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Abstract

Floods and droughts, also known as hydro-hazards, are phenomena that generally involve detri-
mental consequences to society and environment. Traditional practices for risk assessment
consider flood and drought independently. However, they are two opposite extremes of the
same hydrological cycle. Omitting their interaction might lead to an under- or overestimation
of the current and future risks associated with such natural hazards. In history, a number of
drought-flood interactions have been observed in various parts of the world. Research to these
drought to flood interactions is still in its infancy. Therefore, this research explores the concept
of consecutive dry and wet (CDW) events in the Netherlands. The aim of this research is two
sided. First, the Consecutive Events Graph (CEG) is introduced. This is a radar chart type of
graph used to quantify spatial and temporal changes in dry and wet indicators in consecutive
seasons. These can be used to identify hot-spots prone to opposite extremes. Second, a fully
probabilistic framework based on Non-parametric Bayesian Network is developed to model the
dependence between dry and wet indicators. Such model can be used to infer expected wet
conditions in a given region when dry conditions are known.

For the CEG and probabilistic model a number of settings were introduced to quantify me-
teorological dry and wet extremes and to couple them spatial-temporally. First, a number of
indicators were selected to quantify both type of extremes. The so called dry indicators are
the three months Standardized Precipitation Index (SPI-3), maximum potential rainfall deficit
(RDx), summer days (SD25), consecutive dry days (CDD) and the heat score (Hscore). The so
called wet indicators are the total precipitation (Ptot), precipitation exceeding 20mm per day
(P20), simple precipitation intensity index (SDII) and maximum 1-day, 3-day and 5-day pre-
cipitation (R1D, R3D and R5D). Second, the dry period is defined in summer (June, July and
August) and consecutive wet period in fall (September, October and November). Third, the
Netherlands was subdivided in five homogeneous regions such that both wet and dry indicators
were characterized on a regional scale. Maximum values of the indicators in its corresponding
period were calculated for each single region and for every single year between 1965 to 2020.
This resulted in a dataset consisting quantities for dry extremes in summer and wet extremes in
fall for 5 unique regions over 56 years. Application to the CEG shows potential to identify and
quantify CDW extremes. Region-to-region and year-to-year comparison is possible to quantify
changes between years or regions. Application to the NPBNs disclosed limited interdependen-
cies across the dry and wet indicators. Using the NPBNs for precise forecasting of expected
wet conditions is deemed unsuitable as of low precision. Making inference of wet indicators
based on hypothetical mild to extremely dry indicators revealed multiple trends of those wet
indicators. These trends are increasing for short term precipitation indicators (R1D, R3D, and
R5D) and simple precipitation intensity index (SDII) and are mildly decreasing for the total
precipitation (Ptot).

Extreme dry events, extreme wet events and consecutive occurrences of these events are in-
evitable. It is expected that these phenomena will occur more frequently and become more
severe due to a changing climate. A number of recommendations for future research is pro-
posed. Findings from this thesis will help to smooth the path towards better understanding
of the identification, quantification and interaction of CDW events or multi-hazard events in
general.






"Generally speaking, whether something is logical or isn't, what's meaningful about
it are the effects. Effects are there for anyone to see, and can have a real influence.
But pinpointing the cause that produced the effect isn't easy. It's even harder to
show people something concrete that caused it, in a “Look, see?” kind of way.
Of course there is a cause somewhere. There can't be an effect without a cause.
You can’t make an omelet without breaking some eggs. Like falling dominoes, one
domino (cause) knocks over the adjacent domino (cause), which then knocks over
the domino (cause) next to it. As this sequence continues on and on, you no longer
know what was the original cause.”

— Haruki Murakami, Killing Commendatore
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The following list describes abbreviations and symbols that are used within this dissertation
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Introduction

Floods and droughts are natural phenomena causing severe impacts to society and environment.
Both hazards accounted for 64% of the 1000 most disastrous natural disaster events recorded
globally between 1900 and 2006 (Adikari and Yoshitani, 2009) and combined affected over
three billion people worldwide in the past two decades (United Nations, 2015, WHO, 2021).
It is expected that these phenomena will occur more frequently and become more severe in
multiple parts of the world due to a changing climate (Alfieri et al., 2015, IPCC, 2012, Visser-
Quinn et al., 2019). At the same time, population growth and urban expansion will lead to the
increase of exposure (Giineralp et al., 2015) and vulnerability (Jahn, 2015) over time. Disasters
occur where these elements of risk (i.e. hazards, exposure and vulnerability) interact with each
other. Examples for drought-flood interactions have been observed in history. For example,
the California drought from 2012 to 2016 and consecutive extreme precipitation events in
2017. During the height of the drought a high-pressure ridge was stationed off the west coast
amplifying dry conditions, while in the winter of 2016-2017 a low-pressure trough appeared
in the same region causing precipitation extremes (Simon Wang et al., 2017). Similarly, the
severe drought of 2012 in England and Wales that was followed by one of the wettest April-July
for these countries switching concerns from drought impacts to flood risk (Parry et al., 2013).
For the Huaihe River basin in China, sudden drought to flood alternations are a reoccurring
phenomena and show an upward trend in frequency of occurrence from 1961 to 2007 (Sheng
et al., 2009).

Traditional practices for risk assessment consider flood and drought independently however,
they are two opposite extreme of the same hydrological cycle (Krysanova et al., 2008, Ward
et al., 2020). Hence, omitting their interaction might lead to an under- or over-estimation of
the current and future risks associated with such natural hazards (Gill and Malamud, 2014,
Hao et al., 2018, Leonard et al., 2014). For example, flood management practices adopted in
one location might exacerbate the vulnerability of that location against drought (Di Baldassarre
et al., 2017, Kreibich et al., 2019, Ward et al., 2020). The main challenge in analysing opposite
extremes resides in defining a methodology able to assimilate the different temporal and spatial
scales of the two phenomena whereas different methods to identify the dry and wet spells are
used on various timescales. Research to these drought to flood interactions is still in its infancy.
Those available are either based on an event ((Hanwei and Shixuan, 2012, Parry et al., 2013)
on a regional scale (Ji et al., 2018, Parry et al., 2013, Swain et al., 2018, Zhao et al., 2020)
and global scale (He and Sheffield, 2020, Rashid and Wahl, 2021)) or related to global warming
(Madakumbura et al., 2019).

The interaction between flood and drought can be addressed via a multi-hazard approach.

1



1. Introduction

This approach reverts to the early 1990s (Ward et al., 2021). The UNDRR (2020) defines the
concept as (1) the selection of multiple major hazards that the country faces, and (2) the
specific contexts where hazardous events may occur simultaneously, cascadingly or cumulatively
over time, and taking into account the potential interrelated effects”. Recent years show an
increasing amount of attention to this approach, which is becoming more important to the
Disaster Risk Management (DRM) and resilience debate (Pescaroli and Alexander, 2018, Tilloy
et al., 2019, Ward et al., 2021) especially in light of a changing climate. It is possible that
these multi-hazard events have larger impacts than any single-hazard event occurring in isolation
(Aghakouchak et al., 2020, Hao et al., 2018, Raymond et al., 2020, Wahl et al., 2015, Ward
et al., 2021, 2020).

The Netherlands recently experienced a number of dry summer periods: 2018, 2019 and 2020
(Daniéls, 2021). These dry conditions may impose preconditions on the system making it more
vulnerable against a flood event. For example, dry conditions may decrease the stability of
an embankment, which exacerbates the risk of breaching due to high water levels resulting
from an extreme precipitation event (Figure 1.1). Dutch flood protection systems are able to
withstand extreme events (e.g. high discharges or low discharges), however these standards are
generally based on processes from a single event and do not considered preconditions of the
system, e.g. as a consequence of dry period (STOWA, 2019). Recent dry years did not result
in severe impacts as in figure 1.1. However, it is not excluded that this could happen, especially
with an expected increase in severity and frequency of hydro-hazards due to a changing climate
(Alfieri et al., 2015, IPCC, 2012, Visser-Quinn et al., 2019). In this research, the focus is on
the interaction between dry and wet events, i.e. periods of water scarcity and water abundance.
The aim of this research is then two fold. First, radar charts are introduced to quantify spatial
and temporal changes in dry and wet indicators in consecutive seasons. These can be used to
identify hot-spots prone to opposite extremes. Second, a fully probabilistic framework based on
Non-parametric Bayesian Network is developed to model the dependence between dry and wet
indicators. Such model can be used to infer expected wet conditions in a given region when
dry conditions are known.

A consecutive dry to wet flooding event

(Extreme) dry _ | Weakened

conditions " | embankments
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B Flooding damages and
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Figure 1.1: The motivating concept of a preconditioned disastrous event based on typology from Zscheischler et al.
(2020). Here applied with sources of a consecutive dry wet event. This research only focuses on consecutive dry wet
events in the Netherlands.
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1.1. Outline of this thesis

This research focuses on the identification and quantification of consecutive extremely dry and
extremely wet events and their interaction in the Netherlands. In chapter 2 we perform a
literature review on the concepts of extremely dry (drought) and extremely wet events (floods)
in general and in relation to the Netherlands. Furthermore, we explain the method for the
statistical model used in this research. Chapter 3 explains the process carried out on how
we identify and quantify the consecutive extremes and apply to a novel framework and the
probabilistic model (Steps 1 to 4 in Figure 1.2). In chapter 4 the results obtained from the
novel framework and probabilistic model are presented (Steps 3 and 4 in Figure 1.2). The
results are then discussed in chapter 5 followed by the conclusion in chapter 6 (Step 5 in Figure
1.2).
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Figure 1.2: Outline of this thesis. The steps performed in chronological order are reading from left to right.
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Literature review

2.1. Drought

Drought is a natural hazard, just like floods, earthquakes or cyclones. However, despite being
in the same category, drought differs in various respects (Wilhite, 2000). First, it can be
considered as a creeping phenomenon as it does not show a as predictable and distinct onset
and ending. Second, the impact of drought is less visible when compared to many other natural
hazards. Instead, the impact of drought has a relative slow development and can linger on in
the period after the drought took place. As a result, quantifying damages and providing help for
drought issues is much more complex when compared to the other natural disasters (Wilhite,
2000).

Commonly drought is referred to as a shortage of water or a moisture deficiency and is often
relative to a long term average condition or climate. This definition is rather generic, whereas
other definitions for drought are frequently deduced by its impact where answers are to be
found on socio-economic issues resulting from drought (Smakhtin and Schipper, 2008). For
many decades, the search for a generalized objective definition of drought has been a curse
for the the field of water resources. There are a large number of evaluations of definitions on
drought across literature (Dracup et al., 1980, Lloyd-Hughes, 2014, Mishra and Singh, 2010,
Sheffield and Wood, 2011, Tallaksen and Lanen, 2004, Wilhite and Glantz, 1985, Yevjevich,
1969). However, the spatio-temporal variation of the hydrological, meteorological and socio-
economic conditions makes it difficult to move towards such generalized objective definition
(Lloyd-Hughes, 2014, Mishra and Singh, 2010). For this reason Lloyd-Hughes (Lloyd-Hughes,
2014) states it we cannot expect and should not want to have a generalized objective definition
of drought.
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Table 2.1: A non exhaustive list of drought definitions in common literature.

Definition Source

"An exceptional period of water shortage for existing ecosystems and the human |PCC (2021)
population (due to low rainfall, high temperature, and/or wind).”

"Drought is a sustained period of below-normal water availability. It is a recurring  Tallaksen and La-
and worldwide phenomenon, with spatial and temporal characteristics that vary nen (2004)
significantly from one region to another”

"Drought are periods of time when natural or managed water systems do not Werick and Whip-
provide enough water to meet established human and environmental uses because  ple (1994)
of natural shortfalls in precipitation or stream-flow.”

"Drought means a sustained, extended deficiency in precipitation.” WMO (1987)

"Drought is an interval of time, generally of the order of months or years in  Palmer (1965)
duration, during which the actual moisture supply at a given place rather consis-
tently falls short of the climatically expected or climatically appropriate moisture

supply.”

Drought definitions can be subdivided into conceptual and operational definitions (Wilhite and
Glantz, 1985). Conceptual definitions of drought involve a more general description and presents
the boundaries of the concept. The rather generic definition in the previous paragraph can be
classified as such conceptual definition, as holds for the definitions found in most dictionaries.
Literature shows a general consensus on the presence of "a moisture deficit on a temporary
scale” in the conceptual definition of drought (Table 2.1). Albeit differences exist in the nature
of the water deficit (e.g. meteorological and/or hydrological), affected subject or activity
(e.g. humans, environment and/or agriculture) and sometimes a cause of the drought (e.g.
natural and/or anthropogenic). A poor conceptual understanding of drought can lead to bad
decision making and improper measures when facing issues related to drought (Smakhtin and
Schipper, 2008, Wilhite and Glantz, 1985). Furthermore, it may result in the misclassification
of non-drought related issues to drought (Glantz and Katz, 1977, Smakhtin and Schipper,
2008).

Operational definitions of drought attempt to pinpoint the onset, degree of severity and ending
of drought periods (Wilhite and Glantz, 1985). They are more or less related to quantification
of the characteristics of drought, existing of a time dimension (e.g. duration, frequency, trend),
space dimension (e.g. spatial extent) and severity. The quantification of these characteristics
require data on hourly to seasonal scale, which are commonly aggregated to drought indicators.
Most drought indicators introduced in literature focus on the severity of drought alone, in
specific the moisture deficiency. It should be noted that both the duration, and to a lesser
extent, the area play a role in the severity of drought. Additional literature of this century
shows more interest in the space-time dimension of drought to get a better understanding of
e.g. drought propagation (Herrera-Estrada et al., 2017, Lloyd-Hughes and Saunders, 2002,
Vicente-Serrano, 2006, Zhou et al., 2019). But, as of its complex nature, most research reduce
the 3-dimensional space-time drought structure (severity, area and duration) to a subspace
of lower order (Lloyd-Hughes, 2012). Drought indicators are frequently utilized in a variety
of applications for communication on drought, although usually not designed for widespread
use (Quiring, 2009). Such use requires carefulness as drought characteristics vary on the type
or impact of drought considered and by differences in conditions such as hydrometeorological
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conditions, type of climate, environmental variation, socioeconomic variation and anthropogenic
influences (Leelaruban and Padmanabhan, 2017, Lloyd-Hughes, 2014, Mishra and Singh, 2010,
Satoh et al., 2021). This leads us to the types of drought commonly found in literature on
drought which are to be explained in next paragraphs.

| Natural Climate Variability |
|
[ 1
Precipitation deficiency High temp., high winds, low
amount, intensity, timing)/ relative humidity, greater
sunshine, less cloud cover

Reduced infiltration, runoff, |
deep percolation, and Increased evaporation
ground water recharge and transpiration

Meateorological
Draught

| Soil water deficiency |
1

Drought

]
Plant water stress, reduced
biomass and yield

Agricultural

Time (duration)

Reduced streamflow, inflow to
reservoirs, lakes, and ponds;
reduced wetlands,
wildlife habitat

I

e i e e e e e ) e e T e o e
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| Economic Impacts |  |Social Impacts || Environmental Impacts |

Figure 2.1: Schematization of drought types, their chronological order and causal factors generally found in literature.
Dependent on the duration (vertical) drought will move to a next phase or drought type. Starting with meteorological
drought having anomalies in weather e.g. lack of precipitation or increased temperature. As a result, a deficiency in soil
water can arise (phase two: Agricultural drought). Finally, this can result in a deficiency for open water or ground water,
meaning hydrological drought. Source: NDMC.

2.1.1. Drought topology

Wilhite and Glantz (Wilhite and Glantz, 1985) defined four categories for drought which are
widely adopted in literature on drought (Figure 2.1). These categories are meteorological
drought, agriculutral drought, hydrological drought and socio-economic drought. The cate-
gories can be deviated by either their nature of deficit (i.e. meteorological and hydrological
drought) or impact (i.e. agricultural and socio-economic drought). Although widely used in lit-
erature, agricultural drought can be replaced with soil-moisture drought. Soil-moisture drought
strongly relates to crop failure, which is the main focus of agricultural drought, but encom-
passes all impact by soil moisture deficits which makes it a definition by nature of deficit (van
Loon, 2015). In the following paragraphs we will elaborate on the droughts types based on the
nature of deficit and several drought types based on impact.

Drought topology by nature of deficit

The drought definitions based on nature of deficit are meteorological drought, soil moisture
drought and hydrological drought. The boundaries separating these categories are defined as
following.

(i) Meteorological drought is defined as a deficiency in precipitation extending over a region
and period of time (Mishra and Singh, 2010). Additionally, it can be in combination with an
increased potential evapotranspiration (van Loon, 2015). This type of drought is found most
frequently in literature. A vast number of indicators to quantify and monitor meteorological
drought are available, whereof precipitation is the most common input variable (Mishra and
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Singh, 2010, Wilhite and Glantz, 1985). Some definitions involve other parameters such as
humidity, temperature, wind or vapor pressure. Meteorological drought indicators should be
independent of physical properties of the site it is measured and purely defined by meteoro-
logical variables (Wanders et al., 2010). Although site specific, meteorological drought impact
may be neglected by buffer systems such as open waters, but a continuous call made on the
moisture reserves stored in a hydrological system can lead to deficiencies within the next types
of drought.

(ii) Soil-moisture drought refers to deficits in water
stored in the upper layer of the soil. Soil-moisture . T T ]
drought may constrain the supply of moisture to veg- Preclieiyy
etation and affect natural ecosystems and infrastruc-
ture (van Loon, 2015). Multiple elements from the
water cycle play a role in the extent of this type of \
drought, whereof antecedent precipitation and evapo-
transpiration are the most important variables (Man-
ning et al., 2018). Soil-moisture is commonly quan-
tified by indirect methods as the number of in-situ |
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observations are limited. \ \
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(iii) Hydrological drought is defined by a deficit in open

surface waters and subsurface water. It is sometimes _ s v
subdivided into a separate definition for streamflow 1 \
drought and groundwater drought (van Loon, 2015). I 2 3 7
Hydrological drought is often caused by sustaining me- Treeyeam)

teorological and soil-moisture drought, but is generally  Figure 2.2: Theoretical propagation of drought
out of phase with these two types of drought (Wilhite through the terrestrial part of the hydrological cy-
and Glantz, 1985). Water Authorities In the Nether- cle. Source: van Loon (van Leon, 2015)

lands mostly refer to this type of drought as it can be

noticed by below-normal water levels in lakes, rivers or

groundwater.

The three types explained above generally occur in a chronological order. For example, a
drought in precipitation (i.e. meteorological drought) can have an effect on all parts of the
hydrological cycle and by means propagate through another part of the terrestrial part (Figure
2.1.1) (Mishra and Singh, 2010, Tallaksen and Lanen, 2004, van Loon, 2015). Although this
may not be the only process triggering drought type lower in the propagation scheme. For
example, the lack of snow melt or ice melt may trigger a hydrological drought (Van Loon and
Van Lanen, 2012). Additionally, human interference in the hydrological system can trigger or
amplify the types of droughts above (Van Loon et al., 2016). For example, land use, irrigation,
dams and water abstraction may influence at the layers of soil moisture drought and hydrological
drought. Therefore, many droughts in environments dominated by humans may not considered
as natural only.

Drought topology by impact

Each kind of the drought types by nature of deficit can lead environmental impact, but may
not always do so. Environmental impact studies generally subdivide the environmental impact
into the socio-economic realm and biophysical realm (Chadwick et al., 2005). This subdivision
can also be applied to the typification of drought by impact:
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(i) Socio-economic drought is one of the most common types of drought based on impact found
in literature (Mishra and Singh, 2010, Tallaksen and Lanen, 2004, van Loon, 2015, Wilhite and
Glantz, 1985). Economic goods depends on (fresh) water supply e.g. fish, hydroelectric power,
navigation, foods and tap water. Drought will have socio-economic impact once a deficit in
(fresh) water is not able to fulfil the demand of water to produce these type of goods or carry
out these services anymore. This type of drought can incorporate many features of the types of
drought mentioned above. As stated earlier, agricultural drought is a type of drought that has
an impact on agricultural activities e.g. crop loss or yield loss. This type of drought is often the
result of a period of declining soil moisture, which does not meet the requirements of the crops
anymore. Which can be (and often is) a result of sustaining meteorological drought. However,
a plants requirements for water differ per specie, growth stage, soil type, and meteorological
conditions. For example, a plant that is deeply rooted will be able to subtract water from the
soil more deeply than a young and shallow rooted plant. This also means that agricultural
drought can be the result of wrongdoing by human action (Van Loon et al., 2016). Often eco-
nomic loss is used to quantify the impact of drought to the agricultural sector (Jeuken et al.,
2012).

(i) Ecological drought is a type of drought that can be classified within the biophysical realm.
The United States Geological Survey (USGS) defines this type of drought as a loss of ecosystem
services. Ecological drought is similar to agricultural drought, but this time the impact is not
on agricultural activities but on ecosystems. This can be loss of plants and trees, but also fish
mortality as a result of declining oxygen in rivers and lakes.

2.1.2. Drought in the Netherlands

The Netherlands has a long history and relationship with water. Often this is related to histor-
ical flood events, whereas droughts - situated at the other side of the hydrological spectrum -
is less associated with this country. However, recent years of (extreme) drought (e.g. 2018)
impacted the Netherlands in various sectors such as agriculture, navigation, energy and ecology
(Rijkswaterstaat and Unie van Waterschappen, 2019). The recent experience with this natural
hazard increased the attention to drought effects and mitigation of those effects (Beleidstafel
Droogte, 2019, Didde, 2021). This is not a new topic, as concerns for the effects of drought
on the longer term dates back to 1988. The National Institute for Public Health and the En-
vironment (RIVM) (RIVM, 1988) published their report about environmental outlooks for the
Netherlands: "Zorgen voor Morgen” (in English: Concerns for Tomorrow). This report covers
similar concerns on the effects of drought as today’s concerns, and already introduces source
and effect-based measures to tackle this problem on the long run. Even though these concrete
goals, concrete actions were lacking in the years following the publication (Didde, 2021).

Public Works and Water Management (in Dutch: Rijkswaterstaat) consider the months from
April to September as the dry season. It is to a large extent linked to the growing season
for plants as transpiration of plants barely takes place outside this period. Within this season
the daily differences in Makkink's reference evaporation (Makkink, 1957) and precipitation are
calculated and documented cumulatively per season (Figure 3.5). The Netherlands counts some
historical extremely dry years such as 1976, 2003 and more recent 2018 (Rijkswaterstaat and
Unie van Waterschappen, 2019).
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The water system in the Netherlands is highly controlled with the help of pumps, sluices and
weirs. All water flowing in via the Rhine river at Lobith can be directed to various parts in
the Netherlands (e.g. |Jsselmeer or Haringvliet). In times of drought this requires deliberate
choice where water will flow to. A certain discharge is required for the Rhine river to host its
vessels for transport. The agricultural sector requires fresh water for irrigation and saliniza-
tion in coastal areas has to be prevented. The National Coordination Committee for Water
Allocation (LCW) is the governing body for these choices on behalf of parties as e.g. regional
water authorities, Public Works and Water Management and drinking water companies. This
committee allocates water based on priority of water requirement (i.e. a displacement series).
There are four categories within the displacement series in order of decreasing priority: Cate-
gory one prioritizes large risk entities e.g. the stability of water retaining structures, preventing
soil subsidence and preventing irreversible environmental damages. Category two covers utility
services which for example require cooling water for their provision of energy. Category three
prioritizes category four covers smaller risk entities (e.g. maritime transport, agriculture and
industry) (Rijkswaterstaat and Unie van Waterschappen, 2019).

With the additional increase in population, the demand for fresh water, and the trend within
the agricultural sector to more capital intensive crops the stress on fresh water increases.
Furthermore, the climate is changing, there is an increase in extreme rainfall events and rising
sea level hitherto. This increasing stress on fresh water and the increased discussion due to
recent drought years lead to new goals to inventory the effects of extreme drought and how to
tackle future extreme droughts for the Netherlands (Smit, 2021).
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2.2. Floods

Floods are the kind of natural disaster with the largest socio-economic impact (Jonkman, 2005,
Munich Re, 2007), and apart from the ice sheets, floods are quasi-total present around the world
(Vinet, 2011). The European Environment Agency (European Union, 2007) defines a flood as
a temporary covering of a certain area by water that is normally not covered by water. This
can be water originating from rivers, sea or extreme precipitation, but may exclude floods from
sewerage systems. Not all floods are disastrous events (e.g. from 100-year or larger return
period events), whereas the more frequent floods are from small-magnitude events resulting in
so called nuisance floods. These floods are characterized by low levels of inundations which
do not threaten public safety, do not result in great damage propagation and create minor
disruptions for e.g. routine activities (Moftakhari et al., 2018).

To understand floods, one needs to understand what type of floods can be faced. There are
several kinds of floods bearing different characteristics such as temporal extent, spatial extent,
the types of protection suitable, the damage it can cause and forecastability. Generally floods
result from an extreme hydro-meteorological event originating from a water body (e.g. sea,
ocean or river) or precipitation. This is also the reason why research does the typification of
flood by the source of the water. These types most commonly include fluvial floods, coastal
or seawater floods, groundwater floods, pluvial floods and flash floods (Nicklin et al., 2019,
Nixon, 2015, Vojinovic and Huang, 2015). In some case non-natural sources are included,
for example artificial water bearing infrastructure like dams (Federal Emergency Management
Agency, 1999). In general fluvial and coastal floods receive most attention as they are typically
the flood types with the largest spatio-temporal extent (Nicklin et al., 2019, Nixon, 2015).
However, recent flood events originating from extreme precipitation events demonstrate that
pluvial and flash floods may not be neglected (Spekkers et al., 2017). For example, the summer
floods in Western Europe of 2021 causing at least 122 deaths and over twenty billion euros
in damages (Task Force Fact-finding hoogwater 2021, 2021). Szewranski et al. (Szewranski
et al., 2018) even suggest that the cumulative pluvial flood damages may exceed the damages
from river and coastal floods, as pluvial flood events are more frequent than fluvial and coastal
flood events (Van Ootegem et al., 2015). To have a correct understanding of the flood types
we describe them as following (Proki¢ et al., 2019, Zurich Insurance, 2020):

(i) Fluvial floods are floods that occur when the water level in rivers, streams or lakes exceed
the crest elevation of their banks and overflow its neighbouring land. They generally originate
from precipitation events or snow melt, where large volumes of water flow into river systems
causing increasing water levels. Characteristics of this type of flood events are dependent on
the surrounding of the river system. Where mountainous or hilly areas generally will experience
effects on a shorter term than flatter areas, as water moves quicker towards a river system. This
is also the reason why this type of flooding can be relative predictable in downstream areas,
when heavy precipitation events upstream of a river catchment result in increased water levels
downstream of that river days later. The timescale of this type of flood event can differ from
days to weeks.

(ii) Coastal or seawater floods is when seawater comes ashore in coastal regions and causes the
inundation of land. They are commonly caused by high tide and storm surges where high water
levels and waves attack an unprotected or protected coastline and overflow or overtop the crest
elevation of that coastline. For sandy coastlines this process results in erosion and possible
breaching of coastal defence works. An additional cause of coastal flooding are tsunami waves,
which generally cause large destruction due to the height and velocity of these waves.
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(iii) Groundwater floods are the inundation of land as a result of a rising water table. In such
case, the water table reaches a higher level than ground level, resulting in seepage of water
from the ground. This saturation of the soil may find its cause by prolonged precipitation,
which could have taken weeks before this type of flooding to occur. This is because water flow
slowly through the ground.

(iv) Pluvial floods is the result of precipitation not being able to runoff to watercourses, drainage
systems or sewers creating ponds or overland flow. This can only occur when the rate of
precipitation exceeds the rate of evacuation of water by drains and infiltration in the ground.
It is therefore dependent on the precipitation intensity and duration, and the hydrological
characteristics of the basin such as area, soil type and run off magnitude (Proki¢ et al., 2019).
The inundation depth is generally low for pluvial floods and can cause simple fluid nuisance to
significant economic damage.

(v) Flash floods are caused by extreme precipitation events or heavy downpour where the run
off volumes concentrate fast and channel up towards lower lying areas (Kuksina and Golosov,
2020, Montz and Gruntfest, 2002). They generally develop fast, are of short duration, cover
a small area and are commonly associated with other events such as mudslides and fluvial
floods (Montz and Gruntfest, 2002). Damages may not only be from water. Debris that is
being picked up by the flow of water can damage objects or create additional obstructions
when caught by underpasses and bridges which results in additional damming of water and
intensifying flooding.

2.2.1. Coastal and fluvial floods in the Netherlands

Since the Middle Ages flood protections have been a prerequisite for settlement in low-lying
areas in the Netherlands. During these centuries, defensive strategies were required as of the
rising sea level and subsiding (peat) soils. Temporal flooding were part of life for those living in
the flood prone areas. In more recent years, additional flood defence measures were realised in
response to the 1953 flood disaster. Large scale measures were implemented nation wide and the
Delta Committee was put into practice. This committee set new standards for flood protection
which were based on cost-benefit analyses of each single dike ring by weighing the costs of
the reinforcement measure against the reduction of flood risk achieved by the reinforcement
measure. Little knowledge was available on flood defence bursts, so the approach for flood
defence failure was based on normative water levels. These standards were used for decades,
however not impeccable for riverine floods in more rural areas. In December 1993 and January
1995, two flood disasters happened in Limburg as a result of river bank overflow along the Meuse
river. Though being of smaller scale when compared to the 1953 floods and no casualties were
reported, these floods had significant impact on the for riverine flood risk perception.

Up until today, flood prevention is the dominant strategy in the Netherlands (Hegger et al.,
2014). Flood risks have been reduced by a flood defence system consisting of (storm surge)
barriers, dunes and embankments. A strategy high on the agenda, because the country is
located in a low-lying delta with an extensive coastline and a large number of rivers, canals
and lakes; an approximate of 55% of the Netherlands is prone to flooding whereof 29% at risk
due to river flooding and 26% at risk from sea as it is below sea level (Figure 2.3a). Also
in the Netherlands there is an increase in population over the past decades, with a resulting
urbanisation of areas below sea level. Furthermore, there is an increase in extreme rainfall
events and rising sea level due to a changing climate. If flood defences remain unchanged, the
flood impacts will increase as a result in increased loads and exposure. The 2017, new flood
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protection standards were adopted to safeguard these risks (STOWA, 2019).

[ Higherlands
[ Flood prone areas

(2) (b)

Figure 2.3: Left, the flood prone areas in the Netherlands covering approximately 55% of the Netherlands. Right,
flood safety standards from 2017 - present. Presented probabilities are the flooding probabilities (various colors) per
embankment trajectory (each single continuous and colored line) per year. From www.pbl.nl.

The new 2017 flood protection standards are anchored in the Dutch law, Water Act (Figure
2.3b). One of the important changes is the replacement of the design water levels for em-
bankments by a more comprehensive flooding probability. The design water level translates to
the probability of exceedance of a set water level at a water retaining structure. Whereas the
flooding probability translates to the probability of losing the water retaining capacity for a dike
trajectory, thus including the probability of exceedance of a set water level and breaching.

The new standards were based on three criteria: efficiency, equity and societal disruption. To
account for equity, a minimum flood protection level was defined as the probability to die due
to a flood event, i.e., Local Individual Risk (LIR). Every single individual in the Netherlands
who is situated behind a primary flood defence has at least a level of protection of the LIR.
This probability for loss of life as a consequence of flooding defines at a maximum 1/100.000
per year. Additional protection is applied to embankment stretches where failure may result in
large number of fatalities or large economic damages and/or damage to or failure of vital and
vulnerable infrastructure.

2.2.2. Pluvial and flash floods in the Netherlands

As stated before, generally fluvial and coastal floods receive most attention as they are typically
the flood types with the largest spatio-temporal extent (Nicklin et al., 2019, Nixon, 2015). This
is also true for the Netherlands. As presented in section 2.2.1 the Netherlands holds concrete
safety standards for dikes and embankments that are anchored in Dutch law, while no legal
standards apply for pluvial floods (Gilissen, 2014). There is, however, still a governmental
responsibility to prevent and limit impact of this type of flooding, although the interpretation
and concretization of this responsibility may vary per municipality (Dai et al., 2018). An
increasing number of pluvial flood events in the public space in the past decade have led to the
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encouragement of climate adaptation in urban areas which are to decrease pluvial flood impacts
(Dai et al., 2018). Cities are especially sensitive to pluvial flooding due to the large proportion
of impermeable surfaces that prevents excess water to drain in a natural way. Instead, water
has to be retained or drained via local sewage systems which has a limited capacity. Pluvial
floods can have a large socio-economic impact, not only due to damages to or destruction of
building and interiors, but also due to secondary damages when pluvial floods affects power,
telecom, data and public infrastructure (Runhaar et al., 2016). It is expected that this type
of flooding is to occur more frequently and with larger impact due to the combined effect of
climate change and urbanization (Rosenzweig et al., 2018). Especially for traditional water-
draining infrastructure in cities like Amsterdam and Utrecht that were designed hundreds of
years ago. The ability to cope with an increase of precipitation extremes is limited for those
systems (Dai et al., 2018).

In the past century, the annual amount of precipitation in the Netherlands increased by ap-
proximately 26% as of a changing climate (Figure 2.4) (Koninklijk Nederlands Metereologisch
Instituut, 2015). The largest percentile increase is during Winter (43%) and smallest during
Summer (17%) (KNMI, 2021c). The main factors for these increases are changes in atmo-
spheric circulation and an increase in sea surface temperature respectively (van Haren et al.,
2013). The intensification of heavy precipitation events may be an additional factor fueling
the total precipitation (Eden et al., 2018). This intensification is expected to be a result of an
increase in temperature. Lochbihler et al. (Lochbihler et al., 2019) showed that an increase
in temperature is accompanied by larger amounts of water vapour in the atmosphere, leading
to larger and more intense extreme precipitation events. Extreme precipitation event are ex-
pected to increase up to 14% with each degrees Celcius. These trends are already visible in the
Netherlands and additional increase should be accounted for in future expected precipitation
events.
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Figure 2.4: Increase in precipitation past century in the Netherlands due to a changing climate. From: KNMI (2018)
(KNMI, 2018)

So what makes precipitation events extreme? Precipitation can be characterized by three
main elements: the depth or intensity, area affected and duration of the event. It has been a
common way for decades to perform a so called Depth-Area-Duration analyses on precipitation
data (WMO, 1969). This means that extreme precipitation can take different shapes. For
example, a short but high intensity local precipitation event could lead to urban flooding or
flash flooding. Or low intensity precipitation, but with a long duration (e.g. a week) and a large
catchment area affected could lead to high discharges downstream. The Dutch Meteorological
Institute (KNMI) defines extreme precipitation in multiple manners. A local precipitation event
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of over 25 millimeters in an hour is considered a downpour. Whereas a 50 millimeters of
precipitation in a day is considered as an heavy precipitation event (KNMI, 2021c). More
extreme precipitation events exist, but generally have a return period of approximately 100
years or more. Working with return periods is a general way of comparing precipitation events.
In the current climate, precipitation extremes with a duration smaller than 12 hours do not show
large spatial differences in the Netherlands. However, for precipitation extremes with a larger
duration, spatial differences are present (Beersma et al., 2019). For example, the South-East of
the Netherlands (Limburg province) and West of the Netherlands (Coastal regions) are regions
with larger intensities compared to the rest of the Netherlands (KNMI, 2021c).
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2.3. Multi-hazard approach

The concept of a multi-hazard approach was first introduced in the early 1990s (Ward et al.,
2021). The UNDRR (2020) defines this concept as "(1) the selection of multiple major haz-
ards that the country faces, and (2) the specific contexts where hazardous events may occur
simultaneously, cascadingly or cumulatively over time, and taking into account the potential
interrelated effects”. Several types of multi-hazard events are defined through literature, such
as cascading events (AghaKouchak, 2018, May, 2007), compound events (Aghakouchak et al.,
2020, Leonard et al., 2014, Zhang et al., 2021b, Zscheischler et al., 2019, 2018) and consecutive
events (de Ruiter et al., 2020). The large number of alternating names present! lead to the
fragmentation of literature (Kappes et al., 2012, Leonard et al., 2014, Pescaroli and Alexan-
der, 2015). Additionally, the use these terms as synonyms causes confusion and redundancy
(Pescaroli and Alexander, 2018). This is one of the reasons for reviewing the multiple facets
of the multi-hazard approach available in literature and to work towards a more comprehensive
methodology (Pescaroli and Alexander, 2018, Tilloy et al., 2019, Ward et al., 2021). Below the
line, the major part of these aforementioned studies aim for a more comprehensive and holistic
approach on one or more elements of risk assessment (Table 2.2). Whereas understanding the
interaction of multiple hazards, such as consecutive dry and wet (CDW) events, will allow risk
management and disaster preparedness to be more effective (Brunner et al., 2021, Kreibich
et al., 2019, Pescaroli and Alexander, 2018, Tilloy et al., 2019, Ward et al., 2021).

Table 2.2: Comparison of Current and Future Practice in Modeling Climate Extremes from Leonard et al. (Leonard
et al., 2014)

Item  Current Practice (2014) Future Practice

1 Poor mapping of inputs to impact Well understood mapping of variables

2 Poor communication of model options Influence diagrams convey model options

3 Less precise definitions of impact events Greater precision in defining impact events

4 Causal reasoning focused on process Diagnostic reasoning starting with stakeholder
5 Compound events are exceptional Compound events are normal

6 Extreme inputs Extreme impacts

7 Univariate analysis of extremes Multivariate analysis of extremes

8 Analysis of outputs (climate incompatible)  Conditioned on inputs (climate compatible)

9 Silos of knowledge Cross-disciplinary collaboration

lwith additional terms such as domino, chaining, interconnected and interacting events
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2.4. Statistical modelling

Zhang et al. (2021a) summarized common statistical methods employed across literature on
hydrological multi-hazard events? used to investigate multivariate dependencies. The methods
vary from simply counting the events (empirical approach) to quantifying dependence between
drivers with multivariate distributions or complex networks. Among the network approaches
are Bayesian networks. Bayesian networks are becoming increasingly popular in dependency
analysis and multi-hazard studies (Tilloy et al., 2019). They are a powerful tool, well suitable
when dealing with a great number of variables while remaining user-friendly due to its compact
and graphical approach. Bayesian networks, compared to other statistical modelling methods
such as Fault Trees, Petri Nets and Markov Chains, are capable of making both predictions and
diagnostics, quantify the likelihood of occurrences of events and make inference of variables
based on conditioning variables and the structure of the Bayesian Network (Weber et al.,
2012).

2.4.1. Bayesian networks

Pearl first introduced the concept of Bayesian networks to model uncertainty in Al networks
in 1986 (Pearl, 1986). A Bayesian Network (BN) is a causal model for a set of variables that
are defined over a directed acyclic graph (DAG) G = (V,A), where V is the set of nodes and
A is the set of arcs. Each node represents a random variable and the arcs connecting nodes
represent causal or statistical dependency between nodes. This relationship is directed from a
parent node to a child node, which are the two types of nodes present in a BN. As of its acyclic
characteristic, arcs may not form a directed loop or have nodes that are self connected. This
methodology for visualization of relationships between different random variables is relatively
straightforward and therefore appealing for understanding complex networks (Figure 2.5).

&

/©\

_®

Figure 2.5: A directed acyclic graph (DAG) with seven variables. Nodes A and B are parent node of C, where C is the
child of A and B. The relationships between nodes E, F and G would not be legitimate if the directional relationship from
G to E was inverted. This would create a directional loop.

The joint probability distribution of V factorizes with respect to the DAG into a set of local
probability distributions given by the Markov property of Bayesian networks,

fy ) = | [ Flparentsw) 2.1)
i=1

Bayesian networks offers the means to model complex networks as of its robustness and flexibility
as explained in section 2.4. Aguilera et al. subdivides Bayesian networks into a qualitative

2Instead of using multi-hazard events or a like, Zhang et al. (2021a) refers to them as compound extremes
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component and a quantitative component (Aguilera et al., 2011):

= The qualitative component describing the DAG. Where the statistical dependence struc-
ture of the network is described in a qualitative sense.

» The quantitative component consists of the individual relationship of each child node (or
variable) and its preceding parent nodes. This is necessary to understand the strength of
a relationship between variables described by the model.

BNs are broadly used in a variety of fields, but most of these applications make use of discrete
BBNs (Hanea et al., 2015). Here, parent nodes are marginal distributed and child nodes
are compromised from conditional probability tables. While merely built up from discrete
variables, this type of network suffers from multiple impracticalities such as subjectively assessing
the discretization of continuous variables (Hanea et al., 2015, 2006). Alternatively, there are
Gaussian BBNs which allow to deal with continuous variables, but assumes joint normality. As a
consequence each marginal or conditional is also Gaussian. This method can also be combined
with the discrete model, resulting in a discrete-continuous model. In such model the parents
of a continuous node can be discrete but the children not. Additionally, Kurowicka and Cooke
(2003) introduced Non-parametric Bayesian networks (NPBNs). In this type of model, no joint
distribution is assumed, hence the name non-paramtetric (Hanea et al., 2006). For NPBNs,
the nodes are described by continuous variables with invertible distribution functions. The arcs
are described by (conditional) rank correlations obtained with a copula. More information on
copulas can be found in appendix A.

2.4.2. NPBNs in hydraulic engineering

Although the combination of copulas and Bayesian networks is a dynamic area of study, the
application of them to natural hazards is still limited across literature (Tilloy et al., 2019).
Hanea et al. (2015) touches on several of the application of these NPBNs. One of the papers
featured in this research is on dam safety by Morales-Népoles et al. (2014a). In this paper
a NPBN is created to model the safety of an earth dam in the State of Mexico. This model
contains parent nodes such as loads (i.e. seismic frequency and precipitation rate) and activities
(i.e. maintenance frequency) that are considered contributing factors for failure modes (i.e.
overtopping, loss of global stability and piping) leading to dam failure. Possible impacts by
such events are also captured in this model. By conditioning nodes (e.g. the loads and activities)
one can simulate the effect of this precondition to quantify its possible risks. The application
of NPBNs for this use-case has proven itself to be successful.

More recent research, by Ragno et al. (2021), presents an application of NPBNs to estimate the
monthly maximum river discharge by investigating 240 catchments across the United States.
Again all available and possible contributing factors to this discharge event are implemented in
the model to simulate estimates. The estimates are then compared to the observed discharge
event with the help of statistical tests. It is shown that the use of NPBNs is suitable to deduce
a good estimate of the discharge event when remaining variables are known, but suggest some
challenges in defining a suitable NPBN.

Another paper introduces the use of NPBNs for modelling vegetated hydrodynamic systems
such as mangroves and salt marshes (Niazi et al., 2021). To create a probabilistic description
of these systems, they were schematized to deduce all contributing factors. From there NPBNs
were set up and Monte Carlo sampled for multiple types of vegetated hydrodynamic systems
to create a better understanding of these systems.
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Application of NPBNs based on the normal copula assumption is made possible with the help
software like UNINET (UNINET Team, 2019) and Banshee for Matlab (Paprotny et al., 2020)
and Python (Mendoza Lugo et al., 2021).






Data and methodology

This chapter describes the methodology and steps performed. Section 3.1 describes what data
is used for the analysis. Sections 3.2, 3.3 and 3.4 build upon the knowledge of droughts and
floods in the literature review and describe the settings to create a dataset for spatio-temporal
coupled CDW extremes. These sections describe the methods to (i) identify and quantify dry
and wet extremes separately (with the help of indicators), (ii) select the consecutive periods for
dry and wet extremes and (iii) present the regions to link the dry and wet extremes spatially.
Section 3.5 describes the resulting dataset of spatio-temporal coupled CDW extremes. This
dataset is applied in two fold, inline with the aim of the research. First, in section 3.6, the
Consecutive Events Graph (CEG) is introduced. This is a practical framework to quantify spatial
and temporal changes in dry and wet indicators in consecutive seasons. Section 3.7 describes
the second application. Here NPBNs are developed, tested and applied. This application aims
to quantify the interaction of the consecutive dry and wet extremes and infer wet extremes
based on hypothetical or observed dry events.

Generally all analyses are performed in Python (Van Rossum and Drake, 2009), unless stated
differently. All codes, data and figures can be acquired from: thesis repository.

3.1. Data selection

3.1.1. Dry event and wet events definition

The definition of drought varies from one region to another and can be referred to by the
impact of the lack of water or the lack of water itself (Smakhtin and Schipper, 2008). This
research focuses on the lack of water based on meteorological variables only. The definition of
drought for this research is therefore meteorological drought (Wanders et al., 2010). The wet
events are also defined by its meteorological aspect only (i.e. precipitation). Other variables
such as Normalized Difference Vegetation Index (NDVI), discharge and groundwater levels were
considered. Although these either had a limited temporal extent, a limited spatial extent, poor
data availability or complicated the translation to the statistical model.

All daily historical weather information is retrieved from the KNMI open archive. This archive
compromised weather stations (KNMI-A) and the precipitation stations (KNMI-M) (Figure
3.1.1).

3.1.2. KNMI-A stations

KNMI-A stations measure a large number of variables at a 10 minute interval e.g. air temper-
ature, precipitation and wind speed. They are most relevant for real-time weather monitoring,
weather forecasting and scientific research. Daily data from these stations are retrieved (KNMI,
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Country border
e KNMI-M station
@ KNMI-A station

50 km

Figure 3.1: KNMI-A (red) and KNMI-M (blue) stations considered in this research. Locations retrieved from the KNMI
manual of observations (KNMI, 2000).

2021a). The various number of variables allows calculation of multiple drought or heat related
indicators, from hereon referred to as dry indicators. The indicators are elaborated in section
3.2.1 and are summarized in table 3.1. The climate variables used from these stations are daily
maximum temperature (Ty), daily average temperature (T;), daily precipitation (P) and daily
evapotranspiration (EV24). The evapotranspiration retrieved from the KNMI-A stations is also
known as the Makkink reference evaporation. It is not measured, but calculated on the basis of
the daily average temperature (T;) and the daily average radiation (Q) (KNMI, 2000):

1000-0.65-8(T;)
{6(Te) +v(Te)} - p - A(Te)

Where §(T;) is the saturated vapor pressure gradient relative to water, y(T;) the psychometric
constant, p is the density of water and A(T;;) the heat of evaporation of water. Generally, the
daily global radiation is the limiting factor for the temporal extent of the variables. KNMI-
A stations with a long historical record (i.e. older than 1980) are generally affected by this
(Appendix B).

EV24 = Q [mm/day] (3.1)

3.1.3. KNMI-M stations

The KNMI-M network is a precipitation station network run by volunteers who measure precip-
itation amounts manually on a daily base. The total of 240 stations are relevant for calibration
of historical weather data and scientific research. Daily homogenized precipitation data (P) of
these stations are retrieved from KNMI Climate Explorer portal (KNMI, 2021b). All stations
have an equal temporal extent starting from 1955 until now. The density of the precipitation
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stations allows determination of local precipitation events.

3.2. Identifying and quantifying dry and wet extremes

To identify and quantify dry and wet extremes indicators are selected that portray the charac-
teristics of these extremes. First, the indicators for dry extremes are described (from hereon dry
indicators). Followed by the indicators for wet extremes (from hereon wet indicators).

3.2.1. Dry indicators

In section 2.1 meteorological drought is defined as a deficiency in precipitation and can be
combined with evapotranspiration. A number of five indicators were selected that either high-
light one or multiple elements of these characteristics. These indicators are the three months
Standardized Precipitation Index, maximum potential rainfall deficit, summer days, consecutive
dry days and the heat score (Table 3.1). Given the required variables for the dry indicators,
only KNMI-A stations are used for calculation of these dry indicators. Each indicator is further
explained in next subsections, along with a figure that describes the number of occurrences or
propagation of the considered indicator during the growing season for station "de Bilt". This
figure will help to identify the months where the largest number of occurrences or increase are
observed for considered dry indicators.

Table 3.1: The indicators for dry events, short description, required variables, unit and source used in this research.

Input
Dry indicator Short description p. Units  Source
variables
SPI-3: Standardized Quantifies precipitation anomalies on a 3- P - McKee et al.
Precipitation Index months time scale (1993)
CDD: Consecutive Dry  Maximum number of consecutive days with no P days  Tank et al
Days precipitation for a time period. (2011), Zhang
et al. (2011)
HS: Heat Score Cumulative amount of °C above 18 ° per day for Tg °C KNMI (2021d)
a time period.
SD25: Summer Days Number of days with an air temperature above Ty days  Tank et al
25 ° for a time period. (2011), Zhang
et al. (2011)
RDx: Maximum Poten- Cumulative difference in potential evaporation EV24, mm KNMI (2000)
tial Precipitation Deficit and precipitation for a time period. P

Three months Standardized Precipitation Index (SPI-3)

The Standardized Precipitation Index (SPI) is designed to quantify precipitation anomalies
based on probability such that it can be compared across regions with different climates
(Guttman, 1999, McKee et al., 1993). Preferably a continuous period of 30 years of data
should be used, but its robustness increases with longer time frames. Timescale variation is
possible, where 1-, 3-, 6-, 12- and 24-month moving precipitation totals are commonly used pe-
riods. Although it only requires precipitation data as input, precipitation deficits at larger time
scales can relate to effects further down the drought propagation order (Figure 2.1.1).

For the first step in the calculation procedure of the SPI one determines the distribution that
describes each set of precipitation time series for the timescale of choice. In other words, a SPI-
3 at the end of August requires the total precipitation of the months of June, July and August
of every year for fitting the distribution. Next this relationship of probability to precipitation is
transformed into a standardized normal distribution with a mean of zero and standard deviation



24

3. Data and methodology

of one. The corresponding value on this normal distribution for any particular precipitation value
is the SPI value indicating the anomaly (Table 3.2).

In this research the SPI-3 for the summer months of the Netherlands is used (i.e. June, July
and August). The SPI at this timescale reflects on short- and medium-term moisture conditions
(WMO, 1987). The gamma distribution was used for fitting, which common for this location on
the northern hemisphere and short timescales like 3 months (Guenang and Mkankam Kamga,
2014).

Table 3.2: Standardized Precipitation Index classification and corresponding theoretical probabilistic occurrence (WMO,
1987)

SPI Value  Class Probability
2.0 or more  Extremely wet 0.023
1.5t0 2.0 Severely wet 0.044
1.0to 15 Moderately wet 0.092
1.0to-1.0  Normal 0.682

-1.0 to -1.5 Moderate drought 0.092
-1.5t0 -2.0  Severe drought 0.044
-2.0 or less  Extreme drought  0.023

Consecutive Dry Days (CDD)

Consecutive Dry Days is a climate indicator that quantifies the maximum number of consecutive
no precipitation days per time period (j) (Tank et al., 2011, Zhang et al., 2011). No precipitation
days are days (i) where no measurable precipitation takes place, but is commonly defined as
days with less than one millimeter of precipitation. The indicator does not show a clear month
to be more favourable in observing a high number of dry days (Figure 3.2). Nevertheless, a
large number of this indicator corresponds with a extensive period of low precipitation which
can be favouring drought conditions. A long-term record is required for a good estimate range
of expected values.

To calculate the CDD, one has to count the largest number of consecutive days where:

Monthly range of consecutive dry days
from 1965 - 2020 of De Bilt
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Figure 3.2: Violin plots of monthly number of the maximum consecutive dry days in De Bilt over the period from 1965
until 2020. Description of the violin plots on the right. The summer period is annotated in yellow.
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Heat score (Hscore)

The heat score is an indicator used by the KNMI to classify the heat of the summer period
(KNMI, 2021d). The heat score is calculated by taking the difference between the daily average
temperature (TG) and a threshold of 18°C and only accounts for positive values (i.e. TG >
18°C). The score is calculated cumulatively for the same period as the growing season i the
Netherlands, i.e. from April 1 to September 30. The indicator finds its largest increase during
the summer months June, July and August (Figure 3.3).
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Figure 3.3: Daily cumulative heat score ranges per year for De Bilt. Largest increases can be observed during the months
June, July and August (in yellow). Largest scores are observed in September as the indicators is calculated cumulatively.

Summers Days (SD25)

Summers Days is defined by the Expert Team on Climate Change Detection and Indices (ETC-
CDlIs) as a climate extremes indicator (Tank et al., 2011, Zhang et al., 2011). It quantifies the
number of days where the maximum air temperature (TX) is above 25°C per time period. For
this study the number of Summers Days in the summer period is used as indicator. A long-
term record of is required for a good estimate range of expected values. The largest number
of summer days are generally found in July, August and June (Figure 3.4).

To calculate the SD25, one has to count the number of days where:

Ty > 25° (3.3)

Monthly range of Summerdays
from 1965 - 2020 of De Bilt
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Figure 3.4: Violin plots of monthly number of summer days in De Bilt over the period from 1965 until 2020. Description
of the violin plots on the right. The summer period is annotated in yellow.
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Maximum Cumulative Potential Precipitation Deficit (RDx)

The potential precipitation deficit (RDx) is the difference between the potential evaporation
(EV24) and amount of precipitation (P) on a single day or a period of multiple days (cumu-
lative). In the Netherlands, typically the growing season for plants is used for the cumulative
potential precipitation deficit i.e. from April 1 to September 30 (Wolters et al., 2011). This is
the period where the daily potential evaporation is generally larger than the average daily pre-
cipitation. When negative (3, EV24 <}, P), the potential precipitation deficit is reset to zero.
Negative values can only exist if retention measures are present, otherwise foregoing surpluses
will not make up for consecutive deficits due to runoff. The EV24 represents the evaporation
of short grass in optimal watered conditions (KNMI, 2000). Although this is not the actual
condition for the greater part of the Netherlands during summer, it appears to be attractive for
practical application (De Bruin and Stricker, 2000). Which is also the reason the KNMI uses
the cumulative potential precipitation deficit as indicator for drought, such as for the analysis
of drought year 2018 (Sluijter et al., 2018). The RDx is calculated cumulatively for the same
period as the heat score (i.e. April - September) (KNMI, 2000). Generally, largest values and
increases are observed in months June, July and August (Figure 3.5).

Precipitation deficit de Bilt
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Figure 3.5: Precipitation deficit yearly ranges from 1965 - 2020. The summer period is annotated in yellow.
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3.2.2. Wet indicators

Following from section 2.2, precipitation may result in flooding due to a sudden release of
large amount of water (e.g. a cloud burst) or a sustained wet period (e.g. large scale and
long duration precipitation extreme). A total of six indicators were selected to quantify these
characteristics. These are the total precipitation, precipitation exceeding 20mm per day, simple
precipitation intensity index, maximum 1-day, 3-day and 5-day precipitation (Table 3.3). The
KNMI-M stations were used to calculate these indicators, as all indicators require daily precip-
itation or precipitation on a larger window for calculation. Similar to the dry indicators, the
wet indicators are further explained in following subsections. To quantify regional and seasonal
differences of the indicators, the explanations are assisted with a seasonal graph of average
values of the indicator per KNMI-A station.

Table 3.3: Wet indicators, required input variables, unit and source used in this research.

Wet indicator Short description Unit  Source

PRCPTOT: Total Total sum of precipitation for a time mm (Tank et al, 2011,
precipitation period Zhang et al., 2011)
R20mm: Precip- Number of days with 20mm precipita- days  (Tank et al., 2011,
itation  exceeding tion for a time period Zhang et al., 2011)

20mm per day

SDII: Simple precip-  Average rainfall intensity on wet days mm (Tank et al, 2011,
itation intensity in- for a time period /day  Zhang et al., 2011)

dex

Rxlday: Maximum Maximum precipitation in a single day mm (Tank et al, 2011,
1-day precipitation for a time period Zhang et al., 2011)
Rx3day: Maximum Maximum precipitation in three con- mm (Tank et al, 2011,
3-day precipitation secutive days for a time period Zhang et al., 2011)
Rxbday: Maximum  Maximum precipitation in five consec- mm (Tank et al, 2011,

5-day precipitation

utive days for a time period

Zhang et al., 2011)

Total precipitation (Ptot)

The total precipitation (Ptot) is the sum of precipitation of days with precipitation (i) for
a period (j) of choice. Generally this indicator is used for a one year period, as defined by
the ETC-CDIs (Tank et al., 2011, Zhang et al., 2011). Highest values occur in both summer
and fall (Figure 3.6). In fall higher values are observed in coastal regions compared to inland
regions. The value can be calculated by
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Figure 3.6: Average seasonal total precipitation in years 1965 - 2020.

Precipitation Exceeding 20mm Per Day (P20)
The Precipitation Exceeding 20mm Per Day is an indicator that counts the number of days
with a precipitation amount above 20 mm. It is an indicator used by the ETC-CDIs (Tank
et al., 2011, Zhang et al., 2011). Highest number of days are observed during summer and
fall period (Figure 3.7). During fall period these number of days are generally higher in coastal
regions than inland regions. Calculation of the value can be done by counting the number of
days where

P;; > 20mm (3.5)
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Figure 3.7: Average seasonal P20 days in years 1965 - 2020.

Simple precipitation Intensity Index (SDII)

Simple precipitation Intensity Index (SDII) indicates the average rainfall in a period (Tank et al.,
2011, Zhang et al., 2011). It is calculated by averaging the precipitation of all rain days (w)
over the number of wet days (W) for a period (j) of choice. Highest values are generally
observed during summer followed by fall. Coastal and inland differences exist in fall period.
This indicator can be denoted as

2
SDII; = Z szl% (3.6)
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Figure 3.8: Average seasonal maximum SDII in years 1965 - 2020.

Maximum 1-day precipitation (R1D)

Maximum 1-day precipitation is the highest precipitation amount on a single day (i) in a period
(j) (Tank et al., 2011, Zhang et al., 2011). Highest values are generally observed during summer
followed by fall. Coastal and inland differences exist in fall period.
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Figure 3.9: Average seasonal maximum R1D in years 1965 - 2020.

Monthly maximum 3-day precipitation (R3D)

Maximum 3-day precipitation highest precipitation amount on three consecutive days (m) in
a period (j) (Tank et al., 2011, Zhang et al., 2011). This indicator captures extreme rainfall
with a longer lasting period than just a single day extreme event.

R3D; = max(Pp;) (3.8)
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Figure 3.10: Average seasonal maximum R3D in years 1965 - 2020.

Monthly maximum 5-day precipitation (R5D)

Maximum 5-day precipitation highest precipitation amount on five consecutive days (n) in a
period (j) (Tank et al., 2011, Zhang et al., 2011). This indicator captures extreme rainfall with
a longer lasting period than just a single day extreme event. For this study this is the highest
precipitation amount for three days during the wet period annually.

R5D; = max(P,;) (3.9)

WINTER

Figure 3.11: Average seasonal maximum R5D in years 1965 - 2020.

3.3. Dry and wet period

For selection of the dry and wet extremes the dry period is required to precede the wet period.
The figures describing the single indicators of section 3.2 were used to select these periods.
In general, most indicators find their maximum values or largest increases during the months
June, July and August (i.e. summer; annotated by the yellow background in the figures).
Furthermore, the precipitation deficit (RDx) and summer days (SD25) show a downward trend
in the month September. Therefore, the dry period was defined by months June, July and
August. For the wet period, the largest values are observed in both summer and fall. Both
winter and spring show smaller average values of the indicators. Therefore, the wet period is
defined by months September, October and November (i.e. fall).
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3.4. Region selection

To link the dry and wet extremes spatially, the Netherlands was subdivided in homogeneous
regions where both wet and dry events were characterized on a regional scale. This was required
as dry events generally occur on a regional to national scale, while for wet events this can be
more locally (Lloyd-Hughes, 2012). It is common to make a subdivision for drought regions in
the Netherlands (Figure 3.12). There are multiple organisations or sources of literature that do
so. For example, the LCW its Regional Drought Consultation (RDO) regions defines its regions
by the water authority administrative borders and associated water systems. The Netherlands
can also be subdivided based on its drought problems (Rijkswaterstaat and Unie van Water-
schappen, 2019). Differences exist as demarcation on the action taking authority can be more
prominent than the expected type of drought problems faced in an area. Furthermore, research
on regional frequency analysis with precipitation deficits presents alternative subdivisions for
drought regions (Beersma and Buishand, 2007).

ADOHDATH

(a) The 6 RDO regions defined by the LCW based on waterboard (b) The 11 regions defined by drought problems e.g. salinisa-
administrative borders and associated water systems. Source: (Rijk- tion, water depletion, presence of inclines for water delivery.
swaterstaat and Unie van Waterschappen, 2019) Source: (Rijkswaterstaat and Unie van Waterschappen, 2019).
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(c) Disctricts defined in precipitation deficit study by Beersma and

Buishand. Source: (Beersma and Buishand, 2007). (d) The 21 regions defined by waterboard administrative borders.

Figure 3.12: Regions defined by other drought related organisations, literature or research.

The KNMI-M stations used for calculation of the wet indicators all have a temporal extent of
66 years starting from 1955. The KNMI-A stations used for calculation of the dry indicators
have a much smaller and unequal temporal extent. For example, only five stations have the
temporal extent of at least 56 years starting from 1965. Fourteen stations have a minimum
temporal extent of 33 years and up to 30 stations have a minimum temporal extent of 20 years
(Appendix B). The long term record of 55 years was preferred, as this contributes to retrieving
a better picture of the synoptic dry extremes per region. Furthermore, for the application to the
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probabilistic model a as long as possible record was preferred. The corresponding five KNMI-A
stations are well distributed in the Netherlands (Figure 3.4). Using these five stations was
therefore considered suitable for quantifying the dry indicators on a regional scale.

For this research the region selection is based on the following criteria:

= Applicability: A region requires one (or more) KNMI-A stations to define the dry condi-
tions for that region.

= Action: A district its borders may be defined by its active authority i.e. multiple water-
boards.

= Coastal/inland: Synoptic meteorological conditions differs between coastal and inland
regions in the Netherlands (Beersma and Buishand, 2007, Philip et al., 2020).

s Distance: The distance from a region its borders to a KNMI-A station should be limited.

= Similarity: Comparing to related regions defined by other drought related organizations
or research (Figure 3.12)

Resulting regions are visualized in figure 3.4. Each KNMI-A station related region contains
a single KNMI-A station, but multiple KNMI-M stations for quantifying wet extremes. Wet
indicators calculated from these KNMI-M stations were therefore spatially linked to the dry
indicators from each KNMI-A station. This means that largest calculated value of every unique
wet indicator from all KNMI-M stations within a region is paired with the only calculated value
of a dry indicator of the KNMI-A station of that same region.

REGION 1 REG}ON 2

B Research disctricts
= Waterboard barders
@ KNMI-M station
@ KNMI-A station

REGION 4

\

\
REGION 3

/
REGION 5

I
50 km

Figure 3.13: The five created districts (gray shaded areas), waterboards (black borders) and regarding KNMI-A and
KNMI-M stations.
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3.5. Resulting data set

Based on the defined indicators and regions a dataset can be created containing the extreme
values of each indicator per region and year (Table 3.4). For every region a number 56 years
(1965 - 2020) of extreme values are calculated. The variation of each indicator per region is
visualized in figure 3.14 for dry indicators and figure 3.15 for wet indicators. This resulting
dataset is used for the analysis in the following sections.

Table 3.4: Snapshot of the resulting dataset used for further analysis in this research. For every region (column =
'Region’) a number 55 years (column = 'Year’) of extreme values are present. All dry indicators are labeled have a "D_"
prefix, whereas all wet indicators have a "W_" prefix.

Year Region D_SPI_03 D_CDD D_Hscore D_SD25 D_P_def W_Ptot W_P20 W_SDII W_RID W_R3D W_R5D

0 1965 1 0.76 11 14 2 82.0 254.1 2 7.28 26.5 50.7 63.7
1 1966 1 1.06 10 9.5 0 78.0 3015 4 7.99 30.11 50.7 57.2
278 2019 5 -0.3 22 191.8 37 268.0 307.9 3 7.23 35.9 54.5 69.6

279 2020 5 -0.23 16 180.1 36 322.6 234.0 2 6.25 37.6 63.6 77.5
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Maximum precipitation deficiency Summer Day (SU)
(RDx) ranges per region ranges per region

S0 km 50 km

Maximum Concecutive Dry Days (CDD) Heat score (HS)
ranges per region ranges per region

50 km

p50 Regional absolute median and indicative 5th and 95th
% % 5 ‘ :
p5 o5 percentile with respect to the collective percentile bar
p5 p95 5th and 95th percentile bar on ranges of

by all regions at bottom of each figure

Figure 3.14: Ranges of the dry indicators per region (red) on a all region scale bar (black) in summer (June, July and
August). The median is annotated and presented by the red dot. The minimum and maximum p5 and p95 are annotated
by the black scale bar at the bottom of each figure. Note that the SPI-3 indicator is not presented as this indicator is
normalized and would result in near equal ranges (mean of 0 and standard deviation of 1).
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Total precipitation (Ptot) 20 mm precipitation days Simple precipitation Intensity
ranges per region (R20mm) ranges per region Index (SDII) ranges per region

314.
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Maximum 1-day precipitation Maximum 3-day precipitation Maximum 5-day precipitation
(Rx1day) ranges per region (Rx3day) ranges per region (RxS5day) ranges per region
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5
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Figure 3.15: Ranges of the wet indicators per region (cyan) on a all region scale bar (black) in fall (September, October
and November). The median is annotated and presented by the cyan dot. The minimum and maximum p5 and p95 are
annotated by the black scale bar at the bottom of each figure.
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3.6. Consecutive Event Graph (CEG)

The Consecutive Event Graph (CEG) is a practical framework introduced to quantify spatial
and temporal changes in dry and wet indicators in consecutive seasons (Figure 3.16). To place
them in chronological order, all dry indicators are presented on the left half of the figure and
all wet indicators on the right half of the figure. A vertical black line divides these wet and
dry indicators. The dataset of section 3.5 has CDW extremes indexed per region and year.
To present changes of CDW extremes from year to year in a single region (Y2Y) or region to
region in a single year (R2R) the dataset is adapted. The quantities of indicators are placed in
historical perspective per region by transforming to a standard uniform distribution. To do so,
the empirical cdf of each indicator per region is calculated defined by

n
R 1
) = — 2 14X, < ) (3.10)
i=1
where
< x}= . )
' 0, if otherwise

There is one exception, the SPI-3 is already standardized per region such that its computed
cdf can be used to retrieve a normalized value. A small value for the SPI-3 (e.g. -2.00)
corresponds with an extreme dry event, but is situated at the lower end of the cdf curve
(i.e. near 0). Therefore the corresponding value of the SPI-3 on this cdf curve F(x;)sp;_3 is
inverted

Ziprs — 1—F(xi)spi-3- (3.12)

With the chosen transformation method, any observation on the axis of an indicator corresponds
to the cumulative probability for a specific region i.e. the probability of occurrence of values
less than or equal to the observation. These characteristics largely increase the readability of
the figure, which is additionally strengthened by the indication of common percentiles in the
figure (gray lines and black dot on axes).
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Figure 3.16: Base figure of the CEG created to visualize the quantities of dry and wet indicators. All dry and wet
indicators are placed on a polar chart, whereof each indicator has its unique axis going from the center of the graph to
the edge of the graph. The left half of the figure holds all dry indicators. Split up by a vertical black line, the right half
of the figure holds all wet indicators. All indicators are transoformed to a standard uniform distribution by computing
the empirical cdf of each indicator per region. A value close to 0 would represents a low extreme and will be observed
at the inner circle. A value close to 1 represents a large extreme and will be observed at the outer edge. All values in
between can be valuated with the help of the percentile bars present on each axis. The values indicated are found in the
legend. As input, the figure requires seasonal maxima per each indicator.

3.7. Non Parametric Bayesian Networks

This study aims to improve the understanding and quantification of the interaction of CDW
extremes by developing NPBNs. NPBNs are a powerful tool to model complex networks with
a great number of variables and support probabilistic inference of unknown variables based on
preconditioning of known variables (see section 2.4). Characteristics desirable considering the
large number of indicators and aim of this study. Successful application of NPBNs requires the
selection of network configuration(s) and testing of these networks. Hereafter the network can
be used for making inference. These steps are elaborated in the following subsections.

3.7.1. Network selection

Selection of the network is a challenging task due to the large number of structures possible.
The number of structures (g,) grow super-exponentially with increasing number of variables
(n) used for the Bayesian network, denoted as (Robinson-Garcia et al., 2020)

n
n
G = ) (~DF (T) 2400, (3.13)
k=1

Imposing the network by testing all network configurations (i.e. a "brute force” method) is
possible, but would require too many resources to actually compute. Other than this, there are
three options to learn the structure of a Bayesian network. The first option is from expert input,
where the expert explains how the data are related to each other. The second option is to learn
it from the data. In this case, one can search for dependencies manually or with the help of
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learning algorithms. The third option is a combination of both fore-mentioned options.

For this study, we a priori selected one network configuration and impose a second network
configuration by learning the network from data. The first network is a saturated network
(SN). In this network configuration all nodes are interconnected by arcs, thus interdependence
of all variables will be accounted for. For the second network we apply algorithm based structure
learning to create a restricted network (RN). Learning algorithms for the second network are
broadly subdivided into three categories (Marco Scutari, 2010):

= Constraint-based algorithms are algorithms that single out conditional independence with
the help of statistical tests using the Markov property of the BN (Eq 2.1). The nodes
that are found to be non-independent are linked if satisfying its corresponding direction-
dependent separation statements. The methods are generally based on the Inductive
Causation algorithm (Pearl, 1991).

= Score-based algorithms are algorithms that assign a score to every candidate DAG. This
score is maximized with the help of a heuristic search algorithm (e.g. tabu search and
hill-climbing).

= Hybrid algorithms are a combination of the above. Here the candidate DAG space for
applying a score-based algorithm is restricted by an initial constraint-based algorithm.

The algorithm based structure learning is conducted using the bnlearn package v4.8 (Marco
Scutari, 2010) in R v1.4.1106 (R Core Team, 2019). For the continuous setting, bnlearn makes
the assumption of a multivariate Gaussian Bayesian network. This assumption could inflict
faulty arcs, as not all indicators show Gaussian behaviour (Appendix C). However, a better
alternative to learning the network did not exist (apart from the brute force method).

Learning the network is performed with the hill-climbing algorithm, which is a score-based
algorithm. For the mixed approach (i.e. expert input and learning from the data) one can add
a whitelist and blacklist of arcs to either force inclusion or exclusion of these arcs in the network,
respectively. No expert was consulted to include or exclude arcs by expert judgement. However,
arcs from indicators of wet events pointed towards indicators of dry events were blacklisted,
as the past is independent of the future. One could debate an arc directed from any indicator
towards the "region”-node, as no dry or wet event causes the location one may be. Nevertheless,
these directions were not blacklisted. Arguments such as restart and perturb are used to
increase the chance of reaching the global maximum score of possible network configurations.
The restart argument defines the number of random restarts and the perturb argument
defines the number of attempts adding, removing or reversing an arc per random restart. From
here a single network configuration is obtained.

The robustness of the resulting network configuration is checked by performing a strength test
procedure and a bootstrap procedure. The strength test procedure quantifies the strength of
the probabilistic relationships of the arcs based on the Bayesian Information Criterion (bic).
The bootstrap procedure creates a number of bootstrap replicates of equal size as the input
dataset, where the hill-climbing algorithm with equal settings is used to impose the network
form each bootstrap. The empirical frequency of each arc is calculated over all bootstraps.
The robustness tests are used purely informative and no arcs were added or removed based on
these test results.
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3.7.2. Validation of NPBNs

Both the SN and RN were implemented as a NPBN. Validating these NPBNs involved two steps
to make sure computations from the network are of value (Hanea, 2008). First, when fitting
a copula to data one has to question whether this copula prescribes the dependence structure
of the multivariate data well enough. Secondly, one has to question whether the network is an
adequate model of the saturated graph given its conditional independence relations.

For the first validation question, Genest et al. (2007) introduced the application of the Cramer-
Von Mises test on copulas by calculation of the distance between the empirical copula (C,)
and a parametric copula (Cy)

S, = ; (Cality, o 115) = Co. (g, o))’ (3.14)

The lower the value of S,,, the better the fit of the parametric copula to the data. A value
of zero would be a perfect fit. In this research we only test parametric copulas of the the
Gaussian, Frank, Clayton and Gumbel families. These families are widely used in hydrological
studies (Ragno et al., 2021). Explained in section A.0.1 these copulas show different behaviour,
whereof Gaussian and Frank show fairly similar behaviour. The Clayton and Gumbel copulas
show stronger tail dependencies of which the lower tail and upper tail respectively.

Another goodness-of-fit measure for NPBNs is the d-calibration score (d.4;) introduced by
Morales et al. (Morales-Napoles et al., 2014b). This score is calculated by subtracting the
Heillinger distance (dy) from 1.

dcal = 1 - dH (315)

Here, the Heillinger distance is a measure to asses the similarity between two probability dis-
tributions. For the Gaussian case this is the similarity between the correlation matrices. The
d-calibration score takes on values between 0 and 1 inclusive. The higher the score the more
similar the two correlation matrices are. This goodness-of-fit measure is able to give an in-
dication to both the validation steps by comparing the normal rank correlation matrix (NRC;
the model) with the empirical rank correlation matrix (ERC; the data) and the Bayesian net-
work rank correlation matrix (BNRC; selected network). Comparison of the ERC and the NRC
informs the user whether the Gaussian copula describes the bivariate dependence structure be-
tween variables well. Comparison of the BNRC and NRC informs the user whether the joint
normal copula is valid for the specific Bayesian network (non-saturated).

3.7.3. Conditioning of the NPBN

Both SN and RN are used to used for making inference of wet indicators by conditioning dry
indicators. Forecasting weather data for a forthcoming season (i.e. seasonal prediction) is
extremely useful in helping to plan for possible hazards in a number of domains such as flood
risk management, agriculture or industry (Quesada et al., 2012). Inferring the wet indicators
is done in two ways.

The first method is by conditioning the dry indicators and region on the input data. For the
input data, the corresponding values of the wet indicators are known (Section 3.5). The 50th
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percentile is calculated from the inferred wet indicators to obtain a single value. This allows
to compare an estimated value for the inferred wet indicator with the corresponding value of
the wet indicator for that region and dry conditions. Additionally, to test the accuracy of the
model, each known wet indicator value is tested to fall in a quantile range from its inferred
distribution. The number of values observed within this range is divided by the total length
of the dataset i.e 280 (Figure 3.17, vertical direction). This is done for an increasing quantile
range, where the quantile range is expanding from the median in both directions (Figure 3.17,
horizontal direction). In other words, a quantile range of 2 is equal to the range between q49
and gb1, and a quantile range of 4 is equal to the range between q48 and g52. This processes
is repeated up to the quantile range of 98, representing the range between q01 and q99. The
corresponding share of known values to fall in each tested quantile range is plotted against the
quantile range.
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Figure 3.17: Visualization of the process to test each known wet indicator value to a quantile range from its inferred
distribution applied to "W_Ptot". Here, n is the length of the dataset. The green dot is the corresponding value of the
wet indicator from the input dataset. The blue histogram is the distribution of the inferred indicator. The red bar is the
considered quantile range and calculated from the inferred indicator. For all n the quantile range differs as of different
inferred wet indicator distribution. For all increasing quantile range, the number of values to fall within this range are
expected to increase.

The second method is by conditioning the dry indicators on hypothetical extremely mild condi-
tions to extremely dry conditions. The inferred distributions of each wet indicator are visualized
by a box plots per dry conditions. This will allow comparison of changes in the distributions to
detect any trend based on the changing dry conditions.



Results

In this chapter the results related to the CEG and NPBNs are presented. First, section 4.1
presents application of the CEG relative to different years and different regions to under-
stand changes in the wet and dry occurrences. Secondly, section 4.2 presents the results of
the algorithm based structure learning, NPBNs testing and conditioning of the two different
NPBNs.

4.1. Consecutive Events Graph (CEG)

Indicators for dry and wet extremes are used to quantify consecutive dry wet events in the
CEG. The dry events are defined in summer period (June, July and August), where the dry
indicators generally find their maximum values or largest increase (Section 3.2.1). Associated
consecutive wet events are defined in fall period (September, October and November). This
is the consecutive period where the largest values are observed for the wet indicators (Section
3.2.2). To understand and to quantify spatial and temporal changes in dry and wet indicators
in consecutive seasons, a year-to-year (Y2Y) comparison or region-to-region (R2R) comparison
is presented. To allow such comparison the indicators were placed in historical perspective per
region by transforming each indicator per region to a standard uniform distribution (section
3.6).

4.1.1. Year-to-Year comparison

Selecting years and region

To quantify changes in CDW extremes from year to year in a region, the CEG is suitable for
comparison of multiple years in a single region. As an example, region 3 is selected which is
expected to have an average climate relative to all other regions as it is located in the middle
of the Netherlands(covering approximately provinces Utrecht and Overijssel).

A number of historical dry summers in the Netherlands based on rainfall deficit (RDx) is selected
for comparison i.e. 1976, 2003, 2018 and 2020 (Jordi Huirne, 2020). The year 1976 was struck
by a drought that covered over a million squared kilometers, where Netherlands was located
close to its epicenter (KNMI, 1976). The year 2018 is commonly compared to the year 1976 in
severity (Beleidstafel Droogte, 2019, Daniéls, 2021). Although of smaller areal size, it covered
large parts of northwestern Europe and again its epicenter was located close to the Netherlands
(Buras et al., 2020). The year 2003 was a drought year of lower severity for the Netherlands,
here the epicenter was located more in the center of Europe (Buras et al., 2020). The year
2020 may not be classified as a drought year, but as a year with large water shortages in the
Netherlands (IWR, 2021). There are several other years where dry conditions or water shortages
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were present, however for the readability of the graph we limit ourselves to the four years stated
above.

Out of years 2003, 2018 and 2020, KNMI (2022) only reports one extreme precipitation event
on September 5 in 2018 located in The Green Heart (situated in the western part of region
3). Followed by two additional days of heavy precipitation events in Western Netherlands.
Additional heavy precipitation events were observed in Northern Netherlands later that month.
No report on precipitation events of Fall 1976 could be retrieved. In general, the fall period
is characterized by large total precipitation differences across the Netherlands in this period
KNMI (2022). The Y2Y comparison (Figure 4.1) allows relative comparison in the main figure
(top) and absolute comparison by showing the corresponding values per indicator in a per year
unique figure (bottom four figures). All on equal scale, with percentiles explained in the legend.

Analysis of the Y2Y

All years show dry indicators in higher percentiles since such years were recorded as particularly
dry. For the year 2020, the year where no drought was recorded, the SPI-3 shows a value
approximately equal to the 50th percentile. This indicates that the water shortage was not
driven by a lack of precipitation during the summer months, but other climatic factors. For
example, the rainfall deficit (RDx; The difference between evapotranspiration and precipitation)
shows a very high value for this year (= 95%). Moreover, rainfall deficit was characterized
by an early onset of in months April and May, compared to the other years where the largest
proportion in increase of the RDx took place in the summer months (Figure 4.2, left). This could
indicate high evapotranspiration rate, which, in this study, is estimated based on temperature.
Information about temperature in the CEG are included in the indicators heat score (Hscore) and
summer days (SD25). Both these indicators score relatively high (= 90 and 85%, respectively)
for this year. In more detail, the early increase of RDx is paired with a stagnation of Hscore
in months April and May in 2020 (Figure 4.2). An increase of RDx can only be caused by
evapotranspiration, which has a daily median value of 2.4 mm in the months April - September
(Appendix D). Thus, the increase of RDx, of which the high values of evapotranspiration,
took place irrespective of the Hscore in these months. On the other hand, for the parts where
Hscore is increasing (generally in months June to August) one observes an increase in RDx as
well (Figure 4.2).
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Figure 4.2: Propagation of precipitation deficit (left) and heat score (right) over the growing season for years 1976 blue),
2003 (yellow), 2018 (green) and 2020 (red) in region 3. In the background the indicator its median, 50% and 95%
intervals from 1955 - 2020 in region 3 are visualized.
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Figure 4.1: Year-to-Year comparison with CEG for dry and consecutive wet events. Application is performed on region
3, indicated in red on the small map. The selected years are 1976, 2003, 2018 and 2020 which are several historical dry
years in the Netherlands. The large figure at the top allows comparison of the selected years. The four figures at the
bottom present each year separately. The colors and line-styles are corresponding with the left figure and are unique per
year. Additionally, the actual values are annotated on the single year figures, just below the indicator names.

In Appendix G the same years for all other regions are presented. Similar behaviour is observed
for dry indicators across all regions in all four years. That means, for the drought years (1976,
2003 and 2018) high values for all dry indicators are observed. Across all regions a lower value is
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observed for SPI-3 (< 50%) and higher values for indicators heat score (Hscore), summer days
(SD25) and precipitation deficit (RDx) (all > 80%). The consecutive dry days (CDD) indicator
in year 2020 shows a mixed picture, where values range between the 85 and 25 percentiles.
High values (> 80%) for wet indicator are observed in all years. In year 1976 the two northern
regions show high wet indicators, where region 1 (indicators R1D, R3D and R5D) and region
2 (R1D). In year 2003 only in the north-eastern region i.e. region 2 (P20, SDIl and R1D). In
year 2018 the regions 3 and 4 (both SDII, R1D, R3D and R5D). In year 2020 the two western
coastal regions show high wet indicators, where region 1 (R1D and R3D) and region 4 (R1D,
R3D and R5D).

In table 4.1, the top five largest values of the dry indicators and their corresponding years are
presented to provide a reference to the actual value of the indicators since indicators in CEG
are normalized. In line with Jordi Huirne (2020), all years considered in figure 4.1 are in the
top five of the RDx indicator. As expected, the highest indicators have been observed in the
years 1976 and 2018, years in which the Netherlands experienced severe drought conditions
(Hekman et al., 2019, Kramer et al., 2019).

Table 4.1: Top five largest values for dry indicators in region 3. All years used in figure 4.1 are in bold.

Year SPI-3 Year  RDx Year SD25 Year  Hscore Year CDD
-] ] [days] ] [days]
2003 -2.08 1976 325.0 1976 39 2018 184.3 2018 49
2018 -1.89 2018 314.6 1983 38 2006 176.7 2003 28
1983 -1.86 2020 295.7 1995 38 1995 169.7 1995 28
1976 -1.53 2003 266.5 2018 37 1976 163.8 1985 26
2013 -1.44 1982  256.4 2006 37 1994 1479 1970 25

Figure 4.1 shows an extremely dry and consecutive extremely wet for indicators SDII, R1D,
R3D and R5D ! for the year 2018. In table 4.2 the five largest values for indicators SDII, R1D,
R3D and R5D for region 3 of year 2018 are presented including corresponding station ID's and
date of occurrence. The R3D and R5D dates are moving sum values, where the date denoted in
table 4.2 is that last day of the three or five days included. This means they include day 09-05
if the date for R3D is 09-07 and the date for R5D is 09-09. The SDII does not show its origin
on a single date as it is calculated from all wet days (P>1mm). The high indicators values
observed in 2018 (figure 4.1) include the same date (Date : 2018-09-05) and most probably
from the reported storm conditions by KNMI (2022).

1 Average precipitation on wet days, maximum one day precipitation, maximum three day precipitation, maximum five
day precipitation respectively.
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Table 4.2: Top five largest values for region three in year 2018 and corresponding station ID. NaN values are present
where the station ID is not in the top 5 largest values of the wet indicator. The rows are sorted on the SDII indicator.
For the RxD indicators the total sum of precipitation (P) in millimeters and date of occurrence (Date;[mm-dd]) is shown.
For SDII there does not exist a single date, as it is the average intensity of wet days. The values used in the CEG of 4.4
are in bold.

Station 1D R1D R3D R5D SDII
P Date P Date P Date
561 106.6 09-05 130.6 09-07 132.4 09-09 9.71
470 71.6 09-05 122.0 09-07 126.1  09-09 9.13
465 NaN - NaN - NaN - 8.07
559 NaN - 55.1 09-07 57.4 09-09 7.17
548 27.9 09-05 61.4 09-07 67.2 09-09 7.15
563 NaN - 50.0 09-08 53.5 09-09 NaN
840 32.6 09-06 NaN - NaN - NaN
836 25.8 09-06 NaN - NaN - NaN

4.1.2. Region-to-Region comparison

Selecting year

The CEG can be used for comparison of multiple regions to quantify changes in CDW extremes
from one region to another in a single year. The indicators are transformed to standard uniform
per region, whereas drought conditions are relative to the climatology of the region. As an
example for the region-to-region (R2R) comparison, the year 2018 is used, which is considered
to be one of the driest summers of the Netherlands (Sluijter et al., 2018) (Figure 4.4). This
also means that the region three displays an equal CEG to the region three year 2018 figure of
the Y2Y-comparison (Figure 4.1). All other years are visualized in Appendix G.

All dry indicators in all regions show high values for dry its dry indicators (> 0.8). Only two
regions show a consecutive extremely wet event, i.e. region 3 and 4 located at mid-East and
South-West of the Netherlands respectively. Region 3 was already denoted in the previous
paragraph. To denote region four in a similar way, table 4.3 shows the five largest values for
indicators SDII, R1D, R3D and R5D of region four in 2018 and corresponding station ID's.
Tables 4.3 and 4.2 both show extremes to occur around the same date (2018-09-05). Their
locations are also clustered in the same area (Figure 4.3). This gives the reason to believe
that the extreme values originate from the same precipitation event(s). This also means that
current use of regions for coupling dry and wet events is sensitive to acknowledging a single
extreme wet event over two (or possibly more) regions. This may give the impression that two
extreme wet events took place such as in figure 4.4.
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Table 4.3: Top five largest values for region four in year 2018 and corresponding station ID. The rows are sorted on the
SDII indicator. For the RxD indicators the total sum of precipitation (P) in millimeters and date of occurance (Date) is
shown. For SDII there does not exist a single date, as it is the average intensity of wet days. The values presented in

figure 4.4 are in bold.

Station ID R1D R3D R5D SDII
P Date P Date P Date
442 118.5 09-05 190.4 09-07 194.0 09-09 14.16
454 46.2 09-05 91.3 09-07 94.1 09-09 9.83
458 47.2 09-05 101.5  09-07 109.3  09-09 9.36
439 53.0 09-05 84.3 09-07 86.2 09-09 9.22
443 46.8 09-05 75.2 09-07 79.6 09-09 8.4
SDIl of 2018

-4

mm/day

Figure 4.3: Visualization of the SDII indicator values of all KNMI-M stations for 2018. Region three and region four are
highlighted in light gray and dark gray respectively. The location of stations stated in tables 4.2 and 4.3 are annotated,
whereof stations for region three in red and stations of region four in black. The locations show to be clustered in the

same area.
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Region to region comparison in year 2018
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Figure 4.4: Region-to-Region comparison with CEG for dry and consecutive wet events. The year of comparison is 2018,
which is considered as one of the driest years in the Netherlands (Sluijter et al., 2018). The large figure on the top the
contains all regions for the desired comparison. The five figures on top of the map of the Netherlands presents each
region separately and are located on their corresponding region in different gray-scales. The colors and line-styles are
corresponding with the top figure and are unique per region. Additionally, the actual values are annotated on the single

region figures, just below the indicator names.
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4.2. Non-parametric Bayesian Networks

Non-parametric Bayesian Networks (NPBNs) are used to quantify the interaction between the
dry and wet indicators and to assess expected wet conditions following a dry period. As we
explore these interactions we introduce two networks. The first network is a saturated network
(SN), which accounts for interdependence of all variables. The second network is a restricted
network (RN) taught by a score-based structure learning algorithm. Here, each candidate
network configuration is assigned a Bayesian Information Criterion score and with the help of
a Hill-Climbing search algorithm this score is aimed to be maximized. The resulting RN shows
a much smaller number of arcs compared to the SN (Figure 4.5). From here, first, the results
from the strength test procedure and the bootstrap procedure are presented (subsection 4.2.1).
Secondly, the results from validating the SN and RN as NPBNs are presented (subsection 4.2.2).
Thirdly, the rank correlations of both networks are visualized (subsection 4.2.3). In the last
place, the results of conditioning both the SN and RN on the input data and on hypothetical
dry conditions are presented (subsection 4.2.4).

‘/'_"\\
) VmReglonf‘

Figure 4.5: The saturated network (SN; left) and restricted network (RN; right).

4.2.1. Robustness of RN in bnlearn

The network resulting from the score-based structure learning algorithm on the input data shows
a total of 22 arcs where all nodes are interconnected (Figure 4.5, right). Four arcs are directed
from dry indicators to wet indicators. To construct this network, bnlearn makes the assumption
of a Gaussian Bayesian network. The results of the strength test procedure and a bootstrap
procedure are presented below. The tests are used to gain informative insight only.

Strength values of the probabilistic relationships represented by each arc in the RN network
vary considerably (Figure 4.6). Values are negative, where smaller values represent greater
dependence and vice versa. The smallest value observed of arcs between dry indicators is arc
"D_SD25" > "D_Hscore" (-248.26). Both these dry indicators are calculated from tempera-
ture, which could explain the high dependency. All other arcs show values of -29.18 or higher.
The largest value observed is arc "D_CDD" > "D_Hscore” (-3.55). The CDD is calculated
from (a lack of) precipitation and Hscore on average temperature, which could explain to this
limited dependency. The smallest values observed of arcs between wet indicators are "W_R1D"
> "W_R3D" > "W_R5D" (-168.28; -313.42). These indicators are all based on short term
precipitation values; one day, three days and five days respectively. All other arcs show values of
-68.7 or higher. The largest value observed is arc "W_R3D"” > "W_Ptot" (-1.5). Arcs crossing
from dry to wet indicators generally show high to very high values, meaning their probabilistic
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relationships is limited.

3? 14,66

D_CDD &1
D_SPL03 %

Figure 4.6: Arc strength values of network resulting from the hill-climbing greedy search algorithm. The values are
indicated with a Bayesian Information Criterion Score. Scores are all negative, where a smaller score represents an
greater dependence between variables. Greater dependence is represented with by increased line thickness and darker
color.

Bootstrapping is performed to asses the stability of the network (Figure 4.7). Here all arcs with
an empirical frequency larger than 0.3 are visible. Nodes may be connected by arcs in both
directions (e.g. D_Hscore and Region) as this strength test runs the hill-climbing algorithm over
n bootstrap samples (in this study n = 5000). In each run an arc can be non-existent, existent
and if existent aimed in either direction. All arcs between dry-dry and wet-wet indicators show
high frequencies (= 0.68 and > 0.54 respectively). Of all arcs going from dry to wet indicators,
the four arcs present in the RN have the largest empirical frequency (= 0.54). Generally, all
arcs present in the RN have a frequency of 0.54 or higher. Only "D_Hscore” > "Region” shows
a lower frequency, but pairs with a counter directive arc of 0.42 meaning the arc is commonly
present in either one of the directions. No frequencies of larger than 0.52 were observed for
arcs not present in the RN. Comparing figures 4.6 and 4.7), some arcs find its way to have
large empirical frequencies although limited dependence scores (e.g. "D_CDD"” > "D_Hscore”:
0.75; -3.55).
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Figure 4.7: Empirical frequency of arcs for a set of networks learned from 5000 bootstrap replicates of same size as the
original data. All arcs with a frequency smaller than 0.3 are removed. All arcs between the value of 0.3 and 0.6 are
thin-lined and in gray scale. All arcs above 0.6 have an increasing line thickness and are in black.

4.2.2. Validation and verification of the NPBNs

To quantify the performance of both the SN and the RN as a NPBN the Cramer-von-Mises
scores per pair of nodes and the d-calibration score are calculated. The CvM scores are generic
to both the UN and RN. CvM statistics were calculated for the Clayton, Frank, Gaussian and
Gumbel copulas following from equation 3.14. Figure 4.8 summarizes these statistics by pre-
senting the percentage of pairs having the copula family stated as a best fit. For approximately
64% of the pairs a Frank copula or Gaussian copula are the best fit. This means the de-
pendence structure of the considered nodes do not show a high or lower tail dependency (see
section A.0.1). For those pairs the assumption of a Gaussian copula is fair.
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Figure 4.8: Cramer-von-Mises tests summary. Percentages of pairs having the copula family stated in the x-axis as best
fit.

For the NPBN the Gaussian copula is used to build the joint distribution. Therefore, the CvM
statistics for all pairs using the Gaussian copula are visualized (Figure 4.9). Pairs including
variables 'Region’,'D_SD25’, 'D_CDD’ and 'W_P20' generally score high. Especially the
'Region’ variable or 'W_P20' indicator. The three indicators take discrete values by definition
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and the 'Region’ variable is categorical (1 to 5), but are assumed to be continuous for application
in Py_Banshee. This creates a very "binned” empirical copula which, which, when compared
to any fitted copula, results in heightened CvM scores. Especially the 'Region’ and '"W_P20'’
indicators, as they have a small range of 5 and 8 respectively. All pairs of the other variables
show lower CvM scores. It should, however, be noted that the CvM statistics is a relative score
for a pair and fitted copula. Therefore, differences in CvM scores for the Gaussian copula and
their best fitted copula in case of a Gumbel or Clayton copula are presented (Figure 4.10).

The Gumbel or Clayton copula are suggested for pairs with stronger higher or lower tail de-
pendencies. The differences vary, where pairs including the nodes 'Region’ and "W_P20’" are
most pronounced. It is likely these differences are larger due to the "binned” empirical copula.
Most of existent pairs of dry indicators in figure 4.10 suggest higher tail dependencies. The

same holds for the existent pairs of wet indicators. A mixture of better fit exists for the pairs
between wet and dry indicators.
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Figure 4.9: Boxplots of the Cramer-von-Mises scores for the Gaussian copula per indicator. High values are observed for
pairs including the 'Region’ node and '"W_P20' node. All other pair of nodes show a CvM score < 0.23.
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Figure 4.10: CvM scores comparison of the best fitted copula and Gaussian copula. The upper triangle shows the name
of the best fitted copula, i.e. Gumbel (Gum) or Clayton (Clay). The lower triangle shows the CvM score of Gaussian
copula minus the CvM score of the best fit copula. The larger the difference in CvM scores, the larger the number in the
lower triangle and the higher the intensity of the color. Blank cells are present on the diagonal (non existent pairs) and
for pairs where the best fit copula is either a Frank or Gaussian copula.
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The d-calibration score (ERC, NRC) comparing the empirical rank correlation matrix with
the empirical normal rank correlation matrix results in a score of 0.92 (2500 samples), which
is within the [0.90, 0.93] confidence interval. For the restricted network the d-calibration
score (NRC,BNRC) comparing the empirical normal rank correlation matrix with the Bayesian
network rank correlation matrix results in a score of 0.80 (1200 samples), which is outside the
[0.86, 0.90] confidence interval. This suggests that the joint normal copula is not valid for the
particular structure. It should, however, be noted that this test can be rather severe on large
data sets with a high number of variables (Hanea et al., 2015).

4.2.3. Dependencies of networks

The rank correlations of both SN and RN show strong dependencies between dry to dry and
wet to wet indicators (Figure 4.11). Crossing dependencies from dry to wet are very limited.
More details of the rank correlation matrices can be found in Appendix F.
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Figure 4.11: Saturated network (left) and restricted network (right) rank correlations visualized. The intensity of the
color indicates the strength of the correlation, where red is a positive rank correlation value and blue is a negative rank
correlation value.

4.2.4. Conditioning the networks

In this section both the SN and RN are conditioned on their dry condition to make infer-
ence of wet indicators. Forecasting expected wet conditions of the subsequent months of
observed dry conditions in summer can be of value for planning for possible hazards leading
from these conditions. Conditioning is a straightforward process, especially when using software
like UNINET (UNINET Team, 2019). For example, the conditioned saturated network like in
figure 4.12. When conditioning all dry indicators in the RN, indicators "D_SPI_03", "D_CDD"
and "D_SD25" d-separates the other two dry indicators, leaving their conditioning to make no
difference. The "Region” node is also d-separated and of no relevance in the RN.

Both networks their dry indicators are conditioned on the input data (Figure 4.13). Expected
values for the wet indicators are retrieved by calculating the median of the inferred wet indicators
from this conditioning. This conditioning shows very limited effect on wet indicators retrieved
by stated approach. A well performing model would follow the calibration curve (diagonal line)
in figure 4.13, where modelled values are equal to the original data. Not a single indicator of
the RN or SN shows behaviour close to this calibration curve.
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Figure 4.12: Saturated network conditioned on hypothetical extremely dry conditions in the Uninet software (UNINET
Team, 2019). The inferred wet indicators only show minor changes in distributions based on the preconditions set.
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Figure 4.13: Median of inferred wet variables by conditioning the dry indicators from the input dataset versus corre-
sponding values of the wet indicators from the input dataset. Restricted network in blue, Saturated network in orange
and overlapping values in brown. A perfect model would follow the calibration curve (diagonal line). Both networks show

substandard performance with stated approach.

To see if a quantile range would be more suitable to estimate wet indicator from the input
dataset, each value of a wet indicator is tested to be within a quantile range of its inferred
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distribution. The number of values observed within this range divided by the total number
of values (i.e 280; length of the dataset) is visualized per increasing quantile range for each
network (Figure 4.14). For increasing quantile range, the quantile range is expanding from the
median in both directions. In other words, a quantile range of 2 is equal to the range between
g49 and g51, and a quantile range of 4 is equal to the range between g48 and g52. This
processes is repeated up to the quantile range of 98, representing the range between 01 and
q99. For all indicators except "P20" and for both networks the number of data points increases
near linearly by increasing quantile range. For both the RN and SN the "P20" indicator starts
of at a number of approximately 30 values in the quantile range of 2. The somewhat step-wise
increase observed for this indicator in the RN can be explained by the binned character of this
value as observed in figure 4.13.
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Figure 4.14: Percentage of wet indicator from input data within quantile range of inferred indicator against selected
quantile range for the RN (left) and SN (right). For increasing quantile range, the quantile range is expanding from the
median in both directions. All show a linear increasing number of data points with increasing quantile range of inferred
wet indicators starting near zero. Except the P20 indicator, which shows a initial increased share in both networks.

Alternatively, both the SN and RN their dry indicators are conditioned on hypothetical dry
conditions following table 4.4. W.ith this conditioning of dry indicators, no corresponding
wet indicator values are known. Figure 4.15 presents box plots of the values of each wet
indicator conditioned on the dry indicators going from extremely mild summer conditions (left)
to extremely dry conditions (right). Both the SN and the RN show a mild decrease in "W_Ptot”
for mild to extreme dry conditions. In either network no effect is observed on "W_P20". For
the "W_SDII" indicator a mild increase is observed both networks. The "W_R1D", "W_R3D"
and "W_R5D" indicators all show a distinguishable increase from extremely mild to extremely
dry summer conditions.

Table 4.4: Values of the dry indicator dependent on the summer condition. These values are used to pre-condition the
restricted and saturated networks to quantify its possible effect on wet indicators.

Summer condition RDx  SD25 Hscore CDD SPI-3
[mm] [days] [°C] [days] []

Extremely mild 5.33 1 3.2 7 208
Very mild 67.2 4 17 9 1.30
Median 157.0 13 62.1 14 0
Very dry 268.6 30 135 24 -1.28

Extremely dry 322.6 39 195 33 -2.18
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Discussion and Recommendations

The Netherlands has an extensive amount of historical meteorological data allowing a systematic
analysis of consecutive dry to wet (CDW) extremes over a period of fifty-six years. Research
on the interaction between observed dry and wet events is still at its infancy. The aim of this
thesis was therefore to improve knowledge on the interaction between dry and wet extremes
with application to the Netherlands. First, settings were introduced to quantify the wet and
dry extremes and to couple them spatial-temporally. The resulting dataset (or input data)
was then applied two fold. Second, the Consecutive Events Graph (CEG) was introduced to
quantify spatial and temporal changes in dry and wet indicators in consecutive seasons. Third,
a fully probabilistic framework based on Non-parametric Bayesian Network was developed to
model the dependence between dry and wet indicators. The results presented here are further
discussed below. Possible processes that explain these results and sources that affect these
results are highlighted.

5.1. Settings for the input data

The outcome of the CEG and the probabilistic framework are dependent on the chosen settings.
These settings include a choice of indicators (to identify and quantify extremes), a choice of
dry and wet periods (to link dry and wet temporally) and a choice of regions (to link dry and
wet spatially). The settings used result from a straightforward approach. The chosen indicators
are commonly used across literature or by the KNMI. The periods are selected based on the
highest observed values or largest increases of the indicators. The dry period was required to
always precede the wet period. The regions are selected such that wet and dry events were
characterized on a regional scale. This approach allowed to identify and quantify consecutive
dry to short-term wet events (e.g. cloudbursts) and consecutive dry to long-term wet events
(e.g. sustained wet periods) on regional scales. Future observations can be used to update
and thereby increase robustness of both applications. For example, year 2021 can now be
added. Furthermore, decision-makers and other researchers can tailor the settings to identify
and quantify other types of extremes, in different periods of interest and in other parts of
the world. For example, a decision-maker may change the periods of interest based on their
response time for a CDW event.

Uncertainties and limitations

The defined summer period as dry period dot not always reflect the actual onset and ending of
the dry period. Dry conditions can be persistent during the fall period as dry conditions in the
Netherlands can stretch over more than three months (Daniéls, 2021). Short-term processes
(i.e. in the order of days or weeks) that play a role in the interaction between dry conditions
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and wet extremes may have an undesired effect on the current quantified wet extremes. For
example, higher temperatures induce short-term convective precipitation extremes (Lochbihler
et al., 2019). Dry conditions with accompanied higher temperatures persistent at the very end
of the summer or beginning of fall could then lead to increased values of R1D, R3D, R5D, SDII
and P20 quantified for the fall period.

Additionally, the current settings take little account of the areal magnitude of precipitation
events. This translates itself into two issues. The first issue is the possible double quantification
of short term precipitation events that either cover or propagate over multiple regions (as
observed in the results). The second issue is that current wet indicators are quantified from
a single precipitation station. This means that precipitation events of different size but with
equal maximum precipitation quantities will be quantified as an equal extreme. A solution to
this second issue would be an indicator that quantifies precipitation extremes over multiple
neighbouring stations per period of choice. However, no such indicator was found across
literature and introducing such indicator would be a tedious task. As an example, one could
take the average of the "R1D"” of the top five stations of a region. However, this would
not guarantee the events took place on the same date nor would it guarantee stations to be
neighbouring. And even if they are neighbouring, the area covered by these five stations would
differ per set of stations. A more feasible solution to this would be the use of raster-data,
but such data was not openly available. The inherent complexity to tackle this issue and time
constraints for this study lead to disregarding this aspect to current extent.

5.2. Consecutive Events Graph

Value of the CEG for identifying and quantifying consecutive events

The introduced CEG provides a framework to identify the occurrence and severity of CDW
events. It synthesizes single events to a multi-event tool, which helps to move forward to
a more comprehensive understanding of multi-hazard events. This study demonstrates that
these events can be identified and quantified by introducing multiple climate indicators within
the CEG. A straightforward tool that was not yet available across literature. The extremity of
events is quantified by placing them in historical perspective. This way, decision-makers can use
the CEG to get an understanding of the extremity of observed dry and wet events and various
aspects of the dry events (e.g. temperature, precipitation) and wet events (e.g. long term and
short term events). Other researchers may use the CEG for similar reasons whereby it can also
be used as an exploratory tool for climate conditions of both extremes in the Netherlands.

Uncertainties and limitations

As stated, the CEG visualizes extremes in historical perspective. This is done by transforming
the indicators on a normal scale and presenting their values as a cumulative probability of
occurrence. It should be noted that these statistical extremes may not result in (extreme)
impacts. This can lead to misinterpretation of the extremities. Generally, the impact does not
show a one-on-one relationship with the extremity of a climate or weather variable (Kumar
et al., 2013). It is dependent on where and when the extreme event takes place or in terms of
risk; the vulnerability and exposure also play a role. For consecutive events the quantification
of impact can become increasingly complicated, whereas the preconditioning dry event may
have different implications on the vulnerability of a system for the consecutive wet event to
have impact. In other words, there is a multitude of combinations possible for the consecutive
extremes where each combination can result in a different type of multi-hazard. A user of the
CEG should draw up an inventory of the possible impacts of these combined events when using
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it as a tool for e.g. risk management strategies or disaster preparedness. Such inventorization
was not possible in this study due to time restrictions.

The CEG requires an extensive amount of historical (meteorological) data to place extremes in
historical perspective. The study area in this research allows such analysis. However, in many
cases the availability of similar data is limited, if not non-existent. A record length of at least
30 years is advised for a good estimated range of expected values for most indicators. If not
available, the CEG might requires adjustment in settings or one should abstain from using the
CEG under such conditions. This is required to prevent under-performance of the CEG.

5.3. Statistical model with NPBNs

Value of statistical modeling with NPBNs

The statistical model used in this research provides quantitative insight on the interaction
between CDW extremes. Application of Bayesian networks to natural hazards is still limited
across literature (Tilloy et al., 2019). It is showed that the visual representation of NPBNs makes
understanding of the interactions in CDW extremes more manageable. Additionally, making
inference of wet indicators based on dry conditions and region is shown to be straightforward.
This makes NPBNs well suited for research to interactions of natural hazards. The use case
presented in this study will help to advance current modeling practices for the multi-hazard
approach. As an application, the NPBNs can be used to forecast wet conditions in the fall
period based on observed dry conditions in the summer period. It is showed that precise
forecasting based on taking the 50th percentile is not suitable. Instead, the NPBNs should
be used without further aggregation of the resulting distributions by inference. Forecasting
of weather statistics for a forthcoming season (i.e. seasonal prediction) is extremely useful in
helping to plan for possible hazards in fields such as health, agriculture or industry (Quesada
et al., 2012).

Interpretation of observed patterns by making inference

With the created inference of figure 4.15 we observed different patterns on the short-term
and long-term wet events, which we will discuss separately. The interdependencies between
these hydro-climatic variables can be observed across a large range of spatio-temporal scale
as of coupling between Earth’s atmosphere, land-surface and oceans (Leonard et al., 2014).
However, extracting the exact physical processes behind the interaction of extremely dry and
the consecutive extremely wet events can be rather difficult as of their complex nature.

Multiple short-term wet event indicators (R1D, R3D, R5D) and the SDII show a positive trend
with increasing severity of dry preconditions in both NPBNs. The current framework does
not discriminate for sustaining dry conditions in the early fall period. As stated in subsection
5.1 on the settings of the input data, it is possible that the dry conditions may persist at or
near the beginning of the wet period and higher temperatures induce short-term convective
precipitation extremes (Lochbihler et al., 2019). Daniéls (2021) shows a pairwise increase
in duration and intensity of dry conditions based on a six months Standardized Precipitation
Evapotranspiration Index. This could possibly cause the observed increase of indicators in both
NPBNs. An additional explanation could be land-atmosphere coupling. Guillod et al. (2015),
Petrova et al. (2018), Taylor et al. (2012) show that wet or dry soils can trigger precipitation
events by positive or negative feedback mechanisms.

For the long-term wet events (Ptot) a small decreasing trend with increasing severity of dry
preconditions in both NPBNs. The pairwise increase in duration and intensity presented by



60

5. Discussion and Recommendations

Daniéls (2021) could be a possible explanation. Whereas dry conditions still persistent in the
fall period can lead to decreased total amount of precipitation of that same period. Additionally,
it is a possibility that large-scale dynamic processes have influence in the observed patterns.
Common research directions of such processes are El Nifio and La Nifia Southern Oscillations,
Atlantic Multidecadal Oscillation and changes in Arctic sea ice (He and Sheffield, 2020, Knight
et al., 2006, Parry et al., 2013).

Uncertainties and limitations

To learn the structure of the restricted network we assume the conditional probability densities to
be linear Gaussians. The belief of this assumption to be inadequate is fair as multiple marginals
show different behaviour than a Gaussian (Appendix C). The results from this method created
a mixed picture where multiple logical and multiple illogical arcs or chains were created. For
example, the "R1D"” > "R3D" > "R5D" chain where it is likely that an extreme precipitation
event in one day will be part of the largest multiple day precipitation event. On the other side,
the arc from "Ptot” > "P20"” may be reversed as multiple 20 mm precipitation days will directly
feed the total precipitation observed in a season instead of large total precipitation values to
fall on 20 mm precipitation days. In general, the selection of the structure of a Bayesian
network can be a challenging task. The number of structures grow super-exponentially with
increasing number of variables used for the Bayesian network (Robinson-Garcia et al., 2020).
Prior knowledge on relationships between dry and wet indicators in current framework is non-
existent. This made learning the structure from the data with chosen method the best option
available.

The "Region” node in both NPBNs is somewhat ambiguous. For the NPBNs the region is
used as a variable in the network. This variable is categorical, but assumed to be continuous
for application in PY_Banshee (Mendoza Lugo et al., 2021). Making the "Region” variable a
node in the network was deemed necessary to have a lengthy number of data points per node,
i.e. 280 instead of 56 per region. A longer dataset benefits the robustness of the network. For
the RN the region node is D-separated when conditioning on all dry indicators. This made the
node no problem for the RN within the application of this research. For the SN this is not the
case. However, making variation in the order of values of this node showed very limited effects
when making inference of wet indicators as performed in this thesis.

Non Parametric Bayesian Networks assumes the dependence structure to be a Gaussian copula
(Kurowicka and Cooke, 2003). The adequacy of this assumption is evaluated statistically
which shows that both the SN and RN are not able to model some important asymmetries
observed in the data. This may lead to an over- or underestimation of inferred wet indicators
when conditioning on dry indicators. To solve this issue a better dependence structure could
be explored by using different copula families realized via e.g. the vine copula approach. This
method was not considered as a complete theory of the vine copula approach conditionalization
is non-existent to this date (Ragno et al., 2021).

5.4. Recommendations
Future research directions that either build upon or that could depart from this research
are:

= An alternative approach on selection of the dry and consecutive wet period. The dry
and wet period are defined by summer and fall respectively. However, we know that dry
conditions can find their ending earlier or later in than the current set date. Defining
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the exact ending of drought is a difficult objective. A potential solution to this is the
Threshold Level Method (Heudorfer and Stahl, 2017)

= Instead of the alternative approach above, one could apply the methods of this research
to a region where the dry season and rain season are more distinguishable. There are
multiple parts of the world where such strong seasonality exist. For example, in SE-Asia
multiple countries experience a strong rain season. No such strong division exist in the
Netherlands. This also lead to the difficulty in defining the end of the dry season and
start of the wet season. When selecting a different area in the world, one has to bear in
mind the required historical meteorological data for the analysis.

= Introduce a wet indicator that includes the spatial extent of wet events. Current wet
indicators do not account for this. Precipitation events recorded over multiple stations
affect a larger area and should have a higher weight. Introducing a wet indicator that
covers this aspect will allow better characterization of wet events and thus CDW events.

= To include additional indicators from other parts of the hydrological cycle. The current
research is limited to meteorological variables only, but flood hazards originate from mul-
tiple other sources such as rivers or seas. Including indicators from these types of sources
will create more comprehensive picture of possible consecutive extremely dry to extremely
wet events.

s Couple the methods with climate models. The current study sets consecutive extremely
dry and wet events in historical perspective. However, severity and frequency of both
dry and wet extremes are expected to raise due to a changing climate (Alfieri et al.,
2015, IPCC, 2012, Visser-Quinn et al., 2019). It would be interesting to include a future
perspective by full coupling climate models, as the past may not be the best guide to the
future.

= To work towards a unique indicator for dry and wet extremes. Dry conditions show
to correspond with high values of all or most dry indicators. Wet conditions show to
correspond with one or more high values of wet indicators. For example, one could
condition the input dataset based on (arbitrary) thresholds for e.g. the sum of squared
dry indicators and for one or more wet indicators. A suitable thresholds can be defined
based on impacts (leading to the next point).

= An impact-driven approach, as promoted by (Leonard et al., 2014), (Lloyd-Hughes and
Saunders, 2002) and (Zscheischler et al., 2019). The consecutive events analysis per-
formed in this study is based on its drivers rather than their impact. The definition of
impact is stakeholder specific. Starting from an hydraulic engineer perspective on flood
hazards one could built out to include other stakeholders like ecologist, urban planners or
emergency services.

As an additional remark, the multi-hazards approach shows increasing interest in recent years
from all corners of the earth. In the course of this thesis, additional research was published
on topics related to the multi-hazard approach (Rashid and Wahl, 2021, Sanuy et al., 2021,
Ward et al., 2021, Zhang et al., 2021a, Zscheischler et al., 2021). A large variety of terms
are introduced to describe the different types of multi-hazards causing confusion and redun-
dancy. To overcome future fragmentation across literature it is of great importance to increase
communications between those who are active in this field of research.






Conclusion

This research explored the concept of consecutive dry and wet extremes in the Netherlands.
The introduced CEG shows potential to identify and quantify these CDW extremes. Region-
to-region and year-to-year comparison is possible to quantify changes between the considered
years or regions. Generally, all dry indicators show values in higher percentiles for all regions in
years a drought was present. For several regions within these dry years, higher percentiles of one
or more wet indicators is observed. The combination of these indicators in higher percentiles
define the occurrence of a CDW extreme. Future research on the application of this CEG is
recommended, e.g. by changing settings or by adapting to an impact approach.

Quantitative insight on the interaction between the dry and wet indicators is achieved by making
use of NPBNs. The NPBNs disclosed limited interdependencies across dry and wet indicators.
Conditioning the NPBNs to infer wet variables of the fall period based on dry conditions in
the summer period and region is shown to be straightforward. Using the NPBNs for precise
forecasting of expected wet conditions by calculating the median of inferred wet indicators based
on observed dry conditions in the summer season is deemed unsuitable due to its low precision.
Additionally, preconditioning of hypothetical dry conditions going from very mild to extremely
dry revealed a number of trends in wet indicators when inferred. These are positive trends in
short term precipitation event indicators (R1D, R3D and R5D) and the Simple precipitation
Intensity Index (SDII). For the long term precipitation indicator (Ptot) a mild negative trend is
observed for increasing dry conditions. Extracting the physical processes behind the interaction
of extremely dry and the consecutive extremely wet events can be rather difficult as of their
complex nature.

Extreme dry events, extreme wet events and consecutive occurrences of these events are in-
evitable. Furthermore, it is expected that these phenomena will occur more frequently and
become more severe due to a changing climate (Alfieri et al., 2015, IPCC, 2012, Visser-Quinn
et al., 2019). To this day research on CDW events is still in its infancy. Findings from this thesis
will help to smooth the path towards better understanding of the identification, quantification
and interaction of CDW events or multi-hazard events in general. From here on, we will be one
step closer to the future practice in modeling climate extremes (Leonard et al., 2014).
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Introduction to copulas

A.0.1. What is a Copula?

Copula is derived from the word Copulare, which means "to join" or "to couple” in Latin and
its Mathematical concept was first introduced in 1959, known as Sklar's theorem (Sklar, 1959).
Copulas are an elegant and flexible way to model multivariate dependencies, as the study of the
margins and the study of the dependence structure are separated. In other words, the marginal
behavior of each component of a random vector is described by the margins, whereas the the
copula describes the dependence structure among the components. For multivariate data from
the same distribution (e.g. a multivariate Gaussian distribution) this might not be as relevant,
but it becomes advantageous when modelling multivariate data with a combination of different
distributions (e.g. Student, Gamma and Beta). As of this flexibility, copulas are extremely
popular in the fields of financial modeling, risk management and more recently machine learning
problems (Cherubini and Luciano, 2002, Elidan, 2013, Embrechts et al., 2003).

As an example we consider a set of n random variables {X, ..., X;,} and their joint distribution
function F (X4, ..., X,) which can be separated into two parts. The first part is that each random
variable (rv) can be fully described by its marginal, or its cumulative distribution function (cdf)
Fi(x) := P(X; < x). Here, x is a realization of X; and P is a probability. This marginal cdf has
two interesting properties:

Property 1: If U ~ U[0,1] and F; is a cdf, then the inverse cdf (i.e. F;!) of U;
corresponds to the rv X;.

P(F7Y(U) < x) = Fi(x) (A1)
Property 2: If a real-valued rv X; has a cdf F; then:

Fy(X;) ~ U;[0,1] (A.2)

The first property, also known as the inverse cdf transform or quantile transform, is a commonly
known way to simulate data from a uniform distribution with a cdf of choice. The second
property is also known as the probability transform, or probability integral transformation.
Following from the set of marginals {Fj, ..., F,,}, we move to the second element, which is the
copula. The second element its decomposition relies on Sklar's theorem (Sklar, 1959) which
states that for every set of random variables {X;, ..., X} with joint distribution function Fy
marginals {Fy , ..., Fx,} there exist an N-dimensional "copula function” C : [0,1]™ — [0, 1] such
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that

F (s, oy Xn) = C(Fy, (%), -, Fy, (6)) (A3)

This can be inverted to compute the copula from multivariate distributions:

C(uyg, .o, Up) = F(FT (W), .., B () (A.4)

If equation A.4 is used to extract a copula, the copula is considered implicit. This family
of copulas is versatile and shares an auxiliary representation that allows estimations in high
dimensions to be tractable (Smith, 2021). The most commonly used implicit copula is the
Gaussian copula. This copula is constructed from a multivariate Gaussian or normal distribution
which is based on a n X n correlation matrix  and correlation coefficient p that captures the
dependency relationship between the rvs. The two dimensional Gaussian copula is defined
as

CgauSS(ul’uZ) =dg (¢‘1(u1), O (uy); P) (A-5)

Where x; := @ 1(u;) and x, := ®~1(u,) are two rvs, @4 (+) denotes the cdf of the bivariate
normal distribution and ®~1(+) as an inverse of the standard normal function.

The copula function is per definition a cdf. These graphs are relatively hard to interpret as they
are monotonically increasing (Figure A.1 and A.2). As of this reason, copulas are commonly
visualised using their density function, which can be derived from the copula cdf:

O"C(Uyq, ey Uy)

A.
ouUq, ..., 0Uy (A.6)

C(Up, vy Up) =

Although not all copulas are differentiable. This means some copulas do not have density
functions. The two dimensional Gaussian copula is sufficiently differentiable and is denoted
as

1 p?(xf +x3) = 2px1x;
Gauss o _ —_
Cp (w1, uz) = 1-p2 exp 2(1-p?)

(A7)

Additional to implicit copulas there are explicit copulas. This type of copulas have a closed
form and unlike to the Gaussian copula, their use is more demanding for uncertainty analysis
as of the predefined objective of their usage (Embrechts et al., 2003, Hazarika et al., 2018).
Examples of implicit copulas are the Frank, Clayton and Gumbel copulas. The two dimensional
copulas of these families are denoted as

(exp(=6u;) — 1) - (exp(=bu,) — 1)
exp(—0) —1 ’

1
CErem (s, uz) = —5ln [1+ 6 € R\{0} (AS8)

Cgl“yt""(ul,uz) = (i +uy® — 1)‘%, 0 € [—1,0)\{0} (A.9)
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Ciut,ug)

Figure A.1: The cumulative density function (left) and density function (right) of a two dimensional Gaussian copula

with p = 0.9. Source: Schneider (2021) (Schneider, 2021)
C§UmPel 1y, 15) = exp [~((— Inuy)® + (~Inuy)?)s], 6 € [1,00)
With according density functions

—0g(M)(A + g +up))

Frank =
ford (ug,up) (g(u)guy) + g(1))2

Where g(x) is defined as
g() = e —1

1+26
¢! M g, up) = (L + ) (ur® +uz® —1)7 0 (uguy)” @+

coumbel(y u,) ((—Inwuy)® + (—Inw,)®)s 2

U Uy (Inu, Inuy)t-?

(146 - D((~Inuy)? + (- Inuy)®)77)

cg et (ug, up) =

(A.10)

(A.11)

(A.12)

(A.13)

There are two dependency measures that are commonly used for expressing the dependency

between two variables. These are Spearmanns rho (p) and Kendall's tau (7).

expressed in terms of the copula (Czado, 2019):

Both can be

p= 12f uu,dC(uq,uy) — 3 and T= 4f C(uq,uy)dC(uq,uy) —1
[0.1]? [0,1]?

The relationship between Spearmanns rho and Kendall's tau for the bivariate normal distribution

be denoted as (Czado, 2019)
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2
T= Earcsin(p) (A.14)

As denoted before, equation A.7 of the Gaussian copula uses the parameter p as dependency
measure. As can be observed in equations A.8, A.9 and A.10 the copula parameter 6 is
introduced. This parameter can be derived from Kendall's tau with the following equation per
copula family (McNeil et al., 2015)

Cgrank T=1— 49_1(1 —D41(8))

) b ¢ (A.15)
Where D;(0) =6~ fo e 1dt
CClayton T = 0 (A.16)
o 6 + 2
Gumbel 1
Ceum el .\ =1 — 5 (A.17)

In line with the example of Schneider (Schneider, 2021) in figure A.1, the corresponding values
for 8 are determined with the help of equations A.14, A.15,A.16 and A.17 (Figure A.2).
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Ciut,uZ)
Ciut,uz)

Clut,u2)

cfutu2)
oful.u2)

uz 0 o ut u2 0 o ut

Frank-Copula (8 = 12.0) Clayton-Copula (¢ = 5.0) Gumbel-Copula (# = 3.5)

Figure A.2: The cumulative density function (top row) and density function (bottom row) for the Frank, Clayton and
Gumbel copulas with corresponding 8-parameters where p = 0.9. Different tail dependencies exist per copula. This may
not be observed in the cumulative density functions, but are better visible in the density functions. In opposition to the
Gaussian copula the Frank copula is lighter in the tails. The Clayton copula a larger lower tail and smaller higher tail
dependency. The Gumbel copula has a similar lower tail and larger higher tail dependency. Source: Schneider (2021)
(Schneider, 2021)
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Figure B.1: Temporal extent of the variables: daily evapotranspiration (EV24), maximum daily precipitation intensity
(RHX), daily precipitation (RH), maximum daily temperature (TX) and average daily temperature (TG) per KNMI-A
station. The red vertical line indicates the year 1965, whereat the green barred figures have a larger temporal extent for
all variables than this year. These are the five selected stations for the drought indicators.
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Figure C.1: Histograms of region (gray), dry inidicators (red) and wet indicators (blue)
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Evapotranspiration of region 3

Histogram of EV24 values in
growing season region 3
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Figure D.1: Histogram of evapotranspiration (EV24) values [mm] in growing season (April - September) for region 3.
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Figure E.1: Cramer-von-Mises test scores per pair of nodes. Gaussian is colored different to the other families, as this is

the family used in NPBNs.






Correlation matrices of RN and SN

Table F.1: Correlation matrix of the saturated network (SN). The intensity of the color indicates the strength of the
correlation, where red is a positive rank correlation value and blue is a negative rank correlation value.

Region- 014 0’.@ 0048 00016 D17 009 00044 0003 0014 L0011

D RDx- 014 0.22 035 9.,42 - 0065 0.014 0002 016 0.099 012 075

D SD25 - k43 0.22 029 0421 016 €014 0015 0.021 L.056

100
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D_CDD - 0.048 [ 0078 01 017 019 02 022 -025
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—0.50
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WR3D- 0.014 0099 0021 0.068 02 -0.75
W R5D - 0.011 0.12 £0.056  0.044 022
—1.00

i i i i i ] V )
Region D_RDx D_SD25D_Hscore D_CDD D/ spi_03 W Ptot W.P20 WSDI WRID WR3D WRSD

Table F.2: Correlation matrix of the restricted network (RN). The intensity of the color indicates the strength of the
correlation, where red is a positive rank correlation value and blue is a negative rank correlation value.

i 100
Region- 0.14 041 0’.‘ 0015 0089 0067 0031 0005 00052 -0.048

D_RDx - 014 015 035

D SD25 + 4l 015

0041 0063 0084 011 0085 075

£012 0032 002% 0047 0056

0.50
D_Hscore - ID_II 0.35 0.097 0016 0045 006 0.034
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WRSD - 0.048 00B5 0.056
-1.00

i i 1 ] [l 1 [l [ [ [ [ [
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G. R2R for all years
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G. R2R for all years
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Region-to-Region comparison in year 1983
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G. R2R for all years
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G. R2R for all years
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Region-to-Region comparison in year 2007
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G. R2R for all years
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Region-to-Region comparison in year 2019
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