

Delft University of Technology

Recurrent knowledge graph embedding for effective recommendation

Sun, Zhu; Yang, Jie; Zhang, Jie; Bozzon, Alessandro; Huang, Long Kai; Xu, Chi

DOI
10.1145/3240323.3240361
Publication date
2018
Document Version
Accepted author manuscript
Published in
RecSys '18

Citation (APA)
Sun, Z., Yang, J., Zhang, J., Bozzon, A., Huang, L. K., & Xu, C. (2018). Recurrent knowledge graph
embedding for effective recommendation. In RecSys '18 : Proceedings of the 12th ACM Conference on
Recommender Systems (pp. 297-305). Association for Computer Machinery.
https://doi.org/10.1145/3240323.3240361
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3240323.3240361
https://doi.org/10.1145/3240323.3240361

Recurrent Knowledge Graph Embedding for
Effective Recommendation

Zhu Sun1, Jie Yang2, Jie Zhang1, Alessandro Bozzon3, Long-Kai Huang1, Chi Xu4∗
1Nanyang Technological University, Singapore

2eXascale Infolab, University of Fribourg, Fribourg, Switzerland
3Delft University of Technology, Delft, The Netherlands

4Singapore Institute of Manufacturing Technology, Singapore
{sunzhu,zhangj,lhuang018}@ntu.edu.sg,jie@exascale.info,a.bozzon@tudelft.nl,cxu@simtech.a-star.edu.sg

ABSTRACT
Knowledge graphs (KGs) have proven to be effective to improve rec-
ommendation. Existing methods mainly rely on hand-engineered
features from KGs (e.g., meta paths), which requires domain knowl-
edge. This paper presents RKGE, a KG embedding approach that
automatically learns semantic representations of both entities and
paths between entities for characterizing user preferences towards
items. Specifically, RKGE employs a novel recurrent network archi-
tecture that contains a batch of recurrent networks to model the
semantics of paths linking a same entity pair, which are seamlessly
fused into recommendation. It further employs a pooling operator
to discriminate the saliency of different paths in characterizing
user preferences towards items. Extensive validation on real-world
datasets shows the superiority of RKGE against state-of-the-art
methods. Furthermore, we show that RKGE provides meaningful
explanations for recommendation results.

CCS CONCEPTS
• Information systems→ Collaborative filtering;

KEYWORDS
Knowledge Graph; Recurrent Neural Network; Semantic Represen-
tation; Attention Mechanism

1 INTRODUCTION
Knowledge graphs (KGs) as an auxiliary data source have recently
attracted a considerable amount of interest to enhance recommen-
dation. They connect various types of information related to items
(e.g., genre, director, actor of a movie) in a unified global space,
which helps to develop insights on recommendation problems that
are difficult to uncover with user-item interaction data only. State-
of-the-art methods [15, 28, 37, 42, 45] mainly extend the latent factor
model (LFM) [29] with entity similarity derived from paths (e.g.,
meta paths [33]) in a KG, based on the intuition that paths connect-
ing two entities represent entity relations of different semantics.
Such an intuition facilitates the inference of user preferences based
∗Both the first two authors contributed equally to the paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: A KG in the movie domain, which contains users,
movies, actors, directors and genres as entities; rating, cate-
gorizing, acting, and directing as the entity relations.

on item similarity for generating effective recommendations. Meta
path based methods, however, heavily rely on handcrafted fea-
tures to represent path semantics, which further relies on domain
knowledge. More importantly, manually designed features are often
incomplete to cover all possible entity relations, thus hindering the
improvement of the recommendation quality.

The popularity of representation learning (RL) recently prompted
a seminal work [44] that exploits KG embedding to capture entity
semantics for recommendation. In contrast to meta path based
methods relying on handcrafted features, KG embedding based
methods automatically learn the embeddings of entities in KGs by
using the one level ego-network of entities with their properties.
As a result, they have achieved higher performance than meta path
based methods. A major limitation of these methods is, however,
the disregard of semantic relations of entities that are connected
by paths, which has been extensively studied in meta path based
methods. We therefore seek for a new data-driven method that
does not depend on handcrafted features (e.g., meta paths), yet can
capture the semantics of both entities and paths encoded in KGs for
recommendation. Figure 1 illustrates the need for modeling path
semantics for recommendation as well as the challenges.
Running Example. Consider a KG based movie recommender
system, where Bob’s preference over SPR1 can be inferred by: 1)

Bob
rate
−−−→ TT

categorized by
−−−−−−−−−−−→ Drama

categorize
−−−−−−−−→ SPR; 2) Bob

rate
−−−→ TT

directed by
−−−−−−−−→ Steven Spielberg

direct
−−−−→ SPR. These paths capture seman-

tic relations of 1) belonging to the same genre, or 2) being directed
by the same director for the movies that Bob has watched. Hence,

1For all the movies, we adopt the abbreviation for short.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Zhu Sun et al.

we may infer that Bob prefers either movies belonging to the genre
of Drama or those directed by Steven Spielberg. Based on these
insights, we can recommend GWH (belongs to Drama) or SL (di-
rected by Steven Spielberg) to Bob. This example highlights that
different paths connecting a same entity pair often carry relations
of different semantics. Typically, they are of different importance in
characterizing user tastes over items, i.e., certain paths can better
describe user preferences than the others. In the example, Bob’s
preference over SPR may be driven more by his interest in the genre
than by his favor for the director. To fully exploit paths in KGs for
recommendation, it requires to capture not only the semantics of
different paths but also their distinctive saliency in describing user
preferences towards items.

To this end, we consider to adopt recurrent networks [5, 39]
to learn the semantics of entity relations. Recurrent networks are
capable of modeling sequences with various lengths, making it
particularly suitable for modeling paths – i.e., sequences of different
numbers of entities – in KGs. Most importantly, recurrent networks
can not only model the semantics of entities (via an embedding
layer [34]), but also those of entity relations by encoding the entire
path, thus providing a unified approach to learn the representations
of both entities and entity relations. Given different descriptive
power of paths in characterizing user preferences, it is however non-
trivial to model all relevant paths in KGs by the standard recurrent
network architecture.

To exploit KGs for recommendation as well as to address the
above challenge, we propose a unified recurrent knowledge graph
embedding framework RKGE. RKGE first automatically mines all
qualified paths between entity pairs from the KG, which are then
encoded via a batch of recurrent networks, with each path modeled
by a single recurrent network. The recurrent networks in the batch
share common parameters to avoid over-fitting. RKGE is thus flexi-
ble in capturing different numbers of paths with various lengths
that connect entity pairs. It then employs a pooling operation to
discriminate the importance of different paths for characterizing
user preferences towards items. Finally, a recommendation layer
is seamlessly integrated with the network such that RKGE can be
trained in an end-to-end manner. To the best of our knowledge,
this is the first work that adapts recurrent networks to capture the
semantics of both entities and paths encoded in KGs for effective
recommendation. Extensive experiments on real-world datasets
show that RKGE consistently outperforms the state-of-the-art with
a lift of 17.84% in Precision and 11.82% in MRR on average.

2 RELATEDWORK
This section provides an overview of state-of-the-art methods that
utilize KG for better recommendation. They are generally classified
into three types, namely graph based methods, meta path based
methods and KG embedding based ones.

Graph based Methods. A line of research focuses on making use
of KGs by designing graph based methods. Early work [7] proposes
a method by applying the spreading activation technique [22] on
KGs. This results in a model that provides lower rating estimation
error and higher coverage for recommendation compared to those
collaborative filtering methods using only user-item interactions.
Later, Pham et al. [20, 21] propose HeteRS to solve recommendation

problems in event-based social networks. They transform the rec-
ommendation problem into a node proximity calculation problem
and employ Markov chain to solve it. After that, Catherine and
Cohen [2] investigate a recommendation approach by adopting
logic reasoning on KGs to infer user preferences. Recently, Chaud-
hari et al. [3] introduce RERA, a recommender system that adopts
Personalized Page Rank to utilize KGs for better recommendation.

All these graph based methods are attributed to the underlying
technique of random walk [6], which however can be easily biased
to popular and centered entities in KGs. More importantly, they
only consider the topological structure of KGs without considering
to model the semantics of entities and entity relations encoded in
the KG, thus failing to fully exploit KGs for recommendation.

Meta Path based Methods. Another set of methods utilizes KGs
by designing meta paths, which predefine the specific format and
length of the paths to capture different semantics carried by KGs.

Several studies leverage the relations of items connected by meta
paths to boost recommendation quality. For instance, Yu et al. [41]
devise HeteMF – a matrix factorization [16] framework with meta-
path-based entity similarity. It decomposes the user-item rating
matrix, meanwhile adopting graph regularization [31] to constrain
the distance of latent vectors of similar items that are connected
by meta paths. Later, they propose HeteRec [43] to learn user pref-
erence diffusion to the unrated items that are connected with her
rated items via different meta paths in KGs. HeteRec is designed for
implicit feedback and estimated by the Bayesian ranking optimiza-
tion [24], and is further extended to incorporate personalization
via clustering users based on their interests by Yu et al. [42].

Other work models the relations of user-user or user-item via
meta paths. For example, Luo et al. [15] investigate a social network-
based recommendation algorithm HeteCF to model the relations of
user-item, user-user and item-item by meta-path based similarity.
In order to accurately capture semantic relations among users, Shi
et al. [28] propose the SemRec model and introduce the concept
of weighted meta path, which aims to depict the path semantics
by distinguishing subtle differences among link attribute values.
Later, the same authors design a matrix factorization based dual
regularization framework SimMF [27]. They design regularization
terms for both users and items with the help of meta path based
similarity. Similarly, Wang et al. [37] and Zheng et al. [45] also
devise matrix factorization approaches by regularizing user-user
relations with the computed meta path based similarity.

The success of these methods heavily relies on the quality and
quantity of the handcrafted meta paths, which additionally requires
on domain knowledge. This largely limits the capability of these
methods for generating high-quality recommendation.

KG Embedding based Methods. The most recent state-of-the-
art algorithm is collaborative knowledge graph embedding (CKE)
proposed by Zhang et al. [44]. CKE learns better item latent repre-
sentations by capturing entity semantics from KGs via TransR [12],
showing the superior performance over other existing methods
that exploit KGs for recommendation. However, it ignores the se-
mantics of the relations between paired entities represented by
paths, thus failing to fully capture KG semantics for recommenda-
tion. In contrast, our RKGE models the semantics of all the paths

Recurrent Knowledge Graph Embedding Conference’17, July 2017, Washington, DC, USA

between entities in a fully automatic fashion using a batch of re-
current networks, meanwhile it learns the respective path saliency
with a pooling operation. By doing so, RKGE advances the cur-
rent state-of-the-art embedding based recommendation methods
by fully exploiting entity relations in KGs.

Our method is related to graph embedding based methods, such
as node2Vec [8], LINE [35], and DeepWalk [19], as proposed for
network analysis (e.g., node classification and link prediction). How-
ever, they are not suitable for our case, as they all aim to learn entity
representations in a homogeneous network, whereas KGs studied
here are heterogeneous. We further note that graph embedding
based methods have also been applied to other domains, e.g, seman-
tic search [13, 14]. However, we mainly focus on methods that fall
into the area of recommendation in this study.

3 RECURRENT KNOWLEDGE GRAPH
EMBEDDING

Given user-item interaction data, our goal is to exploit the hetero-
geneous information encoded in the KG to help learn high-quality
representations of both users and items, which are then used to
generate better recommendations. The extracted representations
are expected to fully capture the semantic meanings of entities and
entity relations encoded in the KG. To achieve this goal, we propose
the recurrent knowledge graph embedding approach (RKGE). The
overall framework is illustrated in Figure 2. RKGE first automat-
ically mines semantic paths between entity pairs, then employs
a novel recurrent network architecture to encode different paths
via a batch of recurrent networks. It further determines different
path saliency through a pooling operation, which in the end, is
seamlessly integrated with recommendation generation.

Notations. Table 1 summarizes the notations used throughout this
paper. We denote the user set asU = {u1,u2, . . . ,um } and the item
set asV = {v1,v2, . . . ,vn }, and use R ∈ Rm×n to denote historical
user-item interactions, with ri j = 1 indicating thatui prefersvj and
0 otherwise. We use entity as a generic term to refer to all relevant
objects (e.g., user, item, genre, actor) that can be mapped into a KG,
denoted as G. The definition of KG is given as below.

Definition 1. Knowledge Graph. Let E = {e1, e2, . . . , ek } and
R = {r1, r2, . . . , rд} denote the sets of entities and entity relations,
respectively. KG is defined as a directed graph G = (E,L) with an
entity type mapping function ϕ : E → A and a link type mapping
function ψ : L → R. Each entity e ∈ E belongs to an entity type
ϕ(e) ∈ A, and each link l ∈ L belongs to a link type (relation)
ψ (l) ∈ R. Finally, we use P(ei , ej) = {p1,p2, . . .ps } to represent
the connected paths between entities ei and ej .

The KG investigated in this study can be considered as a hetero-
geneous information network, as there are more than one types of
entities and entity relations included, i.e., |A| > 1 and/or |R | > 1.
Figure 1 provides a toy example of the KG in the movie domain,
where entities include user, movie and the corresponding attributes
(e.g., genre, actor and director), and links describe the relations
between entities (e.g., “rating” behavior and “acting” behavior).

Table 1: Notations

Notations Descriptions

U = {u1,u2, . . . ,um } User set
V = {v1,v2, . . . ,vn } Item set
R ∈ Rm×n User-item interaction matrix
ri j , r̃i j Observed and estimated ratings
E = {e1, e2, . . . , ek } Entity set
R = {r1, r2, . . . , rд} Entity relation set
G = (E,L) Knowledge graphs
P(ei , ej) = {p1,p2, . . .ps } Paths between entity pair (ei , ej)
pl = e0 → e1 · · · → eT Path pl between entity pair
pl = {pl0, pl1, · · · , plT } Embedding of path pl
al t Attention gate at current step
hl t Current hidden state
h′l t Current candidate hidden state
h Aggregated hidden state
W,H Linear transformation parameters
σ Sigmoid activation function
J Objective function

3.1 Semantic Path Mining
To fully exploit entity relations in KGs, we first mine paths with
different semantics between entities, which are then seamlessly
fused into the recurrent network batch for effective recommenda-
tion. Due to the large volume and complexity of KGs, there are a
large number of paths connecting entity pairs that may contain
different entity types and relation types in different orders and with
various lengths. To increase model efficiency, we thus devise two
strategies to help select salient paths:

Strategy 1. We only consider user-to-item paths P(ui ,vj) that con-
nect ui with all her rated items, i.e., {vj |ri j > 0}. These paths are
most helpful for recommendation given our goal to recommend items
to users. Moreover, they further include those relevant item-to-item
and user-to-user paths as subsequences of user-to-item paths.

Strategy 2. We enumerate paths with a length constraint, i.e., only
paths with length less than a threshold are employed. As pointed out
by Sun et al. [33], paths with relatively short length are good enough
to model entity relations, whereas longer paths may bring in remote
neighbors and lose semantic meanings, thus introducing much noise.

We will also investigate how the lengths of paths can affect
recommendation performance in our new context of knowledge
graph embedding based approach and show in our experiment
that similar results also hold. Guided by the two strategies, RKGE
mines qualified paths with different semantics that connect entity
pairs (i.e., user-item) in an automatic fashion, instead of manually
designed and extracted features (e.g., meta paths) from the KG.
These paths will be further processed by the recurrent network
batch to automatically learn their semantic representations for
recommendation, as will be introduced next.

3.2 Recurrent Network Batch
By regarding the directed path between user-item pair as a sequence,
where elements in the sequence are the entities in the path, we
naturally consider to adopt recurrent networks to encode the path.

Conference’17, July 2017, Washington, DC, USA Zhu Sun et al.

Recurrent Network BatchSemantic Path Mining

Attention-Gated Hidden Layer

Embedding Layer

...

... ...

Saliency Determination

output

... ...

...
... ...

...

+

... ...

Figure 2: The overall framework of RKGE, which describes the case of a user-item pair.

This is mainly attributed to their capability in modeling sequences
with various lengths and in capturing the semantics of both entities
and the entire path between entity pair. Given that multiple paths
with various lengths may connect entity pair, we devise a novel
network architecture to capture all possible relations, which com-
prises a batch of recurrent networks, with every single recurrent
network learning the semantic representation of an individual path.
As the number of paths between different entity pairs is dynamic,
the number of recurrent networks in the batch varies in accordance
with that of connected paths between the entity pair. Besides, all
the recurrent networks in the batch share the same parameters to
further avoid over-fitting.

Assume s paths of different lengths connect an entity pair (ui ,vj),
i.e., P(ui ,vj) = {p1,p2, · · · ,ps }. Note that s is dynamic, as different
entity pairs may be connected with different number of paths. For
any path pl with length T in the format of pl = e0

r1
−−→ e1

r2
−−→

e2 · · ·
rT
−−→ eT with e0 = ui , eT = vj , the recurrent network encodes

the path by learning a semantic representation for each entity and
a single representation for the entire path. In RKGE, these goals are
achieved by two network layers, namely the embedding layer and
the attention-gated hidden layer, as illustrated in Figure 2.
Embedding Layer. For each entity et in pl , the embedding layer
learns a distributed representation pl t that maps et into a low di-
mensional vector, with each element of the vector representing the
affinity of this entity to a latent topic, thus capturing the semantic
meaning of the entity. This results in a representation of path pl
as pl = {pl0, pl1, pl2, · · · , plT }, where each element denotes the
representation (embedding) of the corresponding entity in pl . This
new representation will then be fed as input to the hidden layer to
learn a single representation that encodes the entire path.
Attention-GatedHidden Layer. To learn the path representation,
the hidden layer considers both the embeddings of entities in the
path and the order of these entities. It takes a flow-based approach
to encode the sequence from the beginning entity of the path e0
to the ending entity eT : in each step t − 1, it learns a hidden state
hl (t−1) that encodes the subsequence from e0 to et−1, which is then
used as input together with the embedding of et (i.e., pl t) to learn
the hidden state of the next time step, i.e., hl t . The final state hlT
will encode the entire path, thus is considered as the representation
of the whole path.

We propose to use an attention gate to better control information
flows through path pl , which has proven to be more effective than

plain recurrent neural networks [17, 18, 40].We denote the attention
gate at step t by al t , which is a scalar value between [0, 1]. The
hidden-state at time t is modeled as:

hl t = (1 − al t) · hl (t−1) + al t · h′l t (1)

where the attention gate al t balances the contributions of the in-
put of the previous hidden-state hl (t−1) and the current candidate
hidden-state h′l t . The current candidate hidden-state is further given
by fully incorporating the input at the current time step:

h′l t = σ
(
W · hl (t−1) + H · pl t + b

)
(2)

whereW,H are the linear transformation parameters for the pre-
vious and current steps, respectively; b is the bias term; σ is the
sigmoid activation function.

Finally, the attention gate is inferred by using a bi-directional
recurrent networks [26] to maximize the exploration of the input
sequence. We model the attention gate based on both the input
observation at the current time step and the information from
neighboring observation in both directions, formulated by

al t = σ
(
M⊤ · (

−→
hl t ;
←−
hl t) + b

′
)

(3)

where σ is the sigmoid activation function to control the range
of attention gate into range [0, 1]; M is the weight vector and b ′
is the bias term of the attention layer; (;) denotes the concatena-
tion among vectors;

−→
hl t and

←−
hl t are the hidden representations of

a bi-directional recurrent network model [26], performed as the
summary of context information around time step t , given by,

−→
h l t = σ

(
−→
W · −→p l t +

−→
H ·
−→
h l (t−1) +

−→
b
)

←−
h l t = σ

(
←−
W · ←−p l t +

←−
H ·
←−
h l (t+1) +

←−
b
) (4)

Thus,
−→
h l t summarizes the path from the beginning to step t , while

←−
h l t summarizes the path from the end to step t .
Overall, by incorporating each qualified path (with a total num-

ber of s) between ui and vj into the corresponding attention-gated
recurrent network simultaneously, the result is a recurrent network
batch, with each attention-gated recurrent network encoding a
single path. To avoid over-fitting, all the attention-gated recurrent
networks in the batch share the same parameters. Finally, we obtain
the hidden representations of all paths, i.e., the representations of
the entity relations of ui and vj . The different importance of these

Recurrent Knowledge Graph Embedding Conference’17, July 2017, Washington, DC, USA

hidden states on modeling entity relations is then distinguished by
a pooling operation, as we will elaborate next.

3.3 Saliency Determination
As there are s paths linking ui and vj , different paths may play
different roles in modeling the relations between them. For exam-
ple, previous work has shown that shorter paths may have more
impacts than longer ones, as shorter paths often indicate a stronger
connectivity with clearer semantics. Hence, we design a data-driven
method via pooling operations [11] to help distinguish the path im-
portance. Attention mechanisms [40] also seem to be one possible
solution to address this issue. However, it generally aims to identify
the importance of each element in a single sequence, while our
goal is to decide the saliency of each path (i.e., sequence) between
an entity pair. We consider to use pooling operations, which are
designed to focus on the most important “features” of different
vectors, thus are more suitable for our purpose.

For the s paths in P(ui ,vj), their last hidden states learnt by the
recurrent network batch are h1T1 , h2T2 , · · · , hsTs , where Ts is the
last step of ps as well as the length of ps . Based on this, we add
a max pooling layer to get the most salient feature across all the
paths. This results in an aggregated hidden state h:

h[j] = max
1≤i≤s

hiTi [j] (5)

where h[j] is the value of the jth dimension of h. Furthermore, to
avoid h being dominated by a certain hiTi , e.g., a single path in
P(ui ,vj), we also perform an average pooling operation [1] towards
the last hidden states of all the paths. Their respective performance
will be evaluated in the experiment section later.

Through the pooling operation, we get a final hidden state of all
the paths between ui and vj , i.e., the aggregated effects of paths
on the relation of ui and vj . We then adopt a fully-connected layer
after the pooling layer to further quantify the relation (proximity)
of ui and vj , i.e., r̃i j , given by:

r̃i j = f (h) = σ (Wr · h + br) (6)

whereWr is regression coefficient and br is the bias term. We adopt
a sigmoid function σ (·) to control the range of f (h) into [0, 1].

Once model training is finished, better representations of ui and
vj can be achieved by encoding the connected paths between them
via RKGE. Following [44], during the test process, we calculate
the proximity score of user ui and items vk via the inner product
of their corresponding embeddings [25], i.e., s(ui ,vk) = ⟨ui , vk ⟩.
Inner product is used as it is more efficient than predicting a user’s
rating via the network, which requires a time-consuming feed-
forward pass through the whole network. Finally, we rank the
items based on the proximity score, and recommend the top-K
items with the highest score to ui .

3.4 Model Optimization
Model Learning. Given the training data Dtrain, which contains
instances in the form of

(
ui ,vj , ri j ,P(ui ,vj)

)
, RKGE learns the

involved parameters by minimizing the following loss function:

J =
1

|Dtrain |

∑
ri j ∈Dtrain

BCELoss(r̃i j , ri j) (7)

Algorithm 1: RKGE Optimization
Input: rating matrix R, knowledge graph G, in_dim,

hidden_dim, max_path_length, γ , Iter
1 Initialize the embeddings of e ∈ G with small values;
// Semantic Path Mining

2 Built the graph G with Python Networkx;
3 foreach ui ∈ U do
4 Based on R, get positive pairs (ui , vj);
5 Randomly sample to generate negative pairs (ui , vk);
6 (u, v) ← (ui , vj) ∪ (ui , vk);
7 foreach (u, v) pair do
8 Mine connected paths P(u, v);

// Recurrent Network Architecture

9 for t = 1; t ≤ I ter ; t + + do
10 foreach (u, v) pair do

// Recurrent Network Batch

11 for pl ∈ P(u, v) do
12 hlTl ← based on Equ. (1-4);
13 Combine(h)← hlTl ;

// Saliency Determination

14 h← pool
(
Combine (h)

)
based on Equ. (5);

15 Calculate r̃i j based on Equ. (6);

16 Update parameters by back propagation through time;

where BCELoss(·) is the Binary Cross Entropy between the observed
and estimated ratings. Thus, we address the recommendation prob-
lem as a binary classification problem, the effectiveness of which
has proven by [9]. As Equation 7 and all modules of RKGE are
analytically differentiable, it can be readily trained in an end-to-end
manner. Parameters are updated by the back propagation through
time (BPTT) algorithm [38] in the recurrent layers and by nor-
mal back-propagation in other parts. We randomly sample unrated
items for each user as negative instances, the number of which is
the same with her rated items. The paths connecting users and their
negative instances are also exploited to help balance model learn-
ing. The detailed optimization process is described by Algorithm 1,
which is mainly composed of two modules: the semantic path min-
ing (lines 2-8) and the recurrent network architecture (lines 9-16)
module, which includes the recurrent network batch (lines 11-13)
and saliency determination (lines 14-15).
Model Scalability. We design a two-level parallel training mecha-
nism for RKGE to improve model scalability. In each iteration of
model training, the connection paths of all user-to-item pairs for
individual users are fed into RKGE in parallel. Meanwhile, parame-
ters related to the multiple paths between each user-to-item pair
are simultaneously updated. As a result, the training time for RKGE
on the two evaluation datasets, i.e., Movielens-1M and Yelp, (see
Section 4.1) is around three hours and one hour, respectively. To
summarize, RKGE is scalable to large datasets and KGs.

4 EXPERIMENTS AND ANALYSIS
4.1 Experimental Setup
Datasets. To demonstrate the effectiveness of our proposed rec-
ommendation framework, we adopt two real-world datasets from

Conference’17, July 2017, Washington, DC, USA Zhu Sun et al.

Table 2: Dataset statistics.

Datasets IM-1M Yelp

#Users 6,040 37,940
User-item #Items 3,382 11,516
interaction #Ratings 756,684 229,178

Data Density 3.704% 0.052%

#Entities 18,920 46,606
Knowledge #Entity Types 11 7
graph #Links 800,261 302,937

#Link Types 10 6
Graph Density 0.447% 0.028%

different domains (movie and local business) for empirical study.
The first dataset is IM-1M, which is built by combing MovieLens
1M2 and the corresponding IMDB3 datasets. MovieLens 1M is a
personalized movie rating dataset, which consists of 1M ratings
(ranging from 1 to 5) with 6,040 users and 3,706 movies; IMDB con-
tains movie auxiliary information, such as genre, actor, director, etc.
The two datasets are linked by the titles and release dates of movies.
After mapping the two datasets, we have 6,040 users and 3,382
movies, and 756,684 ratings in the final dataset. The second dataset
is Yelp, which is the Yelp Challenge Dataset4 released by Yelp5 and
is available now at Kaggle6. This dataset contains user check-ins
to local business, together with user reviews and local business
information network (e.g., category, location). Yelp is much sparser
than IM-1M, thus the performances of all the methods are expected
to decline accordingly on Yelp.

We process the two datasets in accordance with literature [2, 42]
as follows: if a user provides a rating towards a movie, or wrote a
review for a business, we set the feedback as 1, otherwise it would
be set to 0. We split the feedback of IM-1M in the order of their
timestamps, and use the older 80% of feedback as training data and
the more recent 20% as test data. With Yelp we utilize the original
training and test sets in the published version. The overall statistics
of the two datasets are summarized in Table 2.
Comparison Methods. To validate the effectiveness of our pro-
posed framework, we compare with several algorithms: 1)Most-
Pop: recommends the most popular items to all users without per-
sonalization; 2) BPRMF [24]: Bayesian personalized ranking model
based on matrix factorization (MF) [16]; 3)NCF [9]: neural network
based collaborative filtering recommendation method; 4) LIBFM
[23]: factorization machine is a classic feature based latent factor
model, to which we feed item attributes in the KG as raw features;
5) HeteRS [20, 21]: the graph based recommendation method inte-
grating KGs via Markov chain; 6)HeteRec [42]: latent factor model
fusing meta path for personalized recommendation; 7) GraphLF
[2]: the graph based approach using Personalized PageRank to infer
user preferences via logic reasoning; 8) CKE [44]: the recently pro-
posed state-of-the-art collaborative KG embedding based method
that learns better item latent representations with the help of KGs.

2http://grouplens.org/datasets/movielens/
3http://www.imdb.com/
4https://www.yelp.com/dataset_challenge
5http://www.yelp.com/
6https://www.kaggle.com/c/yelp-recsys-2013/data

For fair comparison, we remove the textual and visual embedding
parts from the original CKE, due to the unavailable of such auxiliary
information in the evaluation datasets. Besides, we take LIBFM as
the representative feature based latent factor model, as it generally
outperforms other counterparts, such as SVDFeature [4], collective
matrix factorization (CMF) [30] and tensor factorization (TF) [10].
We do not compare with other meta path based methods (e.g.,
HeteCF [15], SimMF [27]), as they are generally outperformed by
either HeteRec or GraphLF. Note that we do not compare with
RRN [39], as it aims to study the impacts of temporal dynamics,
which is beyond our research scope.
Evaluation Metrics. In alignment with literature [2, 42, 43], we
adopt Precision at N = {1, 5, 10}, i.e., Prec@N , and the top-N Mean
Reciprocal Rank (MRR) [36], as evaluation metrics.

MRRN =
1
m

∑m

i=1

(∑
vj ∈test (ui)

1
rank(ui ,vj)

)
(8)

where we set N = 10; vj is the correctly recommended item in
the top-N list; test(ui) is the set of items in the test data for ui ;
rank(ui ,vj) is the position of vj in ui ’s recommendation list.
Parameter Settings. The optimal parameter settings for all the
methods are empirically found out. We apply a grid search in
{10, 20, 50, 100, 200} to find out the best settings for the dimension
of latent factor d . A grid search in {10−5, 10−4, 10−3, 10−2, 10−1} is
applied for the learning rate and regularization coefficient (includ-
ing the 1/2-way regularization of LIBFM); for HeteRS, β = 104. For
HeteRec and CKE, a grid search in {5, 10, 20, 50, 100, 200} is applied
to find out the best settings for the number of negative samples; the
rest parameters are set as suggested by the original papers. We set
the parameters of NCF as suggested by [9]. For RKGE, the number
of hidden units is set to 32 on IM-1M and Yelp, which is selected
from {8, 16, 32, 64, 128} based on a held-out validation set. To avoid
potential over-fitting, the dropout value is validated from the option
set {0.00, 0.25, 0.50} [32].

4.2 Results of RKGE
Impacts of Path Lengths. Paths with various lengths capture
different semantics, which help to infer user preferences from dif-
ferent angles and allow to generate different recommendations.
Our hypothesis is that paths with relatively short lengths are more
beneficial for modeling entity relation as they carry clearer and
interpretable semantic meanings. This has been verified in meta
path based method [33]. Here we study if the same result holds
by KG embedding based approach. To empirically investigate the
impact of path length on recommendation accuracy, we incorporate
paths with different lengths, i.e., L = {3, 5, 7} into the proposed
RKGE model. As RKGE aims at modeling paths of user-to-item
pairs, and these paths are of odd lengths since items can only be
indirectly linked via their attribute entities. Figure 3 depicts the
results on the two datasets. From the results, we observe that as
path lengths increase, the performance (including Pre@1, 5, 10 and
MRR) of RKGE decreases gradually on both datasets. This verifies
our intuition and confirms previous findings in the new context of
KG embedding based approach.
Impacts of Pooling Operations. To determine the saliency of dif-
ferent paths between two entities, pooling operations are adopted

Recurrent Knowledge Graph Embedding Conference’17, July 2017, Washington, DC, USA

IM-1M
0.13

0.14

Pr
ec
@
1

L3 L5 L7

IM-1M
0.1

0.11

Pr
ec
@
5

L3 L5 L7

IM-1M
9.3

9.5

9.7 ·10
−2

Pr
ec
@
10

L3 L5 L7

IM-1M
0.32

0.33

M
RR

L3 L5 L7

Yelp

0.8

1

1.2
·10−2

Pr
ec
@
1

L3 L5 L7

Yelp

5

6

7

·10−3

Pr
ec
@
5

L3 L5 L7

Yelp
4

5

6

·10−3

Pr
ec
@
10

L3 L5 L7

Yelp
1.6

1.8

2

2.2

·10−2

M
RR

L3 L5 L7

Figure 3: The impacts of different path lengths for RKGE on IM-1M and Yelp datasets.

IM-1M
0.13

0.14

Pr
ec
@
1

max avg

IM-1M
0.1

0.11

Pr
ec
@
5

max avg

IM-1M
9.5

9.6

·10−2

Pr
ec
@
10

max avg

IM-1M
0.32

0.33

M
RR

max avg

Yelp
5

7

9
·10−3

Pr
ec
@
1

max avg

Yelp
6.5

6.6

6.7

·10−3

Pr
ec
@
5

max avg

Yelp
5.5

6

6.5 ·10
−3

Pr
ec
@
10

max avg

Yelp
1.6

1.8

2

·10−2

M
RR

max avg

Figure 4: The impacts of different pooling strategies for RKGE on IM-1M and Yelp datasets.

by the proposed RKGE model. To understand the effect of different
paths in characterizing user preferences, we compare two pooling
strategies: 1) max-pooling, which focuses on the most important
paths and 2) average-pooling, which aims at aggregating impacts
of all paths. Hence, average-pooling avoids the result being domi-
nated by a certain path. Figure 4 illustrates their performance on
the two datasets, from which we can note that the performance of
average-pooling is generally better than that of max-pooling. This
supports our intuition that user preferences towards items are de-
termined by combinations of heterogeneous factors and highlights
the importance of a method that can make full use of these factors.

Interpretability of RKGE. By fully capturing the semantics of
entities and entity relations encoded in KGs, RKGE can not only
provide better recommendation, but also possess a better inter-
pretability for user-item interactions. To demonstrate this, we first
map for each user her rated items (i.e., items in training data) and
the correctly recommended items (i.e., the intersection between
items in her top-10 recommendation list and test data) into the KG,
and then check whether there are semantic paths linking those
items. For conciseness, here we only show the results of a randomly
sampled user, referred to as Bob, in Figure 5. Similar observations
can be obtained for other users on the two datasets.

In Figure 5, the items on the top are Bob’s rated items in the
training data, whereas the items on the bottom are correctly rec-
ommended ones in the test data. For simplicity, we only keep four
types of entities in the KG, i.e., movie, genre, actor and director.
Several interesting findings are obtained. First, the correctly recom-
mended movies are all connected to Bob’s rated movies either by
genre (e.g., “Low Down Dirty Shame” – “Star Wars”), actors (e.g.,
“Air Force One” – “The Devil’s Own”), or directors (e.g., “Raiders of
Lost Ark” – “Jaws”). This suggests that RKGE can well infer Bob’s
specific preference from different angles with KGs, based on which
generates correct recommendations. Second, most of the correctly
recommended movies are connected with rated movies by different
types of paths, instead of a single one. For example, “Raiders of
Lost Ark” connects “Jaws” by “Adventure” and “Steven Spielberg”;
“Air Force One” links with “Star Wars” by “Action”, “Adventure”
and “Harrison Ford”. This implies that user-item interactions are

Figure 5: A running example to help illustrate the inter-
pretability of RKGE on IM-1M dataset.

co-influenced by different paths, possibly with different degrees,
and that their joint effects can be effectively captured by RKGE,
allowing it to provide recommendations with high interpretability.

4.3 Comparative Results
Table 3 summarizes the performance of all comparison methods
across the two real-world datasets, where two views are created
for each dataset: ‘All Users’ indicates all the users are considered in
the test data; while ‘Cold Start’ implies only users with less than
5 ratings are involved in the test data. A number of interesting
observations can be noted from the results for the two views.
Performance on All Users. As the basic recommendation ap-
proaches considering no auxiliary information,MostPop and BPRMF
perform worse than other methods. This helps confirm the useful-
ness of KGs for recommendation. We further observe that BPRMF
highly outperforms MostPop, which is mainly because BPRMF is a
personalized recommendationmethod via learning individual user’s
preference, whereas MostPop is a simple and non-personalized one.

By incorporating item attributes in the KG as raw features, LIBFM
performs better than BPRMF, sometimes even better than existing
KG based methods (e.g., HeteRS, HeteRec on Yelp), suggesting its

Conference’17, July 2017, Washington, DC, USA Zhu Sun et al.

Table 3: Performance of all comparison approaches on IM-1M and Yelp across all the evaluationmetrics. The best performance
is boldfaced; the runner up is labeled with ‘*’; the column ‘Improve’ indicates the relative improvements that RKGE achieves
w.r.t. the best performance of methods proposed by others.

View Datasets Metrics MostPop BPRMF LIBFM NCF HeteRS HeteRec GraphLF CKE RKGE Improve

A
ll
U
se
rs

IM-1M

Prec@1 0.0118 0.0409 0.0459 0.0450 0.0689 0.0764 0.1069* 0.0954 0.1396 30.58%
Prec@5 0.0064 0.0438 0.0525 0.0482 0.0528 0.0579 0.0360 0.0781* 0.1092 39.82%
Prec@10 0.0081 0.0441 0.0456 0.0485 0.0475 0.0488 0.0581 0.0682* 0.0861 26.25%
MRR 0.0245 0.1234 0.1412 0.1360 0.1600 0.1737 0.1524 0.2440* 0.3056 25.25%

Yelp

Prec@1 0.0003 0.0051 0.0054 0.0056 0.0047 0.0072 0.0083 0.0084* 0.0113 34.52%
Prec@5 0.0007 0.0058 0.0059 0.0060* 0.0052 0.0050 0.0054 0.0057 0.0070 16.67%
Prec@10 0.0004 0.0052 0.0054 0.0055 0.0031 0.0039 0.0056* 0.0053 0.0062 10.71%
MRR 0.0010 0.0162 0.0167 0.0178 0.0116 0.0151 0.0189* 0.0178 0.0218 15.34%

Co
ld

St
ar
t IM-1M

Prec@1 0.0028 0.0171 0.0330 0.0188 0.0405 0.0573 0.0677 0.0687* 0.0809 17.76%
Prec@5 0.0017 0.0191 0.0203 0.0210 0.0428 0.0428 0.0267 0.0432* 0.0481 11.34%
Prec@10 0.0013 0.0205 0.0273 0.0225 0.0370 0.0402 0.0422* 0.0372 0.0467 10.66%
MRR 0.0050 0.0438 0.0457 0.0481 0.1239 0.1355 0.1188 0.1408* 0.1521 8.03%

Yelp

Prec@1 0.0004 0.0028 0.0042 0.0031 0.0037 0.0053 0.0061 0.0067 0.0061* -8.96%
Prec@5 0.0003 0.0037 0.0040 0.0041 0.0035 0.0035 0.0038 0.0052* 0.0056 7.69%
Prec@10 0.0003 0.0031 0.0039 0.0034 0.0031 0.0032 0.0047* 0.0043 0.0055 17.02%
MRR 0.0006 0.0098 0.0104 0.0108 0.0097 0.0113 0.0141 0.0151 0.0149* -1.32%

superiority in utilizing auxiliary information for effective recom-
mendation. Despite this, LIBFM models entity interactions in a lin-
ear fashion, thus is intrinsically limited by its expressive power for
capturing complex patterns. Well-designed neural network based
methods are more capable of modeling complex entity relations, as
shown by the performance of NCF. Although merely considering
user-item interaction data, NCF sometimes even performs better
than LIBFM, demonstrating the effectiveness of neural architecture.

In terms of the methods specifically designed for KGs, HeteRec
outperforms HeteRS. The possible reason is that HeteRS is a graph
based method built upon random walk, thus failing to explicitly
capture the semantics of entities and entity relations encoded in
KG, whereas HeteRec is a latent factor model based approach which
exploits the relation heterogeneity in the KG by introducing meta
paths. This verifies that semantic paths in KG indeed facilitate
to generate effective recommendation. GraphLF is also based on
random walk, yet it combines the strength of latent factorization
and logic reasoning, thus achieving better performance thanHeteRS
and HeteRec. By learning item semantic representations from KGs,
CKE generally performs the best among the four existing KG based
methods (i.e., HeteRS, HeteRec, GraphLF and CKE), implying the
effectiveness of network embedding for better recommendation.
However, it ignores the relations of paired entities linked by paths,
thus failing to capture the full semantics encoded by KGs.

Overall, when compared with all the other comparison methods
across the two datasets, our proposed RKGE consistently achieves
the best performance. The improvements w.r.t. Precision and MRR
are 26.42%, 20.30% on average, respectively (Paired t-test, p-value
< 0.01). This implies that the recommendation performance can
be further boosted by appropriately combining the strengths of
network embedding and semantic path mining on KGs.

Performance onCold Start. Similar observations with “All Users”
can be seen on “Cold Start”. As in the previous setting, RKGE sig-
nificantly outperforms (p-value < 0.01) the best existing method
by 9.25% and 3.36% for Precision and MRR on IM-1M, respectively.

While on Yelp, the case is slightly different. The performance of
RKGE is worse than CKE on some metrics (e.g., Prec@1, MRR).
This is possibly due to the extremely low graph density of Yelp
compared with IM-1M, leading to insufficient semantic paths for
RKGE to take advantage of.

We further analyze the robustness of the compared methods
for cold start recommendation. We observe that most methods are
vulnerable to cold start users. This is because these methods learn
user preference based on historical interactions, which contains
very limited information for cold start users. Interestingly, CKE
and RKGE consistently outperform other methods, implying the
robustness of KG embedding for cold start users. RKGE further
outperforms CKE, showing that the usage of path semantics by
RKGE can effectively capture users’ preferences even from their
limited historical interaction records. Besides, we also notice that
the improvement ratios of RKGE on “All Users” are larger than
those on “Cold Start”. This could be explained by the fact that dif-
ferent from other cold-start cases where cold-start users possess
similar amount of external information as warm-start users, in rec-
ommendation with KGs, cold-start users have very limited number
of paths linking entities in KGs. Therefore, the recommendation
with KGs for cold-start users is more difficult.

5 CONCLUSION
Knowledge graphs have attracted a considerable amount of inter-
est from the recommendation community due to its effectiveness
in boosting recommendation performance. This paper presents a
knowledge graph embedding framework – RKGE – with a novel
recurrent network architecture for high-quality recommendation.
RKGE not only learns the semantic representation of different types
of entities but also automatically captures entity relations encoded
in KGs. Extensive validation on two real-world datasets demon-
strates the superiority of RKGE against the state-of-the-art recom-
mendation methods. For future work, we plan to extend RKGE by
considering the taxonomy of entity types in KGs.

Recurrent Knowledge Graph Embedding Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Phil Blunsom, Edward Grefenstette, and Nal Kalchbrenner. 2014. A Convolutional

Neural Network for Modelling Sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (ACL). Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics.

[2] Rose Catherine and William Cohen. 2016. Personalized Recommendations using
Knowledge Graphs: A Probabilistic Logic Programming Approach. In Proceedings
of the 10th ACM Conference on Recommender Systems (RecSys). ACM, 325–332.

[3] Sneha Chaudhari, Amos Azaria, and Tom Mitchell. 2017. An Entity Graph based
Recommender System. AI Communications 30, 2 (2017), 141–149.

[4] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu.
2012. SVDFeature: A Toolkit for Feature-based Collaborative Filtering. Journal
of Machine Learning Research (JMLR) 13, Dec (2012), 3619–3622.

[5] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural Language Processing (almost) from Scratch.
Journal of Machine Learning Research (JMLR) 12, Aug (2011), 2493–2537.

[6] Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007.
Random-walk Computation of Similarities Between Nodes of a Graph with
Application to Collaborative Recommendation. IEEE Transactions on Knowledge
and Data Engineering (TKDE) 19, 3 (2007), 355–369.

[7] László Grad-Gyenge, Peter Filzmoser, and Hannes Werthner. 2015. Recommenda-
tions on a Knowledge Graph. In 1st International Workshop on Machine Learning
Methods for Recommender Systems, MLRec. 13–20.

[8] Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). ACM, 855–864.

[9] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th Interna-
tional Conference on World Wide Web (WWW). International World Wide Web
Conferences Steering Committee, 173–182.

[10] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.
2010. Multiverse Recommendation: N-dimensional Tensor Factorization for
Context-aware Collaborative Filtering. In Proceedings of the 4th ACM Conference
on Recommender Systems (RecSys). ACM, 79–86.

[11] Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional Networks for Images,
Speech, and Time Series. The handbook of Brain Theory and Neural Networks
3361, 10 (1995), 1995.

[12] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings
of 29th AAAI Conference on Artificial Intelligence (AAAI), Vol. 15. 2181–2187.

[13] Zemin Liu, Vincent W Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2017. Semantic Proximity Search on Hetero-
geneous Graph by Proximity Embedding. In Proceedings of 31st AAAI Conference
on Artificial Intelligence (AAAI).

[14] Zemin Liu, VincentWZheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan Chang,
Minghui Wu, and Jing Ying. 2018. Distance-aware dag embedding for proximity
search on heterogeneous graphs. In Proceedings of 32nd AAAI Conference on
Artificial Intelligence (AAAI). AAAI.

[15] Chen Luo, Wei Pang, Zhe Wang, and Chenghua Lin. 2014. Hete-cf: Social-based
Collaborative Filtering Recommendation using Heterogeneous Relations. In Data
Mining (ICDM), 2014 IEEE International Conference on. IEEE, 917–922.

[16] AndriyMnih and Ruslan R Salakhutdinov. 2008. ProbabilisticMatrix Factorization.
In Advances in Neural Information Processing Systems. 1257–1264.

[17] Wenjie Pei, Tadas Baltrušaitis, David MJ Tax, and Louis-Philippe Morency. 2017.
Temporal Attention-gated Model for Robust Sequence Classification. In Computer
Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. IEEE, 820–829.

[18] Wenjie Pei, Jie Yang, Zhu Sun, Jie Zhang, Alessandro Bozzon, and David MJ Tax.
2017. Interacting Attention-gated Recurrent Networks for Recommendation.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management (CIKM). ACM, 1459–1468.

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and DataMining (KDD). ACM, 701–710.

[20] Tuan-Anh Nguyen Pham, Xutao Li, Gao Cong, and Zhenjie Zhang. 2015. A Gen-
eral Graph-based Model for Recommendation in Event-based Social Networks.
In Data Engineering (ICDE), 2015 IEEE 31st International Conference on. IEEE,
567–578.

[21] Tuan-Anh Nguyen Pham, Xutao Li, Gao Cong, and Zhenjie Zhang. 2016. A
General Recommendation Model for Heterogeneous Networks. IEEE Transactions
on Knowledge and Data Engineering (TKDE) 28, 12 (2016), 3140–3153.

[22] M Ross Quillan. 1968. Semantic Memory. In Semantic Information Processing.
[23] Steffen Rendle. 2010. Factorization Machines. In Data Mining (ICDM), 2010 IEEE

10th International Conference on. IEEE, 995–1000.
[24] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings
of the 25th Conference on Uncertainty in Artificial Intelligence (UAI). AUAI Press,
452–461.

[25] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th
International Conference on World Wide Web (WWW). ACM, 285–295.

[26] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional Recurrent Neural Net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[27] Chuan Shi, Jian Liu, Fuzhen Zhuang, S Yu Philip, and Bin Wu. 2016. Integrating
Heterogeneous Information via Flexible Regularization Framework for Recom-
mendation. Knowledge and Information Systems 49, 3 (2016), 835–859.

[28] Chuan Shi, Zhiqiang Zhang, Ping Luo, Philip S Yu, Yading Yue, and Bin Wu. 2015.
Semantic Path based Personalized Recommendation on Weighted Heterogeneous
Information Networks. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management (CIKM). ACM, 453–462.

[29] Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Collaborative Filtering Beyond
the User-item Matrix: A Survey of the State of The Art and Future Challenges.
ACM Computing Surveys (CSUR) 47, 1 (2014), 3.

[30] Ajit P Singh and Geoffrey J Gordon. 2008. Relational Learning via Collective
Matrix Factorization. In Proceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD). ACM, 650–658.

[31] Alexander J Smola and Risi Kondor. 2003. Kernels and Regularization on Graphs.
In Learning Theory and Kernel Machines (COLT). Springer, 144–158.

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. The Journal of Machine Learning Research (JMLR) 15, 1 (2014), 1929–
1958.

[33] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Path-
sim: Meta Path-based Top-k Similarity Search in Heterogeneous Information
Networks. Proceedings of the VLDB Endowment 4, 11 (2011), 992–1003.

[34] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. InAdvances in Neural Information Processing Systems (NIPS).
3104–3112.

[35] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web (WWW). International World
Wide Web Conferences Steering Committee, 1067–1077.

[36] Ellen M Voorhees et al. 1999. The TREC-8 Question Answering Track Report. In
Trec, Vol. 99. 77–82.

[37] Yueyang Wang, Yuanfang Xia, Siliang Tang, Fei Wu, and Yueting Zhuang. 2017.
Flickr Group Recommendation with Auxiliary Information in Heterogeneous
Information Networks. Multimedia Systems 23, 6 (2017), 703–712.

[38] Paul J Werbos. 1988. Generalization of Backpropagation with Application to a
Recurrent Gas Market Model. Neural networks 1, 4 (1988), 339–356.

[39] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. 2017.
Recurrent Recommender Networks. In Proceedings of the 10th ACM International
Conference on Web Search and Data Mining (WSDM). ACM, 495–503.

[40] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, Attend and Tell: Neu-
ral Image Caption Generation with Visual Attention. In International Conference
on Machine Learning (ICML). 2048–2057.

[41] Xiao Yu, Xiang Ren, Quanquan Gu, Yizhou Sun, and Jiawei Han. 2013. Collabora-
tive Filtering with Entity Similarity Regularization in Heterogeneous Information
Networks. Proceedings of 5th IJCAI Workshop on Heterogeneous Information Net-
work Analysis (IJCAI-HINA) 27 (2013).

[42] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized Entity Recommendation:
A Heterogeneous Information Network Approach. In Proceedings of the 7th ACM
International Conference onWeb Search and Data Mining (WSDM). ACM, 283–292.

[43] Xiao Yu, Xiang Ren, Yizhou Sun, Bradley Sturt, Urvashi Khandelwal, Quanquan
Gu, Brandon Norick, and Jiawei Han. 2013. Recommendation in Heterogeneous
Information Networks with Implicit User Feedback. In Proceedings of the 7th ACM
conference on Recommender Systems (RecSys). ACM, 347–350.

[44] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative Knowledge base Embedding for Recommender Systems. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). ACM, 353–362.

[45] Jing Zheng, Jian Liu, Chuan Shi, Fuzhen Zhuang, Jingzhi Li, and Bin Wu. 2017.
Recommendation in Heterogeneous Information Network via Dual Similarity
Regularization. International Journal of Data Science and Analytics 3, 1 (2017),
35–48.

	Abstract
	1 Introduction
	2 Related Work
	3 Recurrent Knowledge Graph Embedding
	3.1 Semantic Path Mining
	3.2 Recurrent Network Batch
	3.3 Saliency Determination
	3.4 Model Optimization

	4 Experiments and Analysis
	4.1 Experimental Setup
	4.2 Results of RKGE
	4.3 Comparative Results

	5 Conclusion
	References

