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Abstract

Nowcasting, synonymous for short term (0-6h) forecasting of precipitation with high detail in terms of lo-
cation, timing and intensity, is a dynamic field of research in weather forecasting that is ever so relevant for
society in mitigating the impact of severe weather events. Ever since remote sensing platforms like radar
and satellites became available to probe the atmosphere, forecasters have attempted to use the high res-
olution and frequent data acquired by these sensors to estimate the development of precipitation events.
Techniques that extrapolate the extent and intensity of radar echoes have been developed to forecast precip-
itation in the near future. While these techniques show decent skill in forecasting precipitation in the first
hour of a forecast, the forecasting skill quickly degrades with time as the lifetime of single convective cells
producing precipitation is even shorter and moreover because extrapolation methods are unable to capture
the non linear processes that are involved with the formation and dissipation of precipitation. With an in-
creasing amount of resources available for computation, efforts in short term precipitation forecasting have
shifted towards numerical weather prediction (NWP) models to more accurately represent physical processes
governing precipitation. High resolution (1-4km), limited area models are employed to be able to explicitly
describe deep convection, with a decreasing use of convective parametrization as a result. However, these
limited area models are usually initialised with data from global numerical weather prediction models that
lack the detail, especially in terms of moisture, that is essential for accurate precipitation forecasting. Addi-
tionally, these high resolution models first have to adjust to an equilibrium state and initiate vertical motions
that are especially relevant for convective precipitation in the so called spinup time, rendering the first hours
of a forecast useless from a nowcasting perspective. The necessary level of detail can be added to the model
by means of variational data assimilation, where the model state of the atmosphere is combined with recent
observations to obtain an optimal estimate of the actual atmosphere, which can then be used to initialize a
subsequent high resolution forecast.

In this study it is investigated whether variational data assimilation is able to improve the precipitation
forecasting skill of a limited area model covering west-central Europe. To that end, a variety of observations is
assimilated into a 4-km resolution Weather Research and Forecasting model (WRF) via the Weather Research
and Forecasting model’s Community Variational/Ensemble Data Assimilation System (WRFDA) with a 15-
minute three dimensional variational assimilation (3DVar) rapid update cycling strategy and a static back-
ground error covariance matrix based on summer climatology. Besides conventional observations from e.g.
surface weather stations, observations from remote sensing platforms like radar (reflectivity and radial veloc-
ity) and Global Positioning System (GPS) zenith total delay (ZTD) are also assimilated. The first assimilation
experiment concerns several data denial scenarios, where in each scenario only a single type or select combi-
nation of observations is assimilated to isolate their impact on precipitation forecasting skill. In the case of a
large squall line it is shown that assimilation of every single type of observation results in an improvement of
forecasting skill, except for the radar assimilation of hydrometeors whose impact on the forecast is negligible
after having precipitated to the surface. Especially assimilation of humidity based on radar reflectivity yields
a significant improvement during the full 6 hours of the forecast. The ability of the other types of observa-
tions to positively impact forecasting skill is attributed the large scale forcing by wind convergence along the
cold front that is driving the formation of precipitation. Overestimation of precipitation quantity from the
scenario without assimilation however is aggravated when radar derived humidity is assimilated, most likely
as a consequence of the rapid cycling strategy. Secondly, in a case with localized convection the assimila-
tion of radar based humidity proved crucial to trigger convection and thus improve forecasting skill. In this
case other types of observations had a minor impact, as the convection was not initiated from the surface
or forced mechanically, but elevated in the mixed layer. Again, precipitation quantity is overestimated when
observations, especially from radar, are assimilated. In the final case featuring an extensive warm front pro-
ducing stratiform precipitation, assimilation of radar humidity and ZTD actually degrades forecasting skill in
the first hours of the forecast. The main reason is that the subtle nature of this type of precipitation suffers
from the rapid update cycles, creating an unbalanced, spatially inhomogeneous moisture field. The back-
ground error covariance horizontal lengthscales that are downscaled to allow for more local adjustments in
case of local convection are inappropriate for this large scale and homogeneous type of precipitation.
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1
Introduction

In a changing climate more extreme weather events are likely to occur (IPCC, 2013, chapter 12). More inten-
sive precipitation events are predicted primarily because of the increased ability of the air to contain water
vapour at higher temperatures. Inherently coupled is the need for accurate precipitation forecasts, which will
continue to grow in the coming decades. Forecasting short term precipitation up to six hours ahead is often
referred to as nowcasting. The objective of nowcasting is to provide a detailed estimate of location, timing
and intensity of precipitation events. In the 1960s along with the development of remote sensing techniques
the first nowcasting methods were developed by Noel and Fleisher (1960) and Hilst and Russo (1960) based
on correlating reflections in successive radar images. Using a steady state assumption, the size and speed of
a storm could be used to forecast its trajectory in the near future. In the next decades more complex versions
of these extrapolation methods were developed that could recognize individual convective cells each having
their own velocity (Rinehart (1981)) and additionally extrapolate trends in extent and intensity. Tsonis and
Austin (1981), who developed such a size and intensity trending algorithm nevertheless found negligible im-
provement in forecasting skill when more sophisticated non linear trending schemes were employed. Wilson
et al. (1998) have performed similar experiments using the TITAN (Thunderstorm Identification, Tracking,
Analysis and Nowcasting) algorithm developed by Dixon and Wiener (1993) with and without extrapolat-
ing trends in size and intensity and similarly did not observe any improvement in forecasting skill, leading
them to conclude analogous to Tsonis and Austin (1981) that the processes responsible for change in pre-
cipitation through time are not necessarily observable from the past evolution of a radar reflection. In case
precipitation is a result of convection, most of the time processes in the planetary boundary layer like con-
vergence are responsible for initiation of precipitation. With this notion in mind so called expert systems
have been developed that attempt to predict the initiation and dissipation of convective cells in addition to
radar extrapolation, by including a range of additional knowledge based (e.g. from statistics, research studies
or conceptual models) or observational predictors like clouds on IR satellite images, boundary layer winds
from surface, upper air and Doppler velocity observations and even convergence lines as diagnosed by me-
teorologists. Nevertheless, the accuracy of these nowcasting methods degrades rapidly with time (Elvander
(1977); Dixon and Wiener (1993); Wilson et al. (1998)) as qualitatively illustrated in figure 1.1, primarily as a
consequence of individual convective cells and thunderstorms only having a mean lifetime of approximately
20 minutes (Battan (1953); Foote and Mohr (1979)), making extrapolation based methods increasingly more
unreliable beyond this time scale in a forecast. Exceptions are cases where cells merge or are otherwise or-
ganised as a larger mesoscale system (Henry (1993)) or when precipitation results from strong and extensive
front (Hill et al. (1977)). Once individual convective cells have dissipated, a correct nowcast relies on the abil-
ity to forecast initiation, growth and decay of new cells, which requires a detailed and accurate description of
atmospheric conditions as well as a model that is able to explicitly describe the evolution of processes that
lead to the formation of precipitation.

For that reason, nowcasting for lead times > 1 hours has shifted to NWP based methods. The develop-
ment of NWP methods combined with increasing computational power has enabled employing high reso-
lution models to forecast precipitation. Only modelling a regional area for a limited time (e.g. +24 or +36
hours) allows defining resolutions in the order of 1-4 km, generally referred to as "convection permitting
models" for their ability to explicitly describe large scale, organized, deep convection, obviating the need for
convective parametrization (CP) schemes. Numerous studies (Done et al. (2004); Kain et al. (2006); Clark
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Figure 1.1: Qualitative illustration of forecast skill of various nowcasting methods such as radar extrapolation and NWP based methods.

et al. (2009)) have proved that these high resolution models without CP have a better skill in forecasting pre-
cipitation than CP employing models with a coarser resolution. Despite the improved ability of these high
resolution NWP models to forecast initiation and mode of convection, accurately forecasting timing, loca-
tion and intensity as required to meet nowcasting demands remains problematic, as shown by Weisman et al.
(2008) who compared a 4-km resolution model with the 12-km CP employing ETA model. Moreover, high
resolution regional NWP models require a certain time to establish a dynamical balance and start physical
processes relevant for convection after they have been initialized from coarse resolution global models. This
period, generally referred to as spinup time, can take up to 3-6 hours, rendering these first hours of a so called
"cold start" forecast worthless from a nowcasting perspective. In figure 1.1 this spinup time time is qualita-
tively shown with the cold start NWP taking some time to reach its forecasting skill potential. To reduce the
spinup time and improve model accuracy, the model description of the atmospheric state is updated with
high resolution observations by means of data assimilation, of which the qualitative skill score has also been
plot in figure 1.1. Several implementations exist, but in the last decade however variational data assimilation
has dominated in NWP research and has now been implemented in some form in all of the current opera-
tional high resolution models from leading NWP centres like European Centre for Medium-Range Weather
Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), United Kingdom Meteorological
Office (UKMO), Deutsche Wetterdienst (DWD) and Environment Canada (EC). While most of these centres
now employ really advanced forms of data assimilation (see Bannister (2016) for an overview) combining the
hybrid approach to describe model error covariance and 4D methods that can use the evolution of the NWP
as an additional constraint for observations, these methods require vast computational resources to generate
large ensemble forecasts for hybrid data assimilation and to evolve and linearise the NWP model in every iter-
ation of the minimization procedure that is central in any four dimensional variational assimilation (4DVar)
system. Consequently, computationally less demanding 3DVar systems in combination with rapid update
cycles of < 1 hour remain a popular alternative in operational setups for these expensive methods.

Essential in improving forecast skill of NWP models has proven to be the assimilation of radar observa-
tions. It is currently the only observation technique that is able to detect the size and extent of precipitation
with high spatial and temporal resolution that is required for nowcasting. So, along with the development
of variational data assimilation, efforts have been made to assimilate radar observations into NWP models.
Assimilation of radar reflectivity is not trivial since it concerns an indirect measurement of precipitation and
has to be linked to model variables using theoretical or empirical relations and several assumptions. Besides
relating radar reflectivity to hydrometeors, often reflectivity is also used to employ some form of diabatic ini-
tialisation in which favourable conditions for precipitation are created by including the latent heat release
associated with the formation of hydrometeors as well as assuming saturation of humidity in areas where
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significant radar reflections are measured or otherwise analysing 3D cloud cover with aid from other ob-
servations. Research has shown that the diabatic initialization techniques based on reflectivity reduces the
spinup time (Ducrocq et al. (2002); Hu et al. (2006b); Weygandt et al. (2008); Dixon et al. (2009); Caumont et al.
(2010); Schenkman et al. (2011); Wang et al. (2013)), thereby improving forecast skill in the first hours of the
forecast that are so relevant for nowcasting. In addition to reflectivity Doppler weather radars are also able to
retrieve the radial velocity of a reflection, which can also be assimilated to improve model wind estimates.

This study has been set up with a number of objectives in mind, the first one being to improve the accu-
racy of the precipitation forecast from a regional Weather Research and Forecasting model (WRF) (Skamarock
et al. (2008)) covering west-central Europe. To that end, observations from various sources will be assimilated
into the WRF model using the WRFDA (Barker et al. (2012)) with a 15 minute rapid update 3DVar cycling
strategy. This rapid 3DVar approach is adopted with the idea that most of the observations can be assimilated
close to their respective times, similar to a 4DVar approach but far less computationally demanding. As noted
before, amongst the assimilated observations radar reflectivity is most prominent, for its ability to provide the
necessary detail regarding precipitation to the initial model state. Radar reflectivity observations from Dutch
and Belgian weather radars are assimilated using the indirect approach from Wang et al. (2013), which also
includes a form of diabatic initialization where near saturation humidity is assimilated when significant re-
flections are measured. Moreover, the absence of a significant radar reflection is used to penalize spurious
model precipitation, employing null-echo assimilation similar to Min et al. (2016). Besides radar, observa-
tions from other sources like surface stations, airports, buoys are assimilated. In addition, GPS ZTD relating
to IWV are assimilated to provide some constraints on the humidity assimilation from radar reflectivity. Log-
ically, a second objective is to assess how assimilation of each observation type affects the skill of forecasting
precipitation. A case with a MCS squall line passing the Netherlands is examined with a set of data denial
experiments where in every scenario only a single or subset of observation types is assimilated to isolate their
effect on the precipitation forecast. Finally, besides the MCS case, as a third objective two additional cases
are investigated to determine the ability of data assimilation to improve forecasting skill in the case of more
local convection and additionally in a case with stratiform rain of really large extent and moderate intensity.

To reach these objectives, this thesis report is structured as follows. Chapter 2 will discuss the fundamen-
tals of assimilating observations into a NWP model. First a brief motivation for data assimilation is given,
followed by an overview of (variational) data assimilation methods. Then the mathematical framework for
data assimilation is examined, with the definition of a cost function to quantify the difference between the
model and observations. Computation of the cost function requires modelling and estimation of the errors
associated with the model and observations. Another important component of variational data assimilation
is how exactly observations are related to model variables. Especially remote sensing instruments provide in-
direct measurements of atmospheric variables, so for radar and GPS measurements it is discussed separately
how they are assimilated. The chapter on data assimilation is concluded with range of pseudo single obser-
vation test (PSOT), that shows how a single observation influences the analysis and at the same time provides
insight in the way error covariances are modelled. In data assimilation it is critical that the observations that
are assimilated are of good quality. In chapter 3 the preprocessing steps that are carried out before observa-
tions are assimilated into the model are addressed. Especially radar reflectivity requires several operations to
obtain quality observations ready for assimilation. For radar radial velocity also numerous processing steps
have to be applied to prevent assimilation of aliased observations. Finally, for GPS it is described how an
important height correction for model and receiver height discrepancy is performed. Several experiments
are defined where the assimilation of observations is investigated. A detailed description of each experiment
together with the choice for a number of precipitation cases can be found in chapter 4. Before the experi-
ments are described the model setup is discussed, with a focus on the important parametrizations that are
employed. The chapter is concluded with an explanation of the method that is used to verify the precipitation
forecast. The description of the experimental setup is followed by a discussion of the results that the assim-
ilation of the various observations yields. Every experiment is examined in detail to assess the influence of
data assimilation on the precipitation forecast and is verified using the method described in chapter 4. Per-
forming the data assimilation experiments enables to draw a conclusion regarding the added value of data
assimilation to the precipitation forecast, which is summarized in chapter 6. The conclusion is followed by a
set of recommendations for future research.





2
Variational data assimilation

This chapter will discuss the fundamentals of data assimilation. Firstly, the incentive for data assimilation
is explained in section 2.1 together with a brief overview of data assimilation methods in section 2.2. Fol-
lowing that the mathematical framework that forms the basis of variational data assimilation is addressed
(section 2.3). Central is a cost function that quantifies the difference between model and observation. In or-
der to evaluate the cost function, the uncertainty of the model and observations have to be quantified. How
their respective errors are defined, modelled and estimated will be discussed in section 2.4. Throughout the
development of data assimilation methods this cost function has been adapted to be able to accommodate
assimilation of other (remotely sensed) observations like reflectivity (section 2.5) and radial velocity from
Doppler weather radars (section 2.6) that indirectly relate to model quantities. GPS retrieved estimations of
signal delay by water vapour is another example remotely sensed observations that will be assimilated in this
study. In section 2.7 it will be shown what method exists to achieve this. This chapter concludes with a series
of PSOTs using different kinds of observations to assess the impact that assimilating a single observation has
on the model state.

2.1. Introduction
Ever since meteorologists started using numerical weather prediction models to aid in weather forecasting,
the desire to improve the accuracy of these models existed. On the one hand this can be achieved by im-
proving the way the physical processes that govern the atmosphere are described in the model. However the
equations can already describe these processes reasonably well, although subgrid scale processes like turbu-
lence and droplet formation still have to be parameterized. To be able to resolve and describe small scale
processes like localized convection usually the resolution is increased, but naturally that requires a lot more
computing power. E.g. using half the grid scales will result in 4 times as much calculations that have to be
made, only considering the enhanced areal resolution. However even if computing power would allow re-
fining resolution to sub kilometer level it is not necessarily more accurate since the information with which
the model was initialized might have come from a source which did not have that level of detail. In fact, it
is common to initialize a regional weather model with a global model like the Global Forecast System (GFS)
or ECMWF model that produce forecasts at much coarser resolution (e.g. approximately 28 and 56 km for

Global Forecast System (GFS) ). Moreover, these models themselves have to be initialized from observations.
There are not nearly enough observations to initialise every variable for every model grid box, so interpo-
lation is used to obtain values for the model grid. Combined with the fact that these global models require
at least several hours in state of the art facilities to perform their computations, a regional model initialized
with this data first needs to catch up with reality to actually become a forecast. For example it would not be
uncommon for a regional weather model forecast for central Europe to be initialized with global model data
which itself was initialized from observations e.g. 12 hours ago. Naturally, in that time differences arise be-
tween the modelled and real atmosphere, especially in turbulent weather regimes like heavy storms. To make
the model more accurately represent the current state of the atmosphere, observations are being integrated
into the model which is commonly referred to as data assimilation.

Over the years many data assimilation methods have been developed, all with the purpose of using ob-
servations to improve the accuracy of a model. An overview of current, widely employed data assimilation

5
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methods is given in figure 2.1. The most basic approach is actually not to use a model reference or first guess
at all and simply interpolate the observations to a model grid. However this approach is quite limited, in
the first place because there are not enough observations to obtain a full model description of the atmo-
sphere. Cressman (1959) developed one of the first methods to combine model and observations. In a so
called Cressman analysis the model state is set equal to observations at the observation locations. Up to an
arbitrary range the model state is updated by an observation:

xa (i ) = xb (i )+
∑k

j=1 w
(
i , j

)[
y
(

j
)−xb

(
j
)]

∑k
j=1 w

(
i , j

) (2.1)

Where xa (i ) and xb (i ) represent element i of the analysis and background model state, y
(

j
)

the j-th ob-
servation w

(
i , j

)
a weight that is given, based on the distance di , j between model grid point i and observation

j:

w
(
i , j

)=


R2−d 2
i , j

R2+d 2
i , j

d 2
i , j É R2

0 d 2
i , j > R2

 (2.2)

With R an arbitrary range of influence. Cressman analysis is usually classified under the successive correc-
tion methods, as it is often applied iteratively. The analysis is updated several times to improve the smooth-
ness of the analysis. However, interpolation and the successive correction methods have their disadvantages
(Bouttier and Courtier, 2002):

• Inability to make physically realistic changes to a model. Setting a model variable equal to observa-
tions might produce significant artefacts that are not consistent with the laws of physics if observations
are inaccurate. The analysis should follow physical constraints like the hydrostatic balance (the upward
force on a slab of air resulting from the vertical pressure gradient is equal to the downward gravitational
force of the slab), geostrophic wind (a balance between the pressure gradient and Coriolis force) or a
relative humidity that does not exceed 100%. A pressure observation should also lead to an alteration
of the wind in the analysis. Also, the length scale of the increments should be realistically smooth and
not produce any high frequency jumps in a model field.

• Inability to take into account uncertainty. This is a major drawback since the interpolation and suc-
cessive correction methods assume that observations are true: they contain no error. Therefore only
assimilating few erroneous observations can significantly degrade the analysis. Even accurate observa-
tions have a certain error and moreover if the background is already of good quality we would not like
it to be impacted easily.

• Inability to directly integrate remotely sensed observations. Remote sensing measurements are most
often indirect retrievals of model variables. Nowadays the major part of observations that are readily
available come from remote sensing instruments like weather radars, satellites, lidar etc. Model quan-
tities have to be retrieved separately before the observations can be assimilated into the model.

All these inadequacies have given rise to the development of a statistical data assimilation method, known
as variational data assimilation. The primary advantage of variational data assimilation is that it can take
into account the uncertainties in both model and observation to produce an optimal estimate. It is optimal
in the sense that is the most likely estimate given the uncertainties of the model and observation, as demon-
strated in section 2.3.2. Under various assumptions it also minimizes the variance of the solution.

As mentioned in the introduction there is an increasing need for accurate forecasts, especially for pre-
cipitation. For accurate forecasting of precipitation it is vital that models are initialized with a detailed and
accurate description of the atmosphere. Especially moisture, which is crucial for formation of clouds and
precipitation, is not as homogeneous as temperature or pressure which makes it difficult to describe detailed
precipitation from model states initialized from coarsely sampled information. There lies the added value of
data assimilation: supplying the model with high resolution and frequently sampled observations to initialise
a model with more detail regarding the current state of the atmosphere. Remote sensing instruments have
opened a new chapter in data assimilation as they sample very frequently and moreover provide information
at higher altitudes in the atmosphere, contrary to conventional surface weather stations at the surface. For
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example Doppler weather radars sample the atmosphere with both a high temporal (e.g. 5 minutes) and spa-
tial (e.g. 1 km) resolution. Also, the different scan angles from the radar can provide information at various
elevations. Measured echoes from weather radar can provide a model with frequent and detailed information
on the presence of precipitation in the atmosphere.

2.2. Overview
In general, variational data assimilation can be defined as a statistical method to obtain the best estimate of
model state variables. Applied to atmospheric science, data assimilation combines observations and a model
forecast commonly referred to as first guess together with an estimate of the associated errors to provide an
analysis which is closer to the real atmospheric state. This analysis is used to initialize a subsequent numerical
weather prediction model run. In essence it can be regarded as a model update at a certain time step by
comparing the model state to observations.

Nearly all meteorological institutions run operational models that include variational data assimilation.
These variational data assimilation methods have become increasingly more complex over the years. See
figure 2.1 again for an overview of the various types of data assimilation methods that are commonly used
in these institutions. Statistical data assimilation methods now dominate, for the reasons mentioned in the
previous section. At the basis stands the three dimensional variational assimilation, where all variables in a
three dimensional model can be updated simultaneously. Correlations between model variables, e.g. same
physical variable but other grid points or different physical variables through their balance property, ensure
a physically sound analysis. These correlations are represented by the error covariance between the model
variables. The error characterization of both model and observation is used for the uncertainty based weight-
ing of model and observation. First implementations of three dimensional variational assimilation were de-
veloped by European Centre for Medium-Range Weather Forecasts (ECMWF) (Courtier et al., 1998; Mcnally
et al., 1998), High Resolution Limited Area Model (HIRLAM) (Lindskog et al., 2001), National Centers for En-
vironmental Prediction (NCEP) (Parrish and Derber, 1992), United Kingdom Meteorological Office (UKMO)
(Lorenc et al., 2000) and by National Center for Atmospheric Research (NCAR) (Barker et al., 2004). The lat-
ter, Community fifth generation Pennsylvania State University–National Center for Atmospheric Research
Mesoscale Model (MM5) Three Dimensional Variational Assimilation (3DVAR) system, has formed the basis
for the release of a community data assimilation system known as Weather Research and Forecasting model’s
Community Variational/Ensemble Data Assimilation System (WRFDA) (Barker et al., 2012). It is designed
to be compatible with the Weather Research and Forecasting model (WRF) that is distributed by the same
multi-agency collaboration including National Center for Atmospheric Research (NCAR), National Oceanic
and Atmospheric Administration (NOAA), Air Force Weather Agency (AFWA), Oklahoma University (OU) and
Naval Research Laboratory (NRL) that maintains the WRFDA system. WRFDA has been developed to cater
the growing demand for a state of the art data assimilation system from universities, federal offices, private
companies who lack the resources to develop these systems. In this thesis all data assimilation experiments
are carried out using the latest version of WRFDA (V3.9).

The principle of three dimensional variational assimilation has been extended to four dimensional varia-
tional assimilation which uses the evolution of a model through time as an additional constraint. That way the
analysis is the optimal model state for which its linearised model trajectory fits the assimilated observations
in the best way. The benefit of 4D over 3D is that the observations can be used at their appropriate time, or
at least closer to their valid time since for practical reasons observations are still binned in time slots. Figure
2.2 illustrates this principle. In three dimensional variational assimilation, the data assimilation algorithm
assumes all observations within a predefined time window are valid at the time of assimilation. Instead, four
dimensional variational assimilation compares observations against the model trajectory valid at the time of
observation.

As will be discussed in section 2.4, the description of the precision of model and observations is essen-
tial for the quality of data assimilation. Accurately estimating model variable covariance is one of the most
fundamental challenges in data assimilation. Because in three dimensional variational assimilation and four
dimensional variational assimilation usually a time invariant estimate of model covariance is used, alterna-
tive assimilation methods have been developed that use an ensemble of perturbed forecasts to obtain a more
accurate representation of model errors specific to a single forecast. These flow dependent error covariance
estimation methods are referred to as ensemble methods, see figure 2.1. Pure ensemble methods like the
Ensemble Kalman Filter and Ensemble Kalman Smoother assimilate observations into each ensemble mem-
ber, with the model error covariance estimated from the spread in the ensembles. Later, hybrid methods



8 2. Variational data assimilation

Figure 2.1: Overview of the types data assimilation algorithms currently employed by leading weather forecasting institutions. The
horizontal axis shows whether the algorithm is variational, which uses a prescribed background error covariance matrix, or utilizes an
an ensemble of forecasts to describe model covariance. The vertical axis shows the increasing complexity and computational costs of
these algorithms. 3D-Var and 4D-Var are abbreviations for three dimensional variational assimilation and four dimensional variational
assimilation respectively. The naming conventions have been adopted from Bannister (2016), who provided a comprehensive overview
of current data assimilation algorithms. The term hybrid refers to the combination of a static covariance as used in 3D/4D-Var and an
ensemble based estimate of covariance as used in the pure ensemble methods. The primary difference between En4DVar and 4DEnVar
is that En4DVar uses the tangent linear and adjoint of the NWP model to evolve the background error covariance matrix from the start
of the forecast through time just like 4D-Var does, while 4DEnVar estimates the development of the background error covariance matrix
just from the ensembles and therefore does not require linearisation of the NWP model. The reader is referred to Bannister (2016) for a
more thorough description of the differences between these algorithms.

have been developed that combine the merits of static and flow dependent description of model error co-
variance. A brief discussion regarding these methods to estimate model covariance can be found in section
2.4.5. The technical differences between these methods and full implementation are not a focus of this study,
thus the reader is referred to Bannister (2016) who provides an elaborate description and comparison of these
methods.

2.3. Cost function
2.3.1. Definition
Suppose a numerical weather prediction model describes the atmosphere with variables like temperature T ,
pressure p, density ρ, wind components u, v and w and specific humidity q at every model grid box. These
variables are concatenated into the state vector x which describes the total model state.

x =



u
v
w
t
p
ρ

q


(2.3)

In 2.3 u, v, w, t, p, ρ and q are the model vectors containing all grid values for the model variables men-
tioned above. For example, the vector u of the horizontal west-east wind component u contains the wind
speed for all k grid points:

u =

 u1
...

uk

 (2.4)

In standard data assimilation, a subset of the model variables is used, namely u, v, t, ps , and q because
most observations relate to these quantities, although as we will see later in the assimilation of radar data,
more variables may be added to the state vector if the observations cannot be linked to the standard data
assimilation model variables. Taking a subset of 2.3, x is redefined as the model vector for data assimilation:
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Figure 2.2: Schematic graphs illustrating the principle of three dimensional variational assimilation and four dimensional variational
assimilation. The top figure shows the principle of three dimensional variational assimilation, where all observations within a limited
time window (e.g. 1 hour, in the graph denoted with tD A,mi n and tD A,max ) are valid for time tD A at which the assimilation is carried out.
This results in an analysis (indicated with the green square) which is then used to initialize a new forecast, depicted with the green arrow.
Four dimensional variational assimilation however takes into account the time at which the observations were acquired, by finding an
initial condition of which the model trajectory best fits the observations at their respective time. That trajectory is indicated with the
green, dashed line in the bottom graph.

x =


x1

x2
...

xn

=


u
v
t

ps

q

 (2.5)

ps represents the surface pressure. Typically, this will result in a vector with n entries in the order of
106 − 107, corresponding to the number of grid points k times the number of model variables. Besides the
model vector x a vector y can be constructed with a number of m observations that are to be assimilated into
the model:
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y =


y1

y2
...

ym

 (2.6)

Any number of observations could be assimilated, but usually however the number will not exceed 105 −
106, making the system where the model state would be inferred purely from observations underdetermined.
This explains the mathematical need for using a first guess in the estimation of the optimal state for x. Of
course the first guess is also used because it is assumed that is already a relatively good approximation of
the true atmospheric state. The terms first guess and background are used interchangeably, although as
will become clear later they are technically not the same when multiple outer loops are carried out during
numerical minimization. To quantify the difference between model and observations, a cost function Jx (2.7)
is defined. The cost function is central to data assimilation and will be found in any scheme that implements
variational data assimilation, like WRFDA. It can be derived from the maximum likelihood principle as shown
in appendix A.1. The data assimilation analysis is the most likely model representation of the atmosphere
given the background state xb and observations y. It consists of a term that measures the offset of a model
state vector x with the background forecast xb and with model variables x mapped to observation space by
observation operator H :

J (x) = Jb + Jo

J (x) = 1

2
(x−xb)T B−1 (x−xb)+ 1

2

(
H (x)−y

)T R−1 (
H (x)−y

) (2.7)

A simple example of the observation operator would be the interpolation of model temperature to the ob-
servation location situated in between the model grid points. For remote sensing instruments the observation
operator is usually more complex and non linear. E.g. for satellite radiance assimilation the observation op-
erator includes estimating the energy flux at the top of the atmosphere from model temperature at various
levels using Stefan-Boltzmann’s law that is strongly non linear. In 2.7 the squared vectors are weighted with
the inverse of the model variable error covariance matrix B and observation error covariance matrix R to ob-
tain a measure of dissimilarity between the the updated model state and the background and observations. A
description of these error covariance matrices is given in section 2.4. When using equation 2.7 it is assumed
that the described errors are unbiased and their distribution is described by a Gaussian probability density
function. Moreover, the errors of model variables and observations are assumed to be uncorrelated so that
no cross product of the two exists in the cost function. Generally that is a valid assumption, although e.g. in
the case of satellite radiance assimilation the model background is used to perform a bias correction on the
observations, so that errors in the model background can propagate to the observations.

Logically, the cost function is minimized to obtain an analysis state referred to as xa that is the best esti-
mate for the atmospheric state described by the model. It is best in the sense that it maximizes the likelihood
of the analysis given the likelihood of the first guess and observations. Because in the definition of the cost
function it is assumed that model and observation errors have a Gaussian distribution, the analysis also mini-
mizes the variance of the analysis when the observation operator is linear, as will be shown in the next section.
Minimizing the cost function is equivalent to finding a model state x for which the gradient of J equals zero:

∇J (xa) = 0 (2.8)

2.3.2. Exact solution and precision of the analysis
First it is shown how to obtain an analytical solution of the minimization problem. This will aid in under-
standing how variational assimilation updates the model state with observations based on their error charac-
terization. The second part of the cost function Jo that measures the departure from observations is linearised
with a Taylor expansion around xb.

H (x)−y = H (xb + (x−xb))−y ≈ H (xb)+H (x−xb)−y (2.9)

Where H represents the linearised version (Jacobian) of the non linear observation operator H in the
vicinity of xb. By performing this linearisation it is assumed that the first guess is close enough to the analysis
such that a linear approximation is valid. Rewriting the cost function 2.7 using 2.9 results in the following:
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J (x) = 1

2
(x−xb)T (

B−1 +HT R−1H
)

(x−xb)

+ [
H (xb)−y

]T R−1H (x−xb)+ 1

2

[
H (xb)−y

]T R−1 [
H (xb)−y

] (2.10)

See appendix A.2 for the intermediate steps taken to obtain 2.10. Instead of computing J as a function
of x which is computationally very demanding, the cost function is expressed as a function of the analysis
increment δx = x−xb . This is known as the incremental formulation and is widely adopted as a starting point
for data assimilation algorithms.

J (δx) = 1

2
δxT (

B−1 +HT R−1H
)
δx+ [

H (xb)−y
]T R−1Hδx+ 1

2

[
H (xb)−y

]T R−1 [
H (xb)−y

]
(2.11)

Evidently, the cost function in 2.11 is a quadratic function of δx, in the general form of:

J (x) = xT Ax+bT x+ c (2.12)

With a weighting matrix A, a vector b and a scalar c. The gradient of a quadratic function is given by:

∇J = (
A+AT )

x+b = 2Ax+b (2.13)

The last equality is only valid if A is symmetric. That is true for this case since
(
B−1 +HT R−1H

)
is a sym-

metric matrix (see appendix A.3). Applying 2.13 to the incremental cost function 2.11, an expression for the
gradient is obtained:

∇J (δx) = (
B−1 +HT R−1H

)
δx+HT R−1 [

H (xb)−y
]

(2.14)

Setting the gradient equal to zero and solving for δx:

δx = (
B−1 +HT R−1H

)−1
HT R−1 [

y−H (xb)
]

(2.15)

This is equivalent to the analytical solution for the so called Optimal Interpolation method (see e.g. A.C.
Lorenc (1986, p. 1180)), where the expression for an analysis increment is:

δx = BHT (
R+HBHT )−1 [

y−H (xb)
]

(2.16)

For a proof, see appendix A.4. Note that the equivalence is only valid if the observation operator H is

linear. The matrix product BH
T (

R+HBHT
)−1

is a matrix that supplies the weights corresponding to each
virtual observation increment δyi for each state vector entry δxi . Formally it is known as the optimal Kalman
gain matrix K in the widely used Kalman filter:

K = BHT (
R+HBHT )−1

(2.17)

Let us define the covariance matrix A which describes the precision of the analysis δxa. As noted before,
the solution δxa minimizes the variance and is an improvement of the original background error B. The
precision of the analysis is given by:

A = E
[
εaεa

T ]= (I−KH)B (2.18)

This expression is obtained by defining the analysis error as

εa = εb +K (εo −Hεb) = (I−KH)εb +Kεo (2.19)

and then multiplying the analysis error with its transpose and then taking the expected value, also noting
that the background and observation errors are uncorrelated. Additionally the expression for the optimal
Kalman gain matrix (2.17) that is found by minimizing the variance has to be substituted into the general
expression for the analysis precision that is valid for any gain matrix K to arrive at the simplified form of
equation 2.18. See also Brown and Hwang (1997, chapter 4) or Haykin (2001, chapter 1.3) for a full derivation
of the analysis precision. Perhaps a more intuitive, equivalent formulation of the analysis precision is:
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A−1 = B−1 +HT R−1H (2.20)

This expression shows that for any nonzero background B and observation R variance, the variance of A is
smaller than the variance of the background B. Again, note that xa only exactly minimizes the variance when
errors have a Gaussian distribution and the observation operator is linear.

2.3.3. Numerical minimization
Unfortunately, the analysis is increment is not as easily computed as the analytical expression that was found
in 2.15 suggests. In the first place because of the sheer size of the matrices involved, for example with ma-
trix B having O

(
1014

)
entries which would require immense storage space. To reduce matrix sizes a variable

transformation is performed to make the matrix near diagonal, requiring less storage and the same time im-
proving the condition number. This will be discussed more in detail in section 2.4.4. Secondly, computing the
inverse of these large matrices is impossible. Optimal Interpolation circumvents this problem by solving 2.15
separately for subsets of x with a limited number of observations so that the inverse matrix is small enough
to actually compute directly. However the regional approach of this solution lead to physically unrealistic
features or discontinuities at the region boundaries, giving rise to the development of 3DVar, which is able to
incorporate all observations simultaneously.

In 3DVar, instead of sticking to the analytical solution where the gain matrix K is evaluated as with Opti-
mal Interpolation, the cost function is solved iteratively using numerical minimization algorithms. Iterative
methods like steepest descent, Quasi-Newton and conjugate gradient for instance are used to minimize the
cost function. Their main principles are shortly addressed. Most of these methods are based on finding the
local gradient to provide guidance in making an analysis increment for the next iteration. See figure 2.3 for a
flowchart describing the general steps of these algorithms. The difference between the methods lies in how
they exactly determine the increment δx as a function of the gradient. Apart from that the general procedure
is the same. Using a first guess the cost function and its gradient are evaluated. Then, employing the method
specific way of computing the analysis increment, the next point is calculated at which the convergence cri-
teria are evaluated. Usually it is said that convergence is reached when the cost function or gradient reaches
a certain fraction ε of its initial value, e.g. 0.01. Or alternatively when the analysis increment becomes smaller
than a certain absolute threshold.

Figure 2.3: Flowchart illustrating the steps performed in minimizing the cost function.

A visual example of iteratively minimizing the cost function using a gradient algorithm is shown in figure
2.4. In every step the gradient at the current position is calculated to determine the direction for the next
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minimization increment. For the sake of simplicity the cost function is defined in two dimensional space.
Note that the cost function is a paraboloid, the two dimensional equivalent of a parabolic function. Again,
the point x for which the cost function is minimal is the optimal point xa.

Figure 2.4: Schematic representation of an iterative numerical minimization algorithm applied to the data assimilation cost function J
using the gradient. For simplicity a two dimensional state vector space is used. Figure from Bouttier and Courtier (2002)

The most simple algorithm used for minimization is called the steepest descent method. It uses the gra-
dient of the cost function in a straightforward way: the gradient is calculated as the direction of maximal
increase and thus the steepest descent in the direction of the negative gradient. The term f (∇J ) then simply
reduces to −∇J and step sizeα is found using the constraint that the next gradient has to be orthogonal to the
current one. However this means that algorithm will converge quite inefficiently for ill conditioned matrices
with large condition numbers. The condition number κ= λmax/λmin with eigenvalues λi is a measure of the
sensitivity of a function to small changes in its input. Applied to the example two dimensional case the eigen-
values are the principal axes of the ellipsoid and measure the degree of ellipticity. If the condition number
is big then the steepest gradient algorithm is inefficient since the step size α is limited. Sometimes this is
referred to as the narrow valley effect (see also figure 2.5), since the minimization algorithm keeps bouncing
between the steep walls (direction with large eigenvalue) before it finds the minimum.

Figure 2.5: Graphical example of the narrow valley effect. The highly elliptic isosurfaces of the cost function imply a high condition
number. The steep cost function makes the minimization perform a zigzag pattern which is inefficient. Figure from Bouttier and Courtier
(2002)

The conjugate gradient algorithm aims to solve that problem by finding a search direction that instead
is A-orthogonal to the residual. A-orthogonal refers to two vectors being orthogonal with an A matrix mul-
tiplication in between, with A being the matrix in a quadratic function like 2.12. Geometrically it can be
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interpreted as finding the orthogonal vector in a space stretched by matrix A. The matrix A is chosen such
that the A-stretched space becomes approximately spherical. For the example in figure 2.5 it would mean
the iso-J curves are transformed so that they become circles. The direction of the orthogonal vector in A-
stretched space is then used to make the next increment, resulting in a significantly more efficient algorithm
for ill-conditioned matrices. The conjugate gradient algorithm has been implemented in WRFDA for min-
imization of the cost function. For a proper introduction, full derivation and convergence analysis of the
conjugate gradient algorithm the reader is referred to Shewchuk (1994).

Another family of optimization algorithms that is commonly used for cost function minimization is called
quasi-Newton method. They have been named ’quasi’ since they approximate the full Hessian matrix that is
used in the original Newton method. The full Newton method employs a second order approximation to a
multivariate non linear problem in order to evaluate the cost function at a point x+δx:

J (x+δx) ≈ J (x)+δxT ∇J (x)+ 1

2
δxT J ′′δx (2.21)

And consequently with a gradient:

∇J (x+δx) ≈∇J (x)+ J ′′δx (2.22)

Where J ′′ represents the Hessian matrix of the cost function that contains all second order partial deriva-
tives of the cost function evaluated around x. For every iteration the approximated gradient 2.22 is set to zero
and is solved for δx. However this requires the full Hessian matrix, which is impossible to build and invert
since its dimensions are in the order of O

(
1014

)
. With quasi-Newton methods attempts are made to ap-

proximate a the Hessian at every iteration. Amongst others a widely adopted quasi-Newton algorithm is the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, named after Broyden (1970), Fletcher (1970), Gold-
farb (1970), Shanno (1970). A limited memory BFGS method was developed by Liu and Nocedal (1989) that
saves memory by using the history of updates of x and the gradient ∇J (x). This is particularly suited for data
assimilation since there are so many variables contained in the state vector.

It has to be noted that before any of the mentioned optimization algorithms are employed the cost func-
tion has to be preconditioned. With preconditioning the condition number and equivalently the ellipticity
of a matrix are reduced. Usually a control variable transform is performed to approximate a spherical cost
function (with condition number close to 1). A more elaborate description is given in the next section (2.4.4).

2.3.4. Non linearity

These minimization algorithms assume that the cost function is quadratically related to x. As noted before,
this is the case if the observation operator H is linear. If H however is not linear, it is assumed that the process
can still be approximated by a linear function, provided the first guess is already not too far from the analysis.

Often, especially with remote sensing observations, the observation operator is not linear. Since then the
cost function is not convex anymore as in figure 2.4, it can have multiple local minimum values. Moreover,
the non linear shape of the cost function causes the minimization of the approximated quadratic function to
be suboptimal. This is illustrated by figure 2.6, where the first minimization of a quadratic function tangent
at the starting point leads to an analysis increment δx(0)

a that is still relatively far from the actual minimum of
the non linear cost function. To mitigate the problem of non linearity, multiple outer loops may be performed
during minimization. In these outer loops the cost function is re-linearised around the analysis δxa and then
the minimization of the cost function (inner loop) as illustrated in 2.3 is repeated using the analysis from the
previous minimization as the new background, resulting in a new analysis δx(1)

a . The amount of outer loops
that are appropriate naturally depends on the degree of non linearity. In this study whenever observations
are being assimilated, two outer loops are carried out during the minimization to be able to account for some
non linearity.
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Figure 2.6: Schematic example of performing several outer loops during the minimization of the cost function J (x). In each outer loop
the analysis δxa from the minimization in the previous outer loop is used as the background/starting point and the observation operator
is linearised around the new background. Illustration by Massart (2017).

2.4. Error modelling
2.4.1. Uncertainty
In order to combine model and observations in variational assimilation their uncertainties should be known.
That way the assimilation can apply appropriate weighting to the model and observations (through their
error covariance matrices B and R respectively) to produce an optimal analysis. The true uncertainties are
unknown and can only be estimated. It is vital that this estimate represents the uncertainty in model vari-
ables as accurately as possible. For example if the uncertainty of the model variables is overestimated, the
model tends to the observations although these observations actually have a similar or worse precision than
the model. On the other hand, using a model uncertainty that is really small will practically result in no ob-
servations being used to update the model.

In general an error ε can be defined as the difference between an estimate x̂ and the true value x of a
variable:

ε= x̂ −x (2.23)

Every single time the variable x is estimated, a realization of the error is obtained. However almost always
the true value of x is unknown. We can however make an assumption that if the estimation is repeated often
enough, the mean value of all the realizations will converge to the true value of the desired variable. Also,
the distribution of the error realization characterises the uncertainty of the estimate. This distribution is
described mathematically with a probability density function. The probability density function (PDF) can
be thought of a histogram with infinitely small bins that is normalized so that the integral of the distribution
equals unity. Using the PDF a next realization of the estimate and its error can be interpreted to make a
statement about the likelihood of the estimated value for the variable.

Often a probability density function is assumed to be Gaussian. The Gaussian can be characterized by a
mean x̄ and a variance σ2

x .

fx (x) = 1√
2πσ2

x

exp

{
−1

2

(
x − x̄

σx

)2}
(2.24)

In the case of vectors the scalar principle from 2.24 can be extended so that a vector equivalently follows
a Gaussian multivariate distribution:

fx (x) = 1√
det(2πQxx )

exp

{
−1

2
(x− x̄)T Qxx (x− x̄)

}
(2.25)
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with x̄ the vector mean and Qxx the covariance matrix of x

x̄ =

 x̄1
...

x̄n

 (2.26)

Qxx =


σ2

1 ρ1,2σ1σ2 · · · ρ1,nσ1σn

ρ1,2σ1σ2 σ2
2 · · · ...

...
...

. . .
...

ρ1,nσ1σn · · · · · · σ2
n

 (2.27)

In 2.27 σn represents the standard deviation of variable xn and ρn,m the correlation between two vari-
ables. The diagonal elements in Qxx are the variances and the off diagonal elements represent the covari-
ances. Recall the definition of covariance:

Cov (x1, x2) = E [(x1 − x̄1) (x2 − x̄2)] = ρ1,2σ1σ2 (2.28)

And the definition of variance that is equal to the covariance of a variable with itself.

V ar (x1) =Cov (x1, x1) = E
[
(x1 − x̄1)2]=σ2

1 (2.29)

2.4.2. Definition of errors
In data assimilation the Gaussian multivariate distribution 2.25 is used to model the error uncertainty of the
model and observations. Several relevant errors can be defined. Similarly to 2.23, firstly the background
error is defined as the difference of a background forecast state vector with respect to the true state of the
atmosphere:

εb = xb −xt (2.30)

Note that the true state denoted by xt is not actually a state that describes the atmosphere perfectly, be-
cause a model is a discretization of reality and moreover because several parametrizations and assumptions
are made to simplify real physical processes. The errors resulting from this are called representativeness er-
rors. In this context the true state xt refers to the best possible representation of the atmosphere by the model.
Obviously the true state is not known. We can only assume that with enough realizations the average error
is close to 0 (unbiasedness) and the covariance is described by the covariance matrix B, which describes the
covariance between each element of the background state vector xb as follows:

B = εbε
T
b =


σ2

b,1 · · · ρ1,nσb,1σb,n

...
. . .

...
ρ1,nσb,1σb,n · · · σ2

b,n

 (2.31)

Which is the equivalent of 2.27 applied to the background state vector xb . Besides the background error
also the analysis error can be defined that measures the offset of the data assimilation analysis and the true
state:

εa = xa −xt (2.32)

And correspondingly the analysis covariance matrix A:

A = εaε
T
a =

 σ2
a,1 · · · ρ1,nσa,1σa,n
...

. . .
...

ρ1,nσa,1σa,n · · · σ2
a,n

 (2.33)

The trace (diagonal) of matrix A contains the analysis variables’ precision. It has been shown in section
2.3.2 that in the case of Gaussian distributed errors and a linear observation operator the most likely state
or analysis also minimizes the variance of the analysis. An analytical expression for the analysis precision A
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has been derived in 2.18 for the case of explicitly calculating the Kalman gain matrix. Recall that is infeasible
considering the matrix sizes and 3DVar instead minimizes the cost function iteratively.

Last but not least the observations that are to be assimilated also contain errors. The observation error is
defined as the difference between observation y and the model equivalent observation H (xt ):

εo = y−H (xt ) (2.34)

The observation error consists of an error that rises from the observation itself, the instrumental error.
For example a thermometer or a pressure sensor have a certain instrumental precision that is often specified
by the manufacturer or obtained from verification studies. Secondly the observation error in 2.34 contains
errors produced by invoking the observation operator H , often referred to as the forward model error. If a
temperature measurement is observed at a certain level in the atmosphere that is in between the model levels
the model equivalent temperature has to interpolated from nearby model points, which introduces errors
since the interpolation is based on certain assumptions. Also, processing errors can be introduced when
pre-processing observations, for example when hydrometeors are retrieved from radar reflectivity using a
certain empirical relation. Finally, representativeness errors generated for example in the discretization of
physical processes contribute to the observation error. Note that this was not the case for the background and
analysis errors, because two model states are being subtracted. Analogous to the background and analysis,
the observation covariance matrix is:

R = εoε
T
o =

 σ2
o,1 · · · ρ1,nσo,1σo,n
...

. . .
...

ρ1,nσo,1σo,n · · · σ2
o,n

 (2.35)

Often the observation errors are assumed to be uncorrelated. That is a valid assumption for example for
observations from individual weather stations. For other observations this might not be the case. E.g. for re-
mote sensing observations like in case of satellite images the brightness temperature of one pixel is correlated
with the adjacent pixels. To mitigate the correlation between observations, they are spatially thinned in a pre-
processing step or quality control step before they are being assimilated. If the observations are uncorrelated
then R reduces to a diagonal matrix:

R =

 σ2
o,1 · · · 0
...

. . .
...

0 · · · σ2
o,n

 (2.36)

2.4.3. Modelling of background covariance
Representing real background error covariance in the matrix B accurately is maybe the most challenging
part of data assimilation. As the magnitude and the shape of the covariance matrix determine how much
the background forecast is altered, it is crucial that the matrix is modelled as accurately as possible. More
specifically, background error correlations are in important for multiple reasons:

1. Observation spreading
The cross correlation between variables determines how much one variable should be changed when
another is updated. When assimilating a single observation, the information is spread to neighbouring
areas that are correlated. The extent of these areas are governed by the correlation length. Also in
the case that only few observations are assimilated, still a large part of the background forecast can be
altered because of this property.

2. Observation smoothing
Contrary to the case where only few observations are assimilated, in areas where there is a dense net-
work of observations available the degree to which observations are smoothed is governed by the co-
variance in B. If there would be no cross correlation then the analysis will contain steep gradients that
are physically very unlikely. The smoothing makes sure the length scales of the increments are con-
sistent with the realistic length scales of physical quantities. For example if two nearby but different
temperature measurements are assimilated with no cross correlation between the temperature of the
model grid points that are close to the observations, the assimilation will produce a physically unreal-
istic jump in temperature. Taking into account the cross correlation both model grid points will also
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be updated according to the other observation that is slightly further away. Of course this smoothing
effect is a trade-off between having more detail in the analysis that might produce high frequency and
physically unrealistic features versus physically consistent analysis increments which lack the detailed
description of the atmosphere.

3. Physical constraints
Another advantage of three dimensional variational assimilation is that additional physical constraints
can be added so that analysis increments are made physically consistent with other quantities. For
example if it is assumed that the atmosphere is approximately hydrostatic, then a pressure increment
should lead to increments in the whole column. This is reflected by the covariances between vertical
grid points for pressure. Also for example under the assumption that approximately the geostrophic
balance holds a change to wind speed should be accompanied by a change in pressure in the direction
orthogonal to the wind. These examples illustrate that changes can be made to any model variable
that is balanced with the primary variable that is being updated by a measurement. The balance is
expressed in the correlations between these variables.

2.4.4. Preconditioning: Transformation of control variables
To be able to compute the cost function and its gradient (2.14) the background error covariance matrix has
to be inverted. As discussed earlier in section 2.3.3, explicitly constructing B−1 is impossible since the di-
mensions are just too large and inverting large matrices is really inefficient. To bypass the problem of having
to invert a large matrix a control variable transform is applied in WRFDA. That is, transforming the control
variable δx such that the matrix B−1 disappears from the cost function. The control variable transform is
defined as:

δx = Uv (2.37)

Where v is now the control variable. The matrix U is called the preconditioner. The preconditioner is the
square root of the covariance matrix B:

B = B1/2BT /2 = UUT

U = B1/2
(2.38)

To demonstrate that transforming the control variable will result in the elimination of B−1, the incremen-
tal formulation of the linearised cost function is recalled:

J (δx) = 1

2
δxT B−1δx+ 1

2
(c+Hδx)T R−1 (c+Hδx) (2.39)

with

c = H (xb)−y (2.40)

Then the control variable transform in 2.37 can be applied to the cost function 2.39, which results in

J (v) = 1

2
(Uv)T U−T U−1Uv+ 1

2
(c+HUv)T R−1 (c+HUv) (2.41)

Now it is obvious that the first term can be reduced to

J (v) = 1

2
vT v+ 1

2
(c+HUv)T R−1 (c+HUv) (2.42)

The gradient of the cost function becomes

∇J (v) = v+UT HT R−1 (c+HUv) (2.43)

Equations 2.42 and 2.43 are used in every iteration of the minimization algorithm. That requires trans-
forming from model to control variable space before the minimization algorithm is called and then trans-
forming the analysis back to model variable space:

xa = xb +Uva (2.44)
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In which va represents the final analysis increment in control variable space.

The inverse background error covariance matrix B−1 has been absorbed by v. In essence the first term has
been diagonalized and the inverse error covariance matrix is equal to the identity matrix when transformed
to control variable space. That way the condition number of the background term is reduced to 1. The con-
trol variable transform is designed with the idea to change to a basis which components are uncorrelated.
That is realised by projecting the background error covariances onto an orthogonal basis of vectors that are
uncorrelated by definition.

Then of course the challenge of modelling B is shifted to how U is constructed. U in WRFDA is built up
using a series of transformations:

U = Up Uv Uh (2.45)

Figure 2.7: Schematic illustration of how the background error covariance matrix B is diagonalized by employing the physical Up , vertical
Uv and horizontal Uh transformations. By performing these transformations B is diagonalized step by step. In the top right rectangle 4
bigger blocks and 1 smaller block illustrate that the surface pressure ps (which is often both a model and control variable) is a smaller
array since it only represents a 2D field instead of the other control variables which are 3 dimensional. Image from Rizvi (2012).

Where Up , Uv and Uh represent a physical, vertical and horizontal transformation. These operations
transform the model variables used in data assimilation (u, v , T , q , ps ) contained by model vector x to the
eventual amplitudes of the empirical orthogonal functions (EOF’s) of control variables in v. First, (the inverse
of) Up converts from model space (u, v , t , q , ps ) to a set of control variables. These control variables are
assumed to be independent and thus no correlation with each other. In algebraic terms, this equates to block
diagonalization of matrix U. The blocks that remain on the diagonal represent the spatial autocorrelation
of each variable that is left. This is illustrated in figure 2.7. Applying the vertical transformation Uv further
reduces the off diagonal elements, namely the correlation of all elements that are not both on the same model
level, for example the correlation of model humidity variable q at two grid points on model level 1 and 2.
Finally, to arrive at a diagonal matrix as illustrated in the last box of figure 2.7, a horizontal transformation is
applied so that the horizontal autocorrelation is compressed.

Physical transformation
Different sets of control variables may be chosen. A commonly used combination of control variables in data
assimilation and especially for WRFDA are the stream function ψ, unbalanced velocity potential χu , unbal-
anced temperature Tu , pseudo-relative humidity RHs and unbalanced surface pressure Ps,u . It is pseudo in
the sense that the relative humidity is with respect to the saturation of the background forecast. Also, the
term “unbalanced” refers to the residual of each variable after a statistical balance to the stream function is
removed. The first part of the physical transformation exists of transforming from model variables (u, v , T ,
q , ps ) to control variables. In case (ψ, χu , Tu , RHs , Ps,u) are used, the transformation matrix is:
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
u
v
T
q

Ps

=


Cu,ψ Cu,χ 0 0 0
Cv,ψ Cv,χ 0 0 0

0 0 I 0 0
0 0 0 Cq,RH 0
0 0 0 0 I




ψ

χ

T
RHs

Ps

 (2.46)

Where Cu,ψ, Cu,χ, Cv,ψ and Cv,χ map the variables indicated by their subscripts to each other. I represents
the identity matrix. How the mapping is performed exactly is beyond the interest of this research. For a full
description of the mapping to stream function and velocity potential the reader is referred to Barker et al.
(2003). The unbalanced form of the control variables is obtained by the following transformation:

ψ

χ

T
RHs

Ps

=


I 0 0 0 0

Cχ,ψ I 0 0 0
CT,ψ 0 I 0 0

0 0 0 I 0
CPs,ψ 0 0 0 I




ψu

χu

Tu

RHs

Ps,u

 (2.47)

Matrices Cχ,ψ, CT,ψ and CPs,ψ are regression matrices of unbalanced velocity potential, temperature, and
surface pressure with the stream function. Equation 2.47 shows how for example the temperature is mod-
elled as a combination of a balanced part with the streamfunction and an independent, unbalanced part.
Additional correlations might be added to this matrix if there are reasons to assume that variables are cor-
related. It is important to recognise that adding any correlation between variables means that an increment
in one variable will lead to changes in other variables. For example, if the transformation matrix in 2.47 is
used, an innovation in the wind component u will result in a change in the streamfunction and velocity po-
tential (2.46), while the change in the streamfunction in turn will result in a change in surface pressure as well
since they are correlated according to CPs,ψ in 2.47. This can be regarded as the implementation of imposing
the geostrophic balance on any changes applied to the model state. Remember that this is one of the added
values of variational data assimilation mentioned in section 2.1 and 2.4.3.

A recent study by Sun et al. (2016) investigated the effects of using different control variables on data
assimilation using WRFDA and assessed the impact on precipitation forecasting. The control variables com-
monly used in data assimilation for momentum are the pairs streamfunction/velocity potential (ψ, χ), vor-
ticity/divergence (ζ,δ) and the east and west horizontal wind components (u, v). Often times (ψ, χ) and (ζ,δ)
have been used for data assimilation in global and synoptic scale models, primarily for their ability to im-
pose physical balances (mainly the geostrophic one) mentioned earlier. In their study they refer to Xie and
MacDonald (2012) who conducted numerical experiments to show that using the (ψ, χ) momentum control
variable produces errors since (ψ, χ) preserves the integral values of the wind so that unrealistic increments
are made when the observation network is sparse or inhomogeneous. Also, they note that for smaller, regional
domains the lateral boundary condition specification for (ψ, χ) in the estimation of model background error
covariance matrix adds to these errors. Moreover, it tends to capture long wave information from the back-
ground forecast, while short wave information from observations is taken. The opposite is the case for the
(u, v) pair, which suggest observations in a (u, v) framework have a longer lasting effect. Based on these
findings from Xie and MacDonald (2012), Sun et al. (2016) question if using the (ψ, χ) still adds value to the
data assimilation, when applied in a smaller scale regional, high resolution convection permitting domains
when a dense set of observations is assimilated. Large scale balances like the geostrophic assumption might
be less valid for these small domain models that focus on enhancing short term precipitation estimation in
which more vertical motions are involved. These regional models rely on high resolution observations from
e.g. radars to provide information on small scale processes which might not come forward in the data as-
similation analysis when using the stream function and velocity potential momentum control variables. To
investigate these hypotheses Sun et al. (2016) conducted experiments comparing the use of horizontal wind
components (u, v) and the (ψ, χ) pair momentum control variables for 7 cases of forecasting convective
events of which one also included data assimilation of radar reflectivity and radial velocity of eight NEXRAD
radars. They found that the correlation between (u, v) is minimal compared to (ψ, χ) and therefore may
be used as independent control variables. Also, the correlation of (u, v) with other variables like the surface
pressure was found to be insignificant, except for some correlation with temperature and relative humidity on
lower levels which was chosen to be neglected. On the contrary, the (ψ, χ) momentum control variables did
show correlation with other variables, justifying the use of multivariate correlation as in 2.47 when (ψ, χ) are
used as momentum control variables. From their experiments they concluded that (ψ, χ) increased length
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scale and decreased variance for u and v , having a negative impact on the analysis velocity field. Because of
this smoothing behaviour of (ψ, χ) they also found a closer fit to radar wind velocity observations using (u, v)
as control variables, as they are better in representing small scale features. Finally, the (u, v) control variables
improved precipitation forecasting skill, also for the cases without radar data assimilation.

From the studies conducted by Xie and MacDonald (2012) and Sun et al. (2016), the choice is made to use
the set (u, v , t , RHs , ps ) as control variables for data assimilation, since the focus of this thesis is on short
term precipitation forecasting on a small regional domain rather than producing a synoptic data assimilation
system which captures mainly large scale motions. By taking (u, v) as momentum control variables, the first
part of the physical transform (compare to 2.46) is reduced to:

u
v
T
q

Ps

=


I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 Cq,RH 0
0 0 0 0 I




u
v
T

RHs

Ps

 (2.48)

And the second part of Up reduces to the identity matrix, because no cross correlation exists between the
control variables: 

u
v
T

RHs

Ps

=


I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I




u
v
T

RHs

Ps

 (2.49)

This is how the physical transformation Up is performed in the evaluation of the cost function and the
computation of the analysis increments in physical space. Although no thorough study was conducted com-
paring different sets of control variables, one experiment has been carried out to verify the choice of (u, v)
over (ψ, χ). In this experiment radar data has been assimilated using the two sets of control variables. The
forecast after assimilation with control variable set (u, v) resulted in a higher forecasting skill, producing a
more accurate structure of rainfall when compared to actual radar images. Therefore, in the remainder of
this report only the (u, v) momentum control variable pair will be considered in any data assimilation exper-
iment.

Vertical transformation
The vertical transformation is carried out by decomposing the vertical error covariances into empirical or-
thogonal functions (EOF’s). Suppose for a single vertical column a matrix Bv = εbεb

T describes the error
covariance of k vertical levels, where the vector εb = (ε1, · · · ,εk ) contains the error at every model level. Then
a decomposition can be performed into eigenvectors E and eigenvaluesΛ:

Bv = EΛET (2.50)

EOF’s are essentially the k eigenvectors (columns of E) of the vertical error covariance matrix Bv and they
are determined so that the first eigenvector explains maximum total error variance, the second the maximal
of the residual variance and so on for the remaining eigenvectors, of which there are a total of k. In general it is
difficult to physically interpret these eigenvectors. They can be considered natural modes of variation, how-
ever physical modes are not necessarily orthogonal. The eigenvectors are just geometrical structures aimed
to provide a more efficient basis of vectors to describe data and do not need to have a physical meaning. They
merely show patterns explaining the observed variation. The determination of the eigenvectors is obviously
dependent on the observations of variability. So even for the same geographical area using different statistics
(e.g. from different times) will result in different eigenvectors, although it is assumed that this effect is some-
what mitigated by averaging the variability over an extensive time period like a month. The matrix Λ in 2.50
is a diagonal matrix containing the k eigenvalues λi which are proportional to the amount of variance that
the corresponding eigenvector explains, that is:

V arexp = λi

k∑
i=1

λi

·100% (2.51)
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Any increment δx in the data assimilation variables introduced by observations will be projected onto
the eigenvectors. The corresponding eigenvalues determine the relative weight of the increments from every
eigenvector when the cost function 2.41 is computed. In the next section it is explained how the eigenvectors
are estimated along with some plots of the eventual estimates.

Horizontal transformation
The horizontal transformation Uh models the horizontal autocorrelation of a model variable. It is assumed
that the autocorrelation is isotropic, meaning that the change in autocorrelation is the same for every di-
rection and just depends on distance. Another assumption is that the autocorrelation is homogeneous, that
is being constant throughout the domain and not location dependent. A visual representation of these as-
sumptions will be given later in section 2.8 where single observation tests are performed to assess the spatial
pattern of increments resulting from assimilation of a single observation. The modelling of autocorrelation is
implemented in WRFDA by means of a recursive filter. It involves specifying the covariance of the coefficients
of the eigenvectors/EOF’s. The covariance is said to decay exponentially with distance:

B (r ) = B (0)exp

(
− r 2

8s2

)
(2.52)

Figure 2.8: Exponential decaying function that is used to estimate horizontal length scales of the amplitudes of the EOF’s by fitting the
function to computed covariances binned in distance intervals. The ratio of covariance at distance r and and distance 0 is shown as a
function of the ratio of distance to length scale s.

Where z (r ) is the autocovariance of the coefficient of the eigenvector that depends on distance r only,
and is thus isotropic. z (0) is the autocovariance at zero distance, i.e. the variance of the coefficient of the
EOF’s. The characteristic horizontal length scale s is estimated by fitting the exponential function 2.52 to the
experimental covariances. This length scale determines how quickly a variable decorrelates with distance. At
r = s, the covariance has reduced to 88% of z (0) and 50% reduction occurs at r = 2.35s. Refer to figure 2.8 to
see how the covariance decays with ratio r /s. When the actual data assimilation is employed, the length scale
can be adjusted to allow some liberty in determining the extent of increments resulting from assimilation of
observations. This will be discussed in more detail in section 2.4.5 and 2.8.

For a detailed description of the recursive filter in employed in the horizontal transform and also of the
practical implementation of the physical and vertical transforms, refer to the technical notes of the control
variable transformation in WRFDA from Barker et al. (2003).

2.4.5. Estimating background error covariance: the NMC method
A widely used technique throughout the variational data assimilation community to estimate background
forecast error covariance is the so called National Meteorological Center (NMC) method, originally developed
by Parrish and Derber (1992). It owes its name to the National Meteorological Center that is now known as
the National Centers for Environmental Prediction. This method uses an ensemble of forecast differences
between forecasts of different length, however valid for the same time to estimate the model error:
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ε= x̂−x = xt1 −xt2 (2.53)

It is common to take the difference between a 12 hour forecast and a 24 hour forecast valid for the same
time and domain. For example, at 30-08-2016 12 UTC a 24 hour forecast initialized at 29-08-2016 12 UTC and
a 12 hour forecast initialized at 30-08-2016 00 UTC are subtracted for one realization of the model error. The
error covariance is then estimated from the statistics of these differences:

B = (x24 −x12) (x24 −x12)T (2.54)

Of course one could argue for other forecast lengths, but setting the length much shorter to 6 hours or less
might result in non representative errors since the spinup time (see glossary) of a model can also be several
hours. Therefore, by using a 12 hour forecast length it is implicitly assumed that these forecasts are fully rep-
resentative of the model’s capabilities. Other common values are 24 and 48 hour forecasts, however bearing
in mind that for most data assimilation applications and nowcasting focus on short term weather prediction
(e.g. the 0-12 hour range), statistics generated from forecast differences between 24 and 48 hour forecasts
are not that representative anymore. In general uncertainty increases with forecast time and thus so will the
error variance of the model variables, leading to an overestimation of background error covariance when the
covariances are used for data assimilation at an earlier point in the forecast (e.g. +3h or +6h). Of course this
also a consequence of using a static, climatological background error covariance matrix to describe the error
covariance. To somewhat mitigate the misrepresentation error WRFDA allows scaling both the magnitude
and correlation length of the covariances. That way the background error covariance matrix can be tuned to
what is appropriate according to the users judgement. Some examples of this scaling are given in 2.8, where
single observation assimilation tests are used to illustrate how background error covariance matrix affects the
changes in model variables.

It is common to generate the climatological statistics over quite an extensive time period, preferably a
month or longer, to obtain an error sample large enough to produce a valid estimate for B. In this study
the background error covariance is estimated from 60 forecast differences, with the 12 and 24 hour forecasts
valid for 00 and 12 UTC during 30 days ranging from May 24th to June 23r d in 2016. The forecast differences
at each time are then transformed to control variable space using the inverse of the physical transformation
defined in 2.48 and 2.49, described in the previous section 2.4.4. After the mean for every vertical model
level is removed, the errors are averaged horizontally for every model level k to obtain a domain averaged
vertical background error, for every time step. These vertical background errors are then averaged over time
to obtain the final time and domain averaged vertical background error covariance matrix Bv . As discussed
in the previous section, EOF’s are computed from an eigenvalue decomposition according to 2.50. The first
five (of the k total) eigenvectors resulting from this decomposition have been plot in figure 2.9. These vectors
explain the largest part of the variances in the vertical background error covariance. The amount of variance
that is explained is based on the magnitude of the eigenvalues corresponding to the eigenvectors (see 2.51).
The eigenvalue magnitude of each eigenvector has also been plot in figure 2.10. The eigenvalues decrease
with vertical mode for every control variable, as expected from the definition of the eigendecomposition. The
fractions of the first five eigenvalues of the total have also been included in table 2.1. The table shows the
percentage of variance that is explained by the first five eigenvectors for each control variable, except surface
pressure since it is not three dimensional. For all control variables, about 75% of the total variance in Bv is
explained by the first five eigenvectors in figure 2.9, except for temperature for which however the first five
eigenvectors still account for a large part ( 66%) of the error variance. This also proves the added value of an
eigendecomposition: a set of five vectors is able to describe approximately 75% of the variation that would
normally be described by 40 vectors.

From the top two graphs in figure 2.9 showing the eigenvectors for wind components u and v , it is ob-
served that a reasonable part of the error variance is quite evenly distributed over the model levels, since the
magnitude of the first (black) eigenvector that explains most of the vertical error variance is relatively sta-
ble over the vertical levels, with a slight peak around level 31. Most likely differences in positioning of the
jet stream that corresponds to these higher model levels causes the variability in horizontal wind speeds to
be largest here. The second mode (red) represents most of the variation at lower model levels for u and v .
The remaining (third to fifth) eigenvectors have their peak at higher model levels, indicating a large part of
total horizontal wind speed variability is in the upper areas of the troposphere. For temperature the pattern
is different, see the lower left figure in 2.9. Most variability in the error for temperature is close to the sur-
face, given the first mode only has significant magnitude at the lowest model levels. This is natural since the
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Figure 2.9: First five eigenvectors corresponding to the five largest eigenvalues (see figure 2.10). Top left shows the eigenvectors of the
horizontal west-east wind component u, top right of horizontal north-south wind component v , bottom left of temperature T and
bottom right the relative humidity RH .

surface is heated by incoming radiation which might vary considerably between model forecasts, for exam-
ple because of varying cloud cover. The next eigenvector (second, red) has a peak just slightly above the first
eigenvector. The same story applies to the following eigenvectors, illustrating that the temperature variability
generally decreases with height. A sign change (positive/negative) for example for the second (red) eigenvec-
tor of temperature around the sixth model level indicates some negative correlation between the levels above
and below exists for this eigenvector. Thus, if for example only the second temperature eigenvector makes a
positive change at model level 12, it will at the same time cause a negative temperature increment near the
surface. Finally, the five eigenvectors for relative humidity show that most of the uncertainty is in the mid to
higher regions in the troposphere. The first mode has its peak around level 25, while showing little to no vari-
ability at model levels below 11. The same is true to a lesser extent for the eigenvectors that follow. The high
variability in mid to upper model levels is likely amplified in the summer when more and heavier convective
events occur, transporting heat and moisture from the surface to high levels in the troposphere. If forecasts
from a winter period would have been used to generate the background error statistics, possibly the moisture
variability will be slightly smaller at these higher levels, but still significantly larger than at the surface. At
the surface the model is better able to forecast humidity, partly because nearly all humidity observations are
made at the surface while they are sparse at higher levels in the atmosphere. The eigenvalues and eigenvec-
tors estimated from the summer month forecast differences are stored and used in the computation of the
cost function (2.41) and its gradient (2.43).

The last part in the estimation of the background error covariance matrix involves the estimation of the
horizontal covariance. Again, refer to Barker et al. (2003) for a detailed description of how the horizontal co-
variance is estimated. Similar as for the estimation of the eigenvalues for the vertical background error covari-
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U V T RH

1 24.1 24.7 32.0 24.8
2 19.6 19.2 11.8 17.4
3 15.2 15.2 8.5 12.2
4 9.4 9.3 7.6 9.2
5 6.9 6.7 5.9 7.3

Sum 75.2 75.1 65.8 70.9

Table 2.1: Percentage [%] of variance explained of the first 5 eigenvectors determined from eigendecomposition of the vertical back-
ground error covariance matrix. Top left shows the eigenvalues of the horizontal west-east wind component u, top right of horizontal
north-south wind component v , bottom left of temperature T and bottom right the relative humidity.

Figure 2.10: Eigenvalues corresponding to all the k vertical modes resulting from the eigendecomposition of the vertical background
error covariance matrix. Top left shows the eigenvalues of the horizontal west-east wind component u, top right of horizontal north-
south wind component v , bottom left of temperature T and bottom right the relative humidity RH .

ance, the forecast differences are computed for every time step and transformed to control variables via Up
−1,

so that the forecast differences now have a vertical coordinate in terms of the eigenvector number rather than
vertical model level. The control variable differences are then projected onto the vertical eigenvectors using
the previously determined vertical transformation Uv

−1. Afterwards, the two dimensional average is sub-
tracted for the projected control variable differences, for every horizontal field. The product of the projected
and zero centralized control variable differences is taken to obtain an estimate of the covariances which are
then binned based on the 2D-distance separating two points, essentially building a variogram of horizontal
covariances for every eigenvector. For every range bin of the horizontal covariances, the mean is calculated
to obtain the mean covariance of the control variable differences. Then, the exponentially decaying function
defined in 2.52 is fit to the mean covariances in the variogram, resulting in an estimated horizontal covariance
length scale s for every eigenvector. These length scales have been plot for u, v , T and RH again in figure 2.11.
Generally speaking, the covariance length scale is largest for the first eigenvectors for all control variables, ex-
cept for the first two eigenvectors of the temperature. That means the magnitude of the first eigenvectors
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Figure 2.11: Horizontal length scales for every vertical eigenvector k. Top left shows the length scales of the horizontal west-east wind
component u, top right of horizontal north-south wind component v , bottom left of temperature T and bottom right the relative hu-
midity RH .

will propagate to a larger area than following eigenvectors. Only for the first two eigenvectors of temperature
length scale increases, although not significantly. Physically it means that temperature increments from the
second and third eigenvector of the temperature, that correspond to vertical model levels just above the ver-
tical model levels of the first eigenvector, will spread over a larger distance than increments resulting from
the first eigenvector. For relative humidity (bottom right) a sudden increase of the length scale is observed for
the last eigenvectors. There is no straightforward explanation at hand, other than that the last part of resid-
ual variance (noise) apparently has a large correlation length. It has to be noted however that these last five
eigenvectors combined explain 0.3% of the total variance, which means the effect of these eigenvectors and
corresponding length scales on any model increment is negligible. Interestingly enough, the length scales of
all variables in figure 2.11 are quite similar, in the order of tenths of kilometers. This is still quite big, bearing
in mind that the covariance is reduced with 50% only at 2.35s. As noted earlier, WRFDA enables scaling these
length scales in order to obtain more realistic increments. In section 2.8 some PSOTs will be conducted to
show the magnitude and extent of assimilating a single observation and the effects of adjusting the length
scale.

In reality it remains a challenge to obtain a valid estimate for the background covariance. In the first
place because the uncertainty is unique for every forecast, governed by the weather regime that is present
at the time of assimilation. In the summer for example convective events can cause more variability be-
tween model runs. However from day to day or even between subsequent model runs the spatial pattern
of error covariance can differ. Consider for example a squall line where in the direction of propagation of
the squall line the variability of temperature and pressure at some distance from the front is quite small.
However along the boundary of the front locally large variations can exist in humidity, temperature et cetera,
depending on the timing of the boundary and how well that is captured by the model. Ideally this should be
reflected in the covariance matrix so that observations along the squall line have a bigger impact in the as-
similation. This requires a case specific or flow-dependent background error description. The so called ’error
of the day’ approach can be realised by using an ensemble of forecasts to estimate the variability in this spe-
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cific forecast. The ensembles are generated by making small perturbations to a reference forecast, letting the
model take its course for every ensemble member and then estimating the variance at a certain time from the
spread between the ensembles. This way the actual weather regime will govern the pattern of the error vari-
ance. Besides a perturbation of the model it is also common to initialize ensemble members using different
parametrizations, e.g. different microphysics or boundary layer schemes, to represent the uncertainty of the
model as a result of parametrization. Or in some cases even an ensemble of various NWP models could be
used. Regardless of how the ensembles are generated, a sufficient amount of ensembles is required to obtain
a valid estimate of the covariance. Logically, there has to be a trade-off between ensemble size (the represen-
tativeness of the statistics) and computing power as possibly a lot more forecasts have to be made. In general,
the institutions that operationally employ ensemble data assimilation generate ensembles with at least 20
members (see Bannister (2016) for an overview of (ensemble) data assimilation methods currently employed
by leading NWP centres). Still, the limited amount of ensemble members to estimate model covariance will
lead to sampling errors, so that the statistics derived from the ensembles are not necessarily representative
for the actual covariance. For example sampling errors include unrealistically strong covariance between
points separated by a large distance. This problem can be mitigated by applying localization (Gaspari and
Cohn (1999)), where covariances are damped more with increasing separation distance. In essence, this fol-
lows the same rationale as the horizontal transformation Uh that is applied to any control variable increment,
where it assumed that covariance decreases with distance according to the exponential decaying function in
2.52. Another sampling error occurs when covariances are underestimated (Houtekamer et al. (2001)) in case
the spread in the ensembles is not big enough, as a result of e.g. too small perturbations or no variation in
model settings. The ensemble spread can be artificially increased by ensemble inflation (e.g. Anderson et al.
(1999)). However, because of the ad hoc nature of these approaches it is difficult to obtain consistently good
estimates of ensemble covariance, as for instance the inflation factor is unique for every forecast.

Figure 2.12: Horizontal wind component u increments in the data assimilation analysis resulting from a single wind speed observation,
using the various types of data assimilation. In standard variational data assimilation, increments are based only on the climatological
covariance matrix. Pure ensemble methods use an ensemble derived covariance matrix, resulting in increments that better follow the
forecast specific variance (as illustrated by the ensemble RMS). In hybrid data assimilation the increments a combination of the climato-
logical and ensemble based covariance is used, so that the analysis increments show features of both methods. Illustration from Clayton
et al. (2011).

Hybrid methods have been developed that combine the static and flow-dependent description of back-
ground error. That way the data assimilation can incorporate forecast specific variability related to the cur-
rent weather situation, while some robustness is provided by the static covariance matrix derived from cli-
matology that is used in pure variational data assimilation. Usually, the covariance matrix used in hybrid
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methods is a weighted combination of the static covariance matrix Bs and ensemble based covariance matrix
Bens :

B = aBs + (1−a)Bens ◦L (2.55)

The factor a determines the weights and L is the localization matrix that relaxes the ensemble covariances
to zero for increasing distances. The way that hybrid data assimilation is actually implemented is slightly
different from 2.55 and is usually done by extending the control variables or in other words, adding new terms
to the cost function that represent the ensemble part in the assimilation. A visual example of employing
hybrid data assimilation is given in figure 2.12, where data assimilation analysis have been plot resulting
from assimilation of a single wind observation, for different types of variational data assimilation. Note how
hybrid data assimilation combines the structure of analysis increments from the static (3DVar/4DVar) and
flow-dependent (ensemble derived) error description. Hybrid data assimilation is now the main type of data
assimilation that is employed operationally by leading NWP institutions (Bannister (2016)), for its ability to
provide an adaptive yet robust representation of model covariance.

Finally, in 4DVar, the increasing uncertainty of a NWP model with time can be accounted for. Observa-
tions assimilated at later times in the forecast then obtain a relatively higher influence, as the model pre-
cision reduces with forecast length. In the most basic 4DVar framework the static background error at the
beginning of the assimilation window is propagated through time by the linearised NWP model. So called
hybrid En4DVar applies the same algorithm, however with the difference that the background error is now a
combination of Bs and Bens as in 2.55. Hybrid 4DEnVar on the other hand does not estimate the error covari-
ance at later times through error propagation of the covariance at the start, but directly from the ensemble.
This avoids the need to linearise the forecast model so that this form of 4D assimilation can be an order of
magnitude cheaper than ordinary 4DVar (Caron et al. (2015)). For a more in depth analysis of the various
combinations of hybrid and 4D assimilation methods, refer to Bannister (2016).

2.5. Radar reflectivity assimilation
In data assimilation, any observation can be assimilated as long as it can be related to a model variable. In
this section it will be discussed how a reflectivity observation from a weather radar can be integrated into a
weather model. First it will be explained what a radar reflectivity measurement is and how it links to rainfall
rate, which is the most commonly associated quantity with radar reflectivity. Moreover, it will be used in the
verification of the model rainfall prediction as well. Then it is discussed how radar reflectivity can actually be
linked to model variables, requiring some additions to the cost function. Also, the assimilation of humidity
observations derived from radar will be addressed.

2.5.1. Definition of radar reflectivity and rainfall rate
Weather radars send electromagnetic signals into the atmosphere and measure the backscattered radiation.
The amount of radiation that is backscattered is called the reflectivity factor z and it is defined as the sum-
mation of the diameters to the sixth power of all droplets within a unit volume of 1m3, called the reflectivity
factor:

z = ∑
vol ume

D6
i =

∞∫
0

D6N (D)dD
[
mm6m−3] (2.56)

Where D is the diameter of a droplet contained in the volume. The definition in 2.56 assumes the particles
causing a reflection are in the Rayleigh scattering regime, where the amount of scattering is strongly wave-
length dependent. In this regime the size of the particles are considerably smaller than the wavelength of the
radar. For example the Dutch weather radars from KNMI operate at a wavelength λ = 5.3 cm that is signifi-
cantly bigger than the common hydrometeors present in the atmosphere, except for some extreme cases like
very large hailstones. A logarithmic scale is preferred because z spans such a big range. Therefore, Z , known
as the radar reflectivity, is defined:

Z = 10log10

(
z

z0

)
[dB Z ] (2.57)

Where z0 = 1 mm6m−3 is the reflection of a single droplet with 1mm diameter which is used as a refer-
ence. N (D) in 2.56 is the drop size distribution (DSD), expressed in the number of droplets per unit volume
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[
m−3mm−1

]
. The DSD is unique for every rain event, but is often modelled for example with an exponential

distribution as formulated by (Marshall and Palmer, 1948):

N (D) = N0 exp(−ΛD) (2.58)

In equation 2.58, N0 represents the intercept parameter and Λ the slope parameter, respectively. In
the case of single (horizontal) polarization reflectivity measurements, the intercept parameter is taken to
be constant so that rainfall rate can be determined by a single reflectivity measurement. A value of N0 =
8000 m−3mm−1 has been found by the same Marshall and Palmer (1948) by measurement fit. The empirical
expression for the slope parameter varies with rainfall rate R

[
mm h−1

]
:

Λ= 4.1R−0.21 [
mm−1] (2.59)

Figure 2.13 shows how the DSD looks like for different rainfall rates. The graph gives an example of how
the DSD varies for situations with different rainfall rates.

Figure 2.13: Drop size distribution for different rain rates using the exponential distribution of Marshall and Palmer (1948).

The other way round, the rainfall rate is a function of the DSD. By definition, the rainfall rate is the total
volume of water passing a unit area per second:

R = 6π ·10−4

∞∫
0

D3v (D) N (D)dD
[
mm h−1] (2.60)

This expression for rainfall rate assumes spherical droplets and that no vertical wind or turbulence is
present that influences the terminal fall velocity v , so that it only depends on the diameter. By taking a cer-
tain drop size distribution and terminal fall velocity, the relationship between rainfall rate and reflectivity is
generalized with a power law relationship (also referred to as Z −R relation) with prefactor a and exponent b:

Z = aRb (2.61)

These constants a and b (and consequently the DSD) are actually different for every precipitation event.
The type of precipitation that occurs (like convective, orographic or stratiform) governs the drop sizes and
their distribution, for which a certain pair of constants exist. Battan (1973) provides a comprehensive list for
different precipitation types as a result of several studies that have used regression analysis fitting equation
2.61 to measured rainfall rates and reflectivity. One that is widely used throughout meteorology is the Z −R
relation from Marshall et al. (1955):

Z = 200R1.6 (2.62)

Typical values for Z and the corresponding rainfall rates are shown in table 2.2. Additionally, an attempt
is made to classify the rainfall intensities associated with the numerical values for reflectivity and rainfall rate.
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Reflectivity [dB Z ] Rain rate [mm h−1] Intensity

0 0.04 Not visible
5 0.07 Hardly visible

10 0.15 Light mist
15 0.32 Mist
20 0.65 Very light rain
25 1.33 Light rain
30 2.73 Light to moderate rain
35 5.62 Moderate rain
40 11.53 Strong rain
45 23.68 Strong to heavy rain
50 48.62 Heavy rain
55 99.85 Very heavy rain
60 205.05 Graupel or extreme rain
65 421.07 Large graupel
70 864.68 Extreme graupel

Table 2.2: Reflectivity with corresponding rainfall using the Marshall-Palmer Z-R relation (2.62). Note that for high 55+ reflectivity the
equivalent rain rates can be slightly misleading since usually only graupel or similar icy hydrometeors can cause such high reflections.
Additionally, the experienced intensity corresponding to rain rates is included for reference.

The Marshall-Palmer relation (2.62) is close to the average of the 69 Z −R relations studied in Battan
(1973) for rainfall rates between 1 and 50 mm h−1. This relationship has shown to fit Z −R measurements
of stratiform precipitation quite decently, as well as reasonable representation up to higher rainfall rates for
other precipitation types like convection. For the most accurate estimation of rainfall rate given a reflectiv-
ity measurement, one would have to calibrate the Z −R relation for every single rain event with rain gauge
measurements. Since it is not a focus of this study to derive the optimal Z −R relation and moreover because
the necessary resources both in time and in terms of data availability are lacking, the Marshall-Palmer (MP)
Z −R relation (2.62) will be used to deduce rainfall rates from reflectivity measurements in this study, most
prominently in the verification.

2.5.2. Direct radar reflectivity assimilation
Any observation to be assimilated into a forecast requires an observation operator to be able to quantify the
difference between observation and model in the cost function (2.7). This observation operator converts the
model to observation space, or in other words simulates an observation from the model state at the obser-
vation location. That implies a radar reflectivity has to be linked to model variables. A basic approach is to
link reflectivity to the liquid water or equivalently rain water mixing ratio, defined as the ratio of the weight of
liquid water to dry air contained in a unit volume:

rr = mr

md
(2.63)

The specific humidity for rain water is similarly defined as the ratio of the mass of liquid water to the total
mass of the unit volume mtot that may contain water vapour, liquid water, snow, ice, etcetera:

qr = mr

mtot
(2.64)

In general atmospheric situations without extreme humidity, the mass of dry air is dominant over the
contributions from vapour and hydrometeors (mv ,mr ,ms ¿ md ) so that a mixing ratio is approximately
equal to the specific humidity, e.g. for rain:

rr ≈ qr (2.65)

Throughout this report this assumption of 2.65 is made unless specified otherwise. Coming back to the
objective to link reflectivity to rain mixing ratio, it is noted that both reflectivity and rain mixing ratio are re-
lated to the liquid water content (LWC), the total amount of liquid water in a unit volume of dry air. Assuming
only spherical droplets of water exist, the LWC is defined as:
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LW C = ρw 10−9

∞∫
0

π

6
D3N (D)dD

[
g m−3] (2.66)

With water density ρw = 106g m−3 and D [mm] diameter, N (D)
[
m−3mm−1

]
the DSD again, respectively.

In essence this is the total volume of all droplets multiplied by the density to obtain the total weight of the
water droplets in a unit volume of air. By assuming the exponential distribution of Marshall and Palmer
(1948) for droplets as in 2.58, it can be shown analytically that reflectivity factor z and LW C , analogous to the
reflectivity and rainfall rate, relate to each other also via a power law relation (2.61) as follows:

z = 2.04 ·104(LW C )1.75 [
mm6m−3] (2.67)

Or equivalently when the LWC is specified in units of kg kg−1 instead of g kg−1

z = 1.15 ·108LW C 1.75 (2.68)

By recognising that LW C = ρrr , taking the logarithm and multiplying by 10 as in 2.57, the Z − rr relation
is obtained:

Z = 43.1+17.5log10

(
ρrr

)
[dB Z ] (2.69)

Where ρ is the density of dry air. This Z − rr relation can be used as the observation operator H that links
model’s rain mixing ratio rr to a reflectivity measurement Z . Do note that applying this relation assumes
that the reflectivity is solely caused by reflection from rain. That is a valid assumption for most stratiform
precipitation especially in the summer, but often significant reflections are caused by for example snow, ice
and graupel in for example the melting layer in a convective system. The observation operator in 2.69 has
been implemented by Xiao et al. (2007) to be radar reflectivity observations into the MM5-3DVAR system and
consequently into the WRFDA later. To be able to compute analysis increments at every iteration in the min-
imization of the cost function, the rain water mixing ratio has to be added to the control variables. Because
the NMC method is not able to properly generate background error statistics for rr (since often it does not
rain and subsequently the error would be zero), the total water mixing ratio (the sum of mixing ratios of water
vapour, cloud water and liquid water) was used instead. Background error statistics could be generated for
this and therefore the total water mixing ratio was added as a control variable to the cost function. A warm
rain partitioning scheme as described by Xiao et al. (2007) was used to split total water mixing ratio incre-
ments found in every iteration step into the individual mixing ratios of vapour, cloud and liquid water. Xiao
et al. (2007) showed that by assimilating both reflectivity and radial velocity measured by Doppler weather
radars the number of correct rain forecasts improved and that the added value of assimilating reflectivity was
most evident in the first 3 hours of the forecast after assimilation.

2.5.3. Indirect radar reflectivity assimilation
The direct assimilation of radar reflectivity through operator 2.69 enables to link model to observations. How-
ever, as shown in section 2.3.2, the observation operator is linearised so that the cost function (2.11), incre-
mental) or equivalently the preconditioned cost function (2.42) is quadratic and can be minimized using the
optimization algorithms described in section 2.3.3. Since the observation operator is logarithmic, large lin-
earisation errors can be introduced if the optimal model state is far away from the background.

Wang et al. (2013) have showed that if the power law relationship for Z − rr in the logarithmic form of

Z = c1 + c2log10

(
ρrr

)
(2.70)

is used as the observation operator, when linearised to

d Z = c2drr

rr ln(10)
(2.71)

compared to an increment d Znew using the full non linear relation from 2.70

d Znew = Znew −Z = c2log10

[
rr +drr

rr

]
(2.72)
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will lead to a linearisation error that is dependant only on the ratio k = drr
rr

of rain water increment to
background rain water:

εl i n = c2k

ln(10)
− c2log10 (1+k) (2.73)

Figure 2.14: Graph showing the how the linearisation error εl i n varies with ratio k. The dashed line shows the increment d Z from
the linearisation. The blue line shows the magnitude of d Z when the full non linear operator is used. Finally, the red line shows the
difference between the two. This figure has been based on the original illustration from Wang et al. (2013).

This linearisation error is illustrated in figure 2.14. The blue curve shows how reflectivity is affected by
changes in the rain mixing ratio using the full non linear relation 2.70. The black, dashed line shows the
increment d Z corresponding to a change rr (and consequently k) when using a linear approximation. Finally,
the red curve shows the error between the non linear and linearly approximated reflectivity increments as
formulated by 2.73. It is evident that when the increment drr is several times the size as the background
rain mixing ratio rr , e.g. at k = 5 a significant linearisation error of 24 dB Z is introduced. When forecasting
convection or even precipitation in general it is quite common for a model to incorrectly forecast the position
of an area of rain. Correspondingly, the rain water mixing ratio in the model at an area where no rain is present
will be (nearly) zero so that any non zero increment resulting from a radar reflectivity observation will lead to
factor k blowing up and consequently cause a huge linearisation error. Then of course the linearisation is by
far not valid anymore. Also, Wang et al. (2013) note that the linearisation error is always positive, meaning that
any reflectivity innovation using the linear approximation will yield an increment drr that is always smaller
than an increment drr corresponding to the same reflectivity innovation that would be obtained by the non
linear Z − rr relation. In other words, the linearisation causes a dry bias in the data assimilation analysis.

To circumvent the significant errors introduced by linearisation of the reflectivity operator when there is a
large discrepancy between model and observation (rain/no rain), the same Wang et al. (2013) proposed to first
reconstruct hydrometeor quantities from radar reflectivity observations and then assimilate those instead.
So the reflectivity measurements are replaced by mixing ratio ’observations’. That way it is avoided that the
reflectivity observation operator is linearised. Besides the mixing ratio for rain WRFDA is also capable of
assimilating other hydrometeors from reflectivity, namely snow and graupel. It is assumed that a reflectivity
measurement consists of contributions from rain, dry snow, wet snow and graupel. The equivalent reflectivity
factor is therefore a sum of the contributions to reflectivity factor of the model mixing ratios for rain rr , snow
rsn and graupel rg :

ze = z (rr )+ z (rsn)+ z(rg ) (2.74)

For every z − r relation, empirical expressions obtained from regression analysis are used in WRFDA and
are described in Gao and Stensrud (2012). The equivalent reflectivity factor for rain is given by the relation
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z (rr ) = cr
(
ρrr

)1.75 = 3.63 ·109(ρrr
)1.75 (2.75)

Where ρ represents the atmospheric density and cr the prefactor for rain. For snow the distinction is made
between dry and wet snow. If snow is present, then for temperatures below 0◦C the snow is regarded as dry
snow and the first expression in 2.76 is used. The prefactor here is smaller than for rain since dry ice crystals
don’t reflect as strong compared to water droplets. For wet snow at temperatures larger than 0◦C associated
with the melting layer a different relation is used with a bigger prefactor to account for the large, melting ice
crystals that now have a surface of liquid water.

z (rsn) =
{

cd sn
(
ρrsn

)1.75 = 9.80 ·108
(
ρrsn

)1.75 t É 0◦C

cr sn
(
ρrsn

)1.75 = 4.26 ·1011
(
ρrsn

)1.75 t > 0◦C
(2.76)

Finally, for graupel, reflectivity is related to its mixing ratio as follows:

z
(
rg

)= cg
(
ρrg

)1.75 = 4.33 ·1010(ρrg
)1.75 (2.77)

Again, a relatively high prefactor is used. In the case of graupel it reflects the size of the hailstone rather
than the strong reflection caused by water. Although the above way of assimilating reflectivity is a better rep-
resentation of reality, it is impossible to determine the three mixing ratio variables from a single reflectivity
measurement. Therefore, the hydrometeor variables have to be partitioned according to some assumptions.
The partitioning in WRFDA is done in line with Gao and Stensrud (2012) who proposed to partition the hy-
drometeors based on model temperature. First it is assumed that for temperatures above 5◦C only rain leads
to a radar reflection, while at temperatures lower than −5◦C a combination of snow and graupel make up the
equivalent reflectivity factor. In between these temperatures, all hydrometeors in 2.74 exist:

ze =


z (rsn)+ z
(
rg

)
t <−5◦C

z (rsn)+ z
(
rg

)+ z (rr ) −5◦ É t É 5◦C
z (rr ) t Ê 5◦C

(2.78)

This reduces the complexity of the radar reflectivity assimilation, though a partitioning still needs to be
applied. In the transition zone from solid to liquid phase (−5◦ É t É 5◦C ) it is assumed that the fraction α of
the equivalent reflectivity caused by rain linearly increases from 0 at T = −5◦C to 1 at T = 5◦C . Secondly, at
temperatures where snow and graupel exist, the reflectivity factor is distributed according to their respective
prefactors csn , cg , with an additional distinction for dry and wet snow as defined in 2.76. The prefactor parti-
tioning for snow and graupel implies that an equal observation is made for both rsn and rg . The partitioning
leads to the following values for z (rr ), z (rsn) and z

(
rg

)
at certain temperature intervals:

ze =



z (rsn) z
(
rg

)
z (rr) T

cd sn
cd sn+cg

ze
cg

cd sn+cg
ze 0 T <−5◦C

(1−α) cd sn
cd sn+cg

ze (1−α)
cg

cd sn+cg
ze αze −5◦ É T < 0◦C

(1−α) cr sn
cr sn+cg

ze (1−α)
cg

cr sn+cg
ze αze 0◦ É T < 5◦C

0 0 ze T Ê 5◦C

(2.79)

Using the values for the prefactors from 2.75, 2.76 and 2.77, the magnitude of the fractions defined in
2.79 have been plot in figure 2.15. Evidently, at temperatures below T =−5◦C the reflection is dominated by
graupel. With increasing temperature the contribution from snow and graupel decreases until the melting
point where now the high prefactor for wet snow is causing the bulk of the remaining fraction of reflection
from snow and graupel. At T =−5◦C , only rain is assumed to be present.

The hydrometeors that are to be assimilated have to be included in the control variables. For example for
the rain mixing ratio qr , an extra term is added to the cost function:

Jrr =
1

2

(
rr − rb

r

)
B−1

rr

(
rr − rb

r

)
+ 1

2

(
rr − ro

r

)
R−1

rr

(
rr − ro

r

)
(2.80)

With rr , rb
r and ro

r the model, background and observation vector for the rainwater mixing ratio. Brr and
Rrr represent the background and observation error covariance matrix. As noted earlier, the background error
covariance matrix cannot be properly estimated using the NMC method, because most often there is no rain
present in the model. Instead, Rrr is hard coded using a variance of σ2

rr
= 1.0 ·10−6 kg 2 kg−2 or equivalently,
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Figure 2.15: Partitioning of hydrometeors as based on Gao and Stensrud (2012)

a standard deviation ofσrr = 1.0 g kg−1. The covariance length scale is equal to the resolution of the domain,
4.0 km. Also, rr is assumed to be only isotropically horizontally correlated. So, any radar observed mixing
ratio rr will only lead to an increment drr on horizontal model levels. The main reason for assuming only
horizontal correlation is that the vertical layering in the WRF model is domain dependent and that is is not
possible to derive the vertical correlation using the NMC method as the mixing ratio is often zero.

Similar to the rain cost function term 2.80, additional cost function terms are added for the snow and
graupel mixing ratios, see 2.81 and 2.82. The variance and length scales are the same, making the background
error covariance matrices Brsn and Brg equivalent. In WRFDA however any scaling factor for both variance
and length scale can be applied to the control variables if the analysis increments are unrealistic according to
the user’s judgement.

Jrsn = 1

2

(
rsn − rb

sn

)
B−1

rsn

(
rsn − rb

sn

)
+ 1

2

(
rsn − ro

sn

)
R−1

rsn

(
rsn − ro

sn

)
(2.81)

Jrg = 1

2

(
rg − rb

g

)
B−1

rg

(
rg − rb

g

)
+ 1

2

(
rg − ro

g

)
R−1

rg

(
rg − ro

g

)
(2.82)

To construct the observation error covariance matrix R for the hydrometeor variables, each radar obser-
vation requires an estimate of the associated error. This is not a trivial task, in the first place because the
instrumental error of radar measurements is difficult to quantify because various error sources contribute
to the error. From correspondence with H. Leijnse, the custodian for radar data at KNMI, the error variance
for a reflectivity measurement is said to be approximately 2 dB 2Z . However, as pointed out in section 2.4.2,
besides the measurement error also the observation operator error and representativeness have to be ac-
counted for. For example even if a measured reflectivity would be perfect in terms of representing reality, in
the model parametrizations and simplifications are made so that a different reflectivity is obtained and thus
an error between model and observation exist, simply because the model cannot represent the full state of
the atmosphere perfectly. Although a solid estimation technique for all these errors is lacking, an attempt
is made to account for them by setting the variance of a reflectivity measurement to 5 dB 2Z . For a single
reflectivity measurement 2.71 is used to estimate the error variance for a hydrometeor mixing ratio from a
reflectivity error variance.

2.5.4. Radar reflectivity humidity assimilation
In the previous section it was discussed how radar reflectivity can be related to model hydrometeor quan-
tities. Radar reflectivity observations are transformed into ’observations’ for rain, snow and graupel mixing
ratios which are then assimilated. However, when only this information is assimilated, generally the model is
unable to sustain the precipitation and it dissipates quite quickly (Sun and Wang (2013)). Assimilation of the
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hydrometeor mixing ratios in essence is equivalent to assimilating only the last stage of a precipitation event,
rather than the mechanism driving it.

To tackle this problem so called cloud analysis schemes have been developed. These schemes adjust
model humidity and temperature to create favourable conditions for the initiation of new precipitation.
For example Hu et al. (2006a) indicated an enhanced storm forecast when using a cloud analysis scheme
to change heat and humidity based on radar reflections. Also, Zhao and Xue (2009) reported better repre-
sentation of intensity and structure of forecasts for hurricane Ike when a cloud analysis scheme was used in
combination with 30 minute radar assimilation in the Advanced Regional Prediction System (ARPS) 3DVar
system. In WRFDA, a basic adoption of such a cloud analysis scheme was proposed by Wang et al. (2013)
based on the assumption that the water vapour pressure is close to saturation vapour pressure at a point
where the radar reflection is obtained. Basically, where a radar measures a reflection higher than a certain re-
flectivity threshold at a height above cloud base, a relative humidity ’observation’ close to saturation is made
which is then assimilated. The cloud base is assumed to be at the lifting condensation level (LCL) which is
estimated as follows:

LC L = hs f c +125
(
Ts f c −Td ,s f c

)
(2.83)

Where hs f c is the model surface height, Ts f c and Td ,s f c the model surface and surface dewpoint temper-
ature, respectively. Evidently, a lapse rate of Γ= 8◦ C km−1 is assumed. Also, the LC L is bounded by:

hs f c +500 < LC L < 3000 (2.84)

To be able to assimilate a water vapour observation, an addition to the cost function is made similar as
for rain water in 2.80.

Jrv =
1

2

(
rv − ro

v

)T R−1
rv

(
rv − ro

v

)
(2.85)

With rv the model vector of water vapour mixing ratio and Rrv the water vapour observation error co-
variance matrix. In 2.85 there is no background term as was the case for hydrometeors like in 2.80, 2.81 and
2.82, since water vapour is already accounted for in the the standard 3DVar control variables without radar
assimilation through the pseudo RH control variable. The model water vapour mixing ratio rv at a specific
point is converted from the relative humidity RH using the model saturation vapour mixing ratio rs :

rv = RH · rs (2.86)

Equation 2.86 is the observation operator H for rv . It links the relative humidity control variable to a
water vapour mixing ratio. When the contribution to weight from water (present in any phase) is neglected,
the water vapour saturation mixing ratio is approximately equal to the saturation specific humidity qs , which
in turn is defined as:

rs ≈ qs = εes

p − (1−ε)es
(2.87)

The saturation water vapour mixing ratio depends on the saturation vapour pressure es , total pressure
p and the ratio between the gas constants for dry air and water vapour ε = Rd

Rv
≈ 0.622. The water vapour

saturation pressure es varies with temperature. Therefore the the estimated rs is a function of both model
pressure and temperature and thus the quality of the rs estimate depends on these model fields.

Recall that for minimization of the preconditioned cost function (2.42) the observation operator 2.86 has
to be linearised. Wang et al. (2013) showed that the linearised observation operator

drv = dRH · rs +RH ·drs (2.88)

can be approximated by:

drv ≈ dRH · rs + rv
c2c3

(T + c3)2 dT (2.89)

With increments drv , dRH , dT in water vapour mixing ratio, relative humidity and temperature respec-
tively. Also T represents temperature and constants c2 = 17.67 and c3 = 243.5 that originate from the expres-
sion for the water vapour saturation pressure es A.37. See also appendix A.6 for an elaborate description of
how to arrive at this approximation. Also, Wang et al. (2013) note that any positive increment in water vapour
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will lead to increments in relative humidity and temperature that are positive as well, since c2c3

(T+c3)2 > 0. Both

moisture and heat are added to areas where a radar reflection is obtained and where the relative humidity is
not close to saturation. This approach should catalyse the formation of new convective areas where it does
not exist yet in the model.

As mentioned, a water vapour mixing ratio ’observation’ r o
v is made at a radar reflection point. It seems

logical to base the magnitude of r o
v on the measured reflectivity from the radar. r o

v is constructed by assuming
a relative humidity close to saturation and using 2.86 in combination with the model saturation water vapour
mixing ratio which in turn is a function of model pressure and temperature, see A.36 and A.37. Consequently,
the magnitude of the relative humidity observation that is assimilated is based on the reflectivity as follows:

RHo =
{

RH1 Z1 É Z < Z2

RH2 Z > Z2
(2.90)

Of course values for RH1, RH2, Z1 and Z2 are arbitrary. A straightforward value for Z1 would be a reflectiv-
ity corresponding to light precipitation. Looking back at table 2.2, a value of 20 dB Z seems to be appropriate.
Setting Z1 to a lower threshold value means that a larger area of humidity observations will be assimilated.
Z2 is set to 35 dB Z , corresponding to moderate rain intensity. RH1 in between these thresholds is set to
88%. RH1 mainly controls how much water vapour is assimilated, since often most precipitation is contained
within this interval. Above 35 dB Z , associated with heavy rain, a relative humidity of 95% is assimilated.
Areas in this reflectivity range are often restricted to (cores of) convective regions. Updating 2.90 with these
values:

RHo =
{

88% 20 É Z < 35 dB Z
95% Z > 35 dB Z

(2.91)

For a reflectivity smaller than Z1, no humidity observation is assimilated. The RH values of 88% and 95%
have been set after some experiments testing the sensitivity to these values. Setting RH1 and RH2 to larger
values resulted in significant overestimation of precipitation in the subsequent forecast, while setting lower
RH assimilation values resulted in too few new areas of precipitation.

Additionally, it is important to note that when a radar derived humidity observation is assimilated, the
innovation cannot be negative. That is, if a reflection stronger than 20 dB Z is measured and the humidity
is already larger than RH1 or RH2 depending on the reflectivity strength, there is no assimilation of a hu-
midity observation. The rationale is that an area with such a near saturation RH is already likely to produce
precipitation and it’s RH should not be reduced.

As for any observations, the error of a humidity observation deduced from radar reflectivity has to be
quantified. In this case, a constant fraction of 20% of the humidity observation is used to specify the standard
deviation of the error. The minimum value that the error may attain is 1.0 ·10−3 kg kg−1. So for any humidity
observation below 5.0 ·10−3 kg kg−1, σrr is set to this minimum value.

2.5.5. Null echo assimilation
In the assimilation of radar reflectivity up until now only the case where the radar indicates precipitation has
been considered. Equally important however is that precipitating areas that exist in the model where the
radar does not measure a reflection (called a null echo) are suppressed. In other words, precipitating model
points have to be penalized for indicating precipitation while it is not true, at least according to the radar
reflection. Therefore, at places where the model is indicating precipitation but the radar does not measure
any significant reflection, a humidity observation just under saturation is assimilated to suppress the model
formation of precipitation. The reflectivity threshold for model precipitation is again taken to be 20 dB Z .
If the model equivalent reflectivity is above this threshold, the humidity observation that is assimilated is
constructed using the model saturation mixing ratio, analogous to 2.86:

r o
v = RHnp rs (2.92)

The innovation from r o
v ought to be negative, otherwise it is not assimilated. In other words, if the model

water vapour mixing ratio is already smaller than RHnp , no observation is assimilated. The relative humidity
value RHnp used to downscale the humidity in non precipitating areas is set according to temperature:

RHnp =


85% T <−5◦C
α ·85%+ (1−α) ·90% −5◦ É T < 5◦C

90% T Ê 5◦C
(2.93)
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In the transition −5◦ É T < 5◦C from ice to water, RHnp is a combination of both thresholds, where the
fraction of RHnp,r ai n of 90% linearly increases from 0 to 1, similar as for the hydrometeor assimilation in
2.79. 90% has been taken as threshold for rain since it is not too close to saturation yet it is not so low that no
precipitation can form anymore at a later stage because the relative humidity is so far away from saturation.
Additionally, a lower RH is used for freezing temperatures as it is assumed that precipitation forms faster at
equal RH in freezing clouds than in conditions where only liquid water is present in clouds. Also, if the hy-
drometeor assimilation as described in section 2.5.3 is employed, near zero mixing ratios are assimilated for
rain, snow and graupel, effectively removing erroneous model hydrometeors. This is realised by assimilat-
ing a reflectivity observation of −15 dB z using 2.78. Assuming that only liquid water causes a reflection and
thus, using 2.75, this would correspond to an observation r o

r = 4.8 · 10−7kg kg−1, using a dry air density of
ρ = 1.0 kg m−3 that is common at 1.5 km altitude.

A radar is said to measure a null echo if the measured reflectivity is smaller than −10 dB z. The threshold
−10 dB z is chosen so that areas with a small measurable reflection (−10 É Z < 20 dB z) which might serve as
a favourable area for new precipitation are not affected. Only the areas with erroneous model precipitation
where the radar does not measure a significant reflection are flagged as having a null echo. Erroneous model
precipitation is indicated by a model simulated reflectivity bigger than 20 dB z, which is required for the non
precipitating observation to be assimilated. Summarizing, the following conditions have to be satisfied in
order for the hydrometeor suppression:

Zr ad ar < 0 dbZ

Zmodel > 20 dbZ
(2.94)

Similar to the humidity assimilation for precipitation, these reflectivity thresholds are defined arbitrarily.
Usually, for a lot of radar measurements there is no detectable reflection above a certain signal to noise ratio
threshold, which are classified as no data points in a radar image. Technically it is not correct to assume that
at these no data points no precipitation can be present. For example attenuation of radar beams by heavy
precipitation can result in the radar not being able to detect precipitation at large ranges, as there is there is
no radar power to scatter back anymore. However, this is rarely the case for the C-band radars employed at
KNMI. Most importantly however, the assumption that the no data points contain no precipitation is required
in order to penalize erroneous model precipitation. The ability to suppress spurious model precipitation is
favoured over the drawback of the sporadic cases where model precipitation is suppressed while it is present
in reality but just not measured by the radar.

2.6. Radar radial velocity assimilation
Besides measuring the strength of the backscattered signal from hydrometeors, radars are also capable of
detecting a frequency shift that results from a moving target, known as the Doppler shift. This Doppler shift
is directly related to the radial velocity vr :

fD =−2vr

λ
(2.95)

Where fD is the Doppler frequency shift, vr the radial velocity and λ the wavelength of the electromag-
netic wave. When a the target is moving towards the radar, the phase of the received pulse changes, causing
an apparent higher frequency and thus a positive Doppler frequency shift. In that case the radial velocity
is negative. Vice versa, if an object moves away from the radar, the distance between wave fronts increase
which is perceived by the radar as a wave with lower frequency (i.e. a negative Doppler frequency shift). It is
emphasized that a radar is only able to measure the radial velocity, that is the velocity component in the line
of sight of the radar. This concept is illustrated in figure 2.16. Given a constant flow of westerly winds, the
coloured arrows show the magnitude of the radial velocity component depending on the angle of the radar
beam with the wind field. Note that the radial velocity is equal to the actual wind magnitude when the radar
beam is parallel to the wind vector, however is zero when the radar beam is tangent to the wind vector. While
figure 2.16 is a two dimensional illustration, the same principle applies to a three dimensional wind: the ra-
dial velocity is maximal when it aligns exactly with the 3D wind vector. So at higher elevation scans the radial
velocity also contains a significant vertical component of the wind speed.

Contrary to the previous observations derived from radar reflectivity, the assimilation of radar radial ve-
locity is quite straightforward in the sense that it is assimilated in a conventional way using the observation
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RADAR

Figure 2.16: Radial velocity component of a radar for various angles with respect to a constant westerly wind field.

operator, without requiring constructing derived observations under certain assumptions or defining addi-
tional control variables. Similar as to wind speeds retrieved from other observation sources, assimilation of
radar radial velocities just requires the definition of an observation operator H that is used in the cost function
(2.7) to compute a model equivalent of the observation so that the difference with respect to the observation
H (x)−y can be quantified. The observation operator for radial velocity is defined as follows:

vr = x −xr

r
u + y − yr

r
v + z − zr

r
(w − vT (rr )) (2.96)

Where x, y , z and xr , yr , zr denote the Cartesian components of the positions on the model grid of a
certain location and of the radar, respectively. Similarly u, v , w denote the three dimensional components of
the wind velocity vector at this certain location. Note that a correction to the vertical velocity w is made to
account for the terminal fall speed vT of rain, that is defined as (Sun and Crook (1997),Sun and Crook (1998)):

vT = 5.4a
(
ρrr

)0.125 (2.97)

The terminal fall speed depends on the air density ρ, rainwater mixing ratio rr and a pressure correction
factor a.

a =
(

p0

p̄

)0.4

(2.98)

With p0 the surface pressure and p̄ the base state pressure.
The determination of the Doppler frequency shift is limited by the frequency of the radar pulses. The

maximum unambiguous Doppler frequency is equal to half of the frequency at which the phase is sampled
(known as the Nyquist frequency), in this case the pulse repetition frequency (PRF):

fD É 1

2
PRF (2.99)

At frequencies
∣∣ fD

∣∣> 1
2 PRF the sampling is not dense enough to unambiguously determine the frequency

and thus they are mapped into the unambiguous range − 1
2 PRF É fD É 1

2 PRF , so called frequency aliasing.
Often, the maximum unambiguous Doppler frequency shift is expressed in terms of radial velocity, using
2.95:

|vr | < λ ·PRF

4
= vmax (2.100)

And consequently all radial velocity observations are contained within the range of maximum unambigu-
ous Doppler or Nyquist velocity −vmax É vr É vmax. Any actual wind velocity outside this interval is aliased
into this interval according to:
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vr +k ·2vmax (2.101)

With k being an integer. The aliasing of Doppler radial velocity is illustrated in figure 2.17. In this example
vmax = 10 m s−1 and thus an actual wind velocity of 15 m s−1 is measured as being −5 m s−1. This implies
radar radial velocities should be de-aliased before they are to be assimilated.

Figure 2.17: Illustration of radial velocity aliasing.

The precision of a radial velocity is proportional to the Doppler spectrum width, which describes the
spread in Doppler frequency measurements. The spectrum width is measured during the radar scanning and
depends on the variability of the motions inside a radar reflection volume. E.g. turbulence or strong updrafts
can cause significant variability in retrieved Doppler frequencies, thus increasing the spectrum width.

2.7. GPS zenith delay assimilation
Global Positioning System (GPS) uses a constellation of satellites to determine the position of a user on Earth.
A receiver measures the time it takes for electromagnetic waves to travel back and forth to at least four satel-
lites to estimate a three dimensional position plus a clock bias of the receiver. To obtain the desired accuracy
in the position estimate, precise knowledge of the signal travel time is required. However, a GPS signal is
delayed by interaction with the atmosphere, see figure 2.18. For example free electrons in the ionosphere
slow down the propagation speed of the waves, causing some of the biggest delay of several meters in the
GPS signal. Additionally, the gases present in the troposphere also cause a delay in the travel time of a GPS
signal. These delays have to be accurately modelled in order to be able to make accurate position estimates.
The total vertical delay from the troposphere is also referred to as zenith total delay (ZTD). Generally, the ZTD
is modelled as being a combination of delay caused by the gases in the ’dry’ hydrostatic atmosphere (zenith
hydrostatic delay (ZHD)) and the ’wet’ part (zenith wet delay (ZWD)) from the water vapour present in the
atmosphere:

Z T D = Z HD +Z W D (2.102)

The ZWD is of primary interest for meteorology since it contains information about the water vapour in a
vertical column the atmosphere. Assimilation of this information in a NWP model should lead to an improved
estimate of water vapour, affecting areas where precipitation can form. In an actual GPS measurement the
path of a GPS signal is slant and thus the slant paths are converted to zenith angle (locally orthogonal to the
surface) to obtain the vertical path using a mapping function, which adds uncertainty to the retrieval. Given a
ZTD measurement, a valuable estimate for ZWD can be obtained by subtracting the ZHD from the total delay.
The hydrostatic delay caused by the gases other than water vapour is usually modelled as a function of the
surface pressure measured at a ground based GPS receiver. As for any observation that is to be assimilated, it
has to be linked to model variables through an observation operator to be able to compute the cost function.
In WRFDA the observation operator H for ZHD is based on Saastamoinen (1972) and Vedel and Huang (2004):

Z HD = k1ps

1−0.0026cos
(
2ϕ

)−0.000028h
(2.103)

Where k1 = 2.2768 ·10−5 m P a−1 an empirical constant, ps [Pa] model surface pressure, ϕ
[
deg

]
the ob-

servation latitude and h [km] the antenna altitude above the geoid. The surface pressure can be measured
quite accurately, enabling a decently accurate estimate of the delay caused by water vapour.

The delay caused by water vapour is described by the operator for ZWD:
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Figure 2.18: Schematic illustration of how the troposphere delays the GPS signal. Illustration from Geophysics (2009).

Z W D = 10−6
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0

N (z)d z ≈ 10−6
k=ktop∑

k=1

[
pk qk

Tkε

(
k2 + k3

Tk

)]
d zk (2.104)

Obviously, the total delay is a sum of the delays caused by water vapour at every model level k. Variables
pk , qk and Tk represent the model pressure, specific humidity and temperature at model level k that deter-
mine the refractivity N . The water vapour specific humidity is assumed to be approximately equal to the
mixing ratio of water vapour: qk ≈ rk . d zk is the thickness of every model layer in terms of height. Addition-
ally, empirical constants k2 = 2.21 ·10−7 K P a−1 and k3 = 3.73 ·10−3 K 2P a−1 are used that were found by Bevis
et al. (1994).

2.8. Pseudo single observation tests
To see how observations that are being assimilated into a model propagate in space, a pseudo single obser-
vation test (PSOT) can be carried out. In a PSOT only a single observation is assimilated, which has numeral
benefits:

• Assessing the impact of a single observation. It is important to know to what extent an observation can
change the model state and moreover how that increment spreads in space.

• Understanding the structure of the background error covariance matrix. The background error covari-
ance matrix is too big and complex too look at directly and the transformed version with EOF’s ampli-
tudes contains quantities that are difficult to interpret directly. A PSOT shows how a single observation
affects other model points or even other variables through balance and correlation. Thus it shows the
structure of the background error covariance matrix in model space so that its strengths and shortfalls
can be identified.

• Offering a guideline for local tuning of the background error covariance matrix. If the radius of influ-
ence determined from the error estimation is unrealistically large, the length scale of correlation can be
reduced to limit the extent to which increments to the forecast are made. Similarly, the variance might
need rescaling to produce a more impactful analysis.

An example of the increments in model variables resulting from a PSOT using a single reflectivity mea-
surement is given in figure 2.19. In this theoretical case a single reflectivity observation of 40 dB Z is assimi-
lated at an altitude of 3 km at 52◦N ,5◦E , with the sole purpose of assessing the impact a single observation
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(a) No length and variance scaling is applied. (b) Length scaling with 0.35. No variance scaling.

(c) No length scaling. 1.5 variance scaling. (d) Length scaling with 0.35 and 1.5 variance scaling.

Figure 2.19: Change in model water vapour resulting from a radar reflectivity PSOT of 40 dB Z . Horizontal cross section at vertical model
level 20, with a geopotential height equal to 3063 m and pressure 695 hPa at the model latitude/longitude closest to the observation.

has on the model state. The background forecasts is a three hour WRF model simulation for the Benelux
area with 4x4 km resolution and 40 vertical model levels, valid for August 30th , 2015. Figure 2.19a shows the
changes on vertical model level 20 (corresponding to a geopotential height of 3063 m and pressure 695 hPa
at the nearest model latitude/longitude) water vapour as a result of the assimilated water vapour observation
that was deduced from a reflectivity measurement. The difference with respect to the background forecast,
also known as innovation and O-B, of the reflectivity observation is 1.7 g kg−1. After assimilation which adds
water vapour to the forecast the analysis residual or O-A has been reduced to 1.2 g kg−1. This corresponds
with the maximum analysis increment of approximately 0.5 g kg−1 as shown in figure 2.19a. The radius of in-
fluence in which increments are made is quite large. Humidity is not expected to be correlated for differences
of several hundreds of kilometers. Besides, the goal of the radar assimilation is to provide the model with high
resolution information that contains small scale features. That requires a smaller length scale. If a scaling of
0.35 is applied, this results in an increment of the same magnitude but with a smaller radius of influence,
see 2.19b. This is considered to be a more reasonable radius of influence. The humidity observation has
some influence on the surrounding model fields so that some spatial smoothness is maintained, but not as
extensively as when no scaling is applied. Similarly to length scaling, WRFDA options also permit scaling the
variance of the model background error variances, basically changing the weight of the model background
relative to the observations. Assuming a larger variance, e.g. by scaling with 2.5, will reduce the weight of
the model background because it is now considered to be less precise. The variance scaling results in larger
analysis increment, as seen in figure 2.19c. The water vapour analysis increment is now equal to 1.2 g kg−1

and O-A 0.5 g kg−1, compared to 0.5 g kg−1 and O-A 1.2 g kg−1 for no variance scaling. Evidently the radar
humidity observation now has a bigger impact on the model state. Applying both length and variance scaling
results in the same increment but then with the smaller radius of influence from figure 2.19b, shown in figure
2.19d. This way an observation has a decent impact on the analysis and at the same time a realistic scale of
influence.

In general on a horizontal level the vapour increments are spread isotropically in space and with a de-
creasing magnitude when distance from the observation increases, as was modelled using the exponentially
decaying covariance (2.52). This pattern of how the information of an observation is spread is solely based



42 2. Variational data assimilation

on how the background error covariance matrix is constructed or equivalently which model points are corre-
lated.

(a) No length and variance scaling is applied. (b) Length scaling with 0.35. No variance scaling.

(c) No length scaling. 2.5 variance scaling. (d) Length scaling with 0.35 and 2.5 variance scaling.

Figure 2.20: Change in water vapour mixing ratio resulting from a radar reflectivity PSOT of 40 dB Z at 3 km altitude. Vertical West-East
cross section at the model latitude closest to the observation latitude: 52.01◦N .

Besides looking at model increments on a horizontal plane, it also interesting to examine the vertical
structure of any increments resulting from assimilation of a single observation. Figure 2.20 shows the verti-
cal cross section from West to East that has been made at a model latitude that is closest tot the observation
latitude. Again, the four combinations of length and variance scaling of model background error covariance
have been applied in the assimilation of the single reflectivity observation. The big radius of increments
also applies to model levels below and above the levels corresponding to the observation height (19 and 20).
Considering the increments have a range of influence of nearly 80 model grid points which equals 320 km,
it makes sense to apply a length scaling as shown in figure 2.20b to reduce the horizontal spreading of the
increment introduced by the observation. Again the increased magnitude of the analysis increment can be
recognised in the case of variance scaling (figures 2.20c and combined with reduced lengthscale 2.20d). Of
course the amount of scaling remains arbitrary. After various PSOTs with different scaling values however
the previously mentioned length and variance scaling of 0.35 and 2.5 were found to produce what could be
considered decent and realistic changes to the model. Table 2.3 summarizes the length and variance scale
factors for every control variable that are used. These scalings will be applied to any data assimilation ex-
periment if not indicated otherwise. The scaling factor for the surface pressure is not as big as for the other
primary control variables u, v , T and RH , because it is a surface variable and considered less uncertain. For
the hydrometeor control variables that include mixing ratios for cloud rc , rain rr , ice ri , snow rsn and rg only
a length scaling of 0.5 is applied. The effect of this scaling is not as big as for the primary control variables
since the hydrometeor control variables already have a small length scale (equal to the model resolution,
4km in this case). The length scaling is applied so that really only a couple of neighbouring model grid points
are affected. Hydrometeor concentration and corresponding mixing ratios vary greatly on a local scale. Of
course this varies with the weather regime that is causing the precipitation, but mixing ratios in small convec-
tive cells are not likely to be correlated over distances bigger than several tenths of kilometers. That should
be reflected in the length scale of the hydrometeor mixing ratio increments. For consistency the same length
scaling factor of 0.5 is applied to all hydrometeor variables. The result is shown in figure 2.21 for rain, where at
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Nr Control Variable Length scaling Variance Scaling

1 u 0.35 2.5
2 v 0.35 2.5
3 T 0.35 2.5
4 RH 0.35 2.5
5 Ps 0.35 1.5
6 rc 0.5 1.0
7 rr 0.5 1.0
8 ri 0.5 1.0
9 rsn 0.5 1.0
10 rg 0.5 1.0
11 w 1.0 1.0

Table 2.3: Control variable length and variance scaling used throughout the data assimilation experiments conducted in this study.

the same 20th model level model increments in rainwater mixing ratio induced by the radar observation have
been plot. The area of increments has again been reduced. A critical reader may have noticed the additional
control variables cloud water mixing ratio rc , ice mixing ratio ri and vertical velocity w in table 2.3. The first
two are not really important in this study but they are used for assimilation of other observations that link to
these quantities like satellite radiances from infra-red channels. Updraft velocity w is employed when radar
radial velocities are assimilated, which contain a significant vertical component when the higher elevation
scans are used.

(a) No length scaling is applied. (b) Length scaling with 0.5.

Figure 2.21: Change in model rain water mixing ratio resulting from a radar reflectivity PSOT of 40 dB Z . Horizontal cross section at
vertical model level 20, with a geopotential height equal to 3063 m and pressure 695 hPa at the model latitude/longitude closest to the
observation.

From figure 2.21b it might seem that the observation spreads the increment more in the vertical but this
is misleading since the model grid resolution is much coarser in the horizontal than vertically (kilometers
versus pressure levels, approximately 100−200 m for lower model levels), making these cross section plots not
to scale. Interestingly, the humidity observation at 3 km also causes increments in water vapour down to the
surface, however the relative impact is not as big as at the observation location since the water vapour mixing
ratio at the surface is usually bigger than at higher altitudes. That is shown in figure 2.22, where an increase
in relative humidity near the surface can be observed of approximately 1% for all scaling combinations. The
shape of vertical increments is the same for every scenario, only the horizontal extent varies because of the
different horizontal length scales and the magnitude of the increments because of the variance scaling. This
is to be expected, since the total vertical shape of the increments is the combination of the eigenvectors (see
section 2.4.5 and in particular figure 2.9) that minimizes the cost function. In essence the data assimilation
increments are a linear combination of the natural modes of variation, described by the eigenvectors. An
increment made at lower levels away from the observation therefore is not always easily physically explained.
Rather, it is a consequence of the fact that the eigenvectors, which determine the vertical shape of increments,
are based on error statistics that contain correlation between vertical model points. In the case for humidity,
the correlation is likely due to surface convection, as the background error statistics were generated using
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(a) No length and variance scaling is applied. (b) Length scaling with 0.35. No variance scaling.

(c) No length scaling. 2.5 variance scaling. (d) Length scaling with 0.35 and 2.5 variance scaling.

Figure 2.22: Change in relative humidity resulting from a radar reflectivity PSOT of 40 dB Z at 3 km altitude. Vertical West-East cross
section at the model latitude closest to the observation latitude: 52.01◦N .

forecasts with spring/summer conditions in May and June where generally stronger convection occurs than
in winter. The correlation with lower model levels associated with the boundary layer is actually important
since most convective events are surface driven. Because of the correlation a radar observation at a height
not that close to the surface, as is the case for the PSOT, can still help to trigger new convection, albeit the
relatively small impact on relative humidity on these lower levels. Figure 2.23c shows the same vertical cross
section for relative humidity as 2.22d where the scaling is applied, but additionally the model state before
(2.23a) and after (2.23b) have been plot. It shows how the radar based humidity observation creates a more
favourable environment for clouds and precipitation to form.

Besides the moisture increment made by the PSOT also the temperature is affected, as was pointed out
in 2.88. Because a positive vapour mixing ratio innovation was introduced by the radar derived humidity
observation, also a positive increment in temperature is made. Figure 2.24a shows how the temperature on
the same model level 20 increases as a result of the single reflectivity observation. Looking at figure 2.24a
and comparing to 2.19, again the changes are isotropic on the horizontal model level because of the distance
based variance decay. However the magnitude of the temperature increments are relatively small, given the
maximal temperature increase of approximately 0.02 K in the vicinity of the observation. Apparently the
temperature term in the linearised observation operator for rv 2.89 is not big enough to cause significant
changes in temperature. The temperature increase is solely a consequence of 2.89, since only a humidity ob-
servation is assimilated and no correlation between the control variables is modelled in the background error
covariance matrix. Similarly as for water vapour, the same vertical cross section is made for the temperature
increase and is shown in figure 2.24b. The extent of the positive temperature increment is bigger than as for
humidity, showing that the correlation length of temperature determined by the background error estima-
tion is larger. It is striking however that also some small negative increments are made for the temperatures
above and below the observation. This is likely due to the relatively high altitude at which the observation is
made: 3 km, halfway of all model levels. The eigenvectors for temperature with largest amplitudes around
model level 20 (refer to figure 2.9), are the third and fifth. These eigenvectors change sign at the model levels
below and above level 20, indicating negative correlation between level 20 and these surrounding levels, thus
resulting in negative increments. In contrast, if a temperature observation is assimilated at a lower level, the
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(a) Model RH before DA. (b) Model RH after radar PSOT.

(c) RH difference as a result of radar PSOT.

Figure 2.23: Change in relative humidity resulting from a radar reflectivity PSOT of 40 dB Z at 3 km altitude. Vertical West-East cross
section at the model latitude closest to the observation latitude: 52.01◦N .

first eigenvector of temperature will largely determine the vertical shape of increments. Figure 2.25b shows
the vertical structure of increments made by a temperature PSOT at the fifth model level with O-B 2 K and
final O-A equal to 1.5 K . The increments follow the vertical structure of the first eigenvector with the large
increments near the surface and relatively small (compared to the near surface magnitudes) increments at
model levels above 13.

In figure 2.21b the increment in rainwater mixing ratio resulting from the radar reflectivity observation
can be observed. However as demonstrated in section 2.5.3 and more specifically in the reflectivity parti-
tioning of 2.78, a radar reflectivity observation can also lead to increments for snow and graupel if the tem-
perature is below 5 ◦C . To demonstrate this, a new radar reflectivity is assimilated, but now at an altitude of
5 km. The temperature at the nearest model level (25, 583 hPa) is below freezing level. The increments in
snow and graupel mixing ratio, respectively, have been plot in figure 2.26, both for horizontal model level 25
and the same vertical E-W cross section closest to the observation as before. The model rsn increases from
0 to 0.2 g kg−1. The same is true for rg since the partitioning of reflectivity in 2.79 was constructed so that a
reflectivity observation is caused by observed mixing ratios equal in magnitude. In this case both background
fields are zero, so also the increments in rsn and rg are the same. Also, the fact that no vertical correlation is
modelled in the background error covariance matrix for snow and rain can be recognized in the vertical cross
section plot in figures 2.26c and 2.26c. Only the horizontal model levels that the observation is in between
are affected. The observation increment then decays exponentially as normal, with the scaled length scale,
although that is difficult to recognize since the length scale is so small.

Lastly, it is interesting to see how PSOT with a GPS ZTD affects model humidity. The ZTD is related to the
total integrated amount of water vapour in a column. A PSOT is carried out using a ZTD innovation of 2 cm
and an error of 0.4 cm. This leads to a profile of vertical increments shown in figure 2.27c, where the vertical
cross section of relative humidity has been plot. Again, the vertical profile is governed by the eigenvectors for
RH as shown in figure 2.9. The largest increments can be found at the mid model levels 15 to 25, the same
model heights as where the first eigenvectors for RH are at their maximum magnitudes. Contrary to the radar
PSOT which only assimilates an observation at a certain altitude, a GPS ZTD observation is a measure of the
vertically integrated water vapour column. In the case of a radar PSOT the increments were mainly deter-
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(a) Horizontal cross section (b) Vertical cross section

Figure 2.24: Change in model temperature resulting from a radar reflectivity PSOT of 40 dB Z at 3 km altitude. Both cross section at
levels closest to the observation location latitude: 52.01◦N .

(a) Horizontal cross section (b) Vertical cross section

Figure 2.25: Change in model temperature resulting from a temperature PSOT using an innovation of 2 K at model level 5.

mined by a limited amount of eigenvectors which have their peak close to observation altitude/pressure. The
model RH increment resulting from the GPS ZTD PSOT has more eigenvectors contributing to its shape since
there are no additional constraints next to the fact that the total integrated water vapour has to be increased.
Thus, the vertical increment magnitude profile is similar to the combination of all of the first eigenvectors
which explained most variation in humidity in the background error statistics. It could have been more ben-
eficial if relatively more humidity is added to lower levels, assuming most of the summer convective events
initiate from the boundary layer. On the other hand, since only a measure of the total water vapour in a
vertical column is given, no information is available on the profile in this column. It is not a bad assump-
tion to have the biggest increments in the area where the model humidity estimation is most uncertain, as
determined by the eigenvector decomposition of the background error covariance matrix.

The absolute magnitude of RH increments is limited for the PSOT of the GPS ZTD, considering the maxi-
mum RH increment is approximately 8%. However, as mentioned above, the ZTD observation can only cause
an increment for the whole column and not locally as the radar. An observation that would increase the rel-
ative humidity throughout the column with more than 10% is also quite unrealistic. Moreover, we should
rely on radar data assimilation for local increments and consider the ZTD assimilation more as an additional
constraint for the humidity increments induced from radar.
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(a) Horizontal, snow rsn (b) Horizontal, graupel rg

(c) Vertical, snow rsn (d) Vertical, graupel rg

Figure 2.26: Change in mixing ratios resulting from a radar reflectivity PSOT of 40 dB Z at 5 km altitude, above freezing level. Vertical
West-East cross section at the model latitude closest to the observation latitude: 52.01◦N .

(a) Model RH before DA. (b) Model RH after ZTD PSOT.

(c) RH difference as a result of ZTD PSOT.

Figure 2.27: Change in relative humidity resulting from a GPS ZTD PSOT with O-B 5 cm. Vertical West-East cross section at the model
latitude closest to the observation latitude: 52.01◦N .





3
Data preprocessing

In data assimilation it is essential that the observations that are to be assimilated into a NWP model are of
good quality. In the first place in the sense of precision because one would like the assimilation analysis to be
as precise as possible, however possibly more importantly because inaccurate observations add unnecessary
weight to the cost function (2.7). A biased observation will namely result in a large difference between model
and observation H (x)−y and consequently increase the second term of the cost function that quantifies the
difference between model and observations. In the subsequent minimization of the cost function the analy-
sis will tend to fit the model to these inaccurate observations, as they make a relatively large contribution to
the cost function compared to the good observations. This way only a limited amount of biased observations
can really degrade the analysis. To ensure that observations which are ingested by the data assimilation are of
proper quality, several preprocessing steps have to be applied different per instrument or observation type.
The observations that require most preprocessing are often the ones obtained through remote sensing, as
they can contain significant noise or the data contains artefacts. Since this study is primarily concerned with
the assimilation of radar data, the focus in the description of preprocessing steps will be on radar reflectivity
and radial velocity. Most surface observations that directly measure atmospheric variables like temperature,
pressure, humidity and wind speed are straightforward and don’t require preprocessing. These observations
often come from permanent stations from meteorological agencies or airports who also use these observa-
tions for climate analysis and thus have already applied several quality control procedures before the data is
released. In the data assimilation experiments performed in this study no additional preprocessing steps for
these so called conventional observations have been applied. The only quality control that remains present
for every type of observation is the maximum innovation check. This test rejects any observation that fails
the following test:

O −B < cσobs (3.1)

Where O−B denotes the difference between an observation O and equivalent observation from the model
background B . σobs is the standard deviation of the observation and c an arbitrary constant that may differ
per variable or observation type. By default c = 5, which will also be used in this study unless indicated
otherwise.

3.1. Radar reflectivity
As mentioned, data from remote sensing instruments often requires some additional processing procedures
before the desired degree of quality is obtained. In this section the preprocessing steps for radar will be
discussed. First radar reflectivity will be examined with a description of the steps that are applied to the raw
scan acquisitions to obtain data that is ready to be ingested by the data assimilation algorithm. Secondly, the
procedure to obtain radial velocity observations that are ready for assimilation are discussed.

3.1.1. Overview
The radar data used in this study has been provided by the Koninklijk Nederlands Meteorologisch Instituut
(KNMI) and Koninklijk Meteorologisch Instituut (KMI), the national meteorological services of the Nether-
lands and Belgium respectively. Raw volumetric radar scan data can be obtained through the KNMI website

49
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(Lijense (2016)) for the (former) locations of Dutch weather radars at De Bilt (DB) and Den Helder (DH). These
datasets contain both radar reflectivity and radial velocity observations for a total of 14 scan elevations. The
exact elevation angles (α) together with maximum unambiguous velocity and radar range are summarized in
table 3.1.

Scan Elevation [deg] Vmax [m s−1] Range [km] Resolution [m]

1 0.3 - 320 1000
2 0.4 23.85 240 1000
3 0.8 23.85 240 1000
4 1.1 23.85 240 1000
5 2 23.85 240 1000
6 3 31.8 170 500
7 4.5 31.8 170 500
8 6 39.75 150 500
9 8 39.75 150 500
10 10 47.7 120 500
11 12 47.7 120 500
12 15 47.7 120 500
13 20 47.7 120 500
14 25 47.7 120 500

Table 3.1: Operational radar settings at KNMI for radars at De Bilt and Den Helder. 14 scan angles are listed together with the corre-
sponding elevation angle, maxmimum unambiguous velocity Vu , maximum unambiguous range and resolution.

Besides raw volumetric data from the Dutch radars also data from Belgian weather radars at Jabbeke (JAB)
and Wideumont (WID) has been provided upon request. In this case only reflectivity data was available, for a
total of 11 elevations for both radars. Details of each scan can be found in table 3.2.

Jabbeke Wideumont
Scan Elevation [deg] Range [km] Resolution [m] Range [km] Resolution [m]
1 0.3 300 500 250 250
2 0.9 300 500 250 250
3 1.5 300 500 250 250
4 2.2 300 500 250 250
5 2.9 300 500 250 250
6 3.8 300 500 250 250
7 4.8 150 500 250 250
8 6.5 150 500 250 250
9 9 150 500 250 250
10 13 150 500 250 250
11 25 150 500 250 250

Table 3.2: Metadata of the Belgium weather radars at Jabbeke and Wideumont, operated by KMI. The scan elevations of the 11 scans are
the same for both radars, while the range and resolution vary.

Every scan of every radar used in this study contains data in polar coordinates (in range and azimuthal
bins), with an azimuthal resolution of dθ = 1◦. The dimensions of the radar images thus depend on the range
and resolutions which can be found in tables 3.1 and 3.2.

3.1.2. Clutter filter
Raw radar acquisitions can contain signals from any object in the atmosphere that is large enough to cause a
detectable reflection of a radar pulse. In most cases that is some form of precipitation or hydrometeor present
in the atmosphere. However also other objects can cause a reflection, like airplanes, swarms of insects or even
objects that are aimed to produce erroneous reflections, like military chaff. An overview of possible sources
affecting radar measurements is provided in figure 3.1.

Any reflection that is not of meteorological interest should be filtered. In the vicinity of the radar even
really small objects can scatter back a detectable amount of power, since so close to the radar the incident
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Figure 3.1: Schematic of possible error sources affecting radar measurements. Illustration by Peura et al. (2006).

power is still really big. At distances further away objects have to be larger in order to cause a backscatter
above a certain signal to noise ratio threshold. The backscatter by really small objects close to the radar
means that a lot of noisy, unwanted reflections appear close to the radar in raw radar images at low elevation
angles, as illustrated by the radar image of the lowest elevation scan of the JAB radar in figure 3.2a. Usually the
first part of the range measurements r < rmin are discarded. In this case the first 20 kilometers are removed:

r < 20 km (3.2)

Also, some clutter is present at some distance from the radar. Since these noisy reflections are relatively
low in magnitude compared to reflections of hydrometeors, radar reflections Z < Zmi n are also discarded:

Z < 7 dB Z (3.3)

Besides these basic filtering steps that are applied to the raw radar images, an additional step attempts to
remove unwanted line reflections. An example of such a line reflection is given in figure 3.2a, which shows
a raw radar image of the second elevation scan of the radar at Jabbeke (JAB). In essence these kinds of line
reflections are detected by diagnosing a certain positive trend in reflectivity along a constant azimuth com-
bined with observing that reflections in adjacent azimuth angles do not occur. Figure 3.2a shows the result
of applying the mentioned filtering steps to the raw image in figure 3.2b. Evidently, the area of clutter in the
neighbourhood of the radar is removed, as well as the majority of the unrealistic line reflections. A smaller
apparent line reflection persists and is not removed because it is situated behind an area of precipitation, so
that the linear trend estimation that is used to detect lines fails.

(a) Raw radar image (b) Filtered radar image

Figure 3.2: Illustration of basic filtering step with radar images of scan 1 of the radar at JAB at 20:45 UTC on 30-08-2015.
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3.1.3. Transformation from polar to geographic coordinates
The original and filtered radar images from the previous step both have polar coordinates. To be able to
perform some more advanced filtering steps, a gridded image with pixels of equal area is required. The first
step is to transform from polar (r,θ) to Cartesian (x, y) coordinates, so that these new coordinates can be used
to interpolate to a grid in Cartesian coordinates. In this transformation it is assumed that the raw polar radar
measurement locations are contained on a two dimensional plane. Technically this is not true since the radar
scans actually form a cone when α> 0, but especially for low elevation angles this is a valid approximation.

In order to obtain a reflectivity grid, the reflectivity observations from the coordinate transformed loca-
tions are interpolated to the grid locations. The rectangular grid is defined with the same resolution as the
original range measurements of the corresponding scan. Logically, in a polar coordinate system the bin area
increases laterally with range, resulting in increasingly larger spacing between azimuth angles with range.
This is also visible in the raw radar images (as in figure 3.3a) where the pixels (and in reality also the volume
of air that causes a backscatter) become more stretched. Hence the interpolation close to the radar where ob-
servations are denser is more precise. A linear, two dimensional interpolation is used to estimate reflectivity
at the grid locations. The interpolation of a polar image (figure 3.3a) to a rectangular grid results in the square
grid as shown in figure 3.3b. The interpolated square image is really similar to the polar image.

(a) Filtered polar radar image (b) Interpolated square radar image

Figure 3.3: Illustration of grid interpolation step with radar images of scan 1 of the radar at JAB at 20:45 UTC on 30-08-2015.

However, before a radar observation is to be assimilated, as for any observation, it should be assigned a
geodetic coordinate in terms of the latitude, longitude and (ellipsoidal) height. Being a three dimensional
coordinate system, it requires estimating the height of the radar beam at a given location. To that end, the
widely used approximation from Doviak and Zrnic (1993) is used:

h =
√

r 2 + (ke a)2 +2r ke a sinα−ke a +hr ad ar (3.4)

Where h represents the height above the (spherical) Earth’s surface, r the range of the radar beam, a the
radius of the Earth (taken to be a = 6370 km) and α the scan elevation. Because the radar is usually not at
the surface, the height of the radar hr ad ar above the surface has to be added to the approximation. The coef-
ficient ke relates to the bending of a beam with height and depends on the vertical gradient of the refractive
index n with height. The refractive index of air is a function of pressure, temperature and humidity. For the
Standard Atmosphere (USAF (1976)), it can be shown that ke = 4

3 (Doviak and Zrnic (1993)). Thus it is com-
monly referred to as the "four-thirds Earth model". Of course the actual ray path of each scan is different
from the modelled one because the atmosphere is different from the Standard Atmosphere. This non stan-
dard behaviour of a radar beam is called anomalous propagation. For example, when a strong temperature
inversion exists, radar beams can be reflected back to the surface by the sudden change in density between
layers. The radar beams in turn reflect back from the surface into the atmosphere. That way radar beams can
get trapped in a shallow layer, knows as ducting. These are extreme cases however which would require a
specific analysis with atmospheric profiles. In this study the approximation of the beam height in a Standard
Atmosphere from Doviak and Zrnic (1993) is considered sufficient.

Using the scan elevations and ranges mentioned in table 3.1, a plot of each scan height for the radar at
DB is shown in figure 3.4a. The radar at DH uses the same elevation angles and ranges, making the beam
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(a) Radar beam height of the scans of the radar at Den Helder (DH).
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Figure 3.4: Radar beam height using the approximation in equation 3.4.

height per scan identical to the one from DB. Additionally for the radar at JAB a height plot per scan using the
metadata in table 3.2 is included in figure 3.4b. The radar at Wideumont (WID) uses the same scan strategy
but with smaller ranges so a height plot would look the same, only extending less far. Besides the range-height
plots in figure 3.4, the points of the lowest scan of 0.3 ◦ having the same height above the surface are plot for
heights ranging from 0.5 to 8 km in figure 3.5. These points mark the lowest heights at which the radar is able
to detect a reflection. Any precipitation at lower heights at this location is thus overshot (see figure 3.1).

3.1.4. Neighbourhood filtering
After the basic filtering steps described in 3.1.2, some undesired areas of reflection may still exist in the im-
age. In the next step of filtering radar images, reflectivity areas beneath a certain threshold area are discarded,
because these areas of reflection are considered to be clutter, too small and incoherent to resemble an area
of precipitation. For each reflective area on the image, the group size is calculated by counting the number
of connected pixels that contain a reflection. Areas with a group size smaller than a defined threshold are re-
moved. The threshold of number of pixels that is appropriate naturally depends on the resolution. Therefore
a minimal area is defined instead, that can be combined with resolution to determine a minimal group size
in terms of pixels.

Besides this so called small neighbourhood filtering, also an attempt is made to suppress noisy reflections
by comparing a pixel value to the average of a 3x3 block of surrounding pixels. To that end, reflections are
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Figure 3.5: Equidistant points from the DB radar at heights ranging from 0.5 to 8 km.

considered to be unrealistic when they deviate 15 dB Z from the 3x3 block average. Applying these filtering
steps to the interpolated image of 3.6a results in a filtered image as shown in figure 3.6b. Although hard to
recognize, some small areas of reflection especially near the Belgian coast are removed. Other than that no
significant changes are made to the image.

(a) Interpolated square radar image (b) Filtered square radar image

Figure 3.6: Illustration of neighbourhood filtering step with radar images of scan 1 of the radar at JAB at 20:45 UTC on 30-08-2015.

3.1.5. Null-echo and image filling
At this point an image is obtained which is thought to accurately represent precipitation. However, for loca-
tions/pixels where no significant reflections are measured a pixel is classified as containing no measurement.
At the same time though, the fact that no reflection is obtained does provide important information that
there is no precipitation. This is referred to as a null-echo, which, when assimilated as described in section
2.5.5, helps to suppress erroneous model precipitation. Without assimilation of a null-echo, it is impossible
to penalize model precipitation that does not exist in reality.

Every location with no data within the original radar range per scan is flagged as a null-echo point. Ex-
cept for the edges of the areas of precipitation, where radar reflectivity is first gradually relaxed to a value of
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(a) Filtered square radar image (b) Null-echo filled radar image

Figure 3.7: Illustration of null-echo filling step with radar images of scan 1 of the radar at JAB at 20:45 UTC on 30-08-2015.

−20 dB Z with a slope of −3 dB Z km−1. The relaxing is applied to allow for a more natural transition from
cores of precipitation to the surrounding areas of no reflection. Also, if null-echoes are right next to the pre-
cipitation cores without any transition zone, a slightly inaccurately positioned null echo could unnecessarily
suppress model precipitation. Figure 3.7b shows how the filtered image in 3.7a looks like when the no data
locations are filled with null-echoes, which have been highlighted with a dark green/blue tone in a circle that
contain the points within the original radar range.

3.1.6. Resampling
Finally, before the radar data is ingested, the locations are resampled to a coarser grid. The first reason being
that the model resolution of 4 km is much coarser than the radar range resolution, varying from 250 m to
1 km per radar and scan (see tables 3.1 and 3.2). Such a high density network of observations is unnecessary
for the current model resolution. An additional benefit is the reduced data volume and processing time re-
quired in the data assimilation minimization algorithm later. Moreover, the data thinning helps to make the
observations less correlated, as in the definition of the observation error covariance matrix R it is assumed
that the observations are uncorrelated. Evidently they are not truly uncorrelated, since the filter that is ap-
plied in 3.1.4 is based on the assumption that there is a certain degree of smoothness (and thus correlation)
between adjacent pixels.

(a) Null-echo filled radar image (b) Resampled radar image

Figure 3.8: Illustration of resampling step with radar images of scan 1 of the radar at JAB at 20:45 UTC on 30-08-2015.

So, each radar image is resampled to a grid with a resolution being equal to the model resolution. For
the resampling a bicubic interpolation method is used. An example of the resampling to a 4 km resolution is
shown in figure 3.8, where 3.8b is the resampled version of 3.8a.
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3.2. Radar radial velocity
Besides reflectivity radars are also capable of measuring Doppler velocity by looking at the Doppler frequency
shift of moving targets, as explained in section 2.6. Just as was the case for reflectivity, the raw Doppler ve-
locity measurements are not yet suitable to assimilate directly. Raw images might contain clutter from non
meteorological objects as well. Radial velocities might even be aliased, a phenomenon unique to Doppler ra-
dial velocity as discussed in section 2.6. An example of aliased velocity can be observed in figure 3.9a, where
near the Belgian coast the positive (orange) radial velocity measurements indicate a wind opposite to other
observations in the image. Some efforts were made to develop a de-aliasing method, but conventional meth-
ods like one based on the velocity azimuth display (VAD) are infeasible because the lack of continuity in the
velocity observations (depending on the size and shape of precipitation areas) inhibits the creation of a VAD.
The method by de Haan (2013) suggests to use the upper radar scans with bigger elevation angles and higher
unambiguous velocities to determine the general direction of the wind speed, which can then be used to map
any aliased measurements to real velocity again. However this method did not prove to be robust enough,
especially when little to no radial velocity measurements at higher elevation angles are available. Combined
with the observation that often the area of aliased observations is limited and aliasing mostly occurs for scans
2-5 which have a relatively low unambiguous radial velocity (see table 3.1), the choice is made not to apply
any de-aliasing algorithms and rely on the maximum innovation check as defined by equation 3.1 to reject
these observations. The observation standard deviation multiplier c in equation 3.1 is set to 3 instead of 5
for radial velocity, mainly as a conservative safeguard to any observation that might just pass the maximum
innovation test but significantly degrade the model wind forecast. This does imply that aliased observations
unfortunately can not be used in the assimilation. In a more elaborate de-aliasing scheme one could include
model wind estimates in the de-aliasing by adding k ·2vmax to the aliased observations until they pass a tight
maximum innovation test.

3.2.1. Reflectivity filtering
Only radial velocity measurements from meteorological phenomena are of interest for assimilation. As was
the case for reflectivity, we would like a radial velocity image to contain only measurements of a meteorolog-
ical source like precipitation. The first step aims to filter the observation locations for which also a reflectivity
of Z > 7 dB Z exists in the filtered polar reflectivity image, see figure 3.2b. An example of a raw radial velocity
image is given in figure 3.9a, showing the raw measurements of the 5th scan of the DB radar. If the basic min-
imum reflection filter is applied, a filtered image as shown in figure 3.9b is acquired. Also, the polar image is
interpolated to a square grid analogous to reflectivity as described in section 3.1.3. The resulting interpolated
filtered image is shown in figure 3.9b.

(a) Raw radar image (b) Interpolated and filtered radar image

Figure 3.9: Illustration of filtering step with radar radial velocity images of scan 5 of the radar at DB at 20:45 UTC on 30-08-2015.

3.2.2. Resampling
The original resolution of the radar radial velocity measurements is unnecessarily high compared to the res-
olution of the model domain. Hence, similar as for radar reflectivity, the radial velocity measurements are
resampled to the 4 km model resolution using the same procedure. The result of this resampling applied
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to the filtered image of figure 3.10a is shown in figure 3.10b. Approximately the same area of radial velocity
measurements is now described by a coarser grid of measurements.

(a) Interpolated and filtered radar image (b) Resampled radar image

Figure 3.10: Illustration of resampling step with radar images of scan 1 of the radar at JAB at 20:45 UTC on 30-08-2015.

3.2.3. Outlier removal
Several experiments with the resized radial velocities images (not shown here) indicated unrealistic changes
to model wind velocity because several noisy observations degraded the DA analysis. For example, the assim-
ilation of these observations locally resulted in a stop and reversal of jet stream winds at high altitude. To limit
the amount of these suspected wrong observations, the pixels that do not conform to the surrounding obser-
vations are filtered out. That is, observations for which the measured velocity deviates more than twice the
sample standard deviation from the mean of the surrounding observations are discarded. A minimum of 4
neighbouring pixels is required for the a valid mean and standard deviation, otherwise the observation is dis-
carded as well. So at the same time this removes single observations and really small regions of observations
for which the consistency of observations cannot be checked.

(a) Resampled radar image (b) Smoothed radar image

Figure 3.11: Illustration of smoothing step with radar radial velocity images of scan 5 of the radar at DB at 20:45 UTC on 30-08-2015.

By applying these steps to the resized radial velocity image in figure 3.11a, the filtered image in figure 3.11b
is obtained. Comparing the two it is evident that some individual pixels have been removed. Especially in the
area of observations near the Belgian coast where the edges of the region of radial velocity measurements are
not really consistent with the majority of the area, unlikely observations are removed. In the other two main
areas of measurements only locally a measurement is rejected.
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3.3. GPS Zenith Total Delay
3.3.1. Data source
The GPS ZTD measurements used in this study have been supplied by the EUMETNET GPS Water Vapour Pro-
gramme (E-GVAP). The E-GVAP is a joint venture of several European national meteorological services and
geodetic institutions aimed at providing near real-time measurements of atmospheric water vapour available
for the numerical weather prediction community. Each participating institution employs a network of GPS
stations, who also process the raw GPS measurements to estimate ZTD as a required step in accurately deter-
mining position. Originally the atmospheric delays that GPS signals experience are slant path delays, which
are converted to ZTDs by means of a mapping function in the processing, see e.g. Niell (1996). In this study
GPS ZTD measurements from Geo Forschungs Zentrum/German Research Centre for Geosciences (GFZ),
KNMI, Royal Observatory of Belgium (ROB), Institut Géographique National (SGN) and United Kingdom Me-
teorological Office (UKMO) are used for assimilation. The locations of the GPS stations for each of these
institutions have been plot in figure 3.12. As can be seen from this map, some stations are part of multiple
networks. In the assimilation pre-processing as a part of the observation thinning any duplicate observations
will be ignored, only the one with the best precision is kept.
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Figure 3.12: Locations of GPS ZTD measurements per institution.

3.3.2. Height correction
Last but not least, observations of zenith total delay (ZTD) from GPS receivers also require an additional
preprocessing step before observations can be assimilated. Recall from section 2.7 that besides the ZWD
that is proportional to atmospheric water vapour which is of interest, the major part of the ZTD consists of
the signal delay caused by the interaction with air itself, referred to as the ZHD. As indicated by equation
2.102, the hydrostatic delay is estimated using pressure, which is a measure of the air mass through which a
signal has to travel. If differences between model and observed ZTD are to be attributed only to differences
in ZWD caused by water vapour, it requires ZHD and thus pressure to be equal for both ZTD estimates. As
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pressure decreases with altitude, this implies that model height should be equal to height of the GPS receiver.
In practice however these heights are never the same. For example, GPS receivers are often mounted on top of
a building to obtain a better signal strength and less possible interaction of the signal with the surroundings.
Even more important is the possible offset between the model terrain height and the actual height of the
surface. While the WRF model uses a 30 arcsecond topography dataset that is quite detailed for a mesoscale
weather model, locally differences between modelled and real topography may exist, as illustrated by figure
3.13. While this height discrepancy is the largest in mountainous areas where the model elevation model
is not able to describe complex local topographic features, in fact for every point with a height difference
a height correction should be applied. The correction is the estimated additional atmospheric delay that
would be caused if the GPS receiver would be moved from receiver height to the surface:

∆Z T D = 10−6

zGPS∫
zs f c

N (z)d z = 10−6
kGPS∑
k=1

Nk zk (3.5)

In fact this is the same approximation as used in the observation operator for ZTD in 2.104, only now inte-
grated from the model surface height zs f c to the height of the GPS receiver zGPS . Nk represents the modelled
refractivity for model layer k. Logically, the summation is from the surface until layer kGPS at the height of the
GPS receiver. In most cases the GPS receiver is above the model surface, so that the observed ZTD is smaller
than the ZTD that a GPS signal would experience when the receiver would be positioned at the model surface.
Thus the ZTD height discrepancy correction ∆Z T D in equation 3.5 is positive. In case the GPS receiver is be-
low model surface topography, ∆Z T D is negative. Instead of a thickness weighted summation of refractivity
as in 3.5, ∆Z T D then is estimated from the single refractivity of the lowest model layer combined with the
height difference between model surface and GPS receiver.

Figure 3.13: Schematic illustration of difference in model topography and GPS receiver height.

GPS measurements use an ellipsoid as a geodetic reference system. That is, the Earth is approximated
with an ellipsoid and any heights measured with a GPS are with respect to the ellipsoid surface. Consequently,
the heights measured determined by GPS positioning are referred to as ellipsoidal height. In contrast, the
heights of the model topographic surface use mean sea level as a reference. Globally, the mean sea level is
approximated by the geoid, the shape Earth’s sea level would attain solely due to gravity and rotation. The
height with respect to mean sea level is called orthometric height. For a valid computation of the ZTD height
correction, GPS ellipsoidal height should be converted to orthometric height as well. This is achieved by
subtracting the difference between geoid and reference ellipsoid knowns as the geoid undulation from the
ellipsoidal height. This principle is illustrated by figure 3.14.
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Figure 3.14: The geoid undulation is defined as the height difference between the geoid and the ellipsoid that is used in the geodetic
reference system. The ellipsoidal height is the height from the surface to the ellipsoid, as measured by GPS receivers. Finally, orthometric
height is the height separating the Earth’s surface and mean sea level, the geoid.

3.3.3. ZTD error
In section 2.4.2 it has been discussed that an observation error used in data assimilation is more than just the
instrumental error. The observation error also has to account for errors in the model observation operator
and for representativeness, resulting from the inability to describe really detailed or small scale physical pro-
cesses by a model. Especially for remote sensing observations which require various sets of approximations
and assumptions to produce a model variable estimate. A proper estimate of the ZTD observation error for
data assimilation is not well known (Vedel and Huang, 2004), other than the fact that it can be significantly
larger the the instrumental error on its own, which varies between 1−3 mm for the measurements from the
processing institutions mentioned in section 3.3.1. Therefore the instrumental error specified by the pro-
cessing is scaled with a factor 3 to account for these additional errors, similarly as done in GPS assimilation
studies conducted by Vedel and Huang (2004) and de Haan (2013).



4
Experiment setup

This chapter will discuss how the data assimilation experiments are setup. First the choice of WRF model
domain with its settings is explained. A variety of settings, schemes and parametrizations can be employed
within the WRF model for example to describe the boundary layer, radiation, clouds and microphysics. That
is followed by a description of the data assimilation strategy that involves cycling between model and assim-
ilation. The data assimilation strategy is tied to several data assimilation experiments that are carried out,
described in section 4.2. Finally, the verification using radar composite images is explained in the last section
4.3.

4.1. Model domain and setup
In section 4.1.1 a brief overview is given of the WRF model domain used for the data assimilation experiments,
along with a description of how such a model is initialised. Next, in section 4.1.2, relevant model parametriza-
tions are discussed and how they are relevant for precipitation forecasting. The section is concluded in 4.1.3
with a brief description of the data assimilation cycling strategy.

4.1.1. Domain

Figure 4.1: Map of the WRF model domain. The domain consists of 171×146 grid points at a 4 km resolution. The circles for each radar
show the points with an arc length distance of 200 km to the radar, giving an indication of the range of the radars.

61
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For the data assimilation experiments, a WRF model domain has to be defined. For the benefit of future
comparisons, the model domain of the operational WRF model employed by Weerplaza has been used. This
operational model consists of 171 (East-West) by 146 (North-South) grid cells of 4 km resolution. Vertically,
the model is made up of 40 pressure layers from the surface to a model top of 50 hPa. A Lambert conformal
projection is used to define a two dimensional grid. The Lambert projection is suited for mid latitudes be-
cause it minimizes the distance distortions (between a sphere and two dimensional surface) for these areas.
Figure 4.1 shows a map of the domain that is used for all data assimilation experiments. The green colour
shows the extent of the domain. It covers the Netherlands, Belgium and parts of Germany, Luxembourg,
France and the United Kingdom. The domain size is limited, in the first place because computational re-
sources are also limited. A 24 hour forecast already requires several hours of calculations. Ideally, one would
like to have a large, high resolution domain that covers all observations to describe the real atmosphere as
close as possible. However if the domain size for example would be doubled one could argue if the 4 km
resolution is still of added value at areas where no high resolution observations are available that can provide
the model with detailed information. In this case a large part of the high resolution radar observations are
covered by the model, except for a fraction of the radar located at Wideumont in Belgium. The relatively small
domain does imply that the effects of data assimilation possibly cannot be recognised anymore for forecasts
longer than e.g. +12 hours, as the assimilated high resolution information has left the domain again by that
time. Because this study focuses on short term precipitation forecasting with a primary interest for the 0-6h
range, this is not considered to be a problem. However it is noted when it is desired to have a longer forecast
with the same amount of detail the domain should be extended. At the same time that also requires high reso-
lution observations in these new areas of the domain, otherwise the 4 km resolution provides apparent detail
while the source data used to initialize the model is much coarser, thus not really exploiting the capabilities
of the higher resolution.

The 4 km resolution is chosen for it’s assumed ability to resolve large scale convection and at the same
time does not require extensive computational resources. The range of resolutions varying from 1−10 km
is commonly referred to as the grey zone, because at these resolutions there is a lot of debate whether or
not clouds and convection are explicitly resolved or that parametrization is required. For grid scales smaller
than several hundreds of meters large eddy simulation (LES) models can capture the big eddies and clouds
are described with the model equations. At resolution > 10 km cumulus parametrization is often employed
to describe subgrid convection. The 4 km resolution is assumed to reasonably describe mesoscale convec-
tion and precipitation so that no parametrization for convection is employed. This assumption is discussed
further in 4.1.2.

Figure 4.2: Flowchart showing the various steps in the WRF WPS.

A WRF model is initialised by invoking the WRF Preprocessing System (WPS). The flowchart in figure 4.2
shows the various components of the WPS. The first step defines a geographical grid using the specified pro-
jection, domain size and resolution and then interpolates various geographical datasets to the model grid.
For example, figure 4.3 shows the model domain elevation interpolated from the 30 arc second Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010). The blue colours indicate areas below sea level. Also,
a 21 class land use type dataset derived from MODIS images is used to define landuse fractions for the model
grid. Other geographic datasets include soil type, vegetation fraction and surface albedo. After the static
geographic data for the domain have been constructed, the WRF model requires an initial state for the at-
mosphere to start a forecast. The limited area WRF model for the Benelux is initialized with meteorological
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Figure 4.3: Terrain height in the WRF model domain.

fields from the Global Forecast System (GFS) model. This is a global NWP model that is maintained and de-
veloped by National Centers for Environmental Prediction (NCEP), part of NOAA, and is updated four times
per day. The finest resolution of the GFS model available is 0.25◦, roughly corresponding to 28 kilometer and
additionally GFS has 32 vertical model levels. Meteorological variables from the GFS model are interpolated
horizontally to the domain grid. E.g. horizontal wind speed components from GFS are rotated to align with
the x- and y-axis of the WRF domain. Variables that are not defined in the source data are derived from re-
lated ones. For example relative humidity is computed from temperature, pressure and specific humidity.
The ’real’ module defines the vertical grid for the WRF model and then interpolates the meteorological data
vertically to the model vertical levels. WRF uses a mass based terrain following vertical coordinate, defined
as:

σ= p −ptop

ps −ptop
(4.1)

Variables p, pt and ps represent pressure at a certain point, model top pressure and terrain surface pres-
sure, respectively. σ ranges from 0 at the model top to 1 at the surface. Usually σ spacing is more dense near
the surface, as weather is primarily driven by processes near the surface. Because the terrain surface pres-
sure is used, the vertical coordinate follows orographic features in the model topography. Figure 4.4 shows
an illustration of how the vertical coordinates behave when a mountain is encountered. For areas with flat
topography the σ levels are parallel to levels of constant pressure. The meteorological variables are interpo-
lated from pressure levels to defined σ levels. Finally, lateral boundary conditions (LBC) are calculated from
GFS to provide continuity at the model boundaries throughout the forecast. Since GFS provides 3h output,
the lateral boundary conditions can only be updated every 3 hours. In the mean time the lateral boundary
conditions for a WRF domain are interpolated temporally.

It is common for regional weather models to nest a limited area, higher resolution domain into a big
coarse resolution domain that is also solved non hydrostatically. The so called outer domain acts as a step
in between the meteorological source data (in this case from GFS) and the high resolution domain that is
of primary interest. The main incentive is to provide more detailed lateral boundary conditions than GFS
provides and also at every time step instead of constant lateral boundary conditions with an update frequency
equal to the GFS source data. Despite the fact that it provides better lateral boundary conditions, nesting is
not employed since it requires additional computational effort to solve the outer domain as well. Moreover,
because the interest is in the nowcasting range of 0-6h rather than several days, it is not absolutely necessary
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Figure 4.4: Example of σ mass based vertical coordinate. pt and ps represent the model top and terrain surface pressure. The vertical
levels follow any features in model topography. Illustration from Boone (2017).

to have an outer domain that provides proper boundary conditions for several days.

4.1.2. Physics parametrizations
For this study the latest version of WRF and WRFDA, V3.9, has been used. In the WRF model a wide variety
of parametrizations can be employed. These parametrizations can be regarded as an attempt to account for
physical processes that are too small (i.e. subgrid scale) for the model to resolve explicitly using the model
equations, yet are important for a realistic forecast. For example clouds might have length scales of hundreds
of meters and therefore cannot be described by a model with a 4 km resolution. However, they play a major
role in the atmosphere because they affect the radiative transfer and also because of precipitation formation.
In general the physics parametrizations in WRF can be categorized into five classes, also illustrated in figure
4.5:

Figure 4.5: Five main categories of parametrizations within the WRF model. For each category the interaction with other parametriza-
tions is indicated with an arrow. Illustration from WRF tutorial presentation Dudhia (2017).
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1. Microphysics
Cloud droplets, condensation nuclei, rain droplets, ice crystals, snow flakes and other hydrometeors
are formed on scales much smaller than the model resolution (hence the term "micro"). So, for ex-
ample the formation and growth of cloud droplets has to be estimated from other model variables like
water vapour mixing ratio, temperature etcetera. The microphysical processes are important to model
because they play a significant role in the energy and moisture budget, affecting moisture and heat ten-
dencies in the model. For example condensation of water vapour into liquid water or freezing of liquid
water causes latent heat release, which helps to drive convection in the atmosphere. The microphysics
also control how much and and at which rate hydrometeors form, influencing the transportation of
moisture. Moreover, microphysical parametrization enables estimation of precipitation. Rain, snow
and graupel that form are too heavy to be suspended by the air and subsequently they will fall to the
ground with a certain fall speed, often a function of hydrometeor concentration.

The so called microphysics schemes differ in the complexity to which they describe the microphysical
processes. For example, the simplest ’warm rain’ schemes just consider the gas and liquid phase, so no
snow or ice can form. More sophisticated schemes also accommodate modelling of ice phase particles
like ice, snow, graupel and hail. Each of these hydrometeor types interact with each other in different
ways. For the ice phase this can get significantly more complicated, since a wide range of solid ice par-
ticles exists that influence the growth and decay of each other. Figure 4.6 gives an impression of the
variety of particles and processes that can be parametrized by a microphysics scheme. The addition
of ice phase particles and how the partitioning of ice into different ice species (cloud ice, snow, grau-
pel, hail) is implemented can significantly impact a forecast, because their key properties (fall speed,
density, size distribution) are different.

Figure 4.6: Flowchart illustrating the wide range of microphysical processes that may be parametrized. Original figure from Rutledge
and Hobbs (1984).

Microphysics schemes can be roughly classified into two categories: spectral/bin and bulk schemes.
The first approach discretizes the size distribution into a fixed number of bins and is generally compu-
tationally demanding, while bulk parametrization schemes assume that the size distribution follows a
certain function described by several parameters, for example the gamma distribution:
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N (D) = N0Dµe−λD (4.2)

With N (D) the number of droplets with diameter D , N0 the intercept parameter and constants µ and
λ that control the shape of the distribution. Note that for µ= 0, the DSD in 4.2 is equal to the Marshall
and Palmer (1948) DSD defined in 2.58. Basic bulk microphysical schemes assume a fixed N0 and µ, so
that a unique value for λ exists that can be estimated using the DSD in 4.2 and the DSD-LWC relation
of 2.66 to find a DSD corresponding to an estimated mixing ratio. This implies a certain mixing ratio
corresponds to a fixed DSD. The microphysical parametrization schemes that use this assumption are
called single moment schemes, because they only estimate a mixing ratio. More elaborate schemes
also include an estimation of N0 per species (not necessarily for every single specie), so that the size
distribution of a hydrometeor can differ for a single mixing ratio. These are referred to as double mo-
ment schemes and allow for greater flexibility in modelling the DSD which in turn influences the rate
at which microphysical processes (e.g. accretion of cloud water by existing rain, riming of supercooled
water onto ice particles or aggregation of ice crystals to produce snow flakes) occur. However, even
when a double moment scheme is used to better represent DSD, uncertainty in the parametrization
remains. The number of species, assumptions about hydrometeor properties (like density, fall speed
etc.) and conversion rates cause uncertainty in the hydrometeor concentration estimates. Moreover,
defining an optimal set of parameters is difficult since their performance is case dependent.

In this study WRF simulations are carried out using the "aerosol aware" microphysics scheme devel-
oped by Thompson and Eidhammer (2014). This scheme includes the effect of aerosols in the forma-
tion and growth of clouds and precipitation, with a focus on how aerosols affect mixed phase clouds.
The aerosol aware version is an extension of the bulk microphysical scheme by Thompson et al. (2008).
The latter is a scheme that predicts mixing ratios for five liquid and ice species: cloud water, rain, cloud
ice, snow and graupel. It has been widely used in quantitative precipitation forecasting (QPF) stud-
ies (e.g. Rasmussen et al. (2011)) as it compares relatively well to precipitation observations. For ex-
ample Liu et al. (2011) showed improved skill over other microphysics schemes in forecasting winter
time precipitation in Colorado. Rajeevan et al. (2010) observed decent simulation of up- and down-
drafts and better agreement of surface rainfall distribution with observations compared to three other
microphysics schemes, although only a single case study of a thunderstorm in South-East India was
examined.

Where the scheme by Thompson et al. (2008) predicted number concentrations (thus being double
moment) for rain and cloud ice, the updated scheme by Thompson and Eidhammer (2014) includes
estimation of number concentration for cloud water and additionally the number of cloud conden-
sation nuclei (CCN) and ice nuclei (IN). The aim of including CCN and IN is to better represent the
actual drop size distributions, as aerosols in general for the same mixing ratio cause a bigger number
of droplets, however smaller in size. This will increase the albedo of a cloud, thus affecting the radia-
tive transfer. Secondly, because the average drop size is reduced, the formation of larger particles that
precipitate is delayed. These effects are referred to as the indirect effects of aerosols. The amount of
nucleating aerosols varies in time and space and are derived from a 7 year global climatological simu-
lation (Colarco et al. (2010)) of aerosols using the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) model (Ginoux et al. (2001)). From these simulations mass mixing ratios of sulfates, sea
salts, organic carbon, dust and black carbon were extracted and converted to number concentrations
by assuming a lognormal CCN distribution. The number of CCN and IN can then be employed in the re-
lations with other parameters determining the DSD. The aerosol aware scheme also models interaction
of ice, snow, and cloud water particles with radiation, recently implemented by Thompson et al. (2016).
This way, an attempt is made to also account for the first indirect effect of aerosols. Thompson and
Eidhammer (2014) found that using the aerosol aware scheme the DSD indeed featured more droplets
with smaller size on average, however the impact on longwave radiation at the surface and precipita-
tion was rather small and additionally, only observing a reduction in rainfall of several percent. Khain
et al. (2016) investigated the sensitivity of WRF hurricane simulations to microphysics schemes with
aerosol interaction and also concluded that while the aerosol aware microphysics scheme produced
results closer to observations than other tested (some also aerosol aware) bulk microphysical schemes,
the sensitivity to aerosol concentration is limited.

Besides the aim of more realistic modelling of microphysical processes by including aerosol effects, the
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inclusion of the various ice phases through their mixing ratios is required if hydrometeor concentra-
tions retrieved from radar reflectivity are to be assimilated.

2. Cumulus/Convection Another process that is often parameterized in a NWP model is subgrid scale
convection. Convection refers to narrow, saturated updrafts and nearly saturated downdrafts where
precipitation occurs. These areas of up- and downdrafts can be recognised as cumulus or cumulonim-
bus (precipitating) clouds. The more wide spread areas surrounding the cumulus clouds are subsiding
to compensate the updrafts in the clouds. Figure 4.7 provides a schematic illustration of these pro-
cesses. Moisture, heat and momentum are transported upwards by the rising air parcels. While the air
rises, it expands and cools down. Cloud droplets and precipitation form once saturation vapour pres-
sure is reached. At the same time compensating flows from higher altitude transport dry air back to
the surface. The dry air accommodates evaporation, thereby introducing a cooling effect. Other pro-
cesses affecting formation and life cycle of clouds are entrainment and detrainment, which describe
the interaction of turbulent air in a cloud with the non turbulent, surrounding air.

Figure 4.7: Illustration of convective processes in a cumulus cloud.

Updrafts can have dimensions in the order of hundreds of meters up to kilometers for deep convection.
This is smaller than common resolutions of regional weather models that range from several kilome-
ters to tenths of kilometers, thus they are unable to resolve important processes of heat and moisture
transportation explicitly and require a parametrization scheme to account for their effects. These CP
schemes redistribute temperature and moisture within a column, reducing atmospheric instability that
would otherwise produce unrealistic precipitation in a later stage when convection is finally triggered.

The 4 km resolution that is employed in the simulations here however lies in what is referred to as
the ’grey zone’; the range of model resolutions (1− 10 km) where the model resolution ∆ is close to
the length scale l of the turbulent convective clouds. Models at these resolution are able to resolve
large scale convective structures like MCSs. There is no consensus in the NWP community whether or
not to use convective parametrization at these resolutions. However, most convective parametrization
schemes were designed with the assumption that all convection is subgrid scale, i.e. l ¿∆. Moreover,
’convection allowing’ studies (e.g. Weisman et al. (1997), Speer and Leslie (2002)) showed that mod-
els with high resolutions of 3−4 km were able to reproduce large scale features of convective systems
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without convective parametrization. Weisman et al. (2008) recognised an improved ability to describe
structure and evolution of large scale convection, although more advanced characteristics like loca-
tion, timing and intensity of the convective system were not as accurate. Similarly, Done et al. (2004)
and ? found that forecasts with 4 km resolution were more skilful than coarser > 10 km resolution
simulations with CP. Schwartz et al. (2009) also found that a 4 km resolution provides a more skilful
forecast over coarser CP employing models, although noting that further decreasing the resolution to
2 km apparently provided more detail but did not result in an improvement of quantified forecast skill.
Contrary, studies carried out by Deng and Stauffer (2006) and Lean et al. (2008) do show cases where CP
improves precipitation forecasting skill. The latter and also Weisman et al. (1997) additionally suggest
leaving out a CP possibly delays convection because of the lack of vertical transportation of moisture
and heat, leading to unrealistically large mass fluxes and intense precipitation once the convection is
actually triggered.

In this study is chosen not to use a CP for the ability of 4 km to resolve large scale convection and
because the CP schemes are designed for grid resolutions that fully cover deep convective cells. For that
reason, the WRF model technical notes Skamarock et al. (2008) also do not recommend CP schemes
< 5 km.

3. Planetary boundary layer

The planetary boundary layer (PBL) is the layer just above the Earth’s surface that is influenced directly
by the surface. The height of the PBL varies from several tenths of meters at night up to several kilome-
ters on a hot day. The air above the PBL that is not affected anymore by the surface is referred to as the
free troposphere. These layers are separated by an what is called a capping inversion. The inversion is
characterised by a sudden increase of potential temperature with height, blocking any buoyant, rising
air parcels from below.

Figure 4.8: Schematic illustration of the evolution of the PBL over the course of a day. Original figure from Meted (2009).

The PBL grows during daytime when incoming radiation from the Sun heats the Earth’s surface. The
radiation causes sensible (temperature) and latent heat (moisture) fluxes from the surface to the air
above. Local instability causes the formation of buoyant air parcels or thermals. These rising thermals
are responsible for vertical transportation of heat, moisture and momentum. Because of their momen-
tum they can overshoot the capping inversion, thereby entraining some air from the free troposphere
when it sinks down again. Figure 4.8 illustrates an idealized evolution of the PBL during a day. In the
morning the surface that is warmed by incoming radiation produces thermals in the air just above.
The thermals and associated turbulence mix the air, creating the mixed (or convective boundary) layer
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as depicted in figure 4.8. The PBL grows in height by entrainment of upper air, as long as the Sun is
heating the surface and thus maintaining the forcing from the surface. Once the Sun sets, the forcing
disappears and longwave radiation that is still present starts cooling the surface, making the tempera-
ture lower than the overlying air. The gradually deepening layer of cool air is called the stable, nocturnal
boundary layer. In the nocturnal boundary layer, most of the turbulence is mechanical, induced by ver-
tical wind shear. That is contrary to daytime when turbulence is dominantly thermal. What remains of
the mixed layer is called the residual layer, containing the residual heat, moisture and pollutants. The
surface layer, usually several tenths of meters thick, constitutes the lowest layer of the PBL that directly
interacts with the surface and where turbulent transportation varies little with height compared to the
variability in the mixed layer above.

Figure 4.9: Impression of turbulent motions (a) in the convective boundary layer during daytime that are dominantly thermally driven
and (b) in the shallower, nocturnal boundary layer that are mechanically driven by wind shear. Illustration from Lenschow (1986).

The PBL is characterised by turbulent eddies that redistribute heat, moisture and momentum, creat-
ing a vertical, well mixed layer. Figure 4.10 shows how the turbulence in a typical daytime PBL results
in a layer of well mixed layer with constant potential temperature, specific humidity and wind speed.
The turbulent motions range from kilometer length scales down to micro scales. These processes are
subgrid scale for NWP model, so they have to be accounted for using parametrization. Since turbulent
flow is a highly non linear and small scale phenomenon, it is not possible to explicitly predict turbu-
lence of single eddies in the model equations. Rather, for example a statistical approach is used to
describe their collective effect. Model variables like potential temperature, water vapour mixing ratio
and vertical velocity are decomposed into a mean and perturbation component, e.g. θ and θ′ for poten-
tial temperature. The mean component describes the background state of the atmosphere, while the
perturbed part represents the contribution of turbulence. This decomposition is applied to the time

tendency (e.g. ∂θ
∂t , ∂q

∂t , ∂u
∂t , ∂v

∂t , ∂w
∂t ) equations for model variables. For a complete introduction on this

approach to describe turbulence, the reader is referred to e.g. Stensrud (2009). When the decomposed
tendencies are averaged, formally known as Reynolds averaging, the mean of the fluctuating terms (e.g.
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Figure 4.10: Idealized profiles of virtual potential temperature, wind speed, water vapour mixing ratio and a pollutant in a typical daytime
PBL.

θ′) is assumed zero but the mean of the product of fluctuating terms (e.g. potential temperature and
vertical velocity θ′w ′) is not and represents the temperature flux as a result of turbulence. These prod-
uct terms are the only ones in the averaged tendency equations that are not expressed in terms of the
model grid scale variables and thus have to be parameterized. How they are nevertheless being tried
to estimate using model variables is referred to as closure. Generally, two approaches exist to estimate
these products:

(a) Direct parametrization using empirical relationships between the product terms and grid scale
variables. A common method is known as the eddy diffusivity theory, K-theory or gradient transfer
theory. This method assumes that the averaged product term or flux is proportional to the vertical
gradient, e.g. for potential temperature:

F = θ′w ′ =−K
∂θ

∂z
(4.3)

Where F represents the heat flux and K the eddy diffusivity. K is said to increase with turbulence
intensity and also is a function of height, wind shear and surface heating, representing the main
ways that turbulence is generated: inertially, mechanically and thermally.

Because θ′w ′ is parameterized directly, these methods are said to have a first order closure, be-
cause that is the lowest order of covariance that is parameterized. Zeroth order closure would
imply that for example θ is parameterized directly, without decomposition into mean and fluc-
tuating part. Sometimes also non integer values are used to characterize the closure order. For
example a 1.5th order closure implies that only for a selection of variables (commonly moisture
and temperature) second order covariances are estimated.

(b) Use predictive equations for the product terms. These predictive equations in turn however are a
function of triple products of perturbations, like θ′θ′w ′ for example. Parameterizing these terms
results in a second order closure, as the second order of covariance is parameterized. This prin-
ciple can be extended to obtain higher order closures. However, predicting an nth order product
always includes an unknown product of order n+1 that has to be parameterized in terms of lower
order terms. In general, a higher order closure is expected to provide better representation of the
boundary layer since only higher order terms are parameterized.

Besides the order of closure PBL schemes are also characterised by how far they distribute heat, mois-
ture and momentum vertically. Generally, two classes exist: local and non local schemes. In local



4.1. Model domain and setup 71

Figure 4.11: Graphic illustration of a local (right hand side) and non local closure (left). In a local closure only adjacent vertical levels
are taken into account for transportation, while in non local schemes transportation beween non ajdacent vertical levels might occur.
Illustration from Meted (2009).

schemes only quantities in adjacent vertical grid points are used to estimate unknown quantities, see
figure 4.11. This approach implicitly assumes vertical transportation is carried out by small turbulent
eddies. A known problem of local schemes is the reduced growth of the PBL when local stability (i.e.
a small inversion) exists. The local gradient is negative there, so that down-gradient flow as defined
by 4.3 is now from high to low altitude. See figure 4.12 for an illustration how a local scheme deter-
mines the flux direction. In reality, large eddies transport heat upwards through these locally stable
parts of the boundary layer, so that the fluxes are actually locally counter-gradient because the gradient
is negative there. Higher order local closure parametrizations can allow counter-gradient transport but
does not model large eddies since it is still local. This does require more computational power since
more, higher order covariance terms have to be estimated. On the contrary, in non local schemes, an
attempt is made to include the effect of transportation by large eddies by using multiple vertical grid
points to estimate fluxes. Generally, this is done by including a correction term to 4.3, e.g. for potential
temperature again:

θ′w ′ =−K

(
∂θ

∂z
−γθ

)
(4.4)

Various implementations of the correction term γθ exist in non local schemes but in general it is a
function of the values of model variables at other grid boxes, most often the surface, so that a non local
scheme as illustrated in figure 4.11c is employed. In general evaluations of PBL schemes have shown
that when compared to observations vertical mixing tends to be overestimated by non local closure
schemes, while contrastingly local schemes are likely to underestimate vertical mixing. Consequently,
PBL height estimated by non local closure schemes is usually larger than local closure schemes. Ex-
amples of studies illustrating these findings are from Bright and Mullen (2002) investigating daytime
summer PBLs and Stensrud and Weiss (2002), who validated daytime PBL in a case of the Oklahoma
tornado outbreak in May 1999. Also Xie et al. (2012) found that when comparing local and non local
schemes, non local schemes could more accurately represent the depth of the PBL. Additionally, Hu
et al. (2010) and Gibbs et al. (2011) observed that simulations with local schemes yield relatively cool
and moist conditions, while non local schemes produce a more warm and dry PBL. The differences in
the predicted characteristics of the PBL between local and non local schemes are attributed to their
(in)ability to represent transport by large eddies.
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Figure 4.12: Schematic illustration of (a) an idealized sounding of the PBL with a mixed, turbulent layer. Stability is a function of the sign
of the potential temperature gradient. Figure (b) shows the associated fluxes determined by local and non local schemes, respectively.
Illustration from Warner (2011).

In this study the PBL parametrization by Mellor–Yamada–Nakanishi–Niino (MYNN) is employed, de-
scribed in Nakanishi and Niino (2004) and Nakanishi and Niino (2006). This is a local scheme with
a 1.5th order of closure predicting subgrid turbulent kinetic energy (TKE) terms, with mixing length
scales (affecting eddy diffusivity K in 4.3) based on the results of LES models instead of observations to
tackle common errors in earlier Mellor-Yamada schemes, like the inadequate development of the PBL
and underestimation of TKE. To further compensate the deficiencies associated with a local scheme, a
mass flux component was added to this scheme by Angevine et al. (2016) that is scale aware; the mass
flux is reduced when grid size approaches LES scale. The concept of a mass flux approach is to separate
turbulent fluxes into a component of non local updrafts and the surrounding turbulent field of local
turbulence. A fraction of the total area au (assumed to be a couple percent) is said to be responsible
for the strong, non local vertical transport by thermals. Combining with the eddy diffusivity approach
leads to what is called the eddy diffusivity mass flux (EDMF) approach, for potential temperature again:

θ′w ′ =−K
∂θ

∂z
+M

(
θu −θ

)
(4.5)

Where M = au
(
wu −w

)
represents the so called mass flux, the product of the fractional updraft area au

and the difference in vertical velocity within the updraft compared to the average of the whole area.
Similarly, θu −θ is the difference of the potential temperature within the fractional area containing
the updrafts with respect to the average. The first term on the right hand side in 4.5 represents the
local turbulent transport, while the second term aims to model the non local transport due to strong
thermals. This way, the important non local, vertical transportation by large eddies and the earlier
discussed countergradient fluxes that are not properly described by local schemes can be accounted
for, enabling more realistic growth of the PBL height. For a more elaborate description of the EDMF
approach and validation with LES experiments, the reader is referred to Siebesma et al. (2007) who
pioneered this approach to describe turbulence in the PBL.
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Figure 4.13: Illustration of the physical processes at the surface that a LSM can account for. Illustration by Warner (2011).

4. Land-surface model

Inherently coupled to the PBL parametrization is the LSM, as it provides the surfaces fluxes of momen-
tum, sensible heat and latent heat. Recall that the lowest layer of the PBL that is directly affected by the
surface is called the surface layer, see figure 4.8. The surface fluxes are important because they control
how much heat and moisture goes in and out of the atmosphere. The moisture flux supplies the fuel
for any clouds and precipitation that might form, while the heat from the surface flux generates ther-
mals that can carry the (moist) air upwards. Figure 4.13 gives an overview of the physical processes that
a LSM accounts for. Water from trees, crops and other types of vegetation evaporates into the atmo-
sphere. Also, water evaporates directly from the soil or from open water bodes like lakes. Water returns
to the surface in the form of precipitation. Besides evaporating, the water can also infiltrate the soil
and possibly be taken up by roots of vegetation, retaining the moisture in the soil for a longer time or
run off to larger water bodies. Usually a LSM divides soil in several layers in between which moisture
and heat can flow. Similarly to the atmosphere, each layer has its own temperature, moisture content
etcetera. Depending on the soil type (e.g. sand, clay, rock), layer properties like porosity, thermal and
hydraulic conductivity are defined that affect the transportation of moisture and energy between the
soil layers. At the surface a land use category is defined for every grid cell. Each land use category
has its characteristic properties like roughness, albedo, thermal capacity and conductivity, vegetation
fraction, emissivity etc.

The zonal τx and meridional τy momentum fluxes, sensible heat flux H and latent heat (moisture) flux
E are defined as follows:

|τ| = −ρ |v (z)|−|vs|
rm

(4.6)

H =−ρcp
θ (z)−θs

rh
(4.7)

E =−ρ q (z)−qs

rw
(4.8)

Where u and v are the familiar zonal and meridional wind velocities, ρ the atmospheric density, cp the
specific heat at constant pressure, θ the potential temperature and q the specific humidity. The sub-
script s denotes the surface value, as compared to the value of a quantity at height z. For momentum,
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heat and moisture, the aerodynamic resistance r is a measure of the frictional drag of the surface. The
above fluxes are a result of applying the Monin and Obukhov (1954) similarity theory for the surface
layer. This theory dictates that the scaled, dimensionless mean horizontal wind speed, mean poten-
tial temperature and specific humidity vertical gradients are described by a unique similarity function.
That is to say, for example all vertical wind profiles for any speed or roughness, when scaled with the
corresponding friction velocity u∗, are in fact described by the same curve. The similarity functions
(ϕm (ζ), ϕh (ζ), ϕm (ζ)) for momentum, heat and moisture are defined as follows:

k (z −d)

u∗
∂ |v |
∂z

=ϕm (ζ) (4.9)

k (z −d)

θ∗
∂θ

∂z
=ϕh (ζ) (4.10)

k (z −d)

q∗
∂q

∂z
=ϕw (ζ) (4.11)

The dimensionless constant k ≈ 0.40 is the von Kármán constant. z is the height within the surface
layer, d a certain displacement height (defining the surface height where the wind speed approaches
zero), |v | the horizontal wind magnitude. The constants u∗, θ∗ and q∗ represent characteristic scales
for wind speed, potential temperature and specific humidity, used for scaling the gradients:

u2
∗ =

√(
u′w ′

)2 +
(
v ′w ′

)2 = |τ|
ρ

(4.12)

θ∗u∗ =−θ′w ′ =− H

ρcp
(4.13)

q∗u∗ =−q ′w ′ =−E

ρ
(4.14)

The overbar terms denote the kinematic fluxes or covariance terms discussed in the previous section
on the parametrization of the PBL. |τ| is the absolute value of the horizontal friction stress, hence u∗
is often called the friction velocity. Recall H and E are the heat and moisture surface fluxes. Note that
the heat and moisture fluxes are often called sensible and latent heat fluxes in meteorology, referring
to the measurable heat flux and the indirect transportation of energy by evaporation.

ζ = z−d
L in the similarity functions 4.9 to 4.11 represents a parameter relating the height above the

surface to the Obukhov length scale L:

L =− u3∗Tv

kgθv
′w ′

(4.15)

With Tv the virtual temperature, g the gravitational acceleration and θv
′w ′ the turbulent kinematic

temperature flux. The absolute value of the Obukhov length scale can be interpreted as the height below
which mechanically generated turbulence dominates over buoyant/thermally generated turbulence
and usually ranges from meters to several tens of meters. The Obukhov length is infinitely large for
neutral conditions, while positive for stable and negative for unstable conditions. ζ can be regarded
as the dimensionless Obukhov height and acts as an indicator for stability: ζ < 0 implies instability
while ζ> 0 implies stable conditions. For a neutrally stable atmosphere (i.e. no potential temperature
gradient) ζ= 0 and ϕm =ϕh =ϕw = 1. It can be shown (e.g. Monin and Obukhov (1954), Oleson et al.
(2010)) by integration that wind velocity, potential temperature and humidity follow an exponential
profile in the surface layer for this case. E.g. the vertical profile of wind is given by integration of 4.9,
and assuming the surface velocity V0 = 0:

V = u∗
k

ln

(
z

z0

)
(4.16)
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The aerodynamic roughness length z0 is defined as the height above the surface at which the wind speed
is zero, when the air is thermally neutrally stable (i.e. no buoyant forces). Because ζ = 0 and ϕm = 1,
there is no stability correction and the vertical profile of horizontal wind speed follows a logarithmic
profile, as plot in figure 4.14. For stable and unstable empirical corrections are applied so that the
profile slightly deviates from the logarithmic profile of a neutrally stable surface layer. In general the
correction takes the following form, e.g. for wind speed:

V = u∗
k

[
ln

(
z

z0

)
−ψm (ζ)

]
(4.17)

With ψm (ζ) a correction term resulting from integration of integration of similarity function ϕm when
ϕm 6= 1. ψm (ζ) and similarly forψh temperature andψw for moisture are empirical functions based on
fit to observations, see e.g. Zeng et al. (1998).

Figure 4.14: Illustration of the vertical wind profile (a) on a linear scale and (b) on a semilog scale. Stability affects the vertical gradient of
the wind speed: instability causes larger gradient while stable air causes a less steep wind profile. Figure from Wallace and Hobbs (2006).

Figure 4.14 shows how stability affects the vertical profile of the horizontal wind speed. In an unstable
surface layer (L < 0, ζ < 0, φm < 1, ψm > 0) characterised by thermals, the wind speed increases faster
with height as the stronger turbulence better mixes momentum downward. The friction stress and thus
friction velocity are higher in this case than for neutral stability, leading to a steeper initial slope near
the surface. At height z > 50 the −ψm term dominates the wind speed contribution over the logarithmic
term, flattening the profile. On the other hand, in a stable layer (L > 0, ζ> 0, φ> 1, ψm < 0), the turbu-
lence is not strong enough to mix the surface layer well. The friction velocity is smaller with respect to
the neutral conditions, as indicated in figure 4.14 by the smaller gradient for stable conditions. At an al-
titude above 35m, the positiveψm correction term ensures the vertical gradient of the wind speed does
not decay as much for the neutral condition, leading to higher wind speeds at these altitudes. Besides
wind speed, profiles for potential temperature and water vapour mixing ratio similar to 4.17 are also
logarithmic, or close to logarithmic when the surface layer is not neutrally stable. However, typically
during daytime, contrary to the wind speed, the surface boundary condition is not zero but actually
higher than the boundary layer, i.e. θs f c > θBL and qs f c > qBL . The vertical profile of (virtual) potential
temperature and water vapour mixing ratio is still logarithmic, but is therefore decreasing with height,
as shown in figure 4.10.

Coming back to the surface fluxes defined in 4.6, 4.7 and 4.8, the aerodynamic resistance r is one of
the factors affecting the flux magnitude. Combining 4.6, 4.12 and 4.16, the aerodynamic resistance is
defined as:

rm = VBL

u2∗
= 1

k2VBL

[
ln

(
zBL,m −d

z0,m

)
−ψm (ζ)

]2

(4.18)

This is a measure of the resistance for momentum between a height zBL,m in the boundary layer and
the surface at height z0,m +d . Similarly, aerodynamic roughness for heat and humidity can be defined:
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rh = θBL −θs f c

θ∗u∗
= 1

k2VBL

[
ln

(
zBL,m −d

z0,m

)
−ψm (ζ)

][
ln

(
zBL,h −d

z0,h

)
−ψh (ζ)

]
(4.19)

rw = qBL −qs f c

q∗u∗
= 1

k2VBL

[
ln

(
zBL,m −d

z0,m

)
−ψm (ζ)

][
ln

(
zBL,w −d

z0,w

)
−ψw (ζ)

]
(4.20)

Evidently, aerodynamic roughness is affected by the aerodynamic roughness length z0 of the surface.
The order of magnitude is quite small, ranging from millimeters for smooth surfaces to decimeters for
more rougher surfaces. The roughness lengths are a measure of the initial length scales of turbulent
eddies originating at the surface and logically they depend on the type of land-use. For example, trees
and shrubs in a forest are taller, resulting in a bigger roughness length and consequently larger eddies
near the surface. For water the roughness length is a function of wind speed, as that controls the wave
height. From the expressions 4.18, 4.19 and 4.20 it is obvious that a larger roughness length will lead to a
smaller aerodynamic resistance and therefore a larger surface flux. Also, a larger difference e.g. in tem-
perature θBL −θs f c between the boundary layer and the surface logically causes a larger surface flux.
The surface fluxes are important as they are the drivers of convection and possible precipitation. The
moisture flux supplies the fuel for formation of clouds and precipitation, while the heat flux supplies
the energy to generate buoyancy.

Figure 4.15: Land use in the WRF domain used in this study. The land use classification uses 21 categories. DB, DN, EB and EN denote
deciduous broadleaf, deciduous needleleaf, evergreen broadleaf and evergreen needleleaf types of forest. The most abundant land use
types in the domain are croplands, water and urban areas.

In this study the Community Land Model version 4 (CLM4) is used as land-surface model and is fully de-
scribed by Oleson et al. (2010) and Lawrence et al. (2011). CLM4 has been developed at the NCAR with
many collaborators from other institutions and is a scientific land surface process model under active
development. It features sophisticated treatment of biogeophysics, hydrology, biogeochemistry, and
dynamic vegetation. In the CLM4, the land surface in each model grid cell is divided into five primary
sub-grid land cover types (glacier, lake, wetland, urban, and vegetated). The definition of sub-grid land
cover types allows to account for land cover features smaller than the model resolution. For example,
small lakes or ponds that cause significant evaporation but are not captured by the interpolated model
land use grid can then be accounted for. The sub-grid vegetation consists of up to 15 plant functional
types (PFT’s) that differ in leaf optical properties concerning reflection, transmittance, absorption of
radiation, parameters controlling the uptake of water by vegetation, aerodynamic parameters (e.g. re-
sistance) and additionally some photosynthetic parameters. The PFT is determined from the input
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land use classification using a lookup table. The land use classification is based on MODIS satellite
data and features 21 classes. Figure 4.15 shows the dominant land use category for the WRF domain
interpolated to the 4 km grid interpolated from a global 30 arc second ( 1 km) land use classification
map based on MODIS data. Finally, the CLM4 models the soil with 10 layers, can employ a 5 layer snow
pack and accounts for vegetation canopy with a single vertical layer.

Figure 4.16: Schematic illustration of surface temperature (sensible heat) and moisture (latent heat) fluxes. The left panel shows the
fluxes on a dry land surface, the right panel for a water surface. Illustration by Meted (2009).

Land cover type significantly affects the surface fluxes. For example, consider a dry, bare surface as in
the left side of figure 4.16 with a limited amount of moisture that is heated by incident solar radiation
during the day. Because the surface is much warmer than the air above, according to 4.7 a large sensible
heat flux is present. The air above is heated, creating positive buoyancy and giving rise to convection
and turbulence. On the other hand, on a water surface (see the right side of figure 4.16), more energy
of the incoming radiation is used to evaporate water. Compared to a dry surface, there is a larger latent
heat flux and a smaller sensible heat flux and therefore less turbulence and convection, resulting in a
lower PBL height. Note that water surfaces are assumed to maintain a constant temperature through-
out a short range forecast (i.e. no significant heating by radiation, because of the high heat capacity
of water), thus acting as a heat sink. Comparing a dry land surface with vegetated surfaces, the plants
on a vegetated surface contain moisture, resulting in a larger moisture and smaller sensible heat flux
as compared to dry land. Similarly a sandy soil will also produce larger moisture fluxes than clay, be-
cause sand is more porous and therefore more moisture is readily available for evaporation. In general
surfaces with relatively more moisture will cause less vertical instability in the air above because con-
vection is not as strong as for a dry surface. However, if deep convection is triggered, the high moisture
content at the surface can cause significant precipitation when the moist air rises and clouds form.

5. Radiative transfer

Last but not least, the radiation balance plays an important role in the atmosphere. Incoming short-
wave radiation (λ < 4µm) from the sun heats the surface and is the driver of atmospheric processes
like the Hadley circulation, tropical cyclones, monsoons, trade winds but also on a smaller scale, con-
vection and coastal circulation. The effects of radiative processes include temperature inversions above
the surface because of longwave (λ> 4µm) emission by the surface, evaporation of water at the surface,
damping of diurnal surface temperature variations by clouds and development of buoyant thermals
giving rise to convective weather phenomena. To be able to describe these processes, a NWP needs
to model the interaction of radiation with the various components of the atmosphere and the surface,
see figure 4.17. The bulk of these interactions occur at molecular and micro scales and are complex
functions of the wavelength spectrum, thus these processes cannot be described directly by the model
equations of a NWP and need to be parameterized.

It is essential for a good forecast to accurately represent the radiative flux at the Earth’s surface, because
differential heating at the surface causes most of the weather that we experience. As discussed in the
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Figure 4.17: Schematic illustration of radiative processes in the atmosphere. Illustration by Meted (2009).

previous point, the land surface model calculates the amount of evaporation, as well as the amount
of longwave (infrared) radiation emitted by the surface, which is a function of temperature according
to the Stefan-Boltzmann law of black body radiation. Also, the albedo that determines the amount of
incident shortwave radiation on the surface that is reflected back to space is dependent on the land
cover type and is thus given by the land surface model. The PBL parametrization scheme is responsible
for estimation of surface flux of sensible and latent heat. Latent heat is also released at higher altitudes
by condensation, which is modelled by the microphysics parametrization scheme. The other radiative
processes shown in figure 4.17 have to be accounted for by the radiative transfer model. Before radi-
ation reaches the surface, it undergoes various interactions with the atmosphere. For example, solar
radiation is absorbed by various gases and aerosols in the atmosphere. The wavelength band of the
solar radiance spectrum that is absorbed is unique for every gas specie, as shown in figure 4.18. For ex-
ample UV radiation is absorbed by ozone, while most absorption for C 02 takes places in the longwave
spectrum. The amount of absorption is proportional to the total amount of the gas that the solar beam
encounters. These gases also scatter shortwave radiation into other directions, causing diffuse solar
radiation. Longwave radiation is not scattered, but emitted back to the surface and to space. Another
important process is reflection, in which clouds play a major role. Clouds reflect solar radiation back
to space, as well as absorb and emit infrared radiation back to the surface. During the day less solar
radiation can reach the surface so that there is less heating and thus lower temperatures, while at night
the clouds trap infrared radiation in the atmosphere, so that there is less radiative cooling than com-
pared to a clear sky. The modelling of clouds remains one of the biggest uncertainties in NWP models.
Clouds bigger than model resolution can be explicitly described by the microphysics scheme, although
the microphysics parametrization itself remains an approximation of the real physical processes. For
example the assumed DSD for a certain mixing ratio might assume relatively bigger droplets than in
reality, therefore underestimating the albedo of a cloud. Information on hydrometeor (cloud water,
ice, snow, etcetera) concentration can then be passed on to the radiative transfer model that can sub-
sequently estimate reflection, absorption, scattering and emission of radiation by clouds. However,
clouds can also have scales significantly smaller than model grid resolution, so that while a model grid
cell average RH might not indicate saturation, within a grid cell locally saturation is reached, subgrid
clouds exist and thus affect the radiative transfer. Generally speaking, two popular methods exist to
estimate subgrid cloud cover:

(a) Probabilistic The first approach assumes a certain PDF for the humidity in a grid cell. Then, the
cloud fraction is inferred from the area of the PDF that exceeds saturation. This requires specifi-
cation of an assumed distribution with the associated parameters describing its shape.

(b) Relative humidity The second approach uses the relative humidity to diagnose subgrid cloud
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cover. If the relative humidity exceeds a critical value, a certain (horizontal) cloud fraction is es-
timated assuming a certain RH-cloud cover relation. An example is the commonly used relation-
ship that has been proposed by Sundqvist et al. (1989):

C = 1−
√

1−RH

1−RHcr i t
(4.21)

With C the cloud fraction in a grid cell, RH the relative humidity and RHcr i t the critical rela-
tive humidity above which subgrid scale clouds are assumed to exist. Evidently, 0 É C É 1 and
RHcr i t É RH É 1. The cloud fraction monotonically increases from 0 to 1 when RH from RHcr i t

approaches 1. This approach to modelling cloud fraction has been implemented in WRF. Be-
cause of the simplistic nature of the approximation in 4.21 other RH −C relations have been pro-
posed e.g. to account for different cloud types. Another method by Xu and Randall (1996) that has
also been implemented in WRF uses cloud water and ice mixing ratio combined with RH to esti-
mate cloud cover. However this method tends to produce black and white values for cloud cover
(Thompson (2016)). Thompson (2016) modified the Sundqvist et al. (1989) approach to let RHcr i t

vary depending on horizontal model resolution, with larger critical RH thresholds for smaller grid
size resolution. A distinction between land and ocean is made for the critical RH value and no
subgrid clouds can exist below LCL. For the subgrid clouds to affect radiation, estimates of liquid
water content (LWC) an ice water content (IWC) have to be made based on humidity and tem-
perature. Note that the estimated water contents only affect radiative transfer calculations and
has no coupling with other model components. It is not a part of the LWC nor IWC, which are
controlled only by the microphysics scheme. Experiments by Thompson (2016) showed that this
fractional cloud cover approach reduced the downward shortwave radiation bias at the surface
compared to simulations with the Xu and Randall (1996) method.

Radiative transfer models attempt to describe the effects of radiation that passes through a medium.
For the atmosphere, that equates to calculating the up and downward fluxes for every vertical model
layer of radiation over a wavelength spectrum that covers the Earth’s and Sun’s emission spectrum. The
radiative transfer models in WRF are one dimensional, treating every vertical column independently
without interaction. This is a valid assumption as long as the horizontal spacing remains much larger
than in the vertical. They are split up into separate modules for short- and longwave radiation. The
shortwave scheme assumes a certain amount of incoming solar radiation at the top of the atmosphere
(TOA) based on the time of the day and season. Then, for every vertical layer the effects of absorption,
scattering and reflection on the solar irradiance are estimated so that downward flux through each layer
can be calculated. The irradiance at a vertical level z is defined as the frequency integrated transmission
of incident solar radiation:

FSW,D
(
z,µ0

)=µ0

∫ ∞

0
ST O A (υ)τ

(
υ, z, z ′,µ0

)
dυ (4.22)

Where FSW,D
(
z,µ0

)
is the downward shortwave radiation flux through a level z of a beam of solar radi-

ation with a fraction µ0 = cosθ0 of the solar zenith angle θ0. ST O A (υ) is the solar irradiance at frequency
υ at the TOA and τ

(
υ, z, z ′,µ

)
the transmittance from a level z to z ′, defined by Beer’s law:

τ
(
υ, z, z ′,µ

)= exp

(
− 1

µ

∫ u(z ′)

u(z)
k

(
υ, p,T

)
du

)
(4.23)

In this case z ′ = zT O A , because the incident solar radiation is at the top of the atmosphere. k
(
υ, p,T

)
denotes an absorption coefficient, u the concentration of gas that attenuates the solar radiation. The
amount of absorption is estimated by radiative transfer schemes using approximations to 4.23 and de-
pends on the frequency or wavelength (see figure 4.18) of the radiation and concentration of absorbing
gases in that layer. The amount of trace gases relevant for absorption like CO2, O2, O3, C H4, N2O is
not modelled explicitly but assumed well mixed and constant for the whole atmosphere (e.g. for C 02,
N2O and C H4) or monthly varying profiles based on climatology, as for ozone (O3). Only water vapour
is modelled explicitly, which is convenient since it is possibly the most important greenhouse gas in
our atmosphere, regarding the large absorption spectrum in figure 4.18. As mentioned in the previous
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Figure 4.18: The lower graph shows the atmospheric absorption bands of the most abundant absorbing gases. For each gas (methane,
oxygen, ozone, carbon dioxide, water vapour and nitrous oxide) the amount of radiation absorbed is shown as a function of wavelength.
The middle graph shows the total combined absorption of gases the atmosphere. The top graph shows the solar (red) and terrestrial
black body radiation spectrum and the intensity of radiation that is transmitted after absorption. Image from Wikipedia (2017).

point regarding microphysics parametrization, the scheme Thompson and Eidhammer (2014) enables
spatial and temporal evolution of aerosols for cloud condensation and ice nuclei. These aerosol con-
centrations are used directly in the radiative transfer model instead of assuming constant values.

The longwave component of a radiative transfer model estimates the amount of both up and down-
welling fluxes at each layer. The upward longwave radiative flux at a height z is defined as:

FLW,U (z) =
∫ ∞

0
πB (υ, z = 0)τ f (υ, z, zT O A)dυ+

∫ ∞

0

∫ z

0
πB

(
υ, z ′) dτ f

d z ′
(
υ, z, z ′)d z ′dυ (4.24)

and similarly, the downward longwave flux:

FLW,D (z) =
∫ ∞

0

∫ ∞

z
πB

(
υ, z ′) dτ f

d z ′
(
υ, z, z ′)d z ′dυ (4.25)

Where B (υ, z) denotes the Planck’s law that gives the radiation intensity at a certain frequency, for a
temperature at height z and τ f

(
υ, z, z ′) is the diffuse transmission function defined by the hemispheric

integral over all cosines of zenith angles µ:

τ f
(
υ, z, z ′)= 2

∫ 1

0
τ
(
υ, z, z ′,µ

)
µdµ (4.26)

The upward longwave flux consists of a contribution from the emission of the Earth, as represented by
the first term in 4.24, and a part by emission of longwave radiation by the atmosphere, represented by
the double integral. The upward longwave radiative flux at the surface (B (υ, z = 0)) is determined by
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the land surface model, as the black body radiance spectrum is based on temperature. Again, radia-
tive transfer models use approximations to these integrals to determine up- and downward longwave
fluxes.

The radiative transfer model used in the simulations is called the rapid radiative transfer model for gen-
eral circulation models (GCM’s) (RRTMG) by Iacono et al. (2008), for both shortwave and longwave ra-
diation. It is an adaptation of the earlier developed rapid radiative transfer model (RRTM) from Mlawer
et al. (1997) to make it applicable in a NWP model. RRTMG employs the so called correlated-k method,
which was developed to significantly reduce the number of computations compared to a line-by-line
radiative transfer models, while maintaining a comparable accuracy. For a full introduction to this
method the reader is referred to e.g. Iacono et al. (2008). In essence, the correlated k method rear-
ranges the irregularly wavelength dependent absorption coefficient k of a certain wavelength interval
to a smooth cumulative density function. The cumulative density function is then split into wavelength
subintervals, for which a certain characteristic absorption coefficient is determined. For each interval
the transmitted radiation is approximated using the characteristic absorption coefficient and Beer’s
law for extinction. The total radiance is obtained by taking the sum of radiances of each wavelength
subinterval weighted by their size. The term correlated refers to the assumption that the mapping of
wavelength absorption spectrum to cumulative distribution function is the same for every vertical layer
or equivalently that k does not depend on pressure or temperature, which is not exactly true. Never-
theless it remains a sufficiently accurate and relatively inexpensive way to approximate the radiative
transfer.

4.1.3. Data assimilation cycling
As discussed previously, data assimilation is employed to alter a NWP model state to one that corresponds
better to actual observations. The most basic way to perform variational data assimilation is to assimilate
observations at a discrete time, which has been introduced earlier as three dimensional variational assimila-
tion (3DVar). Three dimensional refers to the fact that information from observation can spread in 3D model
space space. More advanced methods like 4DVar use the NWP as an additional constraint to fit the observa-
tions to. That is, the model state of which the subsequent forecast trajectory best fits the observations at later
times is found rather than finding a model state that is optimal only at a discrete time. However, similarly to
ensemble methods, 4DVar is computationally very demanding because it requires computing the linearised
model trajectories at every iteration in the minimization of the cost function. For that reason, operational
forecasting favours 3DVar as it already significantly improves model forecast without requiring a lot of extra
computational resources. To somewhat mitigate the inability to properly incorporate a dynamic constraint
as with 4DVar, it is custom to apply 3DVar several times during a forecast. This strategy of alternating forecast
and data assimilation is known as data assimilation cycling. For example, during the first hours of a fore-
cast after initialisation, 3DVar can be applied every hour to better force a model towards the observations.
In this study it is chosen to assimilate observations every 15 minutes. In the first place that is because the
cases that will be studied feature strong convection which is really dynamic and evolving quickly. Modelling
these features to at least some extent requires rapid update cycling between model and data assimilation.
Although radar scans are available with an even higher update frequency, 15 minutes is believed to be fre-
quently enough to have a decent impact on the forecast. Also, GPS ZTD measurements are updated with a
15 minute frequency so that the indirect radar humidity measurements are always constrained by another
observation source where available.

Figure 4.19: Principle of cycling between data assimilation and forecast
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Generally in all the experiments that are described in the following section, observations will be assimi-
lated during a 3 hour window with a 15 minute interval between the assimilation times. The timeline in figure
4.24 provides a graphical illustration of the timewise setup of cycling between data assimilation and forecast.
Before the data assimilation window starts, the model is given a spinup time of 3 hours. Spinup time refers to
the time a NWP model needs to reach equilibrium after it is initialised from another source, in this case GFS
model output. Before the large scale forcing can control the forecast, a thermal-dynamic balance has to be
established. Generally, the initial conditions of a NWP model are not physically and dynamically consistent
in the NWP model itself and model fields will have to adjust for some time to reach a stable state. Sometimes
these adjustments are visible in the beginning of the forecast as gravity waves. The so called spinup time log-
ically depends on the quality of the initial conditions but also on the model physics and the corresponding
preferred stable state. Spinup time for NWP model usually ranges from 1-2 to 12 hours, also depending on
the weather regime. For example regarding situations with significant convection, a model initialized from
GFS will only contain horizontal winds and thus needs time to initiate vertical flow and become dynamically
consistent with other model variables. Initialising a NWP model with coarser resolution model output or
even just observations is referred to as a cold start. Contrarily, initialising a NWP model with an own model
state in which data has been assimilated is known as a warm start and helps to reduce the spinup issue. In
the following experiments the effects of assimilating observations on the quality of a forecast will be exam-
ined, in essence comparing cold and warm started forecasts. After the 3 hour spinup time and 3 hour data
assimilation cycling, a 6 hour simulation is carried out which will be used in the verification described in
section 4.3. In the experiments where no data assimilation is carried out, the 6 hour verification forecast is
basically initialised with a cold started forecast that has spun up for 6 hours, thereby assuming that the model
has reached equilibrium significantly enough for a valid comparison.

4.2. Case studies
As indicated before, the goal of data assimilation in a NWP is to find an optimal model state that minimizes
the difference with a background forecast and observations and subsequently improve the forecast accuracy,
primarily in forecasting precipitation in this study. How that accuracy is quantified will be addressed in sec-
tion 4.3. To test the ability of data assimilation to improve the forecast, various case studies are examined.
The setup of the experiments will be discussed in the next sections. First, it is interesting to investigate the
effect of each observation type or source to see how much it improves or possibly degrades the forecast ac-
curacy. To that end, so called data denial experiments are carried out where only a single observation type
is assimilated. Secondly, we would like to know how data assimilation performs in several weather regimes
producing precipitation. Therefore, three cases with different precipitation mechanisms are discussed.

4.2.1. Experiment 1: Observation type
The first experiment consists of repeating the data assimilation-forecast cycling only assimilating a certain
type of observation. That way, the effect that assimilation of each observation has on the subsequent forecast
can be isolated. This provides guidance whether or not to include these types of observations in further
experiments or even an at operational stage later. Several types of observations are available for assimilation:

• Conventional
Automated weather observation stations e.g. from KNMI provide frequent measurements of temper-
ature, pressure, humidity, wind speed and direction, precipitation, et cetera. These observations from
dedicated weather stations are classified as surface synoptic observation (SYNOP) measurements by
the World Meteorological Organisation (WMO). Other surface measurements include observations from
airports, known as meteorological aerodrom report (METAR). At sea, measurements can be obtained
from ships or buoys. Although these observation types come from various sources with slightly dif-
ferent precision, they are grouped together because they provide direct measurements of basic model
variables near the surface. Additionally, aircraft reports (AIREP’s) are included because they are quite
scarce and are also direct measurements of atmospheric variables.

• Radar reflectivity - Hydrometeor content
In section 2.5.3 it has been discussed how radar reflectivity observations can be used to estimate hy-
drometeor contents. Radar reflectivity is linked to model mixing ratios for rainwater, snow and graupel
based on temperature (equation 2.78).
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• Radar reflectivity - Humidity
Besides directly retrieving hydrometeor contents, radar reflectivity can act as indirect observations of
humidity assuming that at a point of radar reflection water vapour pressure is close to saturation. How
to deduce a humidity observation from a radar reflectivity observation has been shown in section 2.5.4.
The humidity and hydrometeor observations are mentioned separately because they concern different
quantities but moreover because their retrieval methods are significantly different.

• Radar radial velocity
Next to measuring the reflectivity of objects in the atmosphere, the radar can also measure their radial
velocity. The radial velocities can be assimilated as three dimensional wind speeds with components
(u,v ,w).

• Global Positioning System (GPS) zenith total delay (ZTD)
Finally, GPS ZTD observations are available. Recall from section 2.7 that ZTD or in fact the inferred
ZWD observations are a measure of the total, integrated water vapour in a vertical column.

With these observations, several experiments can be setup that use a combination of these observations.
Table 4.1 provides an overview of all the experiments that are defined. The first experiment is a control (CTRL)
run, where no observations of any kind are assimilated. In essence this is just a regular, unaltered WRF model
run. The CTRL experiment serves as a benchmark for the other data assimilation experiments. Secondly,
the CONV experiment assimilates only conventional, mostly surface observations that can be regarded as a
robust baseline. The conventional observations will be used in any subsequent experiment, because they
provide a reliable set of observations besides the generally more uncertain remotely sensed observations. Ex-
periments with radar observations are split up into three cases, of which the first one is labelled CZQR, where
besides the conventional observations also hydrometeors are assimilated. The next experiment CZQV assim-
ilates radar derived humidity estimates and the CZRV experiment uses a set of radial velocity measurements.
Additionally, an experiment with only GPS is designed to isolate the effect of GPS ZTD measurements. Finally,
an experiment featuring all observations (ALL) is carried out to find out if the combined effect leads to the
best forecasting of precipitation.

Scenario Name Conventional Radar hydrometeor Radar humidity Radar radial velocity GPS

1 CTRL
2 CONV x
3 CZQR x x
4 CZQV x x
5 CZRV x x
6 CGPS x x
7 ALL x x x x x

Table 4.1: Data denial experiment scenarios. For every experiment number the name and the included observations are shown.

Case 1: Mesoscale convective system (MCS)
The above experiments will be performed using a WRF simulation of 26-08-2015, when a squall line passed
over the Netherlands and Belgium. The squall line resulted from a sharp cold front extending from the North
Sea down to the north of Spain. The surface reanalysis by the UKMO in figure 4.20 provides a synoptic
overview of the atmosphere over Europe. In the Netherlands the cold front approaches with a south west-
erly wind, resulting from the cyclonic flow around a large scale low pressure area centered west of Scotland.
During the late afternoon the cold air collides with the warmer and moist air that was advected from the At-
lantic the day before by the same low pressure area. The cold front causes positive buoyancy for the warm,
moist air that is present above the Netherlands, causing a narrow line of deep convection along the cold front
and compensating downdrafts with heavy precipitation just behind, as indicated by the high > 40 dB Z re-
flectivity measured by the radar (see figure 4.21). An idealized cross section of this process is shown in figure
4.23. The cold front preceded by the gust front lifts the warm and moist air through the inversion to its level
of free convection (LFC). Besides the upward forcing by the cold front, a significant amount of low level ver-
tical wind shear as indicated by a 15 m/s increase in wind speed between the surface and the 850 hPa level
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Figure 4.20: UKMO synoptic scale surface reanalysis at 00 UTC on 27-08-2015. The red box marks the region of interest above the
Benelux. Conventional surface weather map symbols are used to indicate surface pressure, low (L) and high pressure (H) cores and front
lines.

contributed to intensity of and longevity of the squall line. Vertical wind shear aids in the generation of ver-
tical convection at the cold front since the vorticity generated by the vertical shear is opposite in sign to the
vorticity generated by the cold front that lifts up the warm air that it encounters. Figure 4.22 illustrates this
principle where positive vorticity resulting from the vertical wind shear balances the negative vorticity orig-
inating at the downstream (right) side of the cold front, strengthening the vertical motions. This is opposed
to the upstream part of the cold pool, where the vorticity generated by the cold pool and the vertical shear
add up, bending the air flow over the cold pool rather than forcing it upwards. For maximum longevity of the
squall line the wind shear vector should be oriented perpendicular to the squall line or equivalently parallel
to the direction of propagation, so that a maximum amount of warm and moist air can be convected. In this
case the normal is oriented towards the east while the direction of propagation is northeast (i.e. a SW wind),
so that the squall line orientation is suboptimal and thus contracts and starts to dissipate later in the evening.
Radar images in figure 4.21 show the squall line forming, making landfall at 18 UTC and further contracting
and losing intensity later during the evening as it moves northeast ward.



4.2. Case studies 85

(a) Radar reflectivity at 16 UTC (b) Radar reflectivity at 18 UTC

(c) Radar reflectivity at 16 UTC (d) Radar reflectivity at 18 UTC

Figure 4.21: Composite radar reflectivity on 26-08-2015. A squall line makes landfall over the Netherlands. Each image shows radar
acquisitions at different times.

Figure 4.22: Schematic illustration of the interaction of a cold pool and environmental vertical wind shear. The cold pool generates
positive vorticity at the upstream (left) side and negative vorticity at the downstream (right) side when the cold air forces the warm
air upwards. This results in stronger downstream curvature of the air going over the cold pool on the upstream side, while on the
downstream side the opposite signs cause a decrease in vorticity, thus generating more vertical motions. Illustration credits to Program
(2016).
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Figure 4.23: Schematic illustration of a vertical cross section of a multicell storm. Figure (a) and (b) show the equivalent potential
temperature and wind speed profile with height. Figure (c) depicts an cross section showing the development of an idealized storm.
Illustration by Wallace and Hobbs (2006).

Figure 4.24: Time setup of the data denial experiment. The forecast is initialized at 12 UTC and observations are assimilated during three
hours from 15 to 18 UTC with a 15 minute interval. A subsequent 6 hour forecast is run using the data assimilation output. The blue bar
indicates the time significant precipitation was measured by the radar.

The timeline in figure 4.24 shows how the data assimilation cycling experiment is setup timewise. The
simulation is initialised at 12 UTC from GFS output. Observations are assimilated during a 3 hour interval
between 15 and 18 UTC, as shown in figure 4.24, with a 15 minute update interval. At 18 UTC, the data
assimilation cycle ends and a 6h subsequent forecast is started, of which the estimated precipitation will be
used to compare with actual radar measurements at the valid times to assess the quality of the forecast. The
blue bar indicates the time window in which a decent amount of precipitation is within the domain and in
range of the radar.

4.2.2. Experiment 2: Precipitation mechanism
In the second case study the performance of data assimilation will be investigated for different types of pre-
cipitation mechanisms. The several experiments that are conducted are summarized in table 4.2. The first
type that is considered is the MCS of 26-08-2015 that featured a cold front with a squall line as discussed in the
previous section. Along the cold front boundary convection is forced on a large scale and thus this is labelled
as a MCS. Since this is a relatively large scale forcing, the WRF model should be able to describe this con-
vective system quite well, even without assimilation of observations. For this mechanism two experiments
are conducted: a control run with no assimilation (MCS-CTRL) and a data assimilation scenario in which all
observations are assimilated (MCS-DA).

Case 2: Local convective system (LCS)
In contrast with case 1 where data assimilation during a MCS is examined, case 2 features a local convective
system with relatively small yet intense convective cells that occurred a couple days later on 30-08-2015. A
synoptic scale overview of the surface weather by UKMO valid at 00 UTC 31-08-2015 is shown in figure 4.25.
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Case Name Date Cycling Forecast Description DA obs

1a MCS-CTRL 26-08-2015 15-18 UTC 18-00 UTC Mesoscale convective system -
1b MCS-DA 26-08-2015 15-18 UTC 18-00 UTC Mesoscale convective system ALL
2a LCS-CTRL 30-08-2015 19-22 UTC 22-04 UTC Local convective system -
2b LCS-DA 30-08-2015 19-22 UTC 22-04 UTC Local convective system ALL
3a STRAT-CTRL 20-06-2016 10-13 UTC 13-19 UTC Stratiform -
3b STRAT-DA 20-06-2016 10-13 UTC 13-19 UTC Stratiform ALL

Table 4.2: Description of the six precipitation data assimilation experiments. Three dates are examined that each feature a different type
that drives precipitation. For each date a control (CTRL) and a DA experiment is performed

Figure 4.25: UKMO synoptic scale surface reanalysis at 00 UTC on 31-08-2015. The red box marks the region of interest above the
Benelux. Conventional surface weather map symbols are used to indicate surface pressure, low (L) and high pressure (H) cores and front
lines.

The short convergence line over the Netherlands just after the warm front marks a stretched area of relatively
low pressure, which is associated with updrafts and an corresponding increased chance of precipitation. The
local convective cells form around 19 UTC on this line of convergence along the Belgian coast and south-west
part of the Netherlands. Along this line very unstable, moist and warm air provided a favourable environment
for deep convection. The instability is indicated by significant (> 1500 J kg−1) amounts of convective avail-
able potential energy (CAPE), as shown in figure 4.26a where the CAPE is determined using temperature and
dewpoints of the mixed layer. CAPE as the name suggests is an indicator of the potential intensity of con-
vection. However to trigger convection, the energy preventing convection, known as convective inhibition
(CIN), has to be overcome. On the evening of 30-08-2015, CIN values in the boundary layer approached zero
along this line (as shown in figure 4.26b) and gave rise to the initiation of intense convection. The IWV as
plot in figure 4.26d shows the band of moist air approaching from France. A strong SW jet stream also caused
additional dynamical forcing from above which helped to develop strong convection. In figure 4.26c the wind
shear between the surface and 6 km height is plotted, showing a wind shear of approximately 45 knots. Addi-
tionally the model simulated radar reflectivity is shown with contours in the background. Notice that in the
southwest part of Belgium the first convective cells forms as indicated by the small area of high reflectivity. In
that same area a dip in CAPE in figure 4.26a can be witnessed as the convection converts the potential energy
to kinetic energy. Similarly, a small peak amid an area of near zero CIN is present in figure 4.26b, resulting
from the vertical transportation of warm, moist air leading to warmer air at higher elevations. The cells in the
model form slightly later and more south than compared to the radar image at 20 UTC in figure 4.27a.

Figure 4.27 shows other radar images acquired between 20 and 02 UTC. The dark red > 50 dB Z areas
highlight the cores of the local convective cells that start to develop around 19 UTC. At 22 UTC the cells have
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(a) CAPE at 20 UTC (b) CIN at 20 UTC

(c) Wind shear 0-6km, 900mb reflectivity at 20 UTC (d) IWV at 20 UTC

Figure 4.26: WRF model state at 30-08-2015 20:00 UTC.

grown in size and a east-west band of precipitation covers the central part of the Netherlands. Observations
are assimilated during an interval from 19 UTC when the cells form to a developed situation at 22 UTC as
shown in figure 4.27b. In the following 6 hours two larger, separated areas of precipitation form, as seen in
figure 4.27d. The really local, intense cells develop into a bigger system with a slightly smaller intensity, yet
still producing significant precipitation. The left area of precipitation in figure 4.27d has only entered the
domain after 22 UTC and therefore cannot be assimilated directly using radar data assimilation within the
assimilation window. Consequently, it is expected that the added value of radar data assimilation and thus
the forecasting skill will degrade quite rapidly after 00 UTC, as the areas of precipitation that were assimilated
leave the domain. Similarly as for the MCS case, the local convection case features a control run (LCS-CTRL)
and a simulation with assimilation of all observations (LCS-DA), refer to table 4.2 again for details. Out of all
cases, the model will likely have the hardest time accurately representing this LCS case as it is a really local
phenomenon with scales comparable or even smaller than model resolution.
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(a) Radar reflectivity at 20 UTC (b) Radar reflectivity at 22 UTC

(c) Radar reflectivity at 00 UTC (d) Radar reflectivity at 02 UTC

Figure 4.27: Composite radar reflectivity on the night of 30-08-2015 to 31-08-2015. Intense, localized convection cells form over Belgium
and the Netherlands. Each image shows radar acquisitions at different times.

Case 3: Stratiform (STRAT)
The third case concerns a day with stratiform precipitation: 20-06-2016. The core of an extratropical cy-
clone is positioned just south of Iceland, as shown in the surface reanalysis from UKMO in figure 4.28. In the
Northern hemisphere air rotates in an anticlockwise manner around such a low pressure core, resulting in
dominantly western winds in the Netherlands. An occluded front stretches from the low pressure center over
the North Sea to just north of the Netherlands, where a triple point marks the junction of a large scale cold
front approaching from the Atlantic ocean, overtaking a smaller scale warm front that extends into France.
This warm front crosses the Netherlands during the afternoon between 12 and 18 UTC. Radar images in figure
4.30 show the advance and development of the rain associated with the warm front. Warm, moist air from the
warm front is less dense than the cool air it encounters to the East and thus it is gently forced upwards over
the cold air. As the air rises, it expands and cools down, forming clouds and precipitation. A warm front usu-
ally has quite a gradual slope, first leading to formation of high cirrus clouds followed by cirrostratus when
the warm front is approaching. If the air contains sufficient moisture, as is the case here, precipitating or
nimbostratus clouds develop along the warm front. Since the ascent of an air parcel is not that steep, water
vapour condenses gradually and only light to moderate precipitation is formed. The radar images in figure
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Figure 4.28: UKMO synoptic scale surface reanalysis at 00 UTC on 20-06-2016. The red box marks the region of interest above the
Benelux. Conventional surface weather map symbols are used to indicate surface pressure, low (L) and high pressure (H) cores and front
lines.

4.30 show only moderately intense precipitation, with maximum reflectivity observations of 35 dB Z (refer
to table 2.2). Around 18 UTC, most of the precipitation has passed, leaving only some trailing edges. As the
warm front is a mesoscale weather phenomenon, it is likely to assume that the process causing the stratiform
precipitation is captured by a NWP quite well already without any data assimilation. Because of this large
scale nature, it is expected that assimilation of high resolution observations will not provide as much added
value for the STRAT case compared to the more dynamic and local events in the MCS and LCS cases.

Figure 4.29: Timeline of the MCS, LCS and STRAT cases. Left time is the initialisation time of the simulation. The orange arrow indicates
the cycling window where observations are assimilated with a 15 minute interval. A subsequent 6 hour forecast is made for each case.
The blue bar indicates the time in which significant amounts of precipitation detected by the radar are within the domain.

A timeline for each of the three dates used for case studies is given in figure 4.29. The leftmost time
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(a) Radar reflectivity at 11 UTC (b) Radar reflectivity at 13 UTC

(c) Radar reflectivity at 15 UTC (d) Radar reflectivity at 17 UTC

Figure 4.30: Composite radar reflectivity on the 20-06-2016. Stratiform precipitation covers the Netherlands throughout the most part of
the day.

marks the time of initialization from the GFS model. A three hour forecast is generated using the initial state,
allowing the model some to spin up. After the spinup time observations are assimilated every 15 minutes for
a duration of 3 hours. when the cycling window is over, a 6 hour WRF simulation is made which will be used
to verify the precipitation forecast. The blue bar in the timeline highlights the time during which significant
amounts of precipitation are present within the domain.
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4.3. Verification
When assessing the forecasting skill of precipitation, several objective measures of verification have to be
defined. Primarily, forecasting skill is associated with the ability to predict whether it is actually raining or
not. This qualitative method of verification is discussed in the next section, 4.3.1. Additionally however one
would like to have a good estimate on the precipitation quantity. Therefore, some basic QPF verification
scores are defined in section 4.3.2.

4.3.1. Qualitative verification: Rain/no rain
In the previous sections several experimental setups to produce precipitation forecasts have been discussed.
These precipitation forecasts from the WRF model should be verified in order to quantify the skill of correctly
forecasting precipitation. A qualitative way to do this is to classify areas (or in this case grid cells) whether
they rain or not, for both model and observations. In this study the 15 minute averaged rainfall rate is used to
determine whether it rains or not. In practice this requires defining a rainfall rate threshold Rmi n that is as-
sociated with perceivable rain, usually between 0.1 mm h−1 and 1 mm h−1. Refer to table 2.2 for an overview
of rainfall rates and the corresponding classification of perceived intensity. A commonly used threshold is
0.3 mm h−1, which will also be employed in this study unless indicated otherwise. Naturally, defining a dif-
ferent threshold will yield slightly different results, especially if the rainfall intensity distributions of model
and observation are not similar.

(a) WRF model (b) KNMI radar composite

Figure 4.31: Example of 15 minute average rainfall rate

Radar composites from the KNMI are used as ’truth’ in the verification. These composites have been
constructed by linearly interpolating reflectivity observations from all scans of the radars at De Bilt and Den
Helder to a height of 1.5 km. Refer to table 3.1 again for an overview of the scans that are used to construct the
composites from. Although the radar composites have a range of 320 km according to the metadata specifica-
tion, at this range the altitude of the lowest elevation scan at which a reflection is measured is approximately
7.7 km when using the approximation from Doviak and Zrnic (1993) for the radar beam height as a function
of range for a standard atmosphere. Often at this height the radar overshoots any clouds that contain pre-
cipitation. Consequently, the radar might not measure any precipitation, while an underlying precipitating
cloud produces rainfall at the surface which is also correctly forecast by the model. In that case the verifi-
cation would suggest a false positive while in truth the model accurately predicted rain. For this reason the
radar range used in the verification is brought down to 220 km, with a corresponding beam height of 4.0
km. While the radar beam still might overshoot some precipitation, it is assumed that up until this range
the rainfall intensity estimates are representative for surface rainfall intensity. There are some caveats to this
assumption, like the possibility of rain evaporating before it reaches the surface or strong winds that can sig-
nificantly advect hydrometeors. Additionally, to compensate for errors introduced by the Z-R relation radar
retrieved rainfall rates would have to be corrected with surface rain gauge measurements to obtain an even
more accurate estimate, however that is beyond the scope of this work.

Having defined a threshold Rmi n above which pixels are precipitating, each pixel can be classified for both
the radar and model images. With all the pixels classified, a confusion matrix is constructed, which shows in
a tabular form the skill of forecasting an event. In some other literature it is better known as the contingency
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Observed
Yes No Total

Forecast Yes a b a+b
No c d c+d
Total a+c b+d a+b+c+d=n

Table 4.3: General form of the confusion matrix. a represents the number of times an event was correctly forecast when it actually
happened. Numbers b and c represent occurrences of false positives and negatives, respectively. Finally, d is the number of times
an event was correctly forecast as non occurring. These classification numbers can be used to derive subsequent verification scores
characterizing the skill of verification.

table, although a contingency table need not necessarily be a confusion matrix as a contingency table can
be multivariate and thus have dimensions larger than 2x2. The number a represents the amount of times
an event (in this case whether it rains) occurs and is forecast correctly. Similarly, d is defined as being the
number of non precipitating grid cells measured by radar which were correctly forecast by the model. Finally,
b represents the occurrences of precipitation forecast when it actually did not occur (generally known as
false positives) and vice versa for c, known as false negatives. These statistics can be used to derive useful
verification scores that describe several aspects of the forecast skill:

1. Percentage correct (PC)

PC = a +d

n
(4.27)

The percentage correct (PC) measures how much events in total are correctly forecast. Ranges from 0
(poor) to 1 (good). The PC can be misleading when a low frequency event is considered: a ¿ d . Then
the correctly forecast non occuring events d will cause a high PC although there is no skill in correctly
forecasting occurring events a.

2. Hit rate (H)

H = a

a + c
(4.28)

The H is the fraction of observed events that is forecast correctly. Ranges from 0 (poor) to 1 (good).

3. Probability of false detection (POFD)

POF D = b

b +d
(4.29)

probability of false detection (POFD) is the fraction of observed non occurring events that is falsely
forecast. Ranges from 0 (good) to 1 (poor).

4. False alarm ratio (FAR)

F AR = b

a +b
(4.30)

false alarm ratio (FAR) measures the fraction of false forecasts of the total positive forecasts. Ranges
from 0 (good) to 1 (poor).

5. Critical succes index (CSI)

C SI = a

a +b + c
(4.31)

critical succes index (CSI) combines H and FAR to be a measure of how well low frequency events are
forecast, contrary to PC. Note that d is not used in this score. CSI range from 0 (poor) to 1 (good).

6. Classification bias (CB)

C B = 2b

b + c
−1 (4.32)

Finally, classification bias (CB) is defined to describe the biasedness in forecasting, by taking the ratio
of false positives b and false negatives c according to 4.32. The CB is centered around zero when b = c.
For the CB, C B < 0 indicates underprediction, while C B > 0 signals overprediction.
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7. Gilbert skill score (GSS)
The GSS is similar to the CSI, with the difference that the correct positives a are corrected with the
correct positives that would be expected by chance:

GSS = a −ar andom

a −ar andom +b + c
(4.33)

The hits expected by random probability are:

ar andom = Pc ·n = (a +b) (a + c)

n
(4.34)

In general, ar andom is relatively small so that the GSS will be close to the CSI. Similarly to the Heidke skill
score (HSS), a GSS = 1 mean a perfect forecast. At GSS = 0, the number of correct positives are equal to
the number expected by chance, showing no skill over a CSI from a random forecast. A GSS < 0 signals
that even less correct positive forecasts were made than a random forecast.

4.3.2. Quantitative verification: rainfall intensity
The previous section 4.3.1 provides useful tools to asses the models ability to accurately predict whether it is
raining or not. However this qualitative description does not provide any information on the amount of pre-
cipitation. Although accurate quantitative precipitation forecasting (QPF) remains a challenge for mesoscale
models with resolutions in the order of kilometers, it is certainly interesting to examine how well the model
forecasts precipitation quantity. In order to do so two additional quantities are employed, adapted from Bras-
jen (2014): the relative bias and the absolute ratio of the average 15 minute rainfall rates of model Rmod and
radar Rr ad ar . The relative bias δR is defined as follows:

log10

(
δR|R>0

)= 1

n

∑
n

log10

(
R mod |R>0

Rr ad ar |R>0

)
(4.35)

Because the rainfall rate ranges several orders of magnitude, a logarithmic scale is preferred so that a
difference in rainfall rate between 0.1 mm h−1 and 1 mm h−1 is half as bad as a difference between 0.1 mm h−1

and 10 mm h−1, as they vary one and two orders of magnitude, respectively. δR ranges from nearly 0 to infinity
and a value 0 < δR < 1 indicates that on average the model underestimates the intensity of precipitation, while
for δR > 1 rainfall rate in the model is too high compared to the radar retrieved rainfall rate. Notice that δR

can only be calculated for pixels that are precipitating in both the model and radar images, hence the symbol
R > 0. So dry conditions or even displacement errors of estimated precipitation areas can result in only a
small amount of points available for determining δR . This should be kept in mind when interpreting δR . The
threshold for determining when R > 0 remains 0.3 mm h−1 as before.

To give an indication of the average magnitude difference, additionally the absolute ratio ρR is defined:

log10

(
ρR|R>0

)= 1

n

∑
n

∣∣∣∣log10

(
R mod |R>0

Rr ad ar |R>0

)∣∣∣∣ (4.36)

The absolute ratio ρR ranges from 1 to infinity. A ρR close to 1 implies that the model and observations
agree really well on the rainfall intensity, whereas higher values indicate on average large scale differences
between forecast and observed precipitation.
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Results

This chapter will discuss the results of the data assimilation assimilation experiments described in the pre-
vious section 4 on the experiment setup. The first experiment concerns the effect that assimilating several
types of observation has on the quality of the precipitation forecast. The second experiment has been set up
to investigate the performance of data assimilation in three cases with different mechanisms that drive pre-
cipitation formation. As a last experiment the cycling window in which observations are assimilated is shifted
to see how crucial it is for the precipitation forecast that observations of which primarily radar that cover the
first stages of precipitation are assimilated.

5.1. Experiment 1: Observation type
This experiment will investigate the influence that assimilating each observation has on the model state and
consequently how that affects the quality of the precipitation forecast. Five types of observations are being
investigated, namely: conventional, radar retrieved hydrometeor mixing ratios, radar derived humidity, radar
radial velocity and GPS ZTD. Out of these, seven scenarios were formulated that have been described in sec-
tion 4.2.1. Refer to table 4.1 for an overview of the observation types that are assimilated for every experiment.

5.1.1. Single data assimilation
Before the verification is carried out with the subsequent forecast after data assimilation cycling, it is worth-
while to examine the adjustments that assimilation of observations make on the model state at a single as-
similation time. Especially the start of the assimilation window at 15 UTC is interesting to look into as it is the
first time in the forecast that observations are assimilated into an unaltered model state.

2. CONV
The first scenario where observations are assimilated is the CONV scenario, in which conventional, mostly
surface observations from e.g. weather stations and airports are assimilated into the model. As a result, most
of the data assimilation analysis increments are near the surface. The near surface model temperatures at
the lowest model level are shown in figure 5.1. Figure 5.1a shows the model state before observations are
assimilated, previously defined as the first guess (FG). The surface cold front as mentioned in section 4.2.1
is clearly visible, extending from the northern tip of France until north of the Netherlands. Especially on the
North Sea a sharp temperature gradient can be observed. The optimal model state (analysis) resulting from
the assimilation of the conventional observations is shown in figure 5.1b and the corresponding differences
with the first guess (FG) in figure 5.1c. Additionally, the locations of temperature observations that have been
assimilated are shown, where the dot symbols indicate SYNOP and the squares METAR locations respectively.
The biggest change to the model temperature field is made near the coast of north France, where apparently
the cold front is positioned slightly too far east in the FG according to the observations. Moreover, throughout
the southern part of the model domain (latitudes < 52◦N ), with the exception of a few stations near the
Belgian coast and France, temperatures are underestimated by the model for this time. For the Netherlands,
temperatures are mostly overestimated in this case regarding the decrease of model temperature in the data
assimilation analysis.

95
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(a) First guess (b) Data assimilation analysis

(c) Difference analysis and first guess. Dots denote SYNOP and squares METAR observation locations.

Figure 5.1: Horizontal model level 1 temperatures in the CONV scenario at 26-08-2015 15 UTC

Similar as for temperature, the assimilation makes changes to the water vapour mixing ratio where obser-
vations are acquired. The FG and DA analysis of the lowest horizontal model level are shown in figure 5.2a
and 5.2b, respectively. The highest concentrations of water vapour are evidently just behind the cold front,
where rain forms at higher altitudes. When the precipitation falls down and reaches the surface again, a part
evaporates, adding to the near surface moisture on the North Sea where it is already relatively moist. The
water vapour innovations introduced by DA have been plot in figure 5.2c. The dot symbols denote SYNOP
stations again. As indicated by figure 5.2c, SYNOP measurements are the only source of moisture observa-
tions at the surface for this time. Judging from the increments, generally the humidity is underestimated as
the major part of the innovations are positive, except for some areas in Germany and some single stations
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near the Belgian coast. The surface humidity increments provide more moisture that could precipitate later,
possibly intensifying the rainfall rate. However, the moisture increments are not that big in magnitude, given
that the maximum increments of near 6 kg kg−1 are roughly 5% of the initial field. It is also noticed that the so
called radius of influence of an observation is not extensive and thus observation increments will not affect
large areas. The primary reason for this is the downscaling of the length scale of the moisture control variable
(refer to table 2.3 for an overview of the applied scaling). However although the scaling factor for temperature
and humidity are the same, moisture increments are still significantly smaller in extent, which is explained
by the smaller natural autocorrelation length of moisture derived from the climatology on which the model
background covariance matrix is based. Keeping these notions in mind no really significant changes are ex-
pected in the precipitation forecast, other than slight tweaks in intensity or timing.

(a) First guess (b) Data assimilation analysis

(c) Difference analysis and first guess. Dots denote SYNOP locations.

Figure 5.2: Horizontal model level 1 horizontal water vapour mixing ratio in the CONV scenario at 26-08-2015 15 UTC
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(a) First guess (b) Data assimilation analysis

(c) Difference analysis and first guess

Figure 5.3: Horizontal model level 1 horizontal UV wind speed in the CONV scenario at 26-08-2015 15 UTC

Besides temperature and humidity the assimilation of surface observations also results in changes to the
wind speed and direction, expressed in terms of the zonal and meridional wind components U and V . The
near surface model wind speeds of the lowest model level have been plot in figure 5.3a. The area on the
North Sea just north of the Belgian coast where the squall line is forming (as indicated by the high moisture
areas in 5.2a) can be recognised by a line of converging winds as depicted in figure 5.3a. The assimilation of
surface wind observations from SYNOP and METAR results in a model wind field as shown in figure 5.3b. The
analysis increments in figure 5.3c show how winds are adjusted locally to the observations. The maximum
wind speed increment is about 5 ms−1 in the northern part of France. The westerly increments here result in
a more southern wind in the DA analysis as compared to the SW winds in FG in figure. This extends the line
of convergence, as shown in figure 5.3a. The larger area of surface wind convergence results in an elongated
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squall line. Comparing the model state of the CTRL and CONV scenarios one hour later in the assimilation
cycling window at 16 UTC, which are shown in figure 5.4, a new trailing area at the end of the squall line is
formed in the forecast where conventional observations are assimilated. The area is not elongated as much as
the radar composite at 16 UTC in figure 4.21a observes, but it definitely improves the accuracy of the overall
precipitation forecast and shows the potential effect of surface observations on precipitation formation.

(a) Scenario 1: CTRL (b) Scenario 2: CONV

Figure 5.4: Model wind fields with reflectivity overlay at 26-08-2015 16 UTC.

3. CZQR
In the third scenario CZQR of table 4.1 radar retrieved mixing ratios of hydrometeors like rain, snow and
graupel are assimilated as described in section 2.5.3. Figure 5.5 shows DA analysis analysis increments for rain
water, snow and graupel mixing ratio at 15 UTC, resulting from the first assimilation. The FG and DA analysis
are omitted as the areas in figure 5.5 already highlight the areas of interest with significant nonzero mixing
ratios in the FG. For rain water the 15th model level ( 1.8 km geopotential) is plot, while for snow and graupel
the 25th model level ( 4.8 km geopotential) is shown, as only rain water is assimilated at temperatures above
five degrees, while only snow and graupel are assimilated at T <−5◦C (see equation 2.78) with a temperature
weighted mixture in between. Also, at lower model levels like 1-10 (10−900 m geopotential), no significant
changes can be made by the assimilation of radar observations since this precipitation is too far away and too
low for the radar to be detected. The minimal height at which increments can be made is logically equal to the
beam height of the lowest scan angle, which is a function of distance (recall ). In this case the middle of the
squall line is reached by the lowest scans of the radars at Den Helder and Jabbeke at model level 15, meaning
that no precipitation below this level at this location can be added nor removed. In figure 5.5a the middle
of the squall line can be recognized by the small area of decreased mixing ratio on 52◦ latitude. Actually, a
large part of the rainwater mixing ratio along the forming squall line is removed, since the model formation
of precipitation is too far east. Also a lot of the model snow that is present at higher altitude mainly at the
leading area of the squall line around 53◦N 3◦E , in this case for example the 25th model level, is suppressed
by the radar data assimilation. Similar as for rain, the graupel that exists in higher levels of the squall line
is also mitigated. Some small positive increments are made above the UK and along the Dover Strait but
are relatively small compared to the negative increments of the squall line. The main reason for this is the
fact that the squall line has initiated slightly earlier in the model and thus simulated reflectivity (50+dB Z )
and mixing ratios are significantly higher than the reflectivity and the retrieved mixing ratios that the radar
observe.

Note that the areas where increments to mixing ratios are made are the intersection of radar beams with
the model. In this case with an abundance of negative increments, the areas of increment are the intersec-
tions of the radar beam with model precipitation where the radar does not measure any significant reflectivity.
Logically, the increments thus appear circular in the analysis, as is perhaps best illustrated by the snow mixing
ratio changes in figure 5.5b. The increments, especially further away from the radar where only one radar (e.g.
Den Helder for locations far out on the North Sea) intersects the horizontal model level, are on equidistant
lines from the radar, creating a wave like pattern. To homogenize the increments one would have to readjust
the scaling of the correlation length for hydrometeors again. At the same time however that means degrading
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(a) Difference analysis and first guess

(b) Difference analysis and first guess

(c) Difference analysis and first guess

Figure 5.5: Horizontal model level 16 rain water mixing ratio in the CZQR scenario at 26-08-2015 15 UTC.
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the ability to add detail to the model hydrometeor field since local, high frequency features cannot be fitted
anymore.

(a) Rain water mixing ratio at 15:00 UTC. (b) Rain water mixing ratio at 15:15 UTC.

(c) Graupel mixing ratio at 15:00 UTC. (d) Graupel mixing ratio at 15:15 UTC.

Figure 5.6: Vertical south-north cross sections of mixing ratios for rain and graupel at 15:00 and 15:15 UTC.

Throughout the remainder of the data assimilation window between 15-18 UTC, changes to model hy-
drometeor fields similar as to figure 5.5 can be observed. That is curious, since one would expect erroneous
precipitation to be suppressed after one to a few assimilations. However, the assimilation of hydrometeors
only proves to be insufficient to change the process governing the formation of precipitation. Actually, this is
not surprising since precipitating hydrometeors can be regarded in a way as the final stage of the precipita-
tion formation process with limited feedback to the what is initiating the process. Assimilation of rainwater
does not directly change the temperature other than e.g. through evaporative cooling near the surface. The
inclusion of extra liquid water does result in a slight decrease of the virtual (potential) temperature, which in
turn slightly reduces buoyancy and thus updraft velocity. Similarly, removing rainwater would even slightly
increase buoyancy and strengthen the precipitation formation process. Also, removing existing hydrometeors
reduces the rate at which new hydrometeors form, as for example less snow is available for collection to form
graupel and similarly less rainwater is present for accretion to graupel as well, so that the amount of graupel
reduces. However more importantly, the large amounts of available moisture combined with the updrafts
that drive the precipitation formation are not impacted significantly and will continue despite the ’pertur-
bation’ of the microphysical processes by radar hydrometeor data assimilation. Analogous to this, in ’dry’
areas of the model the process of precipitation formation will not be initiated just by adding hydrometeors
as this does not change the amount of water vapour available for precipitation nor does it significantly affect
stability of the air. Moreover, in these areas where positive mixing ratio increments are made, the assimilated
hydrometeors (rain, snow, graupel) are relatively large particles and thus their large fall speed assigned by the
microphysical parametrization will make them fall down quite rapidly, depending on the altitude at which
they are formed. A single experiment has been carried out where in a vertical column between 1−10 km a
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hypothetical reflectivity of 50 dB Z is assimilated into the model state at 15 UTC. In figure 5.6 this is illustrated
with a north-south vertical cross section of rain water and graupel mixing ratio, for both the assimilation time
at 15 UTC and 15 minutes into the subsequent forecast. Obviously the rain water has been almost completely
drained after 15 minutes (see figure 5.6b), with some residual from melting of ice at higher levels. Similarly,
the graupel concentration dilutes and precipitates in the 15 minutes after data assimilation as shown in figure
5.6d. Although from figure 5.6 it might seem that rainwater precipitates much faster, bear in mind that the
vertical pressure level spacing is much denser for lower levels near the surface. For example, graupel falling
from level 32 to 24 has fallen about 4.4 km while rain has to descend 2.5 km from level 18 to 1 to reach the
surface. So, in essence the information that is added by the hydrometeor assimilation to the model trough
assimilation is lost once the assimilated hydrometeors have precipitated down. The model state is then sim-
ilar to the pre assimilation state, except for the changes resulting from the remaining (surface) observations
that are assimilated.

4. CZQV
Instead of assimilation of hydrometeors, in the fourth scenario CZQV only RH observations derived from
radar are assimilated, besides the conventional surface observations. The procedure to derive moisture ob-
servations from radar have been explained in section 2.5.4 and a radar humidity PSOT has been carried out in
2.8. Similarly to previous scenarios, the initial model FG, DA analysis and differences are shown in figure 5.7,
but now for the relative humidity field at model level 20, with geopotential heights of approximately 3.0 km
at sea.

(a) Relative humidity first guess. (b) Relative humidity DA analysis.

(c) Relative humidity DA increments (d) KNMI Radar composite 15 UTC at 1.5km altitude.

Figure 5.7: Horizontal cross section of model relative humidity at model level 20 (3.0 km geopotential height), 15:00 UTC.

In the FG in figure 5.7a, the original model squall line is easy to distinguish over the middle North Sea, with
a clear line of saturated air parallel to the Dutch coast. However, as can be seen by the KNMI radar composite
image (which is valid for 1.5km altitude and does not include the Belgian radars at JAB and WID of which data
is also assimilated) in figure 5.7d, in reality the squall line has not developed quite as much as in the model.
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Consequently, large areas of the squall line are suppressed by assimilation of assumed sub saturated humid-
ity ’observations’. For example in the northern leading part with some visible individual plumes humidity
is reduced significantly with as much as 15% and has homogenised with the surrounding relative humidity.
Only the areas where forecast precipitation is also measured with significant radar reflections (in this case
Z > 20 dB Z , see section 2.5.4) the RH remains near saturation of 100%, as indicated by the remaining areas
of high RH in figure 5.7b in the (north)west part of the domain. Here, the assimilated RH observation (88% or
95%, depending on the reflectivity) is really close to the model RH so no significant changes can be observed.
In areas where model relative humidity is not near saturation where however a reflectivity Z > 20 dB Z is mea-
sured, significant increases in relative humidity are made. For example above the middle of the Netherlands
in between the DH and DB radars a small detached line of reflections is observed, resulting in a moistening
of this area. Zooming in at the squall line, near 52◦N latitude both west and east of the model squall line
relatively large increments are made according to figure 5.7c. To the west because significant reflections of
Z > 35 dB Z indicated by the radar result in an assimilation of 95% RH with respect to the 80% background
and to the east of the squall line not because the radar measures a reflection but due to the adjacent model
squall line where sub saturated RH of 90% is assimilated to suppress erroneous precipitation. In the warm
area preceding the model squall line just to the east RH in the FG is so low (around 65%) that the autocorre-
lation of the suppressing 90% RH observation nearby actually causes a significant RH increment. This shows
the importance of the variance length scale in producing realistic increments. In case of a narrow squall line
it is essential to make relatively local adjustments to be able to reposition the sharp line realistically without
unnecessary smoothing the environment. This does require a dense grid of observations as the radar pro-
vides, otherwise only a very limited area can be changed. Mind however that the dense radar observations
are only at hand at altitudes above the first scan elevation. For example the precipitation in the west of the
domain above mainland UK only results in noticeable moisture increments at model level 20 (as shown in
figure 5.7c) and onwards since at this location the lowest reflection of all radars is at roughly 3 km for this
level. The positive humidity increments in the north of France result from reflections obtained by the JAB
radar which is not visible in the KNMI composite because it is overshot and partly out of range of the Dutch
radars. In general comparing the FG 5.7a, DA analysis 5.7b and the radar composite 5.7d, the assimilation
of humidity based on radar reflection better confines the areas of near saturation humidity to the locations
where radar reflections are measured.

It is worthwhile examining how well data assimilation is able to change the dynamic process of precipi-
tation formation. Figure 5.7 nicely showed how assimilation of radar observations is able to positively adjust
model humidity towards observations at a certain point in time. However, equally important is how the model
deals with the DA analysis in the subsequent forecast after data assimilation. A known limitation of 3DVar is
its inability to really impact dynamical processes since observations are only assimilated at a single time. As
mentioned in section 2.2, more advanced data assimilation methods like 4DVar use the NWP model itself as
an additional constraint to fit observations to. That is, the optimal DA analysis is the model state of which
the subsequent forecast trajectory best fits model observations at later times, not just at a single time as with
3DVar. Recall that the data assimilation cycling approach has been employed as a computationally less de-
manding alternative to 4DVar. It is interesting to see whether or not the data assimilation cycling is able create
new sustained areas of precipitation, instead of the short lived precipitation from hydrometeor assimilation
in the previous CZQR scenario. For the formation of rain and other types of precipitation favourable condi-
tions have to exist, of which moist, near saturated air is essential. To examine how well the model humidity
represents the actual conditions, the model FG of the relative humidity is shown alongside radar reflectivity
composite images, starting from the assimilation window at 15 UTC up to 18 UTC, with a 1 hour interval. It
is preferred to show the FG rather than the DA analysis since it is the ’unaltered’ model state which better
shows the tendency of the model than the DA analysis since there the model shortcomings are masked again
by assimilation of observations. Vertical level 14 is plot since in a large part of the domain mainly at sea the
geopotential height is close to the altitude for which the KNMI radar composite is valid: 1.5 km. Although
model relative humidity need not be saturated at locations where a radar receives a reflection since precipi-
tation might form at higher altitudes and fall to lower altitudes, at least relatively high RH is expected at these
areas relative to the environment. At 15 UTC, high model humidity does not really coincide with areas with
strong radar reflections when comparing figures 5.8a and 5.8b. As noted before, right before the first data
assimilation time at 15 UTC the moist area of the squall line is positioned too far east compared to the radar
images. One hour and 4 assimilations later at 16 UTC the RH in figure 5.8c shows better agreement with radar
observations above north France, however still some areas of relatively high humidity are present above the
north of the Netherlands which seems unlikely given the limited amount of precipitation there (figure 5.8d).
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(a) FG 15 UTC (b) Radar composite 15 UTC

(c) FG 16 UTC (d) Radar composite 16 UTC

(e) FG 17 UTC (f) Radar composite 17 UTC

(g) FG 18 UTC (h) Radar composite 18 UTC

Figure 5.8: Model level 20 RH first guess together with radar composites at 15, 16, 17 and 18 UTC.
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Another hour later at 17 UTC (figure 5.8e) moist areas seem to resemble the reflectivity pattern (5.8f)
quite well. The positioning of the squall line is more on point and the extent of the area is now more in line
with the radar. Finally, at the last assimilation time at 18 UTC, areas of relative humidity near saturation
(5.8g) are even more lined up from north to south and correspond relatively well with the position and size
of the squall line in the radar composite of figure 5.8h. Judging from these observations, it seems that the
model is able to adjust the squall line to the observations through radar data assimilation, although it requires
a decent amount of assimilation cycles. Finally it is noted that the areas of high humidity become quite
scattered throughout the cycling period. The localized cells are mainly a consequence of the spatial length
scale of the autocovariance, which was scaled down to allow for detailed increments, especially in the case
of local convection. In this case of a squall line, the extent in the direction along the squall line, normal to
the direction of propagation is relatively large which requires a longer length scale to make the line of RH
smoother. But also since the autocovariance is modelled to be isotropic, accurate repositioning of a smooth
squall line would require a different description of the autocovariance that better represents the case specific
anisotropic variance, e.g. through ensemble/hybrid assimilation.

5. CZRV
In the fifth scenario the last type of radar observations is assimilated: radar radial velocity. In section 2.6
it is addressed how radar radial velocity is assimilated as well as some characteristic features of this type of
observation, like the aliasing of radial velocity. As for the previous scenarios, it will be briefly discussed how
the assimilation of radial velocity affects the model wind field.

An illustration of the changes that assimilation of radial velocity results in is given figure 5.9. Similar to
the wind increments resulting from assimilation of surface observations in the CONV scenario as shown in
figure 5.3, the model DA increments are highlighted in figure 5.9c as the difference between the model FG
and DA analysis. Vertical level 26 is chosen as it intersects with large areas of radial velocity of scans 3-5
of the DB and DH radar. These scans have been included in figure 5.10, where the left column shows the
filtered scans for DB and the right for DH. For example, a large portion of the radial velocity measurements
far on the North Sea acquired by the DH radar intersects the level 26 at a geopotential height of roughly
5.2 km. Similarly, velocity measurements covering the middle of the Netherlands intersecting this model
level come from higher elevation scans (7-8) which are not shown here, but are really similar to the velocity
observations in the lower scans in figure 5.10. The observations on the North Sea located between 53−55◦N
show a southwesterly wind, corresponding with the wind field in the FG in figure 5.9a which shows a SW
oriented jet stream. These observations pass the maximum innovation check O −B < 3σ (see equation 3.1)
for radial velocity and its locations are plotted with green dots on top of the analysis wind increments in figure
5.9c. The maximum innovation threshold has been set to 3σ because experiments with the default of 5σ
produced unrealistic local stop and reversal of the jet stream wind at 500 hPa as a result of noisy and aliased
radial velocity observations. Besides the radar reflections on the 26th model level the observation locations
at slightly different heights intersecting adjacent model levels are plot as well, because they still influence the
wind field increments through the vertical correlation that is described by the eigenvectors of u and v (see the
eigenvectors for u and v in figure 2.9). Observations that fail the maximum innovation check are shown in
red. Apart from some isolated areas in the northwest of the domain, most of the velocity observations that fail
the maximum innovation or quality control (QC) check correspond with the aliased velocity measurements
of the radar scans. For example, the velocity observations at the border between France and Belgium in
scan 3 and 4 of the DB radar in figure 5.10a and 5.10c appear to be aliased regarding the strong SW flow
in the FG of figure 5.9a. Also the positive radial velocity measurements around 52◦N in scans 3-5 of DH
erroneously indicate a strong NE wind component that is obviously aliased regarding the dominating SW
wind flow in the model. These observations are discarded since they produce huge innovations with respect
to the FG (logically close to 2vmax when the dealiased observations correspond with the model wind field),
while for a relatively large velocity standard deviation (also referred to as Doppler velocity spectrum width) of
σD = 4 m s−1 the maximum allowed innovation is 12 m s−1. Thus the aliased regions above the southern part
of the North Sea fail the maximum innovation check and therefore do not affect the model wind field.

The observations shown in green in figure 5.9c that do pass the check cause some adjustments to the
wind field, with a maximum wind speed magnitude increase of 7.3 m s−1 on the middle of the North Sea
at the southern part of the large area of radial velocity measurements acquired by scan 3-4 of both DB and
DH radars. Around this area winds are adjusted from a SSW towards a more SW orientation. In general
throughout the domain the wind speed magnitude is mostly slightly overestimated in the FG, since most
increments have a negative radial component with respect to the FG SW wind direction.
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(a) First guess (b) Data assimilation analysis
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(c) Difference analysis and first guess. Dots denote observation locations of radial velocity measurements with a height
similar to this model level that pass (green) and fail (red) the maximum innovation QC check.

Figure 5.9: Horizontal model level 26 wind speed in the CZRV scenario at 26-08-2015 15 UTC.

Finally, it is worthwhile comparing the model wind fields of the CZRV scenario with the CONV scenario
at the end of the data assimilation cycle at 18 UTC. This is the model state that is used as a starting point for
the subsequent verification forecast. In figure 5.11 the wind field at the 10th model level is shown for both
the CONV and CZRV scenario. The 10th model level, at which a large part of the domain has a pressure close
to 900 mb, is highlighted because in the case of a squall line the mechanical forcing of the near surface wind
with which the cold front is approaching largely determines the intensity of convection. In the CONV scenario
most of the areas with high > 20 dB Z reflectivity (as denoted with the black lines) in figure 5.11a can be found
north of the Netherlands. The precipitation front coincides with a line of converging winds from north of the
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(a) Scan 3, DB. (b) Scan 3, DH.

(c) Scan 4, DB. (d) Scan 4, DH.

(e) Scan 5, DB. (f) Scan 5, DH.

Figure 5.10: Radar radial velocity measured at KNMI radars at De Bilt (DB) (left) and Den Helder (DH) (right).

domain down to Den Helder. Also, on the North Sea right at around 52.5◦N 4◦E locally an intense cell of
convection forms because of the convergence of really strong near 30 ms−1 SW winds with slower southerly
winds. In contrast, after the three hours of radial velocity assimilation, the wind field in the CZRV scenario as
shown in figure 5.11b is adjusted so the line of convergence is moved eastward, more or less parallel to the
Dutch coast line. Also, the line of convergence has been slightly extended southwards. Along the convergence
line convection is forced, which leads to a more easterly positioned, elongated area of precipitation (figure
5.19b) which corresponds significantly better with radar images, see figure 5.19h.
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Figure 5.11: Comparison of horizontal model level 10 ( 900 mb) wind speed at 26-08-2015 18 UTC for the CONV and CZRV scenarios.
The black line indicates the contours of 20 dB Z model reflectivity.
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6. CGPS

(a) First guess (b) Data assimilation analysis

(c) Difference analysis and first guess. Dots denote observation locations of GPS ZTD measurements that pass (green)
and fail (red) the maximum innovation QC check. Additionally SYNOP humidity observation locations have been plot.

Figure 5.12: IWV of the model in the CGPS scenario at 26-08-2015 15 UTC.

In the last isolated observation scenario only GPS zenith total delay (ZTD) measurements are assimilated
besides the conventional surface observations. Refer back to 2.7 for a description of how ZTD observations
are assimilated into the model. As described there, GPS ZTD measurements and more specifically ZWD are
measures of the delay of a GPS signal caused by water vapour in the atmosphere. Therefore, it makes sense
to look at the IWV of the model before and after the assimilation of ZTD measurements. The FG for the
integrated water vapour at 15 UTC is shown in figure 5.12a. The squall line in the model on the North Sea
is clearly visible. The DA analysis for the IWV has been included in figure 5.12b, showing a similar state
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as the FG. The squall line itself is mainly unaltered because there are no GPS stations at sea, except for one
measurement location. Similar to the surface based conventional observations, it is a limitation that generally
only on land observations are made. That way, radar humidity changes at sea cannot be constrained by GPS
measurements. Nevertheless, the observation network on shore is relatively dense, allowing for local changes
as illustrated by the DA increments in IWV resulting from ZTD assimilation, shown in figure 5.12c. In a large
part of the Netherlands and Belgium the amount of moisture is overestimated, judging from the dominantly
negative increments. Along the Dutch and Belgian coast some positive increments can be observed, creating
a sharper gradient with the less moist regions of negative increments to the east. The region of moist air west
of this gradient corresponds with an elongated band of precipitation visible in the composite radar image at
the time of assimilation in figure 5.8b, at approximately 52.5◦N 5◦E . Also, on the northeast coast of the UK
a strong positive IWV increment is made of approximately 4kg m−2, more than 10% of the original IWV. In
this area also a significant area of reflectivity is present, which makes it likely that this significant moisture
increment is justified.

The observation locations of GPS ZTD measurements have been included in the DA increments plot in
figure 5.12c. The green points show the locations that pass the maximum innovation test, while the red points
correspond to the locations that fail the test. The maximum innovation for GPS ZTD is unaltered and remains
5σ. Histograms in figure 5.13 further illustrate this maximum innovation test. In figure 5.13a, a histogram of
O-B shows the distribution of the σ normalized ZTD observation introduced innovations. The observations
outside the 5σ interval denoted by the red lines fail the maximum innovation test and are thus ignored. The
DA changes result in a model state in which the difference between the observations and the DA analysis (O-
A) is minimized, as indicated by the histogram of normalized O-A in figure 5.13b. The histogram of O-A is so
small because in this scenario only ZTD and some conventional measurements are assimilated and thus the
cost function that is minimized only penalizes model differences with these types of observations. Second,
because of the small autocovariance length scale of moisture observations can only be constrained by other
observations if the network is dense enough, as is the case in Belgium. In less dense areas data assimilation
can just fit the model to ZTD observations without any further constraints from other observations. When
other observations are included the relative weight of ZTD measurements in the cost function is smaller so
that O-A values will be larger for ZTD.

(a) O-B (b) O-A

Figure 5.13: Histograms of ZTD O-B and O-A, normalized by the error standard deviation σ of each observation. The red lines indicate
the maximum innovation (O-B) test boundaries.

Again it is interesting to see how the total humidity has changed during the assimilation cycle of ZTD
measurements compared to the CONV scenario. Figure 5.14a shows the IWV for the CONV scenario and fig-
ure 5.14b for the CGPS variant. Interestingly enough the assimilation of ZTD measurements results in a IWV
field much more similar to the precipitation areas on the radar composite image at 18 UTC in figure 5.8h,
without the assimilation of any radar observations. The band of high precipitable water vapour has become
much narrower compared to the CONV scenario. Keeping in mind the southwestern wind, the GPS stations
upstream of the squall line on the UK coast consistently measure lower ZTD than the model equivalent, re-
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sulting in a drying of the moist air west of the model squall line at 15 UTC (compare figure 5.12a and 5.12b
again) and onwards. At the same time the GPS stations near the Dutch and Belgian coast cause some moist-
ening at the eastern side of the squall line. Also, stations in Belgium and the north of France indicate larger
precipitable water quantities than in the CONV scenario, which is also in correspondence with the fact that
the actual squall line on the radar composite at 18 UTC in figure 5.8h also stretches through Belgium into
France. The two most northern GPS locations in the UK in figure 5.12c cause a plume of humid air on the
North Sea around 53.4◦N 2.7◦E , producing some significant precipitation as will be shown in the verification.

(a) CONV (b) CGPS

Figure 5.14: Comparison of model IWV at 26-08-2015 18 UTC for the CONV and CGPS scenarios.

7. ALL
In the final scenario all available observations are being assimilated. Conventional observations provide mea-
surements of temperature, pressure, humidity and wind speed at the surface. Radar reflectivity produces
hydrometeor and humidity observations with high spatial resolution that should improve the positioning of
precipitating areas. The assimilation of radar radial velocity improves the dynamics driving the intensity of
convergence at the squall line front. At the same time, GPS ZTD measurements are supposed to constrain
radar humidity observations and provide additional humidity observations in areas where no precipitation
(and thus no detectable reflectivity) has formed yet.

Synop Metar Buoy GPS Radar Zqv Radar Zqr Radar Zqg Radar Zqsn Radar RV

Used 116 4 19 162 24368 25274 43598 43598 3674
Rejected 2 0 0 3 0 0 0 0 1075
Total 118 4 19 165 24368 25274 43598 43598 4749

Table 5.1: Number of assimilated observations at 15 UTC per observation type.

Table 5.1 lists all the observations that are assimilated into the model, for every observation type our
source. Radar ’Zqv’ refers to the humidity retrieved observations from radar and ’qr’, ’qg’ and ’qsn’ to the
other assimilated hydrometeors of rain, graupel and snow respectively. Finally, also radial velocity (RV) obser-
vations are assimilated. The number of observations failing the maximum innovation that are then rejected
have also been included in the table. For observation sources supplying observations of multiple variables,
the amount of available and rejected observations might deviate slightly from the values listed in table 5.1.
From table 5.1 it is evident that most conventional observations pass the QC test, except for two SYNOP
stations. A relatively large part of the GPS measurements are assimilated as well, considering that ZTD mea-
surements often lack very good precision. For the radar hydrometeors no maximum innovation test exists,
since most often it occurs that no hydrometeors exist before assimilation at radar observation locations, yet
we would like to be able to assimilate the observations anyway. As radar is a remote sensing instrument with
a high spatial resolution, a large quantity of observations is readily available for assimilation. Note that there
are less radar humidity measurements than other hydrometeors, primarily because humidity observations
are only assimilated at Z Ê 20 dB Z . Also, not every reflectivity observation location has a corresponding
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radial velocity observation. A significant part of the radial velocity observations is rejected because some
aliased observations exist in the lower to middle scans, as was demonstrated in section 5.1.1 and specifically
in figure 5.10 where radial velocity of the lower scans are shown.

(a) First guess (b) Data assimilation analysis

(c) Difference analysis and first guess. Markers show the observation locations of SYNOP and ZTD measurements. Ad-
ditionally dots indicate the locations of radar humidity observations where Z > 20 dB Z .

Figure 5.15: IWV of the model in the ALL scenario at 26-08-2015 15 UTC.

Similarly as for the other scenario’s, a map of data assimilation changes together with the FG and DA anal-
ysis has been included in figure 5.15. The map shows the increments in IWV, which is influenced by radar
derived humidity observations at higher altitudes, at the surface through SYNOP humidity measurements
and throughout the whole column by GPS ZTD. Other observation sources listed in 5.1 do not provide hu-
midity observations. The map of increments in figure 5.15 shows that in most areas where radar humidity
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(a) First guess (b) Data assimilation analysis

(c) Difference analysis and first guess. Markers show the observation locations of SYNOP, sounding and ZTD measure-
ments. Additionally dots indicate the locations of radar humidity observations where Z > 20 dB Z . The dashed line
shows where the cross section in figure 5.17 is made.

Figure 5.16: IWV of the model in the ALL scenario at 26-08-2015 17 UTC.

observations are assimilated, like the large strip of reflectivity stretching from the southwest corner of the
domain until approximately 52.5◦N 2.5◦E , no really big changes in IWV are made, the reason being that is air
is already relatively moist and close to saturation here. In a large area on the North Sea between the Nether-
lands and the UK, the amount of water vapour is suppressed because null echoes in the radar image do not
indicate any precipitation while it exists in the model. As noted in the discussion of the CZQV scenario in
section 5.1.1, humidity in the model squall line that is positioned just slightly too far east is also significantly
suppressed, judging from the large negative IWV increments around 52◦N 3◦E just in between the radar hu-
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midity observations. The strongest increase in humidity and IWV by radar can be observed above the middle
of the Netherlands. A small line of reflectivity causes a moistening of this area that is underestimated in the
FG, see 5.15a. Also above the UK the radar measurements cause an increase in moisture, although in this case
the majority of the moisture increments is due to the GPS measurement nearby.

Looking at IWV gives an overview of the net effect of humidity assimilation over the depth of the atmo-
sphere. However, this two dimensional approach does not show the vertical structure of changes to water
vapour. It may happen that near the surface a strong drying is forced by a surface observation while a radar
reflectivity observation indicates near saturation at higher altitudes in a column so that the net moisture in-
crement in a column is near zero. To examine the interaction between the observation sources that produce
humidity observations, the optimal situation for such a comparison is when two close SYNOP and ZTD loca-
tions are passed by a band of precipitation so that reflectivity humidity observations are also contained by the
zenith humidity column to which the ZTD is proportional. That is the case two hours into the assimilation
cycle, at 17 UTC. A map of the model IWV first guess and DA analysis and DA increments is included in figure
5.16, analogous to the map for 15 UTC in figure 5.15. Again, observations that change model water vapour
have been plot. The green points indicate points where Z > 20 dB Z and thus near saturation RH observations
are assimilated, while the other markers indicate locations of SYNOP, sounding and GPS measurements. The
dashed line shows where the south-north cross section in figure 5.17 is made. This line intersects a large area
of radar humidity measurements, and with a decent amount of SYNOP and GPS measurements nearby.

The north-south cross section of model RH is shown in figure 5.17 for the first guess (5.17a), DA analysis
(5.17b) and DA changes (5.17c). In the last plot of DA increments the observations have been plot that are
in proximity of the cross section so that they affect the humidity in the cross section. SYNOP and radar ob-
servations have been plot at their respective heights, while GPS measurements are indicated with the dashed
vertical lines to keep in mind that a ZTD measurement is proportional to the integrated water vapour in a col-
umn. Do note that vertical model grid spacing increases upwards, as discussed in the model grid description
(section 4.1), so that thick, higher model levels obtain a bigger weight in the vertical integration. The RH first
guess already shows quite a lot of areas that are (nearly) saturated, corresponding to the radar measured re-
flections in figure 5.17c. One area in particular is underestimated though in terms of humidity, in the vertical
of the 34th latitude grid point and its surroundings. A significant moisture increment is made here, judging
from the near 30% RH change. Radar reflections at higher altitudes and the 3 middle GPS observations in
figure 5.17c indicate that the moisture content in the air is underestimated. The left (south) most GPS obser-
vation measures ZTD slightly smaller than the model equivalent, so along this column negative increments
are made, also because radar observations are not abundant to indicate otherwise. Interestingly both surface
SYNOP stations measure a smaller humidity than the model, leading to a drying near the surface. Sometimes
the combination of radar and GPS measurements can lead to a compensation effect when no other obser-
vations are available for constraint above or below radar observations. That is, the atmosphere is dried in
the parts of the column where no observations are at hand, compensating for moistening of the radar mea-
surements to still fit the ZTD measurements. This occurs to some extent above and below the area of largest
humidity increase, e.g. in columns 35-40 of the latitude grid, although at the surface there is some influence
of the drying SYNOP measurements. In general however this compensation effect occasionally might lead to
surface drying this way.

The strong water vapour increment also results in a super saturation of the column just north of the area
of largest increments, near the column of the 38th model latitude grid cell, because of the horizontal auto-
correlation. The water vapour increments resulting from radar retrieved RH observations are continuous, in
the sense that they are not suppressed when it leads to supersaturation in nearby grid cells. The excess wa-
ter vapour is swiftly converted to precipitation by the microphysics scheme. This phenomenon adds to the
model rainfall intensity which is already quite big.

Finally, it is interesting to see how the assimilation cycling of all observations during three hours has
affected the water vapour field with respect to the CONV scenario, where only conventional observations
were assimilated. The IWV fields for both scenarios have been plot in figures 5.18a and 5.18b respectively.
In terms of timing and placement there is a strong improvement. The moist air of the squall line has been
correctly repositioned along the Dutch coast. Apparently however, the assimilation cycle has also led to quite
a significant total moisture increment due to the inclusion of radar humidity measurements. The abundance
of radar measurements combined with the rapid update cycling makes possibly unrealistically big increments
in humidity.



5.1. Experiment 1: Observation type 115

(a) First guess

(b) Data assimilation analysis

(c) Difference analysis and first guess. The markers indicate locations of radar (null and humidity) and SYNOP
measurements. GPS ZTD measurements are indicated with dashed lines to illustrate that they are propor-
tional to the IWV.

Figure 5.17: RH of the model in the ALL scenario at 26-08-2015 17 UTC.
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(a) CONV (b) CGPS

Figure 5.18: Comparison of model IWV at 26-08-2015 18 UTC for the CONV and CGPS scenarios.

5.1.2. Verification results
The primary goal of data assimilation is to obtain a model state that is closer to the real atmospheric state,
which is used to initialize a forecast that should result in a more accurate forecast afterwards. As mentioned
before, in this study the accuracy of the precipitation forecast is what is of primary interest. To assess the
quality of the subsequent forecast after the assimilation cycle, model forecast precipitation is compared to
radar images. For each observation type scenario the 15 minute accumulated rainfall is used to determine the
average rainfall rate during that period. Similarly, 4 radar images are averaged to obtain the radar equivalent
rainfall rate. Although the radar rainfall intensity has not been corrected with surface rain measurements,
it is nevertheless assumed that the radar provides an estimate of rainfall intensity that is decently accurate
enough for verification. For more details regarding the precipitation verification, refer to section 4.3. Figure
5.19 provides an overview of the average rainfall rate for every observation assimilation scenario, as well as
the actual radar images.

The rainfall intensity images for each scenario at later times throughout the verification forecast (20 and
22h) have been included in appendix B.1. As mentioned in the description of the verification method in
section 4.3, the radar rainfall rate is used as truth in classifying whether a model grid cell produces a correct
forecast. In the qualitative verification a threshold of 0.3 mm hr−1 is used to classify precipitating and non
precipitating cells. That way for each observation type scenario, a confusion matrix is constructed containing
true positives, true negatives, false positives and false negatives. In section 4.3 some useful verification scores
based on the confusion matrix to assess forecasting skill were defined. One of the most important scores is
the Gilbert skill score (GSS), a skill score that attempts to quantify the accuracy of a forecast. It is similar to
the critical succes index (CSI) with the addition of a correction for the chance of randomly predicting correct
positives. The GSS every 15 minutes throughout the forecast is shown in figure 5.20 for each of the observation
type scenarios discussed in the previous section 5.1.

When examining the GSS timeseries in figure 5.20, the first thing to notice is the added value of data as-
similation on the accuracy of precipitation forecasting. The CTRL experiment evidently performs worst in
forecasting precipitation, as its GSS is lowest almost throughout the whole forecast. In this scenario where no
observations are assimilated the model accuracy purely relies on the quality of the initialization, i.e. the accu-
racy of the coarser GFS data. The major part of the squall line at 18 UTC as visible in the radar image in figure
5.19h is not forecast by the model itself, see figure 5.19a. The CONV scenario with assimilation of conven-
tional observations already notably improves forecasting accuracy, mainly because of the extra precipitation
area that formed after the assimilation of surface (wind) observation led to an extended line of surface con-
vergence. The direct assimilation of radar reflectivity in the CZQR scenario leads to the best precipitation
forecast right after assimilation, since hydrometeors are directly assimilated into the model. The areal extent
(5.19c) is really similar to the radar images (5.19h), primarily because the very small autocovariance length of
hydrometeors allows for really local increments. However shortly after assimilation the hydrometeors have
precipitated to the surface and the added value of radar hydrometeors data assimilation is lost. This is con-
firmed by the GSS of the CZQR scenario which plummets between 15 and 30 minutes after assimilation. From
this point when the majority of assimilated hydrometeors have precipitated to the surface, the CZQR forecast
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(a) CTRL (b) CONV

(c) CZQR (d) CZQV

(e) CZRV (f) CGPS

(g) ALL (h) Radar

Figure 5.19: 15 minute average rainfall rate for each of the data assimilation scenarios and KNMI radar composite between 18:00 and
18:15 UTC.
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Figure 5.20: GSS of the model precipitation forecast MCS case of 2015-08-26 verified with radar composites. For each of the observation
type scenarios listed in table 4.1 the GSS is shown as a function of the forecast time.

is in essence equivalent to the CONV scenario. The assimilation of near saturated water vapour derived from
radar reflectivity in the CZQV scenario does a much better job in producing an improved precipitation fore-
casting skill that is sustained throughout the whole forecast. The model squall line was successfully reposi-
tioned and adjusted to fit observations. The near saturated areas of humidity resulting from indirect radar
data assimilation provide a favourable environment for sustained precipitation. At the same time erroneous
model precipitation which would appear as false positives in the verification forecast is suppressed by the
assimilation of null-echoes, adding to the forecast skill. The GSS of the CZQV scenario is the best through-
out the forecast except for the first 15 minutes, when the assimilation of hydrometeors in the CZQR and ALL
scenarios slightly outperforms CZQV because of the temporary near copying of the radar images (compare
5.19g and 5.19h). At the very end of the forecast the CZQV scenario is surpassed by the CTRL and ALL fore-
cast because nearly all of the model precipitation has left the domain and only some trailing precipitation is
present, of which slightly more happens to be correctly positioned for the CTRL and ALL scenario. With the
assimilation of radar radial velocity in the CZRV scenario the GSS also notably improves with respect to the
CTRL forecast, without affecting moisture. The main reason is that in the case of a linear convective system
as studied here convection is forced mechanically by an advancing cold front, so that adjusting wind speed
and direction can trigger new areas of precipitation. In the CZRV scenario the assimilation of radial velocity
leads to an extension of the line of surface convergence, producing a new area of precipitation on the south-
ern flank of the model squall line. This extended squall line is what causes the improvement of the CZRV’s
GSS over the CTRL forecast. In the CGPS scenario where GPS ZTDs are assimilated, the precipitation forecast
accuracy is really similar to the scenario CONV where only conventional observations have been assimilated.
Actually the squall line at 18 UTC in figure 5.19f is quite accurately reproduced when compared to the actual
radar intensity in figure 5.19h. However some erroneous areas of precipitation are forecast, primarily in the
north of the domain, resulting from ZTD measurements on the east coast of the UK. These erroneous areas
of precipitation also show up in the false alarm ratio (FAR) which is plot in figure 5.21c. In the first half of the
verification forecast the CGPS scenario produces a significant amount of false positives. As a result the GSS
is similar as for CONV although the structure of the squall line is much better from a forecaster’s perspec-
tive. Once the erroneous precipitation has left the domain at around 20:00 (figure B.1f), the amount of false
alarms significantly reduces and correspondingly GSS improves to scores similar to CONV again. Finally and
not surprisingly, the ALL scenario is most similar to the CZQV scenario, as it is the only other scenario be-
sides CZQV where radar based humidity is assimilated. Since in the ALL scenario also model differences with
other observations like radar hydrometeor content, radial velocity and GPS have to be minimized in the cost
function, the impact of the radar humidity observations is not as strong as for the CZQV scenario. The initial
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collapse of the forecasting skill as result of precipitation of assimilated hydrometeors can again be observed,
although not as dramatic as the CZQV scenario. Just like the CZQR scenario the forecast rainfall intensity (see
figure 5.19g) is most similar to the radar image, but is misleading since the hydrometeors vanish quite rapidly
after assimilation. So at later times e.g. 20 UTC (appendix B.1g), the model rainfall intensity tends towards
the CZQV scenario, also indicated by the GSS.

The GSS is practically zero at the end of the forecast for all scenarios. Not because the model has com-
pletely lost its forecasting skill, but because there is very few precipitation forecast by the model while the
radar still shows some areas of trailing precipitation. The lack of forecast precipitation causes a small number
of correct positives a, also indicated by the hit rate (H) in figure 5.21b, the fraction of correctly forecast rain
grid cells. Consequently, the GSS which largely depends on a will tend towards zero, similar to H. Besides
looking at the correctly forecast grid cells, the classification bias (CB) which is plot in figure 5.21e provides a
measure of whether false forecasts are predominantly false negatives or false positives. In this case all sce-
nario forecasts contain more false negatives than false positives, so generally underpredicting precipitation.
Whether under- of overprediction is considered worse is subject to discussion, but the CB should always be
interpreted with the fraction of false forecasts of the total, equal to 1−PC , in mind. In this case the fraction of
falsely forecast events is relatively constant for every scenario, varying per scenario roughly between 10−15%,
see figure 5.21a. so although generally more precipitation is not forecast rather than falsely forecasting pre-
cipitation, the total amount of false classifications is limited.

The use of skill scores only provides a qualitative verification for the model forecast. This is sufficient
when one is only interested in knowing whether it rains or not. However, it is also interesting to examine
how well the model is capable of forecasting precipitation quantity as there is a growing demand for accu-
rate quantitative precipitation forecasting (QPF). Just from visual comparison of the model forecast rainfall
intensity at 18 UTC in figure 5.19 one can observe that generally the intensity of precipitation is substantially
overestimated. Also at later times in the verification forecast this is the case, see the rainfall intensity fore-
casts at e.g. 20 and 22 UTC in appendix B.1. At 18 UTC, even in the CTRL forecast in figure 5.19 without any
data assimilation the mispositioned core of precipitation the rainfall intensity is stronger than in the actual
radar image. Generally throughout the domain more precipitation is forecast, as indicated by the domain 15
minute rainsum that has been plot in figure 5.21f. The total precipitation sum of the radar has been included
for reference, as indicated by the dashed line. Two other scores to asses the ability to accurately forecast quan-
titatively have been introduced in section 4.3.2: the relative bias (RB) and absolute average scale ratio (ASCR),
which have been plot in figures 5.21g and 5.21h respectively. These scores tell a similar story as the rain-
sum. Precipitation is considerably overestimated in terms of intensity, regarding the fact that RB > 1. Also,
the precipitation is forecast on average at least three times as intense as the radar indicates for all observation
scenarios, judging from the absolute average scale ratio (ASCR) in figure 5.21h. As mentioned before, even the
CTRL forecast and the scenarios without assimilation of water vapour from radar significantly overestimate
precipitation intensity. Apparently the microphysics parametrization struggles to produce realistic precipi-
tation amounts in this rather extreme case of forced convection. In the scenario CZRV with radial velocity
the stronger convergence leads to even more intense rainfall. The biggest overestimation of rainfall is by the
scenario’s that include radar humidity assimilation, CZQV and ALL. Because generally in the radar humidity
assimilation scenarios positive moisture increments are made throughout the assimilation cycle, even more
water is available for precipitation than for the scenarios without radar humidity assimilation. It seems that
an improved accuracy in spatial terms goes at the expense of accuracy in precipitation quantity. Increasing
the assimilation update interval from 15 minutes to 30 minutes or longer will reduce the amount of moisture
that is added to the model, but most likely this will also reduce the accuracy of the qualitative precipitation
forecast.
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Figure 5.21: Scores derived from the confusion matrix of the model precipitation forecasts the MCS case of 2015-08-26 verified with radar
composites. For each of the observation type scenarios listed in table 4.1 the H is shown as a function of the forecast time.
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5.2. Experiment 2: Precipitation mechanism
In the second experiment the performance of data assimilation assimilation for different kinds of precipita-
tion mechanisms is examined. Three cases (MCS, LCS and STRAT) featuring different kinds of mechanisms
causing precipitation have been selected and have been discussed in the experiment setup description in
section 4.2.2. The setup for each case in terms of simulation start and end time has been summarized in ta-
ble 4.2. As indicated by table 4.2, in each precipitation case the scenario where all available observations are
assimilated is compared to a reference CTRL forecast without any data assimilation, hence the labels CTRL
and DA. However, when examining the CZQR scenario where radar retrieved hydrometeor mixing ratios are
assimilated, it was found that the added value of hydrometeor assimilation is lost once hydrometeors have
precipitated. This is confirmed by the course of the GSS of the CZQR scenario in figure 5.20 which is al-
most equivalent to the CONV scenario from 30 minutes and onwards. Assimilation of hydrometeors however
consumes unnecessary weight in the cost function of which the value is minimal during the majority of the
subsequent initialized forecast. For that reason, the assimilation of hydrometeors is omitted in experiment 2
in the DA forecasts.

5.2.1. Single data assimilation
Before assessing the skill of the precipitation forecast after the data assimilation cycling window, first an im-
pression is given of the changes to the model that assimilation of the observations results in will be given
for each case. The MCS case of 26-08-2015 has already been extensively discussed in section 5.1 during the
first experiment where the effect of observation type on the forecasting skill was discussed. Therefore, in this
section only the remaining two cases (LCS and STRAT) are described.

LCS
On the evening and following night of 30-08-2015, a narrow but intense local convective system (LCS) passed
over the Netherlands. The first areas of strong convection were initiated just before 19 UTC near the Belgian
coast and produced some heavy precipitation including some hail, see the radar images valid at 20 UTC in
figure 4.27a, as shown in the description of this case in the experiment setup in section 4.2.2.

Synop Metar Buoy GPS Radar Zqv Radar Zqr Radar Zqg Radar Zqsn Radar RV

Used 97 43 19 140 6420 0 0 0 501
Rejected 0 0 0 18 0 9292 17029 17029 285
Total 97 43 19 158 6420 9292 17029 17029 786

Table 5.2: Number of assimilated observations at 19 UTC in the LCS case per instrument.

Instead of highlighting the impact of assimilating every type of observation, for this LCS case as well as
for the STRAT case only the assimilation of all observations together are discussed. Similar to the previous
experiment, the model changes of the first assimilation at the start of the cycling window at 19:00 UTC will
be examined, as it shows the changes made by data assimilation to an unaltered forecast. An overview the
number of observations that is assimilated at this time is given in table 5.2. Robust observations from SYNOP
and METAR and buoys are all pass the maximum innovation test and are assimilated into the model. The GPS
measurements are generally more uncertain and logically a fraction of the GPS measurements are discarded
because they are too far off from the background. At 19 UTC the first convective cells have just developed
along the coast of Belgium and the Netherlands, which is measured by the radars and translated into the radar
hydrometeor (Zqr, Zqg and Zqsn) observations. Also a decent amount of radar based humidity observations
are assimilated, although their number is limited as there are not a lot of areas with strong reflections (Z >
20 dB Z ) yet that lead to a humidity observation. Also, the number of radial velocity measurements is quite
limited in this case because their are not many radial velocity observations that coincide with the reflectivity
measurements. A significant part of the radial velocity measurements fails the stringent maximum innovation
test. Compared to the MCS case (see table 5.1) the radar observations are less abundant because this case
features local convection which is still in the developing stage.

First, it is interesting to examine the changes in model moisture that result from the assimilation of radar
measurements, GPS ZTD and conventional observations. The unaltered model first guess for IWV at the be-
ginning of the data assimilation cycling window is shown in figure 5.22a. Evidently, the model first guess
captures the area of moist air approaching from the south-west that adds to the instability of the atmosphere.
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(a) First guess (b) Data assimilation analysis

(c) Difference analysis and first guess. Markers show the observation locations of SYNOP and ZTD measurements. Ad-
ditionally dots indicate the locations of radar humidity observations where Z > 20 dB Z . The dashed line shows where
the cross section in figure 5.23 is made.

Figure 5.22: IWV of the model in the ALL scenario at 30-08-2015 19 UTC.

However, the detailed features that are needed to accurately initialize precipitation are not really visible. The
analysis in figure 5.22b shows that after assimilation the line along which the convective cells form accord-
ing to the radar is now more evident as an area containing more moisture than it’s surroundings. The radar
derived humidity measurements above the Belgian coast and within the Netherlands cause a significant in-
crease in humidity locally. Another area of precipitation located even more south-west near the French coast
that is measured by the JAB radar also causes a moistening, although not as big since the air is already close to
saturation here and also since only radar observations at higher altitudes are available, given the range to the
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(a) First guess

(b) Data assimilation analysis

(c) Difference analysis and first guess. The markers indicate locations of radar (humidity) and SYNOP mea-
surements. GPS ZTD measurements are indicated with dashed lines to illustrate that they are proportional to
the IWV.

Figure 5.23: Cross section of RH of the model in the ALL scenario at 30-08-2015 19 UTC.
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radar is bigger for this area of precipitation. In the areas with no radar reflection nearby, humidity changes
result from assimilation of GPS and SYNOP observations.

Besides looking at the change in integrated water vapour, it is also interesting to examine the vertical pro-
file of humidity after assimilation. A vertical model cross section of relative humidity is shown in figure 5.23.
It intersects the area of the largest change in IWV and is shown with the blue, dashed line in figure 5.22. The
model first guess of relative humidity in figure 5.23a shows that a band of moist air extends from the surface
up to the 20th model level, but is not near saturation for the large part. Assimilation of radar humidity mea-
surements results in a clear column of nearly saturated air in the analysis shown in figure 5.23b. The data
assimilation increments in relative humidity shown in figure 5.23c show that the moistening is primarily a
result of radar assimilation. Because the precipitation is located in between the JAB and DB radar, radar ob-
servations are available throughout almost the whole column except for the near surface levels. The strong
radar reflections at high model levels (approximately 300 hPa), assuming that the estimated reflection alti-
tudes are correct, indicate that some deep convection developed that facilitated the formation of heavy rain
and graupel. Because of the abundant radar reflections moisture increments are made throughout the whole
column which results in a significant near 20% change in IWV that is visible in figure 5.22. Unfortunately
no GPS measurements are close enough to provide constraints on the radar humidity increments which are
relatively large.

(a) CTRL (b) DA

Figure 5.24: Comparison of model IWV at 30-08-2015 18 UTC for the CTRL and DA scenarios.

After 3 hours of 15 minute update assimilation, notable changes have been made to the moisture field in
the model. In figure 5.24 the IWV of the CTRL run is compared with the IWV field from the ALL run in which
every single observation type is assimilated. Evidently, a substantial amount of moisture is added as a result
of the rapid updates of radar data assimilation. While the structure of the humidity field better represents
the extent of the actual precipitation measured by the radar (figure 4.27b), similar as for the MCS case, it is
questionable if such big increments are realistic.

STRAT

Synop Metar Buoy GPS Radar Zqv Radar Zqr Radar Zqg Radar Zqsn Radar RV

Used 91 45 17 175 50419 0 0 0 19180
Rejected 0 0 0 7 0 80899 99420 99420 3678
Total 91 45 17 182 50419 80899 99420 99420 22858

Table 5.3: Number of assimilated observations at 10 UTC in the STRAT case per instrument.

In the final case a weather situation with more gradual, stratiform precipitation is considered. During
the afternoon of 20-06-2016, a warm front crossed the Netherlands which produced an elongated band of
stratiform precipitation that covered the whole Netherlands and Belgium for some hours. Refer to section
4.2.2 again for a synoptic overview of this case. In table 5.3 an overview is given of all the possible observations
that are assimilated and rejected per observation type. A decent amount of conventional observations are
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available which all pass the maximum innovation test, while a small fraction of the GPS measurements are
discarded. A huge amount of radar observations is the consequence of the large extent of the precipitation
that covers a large part of the domain.

(a) First guess (b) Data assimilation analysis

(c) Difference analysis and first guess. Markers show the observation locations of SYNOP and ZTD measurements. Ad-
ditionally, green dots indicate the locations of radar humidity observations where Z > 20 dB Z and model RH < 88%,
while brown dots indicate Z > 20 dB Z locations that are not assimilated because the model RH is already RH > 88%.
The dashed line shows where the cross section in figure 5.26 is made.

Figure 5.25: IWV of the model in the ALL scenario at 20-06-2016 10 UTC.

Similar as for previous cases, the changes to model moisture made by the first assimilation at the start of
the cycling window are discussed. The model FG for IWV at 10 UTC is shown in figure 5.25a and the model
IWV analysis after assimilation in figure 5.25b. Interestingly, changes in the IWV are dominantly negative, at
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(a) First guess

(b) Data assimilation analysis

(c) Difference analysis and first guess. The markers indicate locations of radar null, humidity, non assimilated
humidity and SYNOP measurements. GPS ZTD measurements are indicated with dashed lines to illustrate
that they are proportional to the IWV.

Figure 5.26: Cross section of RH of the model in the ALL scenario at 20-06-2016 10 UTC.
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least in the relatively moist part of the domain where precipitation is formed. The negative increments can
be seen in figure 5.25c where model changes in IWV are plot together with the various observations affecting
model humidity. The majority of radar humidity observations (indicated with the brown points) where Z >
20 dB Z are not assimilated because the model RH is already bigger than 88%, while only a fraction (green
points) of the radar humidity measurements are in fact assimilated because RH < 88%. The fact that the DA
increments are dominantly negative as a result of the numerous null echo assimilations, as shown by the red
dots in figure 5.25c. In these areas model precipitation with a simulated reflectivity Zmodel > 20 dB Z , while
none of the radars indicates precipitation, a RH = 90% observation is used to suppress erroneous model
precipitation. This leads to a drying of the water vapour column, which also becomes evident in the vertical
cross section of model relative humidity shown in figure 5.26. The location of the cross section is indicated
by the dashed blue line in figure 5.25c, intersecting the large area of null echoes on the North Sea. The null
echoes appear in the cross section of model increments in figure 5.26c at higher altitudes at model latitude
grids 70-100. South of the null echoes, minor positive increments are found as a result of GPS assimilation
combined with some valid radar humidity observations. The low altitude radar observations are made by the
JAB radar that are not assimilated anyway due to the RH already being saturated, as its location is near the
Belgian coast which coincides with the cross section.

(a) CTRL (b) DA

Figure 5.27: Comparison of model IWV at 20-06-2016 10 UTC for the CTRL and DA scenarios.

After the 3 hour assimilation cycling window a model IWV as shown in figure 5.27b is obtained which
serves as the start of the verification forecast. Similar to the first DA increments at the start of the assimila-
tion window as in figure 5.25c, in most areas (along the Dutch/German border at roughly 6.5◦E) changes are
negative compared to the CTRL forecast (figure 5.27a), drying the column which inhibits further precipita-
tion. Also in south Belgium and parts of the domain covering the North Sea are dried, leading to a smaller
and more narrow band of precipitation, as will be shown in the verification (figure 5.30). In west Germany
areas with high moisture content have become quite scattered, producing some isolated cells of with slightly
more intense rainfall. The area of relatively large IWV on the coast of the UK is the result of the assimilation
of GPS ZTD at this location, of which it seems that the bias correction is not really adequate since it generally
produces large positive increments. This area with extra water vapour adds an area of intense precipitation
that is not measured by a radar, as will become evident in the verification. In general, the small scall nature
of increments combined with rapid assimilation results in a high frequent varying moisture field in the DA
scenario of figure 5.27b, which is less able to produce the same kind of stratiform precipitation as the smooth
IWV field of the CTRL scenario.

5.2.2. Verification results
As for the verification in experiment 1, model 15 minute average precipitation rate is compared with a 15
minute average radar precipitation rate. The model precipitation rates for the CTRL and DA scenario are
shown at the end of the assimilation cycle for the cases MCS (figure 5.28, LCS (figure 5.29)) and STRAT (figure
5.30), ending at 18, 22 and 13 UTC respectively. As extensively discussed in the verification of experiment 1
which investigated the effect of assimilating every observation type on the precipitation forecast, the squall
line is quite successfully forecast when observations and particularly radar retrieved humidity is assimilated.
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The precipitation forecast by the CTRL scenario in figure 5.28a for a large part fails to reproduce the long
stretch of intense rainfall along the squall line that is present on the radar in figure 5.28c. In the DA scenario
where observations are assimilated every 15 minutes during a 3 hour window however, in terms of location
the forecast is significantly improved as is evident in figure 5.28b. The elongated structure is now much better
present in the model and the areal extent is really similar to the radar. Nonetheless as discussed in the verifi-
cation of the first experiment, the intensity of the model squall line is overestimated substantially, although
the CTRL scenario also shows some sign of overestimation in the areas where precipitation is forecast.

(a) CTRL (b) DA

(c) RADAR

Figure 5.28: 15 minute average rainfall rate for CTRL, DA and radar at 26-08-2015 between 19:00 and 19:15 UTC in the MCS case.

The second case LCS is a case where locally around 19 UTC really strong convection develops around
the southwest part of the Netherlands. At this time the data assimilation cycling period is initiated and lasts
up to 22 UTC. At 22 UTC various intense cells of convection have developed that cover the middle of the
Netherlands, as shown by the radar image valid at that time in figure 5.29c. In the CTRL scenario however
virtually no precipitation is forecast, see figure 5.29a. This might be related to model spinup time time which
was discussed in section 4.1.3, although an experiment with an additional spinup time of 3h initiated at 13
UTC instead of 16 UTC to cover a larger part of the diurnal cycle (figure 4.8) still did not show any triggering
of convection before 11 UTC just like the original CTRL scenario initialised at 16 UTC in figure 5.29a. The
assimilation of all possible observations except hydrometeors again significantly improves the precipitation
forecast, as shown by the DA intensity forecast at 18 UTC in figure 5.29b. The model now shows some individ-
ual cells of strong convection, as indicated by the very high > 30 mm hr−1 rainfall intensity. The extent of the
area of precipitation is really similar, only the convective cells in the model have a larger structure than in the
radar image. Reproducing really local and fine convective cells as the radar composite in figure 4.27a of the
experiment description indicates and out of which the precipitation in the verification forecast develops is
unrealistic to expect with a model resolution of 4 km. At that resolution, only large scale convective systems
can be decently represented in a model. The DA model rainfall forecast in figure 5.29b is likely to be close to
the best representation of the actual convective cells that the model is able to achieve with current settings
regarding resolution and parametrization.

In the final STRAT case it is examined how data assimilation impacts a precipitation forecast in which
precipitation forms gradually as a result of an advancing warm front. The precipitation associated with this
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(a) CTRL (b) DA

(c) RADAR

Figure 5.29: 15 minute average rainfall rate for CTRL, DA and radar at 30-08-2015 between 19:00 and 19:15 UTC in the LCS case.

warm front at the end of the data assimilation cycling window at 13 UTC as measured by the radar is shown in
figure 5.30c. A large fraction of the verification domain is covered with low intensity, stratiform precipitation
resulting from the gradual ascent of the warm and moist air of the front. The CTRL forecast which is shown in
figure 5.30a captures this process quite well. The area of rainfall is really similar, only slightly more extensive
in width. The fact that the model is able to reproduce the actual precipitation this well is mainly because of
the large scale nature of the precipitation mechanism. The precipitation formation resulting from gradually
rising airmasses is far less explosive and non-linear than the strong convection in the case of a squall line
(MCS) or strong local updrafts (LCS). In the STRAT case the assimilation of observations actually results in a
degradation of the forecast, see figure 5.30b. The rapidly successive assimilations during the cycling window
combined with small covariance length scales result in more concentrated areas of heavier rainfall. In this
study the small covariance length that was intended to allow for assimilation of small scale features like in the
LCS case now causes unrealistic isolated areas of heavier precipitation. The moisture field in the STRAT-DA
scenario contains a lot of high frequent features because of the local increments by GPS and radar obser-
vations while the actual stratiform rain has a structure that is much more homogeneous, as is evident in the
radar image. Regarding the mesoscale structure of the warm front bigger covariance lengthscales and smaller
model covariance (giving the model a bigger weight in the cost function) would be more appropriate for this
case. Another remarkable observation is that the areal extent of precipitation has been reduced significantly
with respect to the STRAT-CTRL forecast. Where the STRAT-CTRL forecast covers almost the whole of the ver-
ification domain, in the STRAT-DA forecast the extent is still substantially large but a lot less wide, not stretch-
ing from west to east of the domain anymore. In the western part and also in some areas at the northern and
southern edge of the verification domain model precipitation has been suppressed by null echoes during the
cycling window. Once a null echo is assimilated it is relatively difficult to initiate precipitation again in this
case, for two reasons: in the first place because with this kind of stratiform precipitation only a fraction has
a reflectivity Z > 20 dB Z that is required for humidity assimilation and moreover because once a reflectivity
Z > 20 dB Z is actually measured assimilation of RH = 88% (as 95% corresponding to Z > 35 dB Z is unlikely)
is not close enough to saturation to produce precipitation in the absence of strong vertical motions as is the
case with convective precipitation.
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(a) CTRL (b) DA

(c) RADAR

Figure 5.30: 15 minute average rainfall rate for CTRL, DA and radar at 30-08-2015 between 19:00 and 19:15 UTC in the STRAT case.

To improve the forecasting skill of the STRAT-DA case without using a different model background error
covariance matrix (either by rescaling variance and lengthscales or using flow dependent methods) the most
logical approach would be to reduce the extent of the null echo assimilation. In the STRAT case the assumed
lapse rate of reflectivity in the filling of filtered radar reflectivity images as explained in section 3.1.5 is too
steep, since precipitation intensity is really spatially uniform. This way at some points a null echo is assimi-
lated while there is still a weak reflection from drizzle present in the raw radar image that has been filtered but
nonetheless indicates that a null echo, which implies no precipitation at all is present, is not correct and the
corresponding RH = 90% assimilation would be inappropriate. This point is illustrated with the radar images
in figure 5.31. In the raw image in figure 5.31a a lot of weak reflections < 20 dB Z are present in between the
large area of precipitation covering the west part of the domain and the small preceding band that are evident
in the filtered and filled image in figure 5.31b. In the filled image the strip with Z < 0 dB Z in between these
areas of more intense precipitation are flagged as null echoes, while in the raw image there are still a lot of
weak reflections can be found here. One way to mitigate these false null echoes is to decrease the lapse rate
or to similarly only assimilate null echoes at a minimum distance from existing precipitation. Alternatively,
the filtering method will have to be improved to keep areas of low reflectivity from drizzle yet still remove the
clutter that remains after the minimum reflectivity filter step. Any clutter that is not removed by the filtering
might then prevent a null echo from suppressing erroneous model precipitation.

Analogous to experiment 1, the forecast skill of each case in experiment 2 is assessed by examining the
GSS throughout the 6 hour verification forecast. The GSS has been plot for the MCS, LCS and STRAT case in
figure 5.32. For each case the CTRL forecast is plot (with dashed lines) for reference to provide a baseline of
the performance of each case without any data assimilation. Evidently in the MCS and LCS cases of strong
convection there is a significant improvement when observations are assimilated, regarding the significantly
higher GSS than the reference. As already mentioned before when comparing rainfall intensity images of
the STRAT case in figure 5.30, in the STRAT case data assimilation actually results in a worse GSS score than
the CTRL forecast. In the first because place the precipitation forecast is already quite good in the CTRL
forecast and secondly, data assimilation results in unrealistic small scale features in model humidity. The
frequent assimilation of radar reflections introduces local variations that are inappropriate for this case where
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(a) Raw image (b) Filtered and null echo filled radar image

Figure 5.31: Radar images at 11:30 UTC 20-06-2016, scan 1 of the DB radar. Used in the assimilation of the STRAT case.

the precipitation should be really stratiform. Also, ZTD measurements were found to produce unrealistic
intensified rainfall.
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Figure 5.32: GSS of the precipitation forecast for each of the three cases MCS, LCS and STRAT. For each case the data assimilated scenario
DA is plot together with the reference CTRL scenario.

Other scores than GSS that are shown in figure 5.33 provide a similar image. For both convective cases
MCS and LCS the PC (figure 5.33a) is relatively high because only a fraction of the domain is covered with
precipitation, so that PC is dominated by true negatives and does not really give an idea on the skill in fore-
casting observed precipitation. Consequently the difference between the CTRL and DA forecast is limited,
although DA forecasts outperform CTRL scenarios. In the STRAT case the rainfall area is much more exten-
sive so that the PC is more influenced by the how well observed precipitation is forecast. Judging from the H
in figure 5.33b the STRAT-CTRL case forecasts pretty much all of the observed precipitation, because in the
STRAT-CTRL forecast the extent of precipitation is so large that it covers all of the observed precipitation, see
the rainfall intensities for STRAT-CTRL and radar at 13 UTC in figures 5.30a and 5.30c. The smaller PC for
STRAT-CTRL is actually caused by the significant number of false positives, as indicated by the large POFD
in figure 5.33c. Logically the CB in figure 5.33e also shows the STRAT-CTRL experiment really overestimates
the extent of precipitation. In the STRAT-DA forecast the area of precipitation is much smaller, reducing false
positives and thus POFD, however at the same time failing to forecast some areas of precipitation mainly at
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the eastern side of the front, leading to more false negatives and thus reducing the H and PC even more for
the STRAT-DA scenario. Although the total sum of false positives and negatives is larger for the STRAT-DA
case, they are roughly similar in quantity so that the STRAT-DA forecast does not significantly overpredict nor
underpredict rainfall.
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Figure 5.33: Scores derived from the confusion matrix of the model precipitation forecasts for each of the 3 precipitation cases: MCS,
LCS and STRAT. For each of these cases the reference CTRL and data assimilated forecast DA are shown as a function of the forecast time.
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Just like the GSS, the H is significantly improved with data assimilation for the MCS and LCS cases. In both
MCS and LCS cases the number of false positives and false negatives are limited, as evident from the FAR (fig-
ure 5.33d) and POFD (figure 5.33c), so that the H, CSI and GSS are dominated by the large number of correct
positives and thus follow a similar course throughout the verification forecast. The biggest improvement in
qualitative forecast skill with respect to the CTRL scenario is for the LCS case of local convection, primarily
because the LCS-CTRL forecast hardly produced any precipitation. The highest absolute forecasting skill is
achieved with data assimilation in the MCS case with convection along the squall line. Especially in this case
of mechanical forcing by the cold front non humidity related observations like SYNOP and radar radial ve-
locity wind speeds add quality to the forecast. In the LCS case the improvement over the LCS-CTRL scenario
mainly resulted from assimilation of radar retrieved humidity.

In terms of QPF, generally precipitation intensity is overestimated. The total 15 minute rainsum for every
case and scenario combination is shown in figure 5.33f. As discussed in the verification of experiment 1 DA in
the MCS-DA case with the squall line results in a significant overestimation of precipitation. The assimilation
of radar retrieved humidity adds even more moisture to the MCS-CTRL forecast which already overestimates
precipitation intensity in the first two hours of the verification forecast. The relative bias (RB) in figure 5.33g
shows a strong tendency of the correct positives to overestimate rainfall intensity for the MCS-CTRL and even
more so for MCS-DA. Also the ASCR in figure 5.33h indicates that the average absolute rainfall intensity ratio
between model and precipitation intensity estimates is really high, specifically in the first two hours after
assimilation. As noted in the verification of experiment 1, the microphysical parametrization fails to produce
accurate quantitative intensity estimates in the somewhat extreme case of the squall line that is examined.
The situation is less dramatic for the LCS case, however the total precipitation is still overestimated in the LCS-
DA scenario compared to the total amount of rainfall regarding the total rainfall according to the radar image
(LCS-Radar). The over- and underestimation of rainfall intensity however is now more balanced regarding the
fact that the RB is a lot closer to 1 than was the case for MCS. In absolute terms the rainfall intensity differs with
a ratio 3-4 (taking into account both under- and overestimation) from the radar measured intensity. Again
it proves difficult for the model microphysics to accurately estimate precipitation quantity in a convective
regime. In the STRAT case the precipitation formation is more gradual and not as explosive as in the cases of
strong convection which have been discussed before, making the forecast less prone to large discrepancies
with radar measured rainfall. This shows in the smaller difference in total rainsums between the STRAT-DA
experiment and the radar. While the model in both STRAT-CTRL and STRAT-DA still tends to overestimate
intensity, the absolute average scale ratio is smallest of all cases. The fact that this case concerns stratiform
precipitation also is more forgiving if precipitation is mispositioned. Because precipitation intensity in the
neighbourhood is of similar magnitude the difference in intensity does not really differ, while a perfectly
modelled but misplaced convective cell could indicate large intensity differences just because their cores do
not overlap.





6
Conclusion & Recommendations

6.1. Conclusion
The primary goal of the research conducted in this thesis is to improve the quality of precipitation forecasting,
with a focus on the short term range from 0 to 6 hours ahead in time. In order to improve forecast quality var-
ious observations of the atmosphere are integrated into a 4km resolution Weather Research and Forecasting
model (WRF) mesoscale numerical weather prediction model in a domain covering the Benelux. Observa-
tions from a variety of platforms are combined with a first guess model state using three dimensional vari-
ational assimilation (3DVar) as implemented in the Weather Research and Forecasting model’s Community
Variational/Ensemble Data Assimilation System (WRFDA) in order to obtain a more accurate model repre-
sentation of the atmosphere. Especially data assimilation with observations from remote sensing platforms
such as Doppler weather radar and GPS has been studied in detail because of the high spatial and temporal
resolution that these observations provide. The assimilation of these high resolution observations is required
to add the detail primarily in terms of humidity that is necessary for accurately forecasting precipitation tim-
ing and location into a limited area NWP model that is generally initialised with significantly coarser resolu-
tion data from a global NWP model.

Several experiments have been conducted to assess the influence of assimilating observations on the pre-
cipitation forecast. In every single experiment observations have been assimilated with a 15 minute interval
during a 3 hour cycling window. The first experiment defines several data denial scenarios, where observa-
tions from only a single source or type are assimilated, isolating their effect on the subsequent forecast and
enabling an assessment of the influence on the precipitation forecast after assimilation. Additionally the sec-
ond experiment is designed to examine the performance of data assimilation in different mechanisms that
drive precipitation formation. Three cases have been selected in which the first examines a mesoscale con-
vective system (MCS) with a squall line along a cold front, the second focuses on a case of intense convection
resulting from local instability (LCS) and finally the third case features stratiform precipitation formed by
slowly ascending moist air along a warm front.

In the first data assimilation scenario only so called conventional observations have been assimilated.
These include observations from permanent SYNOP weather stations, METAR airport measurements and a
limited amount of soundings and aircraft reports that provide direct measurements of atmospheric model
variables like temperature, pressure, humidity, and wind speed. Assimilation of these conventional obser-
vations alone in the MCS case of a squall line resulted in a minor improvement of forecasting skill in the
verification forecast, primarily because of a better model description of wind convergence near the surface,
leading to an extension of the squall line that corresponded better with radar observations. Generally though
the influence of predominantly surface observations on precipitation is limited since it does not directly affect
precipitation formation at higher altitude. In the case of a squall line the effect of assimilating conventional
observations is notable because there is a strong forcing from the cold front near the surface. In the absence
of such a strong mechanical forcing the ability of surface observations to affect precipitation is limited to for
example increasing potential instability from the surface as warm and moist observations are assimilated.

Assimilation of hydrometeor mixing ratios estimated from radar reflectivity in the second observation
scenario proved to be ineffective in creating sustained precipitation. The assimilated rainwater, snow or grau-
pel do not have a noticeable affect on precipitation formation and once precipitated to the surface their added
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value to the forecast is lost completely. Indirect assimilation of radar reflectivity through near saturated rela-
tive humidity on the other hand produced a much better model representation of the squall line that is also
expressed in the forecast skill during the verification forecast that is best out of all scenarios. The assimila-
tion of assumed near saturated relative humidity provides a favourable environment for new precipitation to
develop. The rapid data assimilation cycling however significantly overestimated rainfall intensity. While in
the control forecast the rainfall intensity is already overestimated, the numerous successive radar humidity
assimilations further add moisture to the model, aggravating the overestimation of precipitation intensity.
The areal extent and rainfall intensity are sensitive to the relative humidity value that is assumed for the in
cloud humidity. Setting a larger near saturation humidity increases the total moisture content, allowing for
more extensive precipitation areas but at the same time at the expense of realistic intensity quantities. Be-
sides reflectivity also radar radial velocity observations have been assimilated in a separate scenario. Similarly
to wind observations from surface stations the assimilation of radial velocity yields an improved analysis of
wind convergence at altitudes above the surface, resulting in an enhanced forecast skill on top of the con-
ventional observations. The wind analysis might improve even more when aliased velocities from the middle
radar scans would be successfully de-aliased to avoid rejection by the maximum innovation test.

In the last isolated observation scenario ZTD from GPS is assimilated as another source of water vapour
observations to provide a constraint to radar humidity observations. While the assimilation of GPS ZTD mea-
surements produced a more accurate representation of the squall line itself, also some erroneous areas of
precipitation were initiated that mask the improvement in the forecast skill scores. Generally though the ZTD
observations still lack decent precision because of the complex retrieval method, which in combination with
the small scaled covariance length of humidity can lead to an unrealistically spatially varying moisture field,
even with a reduced maximum innovation threshold. Also, ideally O-B statistics of a long range of indepen-
dent ZTD assimilations should be examined to validate the bias correction for the model and receiver height
discrepancy and assess whether there is still a bias after the correction is applied.

The final scenario in the first experiment combines all observations in the assimilation. There is an initial
drop in the forecasting skill similar to the scenario where radar retrieved hydrometeors were assimilated,
corresponding to the fallout of hydrometeors. After the drop the forecast skill is comparable to the scenario of
just radar humidity assimilation, except for some time in the beginning of the forecast where radar humidity
is limited by the GPS observations.

In the second experiment it is examined how data assimilation affects precipitation forecasting under dif-
ferent circumstances in which rain is formed. The first case featuring a cold front squall line has been studied
in detail in the first experiment, where the assimilation of wind observations and mainly radar humidity sig-
nificantly improved the extent and further development of the squall line. Being a mesocale system together
with the fact that the main driver of precipitation is the mechanical forcing by the cold front enables nearly
all assimilated observations to have a notable impact on the forecast. With a minor exception for GPS ZTD in
the beginning of the forecast all observations improve the precipitation forecast for at least three hours after
assimilation with respect to the control forecast. Especially humidity observation from radar reflectivity adds
skill to the precipitation forecast, only with a drawback of a bigger overestimation of intensity.

The added value of assimilating each type of observations is less evident in the second case of local con-
vection. Precipitation is produced by a limited amount of individual elevated convective cells initiated from
the mixed layer, so that only observations at higher altitudes can impact the model precipitation forecast. As-
similation of GPS measurements has a minor impact, however only when radar reflections are measured and
radar estimated humidity is assimilated, new and sustained cells of convection are triggered, again leading to
a significant improvement in forecasting skill similar to the MCS case.

When observations are assimilated in the case of stratiform precipitation the precipitation forecasting
skill is actually degraded. The rapid assimilation of moisture observations from radar and GPS results in
unnecessary high frequent features in the humidity field, disturbing the homogeneous moisture field in the
model that already predicts the stratiform rain quite well. Especially the relatively uncertain GPS measure-
ments introduce local precipitation cores with strong rainfall intensity that is really unrealistic for this type of
precipitation. Regarding the large scale and subtle nature of the warm front and its associated precipitation
a much larger covariance scale for humidity would be appropriate for this type of forcing. Additionally the
steady formation of precipitation from slowly ascending air does not require as much rapid updates as the
other more turbulent, convective cases.
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6.2. Recommendations
In this research the added value of variational data assimilation of weather observations to the short term pre-
cipitation forecast has been demonstrated. Especially the assimilation of radar reflectivity derived humidity
observations significantly improved the precipitation forecast. Nevertheless, still several limitations for this
method of radar data assimilation remain. Now the formation of new precipitation is expected to be a result of
the assimilation of near saturated relative humidity, which combined with the rapid update cycling strategy
generally adds quite a lot of moisture to the model, leading to a significant overestimation of rainfall intensity.
Whether or not new precipitation forms is sensitive to the assumed relative humidity that is assimilated. In
the current method just two different values for the near saturation humidity can be assimilated, depending
on the associated reflectivity (see 2.91). Instead of these discrete intervals, a continuous function for rela-
tive humidity as a function of reflectivity could help reduce the sensitivity to the assumed relative humidity
thresholds. Moreover, as shown in the pseudo single observation test with a radar reflectivity measurement,
the temperature increment associated with latent heat release is minimal. By increasing the magnitude of
this increment the buoyancy and the associated updrafts producing precipitation are strengthened, similar
to so called latent heat nudging methods. This way, not all of the precipitation has to be initiated solely by
adding moisture, reducing the total amount of moisture added to the model by the rapid update cycling.

Another way to limit the overestimation of rainfall is to add additional constraints to the humidity incre-
ments from radar. In this study that has been attempted by assimilation of water vapour estimates from GPS
ZTD measurements. However these still have their limitations, such as the fact that it is a measure for the in-
tegrated water vapour and thus contains no information on the vertical distribution. Also, while the network
of observations is quite dense, still a significant amount of radar humidity observations are not constrained
by any nearby ZTD measurements, especially at sea. Including other sources of water vapour observations is
required to provide humidity constraints in these areas, as well as a general constraint on the vertical profile
of humidity. For example satellite observations can provide estimates of humidity at higher levels of the at-
mosphere, although assimilation of radiance is rather complex because of the highly non linear and long ob-
servation operator coupled with the radiative transfer model, the time varying bias correction that is required
and the fact that usually only cloud free radiances can be assimilated. Other possible sources of humidity
observations include aircraft, lidars, ceilometers and soundings. More research is needed to assess the ability
of these types of observations to constrain the radar humidity increments.

Contrary to the humidity from radar observations, assimilation of hydrometeors estimated from radar
reflectivity proved to have a negligible impact on the subsequent forecast, the main reason being that a feed-
back of hydrometeors to the model is missing. While the estimation of hydrometeor quantities itself could
be improved e.g. by using dual polarization properties to better determine the partitioning, it is unlikely that
this will notably improve the precipitation forecast. On the other hand, using dual polarization properties the
filtering of radar reflectivity can be significantly improved, e.g. through neural networks. That way, discarding
areas of low reflectivity which lead to inappropriate null echoes in areas of actual low intensity rainfall in the
STRAT case is not required anymore.

While the assimilation of radar derived humidity showed to improve short term precipitation forecasting,
as appeared in the verification of the case of stratiform precipitation the forecast skill can also be negatively
affected. The covariance length that was downscaled to allow for detailed model variable increments in case
of local precipitation is misplaced however in the case of stratiform precipitation which generally is of much
larger scale. This shows the need for a flow dependent description of error covariance rather than the static
error matrix used in this study, which provides an estimate of forecast specific uncertainty. That way, the
increments in model variables conform to the case specific variability associated with each individual fore-
cast. Then however it remains a challenge to acquire a background error covariance matrix that is repre-
sentative of case specific uncertainty. Important problems like how to define ensembles (e.g. from different
models or varying physical parametrizations), finding an adequate ensemble size and forecast length, reduc-
ing spurious long distance covariance (localization) and mitigating sampling errors should be investigated
to optimally make use of ensembles in data assimilation. Nevertheless, hybrid methods that combine the
robust, static description of error covariance from variational data assimilation with the flexible character of
ensemble based covariance estimates have become increasingly popular and now form the basis of many op-
erational data assimilation systems. Many NWP centres also have combined the hybrid approach with some
adaptation of 4DVar, in which the evolution of the NWP model itself acts as an additional constraint for the
observations. Additionally, a benefit of 4DVar is the ability to use precipitation accumulations as an observa-
tion to which the model should adhere to, which could help reduce the overestimation of intensity. There are
numerous studies proving the added value of hybrid data assimilation over the purely static and flow depen-
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dent methods and of 4D over 3D methods, however the number of studies that make a comparison between
these various types of data assimilation is trailing. A thorough assessment of the benefits and limitations of
these methods also considering their increased computational demand would be helpful to define an optimal
data assimilation setup that can be applied operationally. Additionally, most 4D hybrid methods are run for
large area and global models at coarser resolution than 4 km to make them computationally feasible. More
tests using these 4D hybrid methods assimilating radar observations in high resolution models only covering
a limited area have to be performed in order to assess their ability to improve models at the convective scale.
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Forecasting (WRF) model’s Community Variational/Ensemble Data Assimilation System

ZHD zenith hydrostatic delay. 39, 40, 58

ZTD zenith total delay. iii, vii, xi, xiii, 3, 39, 40, 45–47, 58–60, 81, 83, 95, 108, 110–116, 119, 122–124, 126–128,
132, 136, 137

ZWD zenith wet delay. 39, 40, 58, 83, 108
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WRF Preprocessing System Preprocessing system used to convert geographic and meteorological data from
other sources to initialize a WRF model. 62, 142

absolute average scale ratio Absolute average scale ratio of two precipitation intensity estimates. 133

adjoint The transpose of a matrix or vector. The adjoint turns rows into columns and vice-versa. Some
operators are effectively matrices (linear operators), but cannot, due to storage limitations, be stored
explicitly. The adjoint operator must then be formulated as a separate operator either manually or by
automatic adjoint software. In 4d-Var, adjoint operators (matrices) help integrate the adjoint variables
(cost function gradient vectors) backwards in time. ix, 8

analysis Model state that is the result of minimising the cost function. It is the best (most likely) estimate of
the real atmospheric state given a first guess and a set of observations. ix, x, 6, 7, 9–12, 14–18, 20, 21, 27,
28, 31, 32, 34, 40–42, 49, 57, 95–103, 105, 106, 108, 110, 112–115, 123–127, 143, 148, 150

analysis error Difference between the data assimilation analysis and true state. 16

analysis residual Departure of observation with respect to model analysis O-A after data assimilation. xiii,
41, 141

background Model state used as input for the cost function to give a first estimate of the real atmospheric
state. iii, ix, 6, 10, 14–17, 19, 20, 23, 24, 26, 31–35, 40–45, 49, 82, 97, 122, 143

background error Difference between the model background and true state. 16–19, 27, 28

background error covariance matrix Covariance matrix describing the 3D-model background error covari-
ance. iii, ix, x, xv, 8, 19, 20, 23–25, 40, 41, 44–46, 131

best linear unbiased estimator Maximum likelihood solution of a system of equations. It minimizes the
variance of the solution. 139

Broyden–Fletcher–Goldfarb–Shanno algorithm A quasi-Newton iterative minimization algorithm. 14, 139

cold start Initialisation of a GCM from observations or coarser model data. 82

condition number The ratio of the highest to the smallest eigenvalues of the Hessian. In a perfectly precon-
ditioned system of equations, the preconditioning number is unity. 13

confusion matrix Table that shows how predicted instances of a class occur compared to observed instances
of a class. xv, 92, 93, 143

contingency table Table showing the frequency distribution of variables. Often used interchangeably with
confusion matrix , although the contingency table can have more dimensions/variables. 93

control variable transform Transformation of variables that is often used for preconditioning and to avoid
matrix inversion. 18, 19

control variables Variables that are actually minimized in the cost function by the minimization/descent
algorithm. These are often not the meteorological variables in model space, but are transformed vari-
ables in a new vector space that are ideally uncorrelated. The transformation to control variables is part
of the preconditioning process. 19–21, 23, 25, 28, 34, 35, 42, 44

convective available potential energy Potential energy available for convection. In essence the vertically
integrated positive buoyancy of an air parcel. Indicator of atmospheric instability and potential severe
weather. 87, 139

143
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convective inhibition Amount of energy that prevents an air parcel from reaching its LFC. In essence the ver-
tically integrated negative buoyancy of an air parcel, from the surface to LFC. Indicator of atmospheric
stability. 87, 139

cost function A function measuring the discrepancy between a guess of the model state and the background,
and the guess (via the observation operator) and the observations themselves. The cost function is
minimised iteratively in variational data assimilation. ix, 5, 10–15, 17, 18, 21, 22, 24, 28, 30, 31, 33–35,
37, 40, 43, 148

Cressman analysis Data assimilation method where model is equal to observation at observation location.
6

cycling Alternating data assimilation and forecast several times. 81, 82, 89

data assimilation Statistical method to obtain the best estimate of model state variables. ix, x, xii–xv, 2, 3,
5–8, 10, 11, 13, 16, 17, 19–23, 27, 28, 32, 42, 43, 46, 49, 55, 60–62, 81–83, 86–89, 95–99, 102, 105, 106, 108,
110, 112–118, 121–127, 129–133, 135–139, 143, 144, 147, 156–159

Deutsche Wetterdienst National weather service of Germany. 2, 139

ellipsoidal height Height with respect to an ellipsoidal model of the Earth’s surface, as used by GPS. xi, 59,
60

empirical orthogonal functions A set of empirically found orthogonal basis of vectors of which each vector
describes most of the residual variance after using the previous eigenvectors to describe variance. ix,
19, 21, 139

ensemble A group of forecasts each having been slightly perturbed. These perturbed forecasts can be used
to estimate the uncertainty of the model forecast. 7, 26, 27

Environment Canada National weather service of Canada. 2, 139

error Uncertainties of information pertaining to the system. All observations have errors as do all model
states. Errors can be systematic (e.g. biases) or random. It is usual to correct for biases (if known)
before the assimilation procedure starts and to assume that random errors are Gaussian in nature (this
leads to the quadratic form of the cost function in 3D- and 4DVar). Errors are related to variances. x, 7,
8, 10, 11, 15–17, 19, 21–24, 26–28, 31–36, 40–45

first guess Model state used as input for data assimilation to give a first estimate of the real atmospheric
state. xiii, 6, 7, 10, 12, 14, 95–98, 100, 103, 104, 106, 110, 112–115, 122–127, 135, 140

four dimensional variational assimilation Variational assimilation algorithm applied to a three dimensional
model with the time evolving model as an additional constraint. ix, 2, 7–9, 139

Gaussian A widely used symmetrical model for the probability density function. Also often referred to as
normal distribution. 15, 16

geoid Global sea level that the sea would attain in absence of external forcing like wind and tides. xi, 59, 60

geoid undulation Height difference between geoid and a reference ellipsoid. xi, 59, 60

geopotential Work that has to be done to raise a mass of 1 kg from sea level to a certain point in space. 144

geopotential height Geopotential normalized by global average gravitational acceleration to obtain units of
height. 40

geostrophic wind Wind flowing along isobars as a result of a balance between pressure gradient force and
Coriolis force. 6

Global Forecast System Operational global weather model operated and developed by NOAA. 5, 63, 140
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Hessian Matrix containing all second order partial derivatives of the cost function, with respect to the control
variables. 14

High Resolution Limited Area Model NWP model that is a collaboration of European meteorological intsti-
tutes to develop. Also used to refer to the group of institutions involved. 7, 140

hybrid Combination of a static (based on climatology) and flow dependent (based on ensembles) descrip-
tion model background error covariance. x, 2, 7, 27, 28, 137, 138

hydrostatic Vertical balance between the downward gravitational force and the upward pressure gradient
force. 6

innovation Difference of observation with respect to model equivalent (through the observation operator)
background value O-B. x, xi, 20, 32, 36, 41, 44–46, 49, 141

integrated water vapour Total amount of water vapour in a vertical column of the atmosphere. 108, 125

Jacobian Matrix containing the first order partial derivatives of the cost function, with respect to the control
variables. 10

lifting condensation level The height at which a parcel of air becomes saturated when it is lifted assuming a
dry adiabatic lapse rate. 35, 140

localization Damping of ensemble derived covariances at large distances. 27, 28

multivariate A fully consistent system where correlations are taken into account, not just between values of
a variable at different points in space, but also between different variables. For example pressure is also
correlated with wind speed rather than only with pressure at other points in space. 15

National Center for Atmospheric Research U.S. national center for atmospheric research. 140, 142

National Centers for Environmental Prediction Range of U.S. national centers for forecasts regarding weather,
storms, ocean, space, climate, environment, aviation. 2, 7, 22, 63, 141

nowcasting Short term (0 to 6 hours ahead) forecasting of precipitation. 1

numerical weather prediction Mathematical modelling of the atmosphere to make weather forecasts. iii, 7,
8, 58, 135, 141

observation operator Function that relates model variables to observation. It is used to estimate the model
equivalent of an observation in the cost function, e.g. through physical relations, spatial interpolation,
etc. Usually denoted with the symbol H . ix, 10–12, 14–17, 30

Optimal Interpolation Maximum likelihood solution of a system of equations. It minimizes the variance of
the solution. 11, 12, 141, 150

orthometric height Height with respect to the geoid. xi, 59, 60

parametrization Simplified mathematical description of processes too small to resolve explicitly with model
equations. iii, vii, xi, 1, 3, 27, 61, 64–74, 78, 80, 102, 121, 129, 133, 137, 139

planetary boundary layer Lowest layer of the atmosphere that directly interacts with the Earth’s surface. 1

preconditioning The process of choosing new control variables which are (approximately) uncorrelated,
and form a unit Hessian matrix. In a perfectly preconditioned system of equations, contours of con-
stant cost function are circles in the new control variable space and the condition number is unity. 14,
143

probability density function Likelihood of obtaining a certain value of a continuous random variable as a
function of that value when sampling. 10, 15, 141, 144, 147
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pseudo single observation test Assimilation experiment using a single artificial observation. x, 40, 137, 141

reflectivity Backscattered radiation from an object as measured by a (weather) radar. iii, xii, xv, 2, 3, 17, 28,
30, 32, 34, 36, 49, 50, 52, 56, 82, 83, 85, 87–89, 91, 92, 102, 105, 108, 111, 112, 118, 122, 128, 131, 135–137

relative humidity The ratio of water vapour pressure to saturation vapour pressure. x, xi, xiii, xv, 6, 19, 24–26,
35, 36, 43–47, 63, 78, 79, 102, 103, 105, 125, 128, 136, 137, 141

resolution The length scales that are used in the mathematical discretisation of the Earth’s atmosphere. 5

spinup time Time needed for a GCM to adjust and reach equilibrium after being initialised with observations
or coarser model data. iii, 2, 3, 23, 82, 129

three dimensional variational assimilation Variational assimilation algorithm applied to a three dimensional
model. iii, ix, 7–9, 18, 81, 135, 139

true state Best possible approximation of the real atmosphere by a model. 16

UK Met Office National weather service of the United Kingdom (UK). v, 2, 7, 58, 141

variance Expectation of the squared deviation of a random variable from its mean. Covariance of a variable
with itself. Diagonal elements in the covariance matrix. x, 6, 10–12, 15, 16, 21–23, 26, 27, 33, 34, 40–44

variational data assimilation Multivariate statistical method to combine model and observations based on
their uncertainty. iii, x, 2, 6, 10, 27, 28, 137

warm start Initialisation of a GCM with a data assimilated own model state. 82

Weather Research and Forecasting (WRF) model’s Community Variational/Ensemble Data Assimilation System
Community data assimilation system coupled with the WRF model. Released and maintained by a mul-
tiagency collaboration including NCAR, NOAA, AFWA, OU and NRL. iii, 7, 135

Weather Research and Forecasting model Community NWP model. Released and maintained by a multi-
agency collaboration including NCAR, NOAA, AFWA, OU and NRL. iii, 3, 7, 135, 142
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Appendix A

A.1. Derivation of cost function using maximum likelihood
In data assimilation a model estimate of the atmospheric state is combined with observations, each having
an a priori uncertainty characterised by their respective probability density function (PDF). The optimal esti-
mate of the atmospheric state x taking into account these observations y is the state the most likely. In other
words, it maximizes the so called posterior PDF of the new state estimate. In general the posterior PDF can
be found by applying Bayes’ theorem:

p
(
x|y)= p

(
y|x)

p (x)

p
(
y
) ∝ p

(
y|x)

p (x) (A.1)

Where p (x) is the probability of the model state x, p
(
y|x)

the probability of observations y given model state
x and p

(
y
)

the probability of the observations, which does not depend on x and is therefore just a scaling
constant and not relevant for finding the maximum likelihood. If it is assumed that the PDFs have a Gaussian
distribution:

p (x) = 1

(2π)N /2|B|1/2
exp

{
−1

2
(x−xb)T B−1 (x−xb)

}
(A.2)

p
(
y|x)= 1

(2π)N /2|B|1/2
exp

{
−1

2

(
H (x)−y

)T R−1 (
H (x)−y

)}
(A.3)

By applying Bayes’ theorem and taking the logarithm, a function J can be defined for the posterior probability:

J (x) =− log
[
p (x)

]− log
[
p

(
y|x)]+ c (A.4)

Where c is a certain constant. This constant be chosen such that the normalization term before the exponent
of the Gaussian PDFs in A.2 and A.3 cancel out, leading to the definition of the cost function used in data
assimilation:

J (x) = 1

2
(x−xb)T B−1 (x−xb)+ 1

2

(
H (x)−y

)T R−1 (
H (x)−y

)
(A.5)
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A.2. Linearisation of cost function
The cost function that measures the difference between analysis and background is defined as follows:

J (x) = Jb + Jo = 1

2
(x−xb)T B−1 (x−xb)+ 1

2

(
H (x)−y

)T R−1 (
H (x)−y

)
(A.6)

In the observation term Jo , non linear observation operator H is linearised at xb . This linearised operator H
is used to approximate H (x). The validity of this approximation relies on whether how close the background
is to the analysis and the degree of non linearity in H .

H (x)−y = H (xb + (x−xb))−y ≈ H (xb)+H (x−xb)−y (A.7)

If the expression from A.7 is used in A.6, the cost function is rewritten into:

2J (x) = (x−xb)T B−1 (x−xb)+ ([
H (xb)−y

]+H (x−xb)
)T R−1 ([

H (xb)−y
]+H (x−xb)

)
(A.8)

The cross products in the second term in A.8 can be expanded to:

2J (x) = (x−xb)T B−1 (x−xb)+ (x−xb)T HT R−1H (x−xb)

+ [
H (xb)−y

]T R−1 [
H (xb)−y

]+ [
H (xb)−y

]T R−1H (x−xb)+ (x−xb)T HT R−1 [
H (xb)−y

] (A.9)

Next, using the rule for the tranpose of matrix products:

(AB)T = B T AT (A.10)

Together with the fact that a symmetric matrix like R−1 is equal to its transpose by definition, equation A.9
can be simplified to:

2J (x) = (x−xb)T B−1 (x−xb)+ (x−xb)T HT R−1H (x−xb)

+ [
H (xb)−y

]T R−1 [
H (xb)−y

]+2
[
H (xb)−y

]T R−1H (x−xb)
(A.11)

The quadratic (x−xb) terms can be combined and after dividing by 2 the following expression for the cost
function is obtained:

J (x) = 1

2
(x−xb)T (

B−1 +HT R−1H
)

(x−xb)

+ 1

2

[
H (xb)−y

]T R−1 [
H (xb)−y

]+ [
H (xb)−y

]T R−1H (x−xb)
(A.12)
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A.3. Gradient of cost function
Minimizing the cost function found in A.12 is equivalent to solving for x for which the gradient of the cost
function equals zero:

∇J (x) = 0 (A.13)

The cost function is a quadratic function, of the general form:

J (x) = xT Ax+bT x+ c (A.14)

Of which the gradient is equal to

∇J = (
A+AT )

x+b (A.15)

For a symmetric matrix A this is equal to

∇J = (
A+AT )

x+b = 2Ax+b (A.16)

The cost function equivalent of A is
(
B−1 +HT R−1H

)
. It can be shown that if the background and observation

error covariance matrices B and R are symmetric this also applies to A is
(
B−1 +HT R−1H

)
:(

B−1 +HT R−1H
)T = (

B−1)T + (
HT R−1H

)T = B−1 +HT R−1HT T = B−1 +HT R−1H (A.17)

Where also the transpose matrix product rule in A.10 is used. Recall the incremental formulation of the cost
function:

J (δx) = 1

2
δxT (

B−1 +HT R−1H
)
δx+ [

H (xb)−y
]T R−1Hδx+ 1

2

[
H (xb)−y

]T R−1 [
H (xb)−y

]
(A.18)

Applying A.16 to A.18 results in:

∇J (δx) = (
B−1 +HT R−1H

)
δx+HT R−1 [

H (xb)−y
]

(A.19)

Setting the gradient to zero results in the analytical solution for δx

δx = (
B−1 +HT R−1H

)−1
HT R−1 [

H (xb)−y
]

(A.20)
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A.4. Equivalence 3D-Var and Optimal Interpolation
In section 2.3.2 the exact solution for the analysis increment δx is shown to be (see 2.15):

δx = (
B−1 +HT R−1H

)−1
HT R−1 [

y−H (xb)
]

(A.21)

Next, it will be shown that this is equivalent to the Optimal Interpolation solution (see e.g. A.C. Lorenc (1986,
p. 1180)), which is equal to:

δx = BHT (
R+HBHT )−1 [

y−H (xb)
]

(A.22)

Proving the following equality:

(
B−1 +HT R−1H

)−1
HT R−1 = (

B−1 +HT R−1H
)−1

[
R

(
HT )−1

]−1

=
[(

R
(
HT )−1

)(
B−1 +HT R−1H

)]−1

=
[(

R
(
HT )−1

)
B−1 +H

]−1

=
[(

R
(
HT )−1 +HB

)
B−1

]−1

=
[(

R+HBHT )(
HT )−1

B−1
]−1

= BHT (
R+HBHT )−1

(A.23)
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A.5. Control variable transformation
The original formulation of the cost function as in A.6 was:

J (x) = 1

2
(x−xb)T B−1 (x−xb)+ 1

2

(
H (x)−y

)T R−1 (
H (x)−y

)
(A.24)

By applying a linearisation (see appendix A.2) the cost function has been rewritten to:

J (x) = 1

2
(x−xb)T B−1 (x−xb)+ 1

2

([
H (xb)−y

]+H (x−xb)
)T R−1 ([

H (xb)−y
]+H (x−xb)

)
(A.25)

By defining

δx = x−xb (A.26)

The cost function takes the incremental form:

J (δx) = 1

2
δxT B−1δx+ 1

2
(c+Hδx)T R−1 (c+Hδx) (A.27)

Where c is a constant vector measuring the offset between the observations and model equivalents.

c = H (xb)−y (A.28)

The control variable transform is defined as follows:

δx = Uv (A.29)

Where U is the preconditioner. To make sure B−1 is eliminated from the cost function A.27, U should satisfy:

B = B1/2BT /2 = UUT (A.30)

So U is the square root of the covariance matrix B.

U = B1/2 (A.31)

Now it is shown that the control variable transform indeed removes the inverse covariance matrix from the
cost function. By applying A.29 to the incremental cost function A.27 and noting that B−1 = U−T U−1

J (v) = 1

2
(Uv)T U−T U−1Uv+ 1

2
(c+HUv)T R−1 (c+HUv) (A.32)

Rewriting the transpose of matrix products analogous to A.10:

J (v) = 1

2
vT UT U−T U−1Uv+ 1

2
(c+HUv)T R−1 (c+HUv) (A.33)

Of which the first term Jb reduces to

J (v) = 1

2
vT v+ 1

2
(c+HUv)T R−1 (c+HUv) (A.34)

This shows the control variable transform resulted in the elimination of B−1 from the cost function. Actually,
it has been absorbed into v.
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A.6. Linearisation water vapour mixing ratio operator
In the following it is shown how the observation operator for water vapour mixing ratio is linearised to be
used in the (preconditioned) cost function A.34. It is aimed to provide more detail than the description by
Wang et al. (2013), who developed this method of assimilating water vapour observations derived from radar
observations in WRFDA.
The observation operator H converts model relative humidity RH to water vapour mixing ratio rv using the
water vapour saturation mixing ratio rs :

rv = RH · rs (A.35)

In general atmospheric applications, a mixing ratio (e.g. for water vapour rv = mv
md

) is approximately equal

to a specific humidity (qv = mv
md+mv

for water vapour), since the contribution of water vapour (and similarly
for liquid water, snow, ice et cetera) to the total weight in a volume is negligible: mv ¿ md . Therefore, it is
reasonable to assume that rs ≈ qs . Consequently, the saturation water vapour mixing ratio is also assumed to
be approximately equal to the saturation specific humidity qs :

rs ≈ qs = εes

p − (1−ε)es
(A.36)

Where ε = Rd
Rv

≈ 0.622, p is the total pressure and es the water vapour saturation pressure that depends on
temperature T :

es = c1 exp

(
c2T

T + c3

)
(A.37)

With constants c1, c2 and c3 equal to

c1 = 6.112

c2 = 17.67

c3 = 243.5

(A.38)

Linearisation of A.35 yields:

drv = dRH · rs +RH ·drs = dRH · rs +RH

(
∂rs

∂p
d p + ∂rs

∂es

∂es

∂T
dT

)
(A.39)

Equation A.39 shows how an increment in water vapour mixing ratio drv corresponds to an increment in
relative humidity, pressure and temperature. When it is assumed that a water vapour saturation mixing ratio
increment drs from a pressure perturbation d p is much smaller than from a temperature perturbation dT
( ∂rs
∂p d p ¿ ∂rs

∂es

∂es
∂T dT ), the second term in A.39 can be simplified so that an approximation for drs becomes:

drv ≈ dRH · rs +RH
∂rs

∂es

∂es

∂T
dT (A.40)

By using the quotient rule, the partial derivative of rs with respect to es is:

∂rs

∂es
≈ ∂qs

∂es
= εp(

p − (1−ε)es
)2 (A.41)

Similarly using the chain and quotient rules for differentiation, the partial derivative of es with respect to T is
found to be:

∂es

∂T
= c1c2c3

(T + c3)2 exp

(
c2T

T + c3

)
(A.42)

Substituting the above expressions for the partial derivatives A.41 and A.42 into A.40 results in:

drv ≈ dRH · rs +RH
εp(

p − (1−ε)es
)2

c1c2c3

(T + c3)2 exp

(
c2T

T + c3

)
dT (A.43)

Using the definition of A.35 and recognising the expression for es (A.37), A.43 is simplified further:
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drv ≈ dRH · rs + rv

rs

εes p(
p − (1−ε)es

)2

c2c3

(T + c3)2 dT (A.44)

Recognizing the definition of rs in A.44 and rewriting results in:

drv ≈ dRH · rs + rv
p

p − (1−ε)es

c2c3

(T + c3)2 dT (A.45)

Finally, it is assumed that the water vapour contributes little to the total pressure:

p

p − (1−ε)es
≈ 1 (A.46)

So that A.45 in the end reduces to the following approximation:

drv ≈ dRH · rs + rv
c2c3

(T + c3)2 dT (A.47)
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B.1. Rainfall intensity maps case 1 MCS 26-08-2015
B.2. Rainfall intensity maps case 2 LCS 30-08-2015
B.3. Rainfall intensity maps case 3 STRAT 20-06-2016
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(a) CTRL (b) CONV

(c) CZQR (d) CZQV

(e) CZRV (f) CGPS

(g) ALL (h) Radar

Figure B.1: 15 minute average rainfall rate for each of the data assimilation scenarios and KNMI radar composite between 20:00 and
20:15 UTC.
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(a) CTRL (b) CONV

(c) CZQR (d) CZQV

(e) CZRV (f) CGPS

(g) ALL (h) Radar

Figure B.2: 15 minute average rainfall rate for each of the data assimilation scenarios and KNMI radar composite between 22:00 and
22:15 UTC.
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(a) CTRL (b) DA

(c) Radar

Figure B.3: 15 minute average rainfall rate for each of the data assimilation scenarios and KNMI radar composite, 00:00-00:15 UTC.

(a) CTRL (b) DA

(c) Radar

Figure B.4: 15 minute average rainfall rate for each of the data assimilation scenarios and KNMI radar composite, 02:00-02:15 UTC.
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(a) CTRL (b) DA

(c) Radar

Figure B.5: 15 minute average rainfall rate for each of the data assimilation scenarios and KNMI radar composite, 15:00-15:15 UTC.

(a) CTRL (b) DA

(c) Radar

Figure B.6: 15 minute average rainfall rate for each of the data assimilation scenarios and KNMI radar composite, 17:00-17:15 UTC.
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