS data

The schizophrenia data were obtained from the Genetics of Endophenotypes

of Neurofunction to Understand Schizophrenia (GENUS) consortium, which

contains data from 19 different studies (Blokland et al., 2017). We included

measurements of 1 192 healthy controls and 781 diagnosed schizophrenia pa-

tients, see Table 5.1. The imaging genetics models in this study were fitted on

the data of these individuals. In fact, each model was fitted on the all dataset

of 1 973 individuals, on the smaller set of cases only and on the controls only.

The individuals in the GENUS data had SNP measurements, with quality

control and imputation as in Blokland et al. (2017). In addition, we filtered out

variants with missingness > 10% using PLINK (Purcell et al., 2007) to obtain

our full set of filtered SNPs. This filtered SNP data was used to calculate

the genetic relationship matrix (GRM). This is a SNP based estimation of the

genetic relationship between all individuals in the sample (Yang et al., 2010).

The GRM was used in a SNP based REML heritability analysis (Yang, Lee,

Goddard & Visscher, 2011), and its first six principal components capture

population structure in the data for the correction of the brain measurements.

Estimation of the GRM with its principal components and of the heritability

values was performed in GCTA (Yang et al., 2011).
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Table 5.1: Overview of the 19 different sites included in the dataset. For more

information, see Blokland et al. (2017).

study cases controls male female age mean age sd

CAMH 88 103 106 85 45 18

CIDAR P 1 39 23 17 21 4

CIDAR VA 61 60 90 31 32 13

GAP 60 34 58 36 28 8

IMH SIGNRP 131 0 81 50 33 9

LandR 0 64 26 38 26 3

MCIC MGH 22 23 26 19 41 9

MCIC UMN 30 19 34 15 32 11

MCIC UNM 19 20 30 9 33 14

MGH FB12 MTH 23 52 44 31 38 13

MGH SSS SZB 20 46 42 24 32 11

MTS MH 2 15 5 12 44 14

MTS SGH 4 6 8 2 45 9

NEFS AVANTO 0 74 32 42 43 4

NEFS GENESIS 0 4 4 0 36 3

NEFS SONATA1 0 20 11 9 38 2

NEFS SONATA2 0 59 26 33 40 2

NEFS TRIO 0 18 7 11 48 2

NUIG 75 26 64 37 34 10

PHRS 0 24 10 14 18 4

TCIN 43 160 100 103 31 11

UMCU SZ1 64 89 110 43 37 13

UMCU SZ2 138 237 221 154 28 7

The 1 973 individuals also had structural (T1-weighted) MRI measure-

ments, which were processed with FreeSurfer using the Destrieux atlas (Destrieux,

Fischl, Dale & Halgren, 2010). We used 62 Destrieux atlas measurements (31

per hemisphere) for cortical thickness and a set of 14 volume measurements (7

per hemisphere) for cerebellar cortex, thalamus, caudate, putamen, pallidum,

hippocampus, and amygdala. All measurements were corrected for age, sex,

data collection site identifier, total intracranial volume, and the first 6 prin-

cipal components of their GRM, by calculating the residuals of a multivariate

ordinary least squares regression model with these predictors. The residuals

of this correction model were used in the Bayesian regression models and ad-

ditional analyses.

To perform our model search, we linked SNPs to genes in two ways. First,

we selected known eQTLs for the human brain from three studies (Gibbs et al.,
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2010; B. Ng et al., 2017; Ramasamy et al., 2014). Second, we identified SNPs

located inside genes using MAGMA (de Leeuw, Mooij, Heskes & Posthuma,

2015). For both these SNP selections we then performed pairwise SNP tag

selection with PLINK by shifting (each time 5 SNPs) a 1Mbp window across

the genome and greedily pruning SNPs with a squared correlation > 0.5.

Finally, we combined both sets of tags to end up with 70 538 SNPs for 12 033

genes in total (the tag set).

In addition, we linked the FreeSurfer regions to the Allen Brain Atlas

regions. For the subcortical brain regions the Allen Atlas annotations are

more specific than those used in FreeSurfer. In these cases, we selected the

full FreeSurfer region even if only part of it was selected in a partition of the

cross-clustering. In the cortical regions we found ambiguous mappings between

the regions. Here, we selected all Destrieux regions with at least some overlap

with a region that was part of a partition. See Table 5.2 for the links between

the FreeSurfer and Allen Brain Atlas brain regions.

5.2.3 Effects of SNPs on FreeSurfer measurements

Each partition of genes and brain regions, based on the gene expression data of

the Allen Brain Atlas, was linked to a subset of SNPs and brain regions in the

GENUS data. We used Bayesian linear regression models to predict the brain

region measurements (volumes or thicknesses) from the SNP data. For a set

of brain region measurements in GENUS, Y , we performed a PCA dimension

reduction (first component) to the vector y. The SNPs in the GENUS data

were complemented with a unit vector to form the predictor matrix X. We

then fitted the model

y = Xβ + ε,

where β is a weight vector and ε an error variable with mean 0 and variance

σ2. For each model, corresponding to a partition, we calculated a Bayesian

marginal likelihood as a measure of model fit. We used a Gaussian prior on

β and an inverse-gamma prior on the error variance σ2. To put all models on

the same scale, we standardized each y to have a mean of 0 and variance of 1,

and we centred the SNP values in X to give them a mean of 0 and imputed

the missing values with the mean values (0s in this case).

The regression models were fitted on the data of the individuals in the

GENUS data. However, the study population consists of both schizophrenia
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patents (cases) and healthy controls. The associations between SNPs and

brain measurements that we find may either be specific to individuals with

schizophrenia, a result of the differences between the patients and controls,

or present in the general population. Since the schizophrenia diagnosis label

is not part of our models, we try to shed some light on these distinctions by

fitting each regression model on the three sets of individuals: all schizophrenia

patients (ncase = 1 192), all controls (ncontrol = 781), and the combined data

(nall = 1 973).

We fitted a model for each partition on each of the three datasets. Since the

number of samples differs in the datasets, the likelihoods calculated from the

models is not on the same scale. To remedy this, we calculated Bayes factors

as measures for model quality. We define Xk as the SNP data belonging to

the kth partitioning and yk as the first PC of the measurements of the regions

in partition k, to define a Bayes factor

BFk =
p(yk|Xk, H1)

p(yk|Xk, H0)
,

for the model H1 where volumes are predicted by the SNPs, and the null-

hypothesis H0 where they are predicted by an intercept-only model. Note that

p(yk|Xk, H0), the null-likelihood, is constant for a given dataset, since it only

depends on the fixed mean, variance and number of elements (n) in yk.

5.2.4 Parameter prior settings

In a Bayesian regression analysis, the model parameters have prior distribu-

tions to reflect some prior information. We used informative priors on the

regression weights to regularise our models, effectively stating that we expect

most weights to be close to 0. Given the high computational costs of fitting

this number of models, we did not explore a wide range of prior settings. For

the Gaussian prior of the β values we used a mean of 0 and a precision value

of either a data-dependent n (so ncase, ncontrol, or nall for the respective data-

sets) or a fixed value of 30. With the data size dependent prior, we effectively

give our prior equal weight to the selected data. For the error variance σ2, we

set the shape and scale parameter of the inverse gamma distribution both to

a value of 0.001, which means this prior has little impact on the posterior.
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5.3 Results

5.3.1 Preliminary analyses

We performed a model selection procedure, in which we used gene expression

data in the healthy human brain to propose models for imaging genetics in

a schizophrenia sample. This procedure gives a list of models of interest in

which the volume or thickness of a set of brain regions is predicted by a set of

genetic variants. However, before looking into these models, we characterise

some aspects of the data.

We first explore the differences between schizophrenia patients and healthy

controls with respect to the measured subcortical region volumes and cortical

thicknesses. Figure 5.2A shows the results of t-test comparing the brain region

measurements of cases and controls. These measurements were corrected by

a linear regression for age, sex, data collection site, intracranial volume and

6 principal components of the GRM. We see a significantly larger pallidum

and right hand side putamen in schizophrenia cases, and significantly smaller

thalamus, hippocampus, and a range of cerebral cortex regions. These patterns

are quite symmetrical, with similar t-values for both hemispheres.

Next, we estimated the overall SNP heritability of brain region measure-

ments in our data. This was based on the GRM of the full set of filtered SNPs

and data of cases and controls combined (the all data). Figure 5.2B shows

that none of the regions show a significant heritability (p < 0.05) as estimated

in our data, with the highest heritability point estimates for pallidum, puta-

men and a number of cerebral cortex regions. The number of samples in our

data set may not be large enough to detect a heritability, or our SNPs do not

fully capture the variation in causal variants.

We calculated the first six principal components (PCs) of the GRM to

characterise the genetic population structure. Figure 5.3 shows these prin-

cipal component scores for all individuals. We can see that the first PC is

mainly influenced by being part of the IMH site (Institute of Mental Health

– Singapore Translational and Clinical Research in Psychosis). Since this is

the only study site in Asia, the pattern is likely due to population structure.

Moreover, this study only includes cases (see table 5.1), so analyses based on

the SNP data are likely to have a diagnosis related bias unless this is correc-

ted for. The principal components were therefore used, together with other
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Figure 5.2: (A) The t-test results for each of the 76 brain region measurements,

comparing the schizophrenia group to the controls. The brain region measurements

were corrected by a linear regression for age, sex, data collection site, intracranial

volume and 6 principal components of the GRM. The vertical dashed lines show

upper and lower cut-offs for p < 0.05 before (grey) and after (black) Bonferroni

multiple testing correction. (B) SNP based heritability estimates for the corrected

region measurements on the full dataset ( all), with standard error bars (1 s.e.). See

Figure 5.5A for a colour legend, and see Table 5.2 for the explanation of the region

abbreviations.

covariates, to correct the brain region measurements.

Even though we could not find significant heritability values in our data,

we set out to see if any of the individual SNPs have a significant univariate

association with the region measurements. Often genome wide association

studies need a very large sample size to compensate for the multiple testing

issues involved in a genome-wide analysis. In our imaging genetics case this

is exacerbated by the fact that we perform the tests for a number of brain

regions. Figure 5.4 shows that our analyses have no significantly associated

SNPs after additional correction for the number of brain regions. The SNP

rs72809913 for the superior parietal lobule (G parietal sup) is linked to the

gene SMYD5 by an eQTL study (B. Ng et al., 2017). It would be significant
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Figure 5.3: The first six principal component scores of the genetic relationship matrix

based on the full set of filtered SNPs on all individuals (the all data). Each dot is an

individual and the colours indicate the study site they were part of.

Figure 5.4: Genome wide association plot for univariate models predicting each of

the 76 corrected region measurements. Only p-values < 0.001 are shown as individual

points, and their colour indicates the brain region that was tested (see Figure 5.5).

Horizontal lines show the standard GWAS cut-off of p < 0.05 · 10−6 before (grey)

and after (black) an additional Bonferroni correction for the number of brain regions

being tested.

(p = 1.25 ·10−8) without multiple testing correction for the number of regions.

With this correction, we find no associations in the genome wide univariate

analysis. Our proposed method tries to find multivariate models that do have

an impact on brain region measurements.
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5.3.2 Clustering for proposed models

Our methodology relies on a cross-clustering of the gene expression data of

the Allen Brain Atlas. Each clustering contains a number of partitions, which

in turn consist of sets of brain regions and genes. Similarities between genes

in the expression dataset tend to reflect shared pathways and functions in

the brain (S. M. Huisman et al., 2017) and similarities between brain regions

reflect anatomy and cell type composition (Mahfouz et al., 2015). Figure 5.5B

shows how frequently brain regions cluster together in our cross-clustering

approach. We can see that regions contained in larger structures, such as the

cerebral and cerebellar cortex or the striatum tend to cluster together with

the other regions within these structures. Figure 5.5C shows an example of a

single cross-clustering.

From our clustering on the Allen Brain Atlas data we obtained a set 385

cross-clusterings, containing 101 694 cross-clustering partitions. These parti-

tions varied widely in size, with the number of genes in a cross-clustering par-

tition ranging from 1 to 19 971 and the number of brain region measurements

from 1 to all 105. Figure 5.6A shows the 385 clusterings and their cross-

clustering likelihoods, comparing the average number of gene and samples

(brain regions) the partitions in these cross-clusterings contain. The best

clustering, with the highest clustering likelihood, had an average size of 98

genes and 11 brain regions per partition. In the end, it is not the clusterings

we are interested in, but the 101 694 partitions.

For each cross-clustering partition of genes and brain regions in the Al-

len Brain Atlas data, we selected the linked SNPs and brain regions in the

GENUS data. As a result, we obtained model data for the 101 694 cross-

clustering partitions. This model data of course also varied in size, with the

number of SNPs in a cross-clustering partition ranging from 1 to 69 166 and the

number of brain region measurements from 2 (all regions have measurements

in two hemispheres) to all 76. In this way, each cross-clustering partition was

translated to a single regression model. Each model, in turn, was fitted on

each of the three datasets (control, case or both).
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Figure 5.5: (A) A schematic map of the brain, showing the colours used in the Allen

Reference Atlas (Ding et al., 2016) and throughout this paper. (B) Co-clustering

proportions of the Allen Brain Atlas regions in the cross-clustering approach. For

each clustering we averaged the proportion of times each pair of regions was part of

the same partition, and then averaged those proportions over all cross-clusterings.

A value of 1 indicates regions are always found together in a partition. (C) An

example of a cross-clustering on the ABA gene expression data. One of the partitions

is highlighted in red. Note that the columns (regions) cannot be ordered to make all

regions within them side-by-side, so ordering is based on anatomy (see A), and within

each gene view the regions in a single partition share a shade of grey.
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Figure 5.6: (A) The likelihoods for each of the 385 cross-clusterings and the average

number of genes and samples in the clusters they contain. (B) The log-Bayes factors

for the models for the all dataset with prior nall, as a function of the number of SNPs

they contain. Larger models tend to have a lower Bayes factor. Models containing

more than 10 000 SNPs were not considered.
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5.3.3 Selected models

We obtained a marginal likelihood for each model, with two different settings

for the prior precision of the β values (see section 5.2.4). To interpret these

likelihoods, we translated them into Bayes factors with respect to a null model

which contained only an intercept to predict the region volumes. Figure 5.6B

shows the likelihoods as a function of the number of SNPs in each model, for

the all dataset, and the prior β precision value set to the number of individuals

nall. Models containing more than 10 000 SNPs (out of the total 70 538 SNPs)

were not considered, because large models tend to have low likelihoods and

are computationally intensive to fit. Note that the overwhelming majority of

models has a negative log-Bayes factor and is therefore not of interest.

Each cross-clustering on the Allen Brain Atlas data was sampled independ-

ently, and two clusterings could therefore contain identical partitions. Even if

two partitions were not identical on the Allen Brain Atlas data, after mapping

to the GENUS data they could lead to the selection of the same sets of SNPs

and brain regions. As models of interest, we selected all unique models with a

log-10 Bayes factor larger than 2 in any of the three datasets (cases, controls,

or all). This means such a model has a likelihood at least 100 times higher

than the corresponding null model. As a result, we end up with two sets of

models of interest, one for each of the β prior settings (203 models for prior n

and 77 models for prior 30).

Figure 5.7 shows some statistics of the models of interest where the β prior

precision is set to n. The number of SNPs in the selected models ranges

from 26 to 3 447, and the number of regions from 2 to 74. The figures show a

comparison of the likelihoods in each of the three datasets. In total, 46 models

were selected in the all dataset only, 11 in the all data and the controls, 46 in

the controls only, 4 in the controls and cases, and 96 in the cases only.

Before we go into a description of some models, we would like to stress that

the selected models are not independent. They often overlap in the regions

they predict, and in the SNPs that are selected. Figure 5.8 and Supplemental

Figures 5.11 and 5.12 show the relationships between the models in model

networks. Each node in the network is a model, so it contains a set of brain

regions and a set of SNPs. Models are connected if they have any overlap in

the set of selected SNPs. If a model has a high Bayes factor, other models with

similar sets of SNPs and similar sets of regions might also do well. As a result,
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we find groups of connected models (so shared SNPs) with an overlap in brain

regions (indicated by the node colours). So model overlap in SNPs is captured

in the node connections, and overlap in regions in shared node colours. Note

for example a cluster of models (nodes) at the bottom of Figure 5.8 that all

represent models for the cerebellum, with some overlap in SNPs. The cluster

of models at the top right even contains a number of models with an identical

set of 72 SNPs, all located in the gene EYS. These models differ in the brain

regions that were selected, although they all contain the amygdala.

We do not provide a full interpretation of all selected models, but will high-

light a few of them, indicated with arrows in Figure 5.7. Functional enrichment

analyses are performed using DAVID 6.8 (D. W. Huang, Sherman & Lempicki,

2009). Model 58 1670 is selected in the cases only and it contains samples from

left and right hand pallidum, see Figure 5.9. The model seems predictive for

pallidum volume in the cases. The full set of 127 genes selected in the gene ex-

pression data contains 41 genes that are annotated as structural constituent of

ribosome (GO:0003735), Benjamini-Hochberg corrected p = 4.7 ·10−47. Given

that this model was only selected using the schizophrenia cases, the variations

in pallidum size might be related to variation among schizophrenia patients.

It is not selected in the all data, perhaps because the signal is drowned out by

variation in the controls. Note that the volume of the pallidum is positively

associated with schizophrenia in our sample, see Figure 5.2A. Interestingly,

asymmetries in this region have been associated with schizophrenia in the

ENIGMA Consortium data (Okada et al., 2016), and ribosomal gene DNA

copy numbers and DNA damage seem to be higher in schizophrenia patients

(Chestkov et al., 2018; Porokhovnik et al., 2015).

Figure 5.7: (Next page) The model Bayes factors in each of the three datasets for all

selected models with the β prior precision set to the number of samples. The figure

is split over two lists to fit the page. The number of SNPs in each model is shown

on the left and the colour bars on the right indicate the regions that were part of that

model. The column for genes shows the number of genes in the original partition,

and to the left of that the number of those that actually contain SNPs. The three

models that are preceded by a black arrow are discussed in the text.
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Figure 5.8: The model network for all models selected on the all dataset (cases and

controls) with the penalisation parameter set to the number of samples nall. Each

node represents one model, has a size proportional to the Bayes factor, and is coloured

to indicate the brain regions included. The text on each node shows the node identifier

and the number of SNPs it contains. Nodes (models) are connected if they share

SNPs, either < 20% (dashed edge) or ≥ 20% (solid edge) of the smaller of the two

models. If all SNPs in the smaller model are contained in the other model the edge

is coloured red.
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The set of selected models for cases-only contains a subset of overlapping

models that predict the thickness of the inferior temporal gyrus, as can be

seen in Figure 5.11. The model with the highest Bayes factor in this group

is 22 39, see Figure 5.10. Of the 331 genes selected in this model, 37 have

olfactory receptor activity (GO:0004984), Benjamini-Hochberg corrected p =

4.5·10−16. This model only had strong evidence within the cases, in predicting

cortical thickness from the SNPs, but the inferior temporal gyrus is also the

brain region most strongly associated to the schizophrenia label in our data

(Figure 5.2A). Schizophrenia patients tend to have a thinner inferior temporal

gyrus.

Finally, model 293 577 is selected in the all set and the controls, and

it contains samples from the cerebellum, see Figure 5.14. The full set of 305

genes has 21 genes that have been linked to immunity (UniProtKB KW-0391),

Benjamini-Hochberg corrected p = 5.1 · 10−3. Because the model performs

well in the controls too, the possible link between the SNPs in this model

and the brain region measurements is most likely not related to schizophrenia.

Note that the maximum a posteriori probability (MAP) estimate of the error

variance is also relatively low in the cases, but this is not reflected in the model

likelihood and Bayes factor.

When we set the prior precision of β to 30, the models with a log-10 Bayes

factor > 2 tend to be considerably smaller in number of SNPs. Figure 5.13

shows some characteristics of these models. The number of SNPs in the se-

lected models ranges from only 1 to 29, and the number of regions from 4 to

74. Of the selected models, 1 had a log-10 Bayes factor > 2 in the cases and

in the all data, 43 only in the cases, 31 only in the all data, and 2 only in the

controls. On top of the bars showing the Bayes factors for the three datasets

we list the genes that are represented in the model, either because they contain

eQTLs or because model SNPs are located within the gene boundaries. Most

of the models that were selected in the all dataset only contain SNPs in the

AFM gene, and differ just in the exact combination of brain regions selected.

Note that these are therefore highly correlated models.



98 CHAPTER 5. MODEL SEARCH IN IMAGING GENETICS

Figure 5.9: Characterisation of model 58 1670, with the β prior precision set to the

number of samples. The plots show the observed first principal component score (y)

of the region measurements versus the estimated posterior predictive distribution for

each individual. We approximated these distributions by each time sampling a set of

regression weights (β) from their multivariate normal posterior distribution, and an

error variance (σ2) from its inverse-gamma posterior distribution, and then taking a

sample from the posterior predictive distribution using these parameters. The number

at the top-left of each plot indicates the maximum a posteriori probability estimate of

the error variance. Since all variables were scaled to unit-variance, an error variance

< 1 indicates that at least part of the sample variance is explained by the model. The

schematic view of the brain shows the selected brain regions.
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Figure 5.10: Characterisation of model 22 39, with the β prior precision set to the

number of samples. For further explanation, see the caption of Figure 5.9.
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5.4 Discussion

We set out to find the relationships between genetic variants and brain re-

gion measurements in a schizophrenia context. Rather than fitting univariate

models, as in a standard genome wide association study, we explored a set

of multivariate models. These models were proposed using a cross-clustering

on the genome wide and brain wide gene expression data of the Allen Human

Brain Atlas. Each partition of the gene expression data was translated into a

model predicting a set of FreeSurfer measurements of schizophrenia patients

and healthy controls from a set of SNP profiles.

We found a large set of models with a higher evidence than a null-model.

Some of the results point to involvement of ribosomal genes in the pallidum,

which was enlarged in schizophrenia patients, and olfactory receptor genes

in the inferior temporal gyrus, which was thinner in schizophrenia patients.

These results are exploratory, and do not show a direct causal link, but they

illustrate the effectiveness of our method in finding imaging genetic associ-

ations. The effect sizes are small, as they commonly are in genome wide

association studies (Visscher et al., 2017), which makes the models more sens-

itive to batch effects of datasets. The smaller datasets that are contained in

the GENUS data differ widely in geographic provenance, demographic charac-

teristics, and relative group sizes for cases and controls. Specially for studies

that contain only either cases or controls, a simple linear regression for batch

effect removal might not be sufficient.

An additional challenge in the interpretation of the biological results, is the

fact that the models do not explicitly contain the schizophrenia label. Models

are fitted on cases, controls or all data, but the relationship between the ima-

ging genetic signals and the disease label is not modelled. Theoretically, any

relationships between genetic markers and brain region measurements could

be independent of schizophrenia. However, we pose that relationships that are

present in the cases, but not in the controls, may be related to schizophrenia

severity or type. Relationships that were found in the full dataset only (all)

could be related to schizophrenia, or be a general result, picked up because of

the increased statistical power in the all data. This complicates interpretation

and is an additional reason why the results need independent verification.

Our method relies on the information provided by the gene expression

data, both with respect to region-region similarities and gene-gene similarit-
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ies. So one of the assumptions of our approach is that the clustering of genes

is relevant for the phenotype of interest. That is, genes with a similar spatial

expression pattern contain SNPs that, together, predict the variation in brain

region volumes and thicknesses measured in the study population. The value

of transcriptional similarities of genes in the brain has been shown in mul-

tiple studies (Hawrylycz, Miller et al., 2015; Mahfouz, Huisman, Lelieveldt &

Reinders, 2017), but if the goal is to find useful groupings of genes, one could

perform a pathway based analysis instead. Pathway gene groupings have been

used in a range of complex disease studies (Kao, Leung, Chan, Yip & Yap,

2017). However, the advantages of our gene groupings are that they are brain

tissue specific and that they include genes for which no pathway information

is available. Alternatively, one could use a hybrid approach, where pathway

shared membership is used as prior grouping information (Du et al., 2016).

In addition to the gene-gene similarities, the expression data we used for

model selection also informs our grouping of brain regions. Gene expression in

the Allen Brain Atlas is strongly influenced by cell type composition (Grange

et al., 2014; Hawrylycz, Miller et al., 2015), and it reflects relative locations

in the brain (Mahfouz et al., 2015). If differences in brain area sizes are

related to development in specific cell types, this would support our way of

clustering. Since SNPs appear to affect gene expression in a cell-type specific

manner (Ardlie et al., 2015), brain regions with a similar cell type composition

are more likely to be affected by the same SNPs. As an alternative to gene-

expression based similarity, one could use connectivity information, to make

groupings that are more closely related to functional networks in the brain.

A challenge of using the Allen Brain Atlas in combination with the GENUS

data is that it requires mappings. First, each gene grouping is translated into

a grouping of SNPs. This linking of SNP to gene is a common challenge

in genetic research (Mooney et al., 2014), and for a real understanding of the

biological mechanisms, it may require additional wet-lab experiments. Second,

the regions in the Allen Atlas have to be mapped to FreeSurfer regions, also

a common challenge in studies involving brain imaging data (Evans, Janke,

Collins & Baillet, 2012). Although the Allen Reference Atlas (Ding et al.,

2016) and the Destrieux atlas (Destrieux et al., 2010) are similar in their use

of anatomical terms, they are not identical. In addition, some regions, notably

the ventricles, have no gene expression data, and are therefore ignored in this

study.
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A problem often encountered in imaging genetics studies is the need for

strong multiple testing corrections of p-values, on datasets with small sample

sizes. Because our study is a Bayesian exploratory analysis without true hy-

pothesis testing, multiple testing correction is formally not needed. However,

it is still a challenge to point out which models are truly interesting, and to

avoid proposing models that were selected purely by chance. This could be

addressed by explicitly modelling the fact that we consider a large number of

hypotheses (Westfall, Johnson & Utts, 1997).

Even though we already consider over 100 000 models, the total number of

combinations of genes and brain regions is many orders of magnitude larger.

Moreover, the proposed models are overlapping in their genes and regions.

We could have proposed larger and more diverse set of models by using a

true bi-clustering method rather than a cross-clustering. Having more models

to consider would, however, make the multiple “hypothesis testing” issues

stronger, as would having models that are less correlated.

Finally, our approach poses some practical challenges. As in any Bayesian

analysis, we specify prior distributions for the model parameters. We used

informative prior distributions for the regression weights, as a way to regularise

the models. Our prior distribution reflects the expectation that most SNPs

will have no effects. However, the strength of this prior distribution, i.e. the

precision of the prior, has to be specified. We have used two different settings

for this prior. The more informative prior favoured models with a larger

number of SNPs. Determining which models are of most interest requires

further investigation of the biological relationships between genetic variations

and brain region measurements.

By using a cross-clustering of gene expression data in the healthy human

brain, we explored a large set of models for imaging genetics in schizophrenia.

This shows the potential for multivariate modelling in a high dimensional data

problem, while making use of prior information. Since the prior knowledge of

the gene expression data is brain specific, this also aids in the interpretation

of identified models.
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5.5 Supplement

Figure 5.11: The model network for all models selected on the data of schizophrenia

patents only, with the penalisation parameter set to the number of samples ncase.

For further explanation, see the caption of Figure 5.8.
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Figure 5.12: The model network for all models selected on the controls only, with the

penalisation parameter set to the number of samples ncontrol. For further explana-

tion, see the caption of Figure 5.8.
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Figure 5.13: (Previous page) The model Bayes factors in each of the three datasets

for all selected models with the β prior precision set to 30. The number of SNPs in

each model is shown on the left and the colour bars on the right indicate the regions

that were part of that model. The names on the bars show all genes that were linked

to the SNPs in that model.

Figure 5.14: Characterisation of model 293 577, with the β prior precision set to the

number of samples. For further explanation, see the caption of Figure 5.9.
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Table 5.2: The FreeSurfer regions and their linked ABA regions.

short name linked ABA identifiers long name

G and S paracentral PCLa-i Paracentral lobule and sulcus

G and S cingul-Ant CgGf-s; CgGf-i Anterior part of the cingulate gyrus and sul-

cus (ACC)

G and S cingul-Mid-Ant CgGf-s; CgGf-i Middle-anterior part of the cingulate gyrus

and sulcus (aMCC)

G and S cingul-Mid-Post CgGf-s; CgGf-i Middle-posterior part of the cingulate gyrus

and sulcus (pMCC)

G cingul-Post-dorsal CgGp-s Posterior-dorsal part of the cingulate gyrus

(dPCC)

G cingul-Post-ventral CgGp-s Posterior-ventral part of the cingulate gyrus

(vPCC, isthmus of the cingulate gyrus)

G cuneus Cun-pest; Cun-str Cuneus (O6)

G front inf-Opercular fro Opercular part of the inferior frontal gyrus

G front inf-Orbital orIFG Orbital part of the inferior frontal gyrus

G front inf-Triangul trIFG Triangular part of the inferior frontal gyrus

G front middle MFG-s; MFG-i Middle frontal gyrus (F2)

G front sup SFG-m; SFG-l Superior frontal gyrus (F1)

G Ins lg and S cent ins LIG Long insular gyrus and central sulcus of the

insula

G insular short SIG Short insular gyri

G occipital sup SOG-s Superior occipital gyrus (O1)

G oc-temp lat-fusifor OTG-s; OTG-i; FuG-its;

FuG-cos

Lateral occipito-temporal gyrus (fusiform

gyrus, O4-T4)

G oc-temp med-Lingual LiG-pest; LiG-str Lingual gyrus, ligual part of the medial

occipito-temporal gyrus, (O5)

G oc-temp med-Parahip PHG-l; PHG-cos Parahippocampal gyrus, parahippocampal

part of the medial occipito-temporal gyrus,

(T5)

G orbital LOrG; MOrG Orbital gyri

G pariet inf-Angular AnG-s; AnG-i Angular gyrus

G pariet inf-Supramar SMG-s; SMG-i Supramarginal gyrus

G parietal sup SPL-s; SPL-i Superior parietal lobule (lateral part of P1)

G postcentral PoG-cs; PoG-sl Postcentral gyrus

G precentral PrG-prc; PrG-sl; PrG-il Precentral gyrus

G precuneus Pcu-s; Pcu-i Precuneus (medial part of P1)

G rectus GRe Straight gyrus, Gyrus rectus

G temp sup-G T transv HG Anterior transverse temporal gyrus (of

Heschl)

G temp sup-Lateral STG-l; STG-i Lateral aspect of the superior temporal gyrus

G temp sup-Plan polar PLP Planum polare of the superior temporal

gyrus

G temporal inf ITG-its; ITG-l; ITG-mts Inferior temporal gyrus (T3)

G temporal middle MTG-s; MTG-i Middle temporal gyrus (T2)

Cerebellum.Cortex PV-V; PV-VI; He-VI; PV-

Crus I; He-Crus I;

He-Crus II; PV-VIIB; He-

VIIB

Cerebellar cortex

Thalamus.Proper DTA; ILc; LGd; DTLd;

DTLv; DTM; ILr

Thalamus

Caudate BCd; HCd; TCd Caudate

Putamen Pu Putamen

Pallidum GPi Pallidum

Hippocampus DG; CA1; CA2; CA3;

CA4; S

Hippocampus

Amygdala ATZ; BLA; BMA; CeA;

COMA; LA

Amygdala
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General discussion

In this thesis, we have explored several ways to use spatial gene expression

data of the brain to inform studies into brain genetics. The methods and

goals in the chapters are varied, but they have some strong connections.

All of the chapters in this thesis make use of the gene expression data of

the Allen Human Brain Atlas. More specifically, they use similarities derived

from this data. First, this can be in the form of gene-gene similarities. Genes

have a strong similarity to other genes when they share a pattern of activity

throughout the brain. In other words, genes are similar if they are transcribed

in the same brain regions. Chapter 2 makes use of this type of similarity.

Secondly, similarities can be calculated between brain regions. Annotated

parts of the brain, such as the amygdala, are compared to other parts of the

brain with respect to their transcriptional profiles. They are considered similar

if the same genes are transcribed. Chapter 4 uses this region-region similarity.

In Chapters 3 and 5, we use both gene-gene and region-region similarities.

In addition, all chapters have a focus on the integration of modalities,

mainly of genetic variation and gene expression. In Chapters 4 and 5, we

also include structural brain measurements. The genetic variant data and

these structural brain measurements are acquired from study populations for

specific brain disorders. The gene expression data, on the other hand, was

measured in the healthy individuals of the Allen Human Brain Atlas data.

This means the data is derived from disjoint samples, which makes integration

quite challenging. In this case it is not possible to simply connect the data sets

by concatenation, or by linking the identifiers of the individuals. We cannot

equate a “row” in one data matrix to one in the other. Each chapter of this

thesis has its own ways to deal with this issue.
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In Chapter 2, we looked for molecular processes and brain regions involved

in migraine, purely based on SNP data of migraine study participants. We

did this in two ways. In the first method, we focussed on the small signals

of sub-significant SNPs in gene clusters, and in the second on genes with

high-confidence SNPs and their co-expression networks. The Allen Human

Brain Atlas expression data was used to calculate the gene similarities required

to build these gene clusters and co-expression networks. The two methods

converged on a number of genomic functions and brain regions.

In Chapter 3 we visualised the Allen Brain Atlas gene expression data to get

a visual overview of the patterns in the data. It shows the similarities between

genes with respect to their activity in the brain, and similarities between brain

regions with respect to their transcriptional profiles. So it focusses on the two

types of similarities used throughout this thesis. The BrainScope portal helps

to explore the Allen Human Brain Atlas data, but it also has a more general

methodological contribution. Many recent studies have data that is both large

(genome-wide for instance) and complex, because measurements were taken

over time or across tissues. BrainScope shows an intuitive way to visualise

this type of data.

In Chapters 4 and 5, we try to find more model-based ways to combine

disease genomics with the brain transcriptome data. In Chapter 4, we use

a structural equation modelling approach, which is more commonly used in

psychometrics. Here, we encode the brain transcriptome data in the model

structure to understand the relationship between genetic variation and vari-

ation in the volumes of brain areas in the context of Alzheimer’s disease. In

Chapter 5, we use a Bayesian method to incorporate the brain transcriptome

data as prior information to study the relationship between variation in the

genome and brain area volumes in the context of schizophrenia.

6.1 Generating and testing hypotheses

The gene expression data used in each of the chapters of this thesis is available

in the Allen Human Brain Atlas. This data, as would an atlas of the earth,

facilitates exploration. While questions about specific molecular pathways in

specific areas of the brain can be answered using this resource, we performed

mostly explorative studies. We were interested in which sets of genes or brain

regions could be involved in migraine, Alzheimer’s disease, or schizophrenia.
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The results are far removed from clinical applications, and aim to point future

experimental research in a better direction.

Explorative research was most famously advocated by John Tukey, as a

necessary attitude and a way to find the right questions for us to answer

(Tukey, 1980). In his view, we can distinguish three modes of data analysis,

often performed as stages in a single study (Behrens & Yu, 2003). The first

mode is purely explorative, and involves descriptive statistics and plots. In the

second mode one can use probabilistic methods, but do so in a loose way. This

“rough confirmatory” mode is an extension of the exploratory data analysis

to see which models are promising. Many of the analyses in this thesis are

of this type. In the third mode, the real confirmatory mode, hypotheses are

tested in a formal way.

With exploratory data analysis, and data visualisations in particular, we

can find unexpected patterns in data. It can also save us from making big

mistakes in our analyses. It can be tempting to the analyst to directly jump

from data collection into the final probabilistic analysis. The famous example

of Anscombe’s quartet (Anscombe, 1973) shows how this can go wrong. It

has four bivariate datasets with identical summary statistics and ordinary

least squares regression statistics. However, they are widely different in the

relationships between the two variables, as can be seen by making scatter

plots of them (Figure 6.1). After looking at the plots, one would not describe

these data sets as identical, but rather proceed with controlling for outliers or

choosing non-linear models for example.

In light of this, it is good to explore our data before fitting our models

of interest. This presents a challenge, though. An exploratory phase should

be allowed to influence the confirmatory phase, since we should have an open

mind during exploration. But if the explorations influences the set of hypo-

theses that are tested, we introduce a bias. We will be more likely to test

hypotheses that already seemed to be true, and avoid those for which we saw

no evidence in exploration. The effective number of tests for which we would

need to correct in the confirmatory phase is then not the number of tests that

we actually perform, but all those that we could have considered before ex-

ploration. This was also well-known by Tukey, who urged to be very careful

in real confirmatory studies, relying on experiments with randomisation and a

very limited set of hypotheses (Tukey, 1980). The best way to go about this,

is to collect new data for the confirmatory analyses.
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Figure 6.1: Scatterplots of four datasets (“Anscombe’s quartet”) with identical lin-

ear regression statistics. Reprinted from “Graphs in Statistical Analysis,” by F. J.

Anscombe, 1973, The American Statistician, 27(1), 19–20.

Some data sets, however, are one-of-a-kind. Although several data collec-

tions of gene expression in the human brain are now available (Mahfouz et

al., 2017), these are so different in their set-up that they cannot be considered

to be true replicates. To avoid hypothesis creation and testing on the same

data, we could use different subsets of the data, analogous to how model para-

meters are estimated in a cross-validation. However, to fully understand the

data, and for instance detect outliers, some exploration of the whole dataset

is needed. Moreover, when the same dataset is used in multiple studies by the

same researcher, the parts that are left out in one study can still influence the

hypotheses posed in the next. In the chapters of this thesis we stayed in the

rough confirmatory mode, and left the formal confirmation to future studies.

Probabilistic analyses, rough or confirmatory, can be performed as part of

at least two distinct paradigms. Chapters 2 to 4 are frequentist in nature.

Chapter 5 makes some use of Bayesian ideas. These paradigms may contain

very similar methods, but they are philosophically quite distinct (Wakefield,
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2013). In a frequentist setting, the statistics we calculate on our data are

random characterisations of a true and fixed, but unknown, model. If we

were to repeat our experiment, the estimated parameters would on average

get closer and closer to the true parameters. Bayesian inference, on the other

hand, considers the parameters themselves to be random. This follows from

a different definition of probability. Arguably, probabilistic statements are

often about personal knowledge or belief. Researchers have a mental model of

the truth, and change their beliefs when confronted with data. In a Bayesian

setting, there is a prior probability distribution for each parameter, and with

data we can update these to obtain posterior distributions.

In Chapter 5, we used the Allen Human Brain Atlas data to propose mod-

els. In effect, we used this gene expression to specify which imaging genetic

models had a high prior probability of being informative. Then we updated

that information by fitting these models on data obtained from schizophrenia

patients and healthy controls. This is a simple application of the Bayesian idea,

but it shows a strong practical advantage. We can use the prior to incorporate

information from data of a different type. The prior allows for the integration

of data from different modalities, measured on different individuals. And, as

stated, this was a common challenge in all chapters of this thesis.

Bayesian analysis also has its disadvantages. The subjective probability

definition and, more specifically, the use of prior distributions is not welcomed

by all statisticians (Gelman, 2008). The main reason is that personal bias,

even if formalised, should not be part of the scientific process. Practically,

Bayesian analyses can also be challenging, since they usually require a good

understanding of probability distributions and complex algebra and compu-

tation. Finally, Bayesian inference is often less standardised than frequentist

alternatives. For instance, multiple testing correction using family wise error

rate or false discovery rate control has a strong tradition in frequentist infer-

ence. In a Bayesian setting we can use explicit models for the testing process

(Wakefield, 2013), prior probabilities for null models in Bayes Factors (West-

fall et al., 1997), or one could say that correct specification of parameter priors

makes multiple testing correction unneeded (Wakefield, 2013).
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6.2 The brain

One aspect of the exploratory nature of our analyses is that we consider all

parts of the brain for which we have full data. In some cases, this limits the

scope. In Chapter 5 for instance, we leave out all FreeSurfer measurements for

ventricles, since they don’t contain the tissues we have gene expression data

for. This means we could miss some important signals. On the other hand,

our analyses might include data on more brain regions than necessary. It can

be wise to be more restrictive, by ruling out parts of the data beforehand. If

we had focussed on the areas for which some involvements in the disease of

interest were known, it would have lowered the multiple testing burden. In

calculating gene-gene similarities across the brain, including irrelevant regions

may add noise. In the end, this is a balance between keeping all options open,

and making use of valuable prior information.

The chapters in this thesis are region-of-interest based, in a broad sense.

That is, the whole brain is divided up in anatomically labelled regions, and

these are the level of measurement for analysis. More agnostic methods use

brain scan data on a voxel level (Bigos & Weinberger, 2010). Often these

methods rely on a dimension reduction step in the analysis, to reduce the

multiple testing burden and increase the interpretability of the results (J. Liu

& Calhoun, 2014). Our choice to use region data was mostly determined by

the fact that we combined datasets on the level of anatomical labels. Mapping

from one anatomical atlas to another is a challenge in general, especially if

they use different coordinate systems (Evans et al., 2012). The Allen Human

Brain Atlas contains expression data that is measured on dissected samples of

anatomically labelled areas. These samples do not cover the whole brain, but

are “chunks” taken from the brain to represent the regions from which they

were taken. As a result, the expression data is less suitable to be combined

with other modalities on a voxel level.

The types of brain data considered in this thesis are limited to micro-array

gene expression measurements and features derived from structural magnetic

resonance imaging (structural MRI). Other types of brain measurements, such

as those obtained by functional or diffusion weighted MRI provide more dy-

namic information, and diffusion tensor images give information on brain net-

works. Since we use region-region similarity information from the Allen Hu-

man Brain Atlas, combining these modalities would be interesting. It would
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focus more on a dynamic connected brain, rather than a static “molecular

brain”.

6.3 The genetics

The genetics of brain disease are complex. Even when only single nucleotide

polymorphisms (SNPs) are considered, they can affect brain phenotypes in a

number of ways. SNPs found in GWAS are not necessarily causal. This could

of course be due to linkage disequilibrium (LD) with causal SNPs, but also be-

cause they can be markers for structural variations that are ignored in GWAS

(Brodie, Azaria & Ofran, 2016). The causal variations can affect protein func-

tion if they lie in coding regions, or abundance if they affect gene regulation or

splicing. Rare variant information is becoming more widely available, but due

to the costs of whole exome and whole genome sequencing, and the challenges

in statistical analysis, many population studies still focus on common variants

found with SNP arrays. Nevertheless, whole genome data can capture much

more of the meaningful genetic variation (Telenti et al., 2016).

The genetic data used in this thesis is of two types. On the one hand, we

consider the common genetic variants in disease populations. On the other

hand, we look at the spatial gene expression in a small set of healthy indi-

viduals. In Chapters 2 and 5, the gene expression data is used to make groups

(or modules) of genes. Because genes within a module are similar in their

expression patterns across the brain, and co-expression is linked to similarities

in function (as can be seen in Chapter 3), these modules are considered to

be meaningful in a brain context. Note, though, that these are still modules

of genes, not of genetic variants. To attribute variants to modules, we rely

on a mapping. Chapter 2 links variants to genes if they lie within a 15 kbp

window around those genes. However, variants often affect genes up to 2 Mbp

away (Brodie et al., 2016). Chapter 5 addresses this by also considering known

eQTL SNPs, that were found in brain data. Still the link between SNPs and

genes is far from perfect. As a result, tests for SNPs in gene modules may be

underpowered.
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6.4 The future

The field of genetics changes particularly fast. Only 15 years ago, the first

full human genome was presented (International Human Genome Sequencing

Consortium, 2004). A year later, high throughput second generation sequen-

cing methods became commercially available (van Dijk, Auger, Jaszczyszyn

& Thermes, 2014). These are still the most used sequencing techniques in

human studies, but a third generation of technologies was announced about

a decade ago (Schadt, Turner & Kasarskis, 2010). These latest techniques

have the main advantage of producing very long reads (van Dijk, Jaszczyszyn,

Naquin & Thermes, 2018). Currently, the cheapest way to find the genetic

variations that are associated with phenotypic differences is not to perform

sequencing, but to use a SNP array. The costs of second generation sequen-

cing have dropped sufficiently for some large scale studies to consider whole

exome (D. J. Liu et al., 2014) or even whole genome sequencing (Telenti et

al., 2016). As a result, rare variants can be associated with phenotypes on a

population level. This does introduce challenges in statistical analysis. If all

variations are considered in a univariate way, the multiple testing correction

should be more stringent than the Bonferroni correction for one million inde-

pendent tests currently used in GWAS (Pulit, de With & de Bakker, 2017).

Alternatively, testing can be performed on a gene or pathway level, by first

calculating combined statistics (Auer & Lettre, 2015). These still rely on a

mapping to genes, which can be a challenging activity especially for variants

located in the 98% of the genome that is non-coding (Mooney et al., 2014).

The third generation of sequencing techniques extends the possibilities and

challenges. Much more so than second generation sequencing, it reveals large

structural variations. With a better reconstruction of individual genomes, the

identified variations become more unique for the sampled individuals. In an

extreme case, one could perform de novo assembly of each genome (Chaisson,

Wilson & Eichler, 2015). Now the genetic variation between individuals can

no longer be characterised in a simple data matrix, by scoring the presence

of single nucleotide variations or small indels. Instead, this variation is best

described in a graph, where sequences are represented by nodes and individuals

follow their own unique paths (Paten, Novak, Eizenga & Garrison, 2017). Most

of the currently used statistical tools for association studies will have to be

updated to work with these new representations, or to deal with the even
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larger number of potential features that can be extracted from this data.

The genetic characterisation of samples increases in detail, but at the same

time the sampling itself becomes more detailed as well. Single cell genome

sequencing has a major impact on cancer studies, where sequence variations

between the cells in a single tumour can show its development (Gawad, Koh

& Quake, 2016). To measure gene expression, single cell and single nucleus

RNA sequencing are on the rise (Svensson, Vento-Tormo & Teichmann, 2018).

In the brain, this is often done with the goal to characterise cell types (Tasic,

2018). With single cell or single nucleus RNA sequencing of dissected brain

regions (Bakken et al., 2018), region specific brain disorders can be studied

on a cell-type level. The current samples cover only selected brain regions,

but in the long term brain-wide genome-wide single cell expression data of the

brain will most likely become available. As is the case with third generation

sequencing, the added resolution will come at a cost. Interpretation might

only be informative on a region-of-interest level, which would require a way

to integrate the data over the brain cells; and in the statistical analyses the

multiple testing burden may again increase dramatically. Perhaps studies

will either have to focus on specific questions, or rely on dimension reduction

techniques.

Despite these challenges, the increase in detail and the growing amount of

data will inevitably help our understanding of the brain on a molecular level.

Models need to integrate data of different modalities, from different study

samples. In this thesis we have discussed some ways of doing this. Ultimately,

in silico models describing both connectivity and molecular biology of the brain

will have to combine the new high resolution data to understand the brain as

a whole.
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Summary

Medical studies are rarely easy, and it is especially challenging to understand

brain disease. Brains are highly complex organs, and it is, for instance, hard to

see the relationships between behavioural change in a person and the changes

in the connections among the billions of cells in the brain that cause this beha-

vioural change. Many brain related disorders, such as autism, schizophrenia,

and Alzheimer’s disease, have some genetic basis. They are influenced by small

differences in people’s genetic code, which are called variants. Genetic variants

can cause differences in the activity or effectiveness of genes. And if genes are

involved, knowing which genes these are, and what effect they have can help

to find treatments for these diseases.

Sometimes a genetic variant has a very strong effect. In that case a disease

occurs specifically in some families. The only thing we need to do then, is to

look at the genetic differences within these families, and see which variants

are present in the individuals that have the disease. However, many genetic

variants don’t cause a disease directly, but they have some impact on the

chance of developing it. Often this chance is influenced by a large number of

variants, all with a very small effect. To find a variant with a small effect,

we need a large study sample. And if we look at a large study sample, with

individuals that are not closely related, there are a lot of potential variants to

look at. The human genome has around 20 000 genes, and millions of common

variants that can affect these genes. Still, many studies have succeeded in

finding common variants with small effects. To achieve this, these studies,

called genome wide association studies (GWAS), include thousands or even

millions of individuals.

Even with such large samples, much of the signal is lost in the noise. The

statistical tests that are used to find the associations between genetic variants
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and diseases suffer from a multiple testing problem. With each statistical test

we do, we have some chance of making a mistake. To compensate for these

mistakes, we make the tests more stringent. We set a higher bar for what

we call statistically significant. And with a million tests, one for each genetic

variant, this bar is set so high that we probably miss out on a lot of real

associations.

In this thesis, we worked on a solution to this problem. Instead of doing

the test per genetic variant, we tested per group of genes. Now we only have

to correct our tests for the number of groups, rather than the number of

variants. To do this, the variants have to be linked to genes, and the genes

have to be split up in groups. These operations make sense from a biological

standpoint, since variants have effects on genes, and genes work together with

other genes in molecular pathways. A pathway is a set of genes with a shared

function, where each gene is needed for one step in a cellular process. Not

all pathways are well characterised, and not all pathways are important at all

times and in all tissues. So the way we made our groups of genes, is to look

at their activity (expression) in the brain. Genes that work together are often

expressed together. So we looked at co-expression across the human brain to

find the groups of genes.

Besides the statistical advantage of doing tests per group, this approach

has some other advantages. Because genes work together, a mistake in one

gene of a pathway can have the same effect as a mistake in another gene in that

same pathway. For that reason, the interpretation of the results can be made

easier by looking at pathways, or our groups that represent these pathways.

Instead of pointing to a variant somewhere on the genome, we can identify

a specific process that is important in the brain. A second advantage of our

approach is that we can now say something about the brain areas that are

important for the disease. The groups that we find, per definition, have a

specific pattern of activity in the brain. If the genes in the group are active in,

for instance, only the hippocampus, then the hippocampus may be of interest.

The methods that we propose can be used to interpret genome wide as-

sociation studies. Rather than looking at single variants, we can now look at

groups of genes with a shared function in a specific part of the brain. These

results are exploratory. They will not lead directly to the development of a

treatment, but they could help future researchers to design new studies. In this

way, our methods make a small step in understanding human brain disease.
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Samenvatting

Medische studies zijn zelden eenvoudig, en dat geldt in het bijzonder voor

studies naar hersenziektes. De hersenen zijn een complex orgaan, en het is

bijvoorbeeld lastig om het verband te zien tussen de ontwikkeling van ver-

bindingen tussen de miljarden cellen in het brein en de gedragsverandering die

daar het gevolg van is. Veel hersenaandoeningen, zoals autisme, schizofrenie

en de ziekte van Alzheimer, worden bëınvloed door de genetica. De kleine

verschillen tussen mensen in hun genetische code noemen we varianten. Ge-

netische varianten kunnen een effect hebben op de activiteit of effectiviteit van

genen. En als er genen betrokken zijn bij een ziekte, is het belangrijk om te

weten welke genen dit zijn en wat hun functies zijn. Deze informatie kan dan

gebruikt worden om medicijnen te ontwikkelen voor de behandeling van de

ziekte.

Soms heeft een genetische variant een erg groot effect. In dat geval komt

een ziekte specifiek in bepaalde families voor. Om er dan achter te komen wat

de belangrijke varianten zijn, kunnen we kijken naar de genetische verschillen

tussen leden van zo’n familie, en observeren welke varianten voorkomen in de

familieleden die de ziekte hebben. Vaak is de situatie echter lastiger. Er is dan

niet een enkele variant met een groot effect, maar een groot aantal varianten die

elk een klein effect hebben op de kans om een ziekte te ontwikkelen. Om deze

varianten met kleine effecten te vinden, hebben we een grote wetenschappelijke

studie nodig, met veel deelnemers. En als we kijken naar een groot aantal

mensen, die geen naaste familie van elkaar zijn, zijn er heel veel varianten om te

beschouwen. Het menselijk genoom bevat ongeveer 20 000 genen en miljoenen

varianten die een effect kunnen hebben op deze genen. Toch zijn studies erin

geslaagd om veelvoorkomende varianten te vinden die een klein effect hebben.

Om dit voor elkaar te krijgen, hebben deze genome wide association studies
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(GWAS) duizenden of tegenwoordig zelfs miljoenen deelnemers.

Zelfs in zulke grote studies gaat veel van het signaal verloren in de ruis. Bij

het statistisch testen voor de associaties tussen genetische varianten en ziektes

treedt kanskapitalisatie op (het multiple testing-probleem). Bij iedere test die

we doen, hebben we een kans om een toevallige fout te maken. Om te com-

penseren voor deze fouten, maken we onze testen strenger. De waargenomen

associatie moet dan sterker zijn om nog als statistisch significant beschouwd

te worden. Als we een miljoen testen doen, een voor elke variant, worden

deze testen zo streng dat we waarschijnlijk een groot aantal echte associaties

mislopen.

In dit proefschrift hebben we getracht dit probleem op te lossen. In plaats

van te testen per variant, doen we dit per groep van genen. We hoeven de

testen dan slechts te corrigeren voor het aantal groepen en niet voor het aantal

varianten. Om dit te kunnen doen moeten we wel de varianten toeschrijven

aan genen, en de genen opdelen in groepen. Biologisch zijn dit logische stap-

pen, want varianten hebben een effect op genen en genen werken samen in

moleculaire routes (pathways). Hierin werken genen (of eigenlijk de eiwitten

waarvoor ze coderen) samen in een biologisch proces. Ieder gen zorgt voor een

stapje in dit proces. Deze pathways zijn niet allemaal goed beschreven, en

ze zijn niet altijd actief in alle weefsels van het lichaam. Daarom hebben wij

groepen van genen gemaakt op basis van de activiteit van deze genen in de

hersenen. Als genen samenwerken zijn ze vaak ook in dezelfde gebieden actief.

We kunnen dus de correlatie tussen activiteiten van de genen in de menselijke

hersenen gebruiken om informatieve groepen van genen te maken.

Naast het statistisch voordeel van deze aanpak, heeft het twee andere voor-

delen. In de eerste plaats kan de interpretatie eenvoudiger zijn. Omdat genen

samenwerken, kan een variant in een gen hetzelfde effect hebben als een vari-

ant in een ander gen dat betrokken is bij hetzelfde proces. In plaats van dat

we nu een variant aanwijzen, kunnen we iets zeggen over welk biologisch pro-

ces belangrijk is voor de ziekte. Het tweede voordeel van onze aanpak is dat

we informatie krijgen over welke hersengebieden van belang zijn. De groepen

die we hebben gedefinieerd hebben een specifiek patroon van activiteit in de

hersenen. Als de genen in een geselecteerde groep bijvoorbeeld alleen actief

zijn in de hippocampus, dan is de hippocampus wellicht van belang voor de

ziekte.

De methoden die wij voorstellen kunnen dus gebruikt worden bij de inter-
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pretatie van bepaalde genetische studies (GWAS). In plaats van naar enkele

varianten te kijken, vinden we nu groepen van genen met gezamenlijke functies

in specifieke delen van het brein. Deze resultaten zijn verkennend van aard. Ze

zullen niet direct leiden tot de ontwikkeling van een medicijn, maar ze kunnen

onderzoekers wel helpen bij het opzetten van nieuwe studies. Op deze manier

leveren onze methodes een kleine bijdrage aan het begrip van hersenziektes bij

de mens.
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