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Abstract

Large Language Models (LLMs) are becoming
more commonplace in today’s society. However
their adoption rate, especially in the fact checking
field, is being slowed down by the distrust in their
thinking process and the rationales leading to the re-
sults. In crucial moments the justifications behind
a verdict are more important than the verdict itself.
However, LLMs often produce explanations that
are not grounded in the provided evidence, leading
to hallucinations and reduced trust in their outputs.
This paper aims to show exactly the level the LLMs
have reached in both the faithfulness of their ex-
planations, based on some provided facts, and the
correctness of their explanations. To investigate
this, multiple LLMs are asked to assign a label
to a claim based on some evidence provided from
two datasets of varying complexity: HoVer and
QuanTemp. The outputs are then evaluated both
manually and by another LLM to evaluate how well
the LLM relates to the evidence and if the LLM
hallucinates in some parts of its responses. The
results reveal that while some models demonstrate
high correctness in label assignment, faithfulness
in explanations varies significantly across models
and evidence types. The outcomes of this experi-
ment aim to inform both LLM developers and fact-
checking researchers about the current limitations
of LLMs in response quality while also showing
which areas require further improvements to be-
come mainstream.

1 Introduction

LLMs have recently demonstrated good results
in a lot of natural language processing tasks, includ-
ing summarization, translation, question answering
and fact-checking. In most high-stakes contexts,
it is not enough for an AI system to simply label
a claim as true or false. Users expect a clear and
faithful explanation of why a claim is accurate or
inaccurate. This explanation should be based on ev-
idence or at least demonstrate a competent thought
process or a suitable rationale behind the assigned
label. Without this explanation or assurance, fact-
checking risks being perceived as untrustworthy
making people stay away from it.

Although there have been improvements in accu-
racy, LLMs often generate explanations that are not
grounded in the input evidence or add information
that is false and state it as a fact—an issue also
known as hallucination. These hallucinations can

involve fabricated facts, omissions, or contradic-
tions, destroying the very trust that explanatory fact-
checking is meant to build and needs to be adopted.
In particular, some LLMs will produce convincing
explanations that are unsupported or even contra-
dictory to the provided evidence, creating baseless
reasoning that undermines the reliability of fact-
checking outputs. As pointed out by different re-
search studies (Feher et al., 2025; Adlakha et al.,
2024), even when models are trained to generate
natural-language rationales, evaluating the qual-
ity and consistency of those explanations remains
challenging. Additionally, another paper aims to
show that reasoning with quantitative claims across
multiple documents introduces further complexity,
highlighting how faithfulness is deeply tied to task
and evidence type (Venktesh et al., 2024) .

1.1 Related works
Prior work has proposed new models, datasets,

and evaluation metrics, but less attention has been
paid to the comparison between the rationales gen-
erated by different LLMs under shared conditions.
For example, Lanham et al. (2023) show that even
chain-of-thought rationales can be unfaithful to the
model’s actual reasoning process. Similarly, other
works have shown that while reinforcement learn-
ing can improve factual consistency, it may reduce
informativeness or lead to more extractive sum-
maries. These trade-offs depend on various fac-
tors such as regularization strength and sampling
strategy, and require careful balancing to work as
needed (Roit et al., 2023). Evaluation methods
like G-EVAL (Liu et al., 2023) provide human-
aligned assessments, but their application to com-
parative analysis of rationales across LLMs is still
limited. Furthermore, benchmarking efforts such
as Benchmarking the Generation of Fact-Checking
Explanations (Russo et al., 2023) often focus on
single-model settings or assume outside templates,
without investigating how different models behave
under identical conditions.

Recent research has shown that LLMs can serve
as strong evaluators across various tasks. For exam-
ple, Kocmi and Federmann (Kocmi and Federmann,
2023) showed that LLMs such as GPT-3.5 can get
better results, when evaluating translations, than
traditional metrics like BLEU. Similarly, Zheng et
al. (Zheng et al., 2023) showed that LLMs can com-
pare chatbot responses using the given instructions,
which shows that we should be able to use LLMs
as capable evaluators as well.



Research Questions To address these gaps in
knowledge, our research focuses on how different
LLMs behave when tasked with generating fact-
checking explanations based on the same claims,
evidence under different prompting styles. Specifi-
cally, we aim to answer the following questions:

• RQ1: To what extent do different LLMs main-
tain factual consistency between the provided
evidence and their generated explanations?

• RQ2: How do different LLMs treat different
types of evidence?

• RQ3: Can automatic evaluation correlate with
human judgment of faithfulness for LLM ex-
planations?

• RQ4: Are there systematic patterns in the
hallucinations or inconsistencies produced by
different LLMs?

Main Contributions. In this paper, we eval-
uate how well LLMs generate explanations for
fact-checking tasks that are faithful (only use in-
formation found in the evidence), correct (factu-
ally accurate), and evidence-grounded (supported
by source material). Using tools like OLLAMA
and LangChain, and testing on datasets of vary-
ing complexity such as QuanTemp and HoVer, we
analyze how models perform under shared con-
ditions and assess the quality of their rationales
through both automatic (using another LLM as an
evaluator) and manual evaluation. The findings
provide insights into which models are better in
generating explanations, how evidence influences
hallucinations, and whether LLMs can be used
as evaluators in these types of tasks. We make
our dataset, code and most results available here
https://github.com/MateeiB/ResearchProject .

Structure of the Paper. Section 2 outlines the
methodology used. Section 3 introduces our con-
tributions in more depth. Section 4 describes the
experimental setup. Section 5 presents the results
of our research, including an objective analysis.
Section 6 offers a discussion of the implications
and the conclusions drawn from our research, and
Section 7 concludes with key takeaways and direc-
tions for future work, while Section 8 presents the
current limitations of our research.

2 Methodology

This research seeks to analyze how different
models behave in controlled fact-checking settings

and whether their rationales align with evidence
across tasks and datasets.

To investigate this, our study is split into two
parts. The first part is an experimental approach
to compare the explanations generated by differ-
ent LLMs under different conditions. We used
two datasets of varying complexity: HoVer, which
requires multi-hop textual reasoning across multi-
ple documents, and QuanTemp, which focuses on
challenging numerical and temporal claims. These
datasets were chosen to test the models’ ability to
handle both complex reasoning and precise fact
verification across different types of content. Four
models were evaluated (LLaMA2, Mistral, Gemma,
Phi), which were selected for their diversity and
availability.

Model outputs were analyzed using both au-
tomatic and manual methods. The automatic
method used was asking the LLM to analyze the
responses and report back which response was the
best and why. Manual evaluation involved assess-
ing whether each explanation contained halluci-
nated information, was consistent with the evi-
dence, and if the LLM-generated label is correct,
in the applicable parts. All the analysis was logged
and then conclusions were drawn about the differ-
ent LLM capabilities. The automatic evaluation
also used chain-of-thought prompting to encourage
more structured and reasoned assessments from the
evaluating LLMs.

3 Faithfulness Analysis of LLM
Explanations

This research adds to the ongoing research on
evaluating and understanding how LLMs justify
their labels through natural-language explanations.
Unlike prior studies that focus solely on label ac-
curacy or use simple overlap-based metrics, this
paper focuses on explanation faithfulness meaning
the extent to which generated answers align with
the given evidence.

The core of this research is an experimental anal-
ysis of four open-source LLMs: LLaMA2, Mistral,
Gemma, and Phi, which were selected to test across
different architectures and training strategies while
remaining accessible enough for controlled evalua-
tion on a local machine. To ensure that any differ-
ence in answers is caused by the models under test
and not by any parameter changes, all models were
tested using the same tools and under the same con-
ditions which will be further presented in Section

https://github.com/MateeiB/ResearchProject


4.

Since there are a lot of different tasks that LLMs
are expected to complete with different require-
ments multiple types of claims were considered in
order for the results to show a better picture. The
two main types of claims are complex natural lan-
guage claims and numerical claims such as statisti-
cal or temporal claims that require more complex
reasoning. This approach shows what the weak
points of the LLMs are, which will allow further
experiments to not run into unexpected results and
behaviors from the LLMs.

The evaluation follows a two stage approach.
First, an automatic evaluation is done by each of
the LLMs to compare all four justifications fol-
lowing the chain of thought prompting framework.
Chain-of-thought is a technique where the model
is asked to reason in steps before giving a final
answer. This step-by-step reasoning improves ac-
curacy, especially in this case where the task of
analyzing justifications is very complex (Liu et al.,
2023) For the more challenging QuanTemp dataset,
a full 4×4 evaluation is conducted twice — once
for each prompting style — where each model eval-
uates the justifications generated by all four models.
For the simpler HoVer dataset, a more lightweight
2×2 setup is used, where two of the LLMs are used
for one prompting style, while the other 2 justify
and then they swap roles. Then a manual check is
done to validate the results of the first step as well
as find any patterns in the answers of the LLM, any
hallucinations or any places where the LLM might
have missed something.

The main point of the research is a systemic
comparison of how models vary in reasoning ca-
pabilities across different model sizes and types
of data. This includes whether hallucinations are
consistent, what kinds of evidence are ignored or
overused, and analyzing how models balance fac-
tual accuracy with alignment to user expectations.
The results showed that some models will add in-
formation when the evidence is incomplete or will
commit to a label because of the phrasing even if
that is wrong. By analyzing all the outputs some
strengths or some blind spots can be seen. These
will be used in future work as a starting point to
show if LLMs can be trusted with the justification
behind the label or if more training or development
needs to be done before reaching that point.

4 Experimental Setup

An overview of the experiment pipeline is shown
in Figure 1. We start by filtering the claims and
evidence in a human readable format. Then we
choose a prompting style and the LLM that is tested
and ask it to generate an explanation. Then we
aggregate all results and perform both a manual
evaluation and an automatic one to formally obtain
the results.

4.1 Datasets

Two publicly available datasets were used to
evaluate model performance under varying lev-
els of complexity and different types. The HoVer
dataset (Jiang et al., 2020) consists of claims sup-
ported or refuted by multiple Wikipedia sentences
depending on the number of hops, requiring basic
multi-hop reasoning. In contrast, the QuanTemp
dataset (Venktesh et al., 2024) has numerical claims
grounded in real-world articles and demands more
complex reasoning. These datasets were chosen
to evaluate how LLMs handle different types of
evidence and reasoning styles. The exact distri-
bution of the combined datasets can be seen in
Table 1, with the Statistical, Comparison, Interval
and Temporal claim types coming from the Quan-
Temp dataset and the Supported and Not Supported
coming from the HoVer dataset.

Claim Type Count
Statistical 220
Comparison 73
Interval 44
Temporal 13
Supported 82
Not Supported 68

Table 1: Distribution of original labels across all used
data.

4.2 Models

The following four open-source language mod-
els were evaluated: LLaMA2, Gemma, Mistral,
and Phi. These models vary in architecture, size,
training objectives, and intended use cases, pro-
viding a diverse sample of LLM behavior under a
common experimental setup.

LLaMA2 is designed to have a good perfor-
mance across a wide range of tasks. It is trained
on publicly available datasets and optimized for
general-purpose reasoning. It is known for its



Figure 1: Experimental setup

strong few-shot capabilities and balanced perfor-
mance on reasoning and language understanding
tasks. In this study the 7B parameters version was
used with 4-bit quantization to make it possible to
run locally.

Gemma is designed to run efficiently on every-
day computers. It is designed with alignment and
safety in mind, focusing on producing helpful and
most importantly harmless outputs. In this study
the 8.5B parameters version was used with the
same 4-bit quantization.

Mistral is developed with a focus on factual ac-
curacy and robustness. It is trained on selected data
highlighting truthfulness and has shown very good
performance in tasks like fact-checking or reduc-
ing hallucinations, making it particularly relevant
for this study and expected to have the best per-
formance in this experiment. In this study the 7B
parameters version was used with the 4-bit quanti-
zation.

Phi is the smallest model in this comparison,
more compact than the others having only 3B pa-
rameters. Despite its small size, it is optimized for
reasoning and educational use cases. Phi is trained
using a "textbook-quality" data strategy, focusing
on clean and structured examples to extract max-
imum reasoning ability from fewer parameters as
mentioned by (Li et al., 2023).

This diversity in architecture size and training
style makes them a diverse comparative set for eval-
uating correctness and faithfulness in justification
generation.

4.3 Tools and Environment

For all the experiments LangChain was used
as an interface compatible with all four models.
All the experiments were done on a local machine
with 32GB RAM and 6GB VRAM. The coding
was done in PyCharm using Python 3.12.3 and
the LangChain version used was 0.3.25. Prompts
were constructed in three different styles: normal
zero-shot prompting, providing the LLM with the
label and asking only for the justification, and role-
based prompting, as inspired by prior work on
structured and context-aware prompting strategies
(Sathe et al., 2023; Zhou et al., 2022). In all cases,
models were used in the mode they came with no

fine-tuning or retraining applied.

4.4 Input Formatting

For each claim-evidence pair, the ground truth
was extracted and then a natural-language prompt
was used to query the LLM. Both prompting styles
were tested across all four LLMs with very little to
none fine-tuning to form a comprehensible image
on how each LLM thinks and also how each LLM
evaluates other LLMs. The exact prompt templates
used for justification generation and comparative
evaluation are documented in Appendix A.

4.5 Evaluation Methods.

Model outputs were analyzed using both auto-
matic and manual methods. The automatic method
used was asking the LLM assigned as evaluator,
to analyze and report back which response was
the best and why. Manual evaluation performed
by us involved assessing whether each explanation
contained hallucinated information, was consistent
with the evidence and if the LLM generated label
and the original label of the claim matched, where
it was applicable. All the analysis was logged and
then conclusions were drawn about the different
LLM capabilities.

5 Results

We analyze the correctness of the labels assigned
to claims, the faithfulness of the explanations gen-
erated by each model, and patterns in the types
of hallucinations observed. We also analyze how
each of the LLMs performed as an evaluator for
the others.

5.1 Correctness

Figure 2 shows how accurately each model clas-
sified different types of claims from the Quantemp
dataset based on the provided evidence. Each bar
represents the accuracy of the model. This break-
down helps reveal not just overall performance, but
also which types of truth values are more difficult
for each LLM. The same type of figure for the
Hover dataset can be seen in Figure 3 where claims
are split into only two categories supported and not
supported.



Figure 2: Correctness of labels generated by tested
LLMs across True, False and Conflicting types of
claims.

We observe that Mistral demonstrates strong and
relatively balanced performance across all claim
types, correctly classifying around 60-70% of all
claims across both the datasets and showing bal-
anced results across all types, unlike the other
LLMs. In contrast, Gemma and LLaMA2 show
a steep performance drop when handling false and
conflicting or supported and not supported claims:
Gemma has high accuracy on false claims but drops
below 30% accuracy on conflicting ones, with the
same pattern for not supported claims dropping
its accuracy to about half of the supported claims.
LLaMA2 follows a similar pattern, with weak per-
formance on not supported and conflicting claims.
This may be explained by a tendency of the models
to default to assertive labels even when evidence
or resulted label is ambiguous. Lastly Phi shows a
more balanced result for both datasets, even though
the performance is lower in total, around 40-50%
average correctness. This result is due to the vary-
ing complexity of the claims as Phi shows better
performance on simpler claims than on more com-
plex ones.

5.2 Faithfulness
The second part of the evaluation process fo-

cuses on how well the generated justification aligns
with the provided evidence. To get better results,
models were tested using two main prompting
styles: with and without the label provided in the
prompt. Evaluations covered multiple categories of
claims, including statistical, comparison, temporal,
interval claims and the supported/ not supported
claims.

The scores given to each of the models can be
seen in Figure 4 where the models are split into
two runs: the first one with the label hidden and the

Figure 3: Correctness of labels generated by tested
LLMs across both SUPPORTED and NOT SUP-
PORTED types of claims.

second one with the label given. Figure 5 shows
the scores for the HoVer datasets for each of the
LLMs.

Figure 4: Faithfulness scores assigned to each of the
models for the QuanTemp dataset

In the QuanTemp dataset, Mistral and LLaMA2
produced the most grounded and structured justifi-
cations for all claim types. Their responses show
careful citation of figures, time ranges, and com-
parative elements, particularly in the statistical and
interval categories. When the label was not pro-
vided, these two models had strong independent
reasoning capabilities, while Gemma and Phi often
struggled more with either vagueness or oversim-
plification, with cases where the claim was just
parroted in the answer with little to no explanations
added. Phi often generated concise and accurate
explanations in simpler contexts but was less reli-
able in complex claims. We have also seen multiple
places where it skipped parts of the evidence or the
claim, most often in temporal or interval claims.
Gemma had the tendency to add a lot of abstract or
general information not grounded in the evidence,
leading to a decrease in faithfulness, most often in



interval-based reasoning. When the label was in-
cluded, all models improved drastically, LLaMA2
and Mistral kept a high performance, particularly in
comparison and statistical justifications. Notably,
Gemma obtained the highest score in the second
run showing the closest similarity to the provided
evidence. We believe this score was achieved due
to Gemma’s tendency to include a lot of the evi-
dence in the answer and generate longer answers.

Figure 5: Faithfulness scores assigned to each of the
models for the HoVer dataset

In the HoVer dataset, similar results were ob-
served. Phi often had its consistency and brevity
in simpler cases, but its justifications became too
general as complexity increased. However, in some
cases the claim was too complex for Phi. In those
cases the LLM apologized for not being able to give
a response and justified it by saying that it did not
understand the task. We tried across multiple runs
and while sometimes Phi would try to give a gen-
eral response, the most complex claims remained
mostly unanswered. LLaMA2 and Mistral again
had the best alignment with the evidence, though in
this case LLaMA2 sometimes oversimplified and
Mistral occasionally introduced extra context not
from the evidence which made their scores drop in
comparison to what they got in the QuanTemp runs.
Gemma continued to produce complex justifica-
tions but had a tendency to drift from the provided
facts, affecting its faithfulness score. It can be seen
that the average scores are smaller in general and
we believe that this is because the evidence in the
HoVer dataset is shorter. This caused the evalua-
tor LLM to deduct points from the justifications
simply because too many words were used.

Across both datasets, Mistral and LLaMA2 con-
sistently produced justifications that demonstrated
the highest alignment with the evidence, partic-
ularly when claim complexity increased. Phi

achieved moderate overall performance, showing
reliable behavior on simpler claims where it pro-
duced concise and coherent justifications. How-
ever, its performance declined on more complex
examples, where explanations were either incom-
plete or absent. Gemma showed a pattern of pro-
ducing longer, more elaborate justifications, but
frequently introduced abstract or unrelated con-
tent, which negatively impacted its faithfulness
scores. These trends remained consistent across
both prompting styles and suggest that larger or
more complex models may benefit from improved
reasoning guidance when evidence is more com-
pressed, as for the HoVer dataset.

5.3 Evaluation Capabilities

In addition to generating justifications, the mod-
els were also used as evaluators to test if LLMs can
be used as automatic evaluators in the future.

To assess each model’s capability as an evaluator,
we analyzed their outputs based on four consistent
dimensions: explanation structure, evidence sen-
sitivity, bias (including self-bias) and evaluation
clarity for a human reader. Gemma consistently
favored structured and well-cited responses, with a
preference for clarity, complexity and step-by-step
reasoning. It showed minimal self-bias, occasion-
ally critiquing its own outputs for vagueness or
simplification. However, it often under-analyzed
small logical changes or nuanced phrasing, limit-
ing its effectiveness on more complex justifications.
LLaMA2 prioritized evidence sourcing and faith-
fulness. Its evaluations were often verbose and
thorough, but it displayed a slight bias toward its
own outputs. From the experiments we say that
Mistral was often reluctant to offer strong praise
and often applying detailed searches to all mod-
els. It emphasized sourcing and citations. In the
same way as Gemma, Mistral did not consistently
favor its own justifications. Notably, Mistral’s eval-
uations frequently aligned with LLaMA2’s style,
and it criticized Phi and Gemma more for going
off-topic. Lastly, Phi focused heavily on surface-
level fidelity. It penalized justifications that added
extra information or made assumptions beyond the
provided evidence, even when such reasoning was
accurate. Phi’s strict criticism and size limited its
ability to reward nuanced or inferential responses,
but it remained fair in self-evaluation.



5.4 Hallucinations

Across all models and all datasets, hallucinations
were significantly more common in the first run
where the label was not provided in the prompt.

We have observed some model specific hallu-
cinations that show the strengths and weaknesses
of each LLM. Gemma occasionally added unsup-
ported claims, often citing some sources that were
not mentioned in the evidence. This was mostly
seen in statistical or four hop political contexts. Phi
had almost no hallucinations, it only struggled a bit
with the interval and temporal claims by making
some assertions that were not present in the evi-
dence but were logical. LLaMA2 also hallucinated
infrequently, but when it did, the mistakes came
from adding extra context or making assumptions
about parts of the claim that were not actually men-
tioned in the evidence. Finally, Mistral was the
least prone to hallucination, its errors were mostly
things it missed, not added context or sources.

To conclude, certain claim types—such as in-
terval and statistical claims—were more prone to
triggering hallucinations across models.

6 Discussion

The results highlight clear differences in how
LLMs perform when tasked with generating, jus-
tifying, and evaluating claims. While all models
demonstrated basic competence, their performance
was mostly dependent on the complexity of the
claim as well as the dimensions of evaluation: faith-
fulness or correctness.

When analyzing the performance by claim type,
clear patterns emerged across the four categories
present in the QuanTemp dataset: Statistical, Com-
parison, Interval, and Temporal. The most chal-
lenging type of claim for the models overall was
Interval-based. These required interpreting condi-
tions or specific time spans. From these claims
it can be derived that LLMs tend to struggle with
interval logic with most of them considering even
the smallest overlap between the claim and the evi-
dence to make the claim true. Temporal and Com-
parison claims were handled well by the models.
There were no big problems with locating events
in time. However, while the label accuracy was
present for the Comparison claims, models often
failed to emphasize differences clearly. Statisti-
cal claims made up the biggest part of the dataset
and proved to be the most accessible for faithful-
ness as models demonstrated strong reasoning tied

to numeric evidence. The HoVer dataset had its
own complexity scale-the number of hops. Claims
that contained modifiers such as dates or qualifiers
such as “in the summer of”, proved more difficult
than the rest as models often ignored or glossed
over these specifics. Also, claims that required the
aggregation of two distinct parts were more error-
prone especially when multiple sources had to be
aggregated and compared.

In terms of label correctness, most models per-
formed better on false claims than on true or con-
flicting ones, with conflicting ones having the low-
est performance. This was especially surprising
as past works have consistently stated that LLMs
have a bias towards the "true" value. We believe
that this is largely because the LLMs tend to over-
think and sometimes in the evidence the whole
context is not given so the LLM decides that if a
statement is not 100% true it is false. Models that
were trained specifically for analytical tasks, like
Mistral, showed more balanced outputs, suggest-
ing they are better at handling uncertainty and do
not treat claims as strictly true or false, but rather
assess them based on parts of the evidence. In
the Hover dataset LLMs were a bit more balanced
but still showed better overall performance on the
supported claims.

For explanation faithfulness, model performance
was strongly influenced by prompt design and
given information. When the label was provided
in the second run, faithfulness increased across
the board, meaning that models right now tend to
agree with the human or prompter rather than try
to tell that they think the label is wrong. Even
when prompted with the opposite label the LLM
tried to justify it showing that results of LLM
queries can be easily manipulated. Another in-
teresting finding when generating explanations was
that LLMs simply ignored or did not realize when
very small changes were made to the claims. As an
example, take the two-hop claim from the HoVer
dataset: "The MV Bessel ran aground at the second
largest island in the Mediterranean in 1972.", when
adding the specific season, in this case summer the
LLMs still considered the claim to be supported
even though the evidence did not mention anything
about the season. We believe this is because of the
training strategy used or the number of parameters
but the exact reason still needs to be studied.

Evaluation with LLMs had in hindsight good
performance. There were however differences in
style with some models such as Phi favoring direct-



ness and factual alignment and models like Gemma
rating fluency and length basically, way higher than
other models. Self-bias, where applicable, is not
a big problem as LLMs showed that they did not
lose track of the task regardless of the name before
the justifications. To end, LLMs can be used as
evaluators today, however choosing the right LLM
or even the right training method will have a big
impact on the results.

The hallucination analysis further supports this
difference in style and learning strategy. Models
that were trained toward fluency or inferential rea-
soning such as Gemma and sometimes LLaMA2 in-
cluded more unsupported information, while more
straightforward models hallucinated less but found
it more difficult to draw conclusions based on im-
plicit context.

7 Conclusions and Future Work

Our research goal was to investigate how large
language models (LLMs) differ in their ability to
generate faithful and accurate explanations given
different types of claims. We examined four mod-
els, Gemma, LLaMA2, Mistral, and Phi, across
two datasets of varying complexity, evaluating if
they can give the correct label while also check-
ing their thought process to check for patterns or
hallucinations.

The findings reveal that while LLMs can predict
the correct label around 50-60% of the time on a
dataset that they see for the first time. Prompting
style affects performance as giving the label in ad-
vance improved the faithfulness of justifications.
LLMs tend to keep the general facts in their gener-
ated answers but struggle with small details, even
if those details are important.

Another key conclusion is that LLMs can act as
reasonable evaluators in controlled settings, espe-
cially if chain-of-thought prompting is used. They
showed minimal biases and a strong alignment with
the ground truth or the human conclusions. Differ-
ent AIs have different styles so which training style
is best for evaluating in general is something that
needs to be researched in the future.

To answer the fourth research question, system-
atic patterns were observed in the hallucinations
produced, for example Gemma’s were often infer-
ential with the model drifting off at times, Phi’s
were rare very small and LLaMA2’s hallucinations
involved adding correct but unsupported informa-
tion. This supports the idea that each model has

its own consistent template for answering and that
each model tries to stick to it.

Future work should explore extending this eval-
uation to larger models as we expect more parame-
ters will lead to even better results. Future research
can also focus more on the training strategy, fig-
uring out which gives the best results either for
evaluating or for justifying claims. Lastly, a known
problem observed here that needs to be thoroughly
researched and fixed is that LLMs are too agreeable
and can easily be manipulated.

8 Limitations

Our research also faces several limitations. First,
the analysis was limited to four openly available
models selected for their accessibility and local de-
ployability. We chose these models using the 8.5B
parameters version at most as it was not compu-
tationally feasible to choose larger models. This
makes the experiment easy to validate but using
larger models should give better results.

Second, manual evaluation was conducted on a
limited scale, and while it provides important con-
text, it cannot fully substitute for broader human
annotation. Lastly, the datasets: QuanTemp and
HoVer, focus on specific types of claims, which
may not generalize to other domains such as med-
ical or legal fact verification. Also, because of
the filtering process the data distribution was un-
even, with some claim types such as temporal being
fewer. This will not invalidate our overall results
but for the specific type it might not give conclusive
results either.

Despite these limitations, the findings provide
valuable comparative insights and highlight consis-
tent patterns that can inform further researchers.



A Appendix

A.1 Justification Prompts
1. Label and Justification Prompt (No Label

Given to LLM):
You are given a factual claim and an

evidence passage. Based solely on the
evidence, determine whether the claim
is SUPPORTED or NOT_SUPPORTED by the
evidence.

Your output must include:
1. Justification: Explain your reasoning

based only on the evidence.
2. Label: One of [SUPPORTED, NOT_SUPPORTED]

Claim: "{claim}"

Evidence:
"""{evidence}"""

Answer:

2. Justification-Only Prompt (Label Pro-
vided):
Given the following claim, its correct

label, and the supporting article text
(evidence), generate a justification
that explains why the label is
appropriate.

Claim: "{claim}"

Label: {correct_label}

Evidence:
"""{doc}"""

Your task is to write a justification for
this label, based only on the evidence
provided.

A.2 Evaluation Prompts
1. Comparative Justification Evaluation

Prompt:
You are a fact-checking assistant tasked

with comparing explanations from
multiple language models for the same
claim and evidence. You are required to
think in steps.

Claim: "{claim}"
Claim Type: {taxonomy_label}

Justification from LLaMA2:
{llama2}

Justification from Gemma:
{gemma}

Justification from Mistral:
{mistral}

Justification from Phi:
{phi}

Write a short comparative analysis of the
justifications above, explaining which
model(s) provided the most convincing
and faithful explanation, and why.

B Responsible Research

In this section all the ethical and responsible re-
search concerns of this project are being addressed,
as guided by the ACL checklist for all the sub-
missions in this format (Review, 2023) and the
integrity principles outlined in the Responsible Re-
search lecture from TU Delft.

Transparency and Data Integrity: This project
uses public datasets namely HoVer and QuanTemp
which are properly cited and documented. All these
datasets are impersonal and designed to be used
for future academic research. The source of this
data as well as the structure are acknowledged in
accordance with the FAIR (Findable, Accessible,
Interoperable, Reusable) data act. In this research
there is no misrepresentation of the results to avoid
subjective results.

Reproducibility and Replicability: Repro-
ducibility is a major concern in current LLM re-
search. While it is hard for LLM pipelines to
be fully deterministic, all experiments in this pa-
per are designed to be reproducible. Models are
prompted using the same setup via LangChain and
OLLAMA, with shared prompts, fixed model con-
figurations, and consistent hardware. The same
datasets, software libraries, and parameters are
used across all models, enabling straightforward



reproduction of results. Although identical results
cannot be guaranteed, the experimental setup al-
lows the study to be mostly redone with similar out-
comes. The different prompting strategies used for
evaluation are also explained in-depth in the next
part of this section. Future work will be needed to
assess whether the same findings hold as new data
becomes available.

Bias and Ethical Data Use: The project criti-
cally engages with the potential biases present in
both datasets and LLM outputs. No data has been
collected outside what is already available. Ethical
reuse of datasets includes proper citation, as ex-
pected by good scientific practice and emphasized
by 4TU FAIR Data Management Act.

Plagiarism and Attribution: This paper en-
sures that all datasets, methods and sources used
are clearly cited and proper credit is given to the
authors. Generative AI tools, in this case ChatGPT,
were only used to polish the sentences and writing
style, but not for coding or producing any results.
Plagiarism has been consistently avoided in order
to match the academic integrity rules.

Human Involvement and Consent: This re-
search does not involve human subjects. Therefore,
no consent or ethical review from an institutional
board was needed.

Dual Use and Misuse Risks: This paper is
not creating new models or tools, however when
writing about limitations of our work we acknowl-
edge that some of the data on explanation power of
LLMs can be used to craft misleading rationales,
however we believe this paper aims to promote ac-
countability rather than encouraging falsification
of the results.

Responsible Reporting: All results are re-
ported, this includes the inconclusive or negative
results. This was done in order to be in compli-
ance with responsible data practices and discour-
age prioritizing positive results, as warned in the
responsible research lecture.
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