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Introduction
Exploration has been a key driver of human progress throughout history. From the earliest days of humanity,
people have explored unknown environments in pursuit of food, shelter, and knowledge. In the modern age,
autonomous exploration represents the intersection of this timeless quest for discovery and technological innov-
ation. Autonomous exploration nowadays provides a safer and more efficient approach to missions, providing
humans with additional information about the environment without endangering humans lives. Examples of
these missions are search and rescue operations, infrastructure inspections, environmental and wildlife monit-
oring, planetary exploration, and more.

Energy-awareness is a pivotal challenge in the domain of autonomous exploration, especially for unmanned
aerial vehicles (UAVs), where energy limitations significantly constrain their potential. One of the most
captivating aspects of UAVs is their compact size, which enables them to navigate environments that would
otherwise be inaccessible. However, this very advantage also brings the critical drawback of limited energy
supply, restricting mission duration and capabilities. Addressing energy efficiency for UAVs during missions is
one of the most pressing steps required to ensure the reliable application of autonomous exploration systems
in real-world scenarios. By incorporating energy awareness into exploration algorithms, these systems can
become not only more effective but also capable of sustaining longer and more impactful missions.

Exploration algorithms for autonomous systems are well-established; however, they generally lack consideration
for energy-awareness, which is critical for maximising efficiency in real-world applications. Addressing this gap
is essential to advancing the capabilities of UAVs in challenging scenarios. The potential impact of energy-aware
autonomous exploration is immense. A key driver in the motivation for this thesis project is the application in
disaster response, such as search and rescue operations. These scenarios where time and precisions are of the
essence, UAVs can make a significant difference, quickly location individuals in need while minimizing risks
to humans responders. Beyond disaster response, these technologies are exceptionally promising in fields as
industrial inspections, enabling safer and more thorough assessments of critical infrastructure. Another area
that could be greatly impacted is in the field of planetary exploration. These missions have very limiting
energy budgets whilst still having the aim to explore large unknown environments on the surface and possibly
in caves. These real-world applications underline the importance of energy-efficient exploration as a foundation
for achieving impactful outcomes in diverse and vital missions.

Research Questions
This section aims to provide the formulation of the main research objective and corresponding research ques-
tions for this thesis project. These research questions are based on the knowledge gap identified and described
in chapter 8.

Research Objective The primary objective of this research project is to develop an autonomous exploration
algorithm for UAVs that is informed by an integrated energy consumption model whilst maximizing explora-
tion coverage and the rate of exploration and minimizing energy consumption.

Research Question 1 How to develop an autonomous exploration algorithm for a UAV that can be integrated
with an energy-consumption model?

Research Question 2 How can energy consumption of an UAV be modelled based on a given trajectory that
is planned by an exploration algorithm?

Research Question 3 What are the differences in exploration coverage and exploration rate with respect to
the exploration algorithm that does not account for the energy consumption?

The link of these research questions to the current knowledge gap as described in Equation B is explained as
follows. First of all, the first research question, captures the lack of exploration algorithms that are integrable
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with an energy consumption model. Furthermore, the second research question, aims to provide an energy
consumption model that is able to output information regarding the consumed and required energy, such that
the exploration planner is able to make informed decisions. Finally, the third research question suggest an
evaluation of the effects of incorporating energy-awareness into an exploration algorithm.
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EAAE: Energy-Aware Autonomous Exploration for UAVs in
Unknown 3D Environments

Jacob Elskamp

Abstract — Autonomous exploration enables un-
manned aerial vehicles (UAVs) to map unknown en-
vironments without human intervention. While state-
of-the-art algorithms primarily focus on maximizing
coverage or minimizing exploration time, they of-
ten overlook energy efficiency, a critical constraint
for battery-powered UAVs. This thesis introduces
EAAE, a modular Energy-Aware Autonomous Explor-
ation framework that explicitly incorporates energy
consumption into the exploration decision-making pro-
cess. By combining frontier detection, a K-means di-
visive clustering algorithm, energy-aware target selec-
tion, and dual-layer planning, the framework balances
information gain with energy cost. The algorithm is
evaluated in simulation using the Agilicious control
stack, with a physically realistic power model based
on rotor speeds. Two 3D environments of varying
complexity are used to compare EAAE against two
baselines, an information-gain-based frontier method
and distance-based frontier methods. Results show
that EAAE consistently achieves the lowest total en-
ergy consumption while maintaining competitive or
lower exploration times. Moreover, it demonstrates
similar performance in terms of information entropy
and reduced power variability, contributing to more
efficient and robust mapping. This work highlights
the importance of integrating energy-awareness into
exploration pipelines and provides a foundation for
further research into long-endurance autonomous aer-
ial missions.

Keywords: UAV exploration, Energy-Aware Plan-
ning, Autonomous Exploration, Frontier-Based Ex-
ploration, 3D Mapping, Energy Consumption Model

1 Introduction
Autonomous exploration has become a crucial com-
ponent in modern robotics, enabling unmanned aer-
ial vehicles (UAVs) to navigate and map unknown en-
vironments efficiently. This capability is particularly
valuable in applications such as search and rescue [1],
industrial inspection [2], and planetary exploration [3],
where human intervention is either dangerous or im-
practical. However, one of the primary challenges in
UAV-based exploration is energy limitation, which dir-
ectly impacts mission duration and overall feasibility.

Energy-aware exploration seeks to maximize explora-
tion efficiency by integrating energy consumption in-
formation into the planning and decision-making steps
of the algorithm. Despite significant advancements in
autonomous exploration algorithms, the majority of
approaches do not account for energy constraints.

Recent studies have demonstrated that UAVs exhibit
an optimal flight speed that maximizes range or endur-
ance, offering insights into the relationship between ve-
locity and energy consumption [4]. Moreover, explor-
ation algorithms that promote higher average flight
speeds have been shown to reduce exploration time
[5], a proxy often associated with improved energy ef-
ficiency. However, this assumed correlation remains
largely unvalidated for actual exploration algorithms,
which typically neglect the nonlinear and flight-state-
dependent nature of UAV energy consumption. This
thesis addresses this gap by integrating an energy es-
timation model into the planning loop, enabling in-
formed trajectory selection based on estimated energy
cost rather than simple proxies such as time or dis-
tance.

This gap limits the practical applicability of existing
solutions in real-world scenarios and, consequently, is
the main motivation for this research. To address this
gap, this work aims to find a answer to the following
research question:
What are the effects on exploration rate and map-
ping quality of an autonomous exploration algorithm
that is informed by an integrated energy consumption
model?

By addressing this research question and research gap,
the primary contribution of this thesis can be summar-
ized as follows:

• Development and evaluation of an autonomous
exploration algorithm for UAVs in unknown en-
vironments that is informed by an integrated en-
ergy consumption model.

Traditional exploration frameworks typically select the
next waypoint based on spatial heuristics such as prox-
imity or the information gain. However, these heurist-
ics often neglect the underlying energy cost of man-
euvering a UAV through 3D space. This thesis in-
troduces an energy-aware selection mechanism that
leverages full trajectory generation and offline energy
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estimation to inform decision-making. Specifically,
the algorithm computes dynamically feasible traject-
ories to the most promising frontier clusters using
a global kino-dynamic planner. These trajectories
are then offline-simulated in the Agilicious framework
to estimate energy consumption based on rotor-level
power profiles. By selecting the frontier that minim-
izes predicted energy expenditure, rather than simply
maximizing information gain or minimizing distance.
This contribution demonstrates that such an energy-
informed approach can lead to lower total energy usage
while maintaining or even slightly improving explora-
tion performance.

This paper is outlined as follows: in chapter 2 the
current state-of-the-art of autonomous exploration is
introduced and the research gap is further highlighted.
In chapter 3 the background information is provided
as well as the formal problem statement. Thirdly, in
chapter 4 the approach is described, including a sys-
tem overview and elaboration of the various modules
used in the algorithm. Fourthly, in chapter 5, the ex-
perimental setup is outlined including model details
and explanation of the used baselines. In chapter 6
the results from the comparative study are presented.
Chapter 7 provides a discussion on these results. Fi-
nally, in chapter 8 a conclusion and suggestions for
future work are presented.

2 Related Works
Autonomous exploration algorithms aim to map un-
known environments fast and efficient. Various stud-
ies in recent years have addressed autonomous ex-
ploration using UAVs. These studies can be di-
vided into three subcategories: frontier-based meth-
ods, sampling-based methods, and alternative ap-
proaches. The last section describes relevant work
on the existing energy-aware exploration methods for
UAVs, which form the foundation for incorporating
full energy-awareness into an autonomous exploration
algorithm.

2.1. Frontier-based Exploration
The concept of using frontiers for autonomous explor-
ation was first introduced by B. Yamauchi in [6]. This
method categorizes the environment into one of the fol-
lowing: free space, occupied space, or unknown space.
Subsequently, it defines the boundary region between
the free space and the unknown space as a frontier re-
gion. From these frontier locations, the next best way-
point is selected. This method still forms the found-
ation for many studies in autonomous exploration [7].
The first exploration strategies using a frontier-based
approach focused on minimizing the physical distance
between the current robot position and the location

of the frontier cluster centroid [6], [8], [7], [9]. Gao
et al. propose considering the frontier size and the
cost of turning the robot as well [10]. Another novel
contribution was introduced in [5]. Here, the authors
propose to select the frontier that minimizes the velo-
city change to maintain a high speed during explora-
tion. The majority of the works related to exploration
can be categorized as greedy algorithms. This means
that the decision-making involves selecting the next
best waypoint regardless of future steps. A non-greedy
method is described in [11], here the authors propose
to find a frontier sequence by using the traveling sales-
man problem formulation. More recent contributions
include FUEL, which introduced incremental frontier
updates and hierarchical planning for efficient global
path coverage [12]; FAEP, extending FUEL by incor-
porating frontier-level and adaptive yaw-planning to
reduce inefficient back-and-forth movements [13]; and
LAEA, proposing an Environmental Information Gain
(EIG) strategy combined with LiDAR data that prior-
itizes small and isolated frontier clusters, further min-
imizing redundant exploration paths [14].

2.2. Sampling-based Exploration
Sampling-based methods utilize the sampling of view-
points to determine the next best position for explora-
tion. While frontier-based approaches are well-suited
for large environments due to the ability to detect
unexplored areas in the global map, next-best-view
(NBV) based approaches perform well in cluttered
spaces [15]. NBV-based approaches rely on the NBV
theory first proposed by Connolly in 1985 [16]. This
method determines a sequence of viewpoints aiming
to maximize the visibility of an object while minim-
izing travel costs. In contrast to frontier-based meth-
ods, NBV approaches rely on randomly sampling view-
points within the known or partially-known environ-
ment and subsequently selecting the optimal view-
point based on potential information gain and dis-
tance. Early implementations, such as the one de-
scribed in [17], evaluate candidate viewpoints using a
visibility gain function and penalize distance. Bircher
et al. [18] later introduced the receding-horizon next-
best-view (RH-NBV) method, which utilizes rapidly
exploring random trees (RRT and RRT*) to iterat-
ively expand and evaluate candidate viewpoints based
on their expected visibility gains. Hybrid strategies
utilize the frontier-based and NBV-based advantages
for exploration as described in [19] and [20].

2.3. Alternative Exploration Methods
There are also other ways to approach the explora-
tion problem. A novel contribution was made in [21]
in which the authors propose a stochastic differen-
tial equation-based approach to simulate gas particles
in the free space and explore based on the expan-
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sion pattern of these particles. More recently, vari-
ous learning-based approaches were introduced. These
methods utilize supervised learning (SL) and rein-
forcement learning (RL) to enhance the scalability
of the exploration algorithms to larger unknown en-
vironments. One such approach is presented in [22],
where the authors propose Active Neural SLAM, a
reinforcement learning-based framework that jointly
learns mapping, localization, and exploration policy.
The system trains an agent to maximize area coverage
using deep neural networks that predict utility from
partial observations, demonstrating strong generaliza-
tion to novel environments. Other works, such as [23],
demonstrate vision-based exploration using deep net-
works that learn to navigate towards semantic goals.

2.4. Current Energy-aware Exploration
Methods

Current autonomous exploration methods have shown
promising results in various environments; however,
these approaches typically neglect energy constraints.
To effectively use UAVs in real-world exploration mis-
sions, integrating energy-awareness into the decision-
making process of exploration algorithms is crucial.
While some methods partially address energy effi-
ciency by striving for near-zero acceleration flight [5],
[24], other approaches consider fixed, energy-based
penalties for distinct flight phases [25], [26], [27].
Despite these advancements, incorporating energy-
awareness into autonomous exploration remains an
open challenge.

3 Background
This section establishes the theoretical framework and
contextual background of the study, outlining the spe-
cific problem formulation as well as the underlying as-
sumptions related to the algorithm and energy model-
ling.

3.1. Problem Formulation
This research addresses the problem of autonomous
exploration in unknown three-dimensional (3D) envir-
onments using a single unmanned aerial vehicle (UAV).
The primary objective is to generate a complete map
of the environment by classifying all accessible space
as either free or occupied, using onboard sensing. A
second objective in this research, in contrast to other
works, lies in the focus on the integration of energy-
awareness into the planning cycle. The goal is not
only to reduce mission duration but also to minim-
ize the total energy consumed (in joules) throughout
the complete exploration process. This dual-objective
exploration of efficiency in both time and energy is es-
pecially relevant for real-world scenarios where flight
endurance is limited by battery capacity.

The specific problem addressed in this thesis can be
formulated as follows: given an enclosed and initially
unknown 3D environment, and a UAV equipped with
onboard sensing and mapping capabilities, design an
exploration strategy that incrementally selects goal
waypoints in a way that leads to complete map cov-
erage with minimal energy expenditure, without com-
promising on exploration time, mapping quality or
mapping completeness.

Exploration strategy
In this work, energy-awareness is introduced by eval-
uating the energy cost E(πi) of a planned trajectory
πi to a frontier cluster ci using offline execution of
a globally planned, dynamically feasible path. To bal-
ance exploration performance and computational load,
the full energy estimation process is applied only to a
filtered subset of candidate clusters C ′ ⊂ C, consist-
ing of the N clusters with the highest information gain
IG(ci), defined as the number of unknown voxels in
the cluster. For each cluster ci ∈ C ′, a correspond-
ing trajectory πi is generated, forming the subset of
candidate trajectories Π′ ⊂ Π. The final exploration
target is then selected by choosing the trajectory with
the lowest predicted energy cost:

π∗ = arg min
πi∈Π′

E(πi) (3.1)

This approach ensures that exploration proceeds to-
wards informative regions of the environment while
avoiding unnecessary energy expenditure due to inef-
ficient or dynamically aggressive trajectories. Com-
pared to traditional frontier-based methods that rely
solely on spatial heuristics such as distance or inform-
ation gain, this formulation incorporates UAV-specific
energy dynamics directly into the planning loop.

3.2. Theoretical foundation
The method proposed in this research builds on sev-
eral theoretical principles that together motivate the
research question regarding energy efficiency in explor-
ation missions. In particular, it considers aerodynamic
effects specific to quadrotor UAVs and their influence
on energy consumption during autonomous explora-
tion.

Quadrotor Aerodynamics
UAVs, particularly multirotors, rely primarily on elec-
tric propulsion systems for flight. The majority of their
energy consumption arises from the power required to
generate sufficient lift to counteract gravity, with ad-
ditional energy used for overcoming aerodynamic drag,
executing dynamic maneuvers, and powering onboard
electronics. Of these, the propulsion-related energy
dominates the total power budget [4].
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Traditional models often approximate UAV power con-
sumption using a quadratic formulation where thrust
and torque are proportional to the square of the pro-
peller’s rotational speed. While this model performs
adequately for near-hover conditions, it becomes in-
accurate in forward flight due to unmodeled aerody-
namic effects, such as dynamic lift and induced drag
[4]. These effects play a crucial role in determining
the true energy efficiency of a trajectory.

Dynamic lift occurs when the airflow over the rotor
blades increases due to forward motion, thereby redu-
cing the required propeller speed and associated power
consumption. Conversely, linear rotor drag (or in-
duced drag) increases with forward speed and can sig-
nificantly contribute to the overall aerodynamic load.
These opposing phenomena result in a non-trivial re-
lationship between flight speed and power consump-
tion. Experimental and simulation studies confirm
that there exists an optimal flight speed at which a
multirotor minimizes energy consumed per distance
traveled [4].

Energy-Time Trade-off
The insight explained above is particularly relevant in
the context of energy-aware autonomous exploration.
Although faster trajectories can reduce total mission
time, they may require disproportionately more energy
due to higher aerodynamic loads from aggressive flight
maneuvers. On the other hand, slower, more energy-
efficient flight paths result in longer missions, increas-
ing the total time the UAV remains airborne and thus
incurring a greater baseline energy cost for hovering
and electronics operation.

Therefore, a trade-off emerges between flight speed
and energy efficiency: minimizing exploration time
does not necessarily minimize energy usage. This mo-
tivates the integration of a flight-state-dependent en-
ergy estimation model into the exploration planning
process. Rather than selecting the next best waypo-
int based solely on information gain or distance, the
proposed method evaluates the energy cost of can-
didate trajectories, enabling a decision-making pro-
cess that balances exploration efficiency against energy
consumption.

3.3. Assumptions
The method proposed in this research is built upon sev-
eral assumptions regarding the simulation and UAV
model. These assumptions are as follows:

• Environment: The simulation environment is en-
closed and bounded, containing only static ele-
ments or being empty. No dynamic obstacles or
environmental changes occur during flight.

• External disturbances: The simulation assumes

calm conditions with no wind, precipitation, or
other external disturbances affecting flight dy-
namics.

• Sensor: The UAV has perfect sensing capabilit-
ies with zero measurement noise.

• Pose estimation: The UAV’s pose is assumed to
be perfectly known at all times, without drift or
noise in position or orientation estimation.

• Planning consistency: It is assumed that the
trajectory planned by the global planner for off-
line energy evaluation is sufficiently similar, in
terms of power requirements, to the trajectory
executed that is planned by the local planner
during real-time flight.

• Energy model: The total power consumption
of the UAV is modelled as the sum of mechan-
ical power and an electrical loss term, based on
the formulation and parameters described in the
work by Bauersfeld et al. [4]. Furthermore, the
motor voltage is assumed to be constant.

4 Approach
As introduced in chapter 1, the main goal of this re-
search is to explore a bounded, unknown 3D envir-
onment Vtotal ⊂ R3. We propose the Energy-Aware
Autonomous Explorer (EAAE), an autonomous ex-
ploration framework that is informed by an energy
component during the decision-making step. A sys-
tem overview and further elaboration on the various
modules are presented in this chapter.

4.1. System Overview
The exploration algorithm is built using existing open-
source frameworks supplemented by our own contribu-
tions. The system comprises four main modules, i.e.,
perception and mapping, exploration, path planning,
and the control and simulation module. Testing is per-
formed using ROS, RVIZ, and simulated Gazebo envir-
onments. RVIZ is used for mapping visualizations and
Gazebo for retrieving depth camera data from the vir-
tual environment. The perception and mapping mod-
ule uses point cloud data generated by a depth camera
sensor and detects frontiers continuously throughout
the mission. Once the exploration is initialized, an it-
erative process starts. First, the algorithm uses the
detected frontiers and clusters and filters them based
on reachability. Subsequently, for the three clusters
with the largest information gain, a global trajectory
and the corresponding required energy are calculated.
Once the target is selected, a reactive local planner
generates a collision-free dynamic trajectory towards
the goal. Once the UAV reaches the target, the cycle
starts again. This process stops when the environment
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Figure 4.1: Simplified system overview of exploration algorithm.

is successfully explored. A simplified illustration of the
system overview, including the four main modules, is
included below in Figure 4.1.

4.2. Perception and Mapping
The environment is mapped as a 3D voxel grid repres-
entation, where every voxel v has dimension r3, where
r is the resolution of the map. The resolution of the
voxel grid reflects a trade-off between mapping preci-
sion and memory usage. The environment is scanned
using an onboard, forward-facing, depth camera sensor
that generates point cloud data. This point cloud data
is used by the OctoMap package [28] to generate an
occupancy grid. This occupancy grid mapping offers
an efficient, structured, and probabilistic representa-
tion of the environment, dividing continuous 3D space
into discrete units (voxels). Each voxel stores a prob-
abilistic estimate of being free, occupied, or unknown,
based on sensor input. The combined set of voxels
forms the complete environment representation.

Vtotal ≡ Vfree ∪ Voccupied ∪ Vunknown (4.1)

The OctoMap is updated continuously during flight
according to the incoming point cloud data. Initially,
the complete space is unknown and as the exploration
progresses the amount of unknown space decreases
and the amount of free and occupied space increases.
The exploration is successful when Vfree ∪ Voccupied ≡
Vtotal/Vresidual, where Vresidual is the residual space
that is inaccessible by the sensor. This representa-
tion enables efficient spatial reasoning and supports
both motion planning and frontier detection by ex-
plicitly identifying boundaries between explored and
unexplored space. The occupancy information is also
used for evaluating the exploration progress and the
mapping quality.

4.3. Exploration Strategy
The exploration module is responsible for identifying
and selecting navigation targets that lead the UAV to-
ward unknown areas of the environment. In this work,

we adopt a frontier-based exploration strategy, where
the boundaries between known and unknown space
are used as regions of interest to guide the motion
of the UAV. This module consists of two main phases:
frontier detection and clustering, and energy-informed
candidate selection.

4.3.1. Frontier Detection and Clustering
A second crucial step for this frontier-based explora-
tion algorithm is the detection and clustering of fron-
tiers. A frontier voxel f ∈ F is defined as a free voxel
that has a neighboring unknown voxel [6]. These loca-
tions are points of interest for exploration purposes as
these points are by definition accessible through free
space and provide information about unknown space
because of the unknown neighboring area. The pro-
posed approach loops through all the voxels and checks
using OctoMap utilities if the voxel is free and has an
unknown neighbor. If so, the voxel is added to the list
of frontiers.

As the complete set of frontiers is rather large for a
small map resolution, a clustering algorithm is applied.
This is done to reduce the number of potential candid-
ates but preserve the information regarding explora-
tion potential in terms of the number of frontier points
in a frontier cluster. The clustering algorithm that is
used in this method is the divisive K-means cluster-
ing algorithm. This method splits the initial set into
two groups and recursively clusters the points in these
groups based on Euclidean distance till all the clusters
meet the size requirement.

rmax ≤ tan(FoVhor

2
)dmax (4.2)

Here, rmax represents the maximum distance between
a frontier point and the centroid of the cluster to
which that frontier point belongs. Furthermore, dmax

is defined as the maximum range of the depth camera.
FoVhor stands for the horizontal field of view of the
depth camera. The divisive K-means clustering para-
meters are visualized in Figure 4.2. This constraint
ensures that the entire cluster can be observed from
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a single visit, reducing the need for redundant reposi-
tioning and ensuring efficient exploration.

Figure 4.2: Illustration of divisive K-means clustering
parameters. Frontier points are divisively clustered till the

cluster can be explored in one field of view.

This clustering method provides two main advantages:
because the divisive clustering algorithm clusters top-
down, there is no need to determine a K-value for
the final number of clusters. This is especially use-
ful in an exploration scenario, as the total set size
is unknown and thus finding an optimal number of
clusters is impractical. Secondly, this provides a way
to reduce the number of potential waypoints but pre-
serves the information regarding exploration potential.
This is because both the centroid of the cluster as
well as the cluster size, that is, the number of points
within that cluster, are included in the data structure
of the clusters. This list of candidate clusters is then
filtered on reachability by checking the direct neighbor-
ing voxel of the candidate cluster centroid and assur-
ing no known occupied voxels exist within space. This
prevents selecting goals that would result in infeasible
or collision-prone trajectories.

To support trajectory generation in the global plan-
ning module (subsection 4.4.1), multiple candidate
viewpoints are sampled around each candidate cluster
centroid, only viewpoints that lie in free space are
considered. This increases the likelihood of finding
a collision-free path toward the cluster. For each
sampled viewpoint, a target yaw angle is computed
that orients the UAV toward the cluster centroid. This
ensures that, upon arrival, the UAV is oriented to
observe the entire frontier region associated with the
cluster. A visualization of this process is shown in
Figure 4.4.

Since each candidate requires a corresponding traject-
ory for energy evaluation, the total number of clusters

is further reduced. This is necessary to limit the com-
putational load of the global planner, which would
otherwise be required to generate full trajectories for
all clusters which would be too time-consuming. The
proposed method selects the three clusters with the
largest information gain. This information gain is cal-
culated by:

IG(ci) = COUNT(f) (4.3)

where f represents a frontier voxels within cluster
ci. This ensures that smaller clusters that would not
provide a significant amount of new information are
omitted. This final list of feasible candidates clusters
is the input for the energy-aware module.

The process of mapping the environment, and detect-
ing and clustering frontiers using OctoMap, is visual-
ized in Figure 4.3a and Figure 4.3b, respectively.

(a) Visualization of the 3D
environment representation

using OctoMap, occupied space
colored based on height.

(b) Frontier detection based on
OctoMap data in yellow and

corresponding frontier clusters
in pink.

Figure 4.3: 3D environment representation and frontier
clustering.

4.3.2. Energy-awareness Module
After frontiers are detected, clustered, and filtered,
the exploration cycle starts. First, for all candid-
ate clusters, a global trajectory is planned using the
offline, global planner described in subsection 4.4.1.
This planner generates full trajectories from the cur-
rent UAV position towards the candidate clusters’ po-
sitions. These are later evaluated using the Agilicious
framework. The steps as well as the rationale behind
this approach are discussed in this subsection.

Offline planning refers to the computation of a com-
plete trajectory from an initial state to a target state
before execution, without any feedback or re-planning
during execution. This approach is different from on-
line planning, where the trajectory is generated incre-
mentally during flight based on sensor input and envir-
onmental changes, as used in the local reactive plan-
ner (subsection 4.4.2). Offline trajectory planning al-
lows for reasoning based on a trajectory before it is
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executed. As discussed by Shiller [29], offline plan-
ners incorporate the full system dynamics and actu-
ator limits to generate optimal trajectories using nu-
merical optimization methods. Details on the global
offline planner used in this work are further described
in subsection 4.4.1 and section 5.1.

As discussed in chapter 2, various approaches have
been proposed to incorporate energy-awareness into
autonomous UAV planning. These methods dif-
fer primarily in how energy consumption is estim-
ated. The most common strategies include approxim-
ating energy based on geometric metrics such as dis-
tance, estimating energy from flight-state or velocity-
dependent models. Each of these methods offers dif-
ferent advantages and disadvantages.

To motivate the use of the offline planning and execu-
tion approach adopted in this work, a comparison is
presented in Table 4.1. This table summarizes the key
advantages and disadvantages of alternative methods
relative to the proposed solution.
Table 4.1: Comparison of energy-aware methods relative to the

proposed offline execution approach.

Method Advantages Disadvantages
Empirical
flight-state-
based
estimation
[26]

Fast; Simple
implementation;
No full traject-
ory required

Needs trajectory
segmentation;
Inaccurate; Re-
quires empirical
data;

Velocity-
based
energy-
awareness
[5]

Relatively easy
to implement;
Generalizable;
Low computa-
tional load

Planning not in-
formed by en-
ergy component;
Not suitable for
cluttered envir-
onments

Distance-
based
estimation
[25]

Very simple
estimation; Gen-
eralizable; Low
computational
load

Ignores UAV
dynamics; As-
sumes constant
power draw;
Does not distin-
guish between
aggressive vs.
smooth man-
euvers

Offline exe-
cution
(This work)

Accurate; No
proxy ap-
proximation;
Generalizable

Slow for many
candidates;
Requires offline-
planning;

While each method has its advantages, their respect-
ive disadvantages highlight important limitations in
the context of energy-aware exploration. The empir-
ical flight-state-based approach as described in [26]
is attractive due to its simplicity and fast execution;
however, its dependence on pre-segmented trajector-

ies and platform-specific data makes it less accurate
and harder to generalize across UAV types or flight
conditions.

Velocity-based awareness methods, as in [5], offer a
lightweight and generalizable solution, but they make
indirect assumptions that the UAV is able to reach
the optimal velocity which may not hold on complex
or cluttered environments.

Distance-based methods, as in [25] provide an ex-
tremely simple solution to energy-awareness incorpor-
ation. However, estimating energy only based on eu-
clidean distance results in inaccurate estimates for
scenarios involving acceleration, deceleration, or sharp
turns. These models inherently ignore flight dynamics
and treat energy cost as a static, geometry-only met-
ric.

In contrast, the offline execution approach used in
this work provides an accurate estimate of the ac-
tual energy needed to reach each candidate for all tra-
jectories and flight phases. It accounts for UAV dy-
namics, without relying on simplified motion assump-
tions. Although more computationally expensive, it
allows for reliable, platform-independent energy estim-
ation. This is required for making informed planning
decisions.

Once the candidate trajectories are generated, they
are passed to the energy estimation module for eval-
uation. This module executes each trajectory offline
using the Agisim physics simulator from the Agilicious
framework [30]. For every setpoint along the traject-
ory, the geometric controller computes a control com-
mand. These commands are then applied iteratively
in the simulator at fixed time steps, updating the UAV
state accordingly. During this virtual execution, the
rotor speeds are logged, allowing the computation of
instantaneous power and the total energy required to
execute the trajectory. This process yields an accur-
ate energy estimate for each candidate path without
requiring real-world flight trials.

4.4. Planning
As previously stated, the proposed exploration
strategy utilizes two distinct planning modules: a
global planner for offline trajectory generation and en-
ergy estimation, and a local reactive planner for real-
time obstacle avoidance. This dual-planner architec-
ture addresses the limitations of the reactive planner
in terms of full path planning. Specifically, the local
planner is designed to compute short-range, dynamic-
ally feasible trajectories based on the current sensor ho-
rizon, approximately 1.5 times the range of the depth
camera. While effective for collision avoidance, this
limited planning horizon is insufficient for evaluating
the required energy for visiting a candidate cluster. To
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overcome this, a global planner is integrated to gen-
erate full, obstacle-free trajectories to each candidate
cluster centroid. These globally planned trajectories
enable energy estimation and informed target selec-
tion before execution of the trajectory.

Preferably, a single planner capable of both global tra-
jectory generation for energy estimation and real-time
local obstacle avoidance would be employed. However,
to the best of the author’s knowledge, such an integ-
rated solution was not available at the time of writ-
ing. This limitation is acknowledged and discussed in
chapter 7, and proposed as a direction for future work
in chapter 8. In the absence of such a solution, the sep-
aration into two specialized planning modules enables
the system to leverage the strengths of each.

4.4.1. Global Planning
To support energy-aware decision-making, a global
planner is integrated into the exploration pipeline.
This module generates dynamically feasible trajector-
ies from the UAV’s current position to each candidate
cluster, ensuring obstacle avoidance and adherence to
flight constraints in terms of maximum velocity and
acceleration. These trajectories span the full path to
a target, making them suitable for energy evaluation.
By providing complete and feasible paths, this global
planning component enables informed target selection
based not only on spatial characteristics but also on
anticipated energy consumption.

4.4.2. Local Reactive Planning
Once a goal waypoint is selected, a trajectory is gen-
erated using the local reactive planner, ensuring safe
flight. The local reactive planner that is implemen-
ted generates a trajectory to the selected target fron-
tier while ensuring collision avoidance using real-time
depth data from the camera sensor. The planner uses
odometry data from the flight control module. The fi-
nal trajectory is formatted according to the Agilicious
trajectory message type, which includes the time and
the position, velocity, and acceleration components in
all three dimensions.

Unlike the global planner, the local planner operates
with a distance horizon. It does not attempt to plan
over the full global map but instead ensures safety
within the UAV’s immediate environment. This re-
active behavior is useful for future implementation in
environments with uncertainty or dynamic obstacles.

4.5. Control and Simulation Framework
For control and simulation, the Agilicious framework
is utilized [30]. This is an open-source and open-
hardware agile quadrotor platform designed for high-
performance flight control. Agilicious provides a mod-
ular architecture that supports various UAV config-

urations, making it suitable for generalizable energy-
aware planning and control research.

The framework integrates a real-time control stack
with a simulation module, making it capable of execut-
ing computationally intensive tasks, such as energy
estimation using the offline-planned trajectory. Sim-
ulation is performed using a combination of Gazebo,
which provides the sensor models and simulated envir-
onment (e.g., RGB-D data), and Agisim, Agilicious’s
built-in physics simulator, which accurately models
quadrotor dynamics and responses.

A key component in the control architecture is the con-
troller. In this study, the geometric controller is used.
This controller provides fast and accurate trajectory
tracking and has been demonstrated to support ag-
gressive flight maneuvers with minimal computational
latency [30].

Importantly, Agilicious supports both geometric and
model predictive controllers (MPC), offering flexib-
ility depending on the performance requirements or
hardware constraints of future implementations. This
modularity not only enhances the applicability of this
method but also ensures that both the energy-aware
module and control stack can be used for different
UAV platforms.

4.6. Summary
This chapter presented the Energy-Aware Autonom-
ous Explorer (EAAE), a modular framework for
autonomous UAV exploration in unknown 3D environ-
ments. The approach integrates perception, explora-
tion, planning, and control into a single system that in-
corporates energy-awareness into the decision-making
process.

Perception and mapping are achieved using an RGB-
D camera and an occupancy grid representation, en-
abling continuous identification of frontiers. These
frontiers are clustered using a divisive K-means al-
gorithm, reducing computational load while pre-
serving exploration-relevant information. Clusters are
filtered for reachability, and viewpoint sampling is ap-
plied to support trajectory generation.

To enable energy-informed target selection, a global
planner generates full, dynamically feasible trajector-
ies to candidate clusters. These trajectories are virtu-
ally executed using the Agilicious framework to com-
pute accurate energy estimates. The candidate requir-
ing the least energy is selected as the next explora-
tion target. For trajectory execution, a local reactive
planner ensures safe navigation using real-time sensor
data.

The overall cycle—from frontier detection to goal se-
lection and execution—is summarized in Figure 4.4.

12



(a) (b) (c) (d) (e)

Figure 4.4: Overview of the frontier-based exploration cycle. (a) Represents the frontier detection visualized in yellow, being the
boundary between unknown (grey) and known free (white) areas. (b) Frontier clustering. (c) Filtering of inaccessible or too-near

clusters. (d) Sampling of viewpoints around the cluster centroid. (e) Global path planned towards the waypoint.

This pipeline enables energy-efficient and collision-free
exploration in unknown environments.

5 Experiment Setup
In order to evaluate the performance of the energy-
aware exploration algorithm, various experiments are
performed in a simulated environment using the
Agisim simulator from the Agilicious framework and
Gazebo.

The virtual environments are shown in Figure 5.1.
These worlds are referred to as the Simple and Pillars
environments, respectively.

(a) (b)

(c) (d)

Figure 5.1: (a) Simulated Simple environment in Gazebo with
dimensions 20x20x2.5 [m]. (b) Fully explored Simple
environment using Octomap. (c) Simulated Pillars

environment in Gazebo with dimensions 22x22x2.5 [m]. (d)
Fully explored Pillars environment using Octomap.

5.1. Simulation
For reproduction purposes, this section elaborates on
the details of the approach as explained in chapter 4.
Detailed simulation parameters, including UAV model
specifications, depth camera parameters, simulation
parameters, and energy estimation settings, are sum-
marized in Table 5.1. The method proposed in this re-
search is built, and evaluated on a laptop with an Inter
Core i7-13700H@5.0GHz processor, 16GB of RAM
and Ubuntu 20.04 LTS as the operating system. The
majority of the code is written in C++.

Perception and Mapping
The simulated platform is a quadrotor UAV equipped
with a forward-facing RGB-D camera, which serves as
the primary perception sensor. The camera provides
depth and color information, enabling dense point
cloud generation used for mapping and real-time
obstacle avoidance. These sensing capabilities are im-
portant for both frontier detection and safe trajectory
planning.

For 3D environment representation and mapping, an
occupancy grid is generated using the OctoMap frame-
work [28]. OctoMap models the space as a hierarchical
tree of cubic voxels (octrees), where each voxel con-
tains a probabilistic estimate of occupancy based on
incoming depth measurements. This structure offers
a memory-efficient and scalable solution for real-time
mapping in virtual 3D environments. The map is con-
tinuously updated during flight using incoming point
cloud data, with voxels probabilistically classified as
free, occupied, or unknown. This occupancy inform-
ation serves as the foundation for frontier detection
by identifying free voxels that border unknown space.
These frontiers are used to guide exploration towards
unmapped regions of the environment. The mapping
resolution is set at 0.1 m. This resulted in sufficient de-
tail for exploration whilst keeping computational load
manageable. For larger map sizes, it is advised to
lower the map resolution.
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Exploration Strategy
As discussed in chapter 4, frontiers are detected based
on the OctoMap data as a boundary between known
free and unknown space. As planning a trajectory to-
wards all frontier points is computationally infeasible,
a clustering algorithm is applied. This implementation
uses a divisive K-means clustering approach that re-
cursively splits the frontier set based on Euclidean dis-
tance. Clustering continues until a spatial constraint
is met: all points within a cluster must lie within the
field of view of the onboard camera from a single ob-
servation point. The proposed method uses a depth
camera range of 5.0m and a horizontal field of view of
one radial, so this results in a maximum cluster radius
of 2.73m using Equation 4.2.

For each cluster, additional feasibility filtering is ap-
plied. A candidate cluster is rejected if occupied voxels
are present in the immediate surroundings (within a
0.1m radius in the x–y plane), ensuring the UAV is not
sent towards hard-to-reach goals. Such an example
scenario is visualized in Figure 5.2.

Figure 5.2: Illustration of a possible hard-to-reach cluster
which would be detected and removed from the set of

candidate clusters.

To further support path planning and visibility op-
timization, multiple viewpoints are sampled around
each candidate cluster centroid. These viewpoints are
sampled at 0.5m from the centroid in all three dimen-
sions.

Once the frontier clusters are identified, the energy-
aware module uses the global trajectories for these
candidates to calculate the amount of energy it would
take to reach them. This is done using the global plan-
ner as described in ??. Energy is estimated via offline
execution of the trajectory in Agilicious, using rotor
speed outputs and the following model:

E =
n∑

i=1

∫
Pi(t) dt (5.1)

The power Pi(t) of each rotor is modeled as a nonlin-
ear function of its angular velocity ωi(t), according to
the following empirical relation:

Pi(t) = 6.088 × 10−3 · ωi(t) + 1.875 × 10−8 · ω3
i (t)

+ 7.700 × 10−20 · ω6
i (t)

(5.2)

Here, n denotes the number of rotors (in this case,
n = 4), Pi(t) is the instantaneous power output of ro-
tor i at time t, and ωi(t) is the corresponding angular
velocity expressed in radians per second (rad/s). This
follows the empirical relation derived by Bauersfeld
and Scaramuzza [4], which accounts for mechanical
power and an electrical loss term for brushless motors.
The proposed method selects the candidate that re-
quires the least amount of energy to be reached.

Planning
To enable global trajectory planning and facilitate
energy estimation, we adopt the risk-aware kino-
dynamic A* algorithm and trajectory optimization
framework from Chen et al. [31]. This planner first
creates a topological path through the free space using
a modified RRT* algorithm that considers map con-
nectivity and obstacle clearance. The resulting path
is then inflated into a series of convex polyhedra, form-
ing a safe corridor that encapsulates feasible free space.
A time allocation strategy is employed across the cor-
ridor segments to enforce dynamic feasibility. Within
this corridor, a minimum-snap trajectory is optimized
using B-splines, subject to corridor, velocity, and accel-
eration constraints. The smoothness and completeness
of the generated trajectory make it suitable for offline
execution, as a full feasible trajectory is required for
energy estimation.

This planner first attempts to generate a trajectory
directly to the centroid of a candidate frontier cluster.
If this attempt fails, it proceeds to evaluate the set of
sampled viewpoints associated with that cluster. A
cluster is discarded if no feasible trajectory can be
found to either its centroid or any of its viewpoints.
In practice, such failures may arise due to the absence
of a collision-free path within the currently explored
free space or because the trajectory optimizer is un-
able to compute a solution that satisfies the imposed
dynamic and geometric constraints.

Once the goal is selected, the local planner generates
a reactive trajectory towards to goal cluster. For this
module the the open-source planner proposed in [32]
is used, called EGO-planner. The odometry data from
the UAV’s control module as well as the global point
cloud data from the perception and mapping mod-
ule, are utilized as inputs. Using these inputs, EGO-
planner generates a trajectory that is translated into
an Agilicious-conform type using a translator node to
ensure compatibility between the planner and the con-
trol module.
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Control and Simulation Framework
For control and simulation the open-source, open-
hardware flight control and simulation framework Agi-
licious is utilized. This framework is in further detail
described in [30]. Because of its highly modular design,
Agilicious can be used for various real-life and simula-
tion scenarios. The proposed method uses a geomet-
ric controller and the UAV is modeled in the Agili-
cious’s own physics simulator, Agisim. The UAV is
spawned as a static object in Gazebo to retrieve con-
tinuous point cloud data of the Gazebo environment.

Table 5.1: Experimental and simulation parameters for
energy-aware autonomous exploration.

Category Parameter Value

UAV

Rotor Count 4
Max Velocity [m/s] 5.0
Max Acceleration [m/s2] 4.0
Mass [kg] 0.752

Depth camera

Image Resolution [px] 640 × 480
Depth Range [m] 0.5 – 5.0
Frame Rate [Hz] 30
Horizontal FoV [rad] 1.0

Simulation

Octomap Resolution [m] 0.1
Map Size: Simple [m] 20 × 20 × 2.5
Map Size: Pillars [m] 22 × 22 × 2.5
Sampling & control

frequency [Hz] 300

Energy
Estimation

Power Model Coefficients Equation 5.2
Timestep energy
calculation [s] 0.02

Integration Method Midpoint

Hardware Intel Core i7-13700H@5.0GHz, 16GB
memory

ROS Version Noetic

The proposed framework is publicly available at:
https://github.com/jelskamp/EAAE, to support fu-
ture research.

5.2. Baselines
To evaluate the impact of incorporating energy-
awareness into autonomous exploration, the proposed
method is compared against two widely adopted
frontier-based exploration methods. Both baseline
methods are implemented by the author, based on
established techniques from the literature, to ensure
consistent integration and comparability within the
simulation framework.

Classic Frontier Method
The first baseline is a classical frontier-based explora-
tion strategy in which the UAV always selects the fron-
tier cluster with the largest number of frontier voxels.
This method follows the same frontier detection and
divisive K-means clustering procedure as described in
the proposed method (chapter 4), but uses a simpler
selection criterion. Specifically, it ranks all reachable

clusters based on their frontier voxel count and selects
the cluster c⋆ according to:

c⋆ = arg max
ci∈C

COUNT(f ∈ ci) (5.3)

where C is the set of all feasible frontier clusters, and
f denotes a frontier voxel. This approach implicitly
assumes that the largest visible frontier is the most
informative region to explore next.

Advantages of this method include its simplicity, com-
putational efficiency, and the potential to rapidly
gather information regarding the environment in early
stages of this exploration mission. However, it does
not consider the cost of reaching the selected frontier.
As such, it may favor distant frontiers that require
long or energy-intensive trajectories, which is subop-
timal for resource-constrained systems such as UAVs.

Nearest Frontier Method
The second baseline uses a greedy nearest-frontier se-
lection strategy, in which the UAV always selects the
closest feasible frontier cluster. After frontier detec-
tion and clustering, the distance di from the UAV’s
current position puav to the centroid of each cluster ci

is computed. The next goal c⋆ is selected as:

c⋆ = arg min
ci∈C

∥pci − puav∥2 (5.4)

where pci
is the centroid position of cluster ci and ∥·∥2

denotes the Euclidean norm.

Advantages include fast decision-making and low com-
putational load. This method prioritizes frontiers that
are immediately accessible and minimizes the travel
distance per exploration step. It is particularly suit-
able for cluttered environments where long-range plan-
ning is often obstructed. However, as this method
seeks out the nearest goal, it means it may fail to
prioritize highly informative regions or make globally
efficient exploration decisions. This can result in sub-
optimal coverage efficiency and increased mission dur-
ation in large or sparse environments.

Due to the method’s incremental nature, this method
explores the environment gradually. If a nearby re-
gion is unintentionally missed, it may only be revis-
ited much later, potentially when the UAV is already
far away, leading to increased total mission time.

5.3. Measurements
To evaluate the performance of the proposed energy-
aware exploration algorithm, three key metrics are
used: exploration rate, map information entropy, and
total energy consumption. Each method is evaluated
over five independent simulation runs in both the
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Simple and Pillars environments. The results presen-
ted in chapter 6 represent the performance across these
runs to ensure robustness.

Exploration Rate
An important performance metric to assess autonom-
ous exploration algorithms is the exploration rate.
This metric is defined as the percentage of the map
that is explored over time. An effective algorithm
rapidly achieves a high percentage of area coverage,
approaching complete coverage (100%) within a short
time frame. The formal expression is:

Exploration Rate(t) = |Vfree(t) ∪ Voccupied(t)|
|Vtotal|

×100%

where Vfree(t) and Voccupied(t) are the sets of free and
occupied voxels at time t, respectively, and Vtotal de-
notes the total number of voxels in the environment.

Information Entropy
A second performance metric used in this research
is the information entropy of the explored map, also
known as Shannon’s entropy [33]. Information entropy
is an indicator of uncertainty and knowledge acquisi-
tion. The information entropy for the ith cell is defined
as the expectation of the logarithm of the probability
distribution Pi(xi):

Hi ≡ −E[logPi(xi)] = −
∑

xi∈Xi

Pi(xi) logPi(xi) (5.5)

For this experiment, two possible states exist: occu-
pied (with probability p = Pi(occupied)) and known
free (with probability 1 − p). This allows the informa-
tion entropy for a cell to be expressed as:

Hi[xi] = −p log(p) − (1 − p) log(1 − p) (5.6)

As stated above, the information entropy is a measure
of uncertainty. For illustration of the meaning of this
metric, consider the following example. In the event
of a ’perfect’ exploration mission, all cells are labeled
with 100% confidence. This means all cells have a
probability to be either definitely occupied (p = 1.0)
or definitely free (p = 0.0). This would result in zero
total information entropy (H = 0 bits)). In a worst-
case scenario exploration mission, all cells have a prob-
ability of p = 0.5 to be occupied. This results in the
highest possible information entropy of H = 1 bit per
cell.

Energy Consumption
Lastly, the consumed energy for the method is eval-
uated in both environments, calculated using rotor
speed data retrieved from the UAV’s state in simu-
lation. The underlying model used for energy com-
putation is detailed in chapter 4, specifically in Equa-
tion 5.1 and Equation 5.2. At each control timestep
∆t = 0.02 s, the instantaneous power Pi(t) of rotor
i is computed using the empirical model from Equa-
tion 5.2. The total energy is then given by:

E =
4∑

i=1

T∑
t=0

Pi(t) · ∆t (5.7)

This cumulative energy value aims to accurately rep-
resent the actual energy consumption if the UAV were
to fly this trajectory. As described in the problem
statement in chapter 3, one of the objectives of this
research is to minimize this value whilst also keeping
the exploration time at a minimum.

6 Results
This chapter presents the results of the proposed
EAAE algorithm in comparison with two baseline
methods: Classic Frontier and Nearest Frontier ex-
ploration these baselines are discussed in section 5.2.
All methods are evaluated using identical initial con-
ditions, with the UAV starting at position (0, 0, 1) in
both the Simple and Pillars environments. The res-
ults are based on five independent runs per method
per environment, ensuring statistical robustness. An
overview of the key performance metrics, including ex-
ploration time, total energy consumption, and map
entropy, is summarized in Table Table 6.3. A detailed
analysis is provided in the following sections, suppor-
ted by visualizations and additional tables. The goal
of this chapter is to evaluate the impact of integrat-
ing energy-awareness into the exploration pipeline in
terms of efficiency, mapping quality, and computa-
tional performance.

6.1. Exploration Rate
Exploration rate is a critical performance metric in
autonomous exploration, indicating how quickly the
algorithm can uncover previously unknown regions of
the environment. Figure 6.1 and Figure 6.2 present
the percentage of explored voxels over time for each
method in the Simple and Pillars environments, re-
spectively. Each result is averaged over five trials,
with the UAV always initialized at (0, 0, 1).

Simple environment: in this environment, our pro-
posed method, EAAE, achieves the fastest total ex-
ploration time, completing the task in an average of
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160.0 seconds. This corresponds to a 10.3% and 12.5%
reduction in total time compared to the Classic and
Nearest baseline methods, which complete the mission
in 178.3 and 182.8 seconds, respectively. The Classic
method, which greedily selects the cluster with the
highest information gain (see section 5.2), initially ex-
hibits the steepest exploration rate due to its prior-
itization of high-yield areas in the open space. How-
ever, as shown in the curve convergence near 90% map
completion (around t = 110s), this initial efficiency
diminishes as the method must revisit overlooked re-
gions. This behavior aligns with the known drawback
of greedy strategies: they may maximize short-term
gain while neglecting coverage completeness.

EAAE, by contrast, balances between information
gain and energy cost. It initially progresses more cau-
tiously but maintains steady performance throughout
the mission, avoiding expensive corrective maneuvers
in the final phase. This allows it to overtake the Clas-
sic method in the final quarter of the mission. The
Nearest Frontier method, which always selects the
closest reachable cluster, lags in early performance but
gradually converges to full coverage. Its locally op-
timal yet globally myopic decisions result in inefficient
backtracking and delayed completion.

Pillars environment: In the more complex Pillars en-
vironment, the ranking reverses: the Nearest method
completes exploration fastest (321.7 s), followed by
EAAE (353.0 s) and Classic (366.6 s). This result il-
lustrates the environment-dependent nature of frontier
strategies. The Nearest method, while globally ineffi-
cient in open spaces, benefits from its conservative be-
havior in cluttered scenarios. Consequently, it avoids
extensive long-range replanning, a drawback that be-
comes more apparent for the Classic and EAAE meth-
ods in this setting.

Nevertheless, it is worth noting that although the
Classic and EAAE methods achieve higher explora-
tion rates earlier in the mission, both slow down after
reaching approximately 75% coverage. This drop-off
is likely due to remaining unexplored regions being
scattered and harder to reach, a result of the long-
range decisions that may skip over small occluded re-
gions. EAAE, however, still outperforms the Clas-
sic method by nearly 4%, suggesting that its energy-
awareness helps mitigate—but not entirely eliminate—
the inefficiencies of long-horizon planning in dense en-
vironments.

Figure 6.1: Exploration progress for all three algorithms in the
Simple environment.

Figure 6.2: Exploration progress for all three algorithms in the
Pillars environment.

6.2. Map Information Entropy
A second performance metric used to assess explora-
tion quality is the information entropy of the occu-
pancy map. As defined in section 5.1, entropy quan-
tifies the uncertainty of voxel classifications based on
the probabilistic values generated by OctoMap. Even
though all methods rely on the same depth sensor con-
figuration (see Table 5.1), the resulting entropy values
can vary significantly. This is because OctoMap does
not store binary free/occupied labels per voxel, but
rather updates voxel occupancy as a probabilistic be-
lief using recursive Bayesian integration [28]. Each
point cloud update changes the log-odds occupancy
value for the corresponding voxels, depending on the
number, direction, and quality of observations.

In particular, the order and frequency of observations,
as well as the viewpoint angles, determine whether a
voxel becomes confidently classified or remains in an
uncertain state. Voxels that are observed only once
or from oblique angles may fail to meet the clamping
thresholds used in OctoMap and thus remain close to
p = 0.5, contributing to higher entropy.
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Simple environment: In this environment, the Clas-
sic method achieves the lowest average map entropy
(0.719 bits/cell), followed closely by the proposed
method, EAAE (0.725), and the Nearest method
(0.735). This result aligns with the initial high ex-
ploration rate of the Classic method, as discussed in
section 6.1. Since Classic prioritizes clusters with the
largest frontier count, it aggressively scans large open
areas early in the mission, leading to many direct and
repetitive observations from different angles, resulting
in a more certain occupancy belief. This enables con-
fident voxel classification and thus lower entropy.

Pillars environment: In the more cluttered Pillars
environment, EAAE achieves the lowest average en-
tropy (0.754 bits/cell), followed by Classic (0.767) and
Nearest (0.784). The Classic method’s preference for
high-information clusters can become a disadvantage
in cluttered environments, where navigating toward
these areas may result in fewer revisits and more occlu-
sions. Consequently, parts of the environment may be
viewed only once or from oblique angles, leaving more
voxels in an uncertain state. In contrast, the EAAE
method’s balanced trade-off between information gain
and energy cost leads to smoother trajectories. This
likely results in more effective visits in terms of map
certainty, contributing to a lower entropy.

The Nearest method performs worst in both environ-
ments, likely due to its reactive behavior. By prior-
itizing short, local movements, it rarely revisits areas
from different angles. This limited number of view-
points leads to less confident classifications and higher
overall map entropy. A statistical overview of the en-
tropy results is included in Table 6.3

6.3. Energy Consumption
This section evaluates the total energy and average
power consumption of the proposed method compared
to the Nearest and Classic Frontier baseline methods.
Table 6.3 presents the summary statistics for both en-
vironments, and Figure 6.3 and 6.4 visualize the en-
ergy distribution per method over five runs.

Energy
In both the Simple and Pillars environments, the pro-
posed EAAE method consistently demonstrates the
lowest total energy consumption. In the Simple en-
vironment, EAAE consumes on average 21.2 kJ, com-
pared to 30.3 kJ for Nearest and 22.2 kJ for Classic (
Table 6.3). This difference is particularly pronounced
when compared to Nearest, with EAAE requiring ap-
proximately 30% less energy to complete the mission.
However, the difference with Classic is smaller, only
1.0 kJ on average, despite EAAE completing the ex-
ploration task about 10.3% faster (see section 6.1).

This small difference in energy use can be attributed
to the integral relationship E =

∫
P (t) dt. In the

Simple environment, without obstacles, long trajector-
ies can be executed without frequent replanning and
stopping. This allows the UAV in the Classic method
to plan relatively long, straight paths that require less
power on average, thus resulting in a relatively low
total consumed energy even though the exploration
time is 10.3% longer.

In the more cluttered Pillars environment, the differ-
ences become larger. EAAE consumes 45.0 kJ on av-
erage, compared to 57.0 kJ for Nearest and 51.4 kJ for
Classic, representing energy savings of 21% and 12.5%,
respectively. This further supports the effectiveness
of energy-aware trajectory selection in environments
where longer, straight trajectories are less common.

Figure 6.3: Energy consumption distribution for all three
algorithms in the Simple environment.

Figure 6.4: Energy consumption distribution for all three
algorithms in the Pillars environment.
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Power
To better understand the relationship between mission
duration and energy usage, we examine the average
power draw per method (Table 6.1). In the Simple
environment, Classic Frontier exhibits the lowest aver-
age power draw at 136.3 W, followed closely by EAAE
(139.2 W). Nearest has the highest average power draw
at 167.2 W, reflecting its more aggressive maneuvering
style and inefficient back-and-forth movements.

In the Pillars environment, EAAE exhibits the low-
est average power draw (133.7 W), versus 134.8 W
and 168.4 W, from the Classic Frontier and Nearest
methods, respectively. It is important to note that
average power consumption is not a direct indicator
of energy efficiency unless paired with mission dura-
tion. The proposed method demonstrates both a fa-
vorable power profile and shorter mission durations in
the Simple environment, leading to overall energy ef-
ficiency. In contrast, the Nearest method, while com-
pleting the Pillars environment fastest, suffers from a
significantly higher average power draw and thus has
the highest total energy consumption. This trade-off
between exploration speed and energy-efficient paths
is further discussed in ??

Table 6.1: Average power consumption per method in the
Simple and Pillars environments.

Scene Method Power (W)

Avg Std

Simple
EAAE (ours) 139.24 16.65
Nearest 167.23 32.36
Classic Frontier 136.33 15.31

Pillars
EAAE (ours) 133.70 14.80
Nearest 168.36 46.75
Classic Frontier 134.80 16.86

6.4. Computational Efficiency
In addition to exploration performance and energy
consumption, this section presents the computational
characteristics of the proposed method to assess its
feasibility for possible onboard deployment. Table 6.2
summarizes the average computation time per module,
measured across all runs in both environments.

The results indicate that the majority of computa-
tional resources are consumed by the trajectory gen-
eration module. In both environments, this module
accounts for approximately 98% of the total compu-
tation time, with an average duration of 3331.6 ms
per step in the Simple environment and 1887.0 ms in
the Pillars environment. In contrast, other modules
such as clustering and energy estimation require signi-
ficantly less computation time, averaging below 50 ms.
Modules like candidate filtering, viewpoint sampling,
and target selection were consistently below 1 ms per
execution and are therefore not included in the table.

These results highlight that global trajectory genera-
tion is the primary computational bottleneck in the
EAAE pipeline, while the remaining modules are com-
putationally relatively lightweight and suitable for
real-time onboard use.

Table 6.2: Average computation time per module for each
environment for the proposed method.

Scene Average computation time (ms)

Clustering
Sect. 4.3.1

Trajectory Gen.
Sect. 4.4.1

Energy Est.
Sect. 4.3.2

Simple 17.8 3331.6 45.2
Pillars 10.0 1887.0 34.4

6.5. Summary
This chapter presented a comparative evaluation of
the proposed Energy-Aware Autonomous Explorer
(EAAE) against two baseline frontier-based explor-
ation methods: Classic Frontier and Nearest Fron-
tier. Experiments were conducted in two environ-
ments, Simple and Pillars, with five independent runs
per method per environment. Performance was as-
sessed across four dimensions: exploration rate, map
entropy, energy consumption, and computational effi-
ciency.

In terms of exploration rate, EAAE achieved the
shortest completion time in the Simple environment,
outperforming both baselines. In the more cluttered
Pillars environment, the Nearest method completed
exploration fastest. The Classic method performed
competitively in early stages of both environments but
slowed down due to inefficient backtracking to missed
areas in later stages.

With respect to mapping quality, measured by inform-
ation entropy, EAAE achieved the lowest entropy in
the Pillars environment, while Classic achieved the
lowest in the Simple case. The Nearest method consist-
ently resulted in the highest entropy values, indicating
less confident map representations.

Energy consumption analysis showed that EAAE had
the lowest total energy usage in both environments,
most notably in Pillars, where it achieved savings
of over 20% compared to Nearest. This advantage
is attributed to the integration of energy-aware tra-
jectory selection. Power consumption results showed
that while EAAE had the lowest power draw in Pil-
lars, the Classic method was marginally more efficient
in Simple, aligning with its longer but less aggressive
flight style.

Finally, computational efficiency measurements re-
vealed that trajectory generation accounted for ap-
proximately 98% of total computation time across en-
vironments. Other modules, including clustering and
energy estimation, required minimal resources, con-
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Table 6.3: Performance Statistics per method in the Simple and Pillars environments.

Scene Method Exploration time (s) Energy (kJ) Entropy (bits/cell)
Avg Std Max Min Avg Std Max Min Avg Std Max Min

Simple
EAAE (ours) 160.0 23.9 190.1 125.8 21.2 3.3 25.6 16.5 0.725 0.004 0.754 0.703
Nearest 182.8 25.3 220 154 30.3 3.5 35.1 25.8 0.735 0.014 0.770 0.687
Classic 178.3 22.5 214 152.4 22.2 2.7 26.3 18.8 0.719 0.016 0.761 0.670

Pillars
EAAE (ours) 353.0 46.7 389.9 273.6 45.0 5.8 49.8 35.0 0.754 0.009 0.802 0.669
Nearest 321.7 44.4 390.2 266.8 57.0 6.7 63.9 50.1 0.784 0.011 0.834 0.744
Classic 366.6 72.6 463.7 289.6 51.4 9.1 61.1 39.4 0.767 0.004 0.821 0.741

firming their suitability for real-time onboard execu-
tion. A full summary of average and variability met-
rics is included in Table 6.3.

7 Discussion
This chapter reflects on the findings presented in
chapter 6 and evaluates their implications and limit-
ations. While the proposed EAAE algorithm demon-
strates improved energy efficiency and competitive ex-
ploration performance, several aspects of the experi-
mental setup and methodology may influence the gen-
eralizability of the results.

Limited Environmental Diversity: The results
presented in this work are based on two simulated
test environments: Simple and Pillars. Although
chosen for their different levels of spatial complexity,
both still represent a narrow subset of potential ex-
ploration scenarios. Both environments are static and
bounded, with known scale and no dynamic elements
or environmental uncertainty. Consequently, the ob-
served benefits of energy-aware planning may not
fully transfer to larger-scale, outdoor, or real-world
scenarios involving unstructured terrain, sensor noise,
or environmental changes. Further evaluation in more
diverse and dynamic settings is required to assess
the robustness and generalizability of the proposed
approach.

Dependence on Global Planner Efficiency: A core
component of the EAAE algorithm is its use of an
offline global planner to generate dynamically feas-
ible trajectories toward candidate frontier clusters. As
shown in Table 6.2, this step accounts for approxim-
ately 98% of the total computation time per decision
step. On average, around three seconds are required
to compute global trajectories for each new target se-
lection. This adds significant time to the exploration
process and affects the comparability of the results, as
the baseline methods do not have this step.

Use of Two Distinct Planners: The EAAE framework
relies on two separate planners: a global planner used
for energy-informed target selection, and a local react-
ive planner for executing the actual trajectory. While
this design enables offline execution of the trajectory
and real-time reactivity during flight, it may introduce
a discrepancy between the planned trajectory (used for
energy estimation) and the executed trajectory (used
during flight). As a result, the estimated energy cost
used for decision-making may differ from the actual
energy consumed.

8 Conclusion
Summary The main goal of this research was to in-
vestigate the effect of incorporating energy-awareness
into autonomous UAV exploration of unknown 3D en-
vironments. The primary contribution was the devel-
opment of the Energy-Aware Autonomous Explorer
(EAAE), a novel exploration framework that selects
future navigation goals based on both exploration po-
tential and estimated energy cost. The algorithm com-
bines a global planner for offline energy-informed can-
didate evaluation with a local reactive planner for real-
time trajectory execution.

Evaluating the energy-aware algorithm using the ex-
ploration rate and map information entropy showed
that energy-informed planning can reduce total energy
consumption while maintaining competitive explora-
tion performance. The proposed framework enables
more deliberate decision-making and provides a found-
ation for energy-efficient exploration in practical UAV
deployments.

Findings The results demonstrate that EAAE con-
sistently achieves lower energy consumption than
baseline methods across environments. This is at-
tributed to its ability to balance high-information re-
gions with low-energy-cost paths. In the Simple en-
vironment, this also translated to the shortest explor-
ation time. These outcomes highlight the importance
of addressing the trade-off between exploration speed
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and energy efficiency when designing energy-efficient
autonomous exploration systems.

Additionally, both EAAE and the Classic method
tended to generate longer, smoother trajectories that
align better with the optimal velocity regime for fixed-
wing UAV energy efficiency. This contributed to their
lower average power consumption compared to the re-
active Nearest method. This aligns with aerodynamic
theory, where dynamic lift initially reduces the energy
cost per unit distance at higher speeds, until induced
drag dominates and the cost increases again.

Future Work Following this work, we suggest several
directions for future research. First of all, as EAAE is
built using two distinct planners, future work should
focus on unifying the global offline and the local re-
active planner, ensuring offline execution as well as
dynamic obstacle avoidance are feasible, and the dis-
crepancy between planned and executed trajectory is
kept at a minimum. Also, as the computational time
of the global planning step takes the majority of the
computational load, future work could aim to optim-
ize this step to enable faster computation, required for
real-life deployment.

Furthermore, as current experiments were conducted
in relatively small-scale scenarios, the UAVs were less
likely to reach maximum velocity values. Therefore,
extending evaluations to larger and more complex en-
vironments would test the method’s generalizability
and further explore the effects of the velocity on en-
ergy efficiency. Thirdly, as stated in the assumptions,
this method relies on an empirical power consump-
tion model based on rotor speeds that only accounts
for mechanical power and an electrical loss term, and
is formulated using static test environments. Future
work could potentially improve the power consump-
tion model to improve generalizability and accuracy.
Lastly, we see the potential of the EAAE framework
to be adjusted to a non-greedy algorithm by formulat-
ing the energy cost and information gain for all can-
didates as a Traveling Salesman Problem, to evaluate
the effects on long-horizon exploration efficiency and
total mission energy consumption.

References
[1] Jürgen Scherer et al. “An Autonomous Multi-

UAV System for Search and Rescue”. In: May
2015, pp. 33–38. doi: 10 . 1145 / 2750675 .
2750683.

[2] J. Nikolic et al. “A UAV system for inspection
of industrial facilities”. In: Mar. 2013, pp. 1–8.
isbn: 978-1-4673-1812-9. doi: 10 . 1109 / AERO .
2013.6496959.

[3] Julian Galvez-Serna et al. “UAV4PE: An Open-
Source Framework to Plan UAV Autonomous
Missions for Planetary Exploration”. In: Drones
6.12 (2022). issn: 2504-446X. doi: 10 . 3390 /
drones6120391. url: https://www.mdpi.com/
2504-446X/6/12/391.

[4] Leonard Bauersfeld and Davide Scaramuzza.
“Range, endurance, and optimal speed estimates
for multicopters”. In: IEEE Robotics and Auto-
mation Letters 7.2 (2022), pp. 2953–2960.

[5] Titus Cieslewski et al. “Rapid exploration with
multi-rotors: A frontier selection method for
high speed flight”. In: IEEE International Con-
ference on Intelligent Robots and Systems.
Vol. 2017-September. 2017. doi: 10.1109/IROS.
2017.8206030.

[6] Brian Yamauchi. “A frontier-based approach
for autonomous exploration”. In: Proceedings
1997 IEEE International Symposium on Com-
putational Intelligence in Robotics and Auto-
mation CIRA’97.’Towards New Computational
Principles for Robotics and Automation’. IEEE.
1997, pp. 146–151.

[7] Miguel Juliá et al. “A comparison of path
planning strategies for autonomous exploration
and mapping of unknown environments”. In:
Autonomous Robots 33 (2012), pp. 427–444.

[8] Anirudh Topiwala et al. “Frontier based explor-
ation for autonomous robot”. In: arXiv preprint
arXiv:1806.03581 (2018). url: https://arxiv.
org/pdf/1806.03581.

[9] Erkan Uslu et al. “Implementation of frontier-
based exploration algorithm for an autonomous
robot”. In: 2015 International Symposium on In-
novations in Intelligent SysTems and Applica-
tions (INISTA) (2015), pp. 1–7. url: https :
/ / api . semanticscholar . org / CorpusID :
18068283.

[10] Wenchao Gao et al. “An improved frontier-based
approach for autonomous exploration”. In: 2018
15th international conference on control, auto-
mation, robotics and vision (ICARCV). IEEE.
2018, pp. 292–297.

[11] Zehui Meng et al. “A 2-Stage Optimized Next
View Planning Framework for 3-D Unknown En-
vironment Exploration and Structural Recon-
struction”. In: IEEE Robotics and Automation
Letters PP (Jan. 2017), pp. 1–1. doi: 10.1109/
LRA.2017.2655144.

[12] Boyu Zhou et al. “FUEL: Fast UAV Explora-
tion Using Incremental Frontier Structure and
Hierarchical Planning”. In: IEEE Robotics and
Automation Letters 6 (2 2021). issn: 23773766.
doi: 10.1109/LRA.2021.3051563.

21

https://doi.org/10.1145/2750675.2750683
https://doi.org/10.1145/2750675.2750683
https://doi.org/10.1109/AERO.2013.6496959
https://doi.org/10.1109/AERO.2013.6496959
https://doi.org/10.3390/drones6120391
https://doi.org/10.3390/drones6120391
https://www.mdpi.com/2504-446X/6/12/391
https://www.mdpi.com/2504-446X/6/12/391
https://doi.org/10.1109/IROS.2017.8206030
https://doi.org/10.1109/IROS.2017.8206030
https://arxiv.org/pdf/1806.03581
https://arxiv.org/pdf/1806.03581
https://api.semanticscholar.org/CorpusID:18068283
https://api.semanticscholar.org/CorpusID:18068283
https://api.semanticscholar.org/CorpusID:18068283
https://doi.org/10.1109/LRA.2017.2655144
https://doi.org/10.1109/LRA.2017.2655144
https://doi.org/10.1109/LRA.2021.3051563


[13] Yinghao Zhao et al. “Autonomous Exploration
Method for Fast Unknown Environment Map-
ping by Using UAV Equipped With Limited
FOV Sensor”. In: IEEE Transactions on Indus-
trial Electronics 71 (5 2024). issn: 15579948. doi:
10.1109/TIE.2023.3285921.

[14] Xiaolei Hou et al. “LAEA: A 2D LiDAR-
Assisted UAV Exploration Algorithm for Un-
known Environments”. In: Drones 8.4 (2024),
p. 128.

[15] Iván D Changoluisa Caiza et al. “Autonom-
ous Exploration of Unknown 3D Environments
Using a Frontier-Based Collector Strategy”. In:
2024 IEEE International Conference on Ro-
botics and Automation (ICRA). IEEE. 2024,
pp. 13566–13572.

[16] Cl Connolly. “The determination of next best
views”. In: Proceedings. 1985 IEEE international
conference on robotics and automation. Vol. 2.
IEEE. 1985, pp. 432–435.

[17] Héctor H. González-Baños and Jean Claude
Latombe. “Navigation strategies for exploring in-
door environments”. In: International Journal of
Robotics Research. Vol. 21. 2002. doi: 10.1177/
0278364902021010834.

[18] Andreas Bircher et al. “Receding horizon next-
best-view planner for 3D exploration”. In:
Proceedings - IEEE International Conference
on Robotics and Automation. Vol. 2016-June.
Used as <b>baseline</b> in <b>Limited
FOV Sensor</b> paper.<br/>As example of
a ”sampling-based-method” instead of ”frontier-
based”. 2016. doi: 10 . 1109 / ICRA . 2016 .
7487281.

[19] Magnus Selin et al. “Efficient autonomous ex-
ploration planning of large-scale 3-d environ-
ments”. In: IEEE Robotics and Automation Let-
ters 4.2 (2019), pp. 1699–1706.

[20] Victor Massagué Respall et al. “Fast Sampling-
based Next-Best-View Exploration Algorithm
for a MAV”. In: 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA). 2021,
pp. 89–95. doi: 10 . 1109 / ICRA48506 . 2021 .
9562107.

[21] Shaojie Shen et al. “Stochastic differen-
tial equation-based exploration algorithm for
autonomous indoor 3D exploration with a micro-
aerial vehicle”. In: International Journal of
Robotics Research 31 (12 2012). Used <b>as
reference</b> in (among others): Autonmous
Expl Method for Fast Unknown Mapping with
<b>Limited FOV Sensor</b>. issn: 02783649.
doi: 10.1177/0278364912461676.

[22] Devendra Singh Chaplot et al. “Learning to ex-
plore using active neural slam”. In: International
Conference on Learning Representations (ICLR).
2020.

[23] Yuke Zhu et al. “Target-driven visual navigation
in indoor scenes using deep reinforcement learn-
ing”. In: IEEE International Conference on Ro-
botics and Automation (ICRA). 2017.

[24] Akash Patel et al. “Towards energy efficient
autonomous exploration of Mars lava tube with
a Martian coaxial quadrotor”. In: Advances in
Space Research 71.9 (2023), pp. 3837–3854.

[25] Zichen Wang et al. “Efficient Autonomous
UAV Exploration Framework with Limited FOV
Sensors for IoT Applications”. In: IEEE Internet
of Things Journal (2024).

[26] Carmelo Di Franco and Giorgio Buttazzo.
“Energy-aware coverage path planning of UAVs”.
In: Proceedings - 2015 IEEE International Con-
ference on Autonomous Robot Systems and Com-
petitions, ICARSC 2015. 2015. doi: 10.1109/
ICARSC.2015.17.

[27] Micha Rappaport. “Energy-aware mobile robot
exploration with adaptive decision thresholds”.
In: Proceedings of ISR 2016: 47st International
Symposium on Robotics. VDE. 2016, pp. 1–8.

[28] Armin Hornung et al. “OctoMap: An effi-
cient probabilistic 3D mapping framework based
on octrees”. In: Autonomous robots 34 (2013),
pp. 189–206.

[29] Zvi Shiller. “Off-line and on-line trajectory plan-
ning”. In: Motion and operation planning of
robotic systems: background and practical ap-
proaches (2015), pp. 29–62.

[30] Philipp Foehn et al. “Agilicious: Open-source
and open-hardware agile quadrotor for vision-
based flight”. In: Science robotics 7.67 (2022),
eabl6259.

[31] Gang Chen et al. “RAST: Risk-Aware Spatio-
Temporal Safety Corridors for MAV Navigation
in Dynamic Uncertain Environments”. In: IEEE
Robotics and Automation Letters 8.2 (2023),
pp. 808–815. doi: 10.1109/LRA.2022.3231832.

[32] Xin Zhou et al. “Ego-planner: An esdf-free
gradient-based local planner for quadrotors”.
In: IEEE Robotics and Automation Letters 6.2
(2020), pp. 478–485.

[33] Claude Elwood Shannon. “A mathematical the-
ory of communication”. In: ACM SIGMOBILE
mobile computing and communications review
5.1 (2001), pp. 3–55.

22

https://doi.org/10.1109/TIE.2023.3285921
https://doi.org/10.1177/0278364902021010834
https://doi.org/10.1177/0278364902021010834
https://doi.org/10.1109/ICRA.2016.7487281
https://doi.org/10.1109/ICRA.2016.7487281
https://doi.org/10.1109/ICRA48506.2021.9562107
https://doi.org/10.1109/ICRA48506.2021.9562107
https://doi.org/10.1177/0278364912461676
https://doi.org/10.1109/ICARSC.2015.17
https://doi.org/10.1109/ICARSC.2015.17
https://doi.org/10.1109/LRA.2022.3231832


Part III

Closure
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Conclusion
This thesis addressed the development of an energy-aware autonomous exploration framework for UAVs operat-
ing in unknown 3D environments. While much prior research has focused on maximizing exploration coverage
or rate, this work integrates an explicit energy perspective into the exploration decision-making process. By
doing so, it aims to increase the practicality and endurance of UAVs in real-world missions where energy
is a limiting factor. The work involved the design and implementation of a modular exploration algorithm,
integration with a realistic energy model, and systematic comparison with baseline methods across multiple
environments in simulation. The following section reflects on the thesis work and aims to answer the research
questions as stated in section I

Research Question 1 How to develop an autonomous exploration algorithm for a UAV that can be integrated
with an energy-consumption model?

This thesis presents the design and implementation of the Energy-Aware Autonomous Exploration (EAAE)
algorithm, which enables UAVs to explore unknown 3D environments while explicitly accounting for energy
usage in the decision-making process. The approach builds on existing frontier-based exploration techniques
by introducing a two-stage planning strategy: (i) a global planner generates candidate trajectories to multiple
frontier clusters, and (ii) energy-aware selection is applied based on a trade-off between information gain and
predicted energy cost. The proposed architecture integrates seamlessly with a modular simulation stack, and
supports a ROS-based OctoMap mapping system, a geometric controller, and a rotor-based energy estimator
node from the Agilicious framework. By structuring the algorithm into decoupled modules for perception,
frontier detection, energy-aware planning, and control, it becomes extensible and suitable for integration with
realistic UAV dynamics and power models.

Research Question 2 How can energy consumption of an UAV be modeled based on a given trajectory that
is planned by an exploration algorithm?

Energy consumption is estimated by simulating the UAV’s flight state over candidate trajectories using a full-
stack pipeline, which includes state propagation via Agilicious and energy estimation based on rotor dynamics.
The model computes the instantaneous power draw based on rotor speeds and integrates this over the planned
trajectory to obtain total energy. This allows the exploration algorithm to rank candidate goals not only
by their spatial or information-theoretic utility, but also by the anticipated energy required to reach them.
Validation of this model was performed in simulation, and the results showed that the estimated energy
values are consistent with the actual energy recorded during execution. While this implementation uses an
offline trajectory planner and a separate reactive controller for execution, the simulation-based approach allows
accurate assessment of energy requirements, and it provides a foundation for further integration of real-time,
adaptive energy models.

Research Question 3 What are the differences in exploration coverage and exploration rate with respect to
the exploration algorithm that does not account for the energy consumption?

Experimental evaluation in two distinct environments (Simple and Pillars) showed that the proposed EAAE al-
gorithm consistently achieves competitive or superior performance compared to two common baseline methods:
Classic Frontier (information gain-driven) and Nearest Frontier (distance-driven). In particular, EAAE demon-
strates a 10–20% reduction in total energy consumption across scenarios while maintaining similar or faster
total exploration times. The results highlight that naive methods such as Nearest Frontier are energy-inefficient
due to their frequent short-range decisions and backtracking behavior, while Classic methods, although faster
in open environments, tend to suffer from late-stage revisits due to greediness. EAAE outperforms these
by combining efficient spatial planning with energy-aware decision-making. The analysis further reveals that
the relationship between exploration speed and energy usage is non-trivial; faster coverage does not always
equate to lower energy use. The results suggest that incorporating energy-awareness leads to more consistent,
less erratic power consumption and improves mission-level energy efficiency without compromising mapping
performance.
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A Additional Results
A.1. Power Consumption over Time
This appendix section shows the power usage over time for all three algorithms in the Simple and Pillars
environments.

Figure A.1: Power consumption over time for all three methods in the Simple environment.

Figure A.2: Power consumption over time for all three methods in the Pillars environment.

Figures A.1 and A.2 illustrate the total power consumption over time for all three algorithms in the Simple
and Pillars environments. As observed, the Nearest method consistently exhibits the highest average power
usage across both scenarios, which aligns with the findings reported in the main results chapter. Additionally,
the Nearest method displays more frequent and larger power fluctuations. These variations can be attributed
to its characteristic back-and-forth exploration behavior, resulting in frequent accelerations and decelerations
that increase instantaneous power draw.

A.2. Visualization Exploration Mission
This appendix section shows the incremental, local exploration behavior of the Nearest method in the Pillars
environment.
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Figure A.3: Snapshots of the Nearest Frontier method illustrating its local, incremental exploration behaviour over time.
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B Literature Review
This chapter presents the findings of the literature study that is conducted as part of the first phase of the
thesis project. It aims to provide the reader with a clear overview of the literature used in the thesis project
as well as providing the reader with the required theoretical knowledge regarding energy-aware autonomous
exploration of UAVs in unknown environments. A third aim of this chapter is to highlight the relevance of the
discussed literature to this thesis project.

The chapter is organized as follows: Section State-Of-The-Art Exploration elaborates on the state-of-the-
art (SOTA) algorithms for autonomous exploration. This includes frontier-based approaches, next-best-view
(NBV) approaches, and alternative methods such as learning-based and stochastic differential equation-based
methods. Section State-of-the-art Nonlinear Dynamics and Flight-state Dependent Energy Consumption Mod-
el presents the findings regarding the non-linear dynamics and flight-state-dependent energy consumption
models. For a better understanding of the current work in the field of energy-aware autonomous exploration,
Section Current Approaches provides an overview of the current approaches, highlighting some of the main
challenges and lessons from current literature. Finally, Section Knowledge Gap highlights the knowledge gap
that is identified based on the literature study.

State-of-the-art Exploration Algorithms
This section elaborates on the state-of-the-art autonomous exploration algorithms. In this literature study,
two main methods are discussed: frontier-based approaches and NBV-based approaches, occasionally named
sampling-based approaches. Other novel autonomous exploration algorithms that do not directly base their
method on one of the aforementioned theories are described in Section Alternative Approaches.

Frontier-based Approaches
This section elaborates on the advancements of frontier-based approaches for autonomous exploration al-
gorithms. The concept of frontiers was first introduced in 1997 by Yamauchi, B.; this work describes the
central concept of frontier-based exploration as ”to gain the most new information about the world, move to
the boundary of open space and uncharted territory” [1]. This gave rise to the following terminology: a frontier
is the region between unknown space and free space. The method explained in [1] describes the following
logic. A map can be divided into three categories: free, occupied, and unknown space. When a robot moves
towards the centroid of a frontier-cluster, it can observe the previously unknown space behind it and add it
to its exploration map. This results in an increasing share of explored space, and thus greater knowledge of
the world around the robot. By navigating to successive frontiers, the robot eventually explores the full map,
categorizing all regions as either free or occupied space. This is because all accessible space is contiguous and
on the assumption of a perfect sensor and perfect control. This means that enclosed free space cannot be
explored as it cannot be reached by the robot. A visualization of the frontier terminology is given in the paper
[2] and is shown below.

Figure B.1: Frontier terminology. (Source: [2])

The frontier-based theory as described above, even though relatively simple, proved to be extremely useful as it
forms the basis for the majority of autonomous exploration research [3]. What remained consistent throughout
the literature is the method of defining frontiers. The main improvements regarding performance, i.e the
exploration rate, the total amount of explored area et cetera, came from improved environment representation
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techniques. Another contribution to these improvements came from adjustments in selection criteria for the
goal frontier for navigation. A third and more recent factor came from optimized navigation strategies, such
as finding a more optimal flight path between goal frontiers or implementing adaptive yaw-manoeuvres.

Below the various methods are discussed and categorized into three main topics that have significantly con-
tributed to the historic successes of autonomous exploration: environment representation mapping, frontier-
selection methods, and flight-state and trajectory optimization.

Environment representation mapping

An important contribution to the successes of frontier-based autonomous exploration algorithms throughout
the literature is the way the environment is categorized and represented. As described in Appendix B, the map
is subdivided into three categories; free, occupied and unknown space. This enables the exploration algorithms
with a way of dealing with the probabilistic uncertainties regarding the environment, inherent to real-world
sensors such as cameras, laser-range finders, and sonar-based sensors. Early work in frontier-based exploration
methods used so-called ”evidence grids” [1]. These Cartesian grids are used to represent the environment of
the robot using three-dimensional cells that store the probability of occupancy. Initially, all the cells are set
to a prior occupancy probability estimate. Although this variable can be tuned for a safer flight plan or more
accurate mapping, according to [1] a value of 0.5 proved to be acceptable in experiments.

A significant possibility for improvement for frontier-based exploration algorithms arose because of the in-
troduction of OctoMap in 2013 [4]. The year before, [5] demonstrated vision-based autonomous mapping
and exploration using cameras as the main sensor on a quadrotor MAVs, in contrast to previous work rely-
ing on laser-range finders or external systems. In 2013, [6] proposed using a front-looking stereo camera to
build a global 3D occupancy map using [4]. This is one of the first papers in literature to showcase frontier-
based autonomous exploration using an OctoMap representation. The introduction of OctoMap provided a
straightforward and accessible platform for future research regarding autonomous mapping and exploration.
[4] developed an open-source framework that facilitates the representation of an environment as a 3D grid
using voxels that contain the probability of occupancy. The representation of the environment can be updated
frequently and thus store information of the explored space. This framework is based on octrees, a hierarchical
framework for spatial subdivision in three dimensions [7], [8]. Each node of this octree represents a voxel.
OctoMap enables users to select different octree depths, and thus represent the environment using different
resolutions to enable computationally-efficient mapping. Visualizations from [4] of the octree structure and of
the various OctoMap resolutions are shown in Figure B.2 and Figure B.3, respectively.

Figure B.2: Octree nodes structure. The volumetric model is shown on the left and the corresponding tree representation on the
right. (Source: [4])

Figure B.3: Different Octomap resolutions. Occupied voxels are displayed in resolutions 0.08, 0.64, and 1.28 m. (Source: [4])
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Following the introduction of OctoMap, various methods utilized the OctoMap properties to improve the
exploration performance. A promising method that used these OctoMap properties is described in [9]. In this
work the authors propose a frontier-based planner for 3D exploration that is applicable for 3D sensors like
lidars, which produces large point clouds. According to the authors this method is more scalable as it processes
the same data set size more quickly while maintaining a similar exploration time. This is achieved by not using
the data from the 3D sensor directly but first, using OctoMap environment representation properties, cluster
the frontier points. This allows the algorithm to analyse and plan accordingly using different resolutions. This
method is best explained using the visualisation below, Figure B.4. For navigation and planning and detection,
a maximal resolution is desired, thus an maximal Octree depth, dmax. However, for frontier clustering a more
shallow Octree is used, dexp. This implies that the algorithm detects frontiers voxels at the highest resolution
(dmax) and tries to find the parent nodes of these detected frontiers voxels at the Octree level dexp.

Figure B.4: Overview of the Octree structure used in the multi-resolution frontier method including the indicated Octree depths.
(Source: [9])

This trade-off between having a computationally more expensive algorithm or a more detailed map is important
to consider when developing an exploration algorithm using voxel-based environment representation structures
like OctoMap.

Caiza et al. [10] build upon this multi-resolution frontier-based method by adding a so called collector-strategy.
This collector strategy firstly stores all global frontier candidates at each moment of the exploration. The second
phase filters out all candidates that are obstructed, too close by, previously visited, or have low information
gains. Finally, in the third phase the algorithm selects the closest global candidate as the best frontier and
this frontier is send to the path planner. An illustration of this method is given in [10] and shown below.

Figure B.5: Overview of the individual phases of the collector-strategy. (Source: [10])

This clearly shows the functionality of OctoMap throughout various works in recent literature. The following
section aims to provide the reader with information on the state-of-the-art frontier selection methods and
describes how this has changed over the years.

Frontier selection method

Figure B described the importance of accurate environment representation mapping for autonomous explor-
ation algorithms. A second crucial step in exploration algorithms is the high-level planning. This raises the
question: ”What is the most optimal frontier point to navigate to next?”. This section elaborates on the SOTA
frontier-selection methods.
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The first strategies for frontier-selection focused on minimizing the physical distance between the current robot
position and the location of the frontier cluster centroid [1], [2], [3], [11]. This was done using a simple cost
function with the objective to minimize the distance as this was given a large cost. Later, the authors of [12]
proposed to add more information to the cost function by incorporating not only the distance, but also the
frontier size and the cost of turning the robot. Another notable contribution comes from [13], here the authors
define information gain as the summation of the expected information enclosed in smaller voxels that are likely
to be visible from a particular view. This metric is closely related to the basis of NBV techniques as discussed
in Figure B.

Because of this metric, frontier-based approaches could also select goal frontiers based on the expected in-
formation gain. This is proposed by the authors of [14]. This method generates candidate points around the
frontiers and subsequently filters and clusters these points. Afterwards, the information gain of these candidate
points is calculated using the following equation from [15]:

Gv =
∑

∀r∈Rv

∑
∀x∈X

e(x) (B.1)

where Gv is the information gain for candidate point v. This is Rv is the set of rays cast from the candidate
point onto the robot’s field of view. X is the set of voxels the ray traverses through. e(x) is the mapping
uncertainty of each voxel, x [14].

Another important and relevant contribution is described in [16]. In this work, the authors propose a frontier-
based method that selects the goal frontier for navigation based upon the required velocity change to reach
that specific frontier. This method proved to perform extremely good in terms of exploration rate. Further
details on this work are discussed in Equation B and Figure B.

Flight-state and trajectory optimization

A third crucial aspect of exploration algorithms is the navigation. This section describes the advancements
made from optimization of navigation algorithms. This includes trajectory optimization as well as optimization
of the robot’s flight-state.

A major contribution to frontier-based autonomous exploration came from [17]. In this paper, the authors
propose an exploration algorithm named Fast UAV Exploration (FUEL). This method maintains relevant
information for exploration planners in a so called, frontier information structure (FIS). This infromation
structure allows for incremental updates when new space is explored. Secondly, a hierachical planner is
proposed. An overview of the contributions of FUEL are visualized in the figure below.

Figure B.6: Overview of FUEL method. (Source: [17])

The hierarchical planner plans the exploration path in three consecutive steps. First, the algorithm finds the
global path covering all the frontier clusters that is optimal for environment information accumulation. The
second step refines a part of the global path and the third step involves generating a safe, minimum-time
trajectory to the first viewpoint of the refined path from the second step. A visualization of this method is
given in [17] and presented below.
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Figure B.7: Path and motion generation using three steps in FUEL method. (Source: [17])

The viewpoints as described in [17] are similar to the the candidate points as described above in Figure B. In
FUEL however, viewpoints are generated as follows. Starting from a frontier cluster centroid, viewpoints are
uniformly sampled in a cylindrical coordinate system with the origin coinciding with the respective frontier
cluster centroid. In order to find a global path covering all frontiers clusters, FUEL states the planning
problem as an open-loop Asymmetric Travelling Salesman Problem (ATSP), inspired by [18]. For step two of
the hierarchical planner the authors of [17] propose to use Dijkstra’s algorithm for finding the shortest path
throughout all the viewpoints of all frontiers. Other methods also suggest using path optimization algorithms
for exploration. For example, [14] proposes using the A*-algorithm for generating a safe and feasible path. To
smoothen out the navigation path, [17] uses B-spline optimization to get continuous trajectories such that the
multi-rotor drone can fully use its dynamic capabilities.

The Fast Autonomous Exploration Planner (FAEP), as described in [19], builds upon the FUEL framework.
FAEP improves exploration efficiency by reducing back-and-forth manoeuvrers. The authors of FAEP aimed
to do this by not only considering frontier-level factors, but also flight-level factors. The frontier-level factors
are included in the form of two extra cost items in the ATSP for path planning, similar as in FUEL. The first
cost term penalizes frontiers that are farther away from the boundary area (larger dmin), whilst still in range
of the sensor, rs. If the boundary frontier is out of range, Dk ≥ rs, the frontier is penalized by a positive
factor wd. The boundary area is defined as the area near the edge of the exploration area as determined by
the mission. This cost item is described in the following equation from [19]:

cb(k) =

{
dmin(k) Dk < rs

dmin(k) ·
(

1 + wd · Dk−rs

rs

)
Dk ≥ rs

(B.2)

dmin(k) = min
(
dk

x, dk
y , dk

z

)
, k ∈ {1, 2, · · · , Ncls} (B.3)

For the second frontier-level cost item the authors propose to use a method called Bottom Ray to detect the
range of unknown area behind the frontier. This range is denoted by hk in the Figure B.8, as can be seen in
the equation below area’s that are known to have a small unexplored area behind them are prioritized as they
have a larger cost, cs(k) and are thus more likely to cause back-and-forth manoeuvrers.

cs(k) = hmax − hk

hmax
(B.4)
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Figure B.8: Diagram to evaluate frontier-level costs in FAEP method. (Source: [19])

This shows that the algorithm prioritizes frontier clusters based on their proximity to the UAV and their
potential to provide new information while minimizing repeated visits to previously explored areas to reduce
back-and-forth manoeuvres.

As this thesis project aims to investigate the implications of integrating energy-awareness on autonomous ex-
ploration algorithms. It is interesting to look into if and how, current SOTA exploration algorithms implement
energy-awareness. An insightful novelty in reducing back-and-forth manoeuvres and thus energy-consumption,
is developed by Zhao et al. [19] by introducing adaptive yaw-manoeuvres. In this work, the authors propose
two-stage yaw planning. Two-stage yaw planning aims to go from the current yaw angle ξ0, to the required
yaw angle at the target viewpoint ξe, while passing through a middle yaw ξm. This middle yaw is set such
that the UAV covers the maximum amount of area during flight. To avoid longer flight times because of
this yaw manoeuvre, the authors propose to set a criteria that the yaw-manoeuvre only takes place if the
estimated time of the yaw-manoeuvre is less or equal to the flight time to the target viewpoint. An even more
recent contribution came from [20] in 2024 with a method called LiDAR-Assisted UAV Exploration Algorithm
(LAEA). This method uses LiDAR data with a depth camera to create a hybrid 2D occupancy map. This map
allows the algorithm to detect and prioritize small and isolated frontier clusters. By assigning higher weights
to these clusters and incorporating an Environmental Information Gain (EIG) optimization strategy, LAEA
generates optimized trajectories that cover unexplored regions while minimizing back-and-forth movements.
This method proved the be promising as it outperforms both the FUEL and FAEP methods. The relevance
of methods like FUEL, FAEP, and LAEA lies in their non-greedy approach, as they plan entire paths ahead
rather than selecting only the next best location. This capability is relevant for energy-aware exploration, as
an energy-aware algorithm could calculate the energy required for a complete path instead of evaluating single
locations, enabling more efficient and informed decision-making.

Next-best-view Approaches
This section reviews the relevant literature on NBV approaches for autonomous exploration. NBV approaches
are based on early work by C.I. Connolly in [21]. Here, NBV is first introduced and described as a method
to find a sequence of views to obtain a complete model of an object. This is later used as a method for
exploration to view an environment as it aims to find the next best viewpoint to obtain as much information
about unexplored space as possible, whilst minimizing the cost of travel.

Although there are clear similarities between the NBV-based approaches and the frontier-based approach, as
discussed in Appendix B, the main difference is in selecting sampling viewpoints. The NBV-based method,
also known as the sampling-based method, relies on random sampling of viewpoints in a certain known, or
partially known, space within the sensor’s field of view. Frontier-based approaches do not rely in that sense
on random sampling as these methods deterministically select frontiers from the partly explored environment.
Some frontier-based methods do use sampling for candidate viewpoint generation, as described in [17]. This
method, however, uses uniform sampling in a cylindrical coordinate system to sample candidate viewpoints
for a certain determined frontier.
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This section further elaborates on the advancements made with NBV-based approaches by considering the
candidate selection, the use of random trees for NBV methods, and the possibility of combining a NBV-based
approach with a frontier-based approach.

Candidate selection

One of the first works that uses the NBV algorithm for autonomous exploration is described in [22]. As briefly
described before, NBV methods randomly sample candidate viewpoints in the sensor’s field of view, this is
shown in Figure B.9(b). Thereafter, the potential gain in visibility outside the explored area is determined.
This is indicated by the red area in Figure B.9(c). Finally, the candidate viewpoints q are evaluated based on
the value g, in the following expression [22]:

g(q) = A(q)exp(−λL(q, qk)) (B.5)

In this equation, A(q) represents the potential visibility gain of a candidate viewpoint q. This visibility gain
is the amount of unexplored area visible through the edges of the known area; this is depicted in Figure B.9
as the red area. L(q, qk) represents the length from the current viewpoint qk to the candidate viewpoint q.
The constant λ can be used to further penalize candidates that are further away from the current position.
The above equation is widely used within NBV methods and could be relevant to this thesis topic as a way
to possibly incorporate energy-related constraints. An example could be to evaluate candidate viewpoints not
just by distance and potential visibility gain, but also the expected amount of energy required to traverse to
the candidate viewpoints.

Figure B.9: Overview of the steps in NBV-based methods. (Source: [22])

Random trees for NBV approaches

Another interesting advancement in NBV-based methods is the use of random trees as described in the method:
receding-horizon next-best-view (RH-NBV). This method is introduced in the paper: Receding-Horizon Next-
Best-View Planner for 3D Exploration [23]. In this paper, the authors propose to use the randomly sampled
candidate viewpoints as nodes in a random tree, the edges of which provide a possible path to the viewpoint.
In order to grow this random tree, the RH-NBV uses techniques Rapidly Exploring Random Trees (RRT) [24]
and RRT* (optimized version of RRT) [25]. Each branch is evaluated based on the amount of unexplored
space that can be mapped from this branch. Subsequently, only the first edge is executed, after which the
whole process is repeated. This, in fact, explains the receding horizon in the name of the RH-NBV method.
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Combination of NBV- and frontier-based approaches

A third noteworthy contribution is from the paper Efficient Autonomous Exploration Planning of Large-scale
3D Environments (AEP) [26]. Here, the authors propose to combine a NBV-based approach with a frontier-
based approach. The motivation is to overcome the drawback of the back-and-forth manoeuvres in frontier-
based methods and the risk for the RH-NBV approach to get stuck when exploring large environments [26].
In AEP a frontier-based approach is used for global planning and a NBV-based approach for local planning.
Nodes with a large potential information gain from previous RRTs are cached for later use. Once the robot
explores everything in its surroundings, the next frontier will be far away and subsequently get a low score from
the RH-NBV planner. In this case, the frontier-based approach will step in as it considers these previously
cached nodes. This combination approach showed great performance and introduces an interesting method
possibly useful for this thesis project. Another interesting insight is the fact that

Alternative Approaches
To gain a clear overview of all the autonomous exploration algorithms potentially useful for this thesis project,
this section aims to cover other relevant works for autonomous exploration, not directly linked to frontier-based
or NBV-based methods. First, some advancements in learning-based approaches are discussed. Secondly, a
stochastic differential equation-based approach is discussed.

Learning-based approaches

In recent years, learning-based methods have shown significant potential in addressing autonomous exploration
challenges, particularly in adaptive informative path planning (AIPP). These approaches leverage supervised
learning (SL) and reinforcement learning (RL) to enhance scalability to larger environments.

Supervised learning techniques are often used to improve environment representation and path planning. For
example, Gaussian processes have been widely applied to model environmental variables and predict features
like temperature or radiation, as seen in [27], enabling robots to gather information with reduced uncertainty.
Similarly, neural networks (NNs) are trained on labelled datasets to predict optimal next-best-viewpoints or
complete partially observed maps, facilitating efficient exploration.

RL provides an effective framework for autonomous decision-making in exploration tasks. RL allows robots to
learn exploration policies by optimizing reward functions linked to information gain and resource constraints.
Methods such as Proximal Policy Optimization (PPO) and Deep Q-Networks (DQN) have been employed to
maximize map uncertainty reduction or coverage in various domains [27]. This also highlights the relevant
possibility of incorporating energy awareness into exploration algorithms. For example in [28], the authors
state that their method requires reasoning about both sensing and movement in terms of information gain
and energy expended. These advancements not only highlight the potential of learning-based approaches but
also the relevance to this thesis project because of the energy constraints. However, an important disadvant-
age to consider when evaluating the relevance to this project is the issue regarding generalizability to new
environments, which is something of great importance in autonomous exploration. Popović et al. stated the
following: ”However, the lack of realistic labeled training data for AIPP problems remains an open issue
restricting the generalizability of existing methods to new environments and domains.” [27], this underlines a
crucial limitation of learning-based approaches for this thesis project.

Stochastic differential equation-based approach

Another insightful approach is introduced in [29]. In this work the authors propose a stochastic differential
equation-based approach. The authors argue that classic frontier-based approaches struggle with exploring
3D spaces because of issues related to occlusion, resolution, and the sensor’s field of view. The approach
in [29] only represents occupied space. Another key difference with frontier-based approaches is the way of
detecting frontiers. This method samples particles in the space contained by the known occupied space. Using a
stochastic differential equation the particles are used to simulate a gas using Newtonian dynamics. The location
to which the gas expands is determined as the frontier for exploration. Even though this method introduces
an interesting new approach, it seems not directly relevant to energy-aware autonomous exploration, as it
mostly focuses its efforts to resolve issues like occlusion and resolution often encountered in 3D frontier-based
exploration.
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An interesting insight from the literature study regarding exploration algorithms that use frontier-based, NBV-
based, or other approaches, is that the majority of the before-mentioned works are greedy-algorithms. The
term greediness of algorithms is used to distinguish whether an algorithm only thinks about the next best step
or also about the future steps. In almost all of the SOTA exploration algorithms mentioned in this section, the
decision-making part uses the proximity, velocity change, information gain or a combination of these factors
for the decision regarding the next step but not about the sequence of steps. The only methods that decide
on an optimal path instead of a next optimal point are FUEL [17] and the works that build upon this method,
FAEP [19] and LAEA [20]. This distinction is relevant for this thesis project as the possibility exists that
planning ahead in a non-greedy manner improves energy-efficiency once an algorithm is energy-aware in its
decision-making.

State-of-the-art Nonlinear Dynamics and Flight-state Dependent Energy Consumption Mod-
els
This section elaborates on the state-of-the-art non-linear dynamics and flight-state dependent energy consump-
tion models for UAVs. This is a key research field for energy-aware autonomous exploration as the work related
to this field aims to accurately describe an UAVs energy consumption during flight. Works in this field are
relevant for this thesis project as this thesis project aims to integrate such an energy consumption model into
an exploration algorithm. In this part of the literature study, three important aspects and advancements for
accurate energy consumption modelling are described.

Forces and torques modelling
In order for the exploration algorithm to take into account the energy required for a certain frontier/viewpoint,
the energy required for a certain trajectory must be calculated. A first important step is calculating the forces
and torques generated by the propellers for a certain trajectory. Using these forces and torques, the required
power — and subsequently the energy needed — can be determined. A review of the literature on the first
step, the forces and torques modelling, is given below.

A relevant model that is used in literature is the quadratic model. The quadratic model states that each
propeller generates a force and torque term proportional to the square of its rotational speed. As described by
Bauersfeld and Scaramuzza [30], this model holds well for near-hover flight of UAVs but becomes increasingly
inaccurate for higher speeds. This is because it ignores important aerodynamic effects as the induced drag
and the dynamic lift of the propeller.

Other influential work is based on the blade-element-momentum (BEM) theory. This theory is developed by
Froude [31] and extended by Glauert [32] in 1920 and 1935, respectively. BEM theory combines conservation
of mass and momentum principles to analyse aerodynamic loads on rotating blades. It calculates forces like
thrust and torque by integrating aerodynamic lift and drag on blade sections using two-dimensional airfoil
theory and experimental data [33]. BEM theory is important for energy consumption modelling, enabling
the estimation of aerodynamic forces and power requirements. Relevant recent work using BEM theory is
presented in [30] and [34]. These works are discussed in greater detail below.

Battery modelling
In order to accurately describe the energy consumption of an UAV during a mission, not only the forces and
torques generated by the propellers but also the battery model must be estimated. For this thesis project, the
most relevant aspect involves estimating the energy required for a given trajectory. This requires developing a
method that enables calculations, progressing from trajectory planning to estimated power consumption, then
to estimated load, and finally to the required capacity. Battery consumption models are usually categorized
as either white box (e.g., an electrochemical model), grey box (e.g., circuit-oriented model) or black box (e.g.,
NN-based models) models [35]. These categories are used to differentiate between models that use only physical
properties of the batteries and the models that purely rely on data without any knowledge on the underlying
physical or chemical processes.

Early work on battery modelling is introduced by Peukert, W. [36]. This paper proposes a method to describe
the effective capacity under load and has since then became the standard approach for various works because
of its simplicity. Even though Peukert’s method seems to be an interesting method for effective capacity
modelling, it is not applicable to this thesis project. According to the authors of [37], Peukert’s model is only
applicable to low and medium discharge rates. This makes the model suboptimal for this thesis project as it
most likely will not account for the effects of the high transient loads often encountered in UAV flight.
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Other widely used methods for battery modelling are based on Thevenin equivalent circuits [38]. Two examples
of these methods are the OTC (one time constant) and TTC (two time constant) models, an overview of these
methods for Li-ion batteries is given in [39]. Other interesting work that uses the OTC method is described
in [30]. Here the authors use a combination of BEM model, an electric motor model, and an OTC model
to accurately predict a battery’s voltage, even under non-constant discharge rates. This paper brought some
relevant insights. First of all, this work describes the decision to use battery voltage models, such as the
OTC model, instead of Peukert’s battery capacity model. According to the authors: the OTC model is more
flexible because it can handle situations where the multicopter has a non-constant power demand, such as in
battery-aware path planning for complex missions [30]. However, it is important to note that the OTC model
focuses on battery voltage, whereas this thesis project requires the estimation of required power in order to
determine the energy required per trajectory. A second contribution is the fact that this method combines
a first principles model as BEM together with a body-drag model to calculate the power required at a given
speed.

Other work that does model the power consumption of a UAV is described in [40]. In this paper, the authors
use real-flight data of a Parrot AR 2.0 Drone Elite Edition to develop an energy-consumption model that can
be used in simulations. Based on this measured data, the authors fit a polynomial to the data to obtain an
expression for the power based on the angular speed. In order to calculate the required energy E, the following
expression is utilized using a distance h, and velocity v, component.

E = P ∗ h

v
(B.6)

In [40] the aim is to find a more accurate energy consumption model to plan mission routes more realistically.
The results show a more reliable state-of-charge (SOC) estimation and show that for a certain path planning
algorithm that does not use this model, the mission would have stopped early because of an empty battery
whereas the suggested method would have predicted this beforehand. Regarding relevance to this thesis project,
as this thesis project focuses on exploration rather than path planning, quite the modifications are required. A
second important limitation is that this work relies on measured data from one specific drone so does not allow
for generalization. However, it is still interesting to see work that incorporates battery- and energy-awareness
into an algorithm and the low-complexity mathematics and physics could be of good use to this thesis project.
Another example of such a relatively low-complexity energy consumption model based on empirical data is
presented in [41].

Learning-based multicopter dynamics
More recent approaches to modelling multicopter dynamics involve learning-based techniques. Two insightful
methods using learning-based methods for multicopter dynamics modelling are presented by Bansal et al. and
Punjani et al. in [42] and [43], respectively. Punjani et al. propose a method using a Rectified Linear Unit
(ReLU) network model to estimate the multicopter’s accelerations during a wide range of manoeuvres. Bansal
et al. propose a two-layer NN for estimating multicopter accelerations. The goal of the method is to learn
parameters α = (W, w, B, b) in order to estimate minimize the root mean square (RMS) error between the
observed accelerations and the estimated accelerations. The parameters are defined as follows: W and w are
the weight matrices for the hidden layer and output layer, respectively. B and b are the bias vectors for the
hidden layer and output layer, respectively. These terms are important for NNs as they define the network´s
architecture and are optimised during training. The architecture of this learning-based method is included in
Figure B.10 below.
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Figure B.10: NN architecture to estimate multicopter dynamics. NN consisting of a hidden ReLU layer and an output layer.
Parameters α = (W, w, B, b) are learned. (Source: [42])

While these learning-based methods yield acceptable estimations of multicopter accelerations, recent advance-
ments have further improved the accuracy of multicopter dynamics modelling using a hybrid approach. The
authors of NeuroBEM [34] present a state-of-the-art method to estimate multicopter dynamics using a first
principles model, BEM, in combination with a deep neural network (DNN) to account for residual forces. The
main motivation of this work is to combine the strong generalization capabilities of first principles models with
the flexibility of learning-based approaches [34]. The architecture of the proposed method is displayed below
in Figure B.11. NeuroBEM proves to be a reliable method for predicting forces and torques, outperforming
various baselines that just use first principles models or learning-based methods.

Figure B.11: NeuroBEM architecture consting of motor model (MM), rotor model (RM), and NN for the residual forces. Inputs
are the current state xk, the current motor speeds Ωk, and the current motor speed commands Ωk,cmd. Outputs are the forces f

and torques τ . (Source: [34])

Learning-based methods and hybrid methods have proven to be great approaches for estimating multicopter
dynamics. However, as this thesis project does not only focus on energy-consumption modelling but also
on autonomous exploration, a more simplistic variant for energy-consumption or multicopter dynamics is
preferred.

Current Approaches to Energy-aware Exploration
This section elaborates on the current approaches in the research field of energy-aware autonomous exploration,
highlighting the current state-of-the-art and possibilities for future research. It aims to elaborate on methods
that overlap the research fields described in Appendix B and Figure B.

Rapid Exploration - A Frontier Method for High Speed Flight
The first relevant method that is described in this section is from the paper: ’Rapid Exploration - A Frontier
Method for High Speed Flight’, by Cieslewski et al. [16]. This method was briefly discussed in Appendix B.
As stated above, this method proposes to select the next best frontier based on the required change in velocity,
arguing that a smaller delta results in more high-speed flight and thus a shorter exploration rate. As highlighted
in [44] as well, maintaining a consistent flight speed with minimal accelerations leads to a more energy-efficient
mission. As this method proves to be of great relevance to this thesis topic in combining a frontier-based
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exploration approach with an energy-related constraint, it does not seem directly implementable due to the
lack of open source code and a general energy consumption model. The principle explained in this method
however, could possibly be implemented as a baseline for comparison purposes.

Towards energy efficient autonomous exploration of Mars lava tube with a Martian coaxial quadrotor
Another approach in autonomous exploration is presented in [44]. In this work, the authors claim to have
developed an energy-aware model for the exploration of Martian lava tubes using a quadrotor. The paper shows
to perform very well in terms of exploration rate and coverage and includes great mapping visualizations. The
method uses OctoMap for mapping. Furthermore it uses a frontier-based exploration approach with frontier
accessibility classification, risk-aware path planning, and reactive navigation. However, it is not believed
that this paper is of great relevance to this thesis project. This is because the lack of implementation of
energy-awareness into the algorithm’s decision making. The authors of [44] suggest that a path with near-zero
acceleration is more energy efficient than other methods with larger accelerations. Though this statement is
correct, this is the only part of the method that implies energy-efficiency. For example, the cost function does
not account for the expenditure of energy for certain paths. Thus, this paper seems of little relevance to this
thesis project.

Energy-Aware Mobile Robot Exploration with Adaptive Decision Thresholds
The method described in [45] proposes an energy-aware exploration algorithm for a mobile robot, the Pioneer
3-DX robot. Though the use of another platform implies that any measured data or numerical values are
not directly relevant to this thesis project, the work is still included for the low-complexity calculations and
insightful cost function. The mobile robot has to be charged at a docking station once it runs out of energy.
This method focuses on reducing the travelled path as this is the largest contributor to the total energy required.
The authors opt for a rather simplistic energy consumption model. The power consumption is calculated for
two cases, for a maximum speed vmax and for a stationary case. This is to ensure that for all possible speeds the
power consumption is never underestimated. The power consumption of all components other than locomotion
are considered constant. The power consumption of locomotion is calculated by equation (1) of [45]:

Ploc(v) = 0.29[W ] + 7.4 [W ]
[m/s]

· v (B.7)

With this equation, the power consumption for the moving and the stationary case can be calculated. This
calculation is based on previous work in [46], where the authors studied energy efficiency for the Pioneer 3-DX
robot. With the power consumption, the SOC and the energy that is left, El, can be calculated. Finally, using
equation (5) from [45] the distance the robot is still able to travel, dl, can be calculated using the current
energy level, El:

dl = El

Pm
· v (B.8)

Another insightful approach in this method is the proposed cost function f . The cost function as given in [45]
is stated below:

f = w1 · dg + w2 · dgb + ·w3 · ddgbe + w4 · θrel (B.9)

In this equation, w1, w2, w3 and w4 are weights to adjust the cost function to various environments. dg is
the distance from the robot to the frontier, to make sure the model prefers the shortest path. The second
parameter dgb is the distance from the frontier to the docking station. The third parameter dgbb, is either
equal to dgb or equal to negative dgb, and this depends on whether the energy level is sufficient. Thus, this
ensures that the robot prefers frontiers that are far away in the beginning when the battery level still allows
it. The final parameter θrel refers to the robot’s orientation and thus ensures the model prefers frontiers that
do not require large turns.

To conclude, this paper shows interesting, relatively simplistic energy consumption calculations. These equa-
tions could be relevant to this thesis project for the part of incorporating energy limitations in exploration cost
functions. Important to note is that only parts are useful as this model is for a mobile land robot instead of an
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UAV and that it focusses on docking stations for recharging. This thesis project aims to develop an algorithm
for a single UAV without docking stations, and thus does not aim to find an optimal path considering docking
stations but rather aims to explore an unknown area more efficiently and more energy-aware.

Efficient Autonomous UAV Exploration Framework with Limited FOV Sensors for IoT Applications.
Another recent relevant approach is presented in [47], where the authors propose a frontier-based method.
This approach is novel as it utilises randomly generated seeds within a specific window. If one of these seeds
lies within a known frontier voxel, it is selected as a valid random seed; otherwise, the voxel is added to the
list of known voxels. This enables the method to generate candidate frontiers efficiently.

The authors claim that this method is energy-aware, as it incorporates a cost item in the cost function to
account for exploration energy consumption. However, similar to other works, the only factor considered in
energy consumption is the distance to a frontier. This is reflected in the cost function described in equation
(8) of [47]:

Mtsp(0, k) = λdiscdis + λdircdir + λboudcbound (B.10)

In this equation cdis represents the distance costs, given by equation (9) in [47]:

cdis = length(P (Puav, V Pi)) (B.11)

The authors explain that; ”cdis is used to measure the energy consumption of the UAV for each viewpoint”
[47]. The second cost item, cdir, relates to the UAV’s orientation, favouring frontiers that require less turns.
The third cost item, cbound, ensures that the model prioritises frontiers near the boundary, as these are often
skipped and can result in inefficient back-and-forth manoeuvres.

While it is interesting to see a cost function incorporating some consideration of energy, as also observed in [45],
this thesis project aims develop a new approach for energy consumption that is not just based on distance.

Energy-Aware Coverage Path Planning of UAVs
Another noteworthy paper is presented by Di Franco and Buttazzo in [48]. In this work, the authors present
an energy-aware path planning algorithm. The two main contributions are: an energy model derived from
measurements to obtain the power consumption as a function of the UAV dynamics in different operational
settings. Another contribution is the energy-aware algorithm that aims to find the speed for a certain path that
minimizes energy consumption whilst satisfying coverage and resolution criteria [48]. The latter contribution
could be relevant to this thesis project as it calculates the expected required energy for the flight phases:
steady flight, accelerating, decelerating, turning, climbing, and descending. An opportunity for this thesis
project lies in that fact that the method proposed in [48] does not consider the required energy during path
planning. Namely, once the path is planned, the calculated required energy at the optimal flight speed is
compared to the total available energy and based on that, the path is pursued or not. This thesis project could
possibly incorporate parts of this method by comparing the energy required for all the possible next viewpoint
candidates to make an informed decision about where to move to next.

Knowledge Gap
To summarize the findings of the literature study on autonomous exploration, a table is presented below to
provide the reader with a clear overview of the current SOTA works in autonomous exploration and their
respective main contributions that may be relevant to this thesis project. The works presented in this table
are discussed more elaborately in Appendix B and Figure B. As can be seen in Table B.1, the majority of
the work in the field of autonomous exploration does not consider energy constraints in the decision-making
step of the algorithm. This often leads to algorithms being non-viable for real-world applications where the
to-be-explored area is large.

The few works that do address this challenge do not rely on a generalized energy consumption model, but
rather make simplifications or rely on empirical data for a specific type of UAV. For example in [16] and [44],
the authors argue that the proposed model is energy efficient as the UAVs fly with near-zero accelerations.
In [45], the authors propose a method that does calculate power and energy use for a specific robot but it
is merely based on known empirical data from previous research on this specific robot. In [47] the authors
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developed an algorithm that does include an energy-related term in the cost function; however, this cost item
only depends on the physical distance and does not account for turns, speed, and other flight dynamics. The
work described in [28] includes energy-awareness in the algorithm by comparing the cost of traversing to a next
node with the cost of using the UAV’s sensors at the current node. Lastly, the work presented in [48] accounts
for the energy consumption during coverage path planning. Though the energy consumption calculation seems
extensive, it is all based on measured data about the drone’s power consumption for various velocities.

All things considered, a clear knowledge gap arises in the field of energy-aware autonomous exploration. More
specifically, because of a lack of exploration algorithms that take into account a generally applicable energy
consumption model in the decision-making for the best path to take. This thesis project aims to contribute
to this part of the field and strives to accomplish this with the research objective and questions described in
section I.

40



Table B.1: Autonomous exploration algorithms literature overview.
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. *this algorithm is a coverage path planning algorithm instead of an exploration algorithm but is included for its energy-aware
path planning.

**the platform that is used in this method is a mobile robot rather than a UAV.
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C Project Planning
This section provides the project plan for this thesis project. In the first section the methodology is described
including the various work packages with corresponding inputs and outputs. Section C.1 presents the thesis
project planning through two figures. The first figure outlines the high-level project schedule, including key
deadlines and deliverables, while the second figure provides a more detailed view, focusing on specific work
packages.

Methodology
In order to develop a fully functional autonomous exploration algorithm that is integrated with an energy
consumption model, various crucial tasks have to be completed. These tasks are categorized into a total of 9
work packages. These work packages with the corresponding tasks are presented below. For brevity, the term
’work package’ is from here onwards referred to with WP.

Note: regarding the required software systems, programs and packages, at this point it is not decided but
the thesis project will most likely be conducted using, among other: ROS, Gazebo, Python, C++, MATLAB,
OctoMap.

Note: for every WP; the expected duration, the corresponding margin for potential delay, the inputs, and the
outputs are listed. This information is based on current estimates and is subject to change throughout the
project. The margins are set based upon expected probability of delay and are thus higher for more technical
tasks as developing and implementing code as opposed to less technical tasks as the preparation of a review
session.

WP1: Project initialization & literature study
The aim of this WP is to set up agreements with the responsible supervisors and sign all required contracts.
Furthermore, this WP contains the literature study which will account for the majority of the time required
for this WP.

• Create project description
• Read relevant literature
• Write literature review chapter of report
• Create literature review presentation

Expected duration: 4 weeks
Margin: 3 days
Inputs: -
Outputs: literature chapter, signed thesis contract, documentation of supervision agreements, (understanding
of) relevant literature, knowledge gap

WP2: Development of methodology & research objective
The aim of this WP is to develop the methodology and research objective.

• Develop research objective and corresponding research questions
• Develop methodology
• Write project planning chapter of report

Expected duration: 2 weeks
Margin: 2 days
Inputs: knowledge gap
Outputs: methodology chapter, research objective and questions, method

WP3: Implementation of exploration algorithm
The aim of this WP is to successfully implement an autonomous exploration algorithm that is capable of
conducting an exploration mission in a simulated environment. Secondly, it should be integrable with an
energy-consumption model, most likely by outputting the trajectories for the set of potential target viewpoints.

• Reading and understanding the code
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• Setting up the environment
• Run successfully in simulated environment

Expected duration: 6
Margin: 2 weeks
Inputs: relevant algorithms from literature
Outputs: exploration algorithm, trajectory

WP4: Implementation of energy-consumption model
The aim of this WP is to successfully implement an energy-consumption model that is capable of estimating
the energy required for a given viewpoint/trajectory. This model should be able to run in parallel with the
exploration algorithm.

• Reading and understanding the code and the underlying physics
• Setting up the environment

Expected duration: 5 weeks
Margin: 1 week
Inputs: relevant algorithms from literature, trajectory
Outputs: energy-consumption model, energy required for given trajectory

WP5: Integration of modules
The aim of this WP is to integrate the two modules developed in WP3 and WP4.

• Create overview of input and outputs for both modules
• Design full architecture
• Integrate energy-consumption model into exploration algorithm

Expected duration: 2 weeks
Margin: 1 week
Inputs: exploration algorithm, energy-consumption model
Outputs: complete integrated algorithm, complete code

WP6: Simulation & evaluation
The aim of this WP is to simulate the complete integrated algorithm and evaluate it with respect to baselines. A
potential baseline is the exploration algorithm that is energy-UNaware. Other baselines will also be considered
depending on available resources.

• Set up simulation environment
• Develop/decide performance indicators
• Run complete, integrated program in simulation environment
• Run energy-UNaware module
• Evaluate and compare results for both algorithms

Expected duration: 3 weeks
Margin: 1 week
Inputs: complete integrated algorithm,
Outputs: simulation results energy-aware algorithm, simulation results energy-UNaware algorithm, perform-
ance indicators

WP7: Visualisation & reporting
The aim of this WP is to visualize the findings and report it in the thesis report. Important to note is that
reporting will also take place during the research phase, however, in this WP the focus will be on refining.

• Decide on way of visualization, including possible visualization tools
• Finalize report according to scientific writing conventions
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Expected duration: 1 week
Margin: 1 week
Inputs: all simulation results, performance indicators
Outputs: (results) visualizations

WP8: Preparation Green-Light review
The aim of this WP is to prepare for the Green-Light (GL) review meeting.

• Submit thesis draft
• Create GL review presentation
• Faculty forms, documents, and other practical matters

Expected duration: 2 weeks
Margin: 2 weeks
Inputs: simulation results, results visualizations, complete code and other report content
Outputs: thesis draft, GL review presentation

WP9: Preparation thesis defence
The aim of this WP is to finalize the thesis report and prepare for presenting and defending the conclusions.

• Finalize thesis report
• Create thesis defence presentation
• Prepare for defence questions
• Faculty forms, documents, and other practical matters

Expected duration: 3 weeks
Margin: 3 days
Inputs: thesis draft, feedback GL review
Outputs: final thesis report, thesis defense presentation

C.1. Planning
The planning is divided into four phases. The first phase is the Literature Review & Research Definition
Phase. The goal of this first phase is to develop a clear research objective based on the knowledge gap that is
identified during the review of the relevant literature. The second phase is called Research Phase 1. In this
phase the first half of the research is conducted. The deliverable of Research Phase 1 is the midterm report.
In the third phase, Research Phase 2, the research is completed and the thesis draft is submitted. In the final
phase, the Research Dissemination, a Green Light Review is conducted to determine whether the student is
ready to proceed to the thesis defense. During this review, a formal go/no-go decision is made regarding the
defence. A complete overview of the high-level planning is presented in Figure C.1.
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Figure C.1: High-level thesis project planning including (intermediate) deadlines and deliverables.

Secondly, a more detailed planning is presented. This second planning focusses on the various work packages
as described in Section C.1 and shows their interdependencies and corresponding expected deadlines. This
planning is presented in Figure C.3. below.

Figure C.2: Detailed thesis project planning including work packages developed with InstaGant (below).
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