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Abstract
This study introduces a training protocol utilizing

Convolutional Neural Networks (CNNs) and Confocal
Scanning Acoustic Microscopy (CSAM) imaging techniques
to classify Power Quad Flat No-leads (PQFN) package
delamination. The investigation involves empty PQFN
packages with varied substrate metallizations subjected to
thermal cycling. Four delamination classes were labeled:
Die-pad delamination (Class-A), Bond-pad delamination
(Class-B), both Die-pad and Bond-pad delamination
(Class-C), and No delamination (Class-D). Due to data
imbalance, additional randomness was introduced for
distribution balancing. Residual Networks (ResNet-18)
based CNN model was selected for classification. Five-fold
cross-validation assessed overfitting performance concerning
input data size, image resolution, and batch size. The
ResNet-18 prediction performance was evaluated using
precision and recall metrics, with the model achieving
average precision and recall scores of 0.86/1 and 0.83/1,
respectively. Additionally, a comparison of delamination
among different substrate metallizations was presented
with Ag and NiPdAu indicating significant delamination
compared to bare Cu substrate. This study pioneers the
integration of CNNs with CSAM imaging for package
defect detection and classification, laying the groundwork
for future research to address the complex interplay of
multiple failure mechanisms in functional packages.

Keywords
Package delamination, Scanning Acoustic Microscopy,

Defect detection and Classification, Deep learning, Residual
Networks.

1. Introduction

Power Quad Flat No-leads (or non-leaded) – PQFN
packages are widely used surface mount non-hermetically
sealed package types in electronic devices, and they
are known for compact size and efficient thermal
dissipation. While the reliability challenges of PQFN
packages are well documented [1, 2], concerns arise on
effective methods to identify packaging defects [3–6].
Detection and localization of failure modes on electronic
packages are significant to improve the overall package
performance. An overview of various failure modes in
electronic packaging is provided in [7].

Confocal Scanning Acoustic Microscopy (CSAM)
is a powerful non-destructive imaging technique for

identifying package defects. An overview of SAM
imaging for material evaluation and defect detection is
provided in [8–13]. Figure 1 illustrates different failure
modes on PQFN packages imaged using CSAM. Five
different failure modes were identified on the lifetime-
tested sample as compared to a pristine 0-hour sample.
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Fig. 1. CSAM image comparison of a pristine sample (left) and a
lifetime tested sample (right).

Despite the benefits of acoustic imaging in electronic
packaging, the manual interpretation of failure modes
from acoustic images is subjective, particularly in cases
where there is an interplay of multiple failure mechanisms
(see figure 1). Though the effect of mold compound
delamination is a widely researched topic [14, 15], this
paper is an attempt to introduce a training protocol using
Convolutional Neural Networks (CNN) in conjunction
with Confocal Scanning Acoustic Microscopy (CSAM)
imaging technique for overmold delamination detection
and classification.

In recent times, machine learning models on image
recognition and analysis have gained increasing attention
[16–18]. The integration of CNN analysis with CSAM
imaging in electronic packaging applications remains
largely unexplored, primarily due to its complexity.
[19] has explored YOLO (You Only Look Once) series
algorithms to target and detect delamination defects based
on acoustic images. In this study, a similar approach was
implemented on the ResNet-18 framework with a specific

979-8-3503-9363-7/24/$31.00 ©2024 IEEE

2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

20
24

 2
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 T
he

rm
al

, M
ec

ha
ni

ca
l a

nd
 M

ul
ti-

Ph
ys

ic
s S

im
ul

at
io

n 
an

d 
Ex

pe
rim

en
ts

 in
 M

ic
ro

el
ec

tro
ni

cs
 a

nd
 M

ic
ro

sy
st

em
s (

Eu
ro

Si
m

E)
 | 

97
9-

8-
35

03
-9

36
3-

7/
24

/$
31

.0
0 

©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
Eu

ro
Si

m
E6

07
45

.2
02

4.
10

49
15

38

Authorized licensed use limited to: TU Delft Library. Downloaded on April 25,2024 at 06:39:38 UTC from IEEE Xplore.  Restrictions apply. 



focus on identifying delamination of the epoxy molding
compound from the metallized package substrate and
classifying it based on the die-pad and the bond-pad areas.

The following section details the sample preparation
process, the network architecture, and the workflow.
Subsequently, the pre-processing steps involved are
documented and the training accuracy vs loss is displayed
for varying data size, image resolution, and batch size.
The experimental results conclude by highlighting the
prediction performance and an overview of failures for
different package substrate metallizations.

2. Experimental Methods
A. Sample preparation

PQFN packages with different substrate metallizations,
Ag, NiPdAu, and bare Cu (no metallization), were pre-
pared specifically for this study to understand the effect of
mold compound delamination from the package substrate.
The purpose of metallizing the substrate is to promote
adhesion. To quantitatively evaluate the delamination pro-
gression of the mold compound from various substrate
metallizations, empty packages (without any die) were
prepared, thereby the region of focus during CSAM is
the overmold-substrate interface. A schematic illustration
of the sample preparation process is shown in figure 2.

Bond-Pad

Substrate metallization

Substrate type QuantityNo.

Ag-Metallized 50 PQFN1.

NiPdAu-Metallized 50 PQFN2.

Bare Cu 40 PQFN3.

Fig. 2. Package substrate with different metallizations (Ag, NiPdAu,
and bare Cu) was over-molded without any die and singulated. A cross-
sectional schematic of an empty PQFN is shown and the quantity of
sample for each substrate type is tabulated.

B. Data Acquisition

All assembled samples (140 PQFN packages – 50
Ag-Metallized, 50 NiPdAu-Metallized, and 40 Bare Cu)
were scanned using a 50MHz acoustic transducer in
echo (C-Scan) mode. Since the pristine samples didn’t

−55oC to 150oC

PQFNs
CSAM

Thermal cycling

Data

(100 cycles)

Enhancement

Distribution

Balance

Preprocessing

ResNet

Sufficient
data?

End of Test

NO

Yes

Data

Labeling

Pristine

Fig. 3. Data acquisition flowchart. The sufficiency of the data was
determined based on the number of images per class.

exhibit significant failures, the samples were subjected to
thermal cycling from −55oC to 150oC according to the
guidelines outlined in the JESD22-A104 standard.

The samples were scanned intermittently during cycling
(i.e., after every one hundred thermal cycles) until a
sufficient amount of dataset was collected for training the
CNN model. The training and validation accuracy of the
model in correlation with the data size is explained later.

(a)

(b)

Fig. 4. A comparison of the original CSAM data among all classes (a)
and the data after being subjected to preprocessing steps (b).
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The data acquisition process flow is charted in figure 3 and
the acquired images are labeled into four classes based on
the type of failure mode:

• Class A – Delamination of Die-pad area
• Class B – Delamination of Bond-pad area
• Class C – Delamination of both Die-pad and Bond-

pad areas
• Class D – No delamination.

Upon labeling, additional randomness (rotation and
contrast) was introduced to the original dataset. The data
balancing was further performed to ensure all classes
have an equal amount of data. A comparison of the
labeled data before and after enhancement & distribution
balancing is shown in figure 4.

The original CSAM data (see figure 4a) had data
imbalance among the four classes, particularly Class-B
(Bond-pad delamination) was significantly lower. Upon
correction and balancing, an equal amount of datasets
were gathered for all four classes as shown in figure 4b.

C. Choosing Network Architecture

Convolutional Neural Networks (CNNs) leverage
learnable filters to recognize patterns, such as edges,
textures, etc., from an input image. Each filter is
convolved across the image dimensions, computing a
dot product between the filter and the input, thereby
producing a 2-dimensional map of that filter to recognize
patterns. However, CNN performance degrades as the
network depth increases, leading to vanishing gradients
through each layer and overfitting (training accuracy is
significantly higher than the validation accuracy).

ResNet (Residual Network) introduced residual learning
to address the degradation problem in CNN. A schematic
overview of the ResNet architecture is shown in figure 5.

Class-A

Class-B

Class-C

Class-D

R
e
s
id
u
a
l
B
lo
c
k
1

R
e
s
id
u
a
l
B
lo
c
k
2

R
e
s
id
u
a
l
B
lo
c
k
3

R
e
s
id
u
a
l
B
lo
c
k
4

Input Image

Convolutional
Layers

ResNet Blocks
Global

Averaging

Pool

Fully
Connected

Layer

Classification

Fig. 5. Schematic overview of Residual Network architecture for image
classification

The Residual blocks in ResNet include two main paths.
The first path is a sequence of layers (convolution, batch
normalization, Rectified Linear Unit, etc.,) that learns
residual functions about each layer input. The second
path is the skip connection that bypasses the layers where
the input and the output of that particular layer are the
same. The skip function allows the ResNet to learn the

necessary identity information and solves the vanishing
gradient problem, thereby allowing deeper networks.
The fundamentals of image recognition and classification
using deep learning and residual learning are provided in
[20, 21]

Understanding the network architecture allows us to
make an informed decision to choose the right network.
ResNet architecture contains different variants, such as
ResNet-18, ResNet-50, and ResNet-101, each indicating
the network depth. The desired depth of the network is
a choice depending on the computational resources, and
performance requirements. The problem of identifying
overmold-substrate delamination from an empty PQFN is
a relatively simple task. Hence, ResNet-18 – a shallow
variant with 18 layers was chosen, which is computation-
ally faster and less prone to overfitting. Accordingly, the
training and validation accuracy of ResNet-18 architecture
was analyzed in the subsequent section with varying data
size (total number of input data), the effect of input
image size (number of pixels), and the effect of batch
size (number of images per iteration).

3. Experimental results

A. ResNet-18 cross-validation

The overfitting of the ResNet-18 architecture concern-
ing data size, image pixel size, and batch size was
evaluated by computing the delta accuracy and delta
loss between the training and validation sets. A five-
fold cross-validation (80% data for training and 20% data
for validation) was performed by training the ResNet-18
model on each subset, and a cross-entropy loss function
was used to evaluate the model’s performance. The results
on the effect of data size, image size, and batch size are
shown in figure 6.

(a) Effect of data size on overfitting:
• To analyze the effect of data size on overfitting,

the incremental number of preprocessed images at
every thermal cycling step was taken into account
(see figure 4b).

• The delta accuracy and delta loss (Training – Vali-
dation) were determined and the results are shown
in figure 6a. The ResNet-18 tends to have the best
overfitting performance with a small dataset of 420
images.

• However, this limits the data collection to 200
thermal cycles (420 images), which contains insuf-
ficient information on overmold-substrate delami-
nation. Hence, a data size of 840 images (500-
thermal cycles) is preferred. A comparison of the
model prediction performance for both 420 and 840
training data sizes is shown in the next subsection.
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(a) (b)

(c) (d)

Fig. 6. Five-fold cross-validation of the ResNet-18 architecture by varying the data size (a), image size (b), and batch size (c) is shown, and the
chosen parameters are highlighted. (d) indicates the overfitting performance (delta accuracy and delta loss) of the ResNet-18 model for the chosen
parameters.

• It is important to be aware that the delta accuracy
and delta loss shown in figure 6 includes all four
classifications.

(b) Effect of image resolution on overfitting:
• The effect of image pixel size on overfitting was

analyzed by varying the number of pixels, and the
results are shown in figure 6b.

• The resolution of a CSAM image is 20µm per pixel,
which translates around 400×400 pixels.

• Having an exact number of pixels as the original
image would be computationally slower and further
leads to poor overfitting performance. Hence, we
limited our analysis to a maximum of 350×350
pixels.

• The best overfitting performance was achieved for
100×100 pixels, which provides an overall good
balance between computational speed and capturing
the necessary information.

(c) Effect of batch size on overfitting:
• The batch size, or the number of images per iter-

ation during training affects the training dynamics
and the model performance.

• Though larger batch size improves the computa-
tional efficiency for training, it leads to overfitting
and requires more memory while smaller batch size
may result in inherent noise.

• The effect of batch size was evaluated and the
results are graphically shown in figure 6c. An
optimal batch size of 8 indicates good overfitting
performance, faster convergence during training,
and requires less memory.

Figure 6d indicates the overfitting performance (training
accuracy & loss in comparison to the validation accuracy
& loss) for the ResNet-18 model with 840 input images,
100×100 pixels, and a batch size of 8. The trained
ResNet-18 model was further evaluated with a testing
dataset and the results are shown next.
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B. ResNet-18 test results

The prediction performance of the trained ResNet-18
model was assessed using a unique testing dataset of
88 CSAM images from all four classifications without
preprocessing, i.e., the testing dataset has a distribution
imbalance with a sample size of 22 images for Class-A; 23
images for Class-B; 18-images for Class-C; and 23 images
for Class-D. The most common metrics to evaluate the
prediction performance of a trained model are as follows:

• Accuracy - It provides an understanding of how
often the model is true but fails to evaluate the true
performance of the prediction compared to the actual.

Accuracy =
TP + TN

TP + FP + TN + FN

where, TP - True Positive; TN - True Negative; FP
- False Positive; FN - False Negative.

(a) Dataset – 420 images
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(b) Dataset – 840 images
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Fig. 7. Confusion matrix for all four classes (Actual vs Predicted)
is plotted for training dataset of 420 images (a) and 840 images (b).
The average precision and average recall values for 420 datasets are
0.68/1 and 0.59/1, which is significantly lower. The average precision
and average recall for 840 datasets are 0.86/1 and 0.83/1, which indicates
a relatively better prediction performance.

• Precision - It evaluates the accuracy of the positive
predictions made by the model, i.e., how many pre-
dicted positives are true positve? It is the ratio of true
positive predictions to the total positive predictions.
A precision value of 1 would indicate 100% accuracy
for positive predictions.

Precision =
TP

TP + FP

• Recall - It evaluates the accuracy of the predictions
(both positive and negative) made by the model,
i.e., how many predicted positives and negatives
are true? It is the ratio of true positive predictions
to the total actual positives. A recall value of 1
would indicate 100% accuracy for both positive and
negative predictions.

Recall =
TP

TP + FN

In this study, precision and recall are used as metrics to
evaluate the ResNet-18 model performance. The results
of the model performance are plotted as a confusion
matrix (see figure 7) that summarizes the performance
of the classification model (predicted vs actual). The
confusion matrix is plotted for both data sizes; 420
images (see figure 7a) and 840 images (see figure 7b).

The following conclusions can be drawn from the
confusion matrix shown in figure 7:

• From figure 7a, a training dataset of 420 images
leads to poor prediction, particularly for Class-A –
Delamination of Die-pad and Class-B – Delamination
of Bond-pad area. Class-B has the least original
CSAM images (see figure 4a), which has led to
insufficient learning due to data enhancement and
biased overfitting performance from other classes.

• Comparatively, a dataset of 840 images resulted in
better prediction performance (see figure 7b). While
the majority of the classes indicate relatively good
predictions, the model still struggles to detect Class-
B failure mode.

• For a dataset of 420 images, the average precision
score is 0.68/1, and the average recall score is 0.59/1.

• Whereas, the dataset of 840 images indicates an
average precision score of 0.86/1 and an average
recall score of 0.83/1, which is far superior to the
trained model with 420 images.

• The provided confusion matrix and the metric scores
highlight the goodness of the ResNet-18 model for
PQFN package delamination classification.
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Furthermore, it was also realized that the epoxy mold
compound delamination was predominantly from the
NiPdAu metallized die-pad substrates. Some of the Ag
metallized substrates also indicated delamination of
overmold. The bare Cu substrate indicated no sign of die-
pad delamination, but some packages indicated minimal
delaminations in the bond-pad region. A comparative
overview of all three substrate types, imaged at 0-hour
and after 500-thermal cycles, is shown in figure 8.
It is important to be aware that the delamination of
overmold–substrate also depends on the type of epoxy
molding compound and the filler size.

0-hour After 500-cycles
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Fig. 8. A comparative overview of overmold delamination from differ-
ent substrate metallizations. Ag and NiPdAu metallized substrates indi-
cate significant delamination from the die-pad area and some marginal
delaminations from the bond-pad area after 500 thermal cycles. Bare Cu
substrate (without any metallization) indicates minimal delaminations
only from the bond pads.

4. Summary and Conclusion
The primary objective of this study focussed on

demonstrating a training protocol using Convolutional
Neural Networks in conjunction with Confocal Scanning
Acoustic Microscopy imaging for classifying Power QFN
package delamination classification. Empty packages
(without die) were prepared with different substrate

metallizations; Ag-Metallized – 50PQFNs, NiPdAu
Metallized – 50 PQFNs, and Bare Cu – 40PQFNs. All
empty packages were scanned intermittently during the
thermal cycling process. The accelerated cycling led
to overmold-substrate delaminations over time. Four
classes of delaminations were labeled; Class A - Die-pad
delamination, Class B - Bond-pad delamination, Class C
- Delamination of both die-pad and bond-pad, and Class
D - No delaminations.

Due to the imbalance of delamination data among all
four classes, data preprocessing was required to introduce
additional randomness (image rotation and contrast) for
distribution balancing. The choice of network architecture
is critical. Residual Networks (ResNet) based CNN
models with 18 layers of network depth were chosen
in this study for delamination classification. A five-fold
cross-validation was conducted to mitigate the overfitting
performance introduced by various data sizes, image
resolutions, and batch sizes. The prediction performance
of the trained ResNet-18 model was further evaluated
based on precision and recall metrics. The results of the
model were displayed by plotting a confusion matrix
between actual and predicted information. The model
demonstrated an average precision of 0.86/1 and an
average recall of 0.83/1 for all four classes. An overview
of the overmold–substrate delamination for all three
different substrate metallizations was further provided as
a comparison between pristine and aged.

This study has been the first effort to integrate
Convolutional Neural Networks with CSAM imaging
in electronic packaging for defect detection and
classification. Though the current paper focussed on
classifying a single interface failure (overmold–substrate),
future research will be focused on introducing a protocol
for classifying complex multiple failure mechanisms on
functional packages with multiple interfaces.
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[10] S. Levikari, T. J. Kärkkäinen, C. Andersson, J. Tammminen, and P.
Silventoinen, “Acoustic detection of cracks and delamination in multilayer
ceramic capacitors,” IEEE Transactions on Industry Applications, vol. 55,
no. 2, pp. 1787–1794, 2019. DOI: 10.1109/TIA.2018.2873989.

[11] G.-M. Zhang, D. M. Harvey, and D. R. Braden, “Microelectronic package
characterisation using scanning acoustic microscopy,” NDT E Interna-
tional, vol. 40, no. 8, pp. 609–617, 2007, ISSN: 0963-8695. DOI: https :
/ / doi . org / 10 . 1016 / j . ndteint . 2007 . 05 . 002. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S096386950700062X.

[12] F. Liu, L. Su, M. Fan, J. Yin, Z. He, and X. Lu, “Using scanning acoustic
microscopy and lm-bp algorithm for defect inspection of micro solder
bumps,” Microelectronics Reliability, vol. 79, pp. 166–174, 2017, ISSN:
0026-2714. DOI: https : / / doi . org / 10 . 1016 / j . microrel . 2017 . 10 . 029.
[Online]. Available: https : / / www. sciencedirect . com / science / article / pii /
S002627141730505X.

[13] P. Aryan, S. Sampath, and H. Sohn, “An overview of non-destructive testing
methods for integrated circuit packaging inspection,” Sensors, vol. 18, no. 7,
2018, ISSN: 1424-8220. [Online]. Available: https://www.mdpi.com/1424-
8220/18/7/1981.

[14] Y. Kim, C. Raleigh, and S. Saiyed, “Design study to prevent mold
delamination for overmolded lead frame package,” in 2019 18th IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems (ITherm), 2019, pp. 485–489. DOI: 10.1109/ITHERM.
2019.8757448.

[15] H. Zhang et al., “Power qfn down bond lift and delamination study,” in
2014 IEEE 16th Electronics Packaging Technology Conference (EPTC),
2014, pp. 570–573. DOI: 10.1109/EPTC.2014.7028424.

[16] Y.-J. Huang, C.-L. Pan, S.-C. Lin, and M.-H. Guo, “Machine-learning ap-
proach in detection and classification for defects in tsv-based 3-d ic,” IEEE
Transactions on Components, Packaging and Manufacturing Technology,
vol. PP, pp. 1–8, Jan. 2018. DOI: 10.1109/TCPMT.2017.2788896.

[17] E. Weiss, “Revealing hidden defects in electronic components with an ai-
based inspection method: A corrosion case study,” IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 13, no. 7,
pp. 1078–1080, 2023. DOI: 10.1109/TCPMT.2023.3293005.

[18] V. Adibhatla, J.-S. Shieh, M. Abbod, H.-C. Chih, C. Hsu, and J. Cheng,
“Detecting defects in pcb using deep learning via convolution neural
networks,” Oct. 2018, pp. 202–205. DOI: 10.1109/IMPACT.2018.8625828.

[19] Y. Zhao, M. Xiao, H. Lv, J. Luo, X. Wang, and D. Luo, “Research on
scanning acoustic image defects detection of integrated circuits based on
yolox,” in 2022 23rd International Conference on Electronic Packaging
Technology (ICEPT), 2022, pp. 1–4. DOI: 10 . 1109 / ICEPT56209 . 2022 .
9872652.

[20] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” Neural Information Processing
Systems, vol. 25, Jan. 2012. DOI: 10.1145/3065386.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778. DOI: 10.1109/CVPR.2016.90.

2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

Powered by TCPDF (www.tcpdf.org)

Authorized licensed use limited to: TU Delft Library. Downloaded on April 25,2024 at 06:39:38 UTC from IEEE Xplore.  Restrictions apply. 


