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Abstract
For an Autonomous Vehicle (AV) to traverse safely in traffic, It is vital it can anticipate the behavior of
surrounding traffic participants using motion prediction. Current motion prediction approaches can be
categorized into object-centered and object-agnostic methods and are primarily based on deep learning.
The former relies on a human-engineered pipeline of object detection and tracking, of which the errors
can accumulate in the motion predictions. The latter does not rely on this pipeline; however, it lacks
the ability to learn object representations causing blurriness and object disappearances for longer-term
predictions which forms a safety hazard.
This thesis proposes two methods to improve the performance of the object-agnostic sequence-to-
sequence Occupancy Grid Map (OGM) prediction networks, trained on the Waymo Open Perception
dataset. The first method uses inter-pixel loss functions, i.e. the SSIM and Sinkhorn losses, instead of
the ubiquitously used per-pixel losses, to train the PredRNN++ Occupancy Grid Map (OGM) prediction
network. Inter-pixel losses take into account the spatial relations between grid cells during the evalua-
tion of OGMs, whereas per-pixel losses evaluate each grid cell’s value independently. The quantitative
results demonstrate that using inter-pixel losses can improve short term predictions with a prediction
horizon of T = 5 for the Mean Squared Error (MSE) by 4.3%, Image Similarity (IS) by 7.8%, Average
Precision (AP) by 0.3%, metrics. For the longer term, T = 15, the predictions improve for the MSE
by 5.0%, IS by 20.5%, AP by 0.1%, and Accuracy by 0.6%. Furthermore, the use of inter-pixel losses
reduces blurriness and object disappearances. The second method is based on multi-task learning.
By training the PredRNN++ to perform the prediction task together with the semantic segmentation
task on the predicted OGMs, it is expected to learn object representations which it uses to improve the
prediction quality. The quantitative results show that multi-task learning does not improve the OGM
predictions. However, some qualitative results show that multi-task learning reduces blurriness and
object disappearances.
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1
Introduction

Based on research by the World Health Organization, more than half of the fatalities caused by road
traffic crashes are among Vulnerable Road Users (VRUs) such as pedestrians and (motor-)cyclists
[65]. Therefore, the United Nations General Assembly has set the target of halving the global number
of deaths and injuries from road traffic crashes from approximately 1.3 million to 0.65 million by 2030.
A US study on vehicle crashes by The National Motor Vehicle Crash Causation Survey found that the
critical reason for 94% of the traffic accidents could be attributed to the driver [1]. Consequently, a
primary reason for the development of AVs is to erase the effects of human error and thereby increase
road safety [11]. In the past few years, the development of self-driving vehicles has been booming, as
is demonstrated by the recent deployment of the world’s first fully autonomous taxi service by Waymo
[28] and with Cruise’s robotaxi service announced to commence in the coming months [2]. These
ride-hailing services are the beginning of a new age of autonomous transport. However, there are still
safety and security concerns that need to be addressed to deploy AVs on a global scale. Unfortunately,
in 2018 the first fatal crash has occurred between an AV and a pedestrian, after which it was argued
that AVs cannot yet accurately predict human behavior [36]. Cui et al. [11]’s review, including safety
failures of AVs, states that AVs need to interact and cooperate with other road users, including vehicles,
cyclists, and pedestrians, to ensure safety in the future. Interaction and cooperation between AVs and
road users require the ability to detect the road users and anticipate their behavior so a safe and timely
reaction can be carried out.

Figure 1.1: A diagram example of the Autonomous Navigation Process. The sensors and actuators
(black) measure and act on the environment (green), respectively. The cognitive processing steps
(dark and light blue) interpret the sensor data and make vehicle control decisions based on those
interpretations. This thesis focuses on the Motion Prediction cognitive processing step (light blue).

One paradigm of the autonomous vehicle navigation process is a loop that starts by measuring the
environment with sensors, followed by a cognitive process in which vehicle control decisions are made.
Those decisions are executed on the environment by the vehicle’s actuators. Figure 1.1 shows a di-
agram example of this navigation process. Between the sensors and actuators, a cognitive process
takes place in which the measurements are interpreted (perception), which allows the environment to
be mapped and anticipated (localization & mapping, motion prediction) so the possible paths can be
planned to manoeuvre through the environment (motion planning). The decision making step picks
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the path that best fits the vehicle’s goal criteria (e.g. going towards the destination, following traffic
rules, keeping safe distances), after which the vehicle control step computes how the actuators must
be controlled to follow the intended path. This navigation process is repeated continuously while the
AV is driving. In this thesis, the focus lies on improving the motion prediction step.
Currently, most motion prediction methods use a form of machine learning. The earlier methods found
in literature were based on classical Bayesian machine learning methods. More recently, the applica-
tion of deep learning models increased due to developments in computation power and deep learning
libraries, which made them more feasible and accessible. The deep learning based methods outper-
form the more classical machine learning approaches because of the large number of trainable param-
eters and increased generalizability the former can accomplish. The motion prediction methods can
be subdivided into two categories which will be called object-centered and object-agnostic prediction
in this thesis.
In object-centered prediction, object features obtained from a pipeline consisting of object detection
and tracking are implemented in the prediction method. The future states for each detected object are
predicted, given their past state information and information about other detected features from the
environment such as other road users, lane markings, signs, and static objects [32, 68, 34, 53, 16, 9,
43, 26, 42, 37]. Figure 1.2 shows an example of object-centered motion prediction.

(a) Crossing (b) Straight road

Figure 1.2: Example predictions of Djuric et al. [16]’s object-centered motion prediction model. The
model inputs are the object’s (red) past velocity, acceleration, and rotation rate, and the past raster
images containing road (rgb-colors dependent on direction) and object (yellow) information (figures a
and b). The model outputs are the object’s positional state predictions for 3s into the future. Those
predictions are projected onto the raster image using blue dots, with the ground truth using green dots.
a) shows an example near a crossing. b) shows an example on a straight road.

An advantage of object-centered prediction is that for each detected and tracked object a prediction
can be made. Furthermore, by using object detection methods, not only objects’ locations can be mea-
sured, but also motion prediction features such as object class, object velocity, and object orientation
can be obtained. This can improve the prediction accuracy [34, 32, 68]. Figure 1.3 visually demon-
strates that road user detection is performed accurately on the Waymo Open Perception Dataset [60],
which is large-scale real-world dataset for AV research. Subsequently, predicting the future locations
of those road users is an essential part of the safe deployment of AVs. However, this is a challenging
task because road users, specifically VRUs, have complex and mutable motion patterns which depend
on the objects and other road users in their environment as stated by [9].

As a result, a disadvantage of object-centered methods is that they are dependent on the accuracy
of the object detection and tracking pipeline. For instance, Luo, Yang, and Urtasun [42]’s state-of-the-art
object-centered prediction method uses an object detection and tracking pipeline that has an object de-
tection and tracking recall of 92.5%, which means that 7.5% of the objects are not considered for motion
prediction. Moreover, for state-of-the-art tracking methods, it is still a challenge to track VRUs in urban
environments. In dense areas, tracks get lost or switch identities, and velocity estimates become less
accurate [21]. Another disadvantage is that object-centered prediction methods only predict objects’
future states and not the entire environment’s occupancy states. If the AV fails to consider the future
states of the environment, including the objects in it, its behavior can have profound safety implications.
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Figure 1.3: The Waymo Autonomous Vehicle (AV)’s view with labeled road users as recorded in one
of the large-scale real-world datasets for AV research, i.e. the Waymo Open Perception dataset [60].

In object-agnostic prediction, on the other hand, no human-engineered pipeline is required for mo-
tion prediction. Environment representations are generated that lie close to raw sensor data compared
to the object-centered methods. These environment representations are predicted for future time steps
using deep learning [27, 35, 61, 25, 57, 15, 44, 66]. A popular representation in literature is the Occu-
pancy Grid Map (OGM), which is a 2D bird’s-eye view (BEV) occupancy map of the AV’s environment.
An OGM is a tensor or matrix in which each element’s value represents the occupancy state of a corre-
sponding spatial area in the AV’s environment. They are directly generated from the raw sensor data
without performing processing steps such as object detection and tracking. An in-depth explanation
on OGMs is provided in section 1.4.1, where figure 1.5 shows an example of an OGM. Using OGMs
is advantageous because it makes object-agnostic prediction independent from the accuracy and rep-
resentations of object-centered object detection and tracking steps. Although height information is lost
because 3D objects are reduced to a 2D bird’s-eye view (BEV) representation, the image-like repre-
sentation makes OGMs suitable to easily extract spatial features from using convolutions in a deep
learning network. Given a sequence of past OGMs, the network then outputs future OGMs. This way,
the future occupancy states for the entire area around the AV are predicted, unlike object-centered
prediction, where the predictions are limited to a selection of detected objects. An example of object-
agnostic OGM prediction is shown in figure 1.4. The disadvantage, however, of object-agnostic predic-
tion is that without object detection and tracking, it is difficult to incorporate motion prediction features
in the environment representations to benefit the prediction accuracy. Consequently, it is challenging
for object-agnostic prediction methods to distinguish objects from the rest of the environment. A result
is that occupied regions related to objects will disappear or merge with the environment (blur out) as
these regions are not recognized as separate, rigid bodies as the environment’s uncertainty increases
in longer-term predictions [27, 35, 61]. One example of the predictions becoming increasingly blurry
and objects disappearing as the time horizon increases can be seen in figure 1.4.

Among the prediction methods found in literature, a trade-off is made between the long-term accu-
racy of the predictions (object-centered prediction) and to what extent the AV’s environment is consid-
ered in the prediction (object-agnostic prediction). In other words, one can state it is a quality-quantity
trade-off. Various state-of-the-art prediction methods aim to overcome this trade-off by incorporating
environment occupancy information in the object-centered approaches or by incorporating object in-
formation in object-agnostic approaches. For instance, [16, 9, 26, 42, 37] each incorporate the en-
vironment’s occupancy states in their prediction models to improve their object-centered predictions.
Considering object-agnostic prediction methods, the proposed solutions found in literature mitigate the
blurriness and object disappearances for longer-term predictions by implementing mechanisms for the
network to learn class and object representations of the environment. For example, [35] propose an
attention-based network architecture that enables their network to more easily access temporal and
spatial information to learn and highlight different class representations in the OGM, which reduces
blurriness and object disappearances. Furthermore, [25, 57, 66, 61] incorporate dynamic information
about the objects in the OGMs, while [44, 66] incorporate semantic class information in the OGMs to
have their networks learn the behavior of objects in the OGMs.

Despite the developments in both object-centered and object-agnostic prediction methods, over-
coming the quality-quantity trade-off is still a challenge. This thesis focuses on overcoming this trade-off
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(a) Inputs

(b) Outputs

Figure 1.4: An example of object-agnostic OGM predictions generated using PredRNN++ [62] on a
test example from the Waymo Perception dataset [60] for the network trained with the L1 loss function.
a) An input of 5 past frames is provided as input to the network. b) predictions are made for 20 future
frames (every fifth frame shown). Ground truth future frames are shown in the top row of b).

in the category of object-agnostic prediction using OGMs by aiming to improve the accuracy of longer-
term predictions. The following section describes the problem from which the research in this thesis
was initiated.

1.1. Problem Formulation
The problem of object-agnosticmotion prediction usingOGMs is a self-supervised sequence-to-sequence
inference task. Based on evidence in the form of past OGMs generated from the AV’s environment mea-
surements, future OGMs are predicted for a specified time horizon. Within this broader problem lies
the issue that for longer prediction horizons, the predicted OGMs become blurrier, and objects disap-
pear. The resulting problem is that the OGM prediction must learn object representations to reduce the
blurriness and object disappearance.

1.2. Research Questions
This thesis investigates whether there are methods that can be applied during the training process of
the OGM prediction network to increase its ability to learn object representations to reduce the blurri-
ness and object disappearance in its predictions.

Current literature shows that most prediction methods use the ubiquitous per-pixel losses to train
the OGM prediction network [27, 35, 61, 25, 57, 15]. These per-pixel losses evaluate similarity be-
tween a prediction and the ground truth by individually comparing each grid cell corresponding to the
same respective location. Therefore per-pixel losses ignore spatial relations between grid cells when
evaluating similarities. Opposite to the per-pixel loss, the term ’inter-pixel loss’ is introduced in this
thesis, under which all losses fall that evaluate similarities between a prediction and the ground truth
by considering the relations between multiple grid cells within the OGMs and comparing those relations.
This term is introduced because the investigated literature does not mention a term that encompasses
losses such as the SSIM [64] and the Sinkhorn losses [13] which can evaluate high-level properties
such as the structure and style of an image by considering (spatial) relations between grid cells. The
first research question therefore states:
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1. Does the use of an inter-pixel loss function, such as the Structural Similarity Index Measure loss
or the Sinkhorn loss, to train a sequence-to-sequence Occupancy Grid Map prediction network
improve its performance, reduce blurriness and objects disappearance compared to using a per-
pixel loss?

This thesis hypothesizes that using an inter-pixel loss will train the network to learn and maintain
spatial distance relations between grid cells. As a result, it is expected that the network will recognize
clustered occupied grid cells as objects. It will learn the difference between occupied regions and free
space and, in turn, will sustain them in the predictions, reducing blurriness and object disappearance.

Further, research by [15] demonstrates that their object tracking and OGM prediction network learns
latent representations of spatial and dynamic patterns of different object classes from the tracking task,
which the network can utilize to improve the semantic segmentation task of OGMs. This principle of
inductive transfer learning, specifically multi-task learning, could be applied to improve the quality of
OGM predictions as well. This leads to the second research question:

2. Does the performance of an Occupancy Grid Map prediction network improve by means of multi-
task learning if it also learns to perform semantic segmentation on the predictions?

The expectation is that a network can learn a latent object recognition to improve the occupancy
prediction task, i.e. predicting a sequence of future OGMs, if it is trained to also perform semantic seg-
mentation on those OGMs. This thesis hypothesizes that by training an OGM prediction network to also
predict semantic labels for each grid cell in the future OGMs, it will learn latent object representations
related to the semantic classes of those grid cells. Subsequently, the network can use the latent object
representations to improve the prediction task by reducing the disappearance of objects and blurriness.

1.3. Contributions
The key contributions of this thesis are as follows:

• To improve the performance of a sequence-to-sequence OGM prediction network by using the
SSIM and Sinkhorn-L1 composite inter-pixel, distance capturing losses,

• To investigate the effects of multi-task learning the occupancy prediction task and semantic seg-
mentation task on the performance of a sequence-to-sequence OGM prediction network.

1.4. Preliminaries
This thesis investigates two ways to improve Occupancy Grid Map (OGM) prediction. One method
considers the use of inter-pixel loss functions. The other method is based on multi-task learning of
the occupancy prediction task and the semantic segmentation task on OGMs. This section provides
background information about what this thesis defines as OGMs, followed by information about loss
functions, then the explanation of semantic OGM prediction, and closing with the explanation of multi-
task learning.

1.4.1. Occupancy Grid Map
In this thesis, object-agnostic prediction considers the prediction of OGMs. OGMs are 2D bird’s-eye
view (BEV) environment maps of the AV’s environment, generated directly from the raw sensor data
it has obtained (e.g. from LiDAR, radar, or camera measurements). Elfes [17] introduced this envi-
ronment mapping method for robust mobile robot perception and navigation purposes. An OGM is
a grid that consists of cells that each represent the occupancy of a spatial area in the AV’s environ-
ment with a specified resolution. Probabilistic sensor models are used to maintain estimates of the
occupancy state of each cell, which allows uncertainties to be mapped in the grid. Probabilistic OGMs
represent each cell’s occupancy with a continuous value between 0 and 1. 0 means that the area is
empty, and 1 means that the area is occupied, where a cell’s complete uncertainty of the occupancy
state is assigned by the value 0.5. For binary OGMs, each grid cell’s value is rounded to either 0 or
1. In this thesis, the probabilistic OGMs are generated using the Dempster-Shafer Theory (DST) as
sensor model described by [47] followed by the concept of pignistic probability as performed by [35].
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This thesis refers to the latter OGMs as evidential OGMs. An example of such an OGM can be seen
in figure 1.5. The following subsections explain how the DST and the principle of pignistic probability
are used to generate the OGMs

Figure 1.5: An OGM of size 128x128 with a resolution of 33x33 centimeter per grid cell generated
from LiDAR measurements from the Waymo Open Perception dataset [60], using the Dempster-Shafer
Theory (DST) [47] and pignistic probability as performed by [35]. Free, occupied, and uncertain grid
cells are indicated by the dark blue, yellow, and green color hues respectively.

The Dempster-Shafer Theory
The Dempster-Shafer Theory (DST) formalizes the transferable belief model, which is a model that
defines a discrete Frame of Discernment (FOD) which contains the set of possible states of a system.
In the case of an OGM, the FOD is Ω = {E,O}, with E for Empty and O for Occupied. A mass
function M is defined that maps the powerset 2Ω of Ω to the domain [0 1]. The powerset is the set
of all subsets of Ω including the empty set ∅ and itself (2Ω = {∅, E,O,Ω}). If A is an element in 2Ω,
then M(A) represents the amount of evidence (mass) that supports hypothesis A within the domain
[0 1]. Then, two properties are set to the mass function M . First, M(∅) = 0, and second, formula 1.1
verifies that the sum of the masses of each hypothesis in the powerset is equal to 1. This means that
it is assumed that the powerset 2Ω is complete and that no evidence will be obtained that supports
none of the hypotheses in the FOD. A mass function with these two properties is called a Basic Belief
Assignment (BBA) mass function. [45]. A BBA mass function allows for the assignment of lower and
upper bounds of a probability interval, belief Bel() and plausibility Pl() respectively, that represent the
support to the hypotheses A ∈ 2Ω.

Belief is the sum of the masses of all the hypothesis’s subsets, including the hypothesis, as is
shown in equation 1.2, where A and B represent hypotheses (e.g. for the Ω-hypothesis, this would be
the mass of Ω and the subsets of Ω: E and O]). In equation 1.3 it can be seen that the plausibility is
computed by taking 1 minus the sum of the masses that exclude the hypothesis. For instance, for the
hypothesis O, the plausibility Pl(O) would be 1 minus M(∅) and M(E) which is 0.3. [45].∑

A∈2Ω

M(A) = 1 (1.1)

Bel(A) =
∑

B|B⊂A

M(B) (1.2)

Pl(A) =
∑

B|B∩A ̸=∅

M(B) = 1−
∑

B|B∩A=∅

M(B) (1.3)
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An example of a BBA mass function is shown in table 1.1, given the powerset 2Ω = {∅, E,O,Ω}.
In this example, a sensor reading obtains information that a certain grid cell is empty. The sensor
reading’s probability of being reliable is 0.7 and 0.3 for being unreliable. This information can be used
to assign a subjective probability (mass) to each hypothesis, which sums up to 1. A reliable sensor will
give a true reading, so the hypothesis of the grid cell being empty (m(E)) is assigned a mass of 0.7.
However, given that there is a grid cell (m(∅) = 0), the sensor reading has a probability of 0.3 that it is
unreliable. This does not mean that the grid cell is occupied with a probability of 0.3, but it means that
its state is uncertain with that probability. Therefore, a mass of 0.3 is assigned to the hypothesis m(Ω)
that states that the grid cell is either empty or occupied. The hypothesis of the cell being occupied
(m(O)) will have a mass of 0, since no evidence supports it [59]. Subsequently, the belief Bel() and
the plausibility Pl() of the hypotheses are computed, giving the lower and upper probability bounds for
the hypotheses.

Table 1.1: An example of a BBA mass function.

Hypothesis Mass Belief Plausibility

M(∅) 0 0 0
M(E) 0.7 0.7 1.0
M(O) 0 0 0.3
M(Ω) 0.3 1.0 1.0

Applying DST to generate OGMs
To generate an evidential OGM, given independent sensor data, each grid cell is assigned a mass
function Mi,j with beliefs and plausibilities. If new sensor data about a grid cell is obtained, the DST
method can fuse the mass functions of the current cell state and the new sensor data according to the
joint mass equations 1.4 and 1.5 [45].

M1 ⊕M2(A) =

{
M1∩2(A)

1−M1∩2(∅) A ̸= ∅
0 A = ∅

}
(1.4)

Where ∩ is the conjunctive rule with B and C hypotheses and A the joint hypothesis:

M1∩2(A) =
∑

B,C∈2Ω|A=B∩C

M1(B) ·M2(C) (1.5)

Then, a probability measure can be taken from the mass function using the principle of pignistic
probability according to equation 1.6. Here, A and B represent hypothesis subsets of powerset 2Ω.
The cardinality (the number of elements in a subset) is denoted as two vertical bars.

P (A) =
∑
B∈2Ω

M(B) · |A ∩B|
|B|

(1.6)

It should be noted that this equation is not bijective, meaning an infinite number of mass functions
can be found given the same probability. This is because the information that distinguishes ignorance
from uncertainty is lost when the mass function is transformed into a probability.

1.4.2. Loss functions
In the domain of deep learning, the loss function determines the error between a prediction and the
ground truth. Subsequently, the gradient is taken from the loss function to perform gradient descent to
optimize the deep learning network’s weights (backpropagation). For loss functions to be suitable for
deep learning practices, they must be differentiable so a gradient can be derived to backpropagate the
error through the deep learning network. The loss function that is used influences which properties of
the prediction are rewarded and which are penalized and thus how a network’s weights are updated.
Therefore, the loss should evaluate the similarity between the ground truth and its prediction to achieve
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the desired network optimizations. However, there are multiple ways to define similarity. In the case
of OGMs, similarity can mean that each individual grid cell in the prediction must be as close in value
as the ground truth’s cells. Measuring this similarity can be achieved by per-pixel loss functions such
as the L1 loss. Still, using a per-pixel loss has resulted in increasingly blurry predictions and object
disappearances for longer time horizons. Alternatively, similarity can be measured by evaluating how
multiple grid cells relate to each other within a predicted OGM and comparing those relations to the
relations between grid cells in the ground truth OGM. This can be achieved by inter-pixel loss functions,
which is a term introduced in section 1.2 in this thesis. An example of an inter-pixel loss function is the
SSIM loss [63, 64], of which the workings are intuitively shown in figure 1.6. By using an inter-pixel
loss, it is expected that the network better learns to recognize (spatially) related grid cells such as object
instances and the difference between occupied and free space compared to using a per-pixel loss. If
these relations are learned better, it is expected that the network generates more certain predictions
which contain less blur and fewer object disappearances. This thesis investigates whether the use of
inter-pixel loss functions, i.e. the SSIM and Sinkhorn [13] losses, to train an OGM prediction network
result in an improved prediction performance compared to using a per-pixel loss such as the L1 loss.

(a) Ground truth
(b) Luminance
(intensity) (c) Contrast (variance)

(d) Structure
(correlation)

Figure 1.6: A visually intuitive illustration on Leonardo Da Vinci’s Mona Lisa of the workings of the inter-
pixel SSIM loss [63, 64]. The SSIM is based on how humans recognize similarities between images.
Humans mainly perceive differences based on b) luminance, c) constrast and d) structure, compared
to the ground truth a). Mathematically, an image’s luminance, contrast, and structure difference can be
defined as the mean pixel intensity value, the pixel value’s variance, and the correlation between the
prediction and ground truth respectively. Figure adjusted and taken from C2RMF Retouched [6].

1.4.3. Semantic Occupancy Grid Map prediction
OGMs only contain information about the occupancy states of the environment. This occupancy in-
formation can be extended with semantic information. Semantic OGM prediction is the prediction of
semantic labels for each grid cell in the predicted OGMs. This can be done by training a network to
predict OGMs with additional semantic channels that each represent a semantic class. For every grid
cell in each semantic channel, a value between 0 and 1 is assigned that represents the probability of the
corresponding grid cell in the OGM belonging to the channel’s semantic class. An example of semantic
OGM prediction by [41] is shown in figure 1.7.

1.4.4. Multi-task learning
Multi-task learning is a sub-category of transfer learning, where transfer learning is a method used in
machine learning in which previously learned knowledge to perform one task is retained and reused to
perform new tasks better [50]. For instance, there are two domains, a target domain DT and a source
domain DS of training data, e.g. occupancy data for OGM predictions and semantic label data for
semantic segmentation of the OGMs respectively, used to perform the target task TT and source task
TS , e.g. the OGM prediction task and the semantic segmentation task of OGMs respectively. Transfer
learning is a method that aims to improve learning the target task T − T from the domain DT using the
knowledge gained from learning the source task TS from domainDS . In the case of multi-task learning,
both the target and source task are learned simultaneously, given the training data of both the target
and source domains. When training a model to learn both tasks simultaneously, the expectation is that
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Figure 1.7: An illustration of the semantic OGM method that takes a monocular RGB image as input
and outputs a semantic OGM, taken from [41]. Lu, Molengraft, and Dubbelman [41] distinguish the
environment with four labels: road, sidewalk, terrain, and non-free space.

learning the source task has a regularizing effect on learning the target task by adjusting the model’s
parameters to be useful for both tasks, preventing the parameters to overfit on the target task. The
effect is that this improves the model’s performance on the target task [50].

1.5. Submitted Article
In addition to this thesis, a paper is submitted that complements this thesis’s research. The paper:
”An Experimental Study on Occupancy Grid Map Prediction Loss Functions” by Hidde J-H. Boekema,
Rutger F. Dirks, and Dariu M. Gavrila presents an experimental study on various loss functions used
in OGM prediction. The effects of the ubiquitous L1 and L2 loss functions, and composites thereof,
together with the Binary Cross-Entropy loss and inter-pixel SSIM loss are investigated in a OGM setting
using the PredRNN++ [62] network. The L1 loss function generally achieves the best performance on
themetrics, where some qualitative evidence is found that the SSIM and composite L1L2 and SmoothL1
losses result in reduced blurriness and fewer disappearing dynamic objects. The full paper is provided
in Appendix D.

1.6. Thesis Outline
The outline of this thesis is as follows. Chapter 2 covers the related work in which relevant literature
in the domain of datasets, motion prediction, video prediction, loss functions, semantic segmentation,
and multi-task learning are discussed. Chapter 3 describes the method that is used to answer the two
research questions posed in section 1.2. Following the method, Chapter 4 reports and discusses the
OGM prediction experiments and obtained results from this research. The experiments are followed by
a thorough discussion of the conducted research in Chapter 5, the conclusion of this thesis in Chapter
6, and future work possibilities in Chapter 7.



2
Related Work

The foundation of this thesis research is built upon the related work described in this section. First, the
datasets suitable for object-agnostic OGM prediction are described. This is followed by highlighting
relevant object-centered and object-agnostic prediction methods. Subsequently, several video predic-
tion methods are highlighted that form the basis for many object-agnostic methods. Next, a section
describes the relevant literature about the use of different loss functions in the domain of OGM predic-
tion, followed by a section about semantic segmentation of OGMs. The final section describes earlier
research on multi-task learning for OGM prediction networks.

2.1. Datasets
To generate OGMs for motion prediction in traffic, a dataset is required that contains traffic scene se-
quences consisting of dense occupancy measurements around the AV. Any occupancy measurements,
whether it is from a LiDAR, radar, stereo cameras, ultrasonic sensors, or a combination of those [17],
can be used to generate OGMs. OGMs are a versatile means to represent the environment because
they can be generated using one or a combination of sensors. Usually, LiDAR measurements are used
as raw data for OGM generation because LiDARs have a large, high-resolution measurement range
in the order of 100 meters around the AV. Besides occupancy data, the dataset should also contain
class labels linked to the occupied regions. The class labels are necessary for the evaluation of the
semantic segmentation task. The datasets that meet these requirements are the Waymo Perception
dataset [60], the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset
[22], the nuScenes dataset [7], the Eurocity Persons 2.5D (ECP2.5D) dataset [5], and the Argoverse
dataset [8]. This section describes these respective datasets together with table 2.1 which gives an
overview of each dataset.

(a) A front camera image with object
annotations from the Waymo [60]

dataset.

(b) The annotated objects in the
LiDAR point cloud from the

Waymo [60] dataset.

Figure 2.1: Two examples of data annotation in the Waymo [60] dataset.

10
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The Waymo Open Perception dataset was originally recorded in 3 cities (Phoenix, San Francisco,
and Mountain View). It contains 1150 20-second sequences at 10 Hz with 10.8M objects with tracking
IDs, labels for four object classes (vehicles, pedestrians, cyclists, and signs), and 3D bounding boxes
of each of those objects. Moreover, [35] and [61] used the Waymo dataset to generate and predict
OGMs, so there is research to compare prediction methods with on this dataset. The KITTI dataset
is the smallest dataset compared to the other datasets that are suitable for OGM prediction. It only
contains 22 sequences and is obtained in only one country. The scenes in this dataset have a large
diversity of urban and suburban scenes.This dataset has been used by [27], [44], and [35] to generate
and predict OGMs. Therefore, there is research to compare prediction methods with that use the KITTI
dataset. For the nuScenes dataset, a LiDAR at 20 Hz, five radars at 13 Hz, and six 1600x900 resolution
cameras around the vehicle at 12 Hz are used to collect data. However, the sampling frequency of the
data is only 2 Hz. This is the lowest sampling frequency compared to other datasets. Figure 2.2 shows
an example of the six camera images overlayed with the LiDAR point cloud of the nuScenes dataset.
The advantage of this dataset is that it contains velocity information from the radar data. Besides that,
the nuScenes dataset is collected for object detection as well as object tracking. It contains a 1000 20
second sequences. Objects of 23 classes are annotated, including vehicles, pedestrians, and riders.
The nuScenes dataset is larger and more diverse than most other datasets.

Figure 2.2: An example of the images of the six cameras from the nuScenes dataset [7]. The images
are overlayed with the semantic segmented LiDAR data.

The ECP2.5D dataset [5] contains 15-second sequences in which seven different classes are la-
beled. This dataset is recorded in 31 cities in 12 countries, making it the most diverse dataset compared
to the other ones regarding geographic locations. Also, the sampling frequency of the sequences is 20
Hz, which is the highest among the datasets. The Argoverse dataset [8] is recorded in only two cities
in one country. It contains little geographic diversity compared to the other datasets. On the other side,
the Argoverse dataset contains 333K 5-second sequences and labels 17 different classes, including
vehicles, pedestrians and cyclists.
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2.2. Object-centered prediction
In object-centered traffic prediction, a pipeline is designed manually that uses the AV’s raw sensor
data to perform object detection and object tracking to obtain object trajectories. These trajectories
are used to predict the future states of these objects. In turn, the predictions are used by a motion
planner to guide the future trajectory of the AV [42]. Object-centered prediction can be subdivided into
classical object-centered prediction and deep learning based object-centered prediction. The former
uses classical machine learning approaches such as Kalman Filters and Dynamic Bayesian Networks
to perform predictions. The latter uses deep learning methods. Both object-centered methods are
discussed in this section.

2.2.1. Classical object-centered prediction
Earlier methods used classical machine learning approaches to predict road user behavior. For in-
stance, [32] propose two optical flow based methods, the Gaussian process dynamical model, and
probabilistic hierarchical trajectory matching, for pedestrian path prediction in road crossing scenarios.
First, an object detection module is used to generate bounding boxes around pedestrians from which it
extracts positional data about the pedestrian. Then, the positional information and the extracted optical
flow features are used to predict pedestrian trajectories that extend to future time steps to anticipate
whether the pedestrian will cross the street. Kooij et al. [34] build upon VRU prediction methods by
extracting motion cues from the static and dynamic context of the object of interest as well as the ob-
ject context itself, such as head orientation and hand gestures, to improve the prediction accuracy of a
switching linear dynamical system. Figure 2.3 shows an example of [34]’s proposed motion cues. Also,
[53] propose the use of a mixture of linear dynamic systems to predict future trajectories of cyclists
given the cyclists’ past trajectory. They use road topology as environmental information to enhance
the predictions.

Figure 2.3: An example of object-centered motion prediction. The detected pedestrians (in the larger
red and green bounding boxes) are analyzed to extract their gazing direction from their heads (in the
smaller red and green bounding boxes). This information is used, together with the distance to the curb
side (blue line) and other environment factors to predict whether the pedestrians will cross the street
or not [34].

2.2.2. Deep learning based object-centered prediction
The downside of the classical machine learning models is that they are not generalizable for real-time
applications. Deep learning methods have been demonstrated to be a successful alternative to effi-
ciently perform motion prediction whilst obtaining environmental features encoded from the predicted
objects’ contexts [10]. An example is Cui et al. [10]’s multimodal motion prediction network that uses
a deep CNN. For each detected object in the AV’s environment, the past states of that object as well
as a bird’s-eye view (BEV) rasterized image of the object’s context, which includes road and surround-
ing object information, are provided to the network. The network is trained to predict multiple future
trajectories per object with the respective probabilities per trajectory. Furthermore, Djuric et al. [16]
and Chou et al. [9] both perform object-centered prediction using rasterized high-definition maps that
contain the surroundings of the glsAV including surrounding actors and lane markings and directions.
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Implementing information about the environment, demonstrates that the object predictions become
more accurate than without the environment information. The former, [16], presents a way to predict
the uncertainties together with the predicted states. The latter, [9], focuses on pedestrian prediction in
crowded urban scenes. Both methods use a CNN to perform the predictions. Moreover, Ma et al. [43]
proposes a method that uses interaction modeling to analyze the interactions between different road
users. This information is used to improve their predictions. Li et al. [37] builds upon this concept by
proposing the Interaction Transformer architecture, which combines lane graphs, road masks, camera
images, LiDAR maps, and occupancy data to extract features that represent the AV’s environment and
road user interactions.

Figure 2.4: Results from [42]’s end-to-end motion prediction model. Each frame represents a different
time step in which each vehicle has its own identifying color. The ’dots’ represents the vehicle’s current
and predicted future center locations.

However, Luo, Yang, and Urtasun [42] states that choosing a cascade approach, where motion
prediction is preceded by separate object detection and object tracking steps, can result in failures
due to the accumulating errors in each step from which the downstream processes cannot recover.
Instead of a cascade approach, Luo, Yang, and Urtasun [42] propose a deep learning based method
that combines those three steps into one end-to-end motion prediction model using 3D sensor data
directly. An example of [42]’s results is shown in figure 2.4. Given multiple past timesteps of a 3D
voxel representation of an AV’s environment, they train a CNN to perform object detection, followed by
tracking of those objects and motion prediction. The downside of this method is that motion prediction
can only be performed on the detected and tracked objects and evaluated on the true positives. If errors
occur anywhere in the network’s detection and tracking pipeline, they would accumulate and result in
erroneous predictions.

The trend in object-centered prediction approaches is to enhance the predictions by implementing
more of human-engineered environmental features, such as road lane information, interactions with
other road users, and environment raster images. An alternative is to train a network to independently
extract and use environmental features on an environment representation that only requires minimal
pre-processing. This is done in object-agnostic prediction methods, which are described next.

2.3. Object-agnostic prediction
With the increasing possibilities of deep learning, the object-agnostic approach to motion prediction
gained popularity. The object-agnostic representations do not require a human-engineered pipeline,
consisting of object detection and tracking, but can be generated by minimally processing the raw
sensor data. A popular used representation is anOccupancyGridMap (OGM), of which amore in-depth
description is provided in section 1.4.1. Less common representations are often extensions of the OGM
with additional channels that contain dynamic (DOGMa) or semantic information [25, 57, 27, 61] for
each grid cell such as velocities and orientations, and semantic class labels respectively. Alternatively,
[66] creates multi-channel BEV rasters from LiDAR sweeps at different heights per channel. Each
channel also contains semantic class and dynamic information per occupied raster cell. This section
elaborates on several object-agnostic prediction methods. The methods are categorized based on
the kind of neural network architecture used. First, two CNN based methods are described followed
by an RNN based method using a GRU architecture. Then, two methods that use the ConvLSTM, a
combination of a CNN and an RNN, are described. This section ends with three methods based on the
PredNet [39] architecture, which implements ConvLSTM modules, followed by table 2.2 which shows
an overview of the main properties of each object-agnostic prediction method.
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2.3.1. CNN-based OGM predictors
Hoermann, Bach, and Dietmayer [25] proposes to predict Dynamic Occupancy Grid Map (DOGMa)
using a Convolutional Neural Network (CNN). DOGMas are OGMs that contain dynamic information,
i.e. velocities and orientations, for each grid cell. The network requires one DOGMa of the current time
step and predicts up to 3 seconds into the future with time steps of 0.5 seconds. Only one input DOGMa
is used because [25] hypothesizes that most information necessary for prediction can be found in the
dynamic representation and the relation between the cells and not necessarily from the past DOGMas.
By weighting dynamic grid cells relatively more than static grid cells in the loss, the network is prevented
from ignoring the dynamic grid cells in its predictions. The output of the network is a multi-channel OGM
with one channel containing the occupancy of static grid cells and several channels, for each predicted
time step one, containing the future occupancy of the dynamic grid cells. The network’s architecture
is a downscaling cascade of CNNs followed by upscaling deconvolutions. It is based on Noh, Hong,
and Han [46] semantic segmentation network (see figure 2.5) but it replaces the unpooling layers with
deconvolutions. This is because deconvolution kernels can be learned, allowing more parameters to
generate predictions. Hoermann, Bach, and Dietmayer [25]’s network is trained on their own recorded
dataset. The proposed method performs multimodal predictions, can distinguish static from dynamic
objects, and provides more accurate predictions than the particle filter baseline. This is because the
convolutional layers capture the DOGMa’s cell dependencies where particle filters assume independent
cells. However, due to uncertainty, longer-term predictions become increasingly blurry.

Figure 2.5: Noh, Hong, and Han [46] CNN architecture that forms the basis for Hoermann, Bach, and
Dietmayer [25] DOGMa prediction network. The network’s architecture is a downscaling cascade of
CNNs followed by upscaling deconvolutions. In [25]’s architecture, the unpooling layers are replaced
by deconvolution layers.

Another CNN based network is [66]’s MotionNet, which is a BEV raster prediction method. Wu,
Chen, and Metaxas [66] performs perception and motion prediction with 3D LiDAR data as input. A
sequence of LiDAR 3D point cloud sweeps synchronized to the current time frame is converted to BEV
maps with semantic class and dynamic information by voxellizing the point cloud and representing it
as a 2D pseudo-image where the height dimension corresponds to the image channels. Hence, it is
similar to having a multi-channel pseudo-OGM where each channel represents a different height in
the environment. This representation makes convolution possible. The MotionNet is a spatio-temporal
pyramid network, as is shown in figure 2.6. It contains an encoder with multiple STC blocks that consist
of standard 2D convolutions for capturing spatial features, followed by a 1D convolution. The encoder
is followed by a decoder using deconvolutions. There are temporal pooling skip-connections between
the encoder and decoder that convey temporal features at different scales to retain both global and lo-
cal spatio-temporal contexts. The network contains three output heads, each providing an output with
specific information. The first head provides semantic segmentation of the pseudo-OGM. The second
head provides an pseudo-OGM prediction for a time horizon of N time steps. The third head classifies
a grid cell as either dynamic or static. Together, the three heads from a multi-channel pseudo-OGM
output with object labels, predictions, and dynamic information. This is similar to a sequence of DOG-
Mas with semantic information.

The network is trained on the nuScenes [7] dataset. The MotionNet network [66] is compared
with Schreiber, Hoermann, and Dietmayer [57]’s ConvLSTM encoder-decoder network, and four other
baselines, which MotionNet all outperforms. Especially because of its ability to distinguish static and
dynamic obstacles well. Figure 2.7 shows some of the predictions made using MotionNet.
All in all, the current OGM prediction methods still struggle with blurriness of longer-term predictions.
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Figure 2.6: An overview of MotionNet’s architecture, [66]’s spatio-temporal pyramid network containing
STC building blocks and temporal pooling skip connections to predict pseudo-OGMs.

The following section will illustrate that this challenge is not bound to OGM prediction only but also
persists in the domain of video prediction methods, which often form the basis for OGM prediction.

Figure 2.7: Wu, Chen, and Metaxas [66]’s pseudo-OGM predictions based on the LiDAR pointcloud
sweeps containing dynamic and semantic class information. The image shows six separate predictions
(bottom) with the corresponding ground truths (top). The background is gray, vehicles blue, pedestrians
red, cyclists orange, and others are green.

2.3.2. RNN-based OGM predictor
Dequaire et al. [15]’s main research objective is, given a sequence of partially observable OGMs, to
track the observed objects and predict the true, unoccluded state of the world in terms of current and
future OGMs. Dequaire et al. [15] generates two-channel OGMs. One channel contains the occupancy
data (0 for Free, 1 for Occupied), and the other contains visibility information (0 for occluded, 1 for un-
occluded). Dequaire et al. [15] assumes that if a network learns to predict traffic behavior, it must learn
to distinguish the shapes and motion patterns of the observed traffic participants. With this knowledge,
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the network can also be trained to perform semantic segmentation if class labels are provided in the
OGMs during network training (multi-task learning). Different object classes (i.e. pedestrians, cyclists,
vehicles) have distinct shapes and motion patterns. To perform the tasks of tracking, prediction, and
semantic segmentation, [15] proposes a network based on Ondruska and Posner [48]’s recurrent deep
tracking network, which contains RNNs. However, to improve this network’s memory [15] uses the
Gated Recurrent Unit (GRU) in their network architecture (see figure 2.8). A GRU is a network that re-
tains memory for a longer term compared to an RNN. Furthermore, to compensate for the ego-motion
in between an OGM sequence’s time steps, [15] implements a Spatial Transformer (STM). The STM
is a learnable module that uses odometry data to translate the GRU’s hidden state of the previous
time step to the current time step. The network is trained on [15]’s self-recorded dataset. The results
show that [15]’s GRU-based network performs better [48]’s Deep Tracking network, which is used as
a baseline.

Figure 2.8: Dequaire et al. [15]’s GRU-based OGM prediction network architecture. The latent features
from the previous time step go through the Spatial Transformer (STM) to compensate for the ego-motion
in between the OGM frames.

2.3.3. ConvLSTM-based OGM predictors
This section elaborates on two OGM prediction methods based on the ConvLSTM [67] architecture,
which consists of a CNN part and an LSTM part. The CNN part of the ConvLSTM is efficient in ob-
taining spatial features from image-like data structures. Subsequently, the LSTM [24] is a type of RNN
architecture that can process sequential data and keeps track of long-term dependencies in the fea-
tures obtained from the data sequences, such as OGM sequences. First, Schreiber, Hoermann, and
Dietmayer [57]’s method is discussed which predicts DOGMas. Then, Mohajerin and Rohani [44]’s
method is discussed, which proposes a so-called difference learning architecture for the prediction of
OGMs.

Schreiber, Hoermann, and Dietmayer [57] builds upon [25]’s research by expanding the CNN with
a ConvLSTM encoder and decoder containing ConvLSTMs and with ConvLSTM skip-connections be-
tween the down-scaling and up-scaling parts of the network (see figure 2.9). The ConvLSTMs in the
encoder and decoder capture spatial and temporal correlations. The skip-connections convey high-
resolution features, including occluded objects, to the up-scaling layers. Like [25]’s network, [57]’s net-
work also weighs the static and dynamic predictions separately. The network outputs a multi-channel
OGM. One channel contains the occupancy of static grid cells, and for every predicted time step, there
are channels with the occupancy of the dynamic grid cells. To train the network, [57] recorded their own
dataset. The network is compared with [25]’s and [15]’s networks and a particle filter. Schreiber, Hoer-
mann, and Dietmayer [57]’s method shows a better performance. However, the data is only recorded
in a stationary scenario. The performance on dynamic scenarios is not evaluated.

Mohajerin and Rohani [44] builds upon [15]’s research and proposes a difference learning method
for the prediction of OGMs using ConvLSTMs in the network architecture. Figure 2.10 shows the
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Figure 2.9: Schreiber, Hoermann, and Dietmayer [57]’s ConvLSTM encoder-decoder network with
ConvLSTM skip connections.

difference learning architecture. The suggested method learns the difference between consecutive
OGMs using a MFE algorithm. The output of the MFE algorithm is a tensor of the same height and
width as the OGMs, which contains movement information in X and Y directions for each grid cell. This
information is encoded and added to the encoded representation of the input OGM in the network’s
architecture. Subsequently, the encoded OGM and movement information flows through a ConvLSTM
core, after which it is decoded and results in the predicted change of motion for each grid cell of the
OGM. This predicted change of motion is added to the input OGM and processed by a feed-forward
classifier layer that provides the prediction of the full OGM for one time step. The predicted OGM is
inserted back into the network to predict the next time step. This is iterated for the number of predicted
time steps that are desired. The network is trained on the KITTI [22] dataset. The difference learning
architecture outperforms [15]’s architecture in predicting future OGMs.

Figure 2.10: Mohajerin and Rohani [44]’s ConvLSTM-based difference learning OGM prediction net-
work architecture. Two consecutive OGMs go through the MFE module to obtain a movement infor-
mation for each grid cell. The encoded movement information is added to the current encoded OGM
and processed by the Core RNN (the ConvLSTM). After decoding the result, it is processed by the
Classifier to predict an OGM for one time step. To predict the next time step, the predicted OGM is
inserted as the new input of the network.

2.3.4. PredNet-based OGM predictors
This subsection covers three methods that are all based on Lotter, Kreiman, and Cox [39]’s Predictive
Coding Network (PredNet) architecture, which implements ConvLSTM modules (as is shown in figure
2.11). First, [27] adjusts PredNet to be suitable for OGM prediction. Second, [35] attempts to improve
[27]’s architecture by adding an attention mechanism that better learns dependencies between sequen-
tial grid cells. Third, [61] extends [27]’s architecture to separate the static from the dynamic environment
so the network can better distinguish dynamic behavior.
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Initially, Itkina, Driggs-Campbell, and Kochenderfer [27] propose to utilize PredNet, an architecture
based on the human brain predictive coding principle. This principle hypothesizes that the human brain
continually predicts its incoming stimuli (e.g. visual stimuli from the eyes), compares these predictions
against the actual stimuli, and generates an error signal to update the predictions. To mimic this princi-
ple, the PredNet architecture consists of multiple concatenated modules that all contain the same four
parts: an input layer, a representation layer, a prediction layer, and an error representation layer (see
figure 2.11). The input layer obtains features from the OGM (i.e. the actual stimulus) using convolu-
tions and pooling. Then, a prediction of those features is made by the prediction layer (analogous to
the brain’s predictions), using the representation layer’s features. The error representation layer gen-
erates an error by subtracting the input features from the predicted features (like the brain’s generated
error signal). After non-linearizing, the error is linked to both the representation layer and the module’s
output. The representation layer learns temporal and spatial patterns from the error and the represen-
tation layers of neighboring modules using a ConvLSTM [67]. Recurrently, the prediction layer then
uses the representation layer’s features to make predictions of the input features. Originally, the Con-
vLSTM was used for video prediction, which is a similar task to OGM prediction due to the similarity of
images (frames in a video) and OGMs. Video prediction methods that are relevant for OGM prediction
are further described in section 2.4.

Figure 2.11: “Predictive Coding Network (PredNet). Left: Illustration of information flow within two
layers. Each layer consists of representation neurons (Rl), which output a layer-specific prediction at
each time step (Âl), which is compared against a target (Al) to produce an error term (El), which is
then propagated laterally and vertically in the network. Right: Module operations for the case of OGM
sequences.” [39].

Itkina, Driggs-Campbell, and Kochenderfer [27] re-purpose the ConvLSTM [67] for OGM prediction.
To train the PredNet, [27] generates OGMs from the KITTI [22] dataset. Itkina, Driggs-Campbell, and
Kochenderfer [27] compares the PredNet’s performance with a baseline that assumes a static environ-
ment for the short period of time that the predictions last, with an Fully Convolutional Network (FCN)
network, and with a particle filter predictor. The research of [27] found that the PredNet outperforms the
other investigated methods. However, for longer predictions, the objects in the OGM become blurry or
even disappear from the environment.

To counter the blurriness and object disappearance for longer-term predictions, [35] proposes the
AAConvLSTM for environment prediction. Lange, Itkina, and Kochenderfer [35] proposes to reduce
blurriness by implementing this attention mechanism, which originated from creating long-term depen-
dencies in language processing, into the PredNet architecture. Attention augmented convolutions re-
place the regular convolutions of the original ConvLSTM to form the AAConvLSTM. These attention
augmented convolutions highlight inter-dependencies between spatial and temporal dimensions of the
OGM sequences, allowing the network to learn object representations. Using attention augmented con-
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volutions, compared to regular convolutions, also allows the LSTM to store more relevant information in
its long-term memory. This improves the network’s prediction accuracy. Lange, Itkina, and Kochender-
fer [35] trains the AAConvLSTM PredNet using the Waymo [60] and KITTI [22] datasets. The results
are compared with results from the original PredNet architecture and the PredRNN++ [62] architecture,
which is also used in the video prediction domain. The AAConvLSTM performs better than the other
investigated methods. However, blurriness and disappearance of objects remain as can be seen in
figure 2.12.

Figure 2.12: The AAConvLSTM predictions [35] (bottom) compared to the ground truth (middle) for
25 time steps, given the past input sequence of 5 frames (top). The predictions become increasingly
blurry for the longer time horizons and objects disappear.

Toyungyernsub et al. [61] also aims to counter the blurriness and disappearing objects that result
from [27]’s method for long-term predictions. Toyungyernsub et al. [61] expects that incorporating
dynamic information directly into the network’s architecture can solve the problems of [27]’s network.
Therefore, they propose a double-prong network based on the PredNet architecture (figure 2.13 shows
the network’s pipeline). This network splits its architecture into a static and a dynamic prong. The static
prong takes as input the static OGMs and makes static predictions, while the dynamic prong does the
same for DOGMas. Toyungyernsub et al. [61] uses object detection and tracking to determine each
grid cell’s velocity between two separate OGM frames. Subsequently, the static and dynamic OGM
predictions are fused to form a joint prediction. The double-prong network is trained on the Waymo [60]
dataset. The method outperforms the baselines, however, the blurriness and disappearance of objects
still remain for longer-term predictions.

Figure 2.13: The Double-Prong network pipeline proposed by Toyungyernsub et al. [61]. This network
separately predicts the future static and dynamic OGMs and then fuses them to create the complete
OGM prediction.
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Method Dataset Network Input Output Loss Function Metric
[15] Own RNN (GRU) OGM +S* OGM +S* Cross-entropy F1-score
[25] Own CNN DOGMa OGM MSE ROC, TPR, FPR
[57] Own ConvLSTM DOGMa OGM L1-Loss, MSE ROC, F1-score

[44] KITTI [22] ConvLSTM
variations OGM OGM Cross-entropy,

MSE, SSIM [64] TPR, TNR, SSIM [64]

[27] KITTI [22] PredNet DOGMa, OGM OGM L1-Loss MSE

[35] KITTI [22]
Waymo [60]

PredNet
AAConvLSTM OGM OGM L1-Loss MSE, IS [4]

[61] Waymo [60] PredNet
Double-Prong DOGMa, OGM OGM L1-Loss MSE, IS [4]

[66] NuScenes [7] MotionNet OGM/BEV maps DOGMa +S*
L1-Loss,
Cross-entropy,
consistency losses

MSE, MeSE

Table 2.2: An overview of properties of the different object-agnostic prediction methods. * +S stands
for additional semantic data.

2.4. Video Prediction
OGM prediction methods such as [35]’s PredNet based [39] AAConvLSTM originate from video predic-
tion. Since an image is similar to an OGM, a sequence of image frames i.e. video is similar to predicting
a sequence of OGMs. Therefore, this section highlights relevant video prediction methods that are also
the foundation of many OGM prediction methods.

The influential work by Xingjian et al. [67] introduced the Convolutional Long Short-Term Mem-
ory (ConvLSTM) network as an extension of the Convolutional Neural Network (CNN) to process se-
quences of images. Initially developed for precipitation nowcasting, the ConvLSTM uses past radar
maps to predict a sequence of future maps. This model outperformed optical flow algorithms and the
Long Short-Term Memory (LSTM) [24] due to its ability to capture complex spatiotemporal patterns.
However, it also produces increasingly blurry predictions for greater prediction horizons. Finn, Good-
fellow, and Levine [19] use ConvLSTM layers in their video prediction model, Convolutional Dynamic
Neural Advection (CDNA). This model predicts pixel motions of frame segments and merges the seg-
ments into a single future frame prediction. Predictions made by CDNA also become blurrier over time
due to the use of MSE loss in training, which causes uncertainty to be encoded as blur [19], as was
also demonstrated in [35]’s OGM prediction method. To counter the blurriness, [19] suggest using an
alternative loss. Subsequently, PredRNN++, the network [62] proposed, mitigates the blurring of pre-
dictions by employing a ’gradient highway’ that provides shorter routes for gradients to flow through the
network. This allows the network to learn stronger spatial correlations and short-term dynamics, lead-
ing to more confident predictions and decreased blurriness over long prediction horizons. Furthermore,
the PredNet [39] network, as discussed in section 2.3.4 has been used for OGM prediction [27, 35, 61]
because of its desirable properties. Based on the neuroscientific concept of predictive coding, each
layer of PredNet makes a local prediction using ConvLSTMs and forwards the errors of that prediction
to the subsequent layers. The authors argue this ensures the network learns an implicit model of the
objects in the scenes, including their movement.

These approaches demonstrate that blurriness is partly caused by the model’s increasing uncer-
tainty with time. This uncertainty could be reduced by ensuring more informative supervision signals
are used in training through better loss functions or by improving the ability of a model to recognize
dynamic objects and their movement patterns.

2.5. Loss functions used in OGM prediction
Table 2.2 shows an overview of the object-agnostic OGM prediction methods. In the column ’Loss
function’, the loss functions used in each method to train the network are listed. The majority of the
methods use per-pixel losses such as the L1 loss [27, 35, 61, 57, 66], the MSE loss [25, 57, 44], and
the Cross-Entropy loss [15, 44, 66]. As is covered in section 1.4.2, these per-pixel losses do not mea-
sure any relations between grid cells. Therefore these losses cannot evaluate the distance errors nor
the existence of objects. As a result, the loss function does not allow the network to recognize spatial
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relations between environment features causing the network to represent uncertainty as a blur.
Mohajerin and Rohani [44], implements the inter-pixel SSIM loss [64] in combination with the MSE and
Cross-Entropy loss to train their network. Their results do outperform the state-of-the-art alternatives.
However, they do not investigate the isolated effect of using the SSIM loss, so its effect on the predic-
tions is uncertain. Wu, Chen, and Metaxas [66] also implements their designed spatial and temporal
consistency losses together with the L1 and Cross-Entropy loss. The consistency losses are based on
the assumptions that an object’s grid cells move equally and with minimal dynamic changes per time
step and that the background remains static. The first two are the spatial and foreground temporal
consistency losses. These losses minimize the motion between the grid cells corresponding to a sin-
gle object and the average motion of a single object’s grid cells through time, respectively. The third
loss is the background temporal consistency loss and minimizes the movement of grid cells that do
not belong to any annotated objects in the predictions. The three losses use semantic information to
evaluate objects (i.e. clusters of grid cells between which dependency is assumed). Therefore, these
losses do consider grid cell dependencies within detected objects. The downside is that relations be-
tween objects are still not considered in the loss functions and that these losses still rely on some object
identification method.

2.6. Occupancy Grid Map semantic segmentation
As explained in section 1.4.3, OGMs can be extended with channels containing semantic information
for each grid cell. Toyungyernsub et al. [61] show that adding semantic information to the OGMs, by
distinguishing between static and dynamic objects, improves the accuracy of their network’s predic-
tions by decreasing the amount of blur and number of disappeared objects. Dequaire et al. [15] also
implements a semantic segmentation functionality in their network. They train the network to detect
and track objects and to estimate the future occupancy and corresponding semantic classes for orig-
inally occluded regions, which is shown in figure 2.14. They use multi-task learning to improve the
semantic segmentation task. However, both approaches depend on semantic priors generated by an
identification mechanism and are thus still dependent on the accuracy of this additional mechanism.

Figure 2.14: The semantic segmentation prediction from [15]’s network. The OGMs represent the
scene from the camera image (left), with the AV’s point of view at the bottom of each OGM. The ground
truth is shown in the center and the prediction on the right. The network learns to fill in the originally oc-
cluded spaces, including their semantic classes. Black: occluded, Grey: visible, Blue: vehicle, Green:
pedestrian, magenta: cyclist, red: static.

Wu, Chen, and Metaxas [66] avoids this issue by estimating the semantic state of a predicted
future representation of a scene without relying on semantic priors. Their proposed model, MotionNet,
has three different output heads that learn to predict channels with occupancy, semantic, or dynamic
information for each grid cell. MotionNet extracts information from proposed regions of interest in the
input and derives dynamic and semantic properties from those regions to predict the future semantic
classes and dynamic states. However, the effects of having three different output heads, of which two
heads predict semantic classes and dynamic states, respectively, on the performance of the occupancy
information head (multi-task learning) are not investigated.
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2.7. Multi-task learning for Occupancy Grid Map prediction
As mentioned in the previous section, [15] uses multi-task learning by simultaneously training their net-
work to perform the object tracking and OGM prediction task and the semantic segmentation task. They
posit that the network would learn hidden representations of objects from the tracking and prediction
task, which it could use to improve the semantic segmentation task. According to the description in
section 1.4.4, [15]’s source task is to learn object tracking and OGM prediction, while their target task
is to perform semantic segmentation. Furthermore, [58] proposes an end-to-end multi-task network
that predicts current-time DOGMas, including semantic labeling of objects, given 3D LiDAR data of the
environment. Their network simultaneously learns a sensor model task, which converts 3D LiDAR data
into OGMs, and the dynamic estimation and semantic segmentation tasks. They show that learning
the source task of converting LiDAR data into OGMs improves the network’s target task of semantic
segmentation.

The second contribution of this thesis is to investigate whether the principle of multi-task learning,
used by [15] and [58], can also be applied to improve a network’s OGM predictions, given that it is
also trained to perform semantic segmentation of the OGMs. In this method, hidden representations
learned from the semantic segmentation source task are expected to be used to augment the OGM
prediction target task. This would allow the network to identify dynamic objects and reduce the blurring
of objects in long-term predictions without direct reliance on an object detection pipeline for the object
predictions.



3
Method

OGM prediction is a self-supervised sequence-to-sequence prediction problem in which the goal is to
predict a sequence of future OGMs given a sequence of past ones. Either binary OGMs or evidential
OGMs [47] are used, as described in section 1.4.1. However, the method can be generalized to other
OGM types. An OGM of the environment Xt ∈ RH×W×1

+ at time step t contains the occupancy (i.e.
whether it is free or occupied) probability of each grid cell xt,ij , i ∈ [1,H], j ∈ [1,W ] at that instant.
Given a past (observed) sequence of OGMs X−τ :0, the objective is to predict T frames into the fu-
ture X1:T . This thesis proposes a deep learning method to perform these predictions. The prediction
network is described in the following section. Afterwards, the methods to perform the loss function ex-
periments, followed by the method for the semantic segmentation experiment, are discussed. Finally,
the performance metrics to evaluate the quality of the predictions are highlighted.

3.1. Prediction network
This thesis employs the PredRNN++ [62] as the prediction network because it is a state-of-the-art
sequence-to-sequence network. Originating from the video prediction domain, PredRNN++ has been
used by [35] to predict OGMs. The PredRNN++ is designed to handle deep recurrence depths by em-
ploying a Causal LSTM, and back-propagation for long-termmodeling by using a Gradient Highway Unit
(GHU). The Causal LSTM is a structure that extends the normal LSTM and increases the recurrence
depth from one time step to the next. It does so by using more non-linear layers than the normal LSTM.
Furthermore, the causal LSTM contains a dual memory system consisting of a temporal memory and
a spatial memory for each time step and hidden layer in the network. Through a cascaded mechanism,
the spatial memory is a function of the temporal memory via a set of gate structures. This endows the
output with a larger receptive field of the input at every predicted time step. These measures allow a
more powerful modeling capability of spatial and temporal correlations. The GHU solves gradient back-
propagation issues, such as a vanishing gradient, for long-term modeling by constructing a gradient
highway. This highway forms a short route from the future outputs to the inputs through the network.
The final architecture of the PredRNN++ is created by stacking L Causal LSTMs and inserting a GHU
between the first and second Causal LSTM. The Causal LSTM and GHU complement each other by
capturing both long-term and short-term dependencies in the input sequences. Figure 3.1 shows a
schematic of the PredRNN++ [62] architecture.

3.2. Loss functions
Two inter-pixel loss functions, the Structural Similarity Index Measure (SSIM) [64] loss and the Sinkhorn
loss [30, 13] are proposed to use for training OGM prediction networks. The expectation is that using
an inter-pixel loss function improves the prediction quality compared to a per-pixel loss function. The
L1 loss is considered the baseline loss because it is a simple, popularly used per-pixel loss. First, this
thesis proposes to investigate the properties of the SSIM and Sinkhorn losses and compare them to
the L1 loss prior to implementing the losses for OGM prediction on a real dataset. These investigations
are described in the toy experiments in section 4.1. Then, the effects of training the PredRNN++ [62]
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Figure 3.1: The PredRNN++ [62] architecture consists of L layers of Causal LSTMs with a GHU layer
in between the first and second Causal LSTM layer. The spatial memory Mk

t flows through the layers.
From the deepest layer the spatial memory cascades into the next time step as a function of the temporal
memory Ck

t , which flows through the time steps. The transition features between the first and second
layer,H1

k , first flow through the GHU which connects all temporal layers by hidden state Zk. This allows
a short passage way for the gradient to flow through the network’s inputs when back-propagating.

on a real large-scale dataset with different loss functions on the prediction quality are investigated. The
L1, SSIM, and Sinkhorn losses are explained in the following subsections.

3.2.1. L1 loss
The L1 loss takes the mean of the absolute error between the grid cells of the ground truth X and
prediction X̂, as shown in equation 3.1.

L1(X, X̂) =
1

HW

H∑
i=1

W∑
j=1

|xij − x̂ij | (3.1)

3.2.2. SSIM loss
The Structural Similarity Index Measure (SSIM) [64] is a function inspired by the human visual system
that measures the similarity between two images. It evaluates luminance, contrast, and structural infor-
mation over windows of an image to estimate perceptual visual similarities [64]. Hence, the final loss
value is computed by sliding the window over the image, calculating the SSIM locally, and taking the
mean of the resultant values. The window size is a parameter that can be changed to adjust the scale
for local evaluation. The components of the SSIM function are described in this section in the context
of its application to OGM prediction.

Let the SSIM windows have size N × M . The luminance µx of a window x of an OGM is the
mean intensity over the window, which is calculated as in equation 3.2. The luminance values of
corresponding windows y and x of the ground truth and prediction, respectively, are compared using
equation 3.3, where the ’stabilising’ constant C1 = (K1L)

2, L is the dynamic range of the pixel intensity
values, and K1 ≪ 1 is a small constant.
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µx =
1

NM

N∑
i=1

M∑
j=1

xij (3.2)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(3.3)

The contrast is the standard deviation σx of the window, shown in equation 3.4. The contrasts of
the windows of the ground truth and prediction are compared using equation 3.5, where ’stabilising’
constant C2 = (K2L)

2, L is the dynamic range of the pixel intensity values and K2 ≪ 1 is a small
constant again.

σx =

 1

NM − 1

N∑
i=1

M∑
j=1

(xij − µx)
2

 1
2

(3.4)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(3.5)

Equation 3.6 is used to compare the structures, or correlations, between the prediction and the
ground truth, where C3 is a small constant and σxy is computed using equation 3.7.

s(x, y) =
σxy + C3

σxσy + C3
(3.6)

σxy =
1

NM − 1

N∑
i=1

M∑
j=1

(xij − µx)(yij − µy) (3.7)

After the comparisons are performed, the SSIM combines them according to equation 3.8. α > 0,
β > 0 and γ > 0 are parameters to adjust the relative importance of the three factors. The SSIM ranges
from −1 to 1, where a value of 1 means that the evaluated predicted window is identical to the ground
truth one.

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (3.8)

The SSIM should be suitable for an OGM prediction loss because the luminance, contrast, and
structural factors would optimize for equal occupancy values, equally ’sharp’ object borders, and equal
inter-object distances respectively between the ground truth and predictions.

3.2.3. Sinkhorn loss
The Sinkhorn loss [13] is an approximation of the Wasserstein distance [30] (or Kantorovich-Rubinstein
distance). TheWasserstein distance expresses the ’distance’ between twomarginal probability distribu-
tions u, v as the minimum cost to transform one distribution to the other. Concretely, the Wasserstein-p
distance for discrete distributions can be calculated using equation 3.9, following the formulation by
Feydy [18].

Wp(u, v) =

(
min

π∈Γ(u,v)

∑
x,y

C(x, y)π(x, y)

) 1
p

(3.9)

In the case of 2D marginal distributions, Γ(u, v) is the set of all possible 4D distributions, or ’cou-
plings’, π(x, y) that have marginals u and v. A coupling π(x, y) expresses the probability mass that
must be transported from position x to position y in order for the marginal distributions to be identical.
The couplings are weighted by the cost function C(x, y) for moving a unit of mass from x to y; the
Wasserstein-p cost function family has C(x, y) = 1

p∥x− y∥pp, with popular choices p = 1 (also called
Earth Mover’s Distance) and p = 2 (The L2 norm), where the latter is considered in this thesis. Op-
timizing the Wasserstein distance is computationally expensive, with higher-dimensional distributions
incurring greater costs. To decrease the computational complexity, the Sinkhorn approximation [13] of
the Wasserstein distance is used in this work instead. This approximation uses entropic regularization
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to ’blur’ the couplings to reduce the dimensionality of the optimization problem, as shown in equation
3.10.

Sϵ(u, v) = min
π∈Γ(u,v)

⟨C ⊙ π⟩+ ϵKL(π, u⊗ v) (3.10)

This equation consists of two terms: an objective and regularizing term. The objective term con-
sists of the Hadamard product of the cost function C and the coupling π. The Kullback–Leibler (KL)
divergence between the coupling and the Kronecker product of the marginals u and v is added to regu-
larize the solution, weighted by a blur factor ϵ that balances the trade-off between accuracy and speed.
To compute the Wasserstein distance for an OGM X ∈ RH×W

+ , the OGM is mapped to a discrete 2D
probability distribution P (X) by normalizing the cells by the total ’mass’ in the grid, shown in equation
3.11.

P (X) =
X∑
i,j xij

(3.11)

Since the predicted and ground truth OGMs do not necessarily have the samemass, this mapping is
a prerequisite to applying the Sinkhorn loss. The normalization may result in a re-weighting of correctly
predicted ’local’ regions in the OGM, forcing the prediction network to be globally accurate to reduce the
loss value on a local level. Furthermore, the Sinkhorn loss is expected to consider the spatial relations
within OGMs because it optimizes the network to generate predictions that have the closest distance
to the ground truth, when considering them as 2D distributions. Due to normalization, the prediction
and ground truth will be evaluated without the original scaling information of each grid cell’s value. An
expected downside of using the Sinkhorn loss is that the network will not learn the proper scaling of
the OGMs, meaning that it might predict the correct locations for occupied and uncertain grid cells, but
without the correct values (between 0 and 1). A proposed solution to this expected scaling problem is
to add the L1 loss to the Sinkhorn loss and create a Sinkhorn-L1 composite loss. The L1 loss evaluates
the absolute grid cell values and can complement the Sinkhorn loss with the correct scaling information.
The Sinkhorn loss, in turn, implements the inter-pixel properties in the loss.

3.3. Semantic segmentation
The proposed method to perform semantic segmentation on the PredRNN++ network [62] is to provide
the network with a sequence of evidential OGMs and predict a sequence of future evidential OGMs
together with six semantic channels per future OGM. The six channels represent free space, vehicles,
pedestrians, cyclists, static objects, and unknown space. Via the principle of multi-task learning, the
hypothesis is that the network will improve its prediction performance when it also learns the task of
semantic segmentation without providing semantic priors in the input. It is expected that the network
will learn hidden representations of each semantic category and uses that information to generate more
certain predictions (i.e. predictions with fewer disappearing objects and less blur). Moreover, by not
including semantics in the input, the network will not be dependent on the object detection and tracking
methods, unlike classic prediction methods.

3.4. Performance metrics
The results are evaluated using four metrics. The Mean Squared Error (MSE) is used because it is a
popularly used per-pixel metric to evaluate OGMs (as in [27, 35, 61, 66]). To evaluate high-level inter-
pixel similarities between the predictions and the ground truths, the Image Similarity (IS) [4] metric is
used (as in [35, 61]). Furthermore, two metrics that are popular in the object detection domain [49,
52], the Average Precision (AP) and Accuracy metrics, are used as well. Respectively, the following
sections elaborate on these metrics.

3.4.1. The Mean Squared Error
The MSE metric measures the per-grid cell difference between the ground truth and predicted OGMs.
The formula is shown in equation 3.12, where Y is an m × n OGM, X its prediction, and i and j the
OGM coordinates.
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MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[Y (i, j)−X(i, j)]2 (3.12)

3.4.2. Image Similarity
IS is an inter-pixel metric that accounts for the difference in scene structure between the ground truth
and predictions by computing a distance map for grid cells with the same occupancy value, then av-
eraging over these values. Birk [3] developed the IS metric which they later used in [4]’s research on
finding similarities between OGMs in order to merge them to generate bigger maps. [3] defines the IS
metrics according to equations 3.13 and 3.14.

IS(m1,m2) =
∑
c∈C

d(m1,m2, c) + d(m2,m1, c) (3.13)

d(m1,m2, c) =

∑
m1[p1]=c min{md(p1, p2)|m2[p2] = c}

#c(m1)
(3.14)

In the case of an evidential OGM, C denotes the occupancy values that are categorized as free (0),
unknown (0.5) and occupied (1). mi[p] is the category c of grid mi at position p = (x, y). md(p1, p2) =
|x1−x2|+|y1−y2| is the Manhattan-distance between p1 and p2. #c(mi) = #p1|mi[p1] = c is the number
of pixels inmi with category c [3]. The IS metric is the sum over all the grid’s categories, of the average
Manhattan-distance of the cells with category c (i.e. free, unknown or occupied) in grid map mi to the
nearest cell with category c in grid map mj (d(m1,m2, c)), plus the average Manhattan-distance vice
versa [3]. This metric penalises blurriness in predictions in this setup, since blurred (predicted) cells
(i.e. with value around 0.5) will belong to a different category than the corresponding ground truth cell
and warp the computed distance maps as a result. The higher the IS value, the larger the difference
between the evaluated image and the ground truth.

3.4.3. Average Precision and Accuracy
The Average Precision (AP) and Accuracy are both metrics that measure individual OGM grid cell
value correspondences between the prediction and ground truth. The AP measures the area under the
Precision-Recall (PR) curve (see equation 3.15. Precision is the probability that a predicted positive
grid cell is correctly predicted (see equation 3.16. Recall is the probability that a positive grid cell in the
ground truth is also predicted as positive (see equation 3.17). The PR curve is generated by computing
the Precision-Recall pairs for different probability thresholds. The Accuracy computes the fraction of
correct predictions for each class as is shown in equation 3.18, where Y is an m × n ground truth
OGM, X its prediction, and i and j the OGM coordinates. The OGMs consist of three classes, free,
uncertain, and occupied, which are evaluated. The class values correspond to the values 0, 0.5, and 1
to which the OGM grid cells are rounded if their values range between 0−0.33, 0.33−0.67, and 0.67−1
respectively.

AP =
∑
n

(Rn −Rn−1)Pn (3.15)

P =

∑
TruePositive∑

PredictedConditionPositive
(3.16)

R =

∑
TruePositive∑

ConditionPositive
(3.17)

Accuracy =
1

mn

m−1∑
i=0

n−1∑
j=0

1(Y (i, j) = X(i, j)) (3.18)



4
Experiments

This section describes several experiments that are performed to answer the research questions from
section 1.2. First, four toy experiments are performed that compare the effects of using the per-pixel L1
loss with the inter-pixel SSIM, and Sinkhorn loss functions. These toy experiments, including their goals,
methods, results, and conclusions, are enveloped in this experiments section because the findings are
helpful for the comprehension of the rest of the experiments and results. Second, following up on the
toy experiments, the OGM prediction experiment is performed in which the PredRNN++ [62] is trained
using the different losses from the toy experiments and two additional losses that consist of a composite
of the Sinkhorn and L1 losses. The effects of using these different loss functions are measured. Lastly,
the multi-task learning experiment is performed in which the PredRNN++ network is trained to predict
semantic segmentation channels together with the sequence-to-sequence OGM prediction task. It is
measured whether learning the semantic segmentation task has an effect on performing the OGM
prediction task.

4.1. Toy Experiments
First, four toy experiments are performed to demonstrate and investigate the effects of the L1, SSIM,
and Sinkhorn loss functions before the main OGM prediction experiments are performed. The first
toy experiment is the ’sliding square experiment’. The loss functions’ distance capturing properties
are investigated by computing the losses for an increasing distance error by sliding a square over
an increasing distance compared to a ground truth square. This experiment can verify whether the
proposed inter-pixel losses have a better ability to capture spatial relations between grid cells than the
per-pixel L1 loss. Suppose the inter-pixel losses are able to capture spatial relations better than the L1
loss. In that case, this thesis hypothesizes that using these inter-pixel losses to train an OGM network
will allow the network to learn better object representations and in turn will reduce blurriness and object
disappearance. The second toy experiment investigates whether the inter-pixel losses are as effective
to train a network compared to the per-pixel L1 loss. The L1 and Sinkhorn losses are compared when
optimizing a simple 1D deep learning task. The SSIM loss is excluded because it can not perform
on 1D tasks. The task for the network is to convert a 1D probability density function to a cumulative
distribution function. The networks trained by the two losses are compared for increasing sizes of the 1D
distribution vector to evaluate the performance consistency for increasing network sizes. The third toy
experiment investigates whether the inter-pixel losses can also effectively train a 2D prediction network
since the eventual task in this thesis is to train an OGM prediction network. The L1, SSIM, and Sinkhorn
losses’ ability to optimize a network for a simpler 2D image prediction task are evaluated. This task is to
convert a random noisy image to a 2DGaussian image, hereinafter referred to as the noise-to-Gaussian
conversion task. After the different losses are investigated on their abilities to capture distances and
train both 1D and 2D networks, their performance on training an OGM prediction network is investigated
in the fourth toy experiment. However, before training on a real dataset, the loss performances on
a controlled synthetic toy dataset are first investigated. In this toy dataset, there is only one small
dynamic object (a pedestrian crossing the street), whereas the other objects in the scene are static
(other vehicles and pedestrians). In case the inter-pixel losses are better at capturing distances and

29



4.1. Toy Experiments 30

performing the 1D and 2D prediction tasks compared to the L1 loss, it is expected that those losses
would better predict the future locations of the small dynamic pedestrian when the synthetic toy dataset
is used for sequence-to-sequence OGM prediction. The four experiments, together with the results,
discussions and conclusions, are described in this section.

4.1.1. Sliding square experiment
Goal To investigate and compare the distance capturing properties of the L1, SSIM [64], and Sinkhorn
[13] losses on images. Also, compare the Sinkhorn loss to the Wasserstein [30] metric’s behavior since
the Sinkhorn loss is an approximation of the Wasserstein distance.

Method The distance capturing properties of the loss functions can be evaluated by designing two
scenarios of ground truth and prediction images containing at least one object that gradually increases
its distance (sliding) in the image compared to the ground truth. The values for each pixel in the image
are either 0 (free) or 1 (occupied). By computing the loss over the ground truth and the predictions,
the relation between the increasing distance error and the resulting loss values can be measured. The
first scenario contains only one object to measure the distance error effects on the loss of an isolated
object. The second scenario contains three objects, of which one will increase its distance error in the
predictions, causing it to overlap another object in the process. The other two objects will always be
predicted correctly. This is done to measure the influence of other, correctly predicted objects on the
loss value.

Experimental setup Two single-channel 32x32 ground truth images are generated, one for each
scenario. The first image contains a single 5x5 filled square placed on the left side of the image. The
second image contains the square from the first image and two additional 5x5 filled squares around the
center and bottom of the image. Then, a set of simulated predictions is generated for both ground truth
images. The simulated predictions contain a square (the left-most square in the ground truth) which is
increasingly displaced to the right by 1 pixel (slides) for every prediction in the set until it reaches the right
side of the image. Therefore, the prediction sets contain predictions with an increasing distance error
for every additional frame. For the second scenario, the other squares are always predicted correctly.
Figures 4.1a and 4.1b portray the first and second scenarios. Using the different loss functions (L1,
SSIM, Sinkhorn) and the Wasserstein metric, the predictions are compared to the ground truths for
both scenarios. For the SSIM loss, a window size of 11 is used. For the Sinkhorn loss, a blur of 0.1 is
used, and both the Sinkhorn loss and Wasserstein metric use an L2 distance function. The experiment
is performed using libraries compatible with the deep learning framework PyTorch [51]. For the losses
and metric, the PyTorch L1 loss, the Torch Geometry library’s [54] SSIM loss, the Geomloss library’s
[18] Sinkhorn loss, and the Python Optimal Transport library’s [20] Wasserstein metric implementations
are used. This experiment is repeated for different window sizes (7x7 and 9x9) and blur values (0.5
and 0.1) for the SSIM and Sinkhorn losses, respectively.

Evaluation method The resulting normalized loss/metric values are plotted versus the increasing
distance errors to show the behavior of each loss and the Wasserstein metric. By visually analyzing
the graphs, the behaviour of each loss/metric can be evaluated.

Results Figure 4.1 shows the two experiment scenarios. Figure 4.2 shows the normalized graphs
for the L1, SSIM, and Sinkhorn losses, and the Wasserstein metric. The results of the additional hyper-
parameter experiments are shown in Appendix A.

Discussion The results from the first scenario in figure 4.2a show different behaviors for each loss
and the Wasserstein metric. Starting with the losses from the first scenario, all show an increasing loss
value while the moving square from the prediction overlaps the left ground truth square, after which the
behaviors differ significantly.
The L1 loss shows a linear increase until the prediction square no longer overlaps the ground truth
square. From there, the L1 plateaus at the same value. This can be explained by the per-pixel evalu-
ation property of the L1 loss. While the prediction overlaps the ground truth, the overlapping regions
contain the same pixel values, which the L1 loss considers as correct predictions. As the prediction
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(a) The first simulated scenario. (b) The second simulated scenario.

Figure 4.1: The two scenarios that are generated to investigate the effect of the different loss functions
on an increasing distance error. Yellow: Ground truth / False negative prediction, Green: True positive
prediction, Blue: The moving square in the simulated predictions, Cyan: Overlap of the moving square
and true positive predictions, Red arrow: The direction in which the moving square slides, Black: Free.

(a) The results for the first scenario. (b) The results for the second scenario.

Figure 4.2: The normalized graphs for the L1, SSIM, and Sinkhorn losses, and Wasserstein metric for
the two scenarios where the ground truths are compared to predictions with increasing distance errors.

square moves linearly, the overlapping region decreases linearly, while the non-overlapping regions in-
crease linearly, until the prediction square is entirely separated from the ground truth. This corresponds
to the linearly increasing L1 loss until the squares do not overlap anymore. The number of falsely pre-
dicted pixels stays the same after the prediction and ground truth squares do not overlap anymore, so
the loss stays the same even if the distance error increases. Therefore, the results demonstrate that
the L1 loss does not capture these distance errors.
The SSIM loss increases with the increasing distance error, but the slope of the increase decreases,
generating a flattening curve. Notably, the slope shows sudden decreases in inclination at distance
errors from 5, 14, and 23 pixels, where the loss curve even starts to decrease from a distance error of
23 pixels. These sudden slope changes can be related to the window size of the SSIM loss and may
be explained as follows. The change between the distance errors of 5 and 6 pixels may be caused by
separating the prediction and ground truth squares. The SSIM 11x11 sized windows that go over the
image in y-direction, spanning the pixels 0 − 11 in x-direction, can fit the prediction and ground truth
squares exactly with a 1-pixel gap in between when the distance error is 6 pixels. Since the SSIM loss
measures similarities corresponding to variance, correlation and intensity, the gap may be of such a
significant influence on that similarity that the SSIM loss’s slope decreases for increasing distance er-
rors. At the distance errors between 14 and 15 pixels, the ground truth and prediction square cannot fit
within one window anymore, even partially. This would mean that any distances that could be captured
at first cannot be captured anymore due to the window size limitations, resulting in a plateauing value
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of the SSIM loss. Finally, at the distance errors between 23 and 24 pixels, the slope of the SSIM loss
decreases. This effect may be caused by the lack of symmetry in the evaluation. As the predicted
square closes in on the right edge of the image, the square will be considered less in the evaluations
since fewer windows will cover the square due to the edge’s limits. This may result in a decrease in
the SSIM loss. A similar effect is seen for the window sizes of 7x7 and 9x9 in figure A.2 in Appendix A.
For the Sinkhorn loss, the loss increases quadratically for an increasing distance error. This can be ex-
plained by the L2 distance cost implemented in the Sinkhorn loss. According to that cost, an increasing
distance means an increased effort to change the prediction into the ground truth, resulting in the de-
sired distance capturing behavior. The Wasserstein metric shows the same behavior as the Sinkhorn
approximation. Figure A.3 in Appendix A shows that the blur value does not change the Sinkhorn’s
behavior for this scenario.
The second scenario shows similar results for each loss as the first scenario. Interesting to note is
that the L1 and SSIM losses decrease. In contrast, the Sinkhorn loss and Wasserstein metric increase
with a greater slope when the prediction square overlaps its own predicted ’middle’ square at 10 pixels
x-direction. For the L1 loss and SSIM loss, more overlap means more pixels have the same value and
the structures remain more ’similar’, which explains the decrease in loss value. This behavior is also
visible for the SSIM loss with different window sizes in figure A.2 in Appendix A, though the decrease
during overlap is much smaller.
For the Sinkhorn loss, the overlap means that more ’effort’ is required to redistribute the weights to
form the ground truth from the prediction. During overlap, there are fewer occupied pixels in the pre-
diction than in the ground truth. If there is no overlap, the number of occupied pixels in the prediction
and the ground truth are equal. Since the Sinkhorn loss works on normalized images, the prediction’s
occupied regions get re-weighted when there is ’overlap’. Therefore, to redistribute the weights from
the prediction to form the normalized ground truth, the prediction must relocate weights from the middle
as well as from the right-most and bottom squares to compensate for the lack of occupied pixels. This
requires the weights to travel a greater distance over the image than when there is no overlap between
the squares. For training a deep learning network, this behavior can be desirable if objects disappear
in the predictions. In that case, it can be hypothesized that the Sinkhorn loss will increase such that the
network learns to ’regenerate’ the disappeared object (i.e. the lack of occupied grid cells compared to
the ground truth) to decrease the error peaks. One could view the Sinkhorn’s property to penalize both
the distance error and mismatch of occupied cells, compared to the ground truth, as more desirable to
maintain correct object instances in predictions, than the L1’s and SSIM’s property where having fewer
occupied grid cells, compared to the ground truth, is rewarded.
Further, the Wasserstein metric shows similar behavior to the Sinkhorn approximation, but during the
overlap theWasserstein metric increases more than the Sinkhorn loss. Figure A.3 in Appendix A shows
that different blur values change the increase of the loss during overlap. The Wasserstein metric is ba-
sically the Sinkhorn loss, but without any blur, which can explain why the increase of the loss during
overlap differs, like the Sinkhorn losses with different blur values.

Conclusion The L1 loss does not capture distance errors, while the SSIM and Sinkhorn losses do.
For larger distance errors the SSIM loss is limited by the window size. If the distance error is greater
than can bemeasured within a window, the SSIM loss cannot capture them anymore. The Sinkhorn loss
increases quadratically with increasing distance error, which is the desired behavior when evaluating
OGM. The Sinkhorn loss is similar in its distance capturing behavior to the Wasserstein metric.

4.1.2. Probability density to cumulative distribution conversion
Goal Compare the performance of L1 loss and the Sinkhorn loss [13] to train a network to convert
a 1D probability density function (pdf) to its cumulative distribution function (cdf), for increasing data
and network sizes. With this comparison, a better estimate can be made whether the Sinkhorn loss,
compared to the L1 loss, can perform equally well on larger data and network sizes, such as 128x128
grid cell OGMs and the PredRNN++ network.

Method To investigate the performances of training this probability density function (pdf) to cumulative
distribution function (cdf) conversion network, a one-layer fully-connected feed-forward network with as
many nodes as elements (m) in the pdf input vector is used to perform this task. For each element in
the input pdf vector, the corresponding element in the output cdf vector should be the input element
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summed to all the previous elements in the pdf vector. The one-layer network has sufficient parameters,
because with bias it would have 2∗m∗m+2∗m = 2m(m+1) parameters, wherem+

∑m
k=1 k parameters

are required which are fewer than the network has for allm. For either loss function, the network will be
trained. Also, to compare the ability of each loss function to train larger networks, training the network is
repeated several times. Each time the size of the network and elements (bins) in the pdf and resulting
cdf are doubled. The quality of the resulting cdfs are measured for each network to compare the effects
of using the L1 loss with the Sinkhorn loss.

Experimental setup To generate the input pdfs N samples are taken from a Normal distribution with
mean and standard deviation equal to m/2. The samples are put in a histogram of m bins, which
is normalized. The ground truth cdfs are then generated from the pdfs by taking their cumulative
sum followed by normalization, so the Sinkhorn loss can process them. A fully connected one-layer
feedforward network withm inputs andm outputs is used in this experiment. The network is optimized
using Stochastic Gradient Descent [56]. Eleven networks are trained to perform pdf to cdf conversion,
each with a different histogram bin number m, which doubles for each following experiment starting at
8 and ending at 8192. The number of samples N scales with the histogram number m to make sure
the bins are filled to resemble the Normal distribution. Training is done for 1000 epochs, 1 sample per
epoch with a batch size of 1. The learning rate is set to 1e−2. The experiment is repeated five times, of
which the average result values are taken for evaluation. The experiment is performed using the deep
learning framework PyTorch [51] and compatible libraries for the losses. The PyTorch L1 loss and the
the Geomloss library’s [18] Sinkhorn loss implementations are used. An Nvidia Tesla K80 GPU is used
for training and evaluation.

Evaluation method Evaluation is done quantitatively by comparing the MSE metric between the
predictions and ground truths with the increasing histogram bin number m. The MSE and histogram
bin number are plotted in a logarithmic scale to interpret the relation between the doubling histogram
numbers and the MSE metric.

Results Figure 4.3 shows the graph where the logarithm of the MSE metric is plotted against the
logarithm of the number of histogram bins m for the L1 loss and Sinkhorn loss networks. The plot
shows the average values of five experiments. Figure 4.4 shows the input pdf and the corresponding
ground truth cdf and predicted cdfs by the L1 and Sinkhorn networks for the increasing histogram size
m.

Figure 4.3: The log10 of the MSE metric versus the log2 of the histogram bin number m. Black shows
the L1 loss network performance. Red shows the Sinkhorn loss network performance.

Discussion Figure 4.3 shows that for an increasing number of histogram bins, the MSE for the L1
loss network first decreases, until the number of bins become larger than 64, after which the MSE
increases. The MSE remains constant for the Sinkhorn loss network for an increasing number of bins.
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(a) bins:8 (b) bins:16 (c) bins:32

(d) bins:64 (e) bins:128 (f) bins:256

(g) bins:512 (h) bins:1024 (i) bins:2048

(j) bins:4096 (k) bins:8192

Figure 4.4: The 1D pdf to cdf conversion results for increasing histogram bin number m. Each figure
shows a result for a different network size with m nodes. The figures show the input pdf (black), the
corresponding ground truth cdf (red), and the predictions from the L1 loss network (blue) and Sinkhorn
loss network (green). Note that the y-axis values range changes with increasing bin number because
the values are normalized with respect to an increasing number of values.

Both networks show similar performance (between 1e-4 and 1e-5) up to 64 bins, after which the L1
network diverges, with higher MSE values, from the Sinkhorn network performance. The graphs in
figure 4.4 demonstrate that the predictions from both the L1 and Sinkhorn loss networks show similar,
accurate results compared to the ground truth until the number of binsm is 128. From this point, the L1
loss network predictions have an increasing number of outliers, while the Sinkhorn’s number of outliers
seems consistent. On the other hand, the bulk of the L1 predictions is closer to the ground truth than
the Sinkhorn predictions. The L1 loss’ per-pixel property, by not considering dependencies between
the different output values, could explain the increasing number of outliers. Each value is optimized
individually causing some parts to ’lag behind’, especially when the network size increases which is
demonstrated by the increasing number of outliers. The Sinkhorn loss considers spatial relations, so
optimizing one value also influences other values, which can explain the smoother convergence also
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for larger bin numbers. The larger, but constant variance by the Sinkhorn loss compared to the L1 loss
could be explained by the blur parameter. Perhaps it is not able to converge the output with better
precision because it is limited by the blur parameter.

Conclusion For an increasing number of histogram bins starting from 64 bins, the pdfs to cdfs con-
version network performs better when trained by the Sinkhorn loss compared to the L1 loss according
to the MSE metric. For smaller number of bins, the performance is almost equal, with the L1 loss net-
work performing slightly better. The expectation is that the performance trend of the Sinkhorn loss is
maintained for larger data formats, such as OGMs, using larger networks.

4.1.3. Noisy image to 2D Gaussian conversion
Goal Compare the performance of networks trained using the L1, SSIM [64], and Sinkhorn [13] losses
to train a network to convert a 2D uniform noise image to a 2D Gaussian image (noise-to-Gaussian
conversion). Through this comparison, a better estimate can be made whether the SSIM and Sinkhorn
losses, compared to the L1 loss, can perform equally well on networks that process images (or data
formats such as OGMs that are similar to images).

Method To investigate the performances of training this noise-to-Gaussian conversion network, a
multi-layer fully-connected feed-forward with an activation function is created for this task. The L1,
SSIM, and Sinkhorn losses are used for training, after which the results are compared to evaluate the
effect of using each of the losses.

Experimental setup The inputs are randomly generated 64x64 uniform noise images. The ground
truth is a 2D Gaussian distribution with a mean of 0 and standard deviation of 1, which is mapped to a
64x64 grid with the mean in the center (at (32,32)). Both the inputs and ground truth are normalized so
they can be processed by the Sinkhorn loss. A simple deep learning network is designed for this task
consisting of a linear layer, followed by a ReLU, followed by two linear layers. Training is done for 2000
epochs, 1 sample per epoch with a batch size of 1. The learning rate is set to 1e-3, 1e-4, 1e-2 for the L1,
SSIM, and Sinkhorn losses respectively. The network is optimized using Stochastic Gradient Descent
[56]. The experiment is performed using the deep learning framework PyTorch [51] and compatible
libraries for the losses. The PyTorch L1 loss, the Torch Geometry library’s [54] SSIM loss, and the the
Geomloss library’s [18] Sinkhorn loss implementations are used. An Nvidia Tesla K80 GPU is used for
training and evaluation.

Evaluation method The network’s resulting predictions of the 2D Gaussian image for each loss are
evaluated quantitatively by using the Kullback-Leibler (KL) divergence metric since it can measure how
much two distributions (the ground truth and predicted 2D Gaussians) are similar to one another. Also,
a qualitative visual comparison is made.

Results Figure 4.5 shows the results from the noise-to-Gaussian conversion networks using different
loss functions.

Discussion The results show that the SSIM result has the best KL divergence score, where the L1
result is double as high and the Sinkhorn result about 30 times as high. This can also be seen in
the figures. Both the L1 and SSIM loss networks converge to generate 2D Gaussian images given a
random noise input. The L1 loss network shows a light noise throughout the predicted image, while the
SSIM shows a visually identical image compared to the ground truth. This could be explained by the
SSIM’s property of optimizing the output to resemble the ground truth visually. In contrast, the L1 loss
optimizes for each pixel to have the minimal absolute error. So, having a better visually resembling
prediction also has a better resembling distribution according to the KL scores. The Sinkhorn loss
network generates predictions that show a scatter of lighter pixels that cluster around the center of the
image, resembling a scattered version of the ground truth image. After blurring the Sinkhorn predictions
and the ground truths they might be more similar, and thus, the network would not be able to converge
further. Perhaps using a lower blur for the Sinkhorn loss would result in a better performance.
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(a) Input noise image. (b) Ground truth 2D Gaussian
image.

(c) L1 prediction. KL: 0.0137 (d) SSIM prediction. KL: 0.00613 (e) Sinkhorn prediction. KL: 0.188

Figure 4.5: The visual results from the noise-to-2D-Gaussian image conversion networks using differ-
ent loss functions together with the average KL divergence values for using that loss, where lower is
better.

Conclusion When comparing the performances of the noise-to-2D-Gaussian conversion networks,
the network trained using the SSIM loss performs best both quantitatively and qualitatively. The L1
loss network performs almost as well but predicts a noisier image than the SSIM loss network. The
network trained using the Sinkhorn loss performs worst. All in all, all three losses show the capability of
evaluating predicted images and updating the network that leads to convergence to the ground truth.

4.1.4. Synthetic dataset OGM prediction
Goal Compare the performance of a sequence-to-sequence OGM prediction network trained using
the L1, SSIM [64], and Sinkhorn [13] losses on a synthetic dataset containing scenes with one small,
dynamic pedestrian and static surrounding objects. By comparing the performances of the losses using
a controlled dataset, it is expected that a better controlled evaluation can be made compared to using
real data.

Method For this experiment, a similar method is used as is described in the method for the loss
experiments of this thesis in section 3. This method also uses the PredRNN++ network and evaluates
the results using the same metrics. This method, however, uses a synthetic toy dataset to train the
OGMprediction network, which is described in the next paragraph. Besides the L1, SSIM, and Sinkhorn
losses, the network is also trained on a Sinkhorn-L1 composite loss which is the sum of the Sinkhorn
and L1 losses. This composite loss is investigated because it is expected that the network trained on
the Sinkhorn loss will not learn the proper scaling of the OGMs. After all, the Sinkhorn loss is evaluated
on normalized data.

Dataset For this toy experiment a synthetic dataset is generated consisting of 500 30-second 128x128
binary OGM sequences. Each sequence consists of a simulated pedestrian that crosses a scene with
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static vehicles and pedestrians. For each sequence, a random number of vehicles (rectangles of ap-
proximately 40x25 grid cells) and pedestrians (squares of approximately 4x4 grid cells) are generated
and placed in an order that resembles a straight road with sidewalks. The vehicles would be placed
vertically or horizontally in the center, depending on the road orientation. Pedestrians would be placed
along the outer lines of the vehicles as if they are standing on a sidewalk. Besides these static traffic ac-
tors in the scene, a dynamic pedestrian is placed randomly on one of the outer ’sidewalks’ and crosses
the road filled with the vehicles. The RRT* [31] motion planning algorithm is used to plan the path for
the pedestrian because it contains some randomness. Yet, it converges to an optimal, shortest path
while avoiding the obstacles. The randomness of RRT* serves as a way to resemble the diversity of
human walking styles. The 500 30-second sequences can subdivided into 1500 10-second sequences
to train the network in the experiment.

Figure 4.6: Two 20-frame example sequences with a five-second interval of the synthetic toy dataset.
The binary OGMs of size 128x128 contain static vehicles (large rectangles), static pedestrians (small
squares), and one dynamic pedestrian (encircled) crossing the scene. The number of vehicles and
pedestrians, the dynamic pedestrian crossing direction, and road direction (horizontal or vertical) are
randomized for each sequence.

Experimental setup This experiment evaluates the effects on the test-time performance of training
the PredRNN++ OGM prediction network [62] with each of the L1, SSIM, Sinkhorn, and Sinkhorn-L1
composite losses. The OGM sequences from the synthetic dataset. A dataset of 300 training, 40 valida-
tion, and 100 testing non-overlapping sequences of 10 frames. Additionally, 100 longer test sequences
of 20 frames are generated from this dataset to test the trained networks for a longer prediction hori-
zon. The PredRNN++ [62] architecture, as is discussed in section 3.1, is used for our experiments. The
network consists of 4 blocks of causal ConvLSTMs with 12 layers each, with a GHU between the first
and second ConvLSTM layers. A 5x5 convolutional kernel size is selected for the ConvLSTM units.
The network is trained with each of the losses on 16 mini-batches of 16 samples of the training set
per epoch, for 200 epochs. The Adam optimizer [33] is used with a learning rate of 1e − 3 and an
exponential learning rate scheduler that updates the loss by a factor of 0.977 after every epoch. The
network is trained to predict five future frames, given five past frames. We evaluate the trained network
on the test set for a prediction horizon of 5 and 15 future frames to validate the performance for short
and longer term predictions.
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Evaluation method The results are evaluated qualitatively by comparing every third frame of a pre-
dicted OGM sequence to the ground truth, and quantitatively by comparing the Mean Squared Error
(MSE), Image Similarity (IS), Average Precision (AP), and Accuracy metrics, as discussed in section
3.4.

Results Figure 4.7 shows the qualitative results of the toy synthetic OGM prediction network. Table
4.1 summarizes the quantitative results.

Table 4.1: The quantitative comparison on a test sequence from the synthetic dataset for PredRNN++
trained with the L1, SSIM, and Sinkhorn loss functions. The performance is measured using the MSE
and ISmetrics (lower is better) and AP and Accuracymetrics (higher is better), averaged over prediction
horizons T = 5 and T = 15 with standard deviations. The L1 loss excels on the majority of the metrics,
except the IS on which the SSIM loss performs best.

Loss Function Hyperparameters MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
T=5
L1 - 0.51 ±0.53 11.367 ±16.104 0.991 ±0.005 0.990 ±0.012
SSIM N=M=11 1.07 ±0.90 1.443 ±0.392 0.989 ±0.014 0.975 ±0.018
Sinkhorn ϵ=0.01 7.16 ±2.52 3.266 ±1.674 0.834 ±0.057 0.959 ±0.014
Sinkhorn + L1 ϵ=0.01 1.16 ±0.46 2.807 ±1.422 0.970 ±0.009 0.978 ±0.012
T=15
L1 - 0.35 ±0.40 31.021 ±50.514 0.988 ±0.005 0.995 ±0.009
SSIM N=M=11 2.12 ±1.47 2.150 ±0.972 0.931 ±0.096 0.963 ±0.019
Sinkhorn ϵ=0.01 29.51 ±33.10 5.132 ±2.434 0.796 ±0.097 0.956 ±0.014
Sinkhorn + L1 ϵ=0.01 4.77 ±8.28 4.136 ±3.137 0.863 ±0.180 0.915 ±0.147

Discussion Both qualitatively and quantitatively, the L1 loss network performs best except for the IS
metric. The L1 loss network’s qualitative results show that they resemble the ground truths the most in
both the intensity value of the grid cells and the shape of the objects, compared to the SSIM, Sinkhorn
and Sinkhorn-L1 networks. Visually, it can be seen that all predictions become more uncertain (shown
by the ’greener’/lighter colors) over time and that the blur increases for the SSIM and Sinkhorn loss
results. For the Sinkhorn-L1 result, the network shows the least uncertainty over time. The L1 loss
result improves for the MSE and the Accuracy for T = 15 compared to T = 5, whereas the SSIM,
Sinkhorn and Sinkhorn-L1 results deteriorate over time. As uncertainty increases over time, deteriora-
tion of the results is expected. Why the L1 result improves over time might be because the network
has more outliers in the short term predictions and because of the blurring over time, these outliers
smooth out for longer-term predictions. The SSIM performs best on the IS score, and the Sinkhorn
and Sinkhorn-L1 composite losses also perform better than the L1 loss on the IS score. This could be
explained by the distance capturing properties of the inter-pixel loss functions (investigated in the first
toy experiment in section 4.1.1). The network could be optimized to maintain inter-pixel relations better
when trained with the inter-pixel losses compared to the per-pixel L1 loss. Since the IS also evaluates
the OGMs by comparing inter-pixel relations, it can explain why using the inter-pixel losses results in a
better performance on the IS score.
The Sinkhorn predictions show well-defined objects as their shape and intensities resemble the ground
truths. However, where the ground truth shows free space, uncertain areas are predicted by the
Sinkhorn network, especially in between objects. Although the Sinkhorn predictions generally become
blurrier and more uncertain over time, at T = 6, the prediction shows less uncertainty in the free areas.
If this is a trend for all the evaluations, this could explain the the Sinkhorn network’s decreased IS at
T = 15.

Notably, each loss function results in predictions in which the dynamic pedestrian is removed. Based
on the sliding square toy experiment of section 4.1.1, this behavior can be expected for the L1 and SSIM
losses. The sliding square experiment shows that when the sliding square overlaps an occupied area in
the predictions - effectively removing the sliding square as fewer grid cells are now occupied compared
to the ground truth - the L1 and SSIM loss values decreased. This shows that removing objects in the
predictions is rewarded and can lead the network to a sub-optimal solution. The only situation that would
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(a) Inputs

(b) Outputs

Figure 4.7: The qualitative results on a test sequence from the synthetic dataset for PredRNN++ trained
with the L1, SSIM, Sinkhorn, and Sinkhorn plus L1 loss functions. The results are shown for time
horizon T = 15 with an interval of 3 frames. (a) The five input frames to the network, showing eight
static vehicles (yellow rectangles), and six static pedestrians (small yellow dots), three on either side
of the vehicles. Encircled with red, the dynamic pedestrian is shown on the right, traversing the scene
towards the left. (b) Ground Truth with dynamic pedestrian encircled with red (GT) and predictions for
the loss functions for selected timesteps. None of the predictions contain the dynamic pedestrian and
only predict the static objects, where the Sinkhorn-L1 composite loss also does not predict the static
pedestrians. The Sinkhorn loss predictions show uncertainty fluctuations around the predicted objects.

be more rewarded by the L1 and SSIM losses than removing the pedestrian would be if the pedestrian
were predicted on a location where it overlaps (partially or exactly) with the ground truth pedestrian.
However, due to the uncertainty of the pedestrian’s location and its small size, it is deemed likely that
the network would predict the pedestrian in a non-overlapping region, resulting in its complete removal.
For the Sinkhorn and Sinkhorn-L1 losses, it would be expected that the pedestrian is maintained in the
predictions because the Sinkhorn loss is more likely to penalize the removal of objects (as discussed
in the sliding square experiment). Perhaps by adding the L1 loss to the Sinkhorn loss, the L1 loss’s
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property of rewarding the removal of the pedestrian was more dominant than the Sinkhorn’s penalizing
effect. This would cause the network also to remove the pedestrian in the Sinkhorn-L1 predictions. For
the Sinkhorn loss alone, the size of the pedestrian might have been too small, compared to the other
flaws in the results, to influence the loss significantly enough to optimize the network to predict it.
Furthermore, perhaps the speed that the dynamic pedestrian walked was too high for the network to
learn its patterns (e.g. crossing the scene). This speedmight also have caused a lot of uncertainty since
it allowed a large area of possible locations for the pedestrian to be in the following frames, causing
the network to disregard it entirely for all loss functions.

Conclusion Based on the qualitative results and most of the metrics, the network trained by the
L1 loss shows superior performance on the per-pixel metrics for OGM prediction for both evaluated
prediction horizons compared to the inter-pixel losses. For the inter-pixel IS metric; however, the SSIM
loss performs best, and the inter-pixel losses outperform the L1 loss for both prediction horizons. Based
on these metrics, the L1 loss performs better on a per-pixel level, while the SSIM performs better on an
inter-pixel level. The Sinkhorn and Sinkhorn-L1 losses show no superior performance for any metric
compared to the other losses, though combining the Sinkhorn with the L1 loss shows a significant
increase in performance compared to using the Sinkhorn loss only.

4.2. Occupancy grid map prediction using different loss functions
The two main experiments of this thesis are described in this section and the next one. For each
experiment, first, the experiment setup is described, followed by the results. This section describes
the first main experiment in which the PredRNN++ [62] network is trained to perform the sequence-
to-sequence OGM prediction task using each of the L1, SSIM [64], Sinkhorn [13], and Sinkhorn-L1
composite loss functions. A hyperparameter search study is performed to investigate the effect of the
window size when using the SSIM loss and the blur value when using the Sinkhorn and Sinkhorn-L1
composite loss. This hyperparameter search study can be found in Appendix B.

Experimental setup
This experiment evaluates the effects on the test-time performance of training the PredRNN++ OGM
prediction network [62] with each of the L1, SSIM, and Sinkhorn losses. Because the Sinkhorn loss
is evaluated on normalized data, it is hypothesized that the network trained on the Sinkhorn loss will
not learn the right scaling of the OGMs. Therefore, an additional loss that combines the Sinkhorn
and L1 loss is used to compensate for the expected effects of normalizing the data. This composite
loss is the sum of the Sinkhorn and L1 loss and showed to improve the IS metric in the fourth toy
experiment in section 4.1.4. The OGMs are generated from the Waymo Open Perception dataset [60].
This dataset is discussed more in-depth in section 2.1. The code of [61] is used to generate the OGMs
from the LiDAR data obtained from the Waymo Open Perception dataset. The object class labels were
projected into the OGM to generate the ground truth semantic maps that are used for the semantic
OGM prediction in section 4.3. A dataset is generated consisting of 10000 training, 473 validation, and
2972 testing non-overlapping sequences of 10 frames. Additionally, 1405 longer test sequences of
20 frames are generated from this dataset to test the trained networks for a longer prediction horizon.
The PredRNN++ [62] architecture, as is discussed in section 3.1, is used for our experiments. The
network consists of 4 blocks of causal ConvLSTMs with 12 layers each, with a GHU between the first
and second ConvLSTM layers. A 5x5 convolutional kernel size is selected for the ConvLSTM units.
The network is trained with each of the losses on 32 mini-batches of 16 samples of the training set
per epoch for 200 epochs. The loss hyperparameters are set to a window size of 9x9 for the SSIM
loss, a blur of 0.01 for the Sinkhorn loss, and a blur of 1 for the Sinkhorn-L1 composite loss. The
Adam optimizer [33] is used with a learning rate of 1e−3 and an exponential learning rate scheduler
that updates the loss by a factor of 0.977 after every epoch. The network is trained to predict five future
frames, given five past frames. We evaluate the trained network on the test set for a prediction horizon
of 5 and 15 future frames to validate the performance for short and longer-term predictions. The results
are evaluated qualitatively by comparing every third frame of a predicted OGM sequence to the ground
truth, and quantitatively by comparing the Mean Squared Error (MSE), Image Similarity (IS), Average
Precision (AP), and Accuracy metrics, as discussed in section 3.4.
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Results
The results for the OGM prediction performance using different loss functions are shown in figure 4.9
qualitatively, and table 4.2 quantitatively. When comparing the quantitative results, the SSIM scores
best for all metrics except the Accuracy at T = 5 where it is a close second by a thousandth compared
to the L1. Compared to the synthetic dataset toy experiment, the L1 loss now performs worse instead
of better than the SSIM for most metrics. It can be hypothesized that the SSIM is better at generalizing
when more data is used compared to the L1 loss. Another hypothesis is that having more diverse,
complex OGM scenes with more dynamic components in the Waymo dataset, compared to the syn-
thetic dataset, requires the network to consider the inter-pixel relations more to generalize well. This
would make the inter-pixel SSIM loss more suitable to use compared to the per-pixel L1 loss, which
can explain why the SSIM loss performs better than the L1 loss. The Sinkhorn loss scores the worst
for all metrics. It was expected that the Sinkhorn loss network would have a scaling problem because it
evaluates the normalized outputs and therefore loses information about the range of the grid cell values
(between 0 and 1). Figure 4.8 demonstrates this scaling problem. It can be seen that the Sinkhorn net-
work does predict a structure that resembles the structure of the ground truth. However, the range of
the grid cell values is too small and not consistent when comparing them with the Sinkhorn predictions
in figure 4.9. The Sinkhorn-L1 composite loss performs worse for all metrics compared to the L1 loss,
except for the IS and AP metrics at T = 15. The result for the IS metric at T = 15 demonstrates that the
Sinkhorn-L1 composite loss is better at maintaining inter-pixel spatial relations within the OGM for the
longer term compared to the L1 loss only, which was also found in the synthetic dataset toy experiment.
The standard deviations for each metric are between an order of magnitude one lower or in the same
order of magnitude compared to their mean values. Disregarding the Sinkhorn loss, the differences
between the mean results are mostly in an order of magnitude that is the same or one below the order
of magnitude of the standard deviations.

When looking at the qualitative results, the SSIM shows the least object disappearances and the
least blurriness compared to the other results. Besides the SSIM, the L1 and the Sinkhorn-L1 composite
losses show that the two vehicles (left in the images) behind the ego-vehicle (center yellow rectangle)
are kept in the predictions until T = 15. However, the vehicles in front of the ego-vehicle (right in the
images) are blurred out or disappear altogether. Then, there is the vehicle next to the ego-vehicle
(below the ego-vehicle in the images). In the ground truth, this vehicle overtakes the ego-vehicle,
however when looking at the ground truth this vehicle is barely detected during the overtake between
T = 6 and T = 9. In the L1 prediction this vehicle disappears into a fading blur of uncertainty after
T = 3, while the SSIM, and the Sinkhorn-L1 composite predictions do predict this vehicle up until
T = 15 and T = 12 respectively. Only in the SSIM predictions, this vehicle is predicted in a similar
shape to the ground truth. However, the predictions of this vehicle, seem to stay stationary instead of
moving, which is not the case in the ground truth. The Sinkhorn loss performs the worst as it seems to
only predict the free space in the OGMs, without any other objects or details.

Figure 4.8: An example of a predicted sequence of five OGMs (t=1 to t=5) and the hidden representa-
tions of the PredRNN++’s predictions for the past 4 input OGMs (t=-3 to t=0), trained using the Sinkhorn
loss. Especially for the hidden representations, the outline of the occupied regions is visible, but at a
different occupancy scale range than the ground truth. From t=1, the outline becomes blurrier and
noisier.
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Table 4.2: The quantitative comparison on the Waymo Perception test set for PredRNN++ trained with
various loss functions. Performance is measured using the MSE and IS metrics (lower is better) and
AP and Accuracy metrics (higher is better), averaged over prediction horizons T = 5 and T = 15 with
standard deviations. The SSIM loss excels on the majority of the metrics, except for the Accuracy
metric at T = 5 on which it scores second with the L1 loss on first place. The Sinkhorn-L1 composite
loss scores better than the L1 loss for the IS and AP metrics at T = 15. The Sinkhorn loss scores worst
on all metrics.

Loss Function Hyperparameters MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
T=5
L1 - 1.64 ±1.07 1.029 ±0.764 0.948 ±0.050 0.924 ±0.040
SSIM N=M=9 1.57 ±1.10 0.949 ±0.716 0.951 ±0.049 0.923 ±0.046
Sinkhorn ϵ=0.01 229.79 ±34.59 15.801 ±43.009 0.595 ±0.159 0.398 ±0.172
Sinkhorn + L1 ϵ=1 2.12 ±1.38 1.129 ±0.716 0.943 ±0.053 0.911 ±0.042
T=15
L1 - 3.38 ±2.44 2.630 ±2.282 0.903 ±0.098 0.862 ±0.088
SSIM N=M=9 3.21 ±2.40 2.091 ±1.178 0.905 ±0.104 0.867 ±0.086
Sinkhorn ϵ=0.01 226.61 ±33.84 38.781 ±48.661 0.582 ±0.171 0.397 ±0.172
Sinkhorn + L1 ϵ=1 4.70 ±3.41 2.179 ±1.535 0.904 ±0.095 0.853 ±0.081
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(a) Inputs

(b) Outputs

Figure 4.9: The qualitative results on aWaymoOpen Perception test sequence for PredRNN++ trained
with the L1, SSIM, Sinkhorn, and Sinkhorn plus L1 loss functions. Results are shown for T = 15. (a) The
five input frames to the network, showing three vehicles approaching the ego-vehicle (central yellow
rectangle) from behind (left of image), and three vehicles moving away from the ego-vehicle (right). (b)
Ground Truth (GT) and predictions for the loss functions for selected timesteps. The per-pixel L1 loss
leads to more object disappearances, and blurriness over long time horizons (T = 15) compared to the
other losses except the Sinkhorn loss. The Sinkhorn loss predictions show mostly uncertainty (green
color), where only the free areas (dark blue) are predicted in a similar shape compared to the ground
truth’s free areas. The SSIM seems to show the least disappeared objects up until T = 15 compared
to the other losses.
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4.3. Multi-task learning of Occupancy Grid Map prediction and se-
mantic segmentation

This experiment investigates the effect of multi-task learning the OGM prediction and the semantic
segmentation tasks on the performance of the OGM prediction task. The PredRNN++ [62] network is
given a sequence of past evidential OGMs to predict semantic channels for every frame in the sequence
of future evidential OGMs. To perform this experiment, the last convolutional layer of the PredRNN++
is modified to output seven channels (one for the occupancy values and six for the semantic channels)
instead of one channel. Per evidential OGM, six binary semantic OGM channels are generated from
the labeled LiDAR data from the Waymo [60] dataset, which togethers form the ground truth to the
network’s seven output channels. The experimental setup is described first, followed by the results
for the evidential OGM prediction. The results for the predicted semantic segmentation channels are
presented in Appendix C.

Experimental setup
The evidential OGMs with six additional semantic channels are generated from the Waymo Open Per-
ception dataset [60], using an adapted version of [61]’s code to obtain labels for the semantic classes.
Six different semantic class labels are extracted per frame and projected onto separate semantic OGM
channels. Each grid cell in the semantic channels corresponds to a grid cell in the evidential OGM.
Together the semantic OGMs represent per grid cell of the evidential OGM what the probability is that
that grid cell belongs to one of the following six semantic classes: free, uncertain, static occupied, ve-
hicles, pedestrians, or cyclists. The dataset with the same evidential OGM sequences from the loss
experiments in section 4.2 are used, but with the additional six semantic channels for the training and
validation set. The Waymo Open dataset’s test set has no class labels, so for the test set, only the
evidential OGMs are used to evaluate the predictions. The dataset consists of 10000 training, 473 vali-
dation, and 2972 testing non-overlapping sequences of 10 frames, with an additional 1405 sequences
of 20 frames for evaluation of longer prediction horizons. The same PredRNN++ architecture and train-
ing settings are used as in the loss experiments, except that the PredRNN++ is adjusted to output
seven channels (one evidential and six semantic channels) instead of one evidential channel. Given
five past single-channel evidential frames, the network is trained to predict five future frames consisting
of the seven channels. Three networks are trained, using the L1 loss, SSIM loss with a window size of
9x9, and the Sinkhorn loss with a blur of 1, respectively. Then, the trained network is evaluated on the
test set for a prediction horizon of 5 and 15 future frames. The results are evaluated qualitatively on the
evidential channels of the 7-channel outputs, by comparing every third frame of a predicted evidential
OGM sequence to the ground truth. Quantitatively, the Mean Squared Error (MSE), Image Similar-
ity (IS), Average Precision (AP), and Accuracy metrics are used for evaluation of the evidential OGM
channels, as discussed in section 3.4. The results are compared to the results from the single-task
networks trained using the different losses. Furthermore, the semantic segmentation performance is
evaluated on the validation dataset. Firstly, because the test set does not contain semantic segmen-
tation ground truths. Secondly, because the validation set is not used to adjust any hyperparameters
during training and is thus still deemed independent from the training process. Thirdly, because the
semantic segmentation task is not the primary objective of this experiment, but rather the performance
on the evidential OGM prediction task when the network is trained on semantic segmentation. These
semantic segmentation results are also evaluated qualitatively, using images, and quantitatively, using
the above-mentioned metrics per semantic channel in Appendix C.

Results evidential OGM prediction
Figure 4.10 shows the evidential predictions by the PredRNN++ network for each loss trained only for
OGM prediction (L1, SSIM, Sink + L1), and trained for multi-task learning (L1 Sem Evidential, SSIM
Sem Evidential, Sink + L1 Sem Evidential). The quantitative results are shown in table 4.3. The quanti-
tative results show that for each loss function, the multi-task trained networks generally perform worse
than the networks trained for OGM prediction only. There are some exceptions. The L1 Semantic
network performs better, by a thousandth than the L1 network for the AP metric at T = 15. The SSIM
Semantic network performs better than the SSIM for the Accuracy at T = 15. The Sinkhorn-L1 Seman-
tic network performs better than the Sinkhorn-L1 network for the IS metric at T = 5. The qualitative
results show that the predictions from the L1 Semantic network retain objects for a longer time before
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they disappear or blur compared to the L1 network. The SSIM Semantic predictions show more con-
sistent object shapes but also more uncertainty of all the occupancy states as the prediction horizon
increases, compared to the SSIM network. The predictions by the Sinkhorn-L1 Semantic network lack
any detail and only show either occupied or free grid cell states. Therefore the Sinkhorn-L1 Semantic
network shows no improvement compared to the Sinkhorn-L1 network predictions.

Table 4.3: The quantitative comparison on the Waymo Perception test set for PredRNN++ trained for
evidential OGM prediction only (L1, SSIM, and Sinkhorn-L1) and multi-task trained for evidential and
semantic segmentation prediction (L1 Semantic, SSIM Semantic, and Sinkhorn-L1 Semantic). Per-
formance is measured using the MSE and IS metrics (lower is better) and AP and Accuracy metrics
(higher is better), averaged over prediction horizons T = 5 and T = 15 with standard deviations. The
SSIM performs best on the MSE, IS, and AP for both prediction horizons. The L1 performs best for
the Accuracy at T = 5 and the SSIM Semantic for the Accuracy at T = 15. The L1 Semantic performs
worse than the L1 on all metrics except for the AP at T = 15. The SSIM Semantic performs worse than
the SSIM on all metrics except for the Accuracy at T = 15. The Sinkhorn-L1 Semantic performs worse
than the Sinkhorn-L1 on all metrics except for the IS at T = 5.

Loss Function Hyperparameters MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
T=5
L1 - 1.64 ±1.07 1.029 ±0.764 0.948 ±0.050 0.924 ±0.040
L1 Semantic - 1.99 ±1.16 1.312 ±0.936 0.945 ±0.052 0.906 ±0.043
SSIM N=M=9 1.57 ±1.10 0.949 ±0.716 0.951 ±0.049 0.923 ±0.046
SSIM Semantic N=M=9 2.46 ±1.41 1.449 ±0.934 0.926 ±0.068 0.882 ±0.056
Sinkhorn + L1 ϵ=1 2.12 ±1.38 1.129 ±0.716 0.943 ±0.053 0.911 ±0.042
Sinkhorn + L1 Semantic ϵ=1 6.95 ±1.81 1.037 ±0.395 0.870 ±0.120 0.790 ±0.056
T=15
L1 - 3.38 ±2.44 2.630 ±2.282 0.903 ±0.098 0.862 ±0.088
L1 Semantic - 3.90 ±2.59 2.988 ±2.461 0.904 ±0.099 0.852 ±0.080
SSIM N=M=9 3.21 ±2.40 2.091 ±1.178 0.905 ±0.104 0.867 ±0.086
SSIM Semantic N=M=9 5.98 ±4.22 4.074 ±3.058 0.868 ±0.128 0.882 ±0.216
Sinkhorn + L1 ϵ=1 4.70 ±3.41 2.179 ±1.535 0.904 ±0.095 0.853 ±0.081
Sinkhorn + L1 Semantic ϵ=1 10.04 ±3.96 2.495 ±2.316 0.835 ±0.144 0.662 ±0.173
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(a) Inputs

(b) Outputs

Figure 4.10: Qualitative results on a Waymo Open Perception test sequence for PredRNN++ trained
using different losses, with and without multi-task performing the semantic segmentation task besides
the OGM prediction task. Results are shown for T = 15. (a) The five input frames to the network, show-
ing three vehicles approaching the ego-vehicle (central yellow rectangle) from behind (left of image),
and three vehicles moving away from the ego-vehicle (right). (b) Ground Truth (GT), the predictions for
the losses without performing the semantic segmentation task (L1, SSIM, Sink + L1) and the evidential
predictions with performing the semantic segmentation task (L1 Sem Evidential, SSIM Sem Evidential,
Sink + L1 Sem Evidential). When comparing the L1 and L1 Sem Evidential predictions, one can see
that the latter retains the vehicles for a longer prediction horizon or blurs the vehicles where they dis-
appear in the former. When comparing the SSIM and SSIM Sem Evidential predictions, the latter’s
free and occupied regions seem less certain (more towards the green color), but the objects have a
constant shape and are not blurred out over time. The Sinkhorn + L1 Sem Evidential predictions show
that the composite loss does not perform well for multi-task learning. Only free and occupied regions
are predicted without any defined objects or uncertain regions.
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Discussion

This thesis posits that blurring and object disappearances in the state-of-the-art OGM prediction meth-
ods is a major issue that affects an AV’s ability to anticipate road user behavior for long prediction
horizons and thus affects the traffic safety. One could pose that blurring OGMs might be desirable
when predicting, for instance, the future road layout because there can be sudden curves or crossings.
Blurring allows the AV to anticipate a change in road layout better than predicting a continuous straight
road. However, objects are expected to stay rigid and to move smoothly, as stated by [66]. In this
thesis, it is therefore expected that blurring or removing objects from the predictions does not benefit
the AV in anticipating their behavior and ensuring their safety. Therefore, two methods to improve the
OGM sequence-to-sequence predictions by reducing the blurring and the disappearance of objects are
investigated in this thesis.

The first proposed solution is to investigate the effects of the SSIM [64], Sinkhorn and Sinkhorn-L1
composite [13] inter-pixel loss functions, compared to the L1 per-pixel loss, on training the PredRNN++
[62] network to performOGMpredictions. The expectation is that inter-pixel losses can train the network
to maintain better inter-pixel spatial relations in the OGM predictions. This would mean that objects in
OGMs, which are clusters of occupied grid cells that have a specific spatial relation, are better main-
tained which would reduce their disappearance and blurring in the predictions. The SSIM and Sinkhorn-
L1 inter-pixel losses both show these improvements quantitatively and qualitatively compared to the
L1 loss. The second proposed solution is to investigate if the principle of multi-task learning can be
applied to improve the OGM predictions. The PredRNN++ network is trained to perform the additional
semantic segmentation task besides the OGM predictions. It is expected that the network will learn
latent object representations, which it can use to maintain the object instances in the predictions better.
The results in this thesis demonstrate that this method does not improve the predictions quantitatively.
Qualitatively, there are some improvements when using the L1 and SSIM losses to train the multi-task
network. This chapter provides a thorough discussion of each experiment and the results from this
thesis with regard to answering the proposed research questions.

Does the use of an inter-pixel loss function, such as the Structural Similarity Index Measure loss or
the Sinkhorn loss, to train a sequence-to-sequence Occupancy Grid Map prediction network improve
its performance, and reduce blurriness and objects disappearance compared to using a per-pixel loss?

Compared to the L1 per-pixel loss, the SSIM loss results in an improvement of the predictions both
qualitatively by generating less blur and fewer object disappearances, and quantitatively according to
the reported metrics. Using the SSIM loss, with a window size of 9x9 pixels, results in a better or equal
performance for all metrics (table 4.2) and qualitatively (figure 4.9) compared to the L1 loss. That the
SSIM performs the best compared to the other losses on the IS metric could be explained by the SSIM’s
property to evaluate perceptual similarities, which the IS metric also evaluates. It is hypothesized that
the SSIM optimizes the network to generate perceptually similar OGMs and thus also optimizes the
network to perform well on the IS metric. Lange, Itkina, and Kochenderfer [35] state that when a net-
work is optimized for the per-pixel MSE metric, which the L1 is more likely to do due to its per-pixel
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property, uncertainty is often expressed as a blur to prevent large errors. On the other hand, when a
network is optimized for the IS metric, which the SSIM is more likely to do because of its inter-pixel and
perceptual similarity properties, object shapes are maintained for longer-term predictions and blurring
would be limited. So, training a network with the L1 loss is expected to increase the MSE and decrease
the IS metrics, where the opposite is expected for the SSIM loss. However, unexpectedly according
to the results from the synthetic dataset toy experiment in section 4.1.4, for the SSIM loss with the 9x9
pixel window size, both the IS and the MSE values are better than the results for the L1 loss. This
suggests that the L1 loss, despite its per-pixel property, is not always the best optimizer for the MSE
metric. Perhaps the L1 loss network’s generated blur is so large that it affects the MSE more than any
misplaced object generated by the SSIM network. Since the AP and Accuracy metrics are used for
object detection evaluation, the SSIM’s ability to maintain objects for longer-term predictions with less
blur is expected to benefit these metrics. This can explain the improved or equally good performance
of the SSIM loss compared to the L1 loss for the AP and Accuracy metrics. The visual qualitative
improvement compared to the L1 loss is in line with [64]’s philosophy behind the design for the SSIM
metric, which states that the SSIM evaluates the similarity between images (OGMs) based on how
human perception functions. The SSIM network is therefore optimized to generate more similar OGMs
according to human perceptual evaluation, which is demonstrated in the figures. This effect is also
displayed in the noise-image-to-Gaussian toy experiment in section 4.1.3.

Then, the results for the Sinkhorn loss (table 4.2) show that the Sinkhorn loss alone is not a suitable
loss to train the OGM network. As mentioned before and shown in figure 4.8, because the Sinkhorn
loss is performed on normalized outputs, the network does not learn at what scale it should generate its
outputs. This scaling problem is solved in the experiments by combining the Sinkhorn loss with the L1
loss. This Sinkhorn-L1 loss combination is formed by taking their sum. Quantitatively it only outperforms
the L1 loss for the IS and AP metrics at T = 15. This is unexpected when also considering the results
of the sliding square toy experiment in section 4.1.1. This experiment shows that, unlike the L1 loss,
the Sinkhorn loss can capture the distance errors for objects in the scene and continuously increases
its loss value with the distance error while it also penalizes object disappearance. In combination with
the L1 loss, the expectation was that the Sinkhorn part optimizes the network to get the distance error
to zero, while the L1 part optimizes the outputs to be in the correct scaling. However, the pdf to cdf
toy experiment in section 4.1.2, and the noise-to-Gaussian conversion toy experiment in section 4.1.3,
showed that the Sinkhorn loss converges the networks to generate outputs with larger variances or
scatterings compared to the L1 and SSIM losses. The synthetic dataset toy experiment in section 4.1.4
also showed an inferior performance by the Sinkhorn and Sinkhorn-L1 losses. Perhaps the blurring of
the Sinkhorn loss has a limiting effect on the accuracy that the OGM prediction network can achieve.
Also, the Sinkhorn and L1 losses are summed with equal weights in the Sinkhorn-L1 composite loss. It
could be that the Sinkhorn loss was not complemented by the L1 loss, which accounts for the scaling
information, but instead counteracted the inter-pixel properties of the Sinkhorn loss. Perhaps if the
Sinkhorn and L1 parts of the Sinkhorn-L1 composite loss were differently weighted, the inter-pixel
properties of the Sinkhorn would improve the results for more metrics. However, the improved results
of the IS and AP metrics for the long-term predictions by the Sinkhorn-L1 loss, compared to the L1 loss,
could mean that the Sinkhorn-L1 loss only performs better for longer-term predictions. Perhaps the
inter-pixel properties of the Sinkhorn-L1 loss trains the network to maintain objects for longer prediction
horizons, while the L1 loss predictions blur them out, which would affect the inter-pixel IS and AP
scores. The qualitative results of the Sinkhorn-L1 loss also show that objects are maintained for a
longer prediction horizon compared to the L1 loss.
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Does the performance of an Occupancy Grid Map prediction network improve by means of multi-
task learning if it also learns to perform semantic segmentation on the predictions?

Besides investigating the effects of loss functions, this thesis also investigates whether multi-task
learning, i.e. learning the semantic segmentation task to improve the OGM predictions, is possible.
By training the OGM prediction network to generate both future OGM predictions and their respective
semantic class channels, it is hypothesized that the predictions improve both qualitatively and quan-
titatively compared to the network that does not perform the additional semantic segmentation task.
However, the results in figure 4.10 and table 4.3 show the opposite for all losses. Dequaire et al. [15]
has demonstrated in their research that their network’s performance on the semantic classification task
improved when they trained the network on a tracking task first. The network learned object repre-
sentations when learning the tracking task, which it could use to perform better at the classification
task. This thesis shows that multi-task learning does not improve the OGM prediction network’s per-
formance by learning the semantic segmentation task for most metrics at both prediction horizons of
T = 5 and T = 15. It was hypothesized that the network would learn hidden object representations
from the semantic segmentation task, which it would use to generate predictions, with reduced blurring,
that maintain objects for longer prediction horizons compared to a single-task network that is trained to
perform the OGM prediction task. The only result that demonstrates this hypothesis, both quantitatively
and qualitatively is shown by the multi-task SSIM Semantic network at T = 15 where it outperforms all
other networks on the Accuracy metric, and it shows less blur and more maintained objects compared
to the single-task SSIM network’s results. The L1 Semantic network also shows better qualitative re-
sults, however, this is not shown by any of the metrics. On the other hand, the Sinkhorn-L1 Semantic
network performs better on the IS score at T = 5, which is however not visible in the qualitative results.
Based on the other metrics at both prediction horizons, it cannot be confirmed that multi-task learning
the semantic segmentation task and the OGM prediction task will improve the latter. There are several
hypotheses as to why multi-task learning did not improve the predictions.

First, as described in the Preliminaries in section 1.4.4, the expectation of multi-task learning is that
learning a source task, i.e. semantic segmentation in this thesis, has a regularizing effect on learning
the target task, i.e. OGM prediction, by adjusting the model’s parameters to be useful for both tasks,
preventing the parameters from overfitting on the target task. However, this expectation assumes that
there is ample data available to learn the source task sufficiently to regularize the network and improve
the target task. In this thesis’ experiments, for some classes there were only few data available. The
Waymo Open perception dataset [60] does not contain many cyclists and pedestrians. For the 10000
training and 473 validation data samples used in the experiments, where each sample consists of 10
timesteps (frames), table 5.1 shows how the six investigated semantic classes are distributed over the
samples, frames, and individual grid cells. In the training set, only about 45% and 6% of the samples
and frames contain pedestrians and cyclists, respectively. For the individual grid cells that contain
these classes, it can be seen that the Free space and Unknown classes represent the majority of the
grid cells with the respective % and % occurrence. The number of grid cells is much lower for the other
classes, which is expected to limit the networks’ ability to learn to predict those classes. This is also
shown in the semantic segmentation results in Appendix C. Tables C.1, C.2, and C.3 show that the AP
scores for vehicles and static objects are all lower than those for the Free space and Unknown classes.
The scores for pedestrians and cyclists are even lower and close to zero. The network does not learn to
predict these semantic classes well. In turn, the network might not have accurately learned the hidden
object representations. Instead of improving, multi-task learning the semantic segmentation task could
have deteriorated the OGM task because of the lack of data for each class.

Second, the single-task network, trained only for OGM prediction, and the multi-task network have
an equal number of trainable parameters, except for the last convolutional layer in the multi-task net-
work, which generates the six additional semantic channels compared to the single-task network. Per-
haps predicting all the semantic channels by the multi-task network requires more predictive capacity
than can be achieved by the current number of trainable parameters to reach the same or better per-
formance for the longer-term predictions compared to the single-task network. Alternatively, having
only one convolutional layer between the last hidden layer and output could have been too little for the
seven output channels to differentiate from each other and generate the desired outputs.
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Table 5.1: The total counts and percentages for each semantic class occurrence for each sample, each
frame, and each grid cell in the training split and validation split. The total number of samples in the
splits are 10000 and 473 with each 10 frames (timesteps), containing 128x128 grid cells, per sample,
respectively.

Channel Training Set Validation Set
#Samples #Frames #Grid Cells #Samples #Frames #Grid Cells

Free Space 10K 100% 100K 100% 581.94M 35.52% 0.47K 100% 4.73K 100% 30.60M 39.5%
Vehicles 10K 100% 100K 100% 53.20M 3.25% 0.47K 100% 4.73K 100% 2.28M 2.9%
Pedestrians 4.78K 47.8% 45.47K 45.5% 3.47M 0.21% 0.22K 46.1% 2.08K 43.9% 86.55K 0.1%
Cyclists 0.69K 6.9% 6.13K 6.1% 0.13M 0.01% 0.03K 6.1% 0.24K 5.1% 5.33K 0.01%
Static Objects 10K 100% 100K 100% 133.70M 8.16% 0.47K 100% 4.73K 100% 5.83M 7.5%
Unknown 10K 100% 100K 100% 866.07M 52.86% 0.47K 100% 4.73K 100% 38.69M 49.9%

Third, using the same unweighted losses to evaluate both the OGM and the semantic channels
could cause the network to optimize for the semantic channels more than for the OGM prediction. Es-
pecially because of the lack of data for some classes, the network might not (learn to) perform well on
those classes, causing the loss to be higher for those channels compared to the channels for which
more data is available. The network might then overfit the hidden layers on the semantic classes rep-
resented the least in the data. This, in turn, could affect the quality of the OGM predictions. Perhaps
this has caused the Sinkhorn-L1 multi-task network to predict almost binary OGMs, lacking most ob-
jects (figure 4.3). The sliding square toy experiment (in section 4.1.1) shows that the Sinkhorn loss
increases more if the number of occupied grid cells in the ground truth do not match the number of
occupied grid cells in the prediction (when the sliding square overlaps the stationary square in the ex-
periment’s second scene). It can be hypothesized that this caused high losses for the free space and
unknown semantic channels since the majority of the OGMs consist of those classes. This could have
caused the network to overfit on predicting those channels, which affected the OGMs to only differen-
tiate between two states.

Although the quantitative results of the multi-task networks show that the OGM predictions do not
improve compared to using the single-task networks, some improvement can be seen in the qualitative
results. Figures C.1b and C.2b in Appendix C show that L1 and SSIM loss networks predict the vehicle
class accurately when they are close to the ego-vehicle. Notably, the SSIM network only predicts out-
lines of the vehicles. When observing the qualitative results of the OGM predictions in figure 4.3, it can
be seen that both the L1 Semantic and SSIM Semantic predictions maintain vehicles for a longer pre-
diction horizon compared to the respective single-task networks. This could be the effect of multi-task
learning, where accurately predicting the semantic vehicle class also improves the occupancy predic-
tions of that class.

Concerning all the results in this thesis, there are some limitations to using the Waymo dataset. As
also described in [35], the Waymo dataset contains many scenes located on highways. These scenes
contain a lot of straight roads with mostly cars and a lack of pedestrians and cyclists. The trained
networks will be biased towards these highway traffic scenes when using this dataset. Lange, Itkina,
and Kochenderfer [35]’s research shows that their proposed network architecture performs much better
using the Waymo Perception dataset, compared to the smaller, more diverse KITTI [22] dataset. Al-
though, the smaller size of KITTI plays a role in the worse performance, the KITTI dataset also contains
more urban and suburban traffic scenes, making the dataset more diverse and less generalizable than
the Waymo dataset. Performing the experiments in this thesis on another large, diverse dataset should
be done to investigate if this research’s results also apply to other datasets.

The standard deviations for the quantitative results are mostly between the same order or one order
of magnitude lower than the mean results. This high variability of the networks’ predictions can mean
that on a different test set or using a different dataset the result might lead to different conclusions.
Therefore, the results of this thesis would become more convincing if these same experiments were
repeated for different datasets and different network architectures.
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Conclusion

This thesis investigates two methods to solve the problem of blurring and object disappearances in
the long-term predictions generated by OGM prediction methods. The effects of using inter-pixel loss
functions and multi-task learning the additional semantic segmentation task on the quality of the OGM
predictions are researched. This chapter answers the research question proposed in section 1.2.

To answer the first research question, this thesis investigated the effects of several inter-pixel loss func-
tions on the performance of OGM prediction by the PredRNN++ network and compared them to the
per-pixel L1 loss baseline performance. The main conclusion from the experiments is that using an
inter-pixel loss function can improve the network’s prediction performance for the MSE, IS, AP, and
Accuracy metrics and that using an inter-pixel loss reduces blurriness and disappearance of objects in
long term predictions compared to the L1 loss baseline. Using the SSIM loss on the PredRNN++ to
perform OGM predictions improves the predictions for the MSE, IS, and AP metrics, for both prediction
horizons of T = 5 and T = 15, and improves the Accuracy metric for T = 15, when using a window size
of 9x9 pixels, compared to the L1 baseline. Furthermore, as hypothesized in this thesis’s introduction,
the SSIM loss reduces blurriness and object disappearances for longer term predictions with respect
to the L1 loss baseline. Using the isolated Sinkhorn loss to train the PredRNN++ for OGM prediction
does not result in good predictions. The predictions are not scaled right because the Sinkhorn loss
evaluates the normalized outputs of the network. Therefore, the network does not learn in what range
to generate predictions. The Sinkhorn plus L1 composite loss provides a solution because the L1 loss
compensates for the scaling errors. The results show that the Sinkhorn-L1 composite loss outperforms
the L1 baseline for the IS and AP metric for a prediction horizon of T = 15. The Sinkhorn-L1 composite
also shows to reduce blurriness and object disappearance for longer term predictions compared to the
L1 loss baseline.

To answer the second research question, based on the experiment on multi-task learning performed
in this thesis, the PredRNN++’s performance on OGM prediction does not improve for most of the in-
vestigated metrics when it is also trained to perform the semantic segmentation task. Qualitatively,
the semantic segmentation networks, trained using the L1 and SSIM losses, show that for longer term
predictions it can better retain the shapes of dynamic objects that it has classified correctly compared
to the L1 loss baseline.

All in all, the results of this research show that the use of inter-pixel losses can improve the quality
of OGM prediction networks, while performing multi-task learning does not result in improved OGM
prediction networks. Reducing blurriness and the disappearance of objects for long-term predictions
has been a challenge in object agnostic OGM prediction methods and this thesis provides part of a
solution to solve this problem. Hereby this research contributed to improving the safety of AVs. This
thesis lays a foundation for future research in motion prediction. Moreover, the video prediction domain
also struggles with blurriness in long term predictions and since sequence-to-sequence prediction of
OGMs is similar to video prediction, this thesis also provides a contribution to the video prediction
domain.
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7
Future Work

This chapter provides some recommendations for future research that can be performed to develop
motion prediction methods for AVs. First, some recommendations within the scope of this thesis re-
garding loss functions and multi-task learning are provided. Then, some recommendations regarding
the domain of object-agnostic motion prediction are discussed.

7.1. Future work on inter-pixel loss functions
The results from this thesis inspire the search for more possibilities to use inter-pixel loss functions
for OGM prediction. In the experiments, the Sinkhorn-L1 composite loss is used to benefit from the
Sinkhorn’s distance-capturing properties while compensating for the scaling errors using the L1 loss.
However, the experiments only investigate the unweighted sum of those losses, while there are more
possible ways to combine the Sinkhorn and L1 losses, e.g. by adding a weight to the L1 loss. The
scaling problem can also be compensated without using the L1 loss. Research could be done on
more Sinkhorn composites with, for instance, the SSIM loss, the L2 loss, or the Cross-Entropy loss.
Furthermore, the use of a perceptual loss network as proposed by [29] could be investigated. Johnson,
Alahi, and Fei-Fei [29] proposes to use a CNN pre-trained on image classification to act as a loss
function. The feature representations of the predictions and the ground truths that the loss network
outputs are compared. Their research found that this method works similar to using an inter-pixel loss
function. Also, this thesis’s experiments should be expanded by testing the hypotheses on multiple
datasets and multiple sequence-to-sequence prediction networks. Not only within the OGM prediction
domain but also in the closely related video prediction domain. This way, the effects of using inter-
pixel loss functions found in this thesis can be reinforced and verified on a larger scale for multiple
applications.

7.2. Future work on multi-task learning
It was shown in the discussion that the Waymo [60] dataset does not have many representations of
the pedestrian and cyclist classes. This could have resulted in the deteriorated performances of the
multi-task networks compared to the single-task network. The multi-task learning experiments can be
investigated on different, more diverse datasets with a larger number of labeled objects, such as the
nuScenes [7], ECP2.5D [5], or Argoverse [8] datasets described in section 2.1 datasets. Perhaps us-
ing these datasets for multi-task learning will improve the OGM predictions. However, most large-scale
real-world datasets suffer from class imbalances. This means using a different dataset might not solve
this scarcity problem of certain object classes [12] and would thus not improve the multi-task network
performance. Cui et al. [12] provide a theoretical framework to use a class-balanced loss function which
has shown to significantly improve the performance of visual recognition tasks. In future research, this
theoretical framework could be extended to the L1, SSIM, and Sinkhorn-L1 loss functions to train the
multi-task network for the semantic segmentation and OGM prediction tasks. If using a class-balanced
loss improves the semantic segmentation task, it might also improve the OGM prediction task.
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Furthermore, it is hypothesized that the multi-task network performs worse than the single-task net-
work because of limited trainable parameters in the network to perform both the OGM prediction and
the semantic segmentation tasks accurately. Future research can investigate if the performance for
longer-term predictions improves if larger network architectures are used, or if additional semantic seg-
mentation heads are added to the PredRNN++ network.

Also, in this thesis, each semantic channel is evaluated separately to their respective ground truths.
In future research, the inter-pixel losses could be extended also to measure any relations between the
semantic channels, or between a semantic channel and the corresponding OGM. For example, the
SSIM loss could be extended by using 3D boxes that compute the loss over all predicted channels
simultaneously instead of using 2D windows that can only compute the loss of one channel at a time.
Also, an ablation study can be done to investigate what semantic class has the most influence on im-
proving the OGM prediction task.

Then, the goal of multi-task learning for OGM prediction is to train the network on a certain task
that allows it to learn object representations so it will not blur or remove the objects for longer-term
predictions. These representations can also be learned through other means, such as attention as
proposed by Lange, Itkina, and Kochenderfer [35]’s Attention Augmented ConvLSTM (AAConvLSTM)
network. Future work could investigate whether the attention architecture can also be used to enhance
the effects of the semantic segmentation and OGM prediction multi-task learning.

7.3. Future work on object-agnostic motion prediction
In 2D OGM prediction, 3D measurements (often LiDAR point cloud data) are reduced to a 2D BEV
representation of the environment. Through this process, a lot of spatial data is lost that might be
key to generating better object representations of the environment when regarding OGM prediction
networks. Degerman, Pernstål, and Alenljung [14], however, proposed a way to generate 3D OGMs.
Future research could be done on 3D sequence-to-sequence OGM prediction by generating 3D OGM
sequences from LiDAR data. State-of-the-art architectures that can process 3D representations, such
as Guo et al. [23]’s ST-3DNet, or Lin, Gan, and Han [38]’s more efficient Temporal Shift Module, can
be adjusted to process 3D sequences.

Finally, although ensuring safe behavior by AVs is themain motivation of this thesis and the research
found in literature on object-agnostic motion prediction, there does not seem to be a consensus on how
to measure the ’safety’ of the predictions. When looking a table 2.2 in the Related Work, many different
metrics are used to evaluate the performance of the prediction methods. Both per-pixel and inter-
pixel metrics are used, some more generally used in deep learning and some more specifically used
in the object detection domain. Also, in this thesis, multiple metrics were used to evaluate the OGM
predictions, where the inter-pixel IS metric sometimes ranks the network performances differently than
the per-pixel MSE metric. In those contradictory cases, it is hard to conclude based on the metrics
which network would be better or safer to use in AV applications. None of the metrics, however, look at
what the proposed path is the AV takes when it uses the predictions and whether that path is considered
safe. Therefore, the final recommendation of this thesis is that research should be done on defining and
evaluating safety regarding motion prediction. If a consensus on this can be reached, future research
can focus better on optimizing for that definition of safety. This way, the results will be more comparable,
making it easier to conclude what prediction method is safer.
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A
Hyperparameter results of the sliding

square toy experiment
Figures A.2 and A.3 show the results for the two experiment scenarios in figure A.1 from the sliding
square toy experiment described in section 4.1.1.

(a) The first simulated scenario. (b) The second simulated scenario.

Figure A.1: The two scenarios that are generated to investigate the effect of the different loss functions
on an increasing distance error. Yellow: Ground truth / False negative prediction, Green: True positive
prediction, Blue: The moving square in the simulated predictions, Cyan: Overlap of the moving square
and true positive predictions, Red arrow: The direction in which themoving square slides, Black: Empty.
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(a) The SSIM loss hyperparameter results for
the first scenario.

(b) The SSIM loss hyperparameter results for
the second scenario.

Figure A.2: The normalized graphs for the SSIM loss with the different window sizes 11x11 (SSIM_11),
9x9 (SSIM_9), and 7x7 (SSIM_7) for the two scenarios where the ground truths are compared to pre-
dictions with increasing distance errors.

(a) The Sinkhorn loss hyperparameter
results for the first scenario.

(b) The Sinkhorn loss hyperparameter
results for the second scenario.

Figure A.3: The normalized graphs for the Sinkhorn loss with the different blur values 0.1 (Sink_01),
0.5 (Sink_05), and 1 (Sink_1) for the two scenarios where the ground truths are compared to predictions
with increasing distance errors.



B
Hyperparameter search study for the
SSIM, Sinkhorn and Sinkhorn-L1 loss

functions

B.1. Loss hyperparameter search study
A hyperparameter search study is performed to investigate the influence of the SSIM and Sinkhorn
losses’ window size and blur value parameters respectively on the OGM prediction task using the
PredRNN++ network. First the SSIM loss is investigated for different window sizes. This is followed by
an investigation on the Sinkhorn loss and the Sinkhorn-L1 composite loss with different blur values for
the Sinkhorn loss.

B.1.1. SSIM window size hyperparameter search
The OGM prediction experiments using the PredRNN++ network, as described in section 4.2, are
repeated using the SSIM loss for different window sizes. The window sizes with equal sides of 7
to 15 pixels with intervals of 2 are investigated, as well as the window size of 127x127 which is the
largest possible size to slide over the 128x128 OGM, almost spanning the whole OGM. The qualitative
results are shown in figure B.1 and the quantitative results for the MSE, IS, AP, and Accuracy metrics
are shown in table B.1. When looking at the quantitative results, the SSIM with a window size of 9x9
performs best on the MSE and Accuracy metric for both T = 5 and T = 15. For the IS and AP metrics,
the SSIM with window size 127x127 performs best for T = 5, while the best scores for T = 15 are
achieved by the window sizes of 7x7 and again 127x127 respectively. Based on both qualitative and
quantitative results, there is no trend between the window size and prediction performance. This would
mean that the window size should be selected empirically. The qualitative results show that the SSIM
with a window size of 15x15 predicts the least blur and least object disappearances compared to the
SSIM predictions with other window sizes. However, the movement of the overtaking vehicle is best
captured by the 13x13 window predictions.
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(a) Inputs

(b) Outputs

Figure B.1: The qualitative results on aWaymoOpen Perception test sequence for PredRNN++ trained
with the SSIM loss function with different window sizes. Results are shown for T = 15. (a) The five input
frames to the network, showing three vehicles approaching the ego-vehicle (central yellow rectangle)
from behind (left of image), and three vehicles moving away from the ego-vehicle (right). (b) Ground
Truth (GT) and predictions for the loss functions for selected timesteps. For the window sizes of 7x7 and
15x15, the occupancy of the vehicles at the right side of the image are the least blurred and disappeared.
For the window size of 13x13, the overtaking manoeuvre of the vehicle closest to the ego-vehicle in
the input image at t=0, is best predicted without blurring. The SSIM with window size 15x15 shows the
least blurring on the static objects and the free space.
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Table B.1: The quantitative comparison on the Waymo Perception test set for PredRNN++ trained with
the SSIM loss function using different window sizes. Performance is measured using the MSE and
IS metrics (lower is better) and AP and Accuracy metrics (higher is better), averaged over prediction
horizons T = 5 and T = 15 with standard deviations. The SSIM with a window size of 9x9 performs
best on the MSE and Accuracy metrics for both prediction horizons. The SSIM with a window size of
127x127 performs best on the IS and for T = 5 and the AP scores for both prediction horizons. For
T = 15 the best IS score is achieved with the SSIM with window size 7x7.

Loss Function Hyperparameters MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
T=5
SSIM N=M=7 2.22 ±1.92 1.370 ±1.537 0.942 ±0.055 0.882 ±0.130
SSIM N=M=9 1.57 ±1.10 0.949 ±0.716 0.951 ±0.049 0.923 ±0.046
SSIM N=M=11 1.76 ±1.22 1.009 ±0.761 0.949 ±0.051 0.916 ±0.047
SSIM N=M=13 1.76 ±1.16 1.007 ±0.682 0.951 ±0.049 0.916 ±0.046
SSIM N=M=15 1.71 ±1.17 1.025 ±0.772 0.948 ±0.052 0.915 ±0.048
SSIM N=M=127 1.78 ±1.49 0.947 ±0.759 0.952 ±0.050 0.914 ±0.065
T=15
SSIM N=M=7 4.03 ±3.03 1.985 ±1.499 0.893 ±0.105 0.846 ±0.114
SSIM N=M=9 3.21 ±2.40 2.091 ±1.178 0.905 ±0.104 0.867 ±0.086
SSIM N=M=11 4.48 ±3.74 2.920 ±2.742 0.912 ±0.102 0.835 ±0.114
SSIM N=M=13 3.76 ±2.85 2.033 ±1.592 0.907 ±0.104 0.865 ±0.080
SSIM N=M=15 3.73 ±2.82 2.250 ±1.851 0.900 ±0.109 0.860 ±0.086
SSIM N=M=127 3.59 ±2.82 2.097 ±1.845 0.914 ±0.099 0.866 ±0.086
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B.1.2. Sinkhorn blur value hyperparameter search
This hyperparameter search study also repeats the OGM prediction experiments using the PredRNN++
network, as described in section 4.2. This experiment looks at the network’s behavior using the
Sinkhorn-L1 composite loss for the blur values 1, 0.1 and 0.01. Moreover, it investigates the blur
values of 1, 0.01, and 0.0001 for the Sinkhorn loss. The qualitative results are shown in figure B.2
and the quantitative results for the MSE, IS, AP, and Accuracy metrics are shown in table B.2. The
quantitative results show that the Sinkhorn-L1 composite loss performs best except for the AP for both
prediction horizons and the IS at T = 15. The Sinkhorn-L1 with a blur of 1 performs best on the IS
and AP at T = 15, while the one with a blur of 0.01 performs best on the AP at T = 5 and equally
well for the Accuracy at T = 15 compared to the Sinkhorn-L1 with a blur of 0.1. The Sinkhorn losses
all perform worse than the Sinkhorn-L1 composite losses. Among the Sinkhorn losses, the Sinkhorn
with a blur of 1 outperforms or equals the other blur values for all metrics except the IS. For the IS, the
Sinkhorn with a blur of 0.0001 performs best at T = 5 while the Sinkhorn with a blur of 0.01 performs
best at T = 15. For the Sinkhorn loss at both prediction horizons, the AP metric shows a trend that
for higher blur values, the AP value increases, thus improves. However, for the Sinkhorn-L1 loss, no
such trend is seen. The qualitative results show that the Sinkhorn-L1 composite loss with a blur value
of 0.01 has fewer disappearances of the vehicles for the long term predictions compared to the blur
values of 0.1 and 1. Qualitatively, the Sinkhorn loss does not perform well for all blur values and only
shows approximate areas of the free space locations in the ground truth. The higher the blur value,
the less contrasting details are predicted and the more the predictions converge to an overall uncertain
map.

Table B.2: The quantitative comparison on the Waymo Perception test set for PredRNN++ trained with
the Sinkhorn loss and Sinkhorn-L1 composite loss for different blur values. Performance is measured
using the MSE and ISmetrics (lower is better) and AP and Accuracy metrics (higher is better), averaged
over prediction horizons T = 5 and T = 15 with standard deviations. The Sinkhorn-L1 composite with
a blur value of 0.1 performs best or equally for most metrics except for the AP for both prediction
horizons and the IS at T = 15. The Sinkhorn-L1 with a blur of 1 performs best on the IS and AP metrics
at T = 15. The Sinkhorn-L1 with a blur of 0.01 performs best for the AP at T = 5 and equally well
for the Accuracy at T = 5 compared to the Sinkhorn-L1 with a blur of 1. The Sinkhorn losses do not
perform well compared to the Sinkhorn-L1 composite losses. However, the Sinkhorn loss with a blur
value of 1 performs best or equally good for most metrics except the IS compared to the Sinkhorn loss
with other blur values. For the IS metric, among the Sinkhorn losses, the Sinkhorn with blur 0.0001 and
0.01 perform best for the time horizons T = 5 and T = 15 respectively.

Loss Function Hyperparameters MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
T=5
Sinkhorn + L1 ϵ=1 2.12 ±1.38 1.129 ±0.716 0.943 ±0.053 0.911 ±0.042
Sinkhorn + L1 ϵ=0.1 1.84 ±1.13 1.120 ±0.727 0.944 ±0.052 0.914 ±0.039
Sinkhorn + L1 ϵ=0.01 2.07 ±1.23 1.175 ±0.702 0.945 ±0.055 0.909 ±0.039
Sinkhorn ϵ=1 116.60 ±19.12 86.170 ±30.850 0.636 ±0.172 0.398 ±0.172
Sinkhorn ϵ=0.01 229.79 ±34.59 15.801 ±43.009 0.595 ±0.159 0.398 ±0.172
Sinkhorn ϵ=0.0001 218.00 ±37.85 9.240 ±33.789 0.476 ±0.139 0.398 ±0.172
T=15
Sinkhorn + L1 ϵ=1 4.70 ±3.41 2.179 ±1.535 0.904 ±0.095 0.853 ±0.081
Sinkhorn + L1 ϵ=0.1 3.75 ±2.61 2.293 ±1.784 0.899 ±0.100 0.860 ±0.080
Sinkhorn + L1 ϵ=0.01 4.19 ±2.95 2.301 ±1.736 0.901 ±0.107 0.860 ±0.075
Sinkhorn ϵ=1 112.44 ±19.02 46.311 ±40.296 0.615 ±0.174 0.397 ±0.172
Sinkhorn ϵ=0.01 226.61 ±33.84 38.781 ±48.661 0.582 ±0.171 0.397 ±0.172
Sinkhorn ϵ=0.0001 188.68 ±43.53 47.579 ±55.178 0.494 ±0.143 0.397 ±0.172
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(a) Inputs

(b) Outputs

Figure B.2: The qualitative results on aWaymoOpen Perception test sequence for PredRNN++ trained
with the Sinkhorn loss and Sinkhorn-L1 composite loss for different blur values. Results are shown for
T = 15. (a) The five input frames to the network, showing three vehicles approaching the ego-vehicle
(central yellow rectangle) from behind (left of image), and three vehicles moving away from the ego-
vehicle (right). (b) Ground Truth (GT) and predictions for the loss functions for selected timesteps. The
results for the Sinkhorn-L1 composite loss with blur values 1, 0.1, and 0.01 are similar. However, the
loss with a blur value of 0.01 (B0.01) retains the six moving vehicles in the scene for a longer time
horizon compared to the losses with a blur value of 0.1 (B0.1) and 1 (B1). The performances for all
three blur values for the Sinkhorn loss show that the Sinkhorn loss alone does not provide perceptually
similar OGMs compared to the ground truth or the Sinkhorn-L1 composite loss. One can see that the
overal regions of free space are best represented by the Sinkhorn with a blur of 0.01. The structure of
the static environment is best resembled by the Sinkhorn with a blur of 0.0001.



C
Semantic segmentation results from the

multi-task learning network
The semantic segmentation results from the multi-task learning experiment of section 4.3 are described
in this appendix. Initially, the experiment investigates the effect of multi-task learning the OGM predic-
tion task and the semantic segmentation task on the performance of the OGM prediction task using
the PredRNN++ [62] network. The performance of the semantic segmentation task is therefore less
relevant for the conclusion of this thesis.

C.1. Results semantic segmentation
Two validation set sequences with their semantic channel predictions combined into semantic map
RGB-images are shown in figures C.1 and C.2. Tables C.1, C.2, and C.3 show the quantitative pre-
diction performances for each semantic channel where the network is trained by the L1, SSIM, and
Sinkhorn-L1 losses respectively. The quantitative results for the L1 loss show that the free space and
the unknown classes are predicted with high AP values for both prediction horizons compared to the
other classes. The vehicle and static objects classes score average in the APmetric, while the pedestri-
ans and cyclists have low AP values. When looking at the MSE, IS, and Accuracy metrics, the cyclists
class has the best scores, with the pedestrians at a close second. However, the MSE, IS, and Accuracy
metric scores can be misleading for evaluating the correctly predicted labels (true positives) because
these metrics do not adjust the values according to the occurrence of positive class instances in the
scenes. Vehicles, pedestrians, cyclists, and static objects cover a minority of the cells in most OGM
scenes. So even if the network predicts no instances of these classes, the metric scores will still be
good because it will result in a good true negative rate (i.e. correctly predicted cells without these class
labels, which is a majority of the cells). Therefore, these metrics will only provide useful insights into
the prediction quality if the corresponding AP score is high. From the qualitative results for the L1 loss,
it can be seen that the free space, unknown space, and static occupied space classes are predicted
accurately. The vehicle class is only predicted accurately for dynamic vehicles close to the ego-vehicle.
The static vehicles or vehicles farther away from the ego-vehicles, together with the pedestrian and
cyclist classes, are often not accurately predicted and are predicted as static objects instead. The
quantitative results for the SSIM loss show similar results to the ones of the L1 loss. The free space
and unknown classes have relatively high AP values compared to the other classes. The other classes
have low AP values and good MSE and Accuracy scores, which do not mean much given the low AP
values. Especially compared to the L1 loss predictions, the SSIM’s vehicles and static object classes
are predicted worse when looking at the AP values. The qualitative results for the SSIM also show
that the free space and unknown areas are predicted well. The vehicles and static objects only show
the outlines of the objects which can explain the worse quantitative performance compared to the L1
loss. Pedestrians and cyclists are not predicted at all. For the Sinkhorn-L1 loss, the quantitative results
are similar to the SSIM, also considering the low AP values for the vehicles and static objects. The
Sinkhorn-L1 loss shows the worst overall AP and MSE scores compared to the other losses. This is
also reflected in the qualitative results. Free and unknown space are predicted in similar areas com-
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pared to the ground truth. However, other classes are not predicted by the Sinkhorn-L1 network. Both
the SSIM and the Sinkhorn-L1 results show that the static object labels become lighter for an increas-
ing prediction horizon. Perhaps the semantic label values are influenced by the evidential OGM values
since those also become lighter due to increased uncertainty over time. The IS scores for the same
classes are equal or similar in value when comparing the results from different losses. The IS metric
can reach a maximum (distance) value if no instances are present in the ground truth but are present
in the predictions. This can often be the case for vehicles, pedestrians, and cyclists since the Waymo
dataset does not contain many scenes with these objects.

Table C.1: The quantitative results of predicting the semantic channels on the Waymo Perception
validation set for PredRNN++. Performance is measured using the MSE and IS metrics (lower is better)
and AP, and Accuracy metrics (higher is better), averaged over prediction horizons T = 5 and T = 15
with standard deviations. * The values for the MSE, IS, and Accuracy can be misleading because of
the unbalanced class representations for the different semantic classes.

Channel MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
T=5 L1
Free space 4.33 ±3.49 9.687 ±2.461 0.944 ±0.057 0.944 ±0.038
Vehicles 0.95 ±1.12 10.815 ±23.770 0.676 ±0.245 0.989 ±0.012
Pedestrians 0.02 ±0.07 3.135 ±23.126 0.006 ±0.009 1.000 ±0.001
Cyclists 0.02 ±0.05 1.132 ±14.589 0.014 ±0.035 1.000 ±0.000
Static objects 7.87 ±2.59 13.964 ±25.369 0.618 ±0.158 0.907 ±0.031
Unknown 7.82 ±3.73 5.282 ±18.714 0.934 ±0.061 0.901 ±0.040
T=15 L1
Free space 7.24 ±6.02 10.999 ±2.982 0.895 ±0.093 0.916 ±0.062
Vehicles 0.89 ±1.10 9.873 ±17.915 0.667 ±0.210 0.988 ±0.012
Pedestrians 0.01 ±0.07 3.300 ±24.057 0.005 ±0.008 1.000 ±0.001
Cyclists 0.01 ±0.03 1.138 ±14.528 0.013 ±0.030 1.000 ±0.000
Static objects 8.28 ±2.77 13.989 ±25.614 0.454 ±0.220 0.907 ±0.031
Unknown 11.11 ±5.95 5.283 ±17.028 0.880 ±0.097 0.873 ±0.058
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Table C.2: The quantitative results of predicting the semantic channels on the Waymo Perception
validation set for PredRNN++. Performance is measured using the MSE and IS metrics (lower is better)
and AP, and Accuracy metrics (higher is better), averaged over prediction horizons T = 5 and T = 15
with standard deviations. * The values for the MSE, IS, and Accuracy can be misleading because of
the unbalanced class representations for the different semantic classes.

Channel MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
T=5 SSIM
Free space 4.51 ±3.40 9.105 ±2.309 0.922 ±0.068 0.939 ±0.039
Vehicles 1.13 ±1.16 7.978 ±27.565 0.089 ±0.045 0.989 ±0.012
Pedestrians 0.01 ±0.07 3.135 ±23.126 0.005 ±0.006 1.000 ±0.001
Cyclists 0.02 ±0.03 1.132 ±14.589 0.009 ±0.020 1.000 ±0.000
Static objects 9.07 ±3.07 13.964 ±25.369 0.148 ±0.054 0.907 ±0.031
Unknown 8.48 ±3.87 5.158 ±18.970 0.914 ±0.077 0.865 ±0.046
T=15 SSIM
Free space 7.16 ±5.64 10.135 ±2.786 0.863 ±0.108 0.911 ±0.064
Vehicles 1.15 ±1.16 8.238 ±28.260 0.049 ±0.050 0.989 ±0.012
Pedestrians 0.02 ±0.08 3.300 ±24.057 0.005 ±0.005 1.000 ±0.001
Cyclists 0.05 ±0.08 1.442 ±16.476 0.005 ±0.014 1.000 ±0.001
Static objects 9.08 ±3.06 13.989 ±25.614 0.131 ±0.052 0.907 ±0.031
Unknown 11.80 ±5.73 5.176 ±17.263 0.834 ±0.123 0.840 ±0.060

Table C.3: The quantitative results of predicting the semantic channels on the Waymo Perception
validation set for PredRNN++. Performance is measured using the MSE and IS metrics (lower is better)
and AP, and Accuracy metrics (higher is better), averaged over prediction horizons T = 5 and T = 15
with standard deviations. * The values for the MSE, IS, and Accuracy can be misleading because of
the unbalanced class representations for the different semantic classes.

Channel MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
T=5 Sinkhorn + L1
Free space 8.86 ±5.53 12.417 ±4.412 0.886 ±0.092 0.850 ±0.065
Vehicles 1.26 ±1.09 7.978 ±27.565 0.062 ±0.062 0.989 ±0.012
Pedestrians 0.54 ±0.28 3.135 ±23.126 0.004 ±0.004 1.000 ±0.001
Cyclists 1.85 ±0.37 1.132 ±14.589 0.002 ±0.002 1.000 ±0.000
Static objects 11.10 ±3.38 13.964 ±25.369 0.109 ±0.046 0.907 ±0.031
Unknown 14.19 ±5.01 5.968 ±18.164 0.840 ±0.084 0.823 ±0.054
T=15 Sinkhorn + L1
Free space 14.86 ±9.85 15.985 ±5.975 0.799 ±0.141 0.815 ±0.083
Vehicles 1.38 ±1.11 9.476 ±32.240 0.042 ±0.050 0.989 ±0.012
Pedestrians 0.55 ±0.24 3.300 ±24.057 0.004 ±0.004 1.000 ±0.001
Cyclists 2.01 ±0.68 1.183 ±14.528 0.003 ±0.003 1.000 ±0.000
Static objects 11.03 ±3.42 13.989 ±25.614 0.103 ±0.042 0.907 ±0.031
Unknown 17.71 ±7.13 6.267 ±17.393 0.826 ±0.103 0.797 ±0.068
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(a) Inputs

(b) Outputs

Figure C.1: The first example of qualitative results on a Waymo Open Perception validation sequence
for PredRNN++ trained to perform semantic segmentation with different loss functions. Results are
shown for T = 15. (a) The five input frames to the network show a crossing with four vehicles ap-
proaching the ego-vehicle (central yellow rectangle) from behind (left of image), one vehicle at the left
side of the ego-vehicle (top of image), three vehicles in front of the ego-vehicle, of which two are closely
behind each other (right), and a parked car (bottom right). Furthermore, at the bottom and top of the
image are several pedestrians and there is one cyclists present at the top left in the image. (b) Ground
Truth (GT) and the semantic predictions. In the semantic map, black: free, green-blue: uncertain, cyan:
static occupied, yellow: vehicles, red: pedestrians, green: cyclists. The L1 loss semantic segmentation
maps predict the overall free, unknown, and static classes similarly to the ground truth. However, only
the ego-vehicle and one other vehicle (right above on the left to the ego-vehicle) are predicted for the
vehicle class and no correct predictions are done for the pedestrian and cyclist classes. The cyclists,
as well as some pedestrians are predicted as static objects for T = 1 and T = 3. They disappear for
longer prediction horizons. The predictions show a thin green line around the unknown areas, however
no cyclists are there. The SSIM loss results show free and unknown classes similarly to the ground
truths. The static objects and vehicles classes only show outlines of the objects. No pedestrians or
cyclists are predicted correctly. For a longer prediction horizon, the unknown class labels become
lighter. The Sinkhorn-L1 results show free and unknown classes in a similar shape to the ground truth.
At the edges between unknown and free space, an outline is predicted of the vehicle class. Also, the
ego-vehicle is predicted, but disappears for longer a prediction horizon. Like the SSIM results, for a
longer prediction horizon, the unknown class labels become lighter.
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(a) Inputs

(b) Outputs

Figure C.2: The second example of qualitative results on a Waymo Open Perception validation se-
quence for PredRNN++ trained to perform semantic segmentation with different loss functions. Results
are shown for T = 15. (a) The five input frames to the network show a road with four vehicles around
the ego-vehicle (central yellow rectangle), one vehicle behind the ego-vehicle (left to ego-vehicle in im-
age), two left of the ego-vehicle (above ego-vehicle in image), and one in front of the ego-vehicle (right
to ego-vehicle in image). Two vehicles are further away in front of the ego-vehicle (right of the image).
There are three parked cars (two at top left, one at bottom right in the image). Furthermore, there are
pedestrians in front of the ego-vehicle at its left and right side (right top and bottom in the image). There
are no cyclists in this scene. (b) Ground Truth (GT) and the semantic predictions. In the semantic map,
black: free, green-blue: uncertain, cyan: static occupied, yellow: vehicles, red: pedestrians, green:
cyclists. For the L1 loss, the semantic segmentation maps predict the overall free, unknown, and static
classes similarly to the ground truth. The vehicles around the ego-vehicle are predicted correctly as
vehicles for the full prediction horizon. The vehicles that are parked or are further away are predicted
as static objects. No correct predictions are done for the pedestrian class. The pedestrians are pre-
dicted as static objects and blur over time. The predictions show a thin green line around the unknown
areas, however no cyclists are there. The SSIM loss results show free and unknown classes similarly
to the ground truths. The static objects and vehicles classes only show outlines of the objects and
no pedestrians or cyclists are predicted correctly. For a longer prediction horizon, the unknown class
labels become lighter. The Sinkhorn-L1 results show free and unknown classes in a similar shape to
the ground truth. At the edges between unknown and free space, an outline is predicted of the vehicle
class. Also, the ego-vehicle is predicted, but disappears for longer a prediction horizon. Like the SSIM
results, for a longer prediction horizon, the unknown class labels become lighter.
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An Experimental Study on Occupancy Grid Map Prediction Loss Functions

Hidde J-H. Boekema, Rutger F. Dirks, and Dariu M. Gavrila1

Abstract— This paper presents an experimental study on
the loss functions used in the Occupancy Grid Map (OGM)
prediction literature. We examine the ubiquitous L1 and L2
loss functions, and composites thereof, as well as the Binary
Cross-Entropy (BCE) and distance-capturing SSIM losses in
an OGM prediction setting.

In experiments on the large-scale Waymo Open Perception
dataset with the influential PredRNN++ video prediction net-
work, we find that the L1 loss function generally achieves the
best performance on a range of per-pixel and perceptual metrics
such as Mean Squared Error (MSE), Image Similarity (IS),
Average Precision (AP), and Accuracy. However, we find some
evidence that the SSIM and composite L1L2 and SmoothL1
losses result in reduced blurriness and fewer disappearing
dynamic objects - despite scoring less well on these commonly-
used metrics - and may therefore be more suitable for safety-
critical applications.

I. INTRODUCTION

Estimation of the future state of the environment is essen-
tial to the safe deployment of Autonomous Vehicles (AVs) in
urban environments. The complex interactions between road
users and varied road layouts in such environments make this
an especially challenging problem.

The classic approach to this problem is to use a hand-
designed detection and tracking pipeline to obtain the trajec-
tories of objects in a scene, which are then used to predict
their future states (e.g. [1], [2]). Using this pipeline ensures
that predictions are made efficiently for all detected agents
in the scene due to the sparsity of the object-centric repre-
sentation. A drawback is the dependence on object detectors
and trackers. These components are additional sources of
error (e.g. the object detection recall of the Fast and Furious
network [3] is 92.5%) that can impact the performance of the
prediction network; in the extreme case, missed detections
can result in agents being left out of predictions, posing a
safety hazard for intelligent vehicles.

An alternative approach is to predict directly from min-
imally processed sensor data. Approaches using the Oc-
cupancy Grid Map (OGM) [4] environment representation
fall into this category. ’Evidential’ OGMs are discrete maps
with cells containing belief mass for the occupancy state of
the corresponding location in the environment. They can be
generated from sensor data using Dempster-Shafer theory
[5] and therefore preserve much of the information collected
by the sensors. However, predicting on such a low-level
representation of the environment is challenging. This is
compounded by the use of ’per-pixel’ loss functions, which
ignore spatial dependencies between grid cells. [1] found that

1Intelligent Vehicles Group, TU Delft, The Netherlands

this led to the gradual disappearance of moving objects and
blurry predictions over long prediction horizons.

This paper studies the effect of the loss function used for
training on the performance of OGM prediction networks.
The L1, L2, Binary Cross-Entropy, and SSIM loss functions,
as well as combinations of the L1 and L2 losses, are
evaluated on the large-scale Waymo Open Perception dataset
[6]. We note that these result may be relevant outside of the
domain of OGM prediction, for example in the similar video
prediction domain.

II. RELATED WORK

There is an extensive body of literature for the
environment prediction problem. The existing work
can be categorised into object-centric and object-agnostic
prediction approaches. Object-centric approaches (e.g.
see survey [7]) employ a pipeline consisting of object
detection, localisation, and tracking to generate object-level
input features for the prediction task. Recently, approaches
using an object-agnostic representation for the prediction
problem have gained popularity. This representation does not
require a human-engineered pipeline but can be generated
by minimally processing sensor data. We will focus on
object-agnostic approaches in this section because of their
relevance to our work. We will also discuss relevant works
in the related video prediction problem.

Occupancy Grid Map Prediction As mentioned in
Section I, objects become blurry or disappear over long
prediction horizons [1]. This can be ascribed to the lack of
semantic information in OGM predictions and to the use of
per-pixel loss functions such as the L1 loss during training.

The loss functions commonly used in OGM prediction
intersect with those for computer vision and image process-
ing tasks because of the common format of images and
OGMs. Image processing loss functions can be categorised
as per-pixel loss and perceptual loss functions [8]. Per-
pixel loss functions evaluate the differences between pixels
of two images (or the grid cells of two OGMs), where
each spatial location is evaluated in isolation to the rest of
the image. These loss functions can estimate the similarity
between corresponding pixels in two images efficiently, but
cannot capture high-level image features as this requires
consideration of the dependencies between pixels. Perceptual
loss functions, on the other hand, measure the differences be-
tween high-level image features, resembling how the human
visual system perceives differences [9].

Most state-of-the-art OGM prediction methods use per-
pixel losses such as the L1, Mean Squared Error (MSE),



and Cross Entropy losses [10], [1], [11], [12], [13], [14].
[1] use a perceptual metric to evaluate their OGM prediction
results because a per-pixel metric, such as the Mean Squared
Error (MSE), does not capture the positional variability of
objects between the ground truth and a prediction. [15] use
the Multi-scale Structural Similarity Index Metric (SSIM)
[9], [16], a human visual perception-based loss function for
training a part of their OGM prediction network, together
with the Cross Entropy loss. [17] developed their own
spatial and temporal consistency loss functions to train an
OGM prediction network. These loss functions evaluate the
occupancy, semantics and dynamics of the predictions, with
the assumption that objects are rigid and move smoothly
between consecutive frames. Moreover, the functions sepa-
rately evaluate grid cells belonging to the same rigid object,
allowing a prediction network to learn which grid cells
belong to an object. However, their approach does not take
into account the spatial distances between objects and other
parts of the environment.

Hence, some research has been done towards developing
a distance-based loss function suitable for training OGM
prediction networks. However, current loss functions either
do not capture spatial relations between objects, or are
not evaluated in isolation ([15] combines the SSIM with
the Cross Entropy loss). Loss functions that can measure
dependencies between grid cells and hence distances
between objects could improve the accuracy of OGM
prediction networks trained with these loss functions.

Video Prediction The influential work by [18] intro-
duced the Convolutional Long Short-Term Memory (ConvL-
STM) network as an extension of Convolutional Neural Net-
works (CNNs) to sequences of images. Initially developed
for precipitation forecasting, ConvLSTM uses past radar
maps to predict a sequence of future maps. This model
outperformed optical flow algorithms and Long Short-Term
Memory models (LSTMs) [19] due to its ability to capture
complex spatiotemporal patterns. However, it also produces
increasingly blurry predictions for greater prediction hori-
zons. [20] use ConvLSTM layers in their video prediction
model, Convolutional Dynamic Neural Advection (CDNA).
This model predicts pixel motions of frame segments and
merges the segments into a single future frame prediction.
Predictions made by CDNA also become blurrier over time
due to the use of MSE loss in training, which causes
uncertainty to be encoded as blur [20]. The authors suggest
using an alternative loss to combat this issue.

PredRNN++ [21] mitigates the blurring of predictions
by employing a ’gradient highway’ that provides shorter
routes for gradients to flow through a network. This allows
the network to learn stronger spatial correlations and short-
term dynamics, leading to more confident predictions and
decreased blurriness over long prediction horizons. The
PredNet [22] network has been used for OGM prediction
[10], [1], [11] because of its desirable properties. Based
on the neuroscientific concept of predictive coding, each
layer of PredNet makes a local prediction using ConvLSTMs

and forwards the errors of that prediction to the subsequent
layers. The authors argue that this ensures that the network
can learn an implicit model of the objects in the scenes,
including their movement.

These approaches demonstrate that blurriness is in part
caused by the increasing uncertainty of the model with
time. This uncertainty could be reduced by ensuring more
informative supervision signals are used in training through
better loss functions

Our main contribution is documenting the performance
differences resulting from the choice of loss function for
OGM prediction - to our knowledge, such an experimental
study has not been performed before. We note that our results
are applicable to the video prediction domain as well.

III. METHOD

A. Problem Formulation

Environment prediction can be considered a self-
supervised sequence-to-sequence prediction problem where
a history sequence is used to predict a likely future se-
quence. We select evidential occupancy grid maps as our
representation of the environment, as in [1], [11], [10], with
OGMs generated using the Dempster-Shafer Theory (DST)
[5], although our findings could generalise to other types of
OGM. An evidential occupancy grid map of the environment
Xt ∈ RH×W×1

+ at time step t contains the occupancy
(i.e. whether free or occupied) probability of each grid cell
xt,ij , i ∈ [1, H], j ∈ [1,W ] at that instant. Given a past
(observed) sequence of OGMs X−τ :0, the objective is to
predict T frames into the future X1:T .

B. Prediction Network

We use PredRNN++ [21] as the prediction network for
our study. PredRNN++ is an influential method in the video
prediction domain (for which it was developed), with an
open-source implementation. It forms the basis of the OGM
prediction network proposed by [1], achieving state-of-the-
art results on the KITTI and Waymo Open Perception
datasets.

C. Loss Functions

We consider six loss functions for OGM prediction in this
work: the L1, L2, L1L2, SmoothL1, Binary Cross-Entropy
(BCE), and SSIM [16] losses. The L1 loss is the most often
used loss for training OGM prediction networks; the L2, or
MSE, loss is an common alternative that penalises outliers
more heavily. The combination of the L1 and L2 loss (which
we call ’L1L2’) is also tested as [21] claim that this loss
simultaneously enhances the sharpness and smoothness of
predicted frames in the video prediction task. We evaluate
the BCE loss because [17] used this loss for the classification
and state estimation heads of their proposed MotionNet
prediction network. We also propose to study the SSIM
function as a loss for this task due to its desirable features.
Contrary to the losses in the literature, the SSIM metric



considers dependencies between grid cells, and therefore
penalises displacement errors in predictions.

The loss functions are aggregated over batches of Nb

samples of Tloss = T + τ − 1 timesteps as in Equation (1).

L =
1

NbTloss

Nb∑
n=1

Tloss∑
t=1

f(Xt,n, X̂t,n) (1)

Where f(·, ·) is the applied loss function, and we denote a
prediction by X̂ . Note that we drop the time (and sample)
notation in the succeeding sections for clarity.

L1 loss: The L1 loss takes the mean of the absolute error
between the grid cells of the ground truth X and prediction
X̂ , as shown in Equation (2).

L1(X, X̂) =
1

HW

H∑
i=1

W∑
j=1

|xij − x̂ij | (2)

L2 loss: The L2 loss similarly takes the mean of the
squared error between the grid cells of the ground truth and
prediction (Equation (3)).

L2(X, X̂) =
1

HW

H∑
i=1

W∑
j=1

|xij − x̂ij |2 (3)

Combined L1 and L2 (’L1L2’) loss: We define the com-
bined L1 and L2 loss of [21] as in Equation (4).

L1L2(X, X̂) = L1(X, X̂) + λ · L2(X, X̂) (4)

λ is a constant weighting factor used to balance the effects
of the L1 and L2 losses, with [21] selecting λ = 1.

Smooth L1 loss: Another variant on the L1 and L2
losses is the Huber [23] loss. It is a piecewise function
that combines the advantages of the sensitivity of the mean-
unbiased L2 function with the robustness of the median-
unbiased L1 function. Equation (5) shows the Huber loss
for two variables a, b ∈ R.

Huberδ(a, b) =

{
1
2 (a− b)

2 if |a− b| < δ,

δ
(
|a− b| − 1

2δ
)

otherwise.
(5)

Where δ determines the transition point between the losses.
We use the Smooth L1 loss, a variant of the Huber loss that
is used in [24], [17]. This loss is defined for the ground truth
X and predicted X̂ OGMs in Equation (6).

SmoothL1(X, X̂) =
1

HW

H∑
i=1

W∑
j=1

1

δ
Huberδ(xij , x̂ij) (6)

Binary Cross-Entropy (BCE): The cross-entropy loss is
often used in logistic regression problems, such as semantic
segmentation, and was proposed for OGM prediction by
[17]. The BCE loss is a suitable candidate loss function
for training evidential OGM prediction networks due to the
similarity to logistic regression.

The loss is derived from the cross-entropy H(·, ·) of
Bernoulli random variables p ∈ {y, 1−y} and q ∈ {ŷ, 1− ŷ}

as in Equation (7).

H(p, q) = −
∑
i

pi log qi

= y log(ŷ)− (1− y) log(1− ŷ)

= g(y, ŷ)

(7)

Where we have introduced the notation g(y, ŷ) for conve-
nience. The loss function takes the form of Equation (8) for
OGM prediction.

BCE(X, X̂) =
1

HW

H∑
i=1

W∑
j=1

g(xij , x̂ij) (8)

SSIM loss: The Structural Similarity Index Measure
(SSIM) [16] is a function inspired by the human visual
system that measures the similarity between two images.
It evaluates luminance, contrast, and structural information
over windows of an image to estimate perceptual visual
similarities [16]. The final loss value is computed by sliding
the window over the image, calculating the SSIM locally,
and taking the mean of the resultant values. The window
size is a parameter that can be changed to adjust the scale
for local evaluation. The components of the SSIM function
are described in this section in the context of its application
to OGM prediction.

Let the SSIM windows have size N ×M . The luminance
µx of a window x of an OGM is the mean intensity over
the window, which is calculated as in Equation (9). The
luminance values of corresponding windows y and x of the
ground truth and prediction, respectively, are compared using
Equation (10), with the constant C1 = (K1L)

2 stabilises the
equation by preventing division by low values, where L is
the dynamic range of the pixel intensity values, and K1 ≪ 1
is a small constant.

µx =
1

NM

N∑
i=1

M∑
j=1

xij (9)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(10)

The contrast is the standard deviation σx of the window,
shown in Equation (11). The contrasts of the windows of
the ground truth and prediction are compared using Equa-
tion (12), with constant C2 = (K2L)

2 where L is the
dynamic range of the pixel intensity values and K2 ≪ 1
is a small constant again.

σx =

 1

NM − 1

N∑
i=1

M∑
j=1

(xij − µx)
2

1/2

(11)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(12)

Equation (13) is used to compare the structures, or correla-
tions, between the prediction and the ground truth, where C3

is a small constant and σxy is computed using Equation (14).

s(x, y) =
σxy + C3

σxσy + C3
(13)



σxy =
1

NM − 1

N∑
i=1

M∑
j=1

(xij − µx)(yij − µy) (14)

After the comparisons are performed, they are combined
according to Equation (15).

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (15)

α > 0, β > 0 and γ > 0 are parameters to adjust the
relative importance of the three factors. The SSIM function
has a range of [−1, 1], where a value of 1 means that the
evaluated predicted window is identical to the ground truth
one.

Since SSIM measures structural similarities, it penalises
distance errors between OGMs because such errors change
the structure of an image.

IV. EXPERIMENTS

We first investigate the behaviour of the L1, L2, L1L2,
SmoothL1, BCE, and SSIM losses in a toy experiment.
We then train the PredRNN++ network [21] using each of
the loss functions and report the performance on the test
set of the real-world Waymo Perception dataset [6]. The
experiments demonstrate the influence of the loss functions
on the blurring of objects in the OGM predictions over a
range of prediction horizons. Finally, the impact of the total
training set on the difference in performance between the
loss functions is studied.

We use the Torch Geometry library’s [25] SSIM imple-
mentation. PyTorch [26] was used as deep learning frame-
work, and for the L1, L2, L1L2, SmoothL1, and BCE loss
function implementations. A Tesla V100-SXM2-32GB GPU
is used for training and inference.

A. Toy Data

The L1, L2, L1L2, SmoothL1, BCE, and SSIM losses
are compared in a toy experiment designed to investigate
how the values of the losses vary with an increasing dis-
tance between two objects, like in [27]. A 32x32 ground
truth image is created which contains a solid 5x5 square
located at the center left of the image. Example predictions
are generated which contain an identical square located at
a range of horizontal offsets relative to the GT position
(’distance errors’); see Figure 1a. The values of each loss
function are recorded for the distance errors, then normalised
to lie in the range [0, 1] to aid comparison of the losses.
The results of this evaluation are shown in Figure 1b. The
graph shows that for distance errors greater than 5 pixels,
where there is no overlap between the predicted and GT
squares, the L1, L2, L1L2, SmoothL1, and BCE losses are
constant. Although the SSIM loss initially increases with the
distance error, it remains constant when a threshold distance
error (dependent on the chosen window size) is reached; the
SSIM loss also decreases when the prediction approaches the
boundary of the image. This suggests that the SSIM loss is
a more informative loss for OGM prediction networks.
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(a) Toy experiment
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Fig. 1: Toy experiment to show the behaviour of the L1, L2,
L1L2, SmoothL1, BCE, and SSIM losses. (a) A ’predicted’
square (blue) is shifted away from the ’GT’ square (yellow)
along the x-axis in an image. (b) Curves showing the
associated normalised values of the loss functions.

B. Waymo Open Perception Data

Experimental Setup: We evaluate the effect of training with
each of the L1, L2, L1L2, SmoothL1, BCE, and SSIM
losses on the test-time performance PredRNN++ prediction
network [21] on the Waymo Open Perception dataset [6]. The
Perception dataset contains 1150 unique scenes, recorded
at a frame rate of 10 Hz. It contains millions of objects
with tracking IDs, labels for four object classes (vehicles,
pedestrians, cyclists, and signs), and 3D bounding boxes for
each of those objects. We used the code of [11] to generate
OGMs from the LiDAR data of the Perception dataset. The
object class labels were projected into the OGM to generate
the ground truth semantic maps. We obtain a dataset of 10000
training, 473 validation, and 2972 testing non-overlapping
sequences of 10 frames. Additionally, we create 1405 longer



test sequences of 20 frames from this dataset to test the
trained networks for a longer prediction horizon of 1.5s.

The PredRNN++ [21] architecture is used for our exper-
iments. The network consists of 4 blocks of causal Con-
vLSTMs with 12 layers each, with a gradient highway unit
over the bottom LSTM layer. A 5x5 convolutional filter size
is selected for the ConvLSTM units. We train with each of
the losses on 32 mini-batches of 16 samples of the training
set per epoch, for 200 epochs. The Adam optimiser [28]
is used with a learning rate of 1e−3 and an exponential
learning rate scheduler that updates the loss by a factor of
0.977 after every epoch. The network is trained to predict
five future frames, given five past frames. We evaluate the
trained network on the test set for a prediction horizon of
five or 15 future frames.
Evaluation Metrics: To evaluate our results, we use the
Mean Squared Error (MSE) (as in [10], [1], [11]), Image
Similarity (IS) [29] (as in [1]), Average Precision (AP), and
Accuracy metrics [30]. The MSE metric measures the per-
grid cell difference between the ground truth and predicted
OGMs. IS is a perceptual metric that accounts for difference
in scene structure between the ground truth and predictions
by computing a distance map for grid cells with the same
occupancy value, then averaging over these values. The
occupancy values for evidential grids can be categorised
as free (0), unknown (0.5), and occupied (1). This metric
penalises blurriness in predictions in this setup, since blurred
(predicted) cells (i.e. with value around 0.5) will belong to
a different category than the corresponding ground truth cell
and warp the computed distance maps as a result. The AP
and Accuracy metrics are often employed for classification
tasks; we use them to assess the effectiveness of our method
in retaining the occupancy class of grid cells.
Results: We list the performance of the various loss functions
in Table I for prediction horizons of T = 5 and T = 15. It
can be seen that the performance of the network trained on a
specific loss is dependent on the metric used to quantify the
prediction error. The L1 loss function outperforms all other
losses on the majority of the metrics across the prediction
horizons, and scores highly on the remainder of the metrics.
This is especially pronounced for the long prediction horizon,
where it achieves a 14.4% lower MSE than L2, the next clos-
est loss. Surprisingly, it even scores better on the perceptual
IS metric than the SSIM loss (by a margin of 8.02% for
T = 15), which optimises an objective function similar to
the IS metric and explicitly captures spatial dependencies. An
explanation for this phenomenon is that the L1 loss provides
more robust and informative gradients to the network at train
time than the SSIM loss. The composite L1L2 and SmoothL1
losses lie between the L1 and L2 losses on most metrics.
For T = 15, however, these losses are generally worse than
either loss alone, indicating that they do not combine the
advantages of these losses, as claimed by [21]. The BCE
loss appears least suitable for OGM prediction, as it scores
poorly on all of the metrics.

Predictions on an example sequence are shown in Figure 2.
Figure 2a shows the evidential OGMs input to the network,

with yellow pixels representing grid cells with high proba-
bility of being occupied. The rectangle in the centre of the
images represents the ego-vehicle. There are several vehicles
on the road (dark purple) with the ego-vehicle. It can be seen
that the the L1 loss produces sharp predictions, but that most
of the vehicles disappear over even short prediction horizons
- the vehicles below and to the right of the ego-vehicle are
not predicted at t = 9. This could lead to critical safety
issues in real-world deployment of the prediction system.
This also demonstrates that the L1 loss is able to minimise
the metrics by accurately predicting ’easy’ examples (e.g.
the empty road and static objects), and may therefore not be
optimal for motion planners using the output of the prediction
module. The predictions from the L2-trained network are
blurrier, showing greater uncertainty, but better predict other
road users than with L1. The L1L2 and SmoothL1 losses
combine the advantages of the L1 and L2 losses, producing
more certain predictions than L2 while maintaining vehicles
in the future predictions. Specifically, the predictions from
the L1L2 network are confident and have probability mass
for all road users over the entire horizon, while the SmoothL1
network more accurately predicts the future position of the
moving objects (at the expense of lower certainty). The BCE
loss causes the most blurry predictions, as well as poor
state estimation. The scene structure is maintained in the
SSIM predictions, and the vehicles around the ego-vehicle
are accurately predicted, although the small objects to the
right of the OGM disappear after t = 6. This may be due
to the window size of the SSIM, which affects the scale
of objects that the loss function accounts for. Tuning this
hyperparameter or using a multi-scale variant of the SSIM
loss may mitigate this issue.

V. CONCLUSION

In this paper, we presented an experimental study on the
loss functions proposed in the OGM prediction literature
to mitigate well-documented issues like the disappearance
of objects over long prediction horizons and blurring of
predictions. We investigated popular losses such as L1 and
L2 (and combinations thereof), as well as other losses from
the literature i.e. Binary Cross-Entropy and SSIM. We found
that training with the L1 loss function leads to the most
accurate per-pixel predictions, following expectations, but
also outperforms the perceptual SSIM loss on the perceptual
IS metric. However, we note from qualitative examples that
dynamic objects are prone to disappearing in predictions
with this loss function, impacting the usefulness of this loss
function for safety-critical applications such as environment
prediction for Autonomous Vehicles (AVs). There is also
some evidence in the form of qualitative examples that
alternative losses like the SSIM and L1L2 losses combat
blurriness in predictions, although this needs to be confirmed
with further investigation. Future work also includes extend-
ing this study to other OGM types, such as semantic OGMs.



(a) Inputs

(b) Outputs

Fig. 2: Qualitative results on a Waymo Open Perception test sequence for PredRNN++ trained with the L1, L2, L1L2,
SmoothL1, BCE, and SSIM loss functions. Results are shown for T = 15. (a) The five input frames to the network, showing
three vehicles approaching the ego-vehicle (central yellow rectangle) from behind (left of image), and three vehicles moving
away from the ego-vehicle (right). (b) Ground Truth (GT) and predictions for the loss functions for selected timesteps. The
per-pixel losses lead to blurrier predictions than SSIM over long time horizons.



TABLE I: Quantitative comparison on the Waymo Perception test set for PredRNN++ trained with various loss functions.
Performance is measured using the MSE and IS metrics (lower is better) and AP and Accuracy metrics (higher is better),
averaged over prediction horizons T = 5 and T = 15. L1 excels on the majority of the metrics, also scoring highly on the
remaining metrics.

T = 5 T = 15
Loss Function Hyperparameters MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑ MSE (x10-2) ↓ IS ↓ AP ↑ Accuracy ↑
L1 − 2.63 1.830 0.914 0.892 3.60 2.743 0.874 0.854
L2 − 2.75 2.306 0.923 0.870 4.20 2.697 0.880 0.817
L1L2 λ = 1 2.60 2.004 0.936 0.885 4.53 3.468 0.866 0.833
SmoothL1 δ = 1 2.84 2.333 0.924 0.876 4.50 3.339 0.856 0.835
BCE − 168.30 30.937 0.845 0.596 451.87 33.228 0.788 0.568
SSIM N = M = 11 2.97 1.852 0.911 0.883 4.63 2.932 0.866 0.839
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