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Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. J.D. Jansen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. J.D. Jansen, Technische Universiteit Delft and

Shell International E&P, promotor
Prof. dr. ir. P.M.J. Van den Hof, Technische Universiteit Delft
Prof. dr. ir. O.H. Bosgra, Technische Universiteit Delft
Prof. dr. W.R. Rossen, Technische Universiteit Delft
Prof. dr. ir. J.M.A. Scherpen, Rijksuniversiteit Groningen
Prof. dr. ir. A.C.P.M. Backx, Technische Universiteit Eindhoven
dr. J.C. Vink, Shell International Exploration and Production

The research for this thesis was financially supported by Shell International Explo-
ration and Production as part of the VALUE project which received support of the
Dutch Government in the form of Senter/Novem subsidy under the ”Technolo-
gische Samenwerking” programme (projectnumber TSGE3134). Moreover, the re-
search formed part of ISAPP, a joint research project between Shell, TNO and TU
Delft.

Cover design: Lejla Alić
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1 CHAPTER

Introduction

This thesis is concerned with ’system-theoretic’ low-order modeling of heterogeneous re-
servoir systems for purpose of efficient simulation and optimization of flooding processes
with multiple injection and production (smart) wells. Other important applications of
low-order representations could e.g. be in inversion/regularization procedures for iden-
tification of reservoir properties and/or for optimal placement of (both monitoring and
controlling) wells. This chapter gives a concise background on closed-loop reservoir man-
agement and provides a motivation for the research performed in this thesis.

1.1 Background and Problem Definition

In order for hydrocarbon production to keep up with the ever growing energy
demand, it is essential to find ways to improve the recovery factor of existing
oil fields. A rapidly emerging methodology to achieve this goal is the applica-
tion of measurements and control techniques to improve the control of reservoir
flow over the life of the reservoir. Particularly promising in this context is the
use of sensors and remotely controllable valves in both wells and at surface, in
combination with large-scale and uncertain reservoir models. In the oil industry,
this technology is known under various names, such as ’smart fields’, ’intelligent
fields’, ’e-field’, ’digital oilfield’, ’closed-loop reservoir management’, or ’real-time
reservoir management’.

Figure 1.1 depicts the idea. The system may represent reservoir(s) in any com-
bination with wells and surface facilities (Figure 1.2), but is in this thesis restricted
to the subsurface part of the whole. The main focus is on developing concepts and
algorithms for efficient implementation and integrated application of data assimi-
lation and (model-based) production optimization.

Data assimilation. Compared to the size of a typical reservoir, the information
available from various sensors at surface or downhole, and from more indirect
measurements such as time-lapse seismics, is very scarce (and noisy). As the sub-
surface is generally highly heterogeneous, the state of the system (pressures and

1
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Figure 1.1: Reservoir management represented as a model-based closed-loop con-
trolled process (after [145]).

saturations in the reservoir) as well as the reservoir parameters relevant to the
flow (e.g. permeability) are known only to a very limited extent, and in the case
of the parameters really only at the wells. To make matters worse, also the in-
put to the system is known to a limited extent. While the situation in the wells
(i.e., water injection rates or gas lift rates, bottom-hole pressures) may be roughly
known, ’uncontrollable’ input as, e.g., aquifer support (in this thesis assumed ab-
sent) may be a major unknown. As a result of these severe uncertainties, reser-
voir models are inevitably only a (very) crude approximation of reality. Their
predictive capability is therefore very limited and, moreover, tends to deterio-
rate over time very quickly. In a process known as ’history matching’ (HM) (or
batch estimation), the reservoir parameters are updated using measured output
from different sources over a specified estimation window. HM is frequently
performed with iterative non-linear least squares algorithms based on gradient-
searches [108, 172, 203, 230, 259]. Gradient-free optimization algorithms like sim-
ulated annealing or genetic algorithms have also been considered [218, 231, 247],
but for large-scale applications they appear to be computationally prohibitive. As
the history-matching problem is inherently notoriously ill-posed, a regulariza-
tion term in the form of data-independent prior information is generally added
to the mismatch function. Further regularization of the HM solution is possible
by adding the model-errors1 as a ’weak constraint’ in the minimization problem,
which can be solved efficiently in an iterative way by the so-called ’Representer
Method’ [220, 232]. Traditionally, HM has been performed on a campaign basis
(e.g. once every few years), but in ’real-time’ applications the estimation window

1That is, errors due to model approximations, such as a loss of spatial,or temporal, resolution, and
the non-inclusion of all of the relevant physics.
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Figure 1.2: Schematic illustration of a group of hydrocarbon bearing formations
connected, through a system of wells, to a network of pipelines and surface facili-
ties.

needs to be continually (e.g., every few weeks) adjusted in order to include new
observations. A recently introduced alternative to traditional history matching
is the Ensemble Kalman Filter (EnKF) [83, 145, 172, 195], a Monte-Carlo filtering
technique originally developed for updating of large-scale numerical models in
meteorology and oceanography [9, 84, 122, 129]. Kalman filters are sequential
(least-squares) state-estimators, so their natural application is continual estima-
tion (or better, one-step ahead prediction) of reservoir pressure and saturation
as new data become available. These estimates are used to update the reservoir
control variables (e.g. well injection/production rates). Parameter estimation by
EnKF is enabled by considering the to-be-estimated reservoir parameters, θ, as ad-
ditional state-variables contaminated by measurement noise (i.e., θk+1 = θk +ǫθ

k).
A quick forecast can be obtained by integrating a single realization forward in time
starting from the ensemble mean or median. A future prediction with uncertainty
estimate can be provided by integrating the whole ensemble (usually between 50
and 100 realizations) forward in time. The sequential processing character makes
the EnKF more convenient than the traditional (variational) HM for real-time ap-
plications. In addition to errors in the estimated parameters, the EnKF allows also
for model errors. This, together with being sequential, contribute to the apparent
absence of the curse of dimensionality and multiple local minima in the EnKF ap-
proach. Furthermore, EnKF can be applied with any reservoir simulator without
the need of complicated coding. Moreover, rather than in the high-dimensional
parameter space (104−106), the solution is sought for in the space spanned by the
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ensemble members. On the other hand, the HM approach, especially if casted in
a Bayesian framework [69, 305, 306], does not require the linear Gaussian approx-
imations adopted in the EnKF.

(Model-based) production optimization. Due to the heterogeneous nature of the
reservoir rock, the injected fluid (e.g. water in a waterflood production scenario)
will flow with different velocities throughout the reservoir. Depending on the
severity and type of heterogeneity, for a fixed well configuration the injected fluid
may reach the producing wells while leaving large regions of the reservoir un-
flooded, thus resulting in a low recovery factor. A part of remaining oil can be
extracted by drilling new wells, which is a costly operation along with the halt of
production. Instead, one can try to minimize the problem by controlling the in-
jection and production in the wells themselves. In that respect, smart-wells have
opened the opportunities for going for reactive/passive (in the sequel called reac-
tive) production scenarios [7, 15, 93, 146, 154, 249, 253, 300, 301], where no action
is undertaken before some change in the well measurements is observed (e.g.,
change valve settings at places experiencing an unwanted water cut) to proac-
tive/active (proactive in the sequel) production control, where well control strate-
gies start to be applied (much) before the injected fluid breaks through at produc-
ers. Theoretically and intuitively, proactive control promises achieving a higher
recovery factor than reactive control, but at the price that it requires (significantly)
more knowledge about the parameters and the state of the reservoir. The amount
of the required information is directly proportional to the length of the (valve-
setting) optimization time horizon, which can go from a short-period of time (with
the uttermost limit being just instantaneous optimization) in the ’short-term’ op-
timization, to the entire remaining production window in a ’long-term’ (or life-
cycle) reservoir optimization. Optimization generally aims at maximizing the net
present value (NPV) or some other economic objective. Concise overviews of the
various (smart-well) optimization strategies are provided, e.g., in [46, 144, 302],
whereby [144, 302] also discuss the scope for ’robust reservoir optimization’, i.e.,
optimization in presence of (generally very large) uncertainties in reservoir mod-
els (in the first place uncertainties about the subsurface structure and the param-
eters that influence fluid flow). Application of moving-horizon Model Predictive
Control (MPC) has also been proposed [198, 240]. These references also propose a
hierarchical control structure for combining optimization and control at different
time-scales.

Integrated application of data assimilation and field optimization. Various meth-
ods for combining model updating (either by history matching or EnKF) and pro-
duction optimization to form a closed-loop optimization framework have been
proposed in the literature; see, e.g., [5, 48, 60, 145, 194, 242, 290]. Most often, the
’combined’ application consists of sequential application of optimization and data
assimilation techniques of choice, whereby the latter provides, at specified times
or every time new measurements become available, updated estimates of the (ex-
tended) system state. These estimates are then used by the optimization algorithm
to determine new optimized operating conditions to maximize hydrocarbon pro-
duction or net present value (NPV) for the remaining expected life of the reservoir.
For example, in [242] an adjoint method was used for both the production opti-
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mization and the model updating, whereas in [48] an adjoint method was used
for optimization and the EnKF was used for model updating. In [175] the EnKF
method was utilized to optimize choke settings with the gradient approximated
through the sensitivity provided by the ensemble. The gradient search direction
is approximated by an ensemble also in closed-loop reservoir optimization in [60].
In order to make the closed-loop solution more robust against model uncertain-
ties, the same paper proposes (as did also [275], but in open-loop optimization
using adjoints), to maximize the expected value of the NPV for the ensemble in-
stead of maximizing the net present value based on a single reservoir model as in
[48, 242, 290].

Central in the model-based (closed-loop) optimization is, of course, the reser-
voir model. Typically, and in order to incorporate ’as much physics as possible’,
it is a large-scale physics-based (or ’white-box’) model consisting of O(103 − 106)
equations and parameters representing a (coupled) system of discretised PDEs
(Chapter 2). Since optimization (in both production and history matching) as
well as the EnKF generally require many reservoir flow simulations (forward and
adjoint), whereby both the simulation time and the reliability of the solution (in
parameter-estimation problems in particular) is directly impacted by the num-
ber of gridblocks and the complexity of the reservoir model, it is clear that the
plain combination of reservoir model updating and optimization based on mod-
els of such size may be prohibitively time consuming and error prone (or at least
cumbersome), especially when multiple realizations and/or several potential well
configurations have to be investigated.

This thesis is about solving/reducing this ’curse of dimensionality’ problem
by including a third element in the closed-loop approach of Figure 1.1, consisting
of reduction of the high-order reservoir models to the appropriate level of detail in suitable
low-order models. In other words, we foresee that real-time reservoir management
will/can show its real value only in the combined closed-loop use of optimiza-
tion, model-updating and model reduction techniques as schematically depicted
in Figure 1.3.

1.2 Research Objectives and Solution Directions

The ultimate objective of the research into low-order modeling would therefore be
twofold: a) to develop computationally efficient algorithms for situations where
multiple reservoir simulations are required, such as in optimization of flooding
patterns, for instance, and b) to provide an alternative to regularization in situ-
ations were a large number of reservoir model parameters needs to be adapted
using a limited amount of measured data. For these purposes we could have
chosen to (try to) build on any of the existing ’coarsening’ methods ranging from
(conventional) upscaling [65, 77, 100, 224, 291], in which coarse-scale equations of
a prescribed analytical form are solved2, to various multiscale techniques [24, 61,

2The form of the equations at the coarse grid may differ from the underlying fine-scale equations,
in which case it is either derived via homogenization or volume-averaging procedures, or, as is often
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Figure 1.3: Closed-Loop Reservoir Management with Reduced Order Models.

78, 79, 99, 130, 148, 178], in which fine-scale information is carried throughout
the simulation and the coarse-scale equations are not expressed analytically but
rather are formed and solved numerically (generally at different grids for flow
and transport).

We decided not to follow that ’obvious’ route, though, for the simple reason
that we believe that low-order models based on dynamically-intrinsic properties
of the fine-scale system rather the type (i.e., position, form, orientation) of the
coarse-grid may be more efficient and/or robust for the intended applications. For
single-phase systems that can be represented as a (state-space) system of ODEs
with constant coefficients, e.g. spatially discretized diffusive pressure equation
for slightly compressible porous-media flow, the basic system- and control theory
teaches that these properties could e.g. be the system’s transfer function in the
Laplace domain, the eigenstructure of the system matrix, or controllability and
observability of the system[10]. While these properties are related to each other
in certain senses (Chapter 4), the structural properties controllability and observ-
ability (and therewith related identifiability) are particularly interesting for our
purposes. Indeed, modeling to a level of detail that can neither be observed
nor controlled, is at best wasted effort, but, worse, may lead to wrong results.
Numerical experiments performed in [183] in a early stage of this project with

the case in practice, simply assumed to be the same (or nearly so) as the fine-scale equations (hardly
justifiable in general in multiphase flow, as applying an averaging operator to a nonlinear function is
not interchangeable with the opposite sequence of the operations). The coefficients in the upscaled
equations are typically computed from appropriate solutions over regions of the fine-scale model in a
preprocessing step. Static techniques are generally used to coarse the media properties (permeabilities,
porosities), while dynamic methods are employed to understand the effects of the small scale dynamics
on the large scales.
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(deterministic) ’subspace-identification’ techniques [221, 276, 285] applied on a
slightly compressible single-phase (synthetic) reservoir suggested that the con-
trollable and observable subspaces of the fine-scale reservoir models are indeed
of much lower dimension than the number of the grid-blocks.

For nonlinear state-space models, unsurprisingly, much less (actually really
only few) systematically developed reduction techniques are available [136, 161,
225, 244]. Unfortunately, even these spare methods are not applicable to multi-
phase reservoir flow, due to both the size and the overall complexity of these sys-
tems (e.g., moving fluid interfaces, coupled flow and transport). Another way of
extracting intrinsic information is using the system data obtained from the simula-
tion (or, if possible, experimental) data. ’Data-driven’ approaches have been suc-
cessfully applied on a scala of engineering problems in various areas of science:
model reduction, image processing, turbulent flow, inverse problems compres-
sion, inverse problems, to name a few. Particularly popular has been the Proper
Orthogonal Decomposition (POD) technique, which guarantees the best recon-
struction of the collected data in the mean square error sense [16, 22, 29, 125, 128,
152, 170, 174, 177, 205, 223, 286, 295]. In the linear case, POD turns out to have im-
portant theoretical connections to the concepts of controllability and observability,
though for a particular class of input and initial-state signal forms. Depending on
the area of application other names are used as well, e.g. Karhunen-Loeve (K-L)
Transform, Empirical Orthogonal Functions (EOF), Principal Component Analy-
sis (PCA) [149, 156].

The specific objectives in this research are therefore stated to be as follows:

Assess the usefulness and performance (in terms of computational speed and com-
plexity) of the state-of-the-art methods and algorithms for model-order reduction
when applied to linear single-phase heterogeneous reservoir systems. For two-phase
waterflood flow with multiple injection and production (smart) wells, investigate
the applicability and performance of the standard POD approach and, if necessary,
design alternative strategies based on the same methodology. In particular, design
a method to speed-up the adjoint-based waterflood optimization developed in [46].

1.3 Thesis outline/organization

The remaining part of the thesis is organized as follows. Chapter 2 presents and
shortly discusses the basis (macroscopic) equations governing the porous media
flow considered in the thesis. Chapter 3 presents the projection-based Model Order
Reduction (MOR) framework used in all methods in this thesis to achieve model-
order reduction. Chapter 4 provides a detailed overview of modern approaches
for linear MOR and assesses their performance when applied to single-phase re-
servoir flow problems. Considered are: Modal Truncation, Singular Perturbation (or
’residualization’), Transfer Function Moment Matching (explicit and implicit), and
Balanced Truncation (exact and approximate). The applicability and performance



8 CHAPTER 1: Introduction

of the standard Proper Orthogonal Decomposition (POD) approach applied to two-
phase waterflood flow is assessed in Chapter 5. The same chapter introduces the
idea of a ’middle-way’ approach in the course of reservoir simulation, in which
the reservoir system in time is as usually solved in the original, high-dimensional
space, but with an improved initial solution guess provided by a (regularly up-
dated) POD-based reduced-order model. In Chapter 6 an iterative method is de-
signed to speed-up the adjoint-based waterflood optimization developed in [46].
A methodology using nested loops is employed, where the inner iterative loop
makes use of a truncated basis of POD functions to calculate optimized injection
and production rates. After convergence in this loop we simulate in the outer
loop the original, high-order model with the optimized rates and subsequently
adapt the POD basis. This new basis is used in the next inner loop to calculate
new optimized injection and production rates. Chapter 7 concludes the thesis.
Appendices A & B provide auxiliary information regarding the two-phase reser-
voir flow equations and the general POD theory, respectively.

Additional information:

Several of the ideas and conclusions presented in this thesis were published by the
author in conference or journal publications over the past years. This concerns in
particular the idea to use subspace identification, POD and (empirical) balanced
and modal truncation as reduced-order methods for reservoir simulation [123,
184, 185] ([123] together with T. Heijn), the use of POD in a nested loop to speed
up water flooding optimization (together with J.F.M. van Doren, [272]), and the
use of POD as a ’shadow simulation’ to speed up iterative solution methods [182].
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Porous Media Flow: Basic Concepts
and Model Formulations

This chapter presents and shortly discusses the basis (macroscopic) equations
governing both single-phase and two-phase porous media flow considered in the
thesis. The fluids involved are oil and water, assumed immiscible with respect to
each other. The models account for compressibility and capillary effects unless ex-
plicitly stated otherwise. The porous medium itself is considered heterogeneous
and isotropic, with the permeability described by a diagonal tensor. Both 2D and
3D flows are considered, with gravity effects only included in the latter as all 2D
models are taken to describe horizontal flow only.

2.1 Mass Balance & Constitutive Relationships

Two basic ingredients in modelling porous media flow are mass conservation for
each of the phases and an empirically determined constitutive equation relating
the average mass flux of each phase to the corresponding fluid potential gradi-
ent. This equation actually accounts for conservation of momentum, and is a
multiphase extension of Darcy’s law. These (macroscopic) conservation laws are
augmented by empirical material-dependent constitutive relationships describ-
ing saturation dependence of capillary pressure, which is the pressure across the
interface between (immiscible) fluids due to interfacial forces, and relative fluid
permeability, which represents a reduction in the permeability for one phase due
to its interference with other phases. A general understanding is that the capillary
effects are controlled by the geometry of the pore space, interfacial tension and
wettability of the rock. Possible dynamic effects in the capillary pressure - fluid
saturation relationship, Pc(Sw), due to the hysteresis in saturation [121] are not
considered here. The conservation law and the constitutive relationships together
form a system of coupled nonlinear partial differential equations (PDEs), which
for the two-phase flow of immiscible oil (nonwetting phase) and water (wetting

9
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phase) in a heterogeneous porous medium can be expressed as [25, 209]:

∂(ϕSαρα)

∂t
+▽ · (ραuα) = qα Mass balance ([ kg

m3s
]), (2.1.1)

−Kkrα

µα

(▽pα − ραg▽D) = uα Darcy’s law ([m
s
]), (2.1.2)

Pc = Pc(Sw) := po − pw , krα = krα(Sw), (2.1.3)

Sw + So = 1, (2.1.4)

where ϕ = ϕ(p) [−] is the effective1 porosity of the porous medium, and ρα =

ρα(p) [ kg
m3 ] and µα = µα(p) [Pa · s] are the pressure dependent2 density and vis-

cosity, respectively, of water- (α = ω) or oil (α = o) phase. Vector uα comprises
the phase velocities (in [m

s
]) in the spatial directions, Sα [−] is the phase saturation

(i.e. the portion of the pore space occupied by phase α), g = 9.81 [ m
s2 ] is the gravi-

tational acceleration constant, Pc = Pc(Sw) [Pa] and krα = krα(Sw) [−] are the
saturation dependent capillary pressure and phase relative permeability, respec-

tively, and qα [ kg
m3s

] is the forcing term representing the mass added to or extracted
from the system through an external source per unit time and unit volume. The
convention in this thesis is that positive values of q correspond to injection, nega-
tive values to production. The intrinsic permeability3 tensor K [m2] is assumed to
be diagonal (K := diag(kx, ky, kz)), and D is the depth in [m].

Substituting Darcy equation (2.1.2) into (2.1.1), the mass balance equations for
oil and water can be written as:

∂(ϕSoρo)

∂t
−▽ ·

(
Kkroρo

µo

(▽po − ρog▽D)

)
= qo (2.1.5)

∂(ϕSwρw)

∂t
−▽ ·

(
Kkrwρw

µw

(▽pw − ρwg▽D)

)
= qw, (2.1.6)

respectively. A system of equations as (2.1.1-2.1.4), together with initial- and
boundary conditions, describes phenomena propagating forwardly in time and
will throughout the thesis therefore be called a forward model (or a forward system)
whenever necessary to distinguish it from an adjoint model (adjoint system) as e.g.
used in the gradient-based optimal waterflooding application, introduced later in
the thesis (Ch. 6).

Primary Variables - (po, Sw)

The two-equation system (2.1.5-2.1.6) is given in terms of four system variables
(two pressures and two saturations), so one needs to select two ’primary’ vari-
ables out of these four in which to write (2.1.5-2.1.6), in order to make the model

1’Effective porosity’: The interconnected void space in a rock that contributes to fluid flow or perme-
ability in a reservoir. Effective porosity excludes isolated pores and pore volume occupied by water
adsorbed on clay minerals or other grains. Total porosity is the total void space in the rock whether or
not it contributes to fluid flow.

2Fluid density and viscosity generally are functions of both pressure and temperature. In the mod-
els in this thesis, constant temperature is assumed, though.

3Intrinsic permeability is a property only of the medium (porosity and pore structure) and is inde-
pendent of the nature of the fluid(s).
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well-defined [25]. This choice may be crucial for computational efficiency and ro-
bustness, but also for simplicity in evaluating the ’secondary’ variables (i.e., those
defined through the primary variables, like fluid mobilities, capillary pressure;
see below), as well as the remaining, non-selected pressures and saturations. For
instance, in a fully time-implicit formulation and a Newton based linearization
approach for finding a numerical solution, the choice of primary variables may
have a large effect on the conditioning of the associated Jacobian matrix and hence
on the number of iterations required to solve the Jacobian system, as well as on
the number of Newton iterations. Perhaps even more important is to realize that
different choices of primary variables may lead to alternative pairs of differen-
tial equations equivalent to (2.1.5-2.1.6) revealing the true nature of the physical
problem under consideration not immediately seen from the original form of the
equations. For example, the superficial resemblance of (2.1.5-2.1.6) to the (non-
linear) heat conduction equation may cause one to expect two-phase problems
to be essentially parabolic in nature. However, using an alternative representa-
tion in an average pressure and water saturation one obtains a representation in
one pressure and one saturation equation, the former having parabolic or ellip-
tic character (for compressible and incompressible flow, respectively) while the
latter being hyperbolic in nature when capillary effects are negligible or absent, or
parabolic when capillary effects play a major role [209].

The two primary variables in this thesis are always oil pressure and water
saturation, the choice being principally dictated by the desire to use the same
descriptions in all the different parts of the closed-loop reservoir management
program (Chapter 1). Using (2.1.3-2.1.4) the system (2.1.5-2.1.6) can be recast into
the following po − Sw representation of the two-phase porous media flow:

∂ (ϕ(1− Sw)ρo)

∂t
−▽ ·

(
Kkro(Sw)ρo

µo

(▽po − ρog▽D)

)
= qo (2.1.7)

∂(ϕSwρw)

∂t
−▽ ·

(
Kkrw(Sw)ρw

µw

(▽po −
dPc(Sw)

dSw

▽ Sw − ρwg▽D)

)
= qw.(2.1.8)

Secondary Variables - Sources of Nonlinearity and Uncertainty

Equations (2.1.7-2.1.8) form a nonlinear coupled system, where the nonlinear char-
acter comes in through the saturation dependent parameters Pc and krα and the
pressure dependent fluid properties ρα and µα. Generally speaking, and espe-
cially when the fluid properties are insensitive or only slightly sensitive to pres-
sure variations (as is the case in all models in this thesis), the strongest nonlinear-
ity comes from the relative permeabilities and the capillary pressure as nonlinear
functions of saturation. The krα-Sw and Pc-Sw relationships are porous media de-
pendent and are determined by (very time-consuming) laboratory experiments on
a, compared to the size of a typical reservoir, very limited number of core samples.
This, together with the non-existence of a unifying method for obtaining these re-
lationships, makes them much more uncertain compared to other properties such
as density and viscosity. In this thesis, diverse krα-Sw and Pc-Sw relationships are
used, from simple first-order, i.e. straight lines (Fig. 2.1), to the more ’advanced’
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relations due to Brooks-Corey:

α ∈ {w, o} : Pc = Pd · S− 1
λ

N,α, SN,α =
Sw − Sαr

1− Swr − Sor

, krα = k0
rα · Snα

N,α, (2.1.9)

where SN,α is the normalized saturation, Swr and Sor are respectively water- and
oil residual saturations, Pd is the entry capillary pressure of the rock sample, λ is the
pore size distribution index, krw and kro are water- and oil relative permeabilities,
respectively, and k0

rw and k0
ro are relative permeability end points, and nw and no

are empirical coefficients. Typical ’realistic’ relative permeability curves used in
this thesis are depicted in Fig. (2.2).
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Figure 2.1: First-order relative per-
meability curves.
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Figure 2.2: Typical relative perme-
ability curves (water-wet rock).

Generally speaking, the shapes of water and oil relative permeability curves and
the related capillary pressure curves can have a big influence on the reservoir
performance as predicted by the reservoir mathematical model. In the examples
in this thesis, it is assumed that capillary (diffusion) effects are almost negligible
as compared to convection and the most uncertain parameter in the model is considered
to be the intrinsic or absolute permeability K. For waterflooding, this assumption is
generally justified.

2.2 Initial and Boundary Conditions

In all examples in this thesis the reservoir is assumed initially filled with oil. The
initial water saturation is therefore always a uniformly distributed connate water
saturation, i.e. Sw(ξ, t0) = Swc. In the absence of gravity effects, also the fluid
pressure conditions in the reservoir are assumed initially constant and uniform,
i.e. po(ξ, t0) = po,0. In the above, ξ = (x, y) ∈ Ω ⊂ R

2 or ξ = (x, y, z) ∈ Ω ⊂ R
3.

Regarding the boundary conditions (BCs), any reservoir in this work is assumed
to lie within some closed curve or surface across which there is no flow (no-flow
condition), with fluid injection (always water) and production (both oil and water)
taking place at wells, either vertical or well segments when a (smart) horizontal
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well is assumed. The enclosing curves are always assumed to be straight, i.e.,
the geometry of the reservoirs is always a rectangular one. The regularity of the
boundaries admits representation of no-flow boundary conditions by setting the
normal component of the flow vector at the boundaries to be zero, something
which is numerically obviously not trivial for an arbitrary boundary curve4.

Injection and extraction of fluids through wells can be formally represented by
point sources and sinks, respectively. Unfortunately, a numerical representation
of a true point source or sink, wherein the flow rate (q in (2.1.5 − 2.1.6)) is zero
everywhere except at the wells, while infinite at the well locations, is impossible
[209]. The flow rates at the wells are for this reason approximated by suitable
well models. Most approximations use some (usually radial) form of the Darcy
law, relating the fluid inflow and/or outflow rate to the difference between the
pressure in a vicinity of the well and the pressure in the well itself [25, 26, 71, 207,
208]. A general formulation for well models is

qt = ω(pwf − pgb), (2.2.1)

where pwf is the (bottom-hole) well flowing pressure, pgb is the pressure in the
grid-block for phase α, and ω is a parameter containing well geometric factors and
reservoir rock and fluid properties around the well. A more detailed description
of the well model used in the examples in this thesis is given in Appendix A.

It is important to note that the mathematical definition of BCs at injectors and
producers is subject to physical constraints that need to be taken into account, e.g.
in order to prevent a (numerical) optimization procedure to deliver a physically
non-feasible solution. For example, when optimizing the process of waterflooding
a hydrocarbon reservoir, which can e.g. be done by determining optimal fluid in-
jection and production strategies using optimal control theory as in [46, 47] (and
in this work as well), these constraints can for instance be the conditions under
which the wells are desired or forced to operate. Various types of well operat-
ing scenarios are possible, with or without explicit use of a well model. When
no well model is used, the liquid injection and production rates in the individual
wells can be thought as controlled directly, or equivalently, these individual flow
rates can be considered as the control parameters. When a well model as (2.2.1)
is used, the injection flow rate can still be controlled directly, as the only inject-
ing fluid is water and the amount of the injected fluid hence only depends on the
total fluid mobility, λt := λw + λo ≡ krw

µw
+ kro

µo
, in the reservoir directly around

the well and on pwf . The fluid flowing into5 a producer, however, is generally a

4Usually there is a little practical interest in an accurate solution (very) close to the curved boundary,
obtaining a correct flow solution in the interior of the reservoir being much more important. For
this reason are reservoirs with a non-regular boundaries often represented as being embedded in a
rectangular parallelopiped, and the intrinsic permeability and porosity spatially distributed functions
are set zero outside the reservoir boundary curve.

5Or ’out of’, if there it happens that the pressure in the producer becomes higher than the pressure
directly around the well. Such a situation could for example occur if the well is completed through
multiple reservoir sections, each operating at a different pressure regime, with as the possible result
that fluids produced at some point along the well in one section flow back (”back-flow”, also called
”cross-flow”) at some other point in another section. Including back-flow in optimization studies may
cause serious numerical difficulties and its occurrence in the simulations is often made impossible by
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composition of more (here two) fluids, which amounts are determined by their
individual mobilities directly around the well and by pwf . The instantaneous pro-
duced fluid composition cannot therefore be controlled directly by changing pwf

[46]. On the other side, the well flowing pressures in the individual injectors and
producers can be fixed, for instance, and the individual injection and production
rates controlled by the adjustment of the valve-settings (a number between 0 and
1) in the wells, in which case the well model (2.2.1) is equipped with an additional
multiplication ’interval control valve’ parameter αicv :

qt = αicvω(pwf − pgb). (2.2.2)

In this model, the well rate can thus be ’changed’ by manipulation of αicv , which
represents a non-physical choke model. This approach is in the literature known
as ”modeling a choke as a pseudodevice” [127].

2.3 Spatial Discretization and State-Space Model For-

mulation

Nonlinear partial differential equations like (2.1.5-2.1.6) are generally not solvable
analytically, since their solutions display richer structures than can be described
by analytic (distributed) functions. That means that one is generally forced to look
for an approximate numerical solution at time and spatial points of interest. Con-
struction of spatially discretized reservoir models is commonly performed using
well-established techniques of finite differences (FD) (used in this thesis), finite
volumes (FV), or finite elements (FE). Whatever the preferred space-discretization
method might be, it will ultimately deliver a model in the following continuous-
time nonlinear state-space form (Appendix A):

E(x)
dx

dt
= f(x, u), (2.3.1)

where x ∈ X ⊂ R
n is an n-dimensional state vector, here consisting of the spa-

tially discretized primary variables, po and Sw, u ∈ U ⊂ R
m is an m-dimensional

input (or control) signal, e.g. containing well flow-rates or well valve settings, and
E : X → W ⊂ R

n×n is a sparse state-dependent (accumulation) matrix. The ex-
act sparsity pattern depends on the ordering of the variables in the state vector,
but all patterns are directly transformable into each other by multiplication by a
permutation matrix.

Note that (2.3.1) differs from the state-space description more commonly en-
countered in the literature:

dx

dt
= f(x, u). (2.3.2)

In order to distinguish between the two representations, in the sequel (2.3.2) will

appropriate choice of well model parameters.
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be referred to as a standard state-space form, whereas (2.3.1) will be called a gene-
ralized state-space form.

If the accumulation matrix E is non-singular, the generalized state-space model
can, at least formally, be brought into the standard state-space form by inverting
E, yielding

dx

dt
= E−1(x)f(x,u) =: f̃ (x,u). (2.3.3)

A typical situation in which E is singular is e.g. when both the rock and the fluids
are incompressible (Appendix A). In such situations a forward model different
than (2.3.1) might be more suitable or even required.

State-dependent parameter (input-affine) factored form of the system dynamics

It turns out (see Appendix A) that spatial discretization naturally delivers an f
factorized as6 f(x,u) = A(x)x + g(x,u), so that (2.3.1) hence becomes

E(x)
dx

dt
= A(x)x + g(x, u), (2.3.4)

whereby the analytic forms of the elements of matrices E and A and vector field
g, as well as the actual form of the latter, in a particular situation depend on the
physics included (gravity, capillary pressure, ...) and the type of the control (well
models used or not). Moreover, in the general case, the appearance of the state x
in E, A and g is rather implicit, i.e., the elements of E, A and g consist of (generally
non-polynomial) functions of the state variables. Formally a more correct notation
would therefore be E(ϑ(x)), A(ϑ(x)) and g(ϑ(x),u), where ϑ is a vector compris-
ing state-dependent parameters (compressibilities, relative permeabilities, etc.).
A general space-discrete, time-continuous generalized state-space reservoir description
may therefore be taken to be:

E(ϑ(x))
dx

dt
= A(ϑ(x))x + g(ϑ(x), u). (2.3.5)

For example, the governing equations of a two-dimensional, two-phase (oil-
water) reservoir flow, obtained using a finite difference discretization in space,
may be expressed as

V(ϑ(x))W(ϑ(x))
dx

dt
= T(ϑ(x))x + V(ϑ(x))F(ϑ(x))Lquu, (2.3.6)

6We note that a decomposition of a nonlinear n-dimensional vector field h(x) into a matrix-vector
product h(x) = A(x)x is in general not unique. Indeed, let h(x) = A(x)x and let K(x) be any non-
zero matrix such that K(x)x = 0. Then F(x) := A(x) ± K(x) also satisfies h(x) = F(x)x. Actually,
for α ∈ R, the linear combination Q(x, α) := αA(x) + (1 − α)F(x) parametrizes a set of infinitely
many state-dependent matrices with the same decomposing property. As an illustration of the non-

uniqueness, let n = 2, x =

»

x1

x2

–

and h(x) =

»

x2
1

x1 + x2

–

. Then A1(x) =

»

x1 0
1 1

–

and

A2(x) =

»

x1 − x2 x1

x1x2 + 1 1 − x2
1

–

satisfy h(x) = A1(x)x = A2(x)x. In this thesis no use of this poten-

tially/possibly useful property has been made.



16 CHAPTER 2: Porous Media Flow: Basic Concepts and Model Formulations

where x = [po,11, Sw,11, . . . , po,nxny
, Sw,nxny

]T is the n-dimensional state vector
containing oil pressures and water saturations for each of the nxny = n

2 grid
blocks, V is a diagonal mass matrix with entries that are functions of grid block
volume and fluid densities, W is a block diagonal matrix with entries being func-
tions of compressibility, porosity and water saturation, T is a block matrix contain-
ing the transmissibilities for oil and water, F is a (quasi7) block-diagonal matrix
containing fractional-flow functions for water and oil, and Lqu is a selection (or lo-
cation) matrix consisting of zeros and ones at appropriate places so that u ≡ LT

quqt

is the input vector containing total liquid rates (generally, qt = qo + qw at the
producers and qw at the injectors). Again, if a well is a producer (injector), the
convention here is that its total rate is negative (positive).8.

2.4 Discrete-Time Formulations and Methods of So-

lution

Time-derivative operators are in this thesis always approximated by the simple

first-order finite difference, i.e. dy
dt
→ y(t+∆t)−y(t)

∆t
. Bringing (2.3.5) into a time-

discrete form then requires one to choose at which time-instances the different in-
puts, state variables and state-dependent parameter matrices are evaluated. Vari-
ous choices are possible, some of the standard ones given below.

Fully-Implicit

In this formulation all state-dependent parameters and system inputs are ’evalu-
ated’ at the next time level, yielding

0 ≡ [E(ϑk+1)−∆tkA(ϑk+1)]xk+1 −E(ϑk+1)xk + ∆tkg(ϑk+1,uk+1)

=: h(xk,xk+1,uk+1), (2.4.1)

where k denotes the current integration time-step, ∆tk := tk+1 − tk, and ϑk+1 :=
ϑ(xk+1). Solving (2.4.1) generally requires an iterative treatment, usually by New-
ton’s method [43]. The fully-implicit solution method is unconditionally stable
(i.e. yields a stable solution for large timesteps, the timestep length restrictions be-
ing only those necessary to ensure convergence of the Newton iteration scheme.).

7A block diagonal (or diagonal block) matrix is defined as a square diagonal matrix in which the
diagonal elements are square matrices. The blocks in F are not square matrices but two-dimensional

column vectors of the form

»

fw

fo

–

i

, where fα = qα

qt

Pc=0
= λα

λt
, α = w, o, are the fractional-flow

functions for water and oil, respectively, and i denotes the grid-block in question (see Appendix A for
a more detailed account). Clearly, 0 ≤ fw, fo ≤ 1 and fw + fo = 1. For an exclusively water injecting

well, the fractional-flow vector is

»

1
0

–

. Moreover, for a grid-block j without wells the fractional-

flows are not defined. Since the flow-rate for such a well is zero, (fw)j and (fo)j may be assigned any
finite value.

8If a well in a grid-block i is described by a well model (e.g. (2.2.1)) with prescribed bottom-hole
pressure, the resulting system of equations is similar, with ui = pbh,i, and T and F adjusted at appro-
priate places by terms involving the well-index ωi.
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Sequential Implicit

The major disadvantage of the fully implicit solution method is that at any time-
step a full system of n linear equations must be solved simultaneously, where n is
the total number of unknown grid-block pressures and saturations. In the sequen-
tial method, the solution of the pressure equation is separated from the saturation
equation, with the first step being the solution of a set of pressure equations, fol-
lowed by the solution of a set of saturation equations using the pressure solution
from step one. This is similar to the IMPES method described below, with the
important difference that also the saturations are treated implicitly in time [255].
The method involves reordering of the flow equations, thus implying reordering
of the state-vector (in 2-D case) from x = [po,11, Sw,11, . . . , po,nxny

, Sw,nxny
]T to

x = [po,11, po,12, . . . , po,nxny
, Sw,11, Sw,12, . . . , Sw,nxny

]T and a change in the band
structure of the system matrices. The final separation step, which combines the
individual phase material balance equations by adding them, brings the thus re-
ordered system into a block-triangular form which is then solved sequentially for
the pressures and the saturations (each of dimension n/2).

As at each timestep two systems of equations are solved each being a half of the
size (for 2-phase problems) of the fully-implicit formulation, for large-scale reser-
voir simulations solution methods based on sequential formulation often greatly
outperform fully-implicit ones in terms of computational costs. Moreover, al-
though the method is not unconditionally stable, it generally allows for time-step
lengths much larger than using e.g. IMPES formulations. On the other hand, the
achievable computational gain strongly depends also on the amount of iteration
steps involved in the solution process, which for sequential approaches may be
considerable, especially for the interblock flow terms.

IMPES (IMplicit Pressure Explicit Saturation)

Like in the sequential method, IMPES formulations transform the coupled sys-
tems of flow equations into two separate sets of equations for the pressures and
the saturations, respectively. Now, however, after solving for the pressures im-
plicitly the saturations are determined explicitly by solving material balance equa-
tions. The relative permeabilities and the capillary pressure, as saturation de-
pendent parameters, are assumed to be constant during a time-step. A detailed
derivation of an IMPES formulation is given in Chapter 5.3.

IMPES formulations are simple to set up, and the solving process is easy to im-
plement and requires less computer memory and CPU time compared with other
methods. However, for it to be stable, this classical method may require pro-
hibitively small time steps for the saturation (e.g. for small grid-block problems
such as coning ones, or for long time integration problems).

Quasi-Implicit

Here, both pressures and saturations are considered implicitly in time, while the
state-dependent parameters and inputs are evaluated at the current time level,
yielding:

[E(ϑk)−∆tkA(ϑk)]xk+1 = E(ϑk)xk + ∆tkg(ϑk,uk). (2.4.2)
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The reasoning here is that the state-dependent parameters are expected to vary
slowly with changing states, in particular when the time-step length considered
is taken rather moderate. In waterflood applications this often appears to be a
valid assumption, except when high fluid velocity effects are present (e.g. wa-
ter coning at production wells) as then the state-dependent phase mobilities may
change rather rapidly. Insisting on considering the mobilities as constants during
a timestep would in such situations imply impractically small timestep sizes in
order to both ensure stability and limit the time truncation error.

AIM (Adaptive Implicit Method)

Rather than providing a fixed degree of implicitness in every gridblock at every
timestep (or iteration), the AIM method assigns different levels of implicitness to
the adjacent gridblocks [261, 262]. As a calculation proceeds these levels shift in
space and in time as needed to maintain stability. As a switching criteria from
explicit to implicit a restriction on the allowable saturation change can be used,
for instance.

The mathematical procedure starts by labeling the implicit-explicit mix of un-
knowns and composes then the matrix problem. The matrix problem can be re-
duced as long as there are unknowns to be computed explicitly, therefore appro-
priate operations are performed to put it into a reduced form. This form is block
upper-triangular with the left-upper part being diagonal and the remaining two
non-zero block matrices possessing less of a band structure than the correspond-
ing parts in the original matrix. As the degree of implicitness is allowed to change
during the course of the simulation, so will accordingly also the dimensions of
the matrix blocks and the associated computational costs (in terms of both the
memory and the CPU time).

2.5 Single-Phase Flow

Single-phase reservoir flow is in this thesis always assumed to be slightly com-
pressible and isothermal, which admits a model by a linear parabolic diffusion equa-
tion with constant coefficients for the fluid-pressure [25, 37, 209]. For instance, for a
2D, horizontal flow on a Cartesian grid, the model is:

∂(ϕρ)

∂t
= ∇ · [ ρ

µ
K∇p] + ρq (2.5.1)

p(x, y, 0) = g(x, y),

where, as usual, K and ϕ are the permeability tensor and the porosity of the
medium, respectively, ρ and µ are the density and the viscosity of the fluid, and
the source term q [1

s
] expresses a flow rate per unit volume (positive for injection,

negative for production). For a slightly compressible flow (i.e., both fluid and
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rock), a straightforward manipulation of (2.5.1) yields:

µϕct

∂p

∂t
= ∇ ·

(
ρ

µ
K∇p

)
+ ρq (2.5.2)

p(x, y, 0) = g(x, y),

with ct the (constant) total compressibility coefficient (ct = cr + cf , with cr =
1
ϕ
(∂ϕ

∂p
)T and cf

1
ρ
(∂ρ

∂p
)T the as constant assumed rock and the fluid compressibility

coefficients, respectively).

Spatial discretization of (2.5.2) will yield a model of the form:

E
dx

dt
= Ax + q̃, (2.5.3)

x(0) = x0,

whereby x = p are the grid-block pressures, and the constant diagonal matrix
E = V and the constant symmetric (sparse) matrix A = −T are so-called ’accumu-
lation’ matrix and ’transmissibility’ matrix, respectively. For instance, if a finite-
difference spatial approximation is used, the matrix A consists of a tridiagonal
part corresponding to the x-derivative, and two off-diagonal bands correspond-
ing to the y-derivatives. Such a ’regular’ structure of the matrix A arises from the
standard row (or column) ordering of the variables (grid numbering). Different or-
dering schemes, like e.g. ’alternating diagonal ordering’ (D4-ordering), ’red black
ordering, ’nested dissection ordering’, etc., which all lead to different fill-ins in the
matrix factorizations (e.g., LU, Cholesky) of A (in terms of both the pattern as well
as the magnitude of the non-zero elements) are not considered here. The reason
is two-fold: a) orderings performing best in direct solution methods (i.e., using
full factorizations) may actually perform rather worse (in terms of the number of
iterations) in a ’incomplete preconditioned factorization’ setting (e.g., ICCG) (see,
e.g., [73] and references therein); b) the performance of the reduced-order models
is, at least for linear systems, generally ordering-insensitive, due to both the small
size and, as clarified in the next chapter(s), the non-sparsity of the reduced-order
matrices.





3 CHAPTER

Proposed Methodology: Model
Reduction by Projections

This chapter presents the framework of a methodology to achieve reservoir mod-
els dimensionality reduction based on projection-based Model Order Reduction (MOR).
The chapter starts with a short introduction on the reasoning behind the method-
ology. The basic (finite-dimensional) mathematical setting of the projection-based
MOR methodology is outlined in Section 3.2, followed by an overview of some of
the possible choices for projection subspaces in Section 3.3.

3.1 Projection-based MOR: General Idea

Loosely speaking, projection-based MOR methods are characterized by i) ’com-
pressing’ the state’s information by projecting the state variable onto a subspace
of lower dimension than the state itself, and ii) re-writing, generally also by a
projection, the system’s dynamics equations in a compressed representation. The
key idea hereby is that not all output of a model is evenly relevant to a partic-
ular problem. For some applications such reasoning is intuitively justified. For
example, when a model is to be used for control or optimization purposes, one
is generally not interested in an accurate approximation of all the variables (e.g.
the states) involved in the computation, but rather in a ’good-enough’ approxi-
mation of only a (very) small part of the model output. Combining the informa-
tion from the high-dimensional model in a suitable way and compressing it e.g.
by projecting the equations on well-defined ’dominant or important directions’,
reduced-order models can be obtained having a much lower dimension than the
original high-order model. Similar arguments also hold for inverse problems like
parameter and state estimation or prediction, where a reduced-order model may
suffice if statistically accurate.

The techniques and approaches in this thesis rely highly on those developed
primarily in the well-established research fields of numerical system and control
theory, mechanical and structural engineering, electric circuit analysis, statistical
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analysis and turbulence theory. Generally, for single-phase (slightly compressible)
reservoir flow there are much more possibilities for efficient MOR, simply because
it can be described by linear time-invariant (LTI) dynamic models for which exists
a vast literature on rather systematically developed reduction approaches and sta-
ble and efficient algorithms (Chapter 4). Moreover, some characteristics inherent
to multi-phase systems, like, e.g., the strongly coupled character of different phys-
ical phenomena and fluid-front interfaces moving all over the spatial domain, sim-
ply do not exist in these systems.

3.2 Mathematics of Projection-Based ROM

In the mathematical language, the projection-based class of model order reduc-
tion can be described as follows. Let the dynamic behaviour of the system under
consideration be modeled by a system of equations as (2.3.5), with a given state
initial condition, x(0) = x0. In order to accommodate applications where one is
interested in accurately approximating the behavior of only a small part of the
model output (e.g., pressures at injectors and/or flow-rates at producers), let the
”input-to-state” model (2.3.5) be augmented by an ”output equation” modeling
the behavior of these variables:

E(ϑ(x))
dx

dt
= f(ϑ(x), u), (3.2.1)

y = h(x, u), (3.2.2)

x(0) = x0. (3.2.3)

All projection based model reduction methods share the following feature: they
determine k-dimensional (k≪ n) subspaces S1 and S2 and form a reduced system
as the result of projection of the state onto S1 and the resulting equation residual
onto S2. For arbitrary matrices V and W of size n × k spanning S1 and S2, re-
spectively, the resulting reduced order model describing the time-evolution of the
k-dimensional vector of the expansion coefficients a is given by:

Er(ϑ(Va))
da

dt
= fr(ϑ(Va), u), (3.2.4)

ỹ = h(Va, u), , (3.2.5)

a(0) = V†x(0), (3.2.6)

where Er(ϑ(Va)) = WT E(ϑ(Va))V ∈ R
k×k and fr(ϑ(Va) = WT f(ϑ(Va), u) ∈ R

k,
and V† := (VT V)−1VT is the pseudo-inverse of V. If subspaces S1 and S2 are
equal the projection is called orthogonal, otherwise it is oblique. In the sequel,
matrices W and V which column spaces span S2 and S1, respectively, will be re-
ferred to as the left projection matrix and the right projection matrix, respectively.

When the matrix E is nonsingular, (3.2.1) could, at least formally, be converted
into the standard state-space form (2.3.2), in which case a reduced-order model
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obtained by a procedure like above could be expressed as:

WT V
da

dt
= WT E−1(ϑ(Va))f(ϑ(Va), u), (3.2.7)

ỹ = h(Va, u), (3.2.8)

a(0) = V†x(0).

For computational reasons, projection matrices W and V are often enforced to
be ’bi-orthogonal’, i.e. WT V = Ik, and the state-dynamics equation would then
read as: da

dt
= WT E−1(ϑ(Va))f(ϑ(Va), u). Due to the matrix inversion operation,

however, this form is generally not preferable for large systems. For the reduced
system of equations (3.2.1) with Er having full-rank this restriction would gener-
ally not hold, as the dimension of the projection subspaces in practical applica-
tions will be required to be rather small.

Figure 3.1 illustrates where the MOR as described above fits in the overall mod-
eling process from setting up the (PDE) equations describing the physical pro-
cess under consideration (here the two-phase porous-media flow) until forming a
highly reduced model suitable for the intended purpose. We note that the dis-
cretized high-order reservoir flow system is formulated in the standard state-
space form (2.3.2) and the particular time-discrete quasi-implicit approximation
(2.4.2). This figure thus also shows that the projection-based model reduction
is not restricted to the continuous-time state-space descriptions, but that it can
equally well be performed on their discrete-time approximations (cq. Section 2.4).
Each different discrete-time approximation will thereby generally lead to a dif-
ferent reduced-order model, perhaps with different computational and numerical
properties.

Special case: Linear Systems

A special class of state-space systems are so-called Linear Time Invariant (LTI)
state-space1 systems, which generalized continuous-time form is:

E
dx

dt
= Ax + Bu, x(0) = x0, (3.2.9)

y = Cx + Du, (3.2.10)

where E, A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n are matrices, generally sparse

for large systems, with constant coefficients, and the constant matrix D ∈ R
p×m

models the possible instantaneous dependence of system’s outputs on its inputs.
The existence of a non-zero D depends solely on the choice of the output variables
(see Example 3.2.1). On the other side, as the term Du does not depend on the state
of the system, it therefore does not have any impact on any projection-based MOR

1Not every linear system can be described in a state-space form. Pure delay systems, for example,
where the output of the system is just a delayed system’s input, do not allow a (finite-dimensional)
state-space representation. Moreover, it might, depending on the intended use of the model, also
just be the modeler’s choice to prefer a representation different than a state-space one (e.g., impulse-
response in time domain, transfer-function in frequency/Laplace domain, etc.)
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Figure 3.1: From a PDE to a low-dimensional ODE reservoir flow description using
the projection MOR framework.

procedure or system properties like controllability, observability, etc. Indeed, one
can always redefine the system output as y ← y − Du ≡ Cx. Therefore, for the
purpose of presenting the theory of MOR, in the sequel of the thesis it will be
frequently assumed that D ≡ 0. Projection-based reduced-order models for (3.2.9-
3.2.10) then have the form:

Er

da

dt
= Arx + Bru, a(0) = V†x0, (3.2.11)

ỹ = Cra,

with Er = WT EV ∈ R
k×k, Ar = WT AV ∈ R

k×k ∈ R
k×k, Br = WT B ∈ R

k×m, and
Cr = CV ∈ R

p×k, and ỹ is an approximation of y. The reduced-order matrices
can all be precalculated, hence simulation with these models is generally very fast
(e.g., using direct solvers).

Example 3.2.1. (Single phase, slightly compressible porous-media flow)

An illustrative example of an LTI state-space model is the single-phase parabolic
diffusion equation (2.5.1) describing the fluid-pressure in a horizontal reservoir on
a Cartesian grid, which, for slightly compressible fluid and rock, takes the form
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(2.5.2):

µϕct

∂p

∂t
= ∇ ·

(
ρ

µ
K∇p

)
+ ρq (3.2.12)

p(x, y, 0) = g(x, y),

with ct the (constant) total compressibility coefficient (ct = cr + cf , with cr =
1
ϕ
(∂ϕ

∂p
)T and cf

1
ρ
(∂ρ

∂p
)T the as constant assumed rock and the fluid compressibility

coefficients, respectively).

A finite-difference spatial approximation of (3.2.12) will yield a model of the form
(3.2.9-3.2.10), whereby x = p are the grid-block pressures, the diagonal matrix
E = V and the symmetric (banded) matrix A = −T are so-called ’accumula-
tion’ matrix and ’transmissibility’ matrix, respectively, and the precise form of
the input-, the output- and the ’direct term’ matrices B, C and D, respectively,
depends on the choice and type of the inputs and the outputs. For example, if
the output variables are chosen to form a subset of the reservoir gridblock pres-
sures (i.e. the states) only, C will just be a ’selector’ matrix containing only zeros
except at places corresponding to the grid-blocks of interest (normally the grid-
blocks connected to a well), and D will be zero. The case D 6= 0 can e.g. occur
when some or all of the output variables are chosen to be (physically more sen-
sible and interesting) flow-rates, modeled by a well-model like e.g. (2.2.1), i.e.
qi = ωi(pwf,i − pi). Such a choice implies that the corresponding grid-block flows
are controlled by the well flowing pressures pwf,i at those positions (that is, pwf,i

form a subset of the input variables). Note that in this case the diagonal element
of the transmissibility matrix T corresponding to these grid-blocks will change by
an amount of ωi, causing T to become non-singular, as opposite to the singular
case when all inputs are flow-rate controlled ones.

Remark 3.2.1. For a nonsingular E, it would be possible to rewrite (3.2.9) in the

standard state-space form dx
dt

= Ãx + B̃u, with Ã = E−1A and B̃ = E−1B, but,
again, this is not preferable for large-systems due to the matrix inversion opera-
tion. Moreover, even if E happens to be easily invertible, using a standard state-
space form so obtained may still be impractical; for instance when both E and
A are sparse E−1A will generally be dense (not in the above example, though,
as there E := V is a diagonal matrix so that E−1A = V−1T in this case is just a
row-scaled version of T).

Remark 3.2.2. For discrete-time LTI systems, that is, Exk+1 = Axk + Buk, yk =
Cxk + Duk, there exist analogous MOR theories and approaches. Continuous-
time LTI models can be translated into discrete-time equivalents using e.g. matrix
exponential transformations or bilinear transformation of the Laplace frequency
operator. In the present context the latter transformation is of particular interest.
For instance, it makes it possible to solve in the continuous-time certain optimal
approximation problems which are easier to formulate in the discrete-time (see,
e.g., [10]), and then transform back. On the other side, due to the invariance of cer-
tain important system properties under bilinear transformation, effective iterative
approximations of the related continuous-time problems can be formulated (see,
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e.g., the Smith’s method in Section 4.4 for computing continuous-time Gramians
by transforming the corresponding Lyapunov matrix equations into an iterative
sequence for solving Stein equations).

3.3 Projection subspaces and their bases

The choice for the projection matrices W and V generally depends on:

• the type of the high-dimensional model: linear or nonlinear.

• the aim of model reduction: i) accurate approximation of (a large part of) the
whole state-space, e.g. by minimizing the error (in a suitable norm) intro-
duced by the approximation x ≈ Va, and/or the residual of the system equa-
tion, E(ϑ(Va))V da

dt
− f(ϑ(Va), u), or of system’s I/O behavior (for purpose of

open- or closed-loop control, for instance), ii) acceleration and/or relaxation of
solutions of optimization or inverse problems in general, etc.

• Required computational effort to compute these matrices.

In this thesis, the projection subspaces are always defined by basis functions hav-
ing a (spatially) global character, as opposed to local basis functions used in ’fi-
nite’ discretization methods (piecewise polynomials in the FEM, grid functions in
the FDM, etc.). The expectation when using global spatial basis functions over
local ones is that the former will be able to produce accurate, or at least ’ade-
quate’, functional representations while requiring much fewer unknowns to be
resolved. When we say ’global’, we mean that the basis functions are related to
the flow behavior on the whole spatial domain and should therefore not be con-
fused with ’global’ basis functions used e.g. in multi-scale methods for reservoir
flow [61, 79, 130, 148, 178], which employ non-local basis functions based on just
a coarser grid than the underlying fine one. Moreover, ’our’ basis functions for
two-phase flow differ also from other ’truly’ global (and grid-free) basis functions
like e.g. Fourier or Chebyshev ones, in that our basis functions are determined
by processing data obtained from numerical simulations of the underlying high-
order model whereas the other ones are ’general’ (analytic) basis functions. As
general basis functions normally imply a very limited (direct) connection to the
problem at hand, they may, even when mathematically convenient, be expected
to be factually too general and not feasible for e.g. real-time estimation and opti-
mization.

3.3.1 Linear Systems

Most MOR techniques are, not surprisingly, developed for approximation of the
(I/O) behavior of linear time-invariant (LTI) systems, which continuous-time ge-
neralized state-space form is given by (3.2.9-3.2.10). The literature on both projec-
tion based as well as non-projection based techniques for model reduction of LTI
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systems is very rich and the theory is very well-developed and relies on the well-
defined and powerful system-theoretical notions of transfer function, moment
matching, stability, controllability and observability, minimal state-space repre-
sentations, Hankel operator theory, etc. [10–13, 86, 87, 115, 190, 260]. As for the
projection-based methods, they all fall into the following major types according
to the particular method of obtaining projection subspaces:

• Krylov-subspace (moment-matching) methods: match a certain number of
moments of the system’s transfer function and obtain their projection sub-
spaces as the Krylov subspaces2 of matricesK{(jωE−A)−1, B} andK{(jωE−
A)−T , CT }, where jω is the Laplace variable. All Krylov based methods are
very fast but tend to create rather larger projection subspaces than necessary.

• SVD based methods: these obtain their projection subspaces as the ’domi-
nant eigenspaces’, e.g. of the product of so-called ’controllability’ and ’ob-
servability’ Gramians of the system as in the methods based on ’balanced
realizations’.

• ’Snapshots’ based methods: these obtain their projection subspaces from the
snapshots of the states that the system passes when simulating some train-
ing input (see also for nonlinear systems hereafter).

An interesting result that holds for this class of systems is the following.

Proposition 3.3.1. Given a generalized LTI state-space model:

E
dx

dt
= Ax + Bu,

y = Cx,

and two k-dimensional reduced models:

WT
1 EV1

da1

dt
= WT

1 AV1a1 + WT
1 Bu,

y1 = CV1a1,

and

WT
2 EV2

da2

dt
= WT

2 AV2a2 + WT
2 Bu,

y2 = CV2a2,

where the column spaces of W1 and V1 are the same as those of W2 and V2, respectively.
The following is true:

The two reduced order systems are equivalent in that they have the same transfer
function Hr(s) , Cr(sEr − Ar)

−1Br.

2A r-dimensional Krylov subspace, Kr , of a pair (A, B) is defined as Kr =
colspan{B, AB, . . . , Ar−1B}.
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Proof. The proof is straightforward and uses the fact that there always exist k× k-
dimensional nonsingular matrices R and U such that

W1 = W2R,

V1 = V2U,

so that

Hr1(s) = CV1(sWT
1 EV1 −WT

1 AV1)
−1WT

1 B

= CV2U[RT WT
2 (sE−A)V2U]−1RT WT

2 B

= CV2U[RT (sWT
2 EV2 −WT

2 AV2)U]−1RT WT
2 B

= CV2UU−1(sWT
2 EV2 −WT

2 AV2)
−1R−T RT WT

2 B

= CV2(sWT
2 EV2 −WT

2 AV2)
−1WT

2 B

= Hr2(s).

This result is of fundamental importance for the development of projection-
based MOR techniques and algorithms. Indeed, it states that the choice of bases
for S1 and S2 is actually immaterial for the I/O behavior. That is, the exact projection
matrices are not important, only their column spaces are. Any two pairs of the left and
the right projection matrices whose columns span S2 and S1, respectively, will be ’I/O
equivalent’ (numerically, though, there may be considerable differences between
such equivalent models: conditioning, etc.).

3.3.2 Nonlinear State-Space Systems

Model reduction of nonlinear dynamical systems is a much more difficult prob-
lem. For example, a suitable matrix projection pair in the LTI case is by many of
the aforementioned reduction techniques determined using only system matrices
A, B and/or C, which is in a general nonlinear case clearly impossible. While a
constant basis can always be determined based on a linearization of the (smooth-
enough) nonlinear model, thus using only the linearized system matrices, the va-
lidity of such a basis will in a general case clearly be restricted to a very limited
range of inputs and/or small time intervals, which is simply a consequence of
the fact that linearizations approximate only around the expansion points, i.e. lo-
cally [123]. To improve validity and accuracy more terms in a Taylor expansion of
the nonlinear terms could be used, e.g. two as in a ’quadratic reduction method’
where the nonlinear vector field f in ẋ = f(x) + Bu is approximated by the first
tow-terms of the Taylor series of f around an expansion point in the state-space
[59]. Although the approximate state dynamics obtained this way involves some
of the nonlinearity of the original nonlinear model, the reduction basis (normally
spanning a Krylov subspace and found by assistance of an Arnoldi process) is still
based only on the linear part, i.e. the Jacobian matrix, of f.
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The same is the case also in another technique for nonlinear MOR based on
linearizations, the so-called trajectory-based piecewise linear (TPWL) MOR [225–228,
263, 284], which is based on forming a quasi-piecewise-linear approximate rep-
resentation of the system nonlinearity as a weighted sum of local linearizations
around several ’suitably chosen’ expansion points. For each of the linearized
models a reduction basis can be obtained by a linear MOR technique and the thus
obtained reduced bases could be aggregated and, if necessary, bi-orthogonalized
(e.g., by SVD) in order to remove (almost) linearly dependent vectors present in
the different bases to obtain the final projection matrices V and W. Combining
projection bases implies covering a larger part of the system’s nonlinearity than
in the other two approaches mentioned above. It also means that the final pro-
jection bases have ’time-global’ character, as opposite to a time-local character of
those employed in the first two approaches described above (single first-order and
quadratic nonlinearity approximation). As covering the whole state-space of the
high-dimensional nonlinear model with linear approximations would of course
be, if feasible at all, extremely expensive, one generally uses one or more training
trajectories of the high-dimensional system, corresponding to selected training in-
put(s) (and parameters, if the system description except the states explicitly also
involves parameters [44]). As exact high-dimensional non-linear simulations are
generally expensive, for determining the linearization points one may instead per-
form cost-effective approximate simulations, e.g. using reduced order linearized
systems; as long as the approximate trajectories remain ’close’ to the exact ones,
the collection of the linearized representations will ’cover’ the suitable part of the
state-space. The reduced linearized systems in such a procedure could e.g. be
reduced-order representations of the subsequently determined linearized mod-
els ’as one goes along the training trajectory’; that is, at a given linearization point
one may generate a linearized system, determine a reduced-order model of it, and
then simulate this reduced model to reach the next linearization point [225]. Issues
that need to be addressed in every particular situation when using TWPL are the
validity of the nonlinearity approximations, how to chose the linearizations and
how many of them, how to determine the ’optimal’ weights in the approximation
of the nonlinearities in the piece-wise linear MOR, what are ’suitable’ training in-
puts and/or parameters, etc.

Data-driven Projection Subspaces

In all the above techniques it is the dynamical system which is approximated. In
the ’data-driven’ MOR methods, the approximation is w.r.t. the state itself, that
is, snapshots of the solution of the system are created (by simulation or experi-
ment) and a global basis is extracted form these snapshots that approximates the
(created!) states well in a certain sense. Some of the most prominent choices for
projection bases from this class are described below. Being based on actual sys-
tem’s solution data, projection bases determined by these methods are expected
to generally be of lower dimensions than those obtained by TPWL for models
involving severe nonlinearities. Indeed, the TWPL in this case needs a lot of lin-
earizations to cover a suitable part of the state-space, implying a large reduced
basis. On the other side, TPWL may be expected to be more robust w.r.t. changes
in the inputs and parameters. Moreover, it is generally much cheaper to evaluate
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as all local Jacobians are already reduced and stored. This, however, also implies
that TWPL requires much more storage. Conceptually, snapshot MOR techniques
can be combined with TWPL, which could e.g. be beneficial w.r.t. the cost in
evaluation of the nonlinear terms in the dynamical model.

It appears that all these ’hybrid’ methods are conceptually related to the so-called
’reduced-basis methods’ developed in the late 1970’s and early 1980’s in [8, 196,
199, 200] in the context of nonlinear structural analysis and later developed more
broadly in [28, 29, 32, 89, 118, 138–142, 181, 202, 215, 235], for instance. The most
prominent of these early techniques for transient and/or parameter dependent
problems are:

• Lagrange polynomial approach: uses as the basis basis functions solutions

of the complex (here, high-dimensional) problem at several time-instances
during the evolution of the system or for several values of the parameters
that appear in the system’s specification.

• Taylor polynomial approach: uses as the basis functions the solutions of the

problem along with their derivatives w.r.t. the parameters evaluated at a
reference point in the parameter space. While the solution values are ob-
tained by evaluating the non-linear system equations, the derivative values
are generally obtained by solving linear systems of matrix equations formed
by differentiating the system equations w.r.t. the parameter. The linear sys-
tems for all the derivatives have the same coefficient matrix, so the compu-
tations require only backsolves (if a suitable matrix factorization is feasible,
of course).

• Hermite polynomial approach: combines the above two by using as the ba-
sis functions the solutions and their derivatives for various parameter val-
ues.

In all these, adding new elements will increase the conditioning of the reduced
system matrices, which in turn affects the accuracy of the reduced-basis method.
To obtain a better-conditioned reduced-order system, the basis can be orthogonal-
ized, usually by some Gram-Schmidt procedure.

An orthonormal basis is employed also in the Proper Orthogonal Decomposition

(POD) approach, which is the most popular ROM approach for complex systems
today. In this thesis, a member from this MOR class has been decided to employ
and assess the applicability and performance of. The standard POD approach
also uses basis functions that span a data set collected at several instants of time
or by evaluating the computational solution for several values of the parameters
appearing in the problem description or by a combination of the two, but now in
a certain ”optimal” fashion. As we shall see in Chapter 5, the POD basis elements
are optimal in the sense that they guarantee, in the mean square error sense, the
best reconstruction of the snapshots used to determine the basis among all (lin-
ear) orthonormal bases of the same size. It is this technique which has been employed
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in this thesis for generating low-dimensional two-phase reservoir representations. The
technique can equally be applied on high-dimensional linear problems. The ap-
proximation is optimal in an average sense, which may not always be the most
suitable choice for multi-phase flow systems as these exhibit features as moving-
fluid interfaces, shocks, etc. On the other side, these features are so characteristic
that they form a real challenge for any reduction approach anyway, and it is not
a priori clear which low-dimensional basis set would be the most appropriate in
a particular case. To deal with some of these issues, adaptations of the standard
POD approach are proposed in Chapters 5 and 5.3. Other variants on the standard
POD approach worth investigating are:

• Principal Interval Decomposition (PID). The standard POD is optimal in a

time-average sense and may therefore smooth out time-local information.
It is therefore often not very suitable for approximating traveling structures
with few modes, or more generally, for reducing models describing ’non-
ergodic’ phenomena/signals3. The (not very well known) idea of PID pro-
posed in [132, 133] is to partition the total time interval of interest into non-
overlapping time intervals and compute the dominant POD basis element(s)
over each subinterval. The PID technique is further investigated and ex-
tended to reduce models over parameter ranges in [45]. If only one POD
basis element is required to be determined for some or all of the subinter-
vals, the Power Method for calculation of the largest eigenvalue and the cor-
responding eigenvector of a matrix is especially suitable. A disadvantage
of the PID is that obtaining a good resolution of the intervals may require a
large number of simulations.

• Traveling POD. For many systems flow systems exhibiting traveling struc-

tures it turns out that the optimal POD basis consists of modes which are
determined completely by harmonic analysis, i.e. not from data. For sys-
tems with periodic or translational symmetry4, for example, if one wishes
to preserve symmetry in the reduced-order subspace the optimal basis can
be shown to consist of Fourier modes. As a reduced-order model based
on harmonic modes may require many modes to adequately capture the
dynamics, (besides the abovementioned PID) several techniques have been
proposed to overcome these fundamental limitations of the standard POD
method for such systems. In some of those, symmetry is incorporated into
the expansion [17, 105, 106, 134, 157, 234], e.g. by employing so-called ’trav-
eling POD modes’. Consider the trivial but important example of the one-
dimensional linear advection PDE ut + cux = 0, which symmetry is char-
acterized by translational invariance; indeed, the solution of this equation
is given by u(x, t) = g(x − ct) for arbitrary g. While the standard POD
method would approximate the solution u as a truncated series of the form

3The standard POD method was originally developed for ergodic signals, however in most appli-
cations the ergodicity hypothesis is not fulfilled. Although it is still possible to employ the POD to
extract spatial structures, low-dimensional models constructed using these structures are often of low
quality and sometimes even useless.

4In physics, a symmetry corresponds to a mapping of physical state of a system which leaves the
dynamics invariant, or unchanged (e.g., translation, rotation, reflection).



32 CHAPTER 3: Proposed Methodology: Model Reduction by Projections

uPOD(x, t) =
∑k

i=1 ai(t)φi(x), i.e. in a fixed spatial coordinate frame, a trav-
eling POD basis is a ’moving one’, in the sense that the solution is now ap-

proximated as utravelPOD(x, t) =
∑k

i=1 ai(t)φi(x− ct), which is just a spatial
translation of the standard POD basis by the amount ct. In a traveling co-
ordinate frame, the POD modes are no longer forced to be Fourier modes.
As a result, usually much less modes are required to adequately capture the
dynamics. In a more general case of traveling waves, the frame will move in
a more complicated manner than simply ct, i.e. the solution approximation

will have the form utravelPOD(x, t) =
∑k

i=1 ai(t)φi(x − c(t)). If the travel-
ing POD expansion is used to perform a Galerkin projection of the high-
dimensional (here infinite-dimensional, as we deal with a PDE), then it is
necessary to specify the evolution of the symmetry variable c(t). Except for
the simplest case ct, this is anything but a trivial exercise, and in the case of
heterogeneous reservoir flow problems, especially multi-phase and in two
or three spatial dimensions, it is probably even impossible.

• Centroidal Voronoi orthogonal decomposition (CVOD). This method com-

bines the POD with a special type of the data clustering technique of Voronoi
Tesselation5 Just as in a POD-based setting, also here one starts with a snap-
shot set. However, in this case one does not determine a POD basis from the
snapshot set, but rather determines the generators of a centroidal Voronoi tes-
sellation (CVT) of the set, i.e., a Voronoi tesselation of the snapshot set such
that the generators of the Voronoi sets are simultaneously their centers of
mass [76].6 The reduced order-basis for low-dimensional approximation of
the solution of the high-dimensional system is constituted from these gen-
erators and is used just in the same way as one uses a POD-basis for that
purpose [51–53, 74, 75]. CVOD can be understood as a generalization of
CVT for which the snapshots set is divided into N clusters or generalized
Voronoi subsets {Vi}Ni=1 having as their generators di-dimensional spaces
each of which being spanned by the di-dimensional POD basis for the clus-
ter. CVOD can also be seen as a generalization of POD for which the snap-
shots set is divided into N clusters and then a POD basis is separately deter-
mined for each cluster. For N = 1 CVOD reduces to the standard POD and
for di = 1 i = 1, . . . , N it reduces to the standard CVT (see footnote). Com-
pared to POD-based MOR approaches, CVOD is potentially less expensive;
POD involves the solution of an M × M (dense) eigenproblem, where M
is the number of snapshots, whereas CVOD requires the solution of several
smaller eigenproblems.

5Divide a given set S into K subsets S1, S2, . . . , SK such that a) no member of a set Si is a member
of another set Sj (i.e. Si∩Sj = ∅, i, j ∈ {1, 2, . . . , K}, i 6= j) and b) every member of S belongs to one
of the sets Si (i.e. ∪K

i=1Si = S). The set of subsets {S1,S2, . . . ,SK} is called a tessellation of S . Let S

be a set consisting of M points. Given N ’elements’ {zi}N
i=1 (N ≤ M ) and a ’distance function’ d(z, ω)

for ω ∈ S , the Voronoi subset Sj is defined as Sj = {w ∈ S|d(w, zj) < d(w, zi), i = 1, . . . , N, i 6= j},
that is Sj is the set of all elements belonging to S that are closer to zj than to any of the other elements
zi. The set of Voronoi subsets {V1,V2, . . . ,VN} is called a Voronoi tessellation of S or a Voronoi diagram
of S and the points {zi}

N
i=1 are the generators of the Voronoi tessellation.

6For discrete data, CVTs are closely related to the k-means and h-means clustering techniques. Just
as POD bases do, CVT also possesses an optimality property, although a different one.
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• ”Structure-Preserving” POD. For flow problems defined on 2D and 3D spa-

tial domains, the standard POD approach performs the analysis on the ’vec-
torized’ data. Recently developed ”Generalized Low-Rank Approximations”
techniques GLRAM, 2DPCA, HOOI, etc. [160, 248, 294, 297–299] may ap-
pear valuable in overcoming this issue as they work directly on 2D (3D)
solution fields, i.e. without vectorizing them first as is done in a standard
POD analysis. The solutions of the associated optimal approximation prob-
lems involving non-vectorized data are determined in an iterative fashion.
The convergence of the algorithms employed is generally fast.

• Sobolev-norms based POD. A good approximation of the state-variables
doesn’t necessarily imply a good approximation of those variables of inter-
est which depend mostly on spatial derivatives of state-variables. Flow-
rates in reservoir flow systems are a typical example as they depend on
pressure spatial derivative. On the other side, accurate approximation of
the states are important for accurate approximation of state-dependent flow-
parameters, so an improvement over the standard POD basis may, in princi-
ple, be achieved by a weighted combination of the (auto-correlations of) the
snapshots of state-solutions and their spatial derivatives [137, 155, 157, 170].
More formally, in this approach all the norms are defined in terms of a
(weighted) Sobolev norm rather than in the L2 norm employed in an usual
POD setting. Application of this idea to a two-phase porous media flow
problem in [185] indicates that sometimes there is indeed space for improve-
ment compared to the standard POD using such an approach. It is not
clear, however, how the weights should be chosen in an automatic fash-
ion. Indeed, it turns out to be difficult to provide a general guide on how
to effectively exploit this scope in a particular situation. Namely, choos-
ing for a ’mixed’ optimality criterion based on a part of or all present spa-
tial derivatives may actually negatively influence the approximation of the
state-dependent parameters (e.g. density, relperms, etc.).

• Balanced POD, Empirical Balancing, etc.. Besides the sensitivity to the used

norms, another disadvantage of the standard POD is the fact that the stan-
dard POD-modes approximate the dominant controllable subspace of the
system only.7. The methods from this class focus on taking, by resembling
the idea of balanced realizations8, also the observability of the system into
account [105, 134, 164, 165, 184, 233].

Clearly, any of the snapshots-based bases can only be as good as the snapshot sets
used to generate the basis. The generation of good snapshot sets is, however, in
general by no means a science, but rather an (primitive) art. The best results may
actually be expected if the generation of snapshot sets is supported by design of

7This point is explained in detail in Chapter 5.
8For a systematic (local) extension of the theory of balanced realizations and BTR to (smooth, input-

affine) stable finite-dimensional nonlinear systems, see [243–246]. Unfortunately, the ’exact’ non-linear
balancing involves solving two PDEs of the Hamilton-Jacobi type and is therefore not applicable to
large non-linear systems.



34 CHAPTER 3: Proposed Methodology: Model Reduction by Projections

experiments methodologies. Some a priori knowledge about the types of states to
be simulated or optimized using the reduced-order model would be very useful
in this respect.

We end this section by pointing out that generating the projection bases by any
of these data-driven methods may be very costly, as they are determined by em-
ploying high-dimensional simulations. In simulation settings, that cost is justified
only if the reduced-order model is subsequently used for calculations for many
system’s input forms and/or parameter values different than those used to gen-
erate the reduced-basis. Similarly, in control or optimization settings the cost is
amortized over the many (co-)state solves performed to determine optimal con-
trols (Chapter 6).



4 CHAPTER

MOR for Single-Phase Flow

The aim of this chapter is to present modern approaches for linear time-invariant
(LTI) MOR and to assess their performance when applied to single-phase reservoir
flow problems. The methods presented are: Modal Truncation, Singular Pertur-
bation (or ’rezidualization’), Transfer Function Moment Matching (explicit and im-
plicit), and Balanced Truncation. While conceptually and algorithmically highly
sophisticated, neither of these methods appear to be (directly) applicable to non-
linear models, the ones we are ultimately interested in, except when the nonlin-
earity is rather weak [123]. The motivation for including the methods for MOR of
LTI systems is fourfold: i) proper understanding of the MOR problem in general,
ii) the fact that the method we will employ later for model reduction of two-phase
flow models can be related to one of these methods, iii) the fact that single-phase
simulations are often used to aid in solving the underlying nonlinear problem,
and iv) there are important reservoir flow problems that can be approximated as
single-phase in practice (e.g., upscaling [268, 269]).

4.1 System-Theoretic Preliminaries

Some of the presented methods are based on rigorous system-theoretical concepts
of ’controllability’, ’observability’, Hankel operators and system norms, transfer
function moments, etc. The necessary system-theoretical background is provided
first. More elaborated introduction to LTI systems can be found in many textbooks
[114, 254, 307], handbooks [169, 193], and many other sources.

For the sake of both simplicity and clarity of presentation, in this section the
following assumptions are made:

• The (continuous-time1) LTI model under consideration is in the standard

1Except a small part in Section 4.4, Everything in this section is based on continuous-time state-
space LTI models. For discrete-time (generalized) state-space LTI systems, that is, Exk+1 = Axk+Buk ,
yk = Cxk + Duk , analogous MOR theories and approaches exist. Continuous-time LTI models can be
translated into discrete-time equivalents using e.g. bilinear transformation of the Laplace frequency

35
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state-space form, i.e.2

dx

dt
= Ax + Bu, x(0) =: x0, (4.1.1)

y = Cx + Du, (4.1.2)

with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and D ∈ R

p×m. The time-solutions
x(t) and y(t) are respectively given by:

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ, (4.1.3)

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ)dτ + Du(t). (4.1.4)

The output response in the frequency (Laplace) domain is easily shown to
be given by:

Y(s) = [C(sI−A)−1B + D]U(s) + C(sI−A)−1x0 (4.1.5)

= H(s)U(s) + C(sI−A)−1x0, (4.1.6)

where s = is the Laplace variable and H(s) := C(sI−A)−1B+D is called the
system’s transfer function (matrix) and represents the response of the systems
output to its input in the frequency domain for a zero initial state (x0 = 0).3

• A is (asymptotically) stable, i.e. all eigenvalues of A are confined to the left
hand side (l.h.s.) of the complex plane (max(Re(λi)) < 0). In the single-
phase flow models in this thesis this is the case if at least one of the source
flow-rates is defined as being (bottom-hole) pressure constrained. Other-
wise, and unless one of the grid-block pressures is explicitly constrained to
assume a value (in which case the total number of degrees would decrease
by one), it is stable with a zero eigenvalue expressing the mass-conserving
characteristic of the (discretized) transmissibility operator.

• A is diagonalizable, i.e. it is decomposable as A = VΛV−1, where Λ =
(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues λi of A, and the columns
vi of V = [v1, v2, . . . , vn] are then their corresponding eigenvectors. For
single-phase models in this thesis this indeed appears to be the case. Trans-
forming the state x as Vx =: z and premultiplying (4.1.1) by V−1 yields the

operator. The fact that certain important system properties remain invariant under the bilinear trans-
formation is used in Section 4.4 to translate the continuous Lyapunov matrix equations for determining
system’s Gramians into an iterative sequence for solving Stein equations.

2For single-phase flow models in this thesis this is not really a restriction, as explained at the end
of Sec. 3.2. For the completeness, at some places in the chapter the corresponding results for the
generalized state-space systems are given as well.

3The non-zero initial state case is easily accommodated for by defining x̃ := x − x0 and ’shifting’
the output for an amount of Cx0, provided that x0 corresponds to a steady-state in the absence of any
input signal. This is always the case in our applications. As for the MOR, it is advisable that such a
shift always be applied, otherwise there will be an error component in the approximation which may
be substantial unless an (otherwise unnecessarily) large projection subspace is employed.
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following state-decoupled dynamic description for z = [z1, z2, . . . , zn]T :

d

dt




z1

z2

...
zn


 =




λ1

λ2

. . .

λn







z1

z2

...
zn


 +




b̃
T

1

b̃
T

2
...

b̃
T

n




u, (4.1.7)

y = C̃z + Du =
n∑

i

zic̃i + Du, (4.1.8)

where b̃
T

i are the rows of B̃ = V−1B and c̃i are the columns of C̃ = CV. The
time-solutions for the decoupled system are given by:

zi(t) = eλitz0 +

∫ t

0

eλi(t−τ)b̃
T

i u(τ)dτ, i = 1, . . . , n (4.1.9)

y(t) =

n∑

i=1

c̃ie
λitz0 +

n∑

i=1

∫ t

0

c̃ie
λi(t−τ)b̃

T

i u(τ)dτ + Du. (4.1.10)

The transfer function matrix H(s) can be written as (wT
i are the rows of V−1):

H(s) = C̃(sI−Λ)−1B̃ + D

= C
[

v1 v2 . . . vn

]
(sI−Λ)−1




wT
1

wT
2
...

wT
n


 B + D

=
n∑

i=1

[
1

s− λi

(Cvi)(w
T
i B)] + D, (4.1.11)

and the output response as:

Y(s) = H(s)U(s) + C̃(sI−Λ)−1z0

=

n∑

i=1

[
1

s−λi
(Cvi)[(w

T
i B)U(s) + z0,i]

]
+ DU(s). (4.1.12)

To facilitate acquiring basic understanding of the key concepts the MOR methods
in this section are based on, the introduction to these concepts will frequently be
based on the assumption that the LTI system is ’SISO’, i.e. it has a single input and
a single output (e.g. a single-phase reservoir flow problem with a single producer
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and no injectors). In this case we have:

dzi

dt
= λizi + b̃iu, i = 1, . . . , n (4.1.13)

y =
n∑

i=1

c̃izi + u, (4.1.14)

where b̃i and c̃i (i = 1, . . . , n) are the entries of the vectors b̃ := V−1b and c̃ := VT c,
respectively, and u, y, d ∈ R, whereas respectively the (scalar) transfer function
H(s) and the output response y(s) are given by:

H(s) = c̃T (sI−Λ)−1b̃ + d =

n∑

i=1

c̃ib̃i

s− λi

+ d (4.1.15)

and

Y (s) =

n∑

i=1

c̃i

s− λi

[b̃iU(s) + z0,i] + d · U(s). (4.1.16)

4.1.1 Rational Transfer Function Representation

Consider a partial fraction expansion of the transfer function of a n-dimensional
SISO LTI model (in the sequel it will be generally assumed that the direct i/o term
d is zero since dred = d ≡ lims→∞ H(s) for any projection-based MOR in this
thesis. However, this ’invariance’ can sometimes be exploited to refine the error
in specific approximation norms, as stated in Remark 4.1.2):

H(s) =

n∑

i=1

cibi

s− λi

=:

n∑

i=1

ri

s− λi

. (4.1.17)

Cross-multiplication of the terms in the summation yields a rational function repre-
sentation of H(s):

H(s) =
n∑

i=1

ri

s− λi

=
e0 + e1s + e2s

2 + · · ·+ en−1s
n−1

1 + f1s + f2s2 + · · ·+ fnsn
, (4.1.18)

where the 2n coefficients {ei}n−1
i=0 , {fi}ni=1 are functions of ci, bi, λi (i = 1, . . . , n).

Transfer function point- versus moment matching

Given a rational function representation (4.1.18) of the original system H(s) , a
k−th order rational transfer function approximation Hr(s) has the form4:

4Actually, the only requirement for the reduced-order transfer function is that it must be ’proper’,
i.e. that the max. order of s, say ℓ, in the numerator of (4.1.19) must be smaller than that in the
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Hr(s) =
er,0 + er,1s + er,2s

2 + . . . er,k−1s
k−1

1 + fr,1s + fr,2s2 + · · ·+ fr,ksk
. (4.1.19)

Depending on what one wants to adequately approximate with Hr, there are sev-
eral ways of ’choosing’ the 2k coefficients {er,i}k−1

i=0 , {fr,i}ki=1. For instance, if it
were desired to match the behavior of H(s) exactly in a number of frequency
points sj (Fig. 4.1), whereas the behavior in between these ’interpolation points’
were not important, one could achieve that for up to 2k points by employing point
matching, as shown in Section 4.3. On the other side, if one were rather interested

in an excellent match of H(s) and a number of its derivatives ∂Hi

∂s
(s0) in one or

more points s0 (Fig. 4.1), one would need to employ a moment matching algorithm,
possibly at several frequency points.

Point matching:Point matching:
can be very inaccurate in can be very inaccurate in 
between pointsbetween points

( )H s

ω

( )rH s

ω

( )H s

( )rH s
Moment (derivatives)Moment (derivatives)
matching:matching:
accurate around expansion accurate around expansion 
point, but inaccurate on point, but inaccurate on 
wide frequency bandwide frequency band

Transfer Function 
“Point Matching” versus “Moment Matching”

Figure 4.1: Transfer Function Point Matching versus Moment Matching.

4.1.2 Controllability, Observability, Minimal Realizations and Sys-
tem Operators

In (4.1.14), c̃j ≡ vT
j c ≡ cT vj = 0, with vj the jth eigenvector of A, would im-

ply that no influence of zj(t) is present in the output, even though zj(t) may be
influenced by the input. As at the same time the state-equations are decoupled,
simulating the dynamics of the corresponding zj(t) is in this case not necessary
and can thus be omitted if one is only interested in the behavior of the system’s
output. A mode with this property is said to be ’completely’ unobservable, as

denominator, k, that is, (ℓ < k). The selection of values ℓ and k is a problem of analysis, but a natural
option, e.g. due to (4.1.17), is ℓ = k − 1.
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nothing can be said about the behavior of zj(t) (in particular the initial state zj(0),
as its knowledge would suffice to determine zj(t), and thus z(t) and ultimately
x(t) = V−1z(t), for all t > 0 for a given input) from the knowledge of y(t). Simi-

larly, b̃ℓ ≡ wT
ℓ b = 0 implies that zℓ is not affected by the input whatsoever. Such

a mode is said to be (completely) uncontrollable. It is clear that (4.1.13) does
not need to be integrated in time for zℓ. It is, however, still required to compute
zℓ(t) = eλitz0 for any t at which the output y(t) needs to be determined when
zℓ(0) 6= 0 (unless ℓ = j, as that would mean that the mode is simultaneously
uncontrollable and unobservable).

MIMO case

Similar results hold for MIMO systems admitting a modal form as above. Consid-
ering (4.1.15) or (4.1.12), if the system (or better, the given state-space realization)
is unobservable, then there is at least one λj which satisfies Cvj = 0. One refers
to the pole s = λj as a hidden mode because it does not appear in the transfer func-
tion. As for controllability, if the system is uncontrollable, then there exists at least
one left eigenvector wℓ satisfying wT

ℓ B = 0T . Again, the pole associated with this
mode does not appear in the transfer function and one refers to the pole s = λℓ

also as a hidden mode. This directly uncovers an important difference between
state-space representations of a (stable) LTI system and its (unique) transfer func-
tion: whereas the poles of a transfer function are necessarily eigenvalues of the
state-matrix in any state-space representation5, the eigenvalues of a given state-
space control system representation are not necessarily poles of the corresponding
transfer function.

Remark 4.1.1. When a state-space system in modal form has all eigenvalues dis-
tinct, then the condition wT

ℓ B = 0T (Cvℓ = 0) for some ℓ ∈ {1, . . . , n} is both suf-
ficient and necessary for proclaiming the system uncontrollable (unobservable).
On the other hand, when some eigenvalue is not simple, for the system to be com-
pletely controllable (observable), besides wT

ℓ B 6= 0T (Cvℓ 6= 0) it is also required

that the rows of B̃ = V−1B (columns of C̃ = CV) corresponding to the repeated
eigenvalue are linearly independent.

State-space dimension versus the model order: McMillan degree and minimal
realizations

The above short discussion provides an easy way of reducing the dimension of
the state vector of a stable LTI model: the eigenmodes which are completely un-
observable and those which are completely uncontrollable can be removed from
the dynamical system description without influencing the input-output behavior
of the system, the behavior to be understood as the system’s transfer function. In
other words, the dimension of a given state-space description of an LTI system

5As similarity transformations of the state space do not change the (complete) controllability and
observability properties of LTI systems, the same holds for the modes in any state-space representation
(also called ’realization’) obtained by a similarity transformation.
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is not necessarily the ’intrinsic’ order of the system.6 A state-space realization of
a (stable) LTI system which is both completely controllable and completely ob-
servable is said to be minimal. The order of an LTI system is thus the dimension
of the state-vector in any minimal state-space representation, and is also called
the McMillan degree of the system. The MOR in the sense of Chapter 3 assumes
that the starting high-dimensional model is already in a minimal state-space form.
On the other hand, the modern algorithms actually implementing MOR admit
non-minimal state-space realizations as the input and remove automatically the
uncontrollable and unobservable parts.

’Weak’ controllability/observability

The chance that in a typical situation in practice (e.g. when the starting high-
dimensional model is obtained by discretization of first-principle models) a sub-
stantial number of modes are completely unobservable and/or completely uncon-
trollable is not too likely. Consequently, not many (if any) of the modes in (4.1.15)

will satisfy c̃j = 0 or b̃j = 0 (Cvj = 0 or wT
j B = 0T in the MIMO case (4.1.11)).

A tempting idea is then to look at the magnitude of the non-zero c̃j and b̃j and
retain only those eigenmodes corresponding to large magnitudes of these quan-
tities. However, as a weakly observable eigenmode (i.e. small c̃j) might at the

same time be quite controllable (large b̃j) and vice versa, it is clear that what really

matters in the general case is the product of c̃j and b̃j .

An important question arises here. Since there are infinitely many equivalent
state-space representations, it is natural to wonder whether the mostly control-
lable and mostly observable modes retained in the reduced-order model should
actually be the eigenmodes in the first place? Maybe there are other modes which
are more controllable and more observable than the eigenmodes, thus admitting
models of the same or better quality using even less modes? That appears to
indeed be the case, and the BTR (Sec. 4.4) and related methods are aimed to de-
termine state-representations that reveal such modes.

System operators, norms, and quality of approximation

Among the most popular model reduction procedures at present are those that
produce (sub)optimal approximations of a given system in specific error norms.
A short introduction to fundamental operators and system norms follows.

Convolution operator

For the continuous-time (stable) LTI system (4.1.1-4.1.2) one can define a convolu-

6Note that, strictly speaking, removing completely uncontrollable and completely unobservable
modes cannot actually be considered as a model order reduction in the sense defined in Chapter 3, as
the order of a state-space model possessing some modes uncontrollable or unobservable is intrinsically
the order of the model with all the uncontrollable and unobservable modes removed.
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tion operator Γc with kernel (impulse response matrix) H(t) from u(t) to y(t) as

Γc : u(t)→ y(t) = H ∗ u =

∫ ∞

−∞

H(t− τ)u(τ)dτ. (4.1.20)

The Laplace transform H(s) of the impulse response H(t) = {0 : t < 0; Dδ : t =
0; CeAtB : t > 0}) is the familiar transfer function matrix H(s) =

∫ ∞

0
H(t)estdt ≡

C(sI−A)−1B + D.

In the case of discrete-time (stable) LTI systems: xk+1 = Axk + Buk, yk = Cxk +

Duk, with the impulse response matrix H(t) = {0 : t < 0; Dδ : t = 0; CAt−1B :
t > 0}) and the corresponding transfer function matrix H(z) = C(zI−A)B + D (z
is the Z-transform variable), the convolution operator is defined as

Γd : u(t)→ y(t) = H ∗ u =

∞∑

k=−∞

H(t− k)u(k). (4.1.21)

Hankel operator

The convolution operators as defined above have infinite rank whenever the as-
sociated impulse response H is not identically equal to zero. However, if the do-
main and codomain of the convolution operator of a finite-order LTI system are
restricted, finite-rank operators may be obtained possessing highly meaningful
and useful properties. One such operator is the Hankel operator, H, of the consid-
ered LTI system, simply described as ”mapping from past (finite energy) inputs to
(finite energy) future outputs”. Formal definitions of the Hankel operator for the
continuous-time and discrete-time LTI systems are:

Definition 4.1.1. In the continuous-time case, the Hankel operator Hc is defined as

Hc : u−(t)→ y+(t) := Hc(u−) =

∫ 0

−∞

H(t− τ)u(τ)dτ, t ≥ 0. (4.1.22)

In the discrete-time case, the Hankel operator Hd is defined as

Hd : u−(t)→ y+(t) := Hd(u−) =

−1∑

k=−∞

H(t− k)u(k), t ≥ 0. (4.1.23)

Hankel operators turn out to carry a number of fundamental system properties.
For continuous-time systems, for instance, one can prove equality between the
system order and the rank of the associated Hankel operator. Moreover, for both
continuous-time or discrete-time, the order of the system (McMillan degree) is
equal to the rank of the associated (block) Hankel matrix7 characterized by Markov

7A Hankel matrix is a square matrix with constant (positive sloping, i.e. from northeast to south-
west) skew-diagonals. It is an upside-down Toeplitz matrix, which is a matrix with values constant
along each (northwest to southeast) diagonals.
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parameter sequence (impulse response) {Hi}∞i=1:

H :=




H1 H2 H3 . . .
H2 H3 .
H3 . .

...
. . .


 . (4.1.24)

That this result is correct is easiest to ’visualize’ in the discrete-time case, in which
the Hankel matrix as defined above is the matrix representation of the associated
Hankel operator, i.e. mapping the past inputs sequence into the future output
sequence:




y(0)
y(1)
y(2)

...


 = H




u(−1)
u(−2)
u(−3)

...


 =




H1 H2 H3 . . .
H2 H3 H4 . . .
H3 H4 H5 . . .

...
...

...
. . .







u(−1)
u(−2)
u(−3)

...




=




CB CAB CA2B . . .

CAB CA2B CA3B . . .

CA2B CA3B CA4B . . .
...

...
...

. . .







u(−1)
u(−2)
u(−3)

...




=




C
CA

CA2

...




︸ ︷︷ ︸
O

[
B AB A2B . . .

]
︸ ︷︷ ︸

C




u(−1)
u(−2)
u(−3)

...


 .

(4.1.25)

Hence, in the discrete-time case, the Hankel operator is an infinite block matrix
representation that turns out to be factorizable as a product of two matrices of
finite-rank. Consequently,H has a finite rank, too! But there is more. The matrices[

B AB . . . An−1B
]

:= Cn(A, B) and
[

CT (CA)T . . . (CAn−1)T
]T

=:
On(A, C) are, in both continuous-time and discrete-time, called controllability (or
reachability) matrix and observability matrix, respectively, as it can be proven (e.g.,
[150]) that an n-dimensional (realization of an) LTI system is fully controllable
(observable) if and only if Cn(A, B) (On(A, C)) is of rank n. Due to the Cayley-
Hamilton theorem, it holds that rank(Cn(A, B)) = rank(C) and rank(On(A, C)) =
rank(O), thus implying that the rank of H = OC can not exceed n. At the same
time, this implies that the rank of the Hankel operator equals the McMillan degree
of the system, i.e. it determines the order of the minimal realizations! Moreover,
since the Markov parameters of an LTI system can be estimated from input-output
experiments, this fact can be used to actually ’identify’ a (minimal) state-space
representation (A, B, C, D) of the LTI system under consideration from the Han-
kel matrix of the i/o data, its possible factorization(s), and it ’shifted’ versions.
For an example of the use of these so-called subspace identification algorithms for
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identification of single-phase reservoirs, the reader is referred to [183]. Theoret-
ical background and algorithmic aspects of the different subspace identification
methods are provided in detail in [34, 64, 147, 162, 188, 270, 276–278, 285], for
instance.

Norms, Singular Values, and Quality of Approximations

Let Σ denote the LTI dynamic system under consideration, and let n be its McMil-
lan degree. The aim of MOR techniques that concentrate on approximation of a
system’s input-output behavior is generally to determine a dynamical system Σred

of a degree k < n, such that the error of approximation e (see Fig. 4.2, in which
the systems are represented by their transfer functions) is ’small’ over all inputs.
What is ”small” is usually determined by an appropriate norm. For example, a
natural choice would be to minimize ‖Σ − Σred‖∞, where the ‖Σ‖∞ denotes the
H∞ norm of an LTI system Σ with transfer function H:

‖Σ‖2·induced , sup
u∈L2

‖y(t)‖2
‖u(t)‖2

= sup
ω

σ1(H(jω)) = ‖Σ‖∞, (4.1.26)

where L2 is the space of square-summable functions, with 2-norm (or ’energy’)

‖z(t)‖2 =
√∫ ∞

∞
‖z(t)‖22dt, and σ1(H(jω)) = σmax(H(jω)) is the largest singular

value of H(jω).

H(s) (original)

Hred(s) (approx.)

+

-

u(t)

yred(t)

y(t) e(t)

Figure 4.2: Systems comparison block scheme.

Unfortunately, there is no solution currently known for the problem of minimizing
‖Σ−Σred‖∞. The big question then is ”is there maybe another system norm, which
does allow a solution?”. The answer is affirmative and the norm in question is the
Hankel norm, which is defined as (with u ∈ L2(−∞, 0)):

‖Σ‖H , σ1(H) = ‖H‖2·induced, (4.1.27)

i.e., the Hankel norm of an LTI system is defined as the the maximum singular
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value of its Hankel operator8, σ1(H) = σmax(H). It can be shown that: a) the
Hankel norm lower bounds the H∞ norm, and b) twice the sum of the Hankel
values upper bounds the H∞ norm, i.e.

σ1(H) ≤ ‖Σ‖∞ ≤ 2Σn
i=1σi(H). (4.1.28)

As for the problem of approximating the system Σ by a k-th order one, Σred, us-
ing (4.1.27), (4.1.28), and the Schmidt-Mirsky inequality for matrices (linear oper-
ators): ‖X − Xk‖2·induced = σ1(X − Xk) ≥ σk+1(X), where k is the rank of Xk and
σi(G) is the i-the largest singular value of G in the singular value decomposition
(SVD) G = UΣVT , the following bounds on the Hankel norm system approxima-
tion are obtained:

σk+1(H) ≤ ‖Σ− Σred‖H ≤ ‖Σ− Σred‖∞. (4.1.29)

And here comes the important result: it can be shown that there actually exists a
lower-order system that achieves the lower bound on the Hankel norm in (4.1.29), i.e.
for which σk+1(H) = ‖Σ − Σred‖H! Even though the Hankel norm does not have
a very natural system theoretic interpretation, this result is really remarkable. It
was proven for Hankel operators by the AAK theorem (AAK: Adamjan, Arov and
Krein) in [2]. In the prize winning paper [107], the result was extended to state-
space systems. In the same paper, an entire algorithm was provided to obtain a
state space representation (Ak, Bk, Ck, Dk) of the optimal Hankel-norm k-th order
approximant of a stable system given in state space form.

At first glance something may look strange here. Isn’t it true that the minimal
norm problem as the one above always has a solution, actually many numerically
equivalent ones, being given by a singular value decomposition, truncated after
the first k largest singular values? Of course that’s true. However, a numerically
optimal approximant of a Hankel matrix is in general not a Hankel matrix itself.
But it needs to be, in order to be representing an LTI system. The remarkable
aspect in the result above, therefore, is that a Hankel approximant can be found
that approximates the system equally well.

Remark 4.1.2. Note that the ’feedthrough’ (i.e. direct i/o) matrix D does not have
any effect on the Hankel norm (an extra proof that Hankel optimal reduced mod-
els are not unique), therefore it can be modified arbitrarily. This is important as D
does affect the H∞ norm of the error, implying that it can be used for obtaining
Hankel optimal reduced models with improved H∞ norm error [124, 282]. As
noted later in the chapter, reduced-order models obtained by either the balanced
truncation technique (Section 4.4) or the optimal Hankel-norm approximation sat-
isfy the following error bound [107]: ‖H(jω) − Hred(jω)‖∞ ≤ 2

∑n
i=k+1 for any

order k of the reduced model. [107] shows how to calculate a D̃ in such a way that
upper-bound on the H∞ norm of the error is cut by half, i.e. ‖H(jω)−Hred(jω)−
D̃‖∞ ≤

∑n
i=k+1.

8It can be shown that the Hankel singular values equal the square roots of eigenvalues of the prod-
uct WcWo, where Wc and Wo are the so-called controllability Gramian and observability Gramian, two
other important system elements (see Sec. 4.4).
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4.2 MOR by Modal Decomposition and Singular Per-

turbations

4.2.1 MOR by Eigenmodes Truncation

One of the earliest MOR approaches for linear systems was to base the reduction
on the system’s eigenvalues and to retain only modes corresponding to a restricted
number of the eigenvalues. This technique is still of fundamental importance for
many applications, especially in structural analysis. The reasoning behind this
idea is easiest to explain if we consider the response of the (decoupled) modes to
a constant input (here for a zero-initial state and a SISO system), u(t) = α:

zi(t) =

∫ t

0

eλi(t−τ)b̃iu(τ)dτ =
1

λi

(b̃iα)(1 − eλit). (4.2.1)

For ’comparable’9 b̃i’s, modes corresponding to small |λi| (called slow modes) will
’hang around’ in the system response longer than those corresponding to large |λi|
(fast modes). The hope is then that, in this case, the number of fast decaying modes
is considerable, so that the reduced-order model obtained by truncating these fast
modes from the state-space would be low. By ’mode truncation’ we mean the
following. Let the original (stable, continuous-time, n-dimensional) state-space
system under consideration in coordinates x have been transformed, by a suitable
similarity transformation, into a new system in coordinates z, already partitioned
into a ’dominant’ (here slow), z1 ∈ R

k, and a ’non-dominant’ (here fast), z2 ∈
R

n−k, part:

ż ≡
[

ż1

ż2

]
=

[
Ã11 Ã12

Ã21 Ã22

] [
z1

z2

]
+

[
B̃1

B̃2

]
u,

y =
[

C̃1 C̃2

] [
z1

z2

]
+ D̃u. (4.2.2)

Discarding the non-dominant modes yields the reduced or ’truncated’ order model

żred = Ãredzred + B̃redzred, ŷred = Credzred + Dredu, with Ãred = Ã11, B̃red = B̃1,

C̃red = C̃1, D̃red = D̃, and zred(0) = Fkz(0) for some Fk ∈ R
k×n. For exam-

ple, if the performed similarity transformation was the eigendecomposition of the
original system matrix into EΛE−1 = [Ek, En−k] diag(Λk,Λn−k)[Vk, Vn−k]T , with

V = [Vk, Vn−k] := E−T , then the matrices involved above would be Ã11 = Λk,

Ã22 = Λn−k, Ã12 = 0k×(n−k), Ã21 = Ã
T

12.

Complete truncation of some modes of a fully controllable and observable system
will inevitably cause errors in the response behavior. For example, truncating the
fast modes will cause the resulting reduced model to be more accurate at low-
than at high frequency: as a result, the time response of the reduced model may

9c̃ib̃i for the mode contribution in the output → a reason for a proper scaling of the model.
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be too slow, i.e. the initial dynamics of the system might be lost. Similarly, main-
taining only fast modes will have larger errors at low-frequency as a consequence.
Whichever modes in a minimal representation are truncated, there will always be
a truncation error at any frequency. Figure 4.3 provides an illustration of this for
a 21 × 21 single-phase example with one water injection well and one producer
placed on the diagonally opposite sides of the reservoir. Reservoir and fluid prop-
erties and well- and control data are given in Tables 4.1 and 4.2. The injection rate
was varied during the simulation, so the flow-rate value in Table 4.2 concerns the
initial injection rate (and, at the same time, its upper limit). The producer bottom-
hole pressure was kept constant and the Peaceman-type well model was used to
relate this pressure to the produced flow-rate. Due to the non-zero compressibility,
the production rate does not reach a steady-state at any of the piecewise constant
injection intervals. The bottom-right subfigure shows the cumulative production
difference between the full-order model (441 states) and the reduced-order models
of several orders ranging from 50 up to 292 obtained by modal truncation of high-
frequency modes. Truncated models with up to 291 states all clearly mismatch
with the full-order one for all times, which, in the case of produced flow rate as an
output of interest, is something one generally prefers to avoid. Truncated models
starting from order 292 do approximate the full-order behavior very well. It is
noted that the truncated models overestimate the production for all times.
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Figure 4.3: Example Single-Phase Flow MOR for a 21x21 horizontal reservoir using
various orders of the reduced-order model obtained by modal truncation of the
high-frequency modes.
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Table 4.1: Reservoir properties and static parameters

Lx × Ly × Lz Nx, Ny, Nz (#gridblocks) φ [-] cφ, cf [1/Pa] µ [Pa.s]

700[m]× 700[m]× 2[m] 21,21,1 0.3 1e-8,1e-8 5e-4

Table 4.2: Well- and control data (no-flow boundaries)

Qat(x,y,z)=(2,2,1) [m3/s] Pbh,at(x,y,z)=(20,20,1) [Pa] Pinit [Pa] dw (well diameter) [m]

0.01 2.7e7 3e7 0.1143

Remark 4.2.1. Starting from a full-order sparse model of order 441 and ending
with a ’well-performing’ dense reduced-order model with 292 states is certainly
not what one aims at. The example was meant to illustrate that, using modal
truncation, a) it may very well happen that the truncation error can be sufficiently
decreased only with undesirably high-dimensional reduced-order models, and b)
the difference in the truncation errors between the successive model orders can be
substantial (e.g. between orders 291 and 292 in the example), but at the same time
also quite steady for a large number of orders. As the method is based purely on
the systems eigendecomposition, it may be expected that these aspects are even
more present when the number of inputs and/or outputs increase. The practice
learns that this indeed is the case.

As discussed next, determining in advance which order would be sufficient
is not trivial for modal truncation MOR. On the other side, also discussed next,
modal truncation could serve as an initial reduction step for any other projection
technique, so also for those that do provide some prior error bounds but which are
computationally too expensive to apply directly to the original high-dimensional
model. Regarding the above example, the accurate reduced model of order 292
could be used as the ’high-dimensional’ model for the so-called ’balanced trunca-
tion (BTR)’, for instance, which method is the subject of Section 4.4. The results
of applying this combined MOR are shown in Figure 4.4, where the order of the
reduced model obtained by the BTR step is just 15.

Quality of approximation

Assuming the system to be represented in the decomposed form, the fractional
expansion representation of the transfer functions for the original model and a k-

dimensional reduced model yields H(s) − Hred(s) =
∑n

i=k+1
c̃ib̃

T

i

s−λi
, where c̃i and

b̃i are columns of C̃2 and B̃2, respectively, in (4.2.2). For stable systems an estimate
for ‖H(s)−Hred(s)‖∞ is then given by:

‖H−Hred‖∞ ≡ sup
ω∈R

‖H(jω)−Hred(jω)‖ = sup
ω∈R

‖
n∑

i=k+1

σ̄(c̃ib̃
T

i )

jω − λi

‖

≤
n∑

i=k+1

σ̄(c̃ib̃
T

i )

|Re(λi)|
. (4.2.3)
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Figure 4.4: Results of combined Modal Truncation + Balanced Truncation (BTR)
MOR to efficiently reduce the original 441 states high-order model from Figure 4.3.
Modal Truncation was used here to obtain a highly accurate approximation (292
states) of the original high-dimensional model, which was then further reduced to
15 states by the BTR technique from Section 4.4. The BTR model matches the one
with 292 states, and thus also the original model with 441 states, almost perfectly.
Total simulation time: 2500 days, Timestep: 10 days, CPU-time: original model (441
states): 1.6 sec., reduced-order (15 states): 0.015 sec.

(In our models all eigenvalues, i.e. the poles, are real, so Re(λi) = λi).

This error estimate is not an a priori error bound, though, as the actual error
can be computed only after a choice has been made, that is, after the approxi-
mant has been determined. The lack of a reliable, general purpose method for
modal dominance analysis w.r.t. the input-output behavior of the system is is a
major limitation of the modal approach, despite enhancements provided e.g. in
[280, 281]. This should not surprise as the modal truncation is solely based on
(spectral) information contained in the system matrix A. For a fixed input and/or
output distribution (e.g., spatial distribution of the wells) this, of course, may be a
serious disadvantage. Some of the truncated modes might, for instance, actually
have been responsible for most of the output energy. In such cases the response
will mostly likely be inaccurate.10 However, due to its decomposed state-space
form, it is relatively straightforward to combine the modal approach with tech-

10On the other side, just due to its input-output independence, this approach may actually appear
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niques which do provide a priori error bound to select the appropriate order for
an acceptable approximation error (BTR, for example, uses Hankel singular val-
ues (HSVs) of the system). The transfer function of a system in the modal form
can be additively decomposed as H = H1 + H2, where H1 and H2 correspond

to two distinct subsets of eigenvalues (e.g. H1(s) = C̃1(sIk − Ã11)
−1B̃1 + D̃ and

H2(s) = C̃2(sIn−k − Ã22)
−1B̃2 in (4.2.2), with Ã12 = 0k×(n−k), Ã21 = Ã

T

12). The
reduction can now be performed separately on H1 and H2. Let Hr = H1r +H2r be
the resulting reduced model, where H1r and H2r are the resulting reduced subsys-
tems computed say with the BTR method. If for the separate reduction of terms
we have that ‖Hi − Hir‖ ≤ ǫi, i = 1, 2, then ‖H − Hr‖ ≤ ǫ1 + ǫ2. By reduc-
ing individually the terms, one can thus also control the resulting global error by
choosing appropriate orders for the reduced subsystems. The technique can be
readily extended to additive decompositions with more than two terms.

The real advantage of such a combined MOR approach is evident when one
has to reduce very large order (sparse) models. For such models, the modal ap-
proach may be the only method which can be used for order reduction, despite
the fact that even an eigen-decomposition on the full system is required (though
the sparsity of the matrix involved makes the problem easier). Modal reduction is
therefore often only a preliminary reduction which makes feasible further reduc-
tions using more powerful methods (in particular true when the number of inputs
and/or outputs is considerable; otherwise the moment matching techniques like
e.g. Krylov subspace ones from Sec. 4.3 can be even more efficient in the ini-
tial stage). Reducing a model solely by removal of unimportant system modes is
rarely a good idea, especially for systems possessing clustered eigenvalues11, as is
clear from the following simple example where both modes a− ǫ and a + ǫ (a < 0,
|ǫ| ≪ |a|) of the LTI system with transfer function

H(s) =
a

s + a + ǫ
+

a

s + a− ǫ
(4.2.4)

are equally important, so none can be removed without introducing a large model
reduction error, despite the fact that a very good reduced model Hr(s) is given by

Hr(s) =
2a

s + a
. (4.2.5)

The method of balanced truncation (BTR) of Sec. 4.4, for example, does not fail in
recognizing the existence of such an one-dimensional approximator.

Finally, regarding the robustness of the basic modal approach, eigenvalues of a
general matrix may be extremely sensitive to matrix perturbations (i.e., small pa-
rameter variations). In contrast, singular values of a matrix are much less sensitive

to be more robust than other methods when spatial distribution and/or the number of inputs and/or
outputs do change, at least as long as the system matrix itself does not change (in our models this is
the case with flow-constrained wells, as redistributing such wells or changing their numbers leaves
the system matrix intact).

11Two other general cases where the knowledge which modes should be retained is not always clear
are lightly damped high frequency modes and wide band input excitations. These are not really an
issue here, though (strong, non-oscillatory damping and (quasi-)piecewise constant inputs).
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to parameter variations. Due to the fact that the singular values of a symmetric
matrix are the absolute values of its eigenvalues, the single-phase state matrices
in this thesis are quite robust in this respect, as they are either symmetric or are
similar to symmetric ones.12

4.2.2 Singular Perturbation MOR

The essence of the (zero-order) singular perturbation approximation (SPA), also
called ’residualization’, is setting the time-derivative of the ’fast part’ of the sys-
tem dynamics to zero, and expressing the dynamics of the slow part accordingly
[88, 159, 173]. Mathematically, let the (stable, continuous-time) state-space system
under consideration be already partitioned by some means in a slow (z1) and a
fast (z2) part (e.g., by modal decomposition or balanced realization) as in (4.2.2).

Setting ż2 = 0 yields z2 = −Ã
−1

22 (Ã21z1 + B̃2u), which, substituted in the expres-
sions for the dynamics of z1 and the output y, delivers the singularly perturbed
reduced order model:13

żred = Ãredzred + B̃redu, (4.2.6)

ŷ = C̃redzred + D̃redu, (4.2.7)

where zred := z1, Ãred := Ã11 − Ã12Ã
−1

22 Ã21 (i.e. Ared is the Schur complement of

A), B̃red := B̃1 − Ã12Ã
−1

22 B̃2, C̃red := C̃1 − C̃2Ã
−1

22 Ã21 and D̃red := D̃− C̃2Ã
−1

22 B̃2.

Since the original model is assumed stable, Ã
−1

22 exists.

A direct consequence of setting state-derivatives to zero is that the method
retains the steady state gain of the system, as zero state-derivative obviously rep-
resents steady state. On the contrary, mode truncation retains the systems be-

12Consider the single-phase pressure equation in the generalized state-space form Vṗ = −Tp + q,
with T = TT and V is diagonal with positive diagonal elements. Note that, in general, V−1T is not

symmetric (it is if the grid is uniform). However, the state-transformation p = V− 1
2 p̂ transforms the

system into ˙̂p = −V− 1
2 TV− 1

2 p̂ + V− 1
2 q, where V− 1

2 TV− 1
2 is now symmetric, with the same eigen-

values as V−1T and the eigenvectors scaled by a multiple of V
1
2 , i.e., if zi and vi are the eigenvectors

of V− 1
2 TV− 1

2 and V−1T, resp., corresponding to the same eigenvalue λi, then zi = αiV
1
2 vi, for some

αi ∈ R. This result may be important, e.g. when the grid is highly nonuniform, in which case V−1T
is not symmetric anymore. Besides the advantage of allowing the use of ’symmetric’ matrix solvers,
the symmetry of the (new) state-matrix also reveals initially ’hidden’ features regarding controllability
and observability of single-phase problems. In particular, it makes it easier to uncover the equivalence
of the two (i.e., controllability and observability) in the case of the inputs and outputs placed at same
positions. After realizing this, it was then not too difficult to prove that in such cases the knowledge
of one of the two properties, e.g. controllability, also in the non-uniform case was sufficient to distill
the properties of the other one, i.e., observability (and vice versa). The only extra data needed was
the knowledge of one single non-zero element in the input matrix B and its counterpart in the output
matrix C.

13It is noted that singular perturbation model reduction does NOT formally belong to the class of
state-space projection MOR, the reason being that there is actually no connection between the states in
the original and those in the reduced order model. On the other hand, since the singular perturbation
approximation is related to state-space truncation by the frequency inversion transformation s → 1

s
,

it is frequently also itself considered to be a truncation method.
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havior at infinite frequency. For this reason modal residualization, when feasi-

ble (Ã
−1

22 might be too expensive to compute explicitly if the system is very large
and the required order of the reduced model is small), is preferred for low fre-
quency modeling, whereas modal truncation is preferable when accuracy is re-
quired at high frequencies. While this reasoning is clearly supported by Fig. 4.5,
it is emphasized, though, that reduced-order models obtained using the singu-
lar perturbation approach may not always yield good low frequency approxima-
tions, especially when there is no clear time scale separation into slow and fast
subsystems. Singular perturbation is therefore much more suitable for reducing
stiff systems, i.e. systems possessing distinct time-scales. However, in a simu-
lation using step(wise) inputs the technique is expected to perform rather well
in general, at least as far as the long term approximation is concerned (N.B. not
necessarily in the cumulative production sense, as that one depends on the ap-
proximation along the whole simulation time). Figure 4.5 shows the comparison
of this approach and the modal truncation for the same system as in Fig. 4.3 for
a step input. Modal rezidualization clearly outperforms modal truncation, ex-
cept in a short initial transient period related to the (total, i.e. rock and fluid)
compressibility. For large compressibilities this would mean that truncation (es-
pecially balanced truncation, to be explained later) would often be a better choice
than rezidualization. However, for large compressibilities, the assumption of the
pressure dynamics as being (almost) linear would generally be incorrect (or at
least questionable). Finally, we note that the superior performance of the singular
perturbation approach for (very) low compressible systems and step(wise) inputs
is all but surprising, as in the limit of zero compressibility this approach can be
seen as a linear solver for −Tp = q based on its Schur complement system.

4.3 Transfer Function Matching and Krylov Subspaces

MOR

Transfer function moment matching MOR techniques transform the original sys-
tem into a reduced one in such a way that the first (say) k moments of the reduced-
order transfer function Hr(s) match the first k moments of the high-dimensional
H(s). The moments are defined as the value and subsequent derivatives of the
transfer function at any particular frequency point si. The section starts with with
a short introduction to the concepts of transfer function point and moment match-
ing, which solutions turn out to be intrinsically ill-conditioned matrix equation
problems if attempted to be solved directly, that is, based on the explicit use of
transfer function moments, unless the number of the moments can be kept low.
As stability of the obtained reduced-order models is also not guaranteed, it is
shown how to preserve it while at the same time providing a simple explicit ex-
pression for the dominant poles of the original, high-dimensional model using a
subspace projection technique that uses explicit moments to define congruence
transformation of the state-space. This particular method provides efficient MOR
solution for the examples considered in this thesis due to sufficiently low num-
bers of moments required, at least when the number of inputs is not large. In
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Figure 4.5: Comparison Modal Truncation (MTR) versus Singular Perturbation
(SPMTR) for the slightly compressible system from Figure 4.3. Except in the initial
stage, which length and thus impact is directly related to the total compressibility,
the rezidualized model consisting of just 1 state clearly outperforms the truncated
one with 5 modes (it actually outperforms modal truncated models of much higher
orders, but the results of those would be hardly visible in this figure).

order to anticipate situations where larger numbers of moments would appear
necessary (e.g. due to a particular choice of spatial-discretization, complex grids
and parameter fields, large numbers of input-output pairs, etc.), the section also
provides an introduction to the Krylov subspace (KS) MOR methodology, which
has the remarkable characteristic that techniques employed perform transfer func-
tion moments matching without actually computing the moments! Instead, these meth-
ods achieve moment matching by iteratively constructing projection matrices that
span adequate (generalized) Krylov subspaces. The employment of indirect mo-
ment matching techniques promotes more efficient and stable implementation of
moment matching in the general case.

4.3.1 Transfer Function Point Matching

Let S2k := {sj}2k
j=1 be the set of 2k frequency points where we want the reduced-

order transfer function Hr(s) in (4.1.19) to match the high-order rational one,
H(s), defined in (4.1.18), i.e. ∀si ∈ S2k:

Hr(si) =
er,0 + er,1si + er,2s

2
i + . . . er,k−1s

k−1
i

1 + fr,1si + fr,2s2
i + · · ·+ fr,ksk

i

= H(si). (4.3.1)
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Cross-multiplying and then rearranging the terms yields the following linear sys-
tem of matrix equations for the coefficients {er,i}k−1

i=0 , {fr,i}ki=1:




s1H(s1) s2
1H(s1) . . . −sk−1

1

s2H(s2) s2
2H(s1) . . . −sk−1

2
...

...
...

...
s2kH(s2k) s2

2kH(s2k) . . . −sk−1
2k







er
1

er
2
...

f r
k−1


 =




H(s1)
H(s2)

...
H(s2k)


 . (4.3.2)

The following is important to emphasize. The columns of the ’point matching
matrix’ in (4.3.2) contain progressively higher powers of the ’test’ frequencies.
As for progressively increasing powers of si these columns become progressively
(and very quickly) ill-conditioned, so does the matrix itself. The truth is then that,
unless the order of the reduced model is kept rather low, one can not really do
MOR this way without taking special care of the ill-conditioning.

4.3.2 Explicit Transfer Function Moment Matching

Let’s now consider the ’moment matching’ problem, i.e. matching, by a reduced-
order model, the value of the transfer function of the high-dimensional model as
well as a number of subsequent derivatives at a desired frequency point s. To
arrive at the desired equations, let us write the (stable) transfer function of the
SISO LTI system in a slightly different form:

H(s) = cT (sI−A)−1b = −cT (I− sA−1)−1

︸ ︷︷ ︸
Taylor expand w.r.t. s, for ’small’ sA−1

A−1b

= −
∞∑

i=0

cT A−(i+1)bsi

= −cT A−1b︸ ︷︷ ︸
m0

+ (−cT A−2b)︸ ︷︷ ︸
m1

·s + (−cT A−3b)︸ ︷︷ ︸
m2

·s2 + . . .

=

∞∑

i=0

mis
i. (4.3.3)

The coefficients mi = −cT A−(i+1)b, i ≥ 0 are the moments we are interested in
(when d 6= 0, then m0 = d − cT A−1b). For a steady-state match, i.e. s = 0, for in-
stance, only m0 needs to be matched14. The more moments are matched, the more
of the transient behavior is caught. The above expressions for the moments are ob-
tained for ’small’ sA−1 and are equivalent to those obtained from the ’MacLaurin’

14Indeed, in the time domain we have, in a steady state, 0 = Axss + buss, yss = cT x + duss, which
yields yss = (d − cT A−1b)uss.
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series15 of H(s):

H(s) = H(0) + H
′

(0)s +
H

′′

(0)

2!
s2 +

H
′′′

(0)

3!
s3 + . . . . (4.3.4)

H(s) can be expanded about any ’test’ frequency s0 for which (s0I − A) is non-
singular using the Taylor series expansion of H(s), given by the infinite sum

H(s) =
∑∞

i=0
H(i)

i! (s0)(s − s0) =
∑∞

i=0(−1)icT (s0I − A)−(i+1)b(s − s0)
i. The ex-

pansion about s0 = 0 provides the low-frequency moments as above, i.e. mi =
−cT A−ib, i ≥ 0, whereas expansion about s0 = ∞ yields the high-frequency mo-

ments (so-called ’Markov parameters’), mi = −cT A−(i+1)b, i < 0.

Explicit (or direct) moment matching techniques, like e.g. Asymptotic Waveform
Evaluation AWE [6, 62, 63, 131, 217, 260], approximate the response of the original
system typically via a two-step process. First, moments mi which correspond to
frequency domain expansions of the original system transfer function are explic-
itly computed. In the second step, the approximate realization transfer function
(4.1.19), recognized to be a Padé approximant of the original transfer function, is
forced to correspond to 2k moments of the original system, whereby moments re-
lated to different expansion points (test frequencies) can be mixed, for instance j
low-frequency moments and 2k − j high-frequency moments. This yields a sys-
tem of equation as (4.3.5) for determining the denominator coefficients fi of the
reduced-order transfer function16:

−




mk

mk+1

...
m2k−1


 =




m0 m1 . . . mk−1

m1 m2 . . .
...

... . . .
. . . m2k−3

mk−1 . . . m2k−3 m2k−2







f r
k

f r
k−1
...

f r
1


 ,

(4.3.5)

after which the coefficients ei can be found by an additional matrix-vector multi-
plication:

er
0 = m0

er
1 = m1 + f r

1m0

. . .

er
k−1 = mk−1 +

k−1∑

i=1

fimk−(1+i). (4.3.6)

For MIMO systems with m inputs and p outputs AWE procedure is based on ob-
taining Pade approximations Hr,ij(s) separately for each pair of inputs i and out-
puts j and then, by applying the superposition property of linear systems, group-

15A MacLaurin series is a Taylor series expansion of a function f(x) about 0: f(x) = f(0)+f(1)(0)x+
f(2)(0)

2!
x2 +

f(3)(0)
3!

x3 + . . . .
16If the max. order of s, say ℓ, in the numerator of (4.1.19) is smaller than k−1, then the last equality

in (4.3.5) reads er
ℓ = mℓ

Pmin(ℓ,k)
i=1 fimℓ−i.
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ing these approximations into one p × m transfer matrix function (Hr)ij(s) =
Hr,ij(s). The computation cost increases quadratically with the number of in-
puts/outputs (O(p×m)).

The following is generally true about the moments:

• Recursive computation. The moments can be obtained recursively, from a
series of matrix equations. For example, for a SISO LTI system with zero-
initial conditions and in the generalized state-space form, the Laplace do-
main equations are (sE − A)X(s) = bU(s), Y (s) = cT X(s). Using Y (s) =
H(s)U(s) =

∑∞
i=0 mis

iU(s), the state of the system can be expressed as
X(s) =

∑∞
i=0 ris

iU(s) for some coefficients ri (these are vectors!). Substitut-
ing this into the Laplace equation for the state yields (sE−A)

∑∞
i=0 ris

i = b.
the terms of the same power on both sides of the equation can be equated,
yielding the following recursive formulae for the coefficients ri:

Ar0 = −b,

Ari = Eri−1, i = 1, . . . , 2k. (4.3.7)

If the dimension of the original system is moderate, the coefficients ri (and
hence also mi = cT ri) can be determined by explicit matrix inversion. Oth-
erwise, a single LU decomposition for all plus forward and backward sub-
stitutions for each of the equations suffices. For general sparse matrices, the
complexity of an LU decomposition is O(n1.4−1.7) instead of O(n3) for dense
matrices. For single-phase problems in this thesis this complexity decreases
even further, due to the simple structure of the system-, here a transmissibil-
ity, matrix A (symmetric, negative definite, and 5-diagonal for 2D problems
and 7-diagonal for 3D problems).

• Ill-conditioning. For increasing i, the moments mi line up more and more
with the dominant eigenvector of A, or equivalently A−1, in (4.3.3) (or A−1E
in the generalized case). This is easy to see from A−1b and thinking of b as
a weighted combination of the eigenvectors of A, i.e.: A−1b = A−1(α1v1 +
· · ·+ αnvn) = α1λ

−1v1 + · · ·+ αnλ−1
n vn. It follows that A−ib = α1λ

−i
1 v1 +

· · · + αnλ−i
n vn, which approaches the term in the summation, say αjλ

−i
j vj ,

j ∈ {1, . . . , n}, which dominates the sum (for instance, for a stable and sym-
metric A, λj will be the least negative eigenvalue of A). For increasing i

this means that mi−1 tends to αjλ
−(i−1)
j cT vj and mi to αjλ

−i
j cT vj . There-

fore, for ’sufficiently large’ i, the subsequent moments behave according to
mi ≈ λ−1

j mi−1. As a consequence, the (Hankel) moment matching matrix in
(4.3.3) becomes rapidly ill-conditioned. In general, the ’sufficiently large’ i is
smaller the more separate the dominant eigenvalues are from the rest of the
eigenspectrum. A discussion and an analysis of eigenspectra en moments
characteristics of single-phase systems considered in this thesis is provided
below.

• Relationship with poles (and residues) and loss of accuracy. Having deter-
mined the coefficients in the rational transfer function representation (4.1.19)
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is not enough, as this model form can not be used for simulation. The par-
tial expansion transfer function representation (4.1.17), on the other hand,
is ’simulation-ready’17, but it requires computation of the transfer function
poles λi and their corresponding residues ri. A trivial state-space represen-
tation is given by (A, b, cT ) = (diag(λ1, . . . , λk), [r1, . . . , rk]T , [1, . . . , 1]). The
poles can be found by finding the roots of the polynomial expression that
makes the denominator, F (s), of Hr(s). To compute the residues ri there are
two methods. The first one uses both numerator E(s) and denominator F (s)
in (4.1.19). It can be shown (e.g., [260]) that the residues can be computed

as ri = E(λi)
Q

k
j=1,j 6=i(λi−λj)

, i = 1, . . . , k. In the second method for computing

residues ri, the knowledge of numerator E(s) is not required. Moreover,
this method reveals an important relation between the moments, poles, and
residues of the transfer function18:

−(
r1

λ1
+

r2

λ2
+ · · ·+ rk

λk

) = m0

−(
r1

λ2
1

+
r2

λ2
2

+ · · ·+ rk

λ2
k

) = m1

... (4.3.8)

−(
r1

λ2k
1

+
r2

λ2k
2

+ · · ·+ rk

λ2k
k

) = m2k−1.

(4.3.9)

(actually, as the number of unknown ri is k, only k equations from (4.3.8)
need to be selected to solve for ri, i = 1, . . . , k). The moment mi is thus
the power function of poles, mi = mi(λ

i−1
1 , . . . , λi−1

k )! Consequently, the
higher-order poles (’less dominant’, having large magnitudes) will soon be
lost numerically in the (expression for the) moments, implying that high or-
der moments will approximate dominant (i.e. small-magnitude) poles. This
practically means that explicit moment matching methods like AWE can not
be reliably used to compute high-order poles and, unless the reduced model
order is rather low (say, ≤ 4), unstable reduced-order models can easily be
generated for stable original models when high order moments are com-
puted. Fortunately, there exist (more) stable methods to determine domi-
nant system poles. One of these, based on subspace-projection, is described
below and will, to a certain extent, already introduce us to the idea and the

17Actually, when the poles and residues of a transfer function of a LTI system are known and one
is interested in the output behavior only, then, for ideal input waveforms as e.g. steps and limited
ramp signals, there is no simulation necessary at all, as the output can be written in a closed-form.
For instance, the output response of a SISO system to unit step input u(t), the Laplace of which being
1
s

, is easily found to be given by y(t) = [
Pk

i=0
ri
λi

(eλit − 1)]u(t). The ability of determining the

response of a dynamic system for any t using a closed-form expression is a major advantage over
the transient analysis, which performance, stability and accuracy generally depend on the employed
time-integration method and/or time-step sizes.

18The relation is easy to prove by writing the fractional expansion of H(s) as H(s) =
Pk

i=1
ri

s−λi
=

Pk
i=1 −

ri
λi

(1 + s
λi

+ s2

λ2
i

+ . . . ), and comparing its first 2k terms with the corresponding terms in the

moment expansion form H(s) = m0 + m1s + m2s2 + · · · + m2k−1s2k−1.
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setting of Krylov-subspace MOR, the subject of subsection 4.3.3. For some
other methods, see e.g. [260].

• Shifted and multiple moment matching. The standard moment matching
described above is w.r.t. to one single expansion point s. In the above it
was s = 0 (as was also in the original AWE paper [216]). Approximation
of the frequency response of the original system is frequently rather poor
away from the expansion frequency. As a result, using expansions exclu-
sively about s = 0 may produce large time domain errors near the initial
time point (t = 0). A remedy for this was originally to use the first coef-
ficient of the expansion about s = ∞ in addition to the moment informa-
tion. Further improvement of the approximation near t = 0 can be achieved
through employment of more moments in the expansion about s = ∞. The
first attempts at expanding the system’ transfer function at points other than
s = 0 and s = ∞ were made in [131]. If the chosen ’shifted’ frequency ex-
pansion point s = h is along the positive real axis, the basic procedure for
obtaining the ’shifted’ moments is modified only slightly. The condition
consists in considering ((s − h)E + hE − A)X(s) = bU(s) and expanding
X(s) as a series in s − h. A similar recursion scheme as above between the
shifted moments can be developed, with the only difference that now the
matrix hE − A must be LU -factored, which may be advantageous when A
is singular. On the other side, the sparsity, and hence the computational
efficiency of the LU factorization, of hE − A is often reduced as compared
with A, as hE may have zero entries there where A does not (this is not the
case in this thesis). Finally, various techniques have also been developed
for ’merged’ AWE approximations, that is, approximations which contain
information from multiple shift frequencies. Except the accuracy, employ-
ing information from expansions about multiple frequency points improves
also stability of AWE approximations. A general technique for multipoint
AWE moment matching is described in [6], while [63] proposes a different
approach (see also [62]). For single-phase porous media equations with low-
frequent input signal forms and slight compressibility it is reasonably to ex-
pect that the expansion around s = 0 will suffice in most of the cases (at the
end, in the limit of zero compressibility, the single-phase pressure equation
becomes a steady-state equation). Moreover, in these situations the number
of moments required to adequately approximate the input-output transfer
will, at least for systems with few or clustered wells, generally not be large.

Eigenspectra and moments of single-phase systems

Figure 4.6 depicts (a part of) eigenspectra for two reservoir systems with various
well placements configurations. Figures 4.7 and 4.8 show (some of) the columns
of the corresponding state block moments, whereas Figure 4.9 shows the behavior
of mi/mi+1 versus the dominant eigenvalue of A for some of the elements of the
system block moments, with mi(k, ℓ) = cT

k A−ibℓ. One of the systems (parts a
and b) is exactly the same as in Fig. 4.3, whereas the other system (parts c and
d) is a 45x45 horizontal reservoir with two high permeable streaks and injecting



4.3 Transfer Function Matching and Krylov Subspaces MOR 59

and producing wells placed on the opposite sides. In the examples injectors were
always (each individually) flow-rate constrained and producers were always (also
each individually) BHP constrained.
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Figure 4.6: (Dominant part of) Eigenspectra of two single-phase systems, each in
two different well configurations.

As for the eigenspectra, a general observation (for all models considered in this
thesis) is that: a) for systems with only one BHP constrained well (connection) the
separation of eigenvalues is clear, with a single close-to-zero eigenvalue dominat-
ing over the remaining, more stable part of the eigenspectrum. The separation is
larger the lower the permeability of the gridblock the well is connected to19; b)
the number of dominant eigenvalues increases with the number of wells, but it is
generally still very low compared to the state-space dimension. It is important to
note that flow-rate constrained wells do not introduce any new dynamics in the
above sense, i.e., no change in A (and thus in the spectrum) is caused by the pres-
ence of such wells. However, as any new well implies a new non-zero column in
the input matrix B, controllability properties of the system do change (as do also
observability properties, due to the symmetry). This change is less substantial the

19This is easy to understand when one recalls that without any BHP constrained well the transmis-
sibility matrix T would have a single dominant zero eigenvalue and that each BHP constrained input
introduces a ’Peaceman’ term -α on the corresponding diagonal element of T (and thus A), with α

positive and depending on grid-block permeability and some geometric properties of the well. The
presence of -α causes the zero eigenvalue to become negative.
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Figure 4.7: (Some of the columns of the) State Block Moments belonging to systems
a. and b. from Fig. 4.6.

’more large-scale’ the original problem is. This has very important consequences
for applications like optimization and parameter- or state estimation. A crucial
lesson one may (and should) draw is e.g. that it is totaly unrealistic to expect that
without prior knowledge (e.g. constraints imposed by ’known’ geological prop-
erties) or use of another types of information (e.g. seismic), one may be able to
obtain fine-scale parameter estimates (of permeability, for instance) that resemble
the ’underlying, real’ parameter field. With such a sparse information available,
there are infinitely many possible realizations of the parameter field that fit the
observed data equally well. As for reservoir models, this, more or less expected
conclusion, is in line with [259]. To borrow the term used in [256, 273, 274, 303],
parameterizations of reservoir models obtained from spatial discretizations are
not (globally) structurally identifiable. This conclusion is also supported by the be-
havior of the moments. As Figures 4.7-4.8 show, every column of the subsequent
state block moments starts to line-up with the dominant eigenvector of A very
quickly, generally already at the third or fourth moment. Consequently, as shown
in Fig. 4.9, (the elements of) the system block moments rapidly line-up with their
predecessors20. This implies that a very limited amount of information about the

20A remark: for configurations a. and c., the vector of the first state block moment corresponding to
the BHP-constrained input equals −[1, 1, . . . , 1]T . This is generally true for all systems having a single
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Figure 4.8: (Some of the columns of the) State Block Moments belonging to systems
c. and d. from Fig. 4.6.

whole system is numerically obtainable from the moments (which together form
the transfer function matrix of the system). Orthogonalization of the subspace
spanned by the moments may help a bit, but the impact will generally be minimal
for (very) large-scale systems. A larger number of wells (i.e. input-output pairs)
may also make some difference, but the impact will be restricted to regions close
to the wells if a) the wells are situated very close to each other (and thus largely
correlated), as in Fig. 4.6.d (with the behavior of moments as depicted in 4.8.d and
4.9.d), and b) either the physical distances between individual wells or the number
of gridblocks in the regions of interest between the wells are large (the informa-
tion ’diffuses’, so to speak). This is in line with [273, 274], which perform ’local
structural identifiability’ analysis based on observability, sensitivity and controlla-
bility properties of the system and the rank test of the so-called (Fisher) information
matrix in order to determine ’a best identifiable, reduced-dimensional parameter-
ization’ for MIMO systems. The analysis makes use of system’s Markov parame-
ters, i.e., high-frequency moments. An excellent review and unification of linear
identifiability concepts is provided in [197].

Remark 4.3.1. It is important to stress that, in general and if only (global) struc-
tural identifiability properties of a linear system are of interest, controllability and

BHP-constrained well.
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Figure 4.9: Behavior of mi(k, ℓ)/mi+1(k, ℓ) versus λdom for some of the elements
of the system block moments for the four systems from figure 4.6, with mi(k, ℓ) =
cT
k A−ibℓ.

observability properties are neither necessary nor sufficient conditions for identi-
fiability. That is, even if each unknown parameter, θi, is included in the part of the
system which is controllable and observable, the identifiability of that parameter
is not guaranteed. Moreover, the parameters in the uncontrollable or unobserv-
able parts are not necessarily unidentifiable. [72] provides two simple examples
that clarify these two points.

Pole computation and stability preservation by subspace-projection: An over-
ture to Krylov subspace MOR

A reliable way of approximating dominant poles is by ’subspace-projection’, which
in SISO case basically consists of: 1) forming an n × k state moment matrix R :=
[r0, r1, . . . , rk−1], where n is the dimension of the original state-space, 2) orthonor-
malizing R into an n × n orthogonal projection matrix V, and 3) reducing, by
congruence transformation, the original n× n system matrices A and E to k × k ma-
trices Ared = VT AV and Ered = VT EV, respectively. After this, the eigenvalues
αi of A−1

redEred will be related to the r dominant poles λi we are looking for as:
λi = 1

αi
(as the poles of the original system are the eigenvalues of E−1A, i.e. of the
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inverse of A−1E). Eigenvalues αi can be easily obtained by eigendecomposition
of A−1

redEred. Stability of the poles, and thus the stability (or more generally, ’pas-
sivity’21) of the system is guaranteed by the nature of congruence transformation.
Moreover, we note that in this procedure only k moments are used to generate
k poles, instead of 2k moments as in the traditional moment matching method
described above. Orthonormalization of R can be simply accomplished by the
standard Gram-Schmidt method, but it can also be performed during the moments
generation process by methods such as the Arnoldi or Lanczos methods, which
are numerically more stable than the standard Gram-Schmidt method.

The congruence projection matrix V as defined above can also be used to ac-
tually reduce the order of the original system, also in MIMO case. Noting that
the state (block) moment matrix form a (block) Krylov subspace, one may con-
sider the method as a Krylov subspace method. We, however, prefer to keep the
name Krylov subspace MOR designated for methods that do not make use of ex-
plicitly computed moments and determine orthonormal bases of Krylov (block)
subspaces in an iterative fashion using e.g. Arnoldi or Lanczos iterative algo-
rithms. Implicit moment matching Krylov subspace MOR is the subject of the
next subsection.

In a large majority22 of single-phase cases considered here the method using
orthogonalized matrix of state block moments performed exceptionally well us-
ing a rather low number of moments around s = 0. Numerically, that is quite
fortunate, as (the columns of) the moments, as discussed above, all start to line-up
with the dominant system’s eigenvector very quickly. On the other side, as com-
plex waveforms are not characteristic for single-phase systems considered here,
the addition of only one extra moment may be expected to improve the mod-
els considerably. The symmetry of the systems also helps, as the same accuracy
can be achieved using less moments than in a non-symmetric case. When the re-
quired order of the reduced model is higher than numerically achievable from the
moments at s = 0, extending the projection subspace using information from a
single or few extra expansion points may improve the matter sufficiently. Gener-
ally, the choice which expansion points to use is far from trivial, though. Due to
both the nature and the diversity of possible requirements for a well performing
reduced-order model, reservoir flow problems are even more complex in this re-
spect. Actually, for this class of problems, even a priori determining whether the
inclusion of extra expansion points would be of any value at all is an open issue.

21Loosely speaking, a system is said to be ’passive’ if it does not generate energy. If the reduced order
model looses its passivity, it may lead to unbounded responses in transient simulation, which would
mean that new energy has been generated in the system. Formal definition of passivity of LTI systems
includes the notions of ’positive-realness’, which is not of fundamental importance in this thesis and
is therefore omitted here. Readers interested in this particular subject are referred to [90, 186, 201, 260],
for instance. Here we only emphasize that the starting, high-dimensional models in this thesis are always
passive. It can be shown that congruence transforms guarantee passivity of the reduced-order models
when the original, high-dimensional model is in passive form.

22The cases where the method had difficulties to approximate the flow production adequately con-
cerned situations where all producing wells where situated in very low permeable zones. The flow
through such wells is, as long as the total compressibility is ’slight but substantial’, so low, however,
that it is of no real practical significance. Anyway, even in these cases the method gave good results
when used in a hybrid combination with another method, as described in Remark 4.3.2.
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For example, a reduced-order model yielding a poor approximation of temporary
production flow-rates (either total or individually per well) might yield excellent
match of the final cumulative production.23 However, even in such cases and
as long as global flow properties are very well approximated, the reduced-order
models may be very useful, e.g. for purposes of developing low-order models as
in [104] (see also [242, 272] for a different technique), for ’control-relevant’ upscal-
ing [268, 269], flow prediction (e.g. Ensemble Kalman Filtering: EnKF), history
matching, etcetera.

Figures 4.10 to 4.12 show simulation results for various single-phase cases us-
ing explicitly computed and orthogonalized (as a whole, using the ’orth’ com-
mand in Matlab) state block moments:

a) The first case concerns the same system configuration and parameters as the
system in Fig. 4.3. Besides the production flow rates for the original high-order
model (441 states) and the reduced-order models with 6 states, 4 states, and 2
states, respectively, Fig. 4.10 also shows the flow-rate difference between the full-
order model and each of the reduced order ones, as well as the varying injection
flow rate. Here, k = 6, k = 4, and k = 2 are the dimensions of the projection
matrix V ∈ R

441×k and are equal to the rank of the state-moment matrix R of
size 441 × 6 (3 state moments, 2 inputs), 441 × 4 (2 moments), and 441 × 2 (1
moment), respectively. As V and R have the same dimension for the 441× 6 case,
there is no (numerical) linear dependence among the (columns of the) three state-
moments involved . As the figure shows, even the reduced-order model with just
4 states (2 moments) performs very well, as there is no (visual) distinction between
the results obtained by it and by the high-dimensional model (the small window
within the figure shows the flow-rate differences between the full-order model
and the reduced models of order 4 and 6, respectively, on their natural scale).
An interesting observation concerns the results for the reduced-order model with
only 2 states, that is, using only the first state-moment. Whereas there clearly is
an approximation error that seems to become larger the more abrupt the flow-
rate change of the high-dimensional model is, it is noticeable that this error gets
compensated for ’in cumulative sense’, that is, the cumulative production (in this
case production of a single well) remains approximated quite well. Although this
behavior has not been observed in all the cases considered in this research, it has
occurred frequently enough to justify further investigation.

b) The second case is a larger and more realistic system, consisting of 60×220×1 =
13200 gridblocks and representing two individual horizontal slices of Model 2
from the 10th SPE Comparative Solution Project [65]. The model dimensions
are 1200x2200x2 [ft] (365.76x670.56x0.6096 [m]). The two layers considered were
the model’s top layer, in which the permeability is smooth (Fig. 4.11.a), and the
bottom layer, which is fluvial and characterized by a spaghetti of narrow high-
permeability channels (Fig. 4.11.b). The heterogeneous permeability ranges over
at least six orders of magnitude in both layers. Flow in the two layers is driven by
imposing an injection well in the center of the reservoir and four production wells

23At the end, the variables being projected onto global subspaces are gridblock pressures, whereas
the variables of interest in most of the cases are spatially localized flow-rates. This holds even more
for multi-phase problems.
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Figure 4.10: Results MOR by Projection with Explicit Moments for the same system
as in Fig. 4.3. It is fair to mention that, for this particular example, singularly
perturbed reduced-order models perform comparably well. Computational cost to
obtain a reduced-order model is much higher, though.

in the four corners, respectively (i.e., a five-spot). According to the lower parts
of Fig. 4.11, the reduced-order representation of size of just 10 performs great for
both the top and the bottom layer. On the other side, (for all layers) it was ob-
served that using more state-moments than 5 (i.e. reduced-order model of size
20) does not improve the results any more. According to the discussion above,
for the input matrix B := [b1, b2, . . . , bm], all A−jbi, i = 1, . . . , m have (numer-
ically) lined-up with the dominant eigenvector of A already at j = 5. One can
try to extend the projection space using expansions at extra points, but, as men-
tioned above, which points to chose is generally difficult to answer and maybe
not helpful at all. Another possibility is to extend the projection subspace not by
extra moments but by some other vectors, as in the method described in Remark
4.3.2. For the models regarding this case that would be unnecessary, as the ap-
proximation error (both temporary and cumulative) becomes neglectable already
using three or four state moments.

c) The third case concerns the same systems as in case two, but the number of
inputs and outputs is now substantially larger and equals 38 (24 injectors and 14
producers, in a five-spot configuration). For both the top and the bottom layer the
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Figure 4.11: Results MOR by Projection with Explicit Moments for the top-layer
(fig. a) and the bottom-layer (fig. b), respectively, of the SPE10 model 2.

corresponding reduced-order models with 76 states (2 state block moments) were
found to perform great, whereas the performance of the ones with 120 states for
the top layer and 108 states for the bottom layer (3 state-moments minus some
redundancy) were virtually indistinguishable from the full-order model. Fig. 4.12
shows the results. Moreover, for these two layers (and the well settings and
control, the latter being piecewise constant injection rates and constant bottom-
hole pressures at the producers) even just the first state block moment contained
enough information to approximate the full-order model quite well.

It is important to note that, for these systems, the achievable order of the re-
duced model using moments is limited and can formally not go below 38. This
strong and disadvantageous dependency on the number of inputs and/or out-
puts is characteristic to any ’full-blown’24 moments-based model-order reduction,
either explicit or implicit, and is not difficult to explain. One just needs to ob-

24The term ’full-blown’ is adapted from [260] and is used here to distinguish model-order reduction
using the standard projection framework from a model-order reduction using dominant poles ap-
proach. The latter uses the fact that all transfer functions of the original model share the same poles (!).
Assuming that the dominant poles of the reduced-order transfer functions determined by an approach
as above, for instance, will also (approximatively) coincide, it is sufficient to use one input-output pair
to find these poles. A reduced-order model can then be determined by computing the corresponding
residuals for each input-output pair. The order of this reduced model is equal to the number of the
poles and therefore independent from input and output cardinality.



4.3 Transfer Function Matching and Krylov Subspaces MOR 67

0 500 1000 1500 2000 2500
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Time  t , days

 -
Q

 , 
m

3 /d
ay

Total production rate full-order model versus reduc ed-order models   
for a five-spot well configuration with 24 injector s and 14 producers

1380 1400 1420 1440 1460 1480
6600

6800

7000

7200

7400Q
prod,full:13200 states

Q
prod,red:76 states, 2 state moments

Q
prod,red:38 states, 1 state moment

Q
prod,red:120 states, 3 state moments

Q
prod,red:76 states

Q
prod,red:38 states

Q
prod,red:120 states

(a) Results for the top-layer of the SPE10 model.

0 500 1000 1500 2000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

 -
Q

 ,  
m

3 /d
ay

Total production rate full-order model versus reduc ed-order models   
for a five-spot well configuration with 24 injector s and 14 producers

Time  t , days

Q
prod,red:38 states, 1 state moment

Q
prod,full:13200 states

Q
prod,red:76 states, 2 state moments

Q
prod,red:108 states, 3 state moments

1900 1950 2000 2050
1.25

1.3

1.35

1.4

1.45
x 10

4

Q
prod,red:38 states, 1 state moment

Q
prod,full:13200 states

Q
prod,red:76 states, 2 state moments

Q
prod,red:108 states, 3 state moments

(b) Results for the bottom-layer of the SPE10 model.

Figure 4.12: Total flow rate results for the two models from case 2: a five-spot well
configuration with 24 (variable flow-rate constrained) injectors and 14 (constant
bottom-hole pressure constrained) producers.
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serve that, for state-moments based projection technique as above, each of the
block state-moments Ri := A−iB (or Ri := (A−1E)−iA−1B in the generalized
case) is an n × m matrix, with m the number of inputs. Therefore, except when

it is ”notoriously” low, the (numerical) rank k ≤ k̃ of [R1, R2, . . . , Rk̃], and hence
the order of the reduced-order model, will often be unnecessarily high. For the
transfer function moment matching, it generally holds that the reduced model
size is a multiple of the number of matched moments, whereby the multiplier is
an increasing function of the number of inputs and outputs (see also Theorem
4.3.6). While the increasing cost of generating a reduced-order model will per-
haps be amortized in later simulations, another, more problematic issue with a
large number of inputs an/or outputs is the dense character of the projection ma-
trices, as it directly affects simulation cost. If one desires to base the entire model
order reduction on the moment matching idea, the so-called ’port-merging’ and
related techniques, developed in the area of VLSI25 circuit design and analysis,
could be considered, for instance. The main idea of port-merging is to make use
of a potentially large degree of correlation between the various different inputs
and outputs (either mutually or individually), which, based on an SVD (singu-
lar value decomposition) analysis, will yield a ’reduced-terminal’ representation
of the original high-dimensional state-space model (i.e., the state-dimension re-
mains unchanged). State-space reduction can then be performed by employing
the standard moment matching and congruence transformations from this sec-
tion. Reference [260] provides an excellent overview of these techniques. While
such a procedure will inevitably introduce some error, the reduced-order model
will be more compact. Moreover, there is also a (potentially significant) practical
usefulness of such an approach in the sense of reducing the necessary number of
sensors and/or control units. On the other side, as state-moments are generally
not sparse, SVD analysis can be computationally quite demanding for very large
problems.

Remark 4.3.2. A projection matrix for MOR is not restricted to the use of one single
type of vectors to determine it. That is, there is no reason why it should be formed
from state (block) moments only, for instance. Realizing this, and regarding the
material presented in this thesis so far, combining system’s eigenmodes with state
(block) moments is a natural choice. In this method, which we baptize as ”Hybrid
Mode Reduction” (HMR), the orthogonal state-projection matrix V is constructed
from a given number of system’s eigenvectors corresponding, for our purposes,
to the eigenvalues closest to zero, and also one or more state (block) moments at
s = 0. The rationale behind this method is that a) using the system’s eigenmodes
should make the reduced-order model a good approximation for slow-changes in
the states, b) the inclusion of −A−1B, which is the static solution for unit inputs,
would make the stationary values of the state right, and c) the inclusion of higher
order modes should increase the accuracy of the projection even further. We note
that a similar method, is mentioned in [204]. The only, but important, difference
is that, there, only −A−1B is combined with the eigenvectors.

25VLSI Very-Large-Scale Integration: the process of creating integrated circuits by combining mil-
lions of transistor-based circuits into a single chip.
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4.3.3 Implicit Moment Matching using Krylov Subspaces

The basic idea behind Krylov subspace (KS) techniques for MOR is to match the first
few moments of the reduced order model and the original system at one or more
frequency expansion points and obtain a reduced-order state-space realization of
the system without actually computing the moments. The insight that such an implicit
moment matching and (’partial’) state-space realization is possible comes from [110,
287].

Theorem 4.3.1. Consider a stable n-dimensional SISO LTI system in the standard state-

space form ẋ = Ax+bu, y = cT x and a k-dimensional restriction of it: ȧ = (WT
k AVk)a+

(WT
k b)u = Âa + b̂u, ŷ = (cT Vk)a = ĉT a, and let the oblique (Krylov) projector πk =

π2
k = VkWT

k be defined by matrices Vk and Wk such that:

COLSP(Vk) = Kk(A, b)

≡ span{b, Ab, . . . , Ak−1b}, (4.3.10)

COLSP(Wk) = Kk(AT , c)

≡ span{c, AT c, . . . , A(k−1)T

c}. (4.3.11)

Then the first 2k Markov parameters of the original and reduced-order systems are identi-
cal.26

The reduced-order model from the above theorem matches the first 2k high-
frequency moments of the original system.27 In a completely analogous way of ob-
taining a reduced state-space realization which matches moments about s0 = ∞
through an oblique projector corresponding to Kk(A, b) and Kk(AT , c), moment
matching about s0 = 0 can be obtained by employing a projector corresponding
to Kk(A−1, A−1b) and Kk(A−T , A−T c), for instance. Actually, implicit moment
matching using Krylov subspaces is possible at any particular frequency. More-
over, beyond the single point moment matching and standard-state space SISO
setting, modern Krylov subspace algorithms produce reduced order models that
match transfer function moments of MIMO systems in generalized state-space
form at multiple frequency points. Projection matrices in Krylov-based methods
can be generated using iterative algorithms like Arnoldi and Lancsoz that employ
only inner-products and matrix vector multiplications. When the system matrices
A and E are sparse, as normally is the case in large-scale applications, the compu-
tations involved are relatively cheap.

The literature on Krylov subspace MOR is rich. For excellent overviews and
surveys of Krylov MOR techniques the reader is referred to [12, 13, 86, 87, 96].

26Note the equivalence between these subspaces and the controllable and observable subspaces of
the full-order system for k = n.

27The fact that the idea of using Krylov subspaces as above is quite recent may be considered as

rather surprising. Indeed, due to x(t) =
R t
0 eA(t−τ)bu(τ)dτ , determining a good k-dimensional

(k << n) approximation of the original system can be seen as ultimately connected to finding a pair

{Â, b̂} that approximates eAtb well. Taking this one step further, from input-output point of view
what one is really interested in is the information in eAtb which is in direction of c (see also [97, 237]
for utilization of an Arnoldi type of Krylov orthogonal projectors for approximation of eAtb).
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Deeper analysis of Krylov subspace methods, including issues as choosing the in-
terpolation points (matching frequencies), estimating the modeling error, ensur-
ing model stability, avoiding algorithm break-down, implementing parallelism,
etc., can be found in [11, 115], for instance. In [104], KS model reduction has been
proposed for purpose of developing low-order controllers for reservoir optimiza-
tion. With the material presented in this subsection we hope to provide an ade-
quate basic understanding of Krylov subspaces MOR, whereby the emphasize has
been put on the basic concepts rather than detailed descriptions and algorithms.
The presentation of theorems largely follows [239].

Degrees of freedom and invariance properties in the design of KS methods

The principal degrees of freedom in the design of KS methods are [239]:

• Input and/or output Krylov subspace: For each state-space system, there are
two Krylov subspaces that are dual to each other: input Krylov subspace, de-
fined using the system matrix A (or A and E in the generalized state-space
case) and the input vector b (or input matrix B if MIMO), and output Krylov
subspace, defined using the system matrices and the output vector c (matrix
C if MIMO). Using only one of Krylov subspaces yields one-sided methods,
whereas two-sided methods utilize both subspaces with the aim of matching
more moments (except if the original system is symmetric, as in that case
the two subspaces are equal), hence providing better approximations of the
output y in many applications. On the other side, for one-sided methods
with the particular choice W = V the reduced-order models will preserve
passivity (and thus stability) of certain passive original.

• Starting vectors of subspaces: In Kk(F, r) := span {r, Fr, . . . , Fk−1r}, where F ∈
R

n×n, and r ∈ R
n is called starting vector. In the ’block’ Krylov subspace

Kk(F, R) := colspan{R, FR, . . . , Fk−1R}, where R ∈ R
n×m, starting vectors

are located in the columns of R. By suitable choice of the starting vector(s) it
is possible to simultaneously match moments at low- and high frequencies
(i.e., moments and Markov parameters), without changing the total number
of matched parameters. It is also possible to simultaneously match moments
at arbitrary points by constructing orthonormal bases for unions of Krylov
subspaces (multi-point moment matching is called rational interpolation). The
standard algorithm for performing multi-point matching is the Dual Rational
Arnoldi algorithm developed in [115] (see also [204]).

• Krylov subspace bases: When a choice for a Krylov subspace has been made,
a basis of it needs to be determined which defines the projection. It can
be shown that this influences the reduced-order model but not its transfer
function (actually a corollary of Proposition 3.3.1).

• Original state-space model representation and realization: It appears that, un-
like the invariance w.r.t. the bases, the reduced-order models obtained by
projection methods are not necessarily invariant w.r.t. the original system
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’representation’ (that is, multiplication of the original state-equation by a
non-singular matrix; examples: scaling, preconditioning, etc.) and realiza-
tion (nonsingular similarity transformations of the state-space).

In the sequel these items are explained in more detail. As for the theorems, only
the first one is provided with a proof. The proofs of the others follow the similar
line and can be found in [239], for instance.

Theorems

The theorems are given for the general(ized) state-space systems (the term Du is
omitted here as it is assumed to remain the same after reduction):

Eẋ = Ax + Bu, y = Cx, (4.3.12)

where A,E ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. When the system is SISO, u, y, b

and cT are used instead of u, y, B and CT , respectively. The reduced-order models
obtained by state- and equation-error projections using n × k projection matrices
V and W, respectively, have the form:

Eredẋred = Aredxred + Bredu, ŷ = Credxred, (4.3.13)

where Ered = WT EV, Ared = WT AV, Bred = WT B, Cred = CV, and x =
Vxred. According to (4.3.7), the system moments (around zero) are scalars mi =
cT (A−1E)iA−1b, i = 0, 1, . . . in SISO case and p×m matrices Mi = C(A−1E)iA−1B
in MIMO case.

SISO Krylov Moment Matching

Theorem 4.3.2. Consider the Krylov subspace Kk1(A
−1E, A−1b). If the projection ma-

trix V is chosen as a basis of this subspace having rank k, and the matrix W is chosen
arbitrary but such that Ared is nonsingular, then the first k moments around zero of the
original system (4.3.12) and the reduced order system (4.3.13) match.

Proof. The 0th moment of the reduced-order system is mred,0 = cT
redA−1

redbred =

cT V(WT AV)−1WT b. As the vector A−1b is in the Krylov subspace, it can be writ-
ten as a linear combination of the basis matrix V, that is, there is a k-dimensional
vector f0 such that A−1b = Vf0. Using this, one obtains:

f0 ≡ (WT AV)−1WT AVf0 = (WT AV)−1WT (AA−1)b = (WT AV)−1WT b

= A−1
redbred. (4.3.14)

With this, mred,0 becomes mred,0 = cT Vf0 = cT A−1b = m0.

For the next moment, mred,1 = cT
redA−1

redEredA−1
redbred, (4.3.14) yields:

(WT AV)−1

︸ ︷︷ ︸
A−1

red

WT EV︸ ︷︷ ︸
Ered

(WT AV)−1

︸ ︷︷ ︸
A−1

red

WT b︸ ︷︷ ︸
bred

= (WT AV)−1

︸ ︷︷ ︸
A−1

red

WT EV︸ ︷︷ ︸
Ered

f0 = A−1
redWT EA−1b.
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Now, using this and the fact that the vector A−1EA−1b is also in the Krylov sub-
space and can therefore be written as A−1EA−1b = Vf1, one obtains:

A−1
redEredA−1

redbred = (WT AV)−1WT (AA−1)EA−1b = (WT AV)−1WT AVf1

= f1. (4.3.15)

The moment mred,1 therefore becomes mred,1 = cT Vf1 = cT A−1EA−1b = m1.

Equivalence of the second moment is proven by using (4.3.14) and (4.3.15) and
the fact that (A−1E)2A−1b can be written as a linear combination28 of the columns
of V. These steps can be repeated until mred,(k−1) = mk−1 and k moments match.

If the original system is controllable, then k1 in theorem 4.3.2 equals k. If
k < k1, the system is not fully controllable and all moments match (as then
(A−1E)iA−1b are in Kk1 for any i > k1). A suitable iterative algorithm like e.g.
Arnoldi, a basic (modified) version of which is given at the end of this section,
will stop after k iterations as every next Krylov vector is in that case a linear
combination of the previous ones. In MIMO case, where the Krylov sequence
G, FG, F2G, . . . , Fi−1G with F = A−1E, G = A−1B is considered, the situation is
not so trivial. The main difficulty is that for m 6= 1, if the jth state block-moment
Fj−1G contains a column that is linearly dependent on columns on its left in the
sequence G, FG, . . . , Fj−1G, . . . , then, in general, not all the columns of Fj−1G are
linearly dependent on columns on their left. A good algorithm will therefore con-
tinue with constructing the basis for the subspace spanned by the sequence after
a linearly dependent column has been found. The column itself and all its succes-
sive A−1E- multiples are to be deleted. Formally, this can be done by scanning the
columns of the block moments in the above sequence from left to right and delet-
ing each column that is linearly dependent on earlier columns. Performing such
an exact deflation yields a deflated block Krylov sequence. In an actual algorithm
for constructing basis vectors for the original sequence in finite arithmetic also
vectors that are in some sense ”almost” linearly independent on earlier vectors
needs to be deleted (inexact deflation) [91]. It is hereby stressed that the iterative
algorithm will not compute any moment. Actually, as higher order moments con-
tain increasingly less information, the algorithm will generally use different set of
vectors/blocks.

The subspace Kk1 (A
−1E, A−1b) does not involve system’s output data and is

called input Krylov subspace. Being its dual subspace, the so-called output Krylov
subspace Kk2(A

−T ET , A−T c) can also be used for model order reduction in a sim-
ilar fashion. That is, if the matrix W in (4.3.13) is a basis of the output Krylov
subspace Kk2(A

−T ET , A−T c) with rank k and V is arbitrary but such that Ared is
nonsingular, then the first k moments of the original and the reduced order system
will match. Methods that employ a basis of only one of the two dual subspaces are

28According to (4.3.7), (A−1E)iA−1b := ri are the state-moments of the original system. From
derivations in this proof we have that ri = Vfi, where f are the state-moments of the reduced-order
model. Surprisingly, this simple and direct connection between the (first k) state-moments of the
original and the reduced system seems to be overlooked in the literature.
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called one-sided methods. Combining input and output Krylov subspaces, yield-
ing two-sided algorithms, it is possible to match more moments, as expressed by
the following theorem.

Theorem 4.3.3. Let V and W in (4.3.13) be bases of Krylov subspacesKk1(A
−1E, A−1b)

and Kk2(A
−T ET , A−T c), respectively, both with rank k. Then, assuming that A and

Ared are nonsingular, the first 2k moments of the original and reduced-order system will
match29.

Due to the intrinsic symmetry present in the high-dimensional state-space sys-
tem description of the single-phase models in this thesis, the one-sided projection
involving only one projection matrix30, here V, is actually a two-sided projection,
thus matching 2k moments. This follows directly as a corollary of the theorems
above and from the fact that, in this case, input and output Krylov subspaces are
the same.

Corollary 4.3.4. For a state-space symmetric system {E, A, b, c}, with E and A symmet-
ric and b = c, for one-sided Krylov subspace methods with congruence transformation
(i.e., W = V), the reduced-order model matches 2k moments of the original transfer func-
tion.

These basic results for moment matching around zero frequency, which yields
steady-state accuracy, can be extended to matching moments around any s0 6=
0. To that, A is replaced by (A − s0E) in the definition of moments and Krylov
subspaces. For instance, in theorem 4.3.3 the subspaces Kk1((A − s0E)−1E, (A −
s0E)−1b) andKk2((A−s0E)−T ET , (A−s0E)−T c) are considered. It is also possible
to match moments at several frequency points simultaneously. General results in
this so-called Multipoint Rational Interpolation context, based on unions of Krylov
subspaces involving the different frequency points, are provided in [115]. Another
general case of simultaneously matching moments and Markov parameters using
single input and output Krylov subspaces is considered in [239]. As explained
above, for single-phase porous media equations with low-frequent input signal
forms and low compressibility it is reasonable to expect that the expansion around
the single point s = 0 will suffice in most of the cases.

MIMO Krylov Moment Matching

In MIMO case with m inputs and p outputs, the system moments are p ×m ma-
trices and, therefore, per moment match p × m scalar parameters needs to be
matched. The theorems 4.3.2 and 4.3.3 are generalized to MIMO systems as fol-
lows.

29In SISO case, if the system is minimal, i.e., both controllable and observable, then k1 = k2 = k.
Otherwise all moments match and the iterative algorithm finds a minimal realization.

30In the literature, many contributions about one-sided methods using input Krylov subspaces sug-
gest to choose W = V. If an Arnoldi process is used, for instance, the produced V is orthogonal, so
W = V yields WT V = I, which simplifies the computation and the use of the reduced order model.
Another reason for this choice of W is that it yields an congruence transformation of the state-space, i.e.
the reduced-order system matrices are then Ered = VT EV, Ared = VT AV, Bred = VT B,Cred = CV,
which, as explained earlier (page 62), yield reduced-order models with many desired characteristics
(passivity (stability) preservation, dominant poles approximation, etc.).
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Theorem 4.3.5. Let B and C in (4.3.12) be n×m and p×n matrices, respectively, and let
A be invertible. If the matrix V in (4.3.13) is a basis of Krylov subspaceKk1(A

−1E, A−1B)
with rank k (i.e. k is a multiple of m) and W is chosen arbitrary but such that the matrix
Ared is nonsingular, then the first k

m
= α moments of the original and reduced order

system match.

Proof. The proof is the same as in theorem 4.3.2, but the parameters f0, f1, . . . are
k ×m matrices.

Theorem 4.3.6. Let A,B and C be as in theorem 4.3.5. If the matrices V and W are bases

of of Krylov subspaces Kk1(A
−1E, A−1B) and Kk2(A

−T ET , A−T CT ), respectively, both
with rank k (k is a multiple of both m and p), then the first k

m
+ k

p
moments of the original

and reduced order system match31.

Proof. See [239].

Invariance of reduced-order models w.r.t. basis change As stated above, employ-

ing any basis of input or output Krylov subspaces for order reduction yields mo-
ment matching. The following theorem and two corollaries state that even the
input-output behavior of the reduced model does not depend on the choice of
basis.

Theorem 4.3.7. The transfer function of the reduced-order system (4.3.13) is indepen-
dent of the particular choice of the bases V and W of respectively Kk1(A

−1E, A−1B) and

Kk2 (A
−T ET , A−T CT ).

Proof. This theorem, as well as the two corollaries below, follow directly from
Proposition 3.3.1.

The corollaries concern one-sided methods. Define S(Nf ) := {N : ∃T, T−1 s.t. N =
Nf R}. Then,

Corollary 4.3.8. Let the matrix V used in (4.3.13) be a basis of input Krylov subspace
with rank k and let W ∈ S(Wf ) with a fixed matrix Wf . Then the transfer function of the
reduced-order system is independent of the particular choice of the bases V and the matrix
W.

Invariance w.r.t. original system representation and realization

Consider two system representations (i.e. one is obtained by multiplying the state-
equation by a nonsingular matrix P):

E1ẋ = A1x + B1u
y = C1x

,
E2ẋ = A2x + B2u
y = C2x

(4.3.16)

31In the single-phase applications in this thesis m = p, so the number of matched moments with
a two-sided algorithm (also with one-sided if the high-dimensional model is in a symmetric form)

equals 2k
m

= 2α (k = αm).
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where E2 = PE1, A2 = PA1, B2 = PB1, C2 = C1, and A−1
2 , A−1

1 exist. The function
of the nonsingular matrix P could e.g. be to ’precondition’ the original model32,
but the two representations could also have resulted just from writing the system
equations in different ways. Clearly, the transfer functions of the two models are
the same. However, as stated next, depending on whether one uses a one-sided or
a two-sided Krylov reduction method, their reduced-order models are or are not
the same in general [239].

Theorem 4.3.9. In order reduction based on projection in theorems 4.3.3 and 4.3.6 using
two-sided method (i.e., projection matrices Vi and Wi are bases of Kk(A−1

i Ei, A−1
i Bi)

and Kk(A−T
i ET

i , A−T
i CT

i ), respectively, i = 1, 2), the reduced-order systems of the two
representations in (4.3.16) are exactly the same.

For one sided methods, the invariance of the reduced-order model when chang-
ing the representation does not hold in general, except in some cases using output
Krylov subspace, see [239]. In application, (for non-symmetric systems) this can
be an essential disadvantage as the results depend on the way the equations were
written.

Similar results hold also for different realizations of the original system:

Eẋ = Ax + Bu
y = Cx

,
ETż = ATz + Bu

y = CTz
(4.3.17)

Theorem 4.3.10. Changing the realization of the original system does not change the
input-output behavior of the reduced model if two-sided Krylov method is used.

Again, for one-sided methods such a result does not exist in general, except in
some cases using output Krylov subspace.

4.4 Balanced Truncation MOR

As stated in Subsection 4.1.2, the eigenmodes of an LTI system are generally not
the best measure of the modes’ (joint) weak controllability/observability. Due
to the equivalence of minimal state-space realizations of an LTI system w.r.t. its
transfer function, it is reasonable to ask if there are maybe other modes which
are more controllable and more observable than the eigenmodes, thus admitting
models of the same or better quality using even less modes? The theory of balanced

32The preconditioner P will change the matrix pencil (sE − A) to P(sE − A). In the traditional
application of solving linear systems of equations Ax = b a (left) preconditioner P in PAx = Pb
would generally be chosen as to approximate A in some sense. In the frequency-dependent problems,
however, the fixed P can not approximate (sE − A)−1 for all frequencies s in general. Therefore, the
introduction of P in the preconditioning sense can only be useful over certain frequency ranges. In
[115] this difference with the traditional fixed case is emphasized by calling P a dynamic system (DS)
preconditioner.
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realizations answers positively to this question, and the so-called balanced trunca-
tion (BTR) algorithms yield reduced-order models in which only the most control-
lable and observable modes, in a well-defined ’energetic’ sense, are retained. The
section is divided in three parts. The first part introduces the main theoretical re-
sults of this powerful MOR methodology. The second part presents the standard
algorithms for obtaining balanced truncated models and shows their performance
when applied on single-phase reservoir models. As the high computational com-
plexity of the standard algorithms restricts the applicability of the ’exact’ balanc-
ing to rather moderate system sizes, the last part of the section is devoted to the
problem of obtaining approximate balancing solutions.

4.4.1 Energy Functions, System Gramians and Lyapunov Equa-
tions

Consider an n-dimensional, stable and minimal, time-continuous LTI system in
the standard state-space formulation:

dx

dt
= Ax + Bu, x(0) = x0, (4.4.1)

y = Cx + Du, (4.4.2)

with p inputs and m outputs. Perhaps the most natural way of explaining the
reasoning behind BRs and BTR is to adopt the ’energetic point of view’, in which
the so-called controllability energy function and observability energy function, denoted
respectively by Lc and Lo, play a central role.

Definition 4.4.1. The controllability and observability functions for a linear sys-
tem are defined as

Lc(x0) := min
u ∈ L2(−∞, 0)

x(−∞) = 0, x(0) = x0

1

2

∫ 0

∞

‖u(t)‖2dt, (4.4.3)

and

Lo(x0) :=
1

2

∫ ∞

0

‖y(t)‖2dt, x(0) = x0, u(t) ≡ 0, 0 ≤ t <∞, (4.4.4)

respectively, where L2(a, b) is the space of square-integrable functions on the in-
terval (a, b).

The value of Lc at state x0 is thus the minimum amount of (finite) control en-
ergy required to reach the state x0 from 0. The value of Lo at state x0 is the amount
of energy generated by the system’s natural response to initial state x0.

In the stable linear case, both Lc and Lo are necessarily quadratic functions of
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x0, and therefore we can write:

Lc(x0) =
1

2
xT
0 W−1

c x0 (4.4.5)

L0(x0) =
1

2
xT
0 Wox0, (4.4.6)

for some (constant) symmetric positive definite (s.p.d.) matrices Wc and Wo. It
is a well known result that these matrices are the controllability- and observability
Gramians33 respectively, given by:

Wc :=

∫ ∞

0

eAtBBT eAT tdt, (4.4.7)

Wo :=

∫ ∞

0

eAT tCTCeAtdt. (4.4.8)

The importance of these matrices is thus that they respectively measure to what
degree each state of the system, in the given state-space coordinates, can be excited
by an input (note the inversion of Wc in the integral definition of Lc) and to what
degree each state excites future outputs. Hence, for two different states x1 and x2,
with ‖x1‖2 = ‖x2‖2 and xT

1 Wcx1 > xT
2 Wcx2, one says that the state x1 is ’more

controllable’ than the state x2, expressing the fact that a less-energetic input (in the
L2-norm) is required to bring the system from rest to x1 than to x2. Conversely,
states which produce larger output energy are called ’more observable’, and in
this sense are considered more dynamically important than less observable states.

It can be proven (see [150] or any other advanced book on system and control
theory) that the Gramians are unique solutions of the Lyapunov equations:

AWc + WcAT = −BBT (4.4.9)

and

AT Wo + WoA = −CT C. (4.4.10)

Remark 4.4.1. We note that an analysis of controllability and observability proper-
ties of single phase reservoir models has recently been provided in [302, 303]. In
these and related contributions [273, 274], the reservoir models under analysis are
discrete in time, as opposite to the continuous-time state-space reservoir descrip-
tions treated in this thesis. We stress that the analysis in these models requires that
the time-step length in these models is kept constant during the whole simulation
as otherwise the system considered is not LTI anymore, but rather LTV (linear
time-varying) (see, e.g., [109]). Moreover, in order to maximize the invariance of
the results of the analysis with respect to the length of the time-discretisation step

33The Gramian matrix of a (piecewise-continuous) map F(t) in R
n×m is defined as W =

R ∞
0 F(t)FT (t)dt. It is generally symmetric positive semi-definite, with non-negative and real eigen-

values {µi}
n
i=1 and mutually orthogonal unitary eigenvectors {wi}

n
i=1. Due to the orthonormality of

its eigenvectors, F(t) can be written as F(t) =
Pn

i=1 wifT
i (t), where fT

i (t) = w
T
i F(t), i = 1, . . . , n.

The following relations hold:
R ∞
0 fT

i (t)fj(t)dt = 0, i 6= j and
R ∞
0 ‖fT

i (t)‖2dt ≡ wT
i Wwi = µi.
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∆t (directly influences A and B) and the scaling of reservoir physical parameters
by a scaling factor ǫ (influences A, B, C and D), certain assumptions must neces-
sarily be imposed on these quantities (in particular the product ǫ∆t). With these
assumptions, results of the analysis in these contributions are virtually the same
as what would be concluded based on the underlying continuous-time reservoir
description.

4.4.2 Balanced Realizations, Truncation and Residualization

As mentioned earlier, the system’s input-output behavior is state-space realization in-
variant, i.e. it does not change when an arbitrary non-singular state-space trans-
formation x = Tz is applied (e.g., scaling of reservoir physical parameters or
time, but also grid numbering). Controllability and observability properties of a sys-
tem, however, are, each ’individually, generally not invariant in this respect. Actu-
ally, (4.4.5) and (4.4.6) each individually suggest a different state-space projection
matrix. This is where the idea of so-called balanced realizations and balanced trun-
cation comes into the picture. A balanced realization of a (stable) LTI system is a
realization in which the controllability and the observability Gramians are equal
and diagonal, i.e. Wc = Wo = Σ = diag(σ1, . . . , σn), with all σ’s positive. The
existence of such a realization is guaranteed by the following theorem [190]:

Theorem 4.4.1. The eigenvalues of WoWc are similarity invariants, i.e. they do not
depend on the choice of the state space coordinates. There exists a state space representation
where

Σ = Wc = Wo =




σ1 0
. . .

0 σn


 , (4.4.11)

with σ1 ≥ σ2 ≥ . . . σn > 0 the quare roots of the eigenvalues of WcWo. Such represen-
tations are called ”balanced” and the system is in ”balanced form”. Furthermore, the σi’s
equal the Hankel singular values, i.e., the singular values of the Hankel operator of the
system.

The first part of the theorem is easily proven by observing (e.g. from the energy
functions expressions) that, under a nonsingular state transformation x = Tx̂, the

Gramians transform into Ŵc = T−1WcT−T and Ŵo = TT WoT. The product

ŴcŴo = · · · = T−1WcWoT has the same34 eigenvalues as WcWo. To prove the
second part of the theorem it suffices to provide an algorithm which will bring
any given system as defined above into a balanced form. An algorithm that does
this is given next.

34We note that also the individual Gramians are invariant in this sense, provided that the state trans-
formation x = Tz is orthogonal, i.e., TT = T−1. This is particularly important for ’symmetric state-
space systems’ with Wc = Wo, as the transformation T that brings such a system in the balanced form
as defined above is necessarily orthogonal (indeed, the matrix T diagonalizing the symmetric Wc is
the orthogonal matrix of its eigenvectors).
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A Basic Balanced Realization Algorithm

If the stable system under consideration is minimal, it can be brought into a bal-
anced form (assuming x = Tx̂) by the following algorithm [168]:

Wc = RRT (Cholesky) (4.4.12)

RWoRT = UΣ2UT (SVD) (actually symmetric EVP) (4.4.13)

T = RT UΣ− 1
2 (4.4.14)

⇒ Ŵc = T−1WcT−T = · · · = Σ (4.4.15)

Ŵo = TT WoT = · · · = Σ, (4.4.16)

where R is the positive-definite lower triangular matrix.

A similar algorithm can, of course, be set using the Cholesky decomposition
of the observability Gramian and a symmetric EVP involving its controllability
counterpart.

Balanced Truncation

Let T be a non-singular state-transformation, x = Tz, that brings the system into
a balanced form with system matrices (Abal,Bbal,Cbal). Then, in the z-coordinates,
Lc(z0)

1
2 = zT

0 Σ−1z0 and Lo(z0) = 1
2z

T
0 Σz0, respectively. For small σi the required

control energy to reach the state z = (0, . . . , 0, zi, 0, . . . , o)T is large while the out-
put energy generated by this state is small. Hence, assuming zi’s are already or-
dered such that the singular values σ’s satisfy, for all i = 1, . . . , n−1, σi ≥ σi+1 > 0,
if σk >> σk+1, then from the above energy point of view the state components
zk+1 to zn are much less important and may be removed to reduce the number of
state components of the model.35 If the system is partitioned correspondingly as

Abal =

[
Abal,11 Abal,12

Abal,21 Abal,22

]
, Bbal =

[
Bbal,1

Bbal,2

]
, Cbal =

[
Cbal,1 Cbal,2

]

z1 =
[

z1 . . . zk

]T
, z2 =

[
zk+1 . . . zn

]T
, Σ1 =

[
Σ1 0
0 Σ2

]
,

(4.4.17)

where Σ1 = diag(σ1, . . . , σk) and Σ2 = diag(σk+1, . . . , σn), then both subsystems
(Abal,ii,Bbal,i,Cbal,i), i = 1, 2, are again in balanced form, and their controllability
and observability gramians are equal to Σi, i = 1, 2. Furthermore, if σk 6= σk+1,
then both subsystems are asymptotically stable [214] (otherwise stable for almost
all T). It is important to stress that BTR generally does not preserve the poles of the
original system due to non-zero Abal,12 and Abal,21 (dynamic coupling of retained
and truncated subsystem).

35For an alternative criterion of choosing ’important’ balanced modes, based on their contribution
to the impulse response approximation of the original system, see [70].
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The subsystem (Abal,11,Bbal,1,Cbal,1) can be used as an approximation of the
full order system. The performance of the standard balanced truncation is charac-
terized by the following error bound [107].

Theorem 4.4.2. Let H(s) be the transfer function matrix of the full-order stable LTI
system (A,B,C), i.e. H(s) = C(sI−A)−1B, and Hred(s) = Cbal,1(sI−Abal,11)

−1Bbal,1

be the transfer function matrix of the reduced-order system (Abal,11,Bbal,1,Cbal,1). Then

‖H−Hred‖H ≤ ‖H−Hred‖∞ ≤ 2Σn
i=k+1σi(H). (4.4.18)

In practice, the actual∞−norm of model reduction error is generally much smaller
(i.e., the upper bound on it is frequently loose), whereas the error in the Hankel
norm is often a relatively tight lower bound on the∞-error. Finally, in some spe-
cial cases BTR can be shown to actually be optimal in the Hankel norm [191, 192]).
The conditions the system under consideration needs to satisfy in these cases are,
at least in this thesis, too restrictive to be of practical use.

Remark 4.4.2. The Lyapunov matrix equations are a special symmetric variant of
the more general Silvester equations AX + XF + G = 0, where A ∈ R

n×n, B ∈
R

m×m, and G, X ∈ R
n×m. Setting F = AT yields a Lyapunov matrix equation.

The so-called Cross-Gramian approach, a slightly modified balancing approach for
a special class of systems with the same number of inputs and outputs, is based
on a single Silvester equation with F = A; see, e.g., [10].

Remark 4.4.3. Due to the linearity of Lyapunov equations, Wc can be written as

Wc =
∑m

i=1 Wc,i, where Wc,i is the solution of AWc,i + Wc,iA = −bib
T
i , and B =

[b1, b2, . . . , bm]. This offers an ideal parallelization on a parallel computer with
m procesors, as the m Lyapunov equations with rank one right hand sides can
be solved simultaneously. Moreover, this fact may be useful also on a sequential
computer when the solution needs to be updated due to a change in the input
matrix B, e.g. when a new flow-rate constrained well, m + 1, is added. Recalling
that the system matrix A in that case does not change, the new solution can then be
computed as the sum of the solution for the existing configuration and the solution

of AWc,m+i + Wc,m+iA = −bm+ib
T
m+i. Upscaling as proposed in [268, 269] is one

such potential application.

Balanced Residualization

Instead of completely removing a part of the state-space from the system descrip-
tion, balanced realization can also be combined with the (zero-order) singular per-
turbation approach introduced in Section 4.2. For instance, in order to ensure ex-
act steady-state gain and a good approximation at low (and often also at medium)
frequencies, the reduced-order model is derived by setting the time-derivative of
the balanced modes corresponding to small Hankel singular values to zero, i.e.,

for z2 in 4.4.17, we set dz2

dt
= 0. The reduced-order model so obtained enjoys the
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same error bound 4.4.18 ([173]). For details regarding this basic form of balanced
residualization and its generalizations see [88, 94, 95, 173, 279].

Example 4.4.3. Superior performance of balanced truncation over modal trunca-
tion for single-phase reservoir systems with wells has already been mentioned in
Remark 4.2.1. There, BTR was applied to a model of order 292 obtained by an
initial model order reduction of the original model of order 441 using modal trun-
cation. In the current example, the balanced truncation as presented above was
applied directly to the 441 states of the large reservoir model. The results, show-
ing an excellent performance of the truncated model of order 15, are presented in
Figure 4.13. Actually, for this particular system any order of the reduced model
higher than (say) 10 turned out to perform very satisfactory. According to the
above discussion, for the low-frequency piecewise constant input well perform-
ing reduced models of even lower order can be obtained using balanced residual-
ization. Figure shows this for the reduced model of order 2. The approximation
error is mainly caused at the points where the input abruptly switches from one
constant value to another.

These favorable results are in accordance with the above ’energetic point of
view’ expressed in the form of the HSVs of the system. Figure 4.15 shows the
HSVs (on a logarithmic scale) of the original reservoir model. The rapid decline of
the HSVs indicates that the forward 441th order single-phase reservoir model from
the input-output point of view actually behaves as a model of much lower order.
We stress hereby that, for this particular example, the HSVs would show a similar
decline also for finer resolutions of the spatial discretization of the underlying
infinite-dimensional model, hence confirming that the ’intrinsic’ dimensionality,
from the input-output point of view, of the pressure dynamics of single-phase
reservoirs is generally rather low. Actually, a very steep drop of the HSVs for this
class of systems is ’justified’ also from a physical point of view, as the system is
purely diffusive36. Moreover, we note that the conclusion about the fast decay rate
of the HSV is in line with the general analysis provided in [10], but also with the
state-moment analysis provided earlier in this chapter. We note hereby that, due
to the intrinsic symmetry of the systems considered in this thesis, it is sufficient to
observe the behavior of the eigenvalues of any of the Gramians Wc or Wo instead
of their product. Indeed, in the symmetrized case these two are equal37, so σ2

i =
λi(WcWo) = λi(W

2
c) = λ2

i (Wc) ⇒ σi = λi(Wc). This ”approximate” low-rank
property of the Gramians can be exploited to find approximate solutions of the
corresponding Lyapunov equations. Details on this aspect are provided next.

36For the same reason, any (linear) model with a dominant parabolic term may be expected to show
such behavior of HSVs.

37In the starting model, the Gramians are related by Wo = VWcV, which follows directly from

the fact that the symmetrizing state transformation, as mentioned earlier, is x = V− 1
2 z. Hence, the

HSVs of the original model can again be computed using one Gramian, e.g. σ2
i = λi(WcWo) =

λi((WcV)2) = λ2
i (WcV) ⇒ σi = λi(WcV).
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Figure 4.13: Performance of the reduced model of order 15 obtained by balanced
truncation technique as presented above (i.e., keeping only the balanced modes
corresponding tot the 15 largest HSVs of the original system of order 441.)

4.4.3 Algorithms for exact and approximate solutions of the sys-
tem Gramians

(In the sequel of this section we will consider the controllability Gramians only.
Results for its dual, the observability Gramian, are similar.)

A trivial, but computationally generally not attractive, direct approach to com-
pute Wc would be by numerical integration of the infinite integral (4.4.7). Another
obvious choice is to solve the corresponding Lyapunov matrix equation38 (4.4.9):
AWc + WcAT + BBT = 0. Early methods for exact computation of the solution
of Lyapunov and related (i.e., Silvester, Riccati) matrix equations were based on
Kronecker matrix products, eigenvalue decompositions 39, Jordan canonical trans-
formation of A, infinite series solution, etc. For more details on these methods see

38Lyapunov matrix equations as the ones considered here are said to be large-scale already for n >

1000, the reason being that they are mathematically equivalent to linear systems of equations with
n2 unknowns. A good summary of the theoretic properties of the Lyapunov equation is provided in
[166], for instance.

39E.g., eigenvalue decomposition of A := (AT , Q; 0,−A). The solution Wc is then given by Wc =

M11M−1
21 ; or Wc = M11M−1

21 if M21 is badly conditioned, whereby (M11, M12; M21, M22) is the
eigenvector matrix of A. See [38], for instance.
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Figure 4.14: Performance of the reduced model of order 2 obtained by balanced
residualization.

[31, 126] and references therein, for instance. Among all direct methods for solv-
ing Lyapunov equations perhaps the most efficient and widely used algorithm
is the Bartels-Stewart (B-S) algorithm (in Matlab implemented as function lyap),
which main idea is to apply the Schur decomposition of matrix A to transform
the Lyapunov equation into a triangular system which can be solved efficiently
by forward or backward substitutions.40 In particular, for the controllability Lya-
punov equation (4.4.9), based on transforming (by QR-factorization) the system
matrix A into a real Schur form: H = UAUT , where U is orthogonal and H is

upper-triangular, and the symmetric update B̃B̃
T ← (UB)(UB)T , 4.4.9 transforms

into HW̃c + W̃cH = −B̃B̃
T

, which is easily solved for W̃c by back-substitution.

The original Wc and W̃c are related by Wc = UT W̃cU. The improvement of the
B-S algorithm for Lyapunov equations by Hammarling in [120] consists of solving
directly for the Cholesky (or more generally, ’square-root’) factor R of Wc = RRT

(in Matlab it is implemented as function lyapchol) without explicitly ’squaring’ the
data (e.g., multiplying BBT ). This has many advantages, in particular increased
numerical stability, which is especially important for large systems where, as men-

40The original Bartels-Stewart algorithm [33] was developed to solve the more general Silvester
equation AX + XF = G, for X, whereby both A and F are transformed in a real Schur form. For an
extension of these algorithms to generalized Lyapunov equations, that is, those corresponding to the
generalized state-space systems, see [187].
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Figure 4.15: Hankel singular values (depicted on a logarithmic scale) of the 441
states single-phase example. Machine ǫ is approximately 10−16.

tioned above, the Gramians (and hence also their product) are usually very badly
conditioned41. Moreover, within a Krylov subspace or ADI method for solving
Lyapunov equations typically the square-root factor of the solution and not the
solution itself is needed; see, e.g., [171] (see also below).

Low-rank approximate solutions

Algorithms based on Schur decomposition have become the accepted method of
solving Lyapunov equations in the small to moderate dense case. For larger dense
problems, the so-called ’matrix sign function’ method [40–42, 54, 98, 153, 167, 222,
229, 257], which requires only basic linear algebra operations such as matrix inver-
sion (or solution of linear systems), is more appropriate for parallelization. How-
ever, these, and the other methods mentioned above, all have the computational
and/or storage costs unacceptable for solving large and sparse Lyapunov (Sil-
vester, Riccati, etc.) equations (although, see below for some new developments
regarding the matrix sign function method). For example, a Schur decomposition
results in O(n3) arithmetic operations and O(n2) storage. Furthermore, Schur de-
compositions of sparse matrices will be dense in general, since their orthonormal

transform matrices are. Moreover, also Wc and W̃c will generally be dense, even

41For this reason BTR presented above requiring balancing the whole system followed by trunca-
tion as in the basic algorithm (4.4.12-4.4.14), is often numerically inefficient and ill-conditioned as it

involves inversion of the diagonal matrix of (the square roots of the) HSVs, Σ− 1
2 . There are numer-

ically better conditioned (square-root) algorithms that produce either the same truncated balanced
models or truncated models similar to the balanced ones up to a specific transformation (e.g., up to a
diagonal scaling or a triangular transformation). See, e.g., [10] (Ch. 7) and the references in there.
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when A is diagonal, thus requiring excessive storage. Besides the large storage
needs and CPU times, these methods also suffer from numerical instability.

Fortunately, for models of real systems, in particular diffusive as discussed
above, the solutions of Lyapunov equations often appear to have a low numerical
rank42 [14, 212, 213, 266]. Since the rank of a product of matrices is equal to or
less than the rank of the matrix with lowest rank in the product, this in its turn
implies that the product WcWo is also low-rank whenever either Wc or Wc is. On
the other hand, from model reduction point of view, a rapid decay of the systems
HSVs showing a rapid decay, as is the case our examples, implies that the the
I/O energy coupling is dominated by just a few states, thus also implying a low
numerical rank of (at least one of) the Gramians. This fact has led to development
of a variety of methods for determining approximate solutions of these system
quantities. The following two categories have been prevalent so far43:

• Krylov subspace methods. Any approximation (low-rank or not) of the ex-
act solution of a Lyapunov equation will yield an ’equation residual’. In par-

ticular, if Ŵc and Ŵo are approximations of the exact (unique) solutions of
the controllability and observability Lyapunov equations (4.4.9) and (4.4.10),
respectively, then the following is true:

AŴc + ŴcAT + BBT = Rc 6= 0 and AT Ŵo + ŴoA + CT C = R0 6= 0.

The main idea of Krylov subspace methods for approximating Wc and Wo

is to force the residuals Rc and Ro to satisfy well-defined conditions, usually
of Galerkin type, involving low-rank projection matrices W and V from our
usual projection-based formulation of reduced-order models, i.e., for a sys-
tem in the standard state-space form, xr = (WV)−1WT AVxr+(WV)−1WT Bu

= Arxr +Bru, ỹ = CVxr +Du = Crxr +Du. The approximate Gramians Ŵc

and Ŵo are then defined as projections, on well-defined subspaces (again)
involving W and V, of the exact solutions, Wc,r and Wo,r, of the reduced-

order Lyapunov equations ArWc,r+Wc,rAT
r = −BrBT

r and AT
r Wo,r+Wo,rAr =

−CT
r Cr, respectively. For instance, in [238], the Galerkin type conditions

for the residuals Rc and Ro are chosen to be (WT V)−1WT RcW(WT V)−T

and VT RoV, respectively. Gramians approximations Ŵc and Ŵo which sat-

isfy these conditions are respectively be defined to be Ŵc := VWc,rVT and

Ŵo := W(WT V)−T Wo,r(W
T V)−1WT . V and W are chosen as (orthonor-

mal) bases of Krylov subspaces of Kk(A−1, A−1B) and Kk(A−T , A−T CT ), in
which, as we already know by now, the small eigenvalues of A are dom-

inant (subspaces Kk(A, B) and Kk(AT , CT ) emphasizing large eigenvalues

42Note that this, however, might not be the case when the number of inputs (outputs) is substantial,
i.e., when B (C) itself is not low rank. For dynamic systems, where the relevant Gramian spans the
reachable (observable) subspace, this is also intuitive: the larger rank of B the more independent inputs
(outputs) to cover a larger portion of the corresponding subspace.

43For some new developments employing so-called ’hierarchical’ matrices (H-matrices) for the use
in the matrix sign method see [35, 36, 111–113]. The H-matrix format allows data-sparse approxima-
tion for a large, practically relevant class of matrices arising (for instance) from spatial discretisation
methods.



86 CHAPTER 4: MOR for Single-Phase Flow

of A are used in [143, 236], for instance). As observed in [238], this choice
leads to a good approximation of the time functions in the explicit solutions
of the Lyapunov equations for large values of t.

After obtaining the approximate Gramians, these can be used for balanced

truncation, whereby the Cholesky factorization of Ŵc and Ŵo for square-
root implementation of BTR can be accomplished by factorizing the reduced-
order matrices Wc,r and Wc,r; see [238] for details.

Remark 4.4.4. HSVs of the original high-order model can thus be approxi-
mated using the approximate Gramians by

σ2
i = λi(WcWo) ≈ λi(ŴcŴo) = · · · = λi(VWc,rWo,r(W

T V)−1WT ).(4.4.19)

By changing the sequence of matrix multiplication, eigenvalues of VWc,rWo,r

(WT V)−1WT and (WT V)−1WT VWc,rWo,r ≡ Wc,rWo,r are equal. Hence, k
HSVs of the original high-order system are approximated by the HSVs of the
reduced-order system in xr. The choice for Krylov subspacesKk(A−1, A−1B)

andKk(A−T , A−T CT ) turns out to lead to good approximations of the largest
HSVs of the original model, whereby the quality of the approximation will
generally increase with increase of the number of iterations to calculate V
and W (i.e. larger k). We note that this fact may be extremely useful in cer-
tain important applications, one of which being the upscaling as proposed
in [268, 269]. In that methodology, the upscaled reservoir parameters are
determined by minimizing cost functions involving either the differences
between a certain number of individual (largest) HSVs or the difference be-
tween the total sums44 of (squares of) all HSVs of the original high-order

44Regarding the total sum of (squares of) all HSVs, following Remark 6.3.3 in [10], we note the
following important result for our single-phase systems with stable symmetric matrix A:

trace(Wc) = −
1

2
trace(BT A−1B) , trace(Wo) = −

1

2
trace(CA−1CT ). (4.4.20)

For symmetric state-space systems, for which holds Wc = Wo, we thus have:
Pn

i=1 σi =
Pn

i=1 λ
1
2
i (WcWo) =

Pn
i=1 λi(Wc) ≡ trace(Wc) = − 1

2
trace(CA−1B) (≡ 1

2
trace(M0 − D), where

M0 = −CA−1B + D is the 0th system moment at s = 0). For our starting, ’almost symmetrized’

models, with the symmetrizing transformation x = V− 1
2 z (V being the accumulation matrix), it holds

that
Pn

i σi =
Pn

i λi(WcV) = trace(WcV) (≡ trace(VWc) ≡ trace(V
1
2 WcV

1
2 )), it is not difficult to

prove that
Pn

i=1 σi = − 1
2
trace(BT VA−1B) (≡ − 1

2
trace(BT V

1
2 A−1V

1
2 B)). Therefore, the compu-

tational and storage complexity of determining the sum of all HSVs of the system has decreased from
solving the full Lyapunov controllability equation for n × n dense (and, most likely, ill-conditioned)
Wc to practically a single sparse LU decomposition! Moreover, if the well-configuration is changed,
the sum of the HSVs for the new full-order model is easily computed by a simple adjustment of B if
only flow-rate constrained wells are added or removed, and, if also BHP-constrained wells are added
or removed, by a low-rank update of the LU factorization (or by employing the Sherman-Morrison-
Woodbury formula for a low-rank update of the inverse of A, if the original A−1 is available). N.B.
The above expressions suggest that the accumulation matrix V influences the result. However, us-
ing the fact that, here, A = −V−1T, with T the transmissibility matrix (the contribution from the
BHP-constrained wells incorporated), and B = V−1F, with F the input ’selector’ consisting of zeros
everywhere except at places corresponding to flow-rate constrained wells (where it has ’1’s) and BHP-
constrained wells (where it has values of the corresponding well indices), the sum of HSVs is given by
Pn

i=1 σi = 1
2
(FT T−1F) (note that this again equals a half of the transfer function matrix at s = 0).
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model and the upscaled model (the latter initially being an existing upscaled
model obtained by any conventional upscaling method).

• Low-Rank Iterative Approximations. The underlying idea in these meth-
ods is to consider the solution of a discrete-time system that has the same
Gramians as the Gramians of the continuous-time system under investiga-
tion; this allows for computing the Gramians using a series instead of inte-
grals. Continuous-to-discrete-time system transformation can e.g. be accom-
plished by the bilinear transformation of the Laplace variable s = p 1−z

1+z
,

where p < 0 is a ’shift-parameter’ to be chosen. The discrete-time system
matrices Ap and Bp, for instance, are then given by:

Ap = (pI + A)−1(pI−A) (4.4.21)

Bp =
√
−2p(pI + A)−1B, (4.4.22)

and define the discrete-time Lyapunov equation45:

ApPAT
p − P + BpBT

p = 0, (4.4.23)

which has the same solution for the Gramian as the original continuous-time
Lyapunov equation (4.4.9), i.e., P = Wc. The solution is expressed as infinite
sum:

P =

∞∑

j=0

Aj
pBpBT

p ATj
p . (4.4.24)

Consider a kth order approximation for P:

Pk =

k−1∑

j=0

Aj
pBpBT

p ATj
p . (4.4.25)

Various methods exist to compute the approximation iteratively, the basic
form of the iterative process being (Smith method [212, 252]):

PSmith
j = ApPSmith

j−1 AT
p + BpBT

p ; PSmith
0 = 0. (4.4.26)

Since A is stable, all eigenvalues of Ap are within the unit circle and the
sequence {Pj}∞j=0 generated by this process converges to P.

ADI iteration (Alternating Direction-Implicit) algorithm46 [10, 116, 288, 289]
is a generalization of the Smith method by using distinct shift parameters

45A special case of the Stein equation APB − P + Q = 0.
46The ADI iteration was first introduced in [210] as a method for solving systems arising from the

discretization of elliptic and parabolic boundary value problems. In the iterative process, the solution
iterates are usually generated by the solution of two linear systems with multiple right-hand sides,
using different shifts p1, p2, . . . and usually starting from a zero initial iterate [80, 81, 92]. When
applied to Lyapunov equations the two equations turn out to be mathematically equivalent to the
single iteration step (4.4.27); see, e.g., [10, 116].
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p1, p2, . . . , pℓ:

PADI
j = Apj

PADI
j−1 AT

pj
+ Bpj

BT
pj

; PADI
0 = 0, (4.4.27)

where Apj
, Bpj

are the transformed state-space matrices with p replaced by
the jth shift parameter pj (which now may be non-real; when A is symmetric
they are in general real, though).

It was observed in [212] that, in general, a) the Smith method converges
(much) slower than the ADI method, and b) a moderate increase of the
number of shifts ℓ in the ADI process accelerates the convergence. How-
ever, there it was also observed that a further increase of ℓ hardly accelerates
the convergence any further, which lead to the idea of cyclic Smith(ℓ) itera-
tion, which basically is a special case of ADI where ℓ different shifts are used
cyclically, that is, pi+jℓ = pi for j = 1, 2, . . . .

Low-rank iterations

In each of the above methods, full-size system Gramians Pj are propagated
at each iteration, which makes their application to large-scale sparse systems
very limited. In many cases, it is the storage requirement of O(n2) which
is the limiting factor rather than the amount of computation. The remedy
then is provided by the low-rank methods, which compute and store n × q
approximate square-root factors, say Z, of P instead of explicitly forming
P, where q is the numerical rank47 of P. The storage requirement is then
reduced to O(n × q). The methods are conveniently named Low-Rank ADI
(LR-ADI) and Cyclic Low-Rank Smith (LR-Smith(ℓ)). The key idea is thus to
write

PADI
j = ZADI

j (ZADI
j )T and P

Smith(ℓ)
j = Z

Smith(ℓ)
j (Z

Smith(ℓ)
j )T (4.4.28)

and propagate the Zj factors instead of Pj . For the LR-ADI, for instance,

substituting the above square-root expression for PADI
j−1 into (4.4.27) yields

the expression for ZADI
j in (4.4.28):

ZADI
j =

[
Apj

ZADI
j−1 , Bpj

]
, (4.4.29)

where ZADI
1 = Bp1 , and Api

and Bpi
are as defined in (4.4.21) and (4.4.22).

For the derivations of the square-root expressions of the LR-Smith(ℓ) method,
which is a more efficient alternative to the LR-ADI method when the num-
ber of shift parameters is limited, and an in depth analysis of these low-rank
methods, the reader is referred to [10, 39, 116, 212] and references therein.
[10, 116] also propose modifications of the LR-Smith(ℓ) iteration for the cases
where the r.h.s. of the Lyapunov equation is not low-rank (e.g., large number
of inputs/outputs in the system) and/or slow convergence of the standard

47The approximate square-root factors are themselves full-rank. ’Low-rank’ relates to the numerical
rank of P.
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low-rank iterations.48

Remark 4.4.5. Clearly, a crucial issue in these iterative methods is the selec-
tion of suitable shift-parameters to accelerate the convergence. Fortunately,
good heuristic algorithms for determining a (sub-)optimal set of these pa-
rameters exist [212, 288].

Remark 4.4.6. Iterative low-rank square-root Gramian approximations gen-
erally yield more accurate estimates of the dominant HSVs than Krylov sub-
space methods. Moreover, the latter ones tend to yield the reduced-models
of unnecessarily high order. On the other side, they are simple and fast.

Approximate balanced truncation

Low-rank approximate square-root factors Zc of Wc and Zo of Wc can be
used for approximate BTR using the algorithm given below. Again, due
to Wo = VWcV for the systems in this thesis, to determine the projection
matrices the knowledge of Zc suffices.

Algorithm 1: Approximate Balanced Truncation (ABTR)

INPUT: Low-rank square-root factors Zc, Zo ∈ R
n×k of Wc and Wo, resp.

– Compute the SVD of ZT
c Zo:

ZT
c Zo = ΦΣΨT ;

– Define:

Vproj := ZcΦΣ− 1
2 , and Wproj := ZoΨΣ− 1

2 ;

– The order-k approximated truncated balanced realization is given by:

Ar = WT
projAVproj, Br = WT

projB, Cr = CVproj, Dr = D.

Example 4.4.4. To demonstrate the performance of low-rank iteration meth-
ods in the approximation of the dominant subspace of the system Gramians,
the Cyclic LR-ADI as coded in the LYAPACK49 package was applied on the

48In these cases, at the ith iterate, the number of columns of ZADI
i and Z

Smith(ℓ)
i easily becomes

too large from the storage point of view. For the controllability Lyapunov equation, for instance, the

size of ZADI
i is n × (m × i). The size of Z

Smith(ℓ)
i is even larger (on the other hand, an i-step LR-

Smith(ℓ) iteration requires less matrix factorizations than an i-step LR-ADI iteration). In the modified
LR-Smith(ℓ) method proposed in [116], the number of columns in the low-rank square root factor does
not increase unnecessarily at each iteration step. The method is based on the idea of computing, at
each step, the SVD of the iterate and, given a tolerance τ , replacing the iterate with its best low rank
approximation. The SVD is not recomputed, but instead updated after each step to include the new
information and then truncated given the tolerance τ .

49LYAPACK is a MATLAB toolbox for solving certain large scale problems in control theory, which
are closely related to Lyapunov equations. It employs iterative algorithms and is intended for large,
sparse problems [211].
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441-states single-phase model from Example 4.4.3. Figure 4.16 shows the re-
sults for the eigenvalues of the controllability Gramian. Due to the intrinsic
symmetry in our examples, adequate approximation of the dominant sub-
space of Wc guarantees adequate approximation of that of Wo, but also of
the dominant HSVs as well as the BTR projection matrices. As the approx-
imation in this case is clearly excellent, the reduced-order models obtained
using the approximate square-root factors of the Gramians match those ob-
tained by the ’exact’ BTR almost perfectly, resulting in virtually indistin-
guishable simulation results.

For larger problems, say n > 1200, computing the exact HSVs was not fea-
sible on our Pentium-IV machine with 4GB RAM, hence the only way of
assessing the performance of the low-rank Gramian square-root approxima-
tion was to compare the simulation results between the full-order model and
their low-rank square-root BTR approximants. Figure 4.17 shows the results
for the 13200 states five-spot SPE10 models from Fig. 4.11.b.

Figure 4.16: Comparison, for the 441 states system from Example 4.4.3, of the first
112 dominant eigenvalues of Wc: Exact (blue ’-’) versus Cyclic LR-ADI (red ’-.-’).

Remark 4.4.7. It is fair to stress that for general, i.e. non-symmetric systems, accu-
rate ’separate’ low-rank dominant subspaces approximation of the controllability
and observability Gramians does not guarantee an accurate approximation of the
dominant subspaces of their product. Namely, the dominant eigenspaces of the
controllability and observability Gramians may be very different from what is ac-
tually needed: the dominant spaces of their product. In fact, as nicely explained in
[283], for instance, for some problems with innate asymmetry it may happen that
the system has completely different most observable and most controllable states
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Figure 4.17: Comparison simulation results for full-order (13200 states) versus
cyclic LR-ADI reduced-order (50 states) models for the five-spot SPE10 systems
from Fig. 4.11.b. For both layers, the lines depicting the cumulative productions
for the full- and the reduced-order model are on top of each other.

(in the most ’drastic’ situation, the dominant subspaces of Wc and Wo would even
be mutually exclusive). For such situations, the so-called ’Approximate Implicit
Subspace Iteration with Alternate Directions’ AISIAD method, proposed in [309],
and its improvements presented in [283, 308], for instance, promise to be more reli-
able model reduction schemes as they approximate the dominant eigensubspaces
of WcWo directly. A different method (Sec. 5.1.3), which computes approximate
balancing transformations directly (i.e., without separate reduction of the Grami-
ans) using snapshots of the state solutions of the system and its (approximate)
adjoint, is proposed in [233].

Remark 4.4.8. Another drawback associated with BTR using partial square-root
Gramian factors is that the reduced-order model is not guaranteed to be bal-
anced (recall that the exact square-root based BTR algorithms use full square-root
(Cholesky) factors to obtain the final truncated balanced realization. When only
dominant square-root factors are available, the reduced-order model may indeed
not be balanced), having as a consequence that the global error bound (4.4.18)
may not be strictly attained.
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4.5 Summary and conclusions of the chapter

Modern system theoretic approaches for model order reduction (MOR) of linear
time-invariant (LTI) state-space systems have been presented and their perfor-
mance assessed when applied to the spatially discretized slightly compressible
single-phase fluid-pressure equation. The techniques find their origins primarily
in the well-established research fields of numerical system and control theory, me-
chanical and structural engineering and electric circuit analysis. In order to facil-
itate familiarization with the underlying theoretical and numerical aspects of the
presented approaches, the introductory section of the chapter has provided a short
introduction to linear systems theory, focusing on system-theoretical concepts
as ’controllability’, ’observability’, Hankel operators and system norms, trans-
fer function moments, etc. The methods presented in the subsequent sections
were: Section 4.2: Modal Truncation (MTR), Singular Perturbation Approximation
(SPA) (or ’residualization’), Section 4.3: (explicit and implicit) Transfer Function
Moment Matching (TFMM), and Section 4.4: Balanced Truncation (BTR).

All the methods, except the rezidualization, are projection-based, meaning
that a macromodel of the original large-scale dynamical system is generated by
projecting it onto some low-dimensional subspace (Chapter 3). The projection
subspace may or may not be the same as the subspace the state variable itself is
projected onto. In MTR, the two subspaces are generally equal and spanned by
dominant eigenvectors of the system matrix. Indirect TFMM methods match a
certain number of moments mj of the system’s transfer function (around one or
multiple frequency points) and obtain their projection subspaces as certain Krylov
subspaces involving the system matrices. It has been explained how such an indi-
rect moment matching avoids the inherent ill-conditioning of the explicit moment
matching. The conditioning of the explicit matching gets rapidly worse as the
required number of the moments increases, which is a result of the fact that for
increasing j, the moment mj rapidly becomes a multiple of its predecessor mj−1

(hence no new information is added to the analysis); see Figure 4.9. Moment
matching techniques are generally fast, but the size of the obtained reduced-order
models may be unnecessarily large when the number of inputs and/or outputs
(here, injector and/or producer wells) is not small. Finally, projection subspaces
in BTR are obtained as the dominant eigenspaces of the product of the system’s
controllability and observability Gramians of the system being the solutions of the
corresponding Lyapunov matrix equations. Due to the inherent (near) symmetry
of the considered high-dimensional model in terms of controllability versus ob-
servability, the computational cost of the subspaces (and hence the reduced-order
model) generation is factually halved. Further reduction of both the computa-
tional cost of implementing BTR as well as the order of the reduced model is al-
lowed for by the existence of accurate low-rank (square-root) approximates of the
Gramians, which (in this case) is a direct consequence of the purely diffusive na-
ture of the high-dimensional model. Algorithms for obtaining low-rank solutions
of the related Lyapunov equations using a) Krylov subspace methods and b) iter-
ative approximations methods, have been presented in Subsection 4.4.3.

Regarding the performance of the presented methods, for piecewise constant
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inputs (i.e. flow-rates and/or BHPs) with a suitable duration of the individual
time segments, the shapes of the well control signals typically encountered in
open-loop reservoir simulations, it has been either concluded or shown by nu-
merical experiments that:

• reduced-order models obtained by (’zero-order’) SPA, which essence is set-
ting the time-derivative of a part of the system’s state dynamics to zero
and expressing the dynamics of the remaining part accordingly (Subsection
4.2.2), approximate the behavior of the high-dimensional model generally
well. A direct consequence of setting state-derivatives to zero is that the
method retains the steady state gain of the system, as zero state-derivative
obviously represents steady state. On the contrary, mode truncation retains
the systems behavior at infinite frequency. For this reason modal residual-
ization is preferred for low frequency modeling, whereas mode truncation
is preferable when accuracy is required at high frequencies.

• TFMM around the single frequency s = 0 is often sufficient for obtain-
ing both accurate and very low-order models. An explicit Krylov-subspace
method that uses an orthogonalized matrix of state block moments as the
(’congruence’) projection matrix has performed exceptionally well in a large
majority of single-phase cases considered in this research using a rather low
number of state block moments around s = 0 (page 62). Due to the absence
of complex waveforms, the addition of only one extra moment improves the
models considerably. Numerically, that is quite fortunate, as (the columns
of) the state moments all start to line-up with the dominant system’s eigen-
vector very quickly (Fig. 4.7 and 4.8). The symmetry of the systems also
helps, as the same accuracy can be achieved using less moments than in a
non-symmetric case.

• BTR has shown superior performance over MTR. The favorable performance
of BTR has been attributed to being low-rank of both the controllability and
the observability Gramians (and thus their product). The intrinsic dimen-
sionality of an LTI dynamic system is directly related to the behavior of the
Hankel singular values (HSVs) of the system, which are the square roots
of the eigenvalues of the product of the controllability and observability
Gramians. In accordance with this, the low-rank nature of the systems con-
sidered here are characterized by a rapid decline of the HSVs (see Figure
4.15; due to the abovementioned symmetry, it sufficed to consider the eigen-
values of the controllability Gramian instead of HSVs).

For low-frequency piecewise constant inputs well performing reduced mod-
els of even lower order can be obtained using balanced SPA. The approxi-
mation error is then mainly caused at the points where the input abruptly
switches from one constant value to another.

Regarding the eigenspectra of the considered high-dimensional single-phase
systems, a general observation is that: a) for systems with only one BHP controlled
well (connection) the separation of eigenvalues is clear, with a single closest-to-
zero eigenvalue dominating over the remaining part of the (stable) eigenspec-
trum. The separation is larger the lower the permeability of the gridblock the
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well is connected to, b) the number of dominant eigenvalues increases with the
number of wells, but it is generally still very low compared to the state-space
dimension (Fig. 4.6). According to Chapter 2, flow-rate controlled wells do not
introduce any change in the system’s dynamic matrix. Being based solely on the
system matrix/pencil, MTR is therefore insensitive to both the number and the
position of flow-rate controlled wells. On the other side, as any new well implies
a new non-zero column in the input matrix B, controllability properties of the sys-
tem do change (as do also observability properties, due to the symmetry). This
change is less substantial the ’more large-scale’ the original problem is, which has
very important consequences for applications like optimization and parameter-
or state estimation. In particular, it has been concluded that it is totaly unrealistic
to expect that without prior knowledge (e.g. constraints imposed by ’known’ ge-
ological properties) or use of another types of information (e.g. seismic), one may
be able to obtain fine-scale parameter estimates (of permeability, for instance) that
resemble the ’underlying, real’ parameter field.
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MOR for Two-Phase Flow: Proper
Orthogonal Decomposition

Section 3.3 has summarized a majority of the projection-based methods that can be
found in the literature for addressing the problem of order reduction of large non-
linear models. In this thesis, because of the complexity and potentially very large
size of multi-phase reservoir models, it was decided to employ data-driven pro-
jection subspaces for MOR of two-phase (waterflood) models. In these methods,
the basis functions are determined by processing data obtained from numerical
simulations of the underlying high-dimensional model and, as such, are expected
to provide physical intuition to the actual behavior of the system.1

In particular, the applicability and performance of strategies based on the Proper
Orthogonal Decomposition (POD) methodology have been assessed. A POD basis
of a data set is orthonormal and it is optimal in that it guarantees the best re-
construction, in the mean square error sense, of the elements of the set among
all (linear) bases of the same size. Depending on the area of application other
names are used as well, e.g. Karhunen-Loeve (K-L) Transform, Empirical Orthog-
onal Functions (EOF), Principal Component Analysis [149, 156]: all these (and
related, see [156] for an excellent overview) techniques aim for extraction of an
optimal set of basis functions from a computational or experimental data base, by
use of an eigenvalue analysis. Since its introduction by Karhunen in [152], and
independently by Loeve in [174], as a statistical tool to analyze random process
data, the POD method has been fruitfully applied to a diverse, and varied, col-
lection of engineering problems, ranging from data analysis and compression to
model order reduction. The method was first called/named POD by Lumley in
[177], where it was used for study of turbulent flow by extraction and analysis
of spatially coherent flow structures [58, 128, 205, 267]. It has proven to be useful
also in image processing for purposes of pattern recognition, coding, classification

1A minor point of purely data-driven MOR techniques is the fact they do not respect the underlying
model equations. Consequently, optimality of a particular basis in representing a data set used to
determine the basis does not in any sense imply optimality of the reduced-order dynamic model the
data has come from. For new developments involving, in a goal-oriented optimization framework,
inclusion of model constraints in the determination of the projection bases, see [27, 50], for instance.

95
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and compression [151, 156, 158, 170, 295], in optimization and control theory for
designing reduced-order models and controllers [3, 16, 22, 23, 27, 29, 50, 125, 139–
141, 180, 223], in inverse problems [30, 49, 206], and in many others. Applications
to reservoir flow comprise references [57, 103, 251, 286] for deterministic flow, and
[101, 102, 179, 296, 304] for stochastic porous media flow and uncertainty. Re-
sulted from this work are references [123, 182, 184, 185, 272]. A major progress in
the practical applicability of the method was made by Sirovich in [250] with the
introduction of the ’method of snapshots’, allowing for a considerably cheaper
evaluation of the POD eigenvalue problem than the direct computation.

5.1 POD in Finite-Dimensional Setting

The mathematical theory of POD relies upon results from functional analysis, in
particular the properties of Hilbert (or more generally, Sobolev) spaces, i.e. com-
plete inner product spaces. While the theory exists for both infinite- and finite-
dimensional systems, in practical applications it generally comes down to manip-
ulation of finite-dimensional data patterns (vectors). This thesis forms no excep-
tion in this, in that the MOR implementations here also all start from a given finite-
dimensional model. The focus here will therefore be on the finite-dimensional
version of the POD approach. A general framework that includes both the finite-
and infinite cases is provided in Appendix B.

5.1.1 Short Introduction to POD

The following few simple steps form the kernel of the finite-dimensional POD
approach. Let the system be n-dimensional. First, a number of the system’s n-
dimensional (vector) solutions {xi}Mi=1, called ’snapshots’, are generated by nu-
merical simulation or, when possible, by experiment, and put in a n × M data
matrix

X :=
[

x1 x2 . . . xM

]
. (5.1.1)

In a large-scale setting, e.g. when the finite-dimensional model is a discretized
approximation of an underlying PDE, the snapshot dimension will generally be
much larger than the number of snapshots, i.e. n ≫ M . The aim of the POD is
to determine ℓ (ℓ ≤ M ≪ n) orthonormal eigenvectors, denoted by {φi}ℓj=1, such
that the total square distance,

Q(Φ) :=
1

M

M∑

i=1

‖xi −ΦΦTxi‖2 (5.1.2)

between the snapshots and its projections on the subspace defined by the n × ℓ
matrix

Φ :=
[

φ1 φ2 . . . φℓ

]
, (5.1.3)
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is minimized for any ℓ. It can be shown (Appendix B) that this optimization prob-
lem is solved by {φi}ℓj=1 being the eigenvectors of the n× n snapshot correlation
matrix

R :=
1

M
XXT ≡ 1

M

M∑

i=1

xix
T
i , (5.1.4)

corresponding to the largest eigenvalues {λj}ℓj=1. The number of dominant eigen-
vectors ℓ is usually chosen as:

ℓ := min
κ

(

∑κ
i=1 λi∑

i λi

≥ α < 1), (5.1.5)

i.e. the smallest number of modes required to capture desired amount of vari-
ability in the data. α is usually close to one, meaning that the first ℓ eigenvectors
explain almost all of the variability contained in the snapshots set.

Sometimes, instead of R, the snapshot covariance matrix

R̃ :=
1

M
X̃X̃T ≡ 1

M

M∑

i=1

(xi − x̄i)(xi − x̄i)
T , (5.1.6)

is used, with x̄ representing the mean of the snapshots, x̄ = (1/M)
∑M

i=1 xi, and

X̃ := [x1 − x̄,x2 − x̄, . . .xM − x̄]. Letting x = x̄ + x̃, the covariance matrix R̃ thus
aims for describing fluctuations, x̃, of data w.r.t. the mean of the collected snap-
shots. Geometrically, substraction of the mean of a set of points from each of the
points in the set means moving the center of mass of the set to the origin of the
coordinate system, as illustrated in Fig. 5.1. In specific applications as e.g. stochas-
tic estimation, this mean correction must be included since data usually show a
nonzero mean. In our deterministic model reduction applications, translation of
points to make them have a zero-mean (x̃ = 0) is not of principal importance, al-
though doing so may in some situations potentially increase level of detail in the
reduced-order description when the same number of POD modes is retained as
without mean substraction. For instance, suppose that the original snapshots are
near parallel. In the not-mean-centered case, the first POD mode will lay pretty
much in the direction of the average of the data. Due to the orthogonality re-
quirement between the different POD modes, and the fact that the snapshots are
almost parallel, the second mode will be able to explain very little of the ’remain-
ing’ variability in the data. The third even less than the second, etc. That means
that a desired level α of ’energy’ contained in the data will be captured almost
exclusively by the first POD mode only, which is the best direction ’on average’.
To capture α, very few ’extra’ POD modes would be needed. On the other side,
when the same ”energy” criterion is applied to the mean-centered snapshot set,
more modes would generally be retained, since the effect of the presence of the
mean direction has ’disappeared’.
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Figure 5.1: Effect of substracting the mean from the snapshots.

How are the eigensolutions computed?

Eigenvectors and eigenvalues of symmetric matrices can be solved in an iterative
fashion using some form of the basic Lanczos recursion procedure. When the snap-
shot dimension is larger than the number of snapshots, i.e. n > M , the rank of the

n × n correlation matrix R as defined in (5.1.4) (or the covariance matrix R̃) is at
most M (or M − 1, for the mean-subtracted case). Therefore, there are at most M
(or M − 1) eigenvectors φi that correspond to a non-zero eigenvalue. Fortunately,

it is not necessary to work with XXT in order to determine these eigenvectors:

one can instead work with the much smaller XT X of size M ×M and relate its
eigenvectors, υi, to φi. Indeed, consider the eigenvalue problem

XXT φi = λiφi, (5.1.7)

and premultiply both sides by ciX (ci ∈ R\{0}) to obtain

(XT X) ciX
T φi︸ ︷︷ ︸

υi

= λi ciX
T φi︸ ︷︷ ︸

υi

. (5.1.8)

Hence, XTX and XXT share the same M (or M − 1) non-zero eigenvalues2, and
υi = ciX

T φi are the corresponding eigenvectors. Let υi be chosen to have unit-
length, i.e. ‖υi‖22 ≡ υT

i υi = 1. Then,

υT
i υi = c2

i φ
T
i XXT φi︸ ︷︷ ︸

λiφi

= c2
i λiφ

T
i φi = 1. (5.1.9)

The constraint φT
i φi ≡ ‖φi‖22 = 1 requires that ci = λ

− 1
2

i , so that υi = λ
− 1

2
i XT φi.

Premultiplying with X and using (5.1.7), one finally obtains Xυi =
√

λiφi, or

2If X is full rank; otherwise some of the eigenvalues of X
T
X will also be zero.
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equivalently

φi =
1√
λi

Xυi. (5.1.10)

Besides being an expression that provides a more efficient computation of the
POD basis when the number of snapshots is smaller than their dimension, (5.1.10)
moreover reveals the important property that the POD modes actually are lin-
ear combinations of the collected snapshots, which was also the key observation of
Sirovich in [250] leading to his method of snapshots. As such, POD modes will
generally be different whenever the snapshots set is different, which is e.g. the
case when different BCs (or forcing) and/or ICs are applied.

The role of SVD Instead of solving the eigenvalue problem involving products of
large and, in general, dense matrices (as XXT or XT X are), one may alternatively
perform a singular value decomposition (SVD) directly on the snapshot matrix X.
Indeed, let the n×M data matrix X (n > M ) be decomposed as

X = UΣVT , (5.1.11)

where U ∈ R
n×n and V ∈ R

M×M are orthogonal matrices (UTU = In and
VT V = IM ), and Σ is an n ×M pseudo-diagonal matrix having on its leading
diagonal non-negative elements arranged in a decreasing order, i.e. σ1 ≥ σ2 ≥
· · · ≥ σM ≥ 0. Matrix XXT may now be expressed as

XXT = UΣΣT UT , (5.1.12)

where ΣΣT = diag{σ2
1, . . . , σ

2
M , 0, . . . , 0}, with the number of zeros equal n −

rank(X). It therefore follows that the POD modes φi can be computed as ”left
singular vectors” (elements of U) of X, whereas λi = σ2

i . Similarly, it follows that
the ”right singular vectors” (elements of V) of X are the eigenvectors υi of XT X.
This moreover means that the SVD (5.1.11) directly implies (5.1.10), which follows
from (5.1.11) postmultiplied by V, yielding XV = UΣ.

5.1.2 Standard POD scheme for MOR of ODEs

In solving problems of model order reduction, POD is just a projection-based tech-
nique as presented in Chapter 3, whereby the basis to project the governing equa-
tions onto consists of the most ”energetic” modes, as defined above (the infinite-
dimensional case is treated in Appendix B).

Reduced-order time-continuous model

Having determined the matrix of basis vectors Φ as defined in (5.1.3), substitu-
tion x(t)→ x̄ + Φa(t) into the full-order continuous-time generalized state-space
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model (3.2.1− 3.2.3):

E(x)
dx

dt
= f(x, u) (5.1.13)

y = h(x, u) (5.1.14)

x(t0) = x0 (5.1.15)

yields the reduced-order model describing the time-evolution of the expansion
coefficients a:

ΦTE(Φa + x̄)Φ︸ ︷︷ ︸
Ered(Φa+x̄)

da

dt
= ΦT f(Φa + x̄,u)︸ ︷︷ ︸

fred(Φa+x̄,u)

, (5.1.16)

ỹ = h(Φa + x̄, u) (5.1.17)

a0 = ΦT (x0 − x̄), (5.1.18)

which is (3.2.4− 3.2.6) with W = V = Φ, x̄ = 0, and the potential parameter de-
pendence of E and f is suppressed for the sake of notation simplicity. The standard
POD procedure is schematically illustrated/sumarized in Fig. 5.2.

For an (easily) invertible E, the full-order continuous-time system-dynamics could
equivalently be written as:

dx

dt
= E(x)−1f(x, u), (5.1.19)

and substitution x(t) → x̄ + Φa(t) would lead to the following reduced-order
model:

da

dt
= ΦT E(x)−1f(Φa + x̄,u)︸ ︷︷ ︸

fred(Φa+x̄,u)

, (5.1.20)

ỹ = h(Φa + x̄, u) (5.1.21)

a0 = ΦT (x0 − x̄). (5.1.22)

Remark 5.1.1. It is important to emphasize that, whereas the solutions of the high-
order continuous-time models are the same, the solutions of the corresponding
reduced-order models are, due to their different topologies, generally not exactly
so.

Discrete-time formulation(s)

The precise form of the discrete-time counterpart of the chosen reduced-order
model (i.e., (5.1.16) or (5.1.20)) will generally depend on the type of the time-
discretization scheme used (explicit, implicit, etc.). For instance, if the vector func-
tion f is in the form f(x, u) = A(x)x + B(x)u as in (5.2.1), and the state-dependent
(coefficient) matrices E, A and B (as well as the input u) are all evaluated at the cur-
rent time-step, the discrete-time reduced-order dynamic equations models based
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Figure 5.2: Overview of the standard POD procedure as applied to a finite-
dimensional continuous-time reservoir model.

on (5.1.13) and (5.1.19)) would be (Ered,k −∆tkAred,k)ak+1 = ak + ∆tkΦ
TBkuk

and (Ik − ∆tkΦ
T E−1

k AkΦ)ak+1 = ak + ∆tkΦ
TE−1

k Bkuk, respectively, where
Mk := M(Φak + x̄) and Mred,k := ΦTMkΦ, for M = A,B,E.

The implementations of the POD approach in this chapter are based on these
’quasi-implicit’ representations (cf. 2.4.2), i.e., all coefficient matrices (and the in-
puts) are always assumed evaluated at the current time-step, whereby the time-
step is controlled by a maximum allowable saturation change.

5.1.3 POD in the LTI setting: relation to BTR

As shown below, there is an important connection of POD and balanced trunca-
tion in the (stable) LTI case. Although this fact has not been utilized in this thesis3,
it is important enough to be explained at least briefly. More information can be

3For linear systems this was again because of the symmetry of the systems considered. This will
become clear in the sequel. The symmetry was also the reason of not considering the Maximum Output
Fraction approach, proposed in [20, Section V] with the aim of incorporating measurements in POD
basis when measurement and actuator locations are different (they are in this thesis). The rationale
behind the method is that, if the non-collocated measurements are not contributing substantially to
the overall spatial dynamics, approximation of measurements by the standard POD basis may fail.
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found in [4, 10, 135, 164, 165, 233, 293], for instance. Recall that for a (stable) LTI
system in the standard state-space formulation:

dx

dt
= Ax + Bu , y(t) = Cx(t), (5.1.23)

with m inputs and p outputs, the so-called controllability- and observability Grami-
ans are defined as

Wc :=

∫ ∞

0

eAtBBT eAT tdt and Wo :=

∫ ∞

0

eAT tCT CeAtdt, (5.1.24)

respectively. The importance of these symmetric and positive-semidefinite matri-
ces is that they respectively measure to what degree each state of the system can
be excited by an input and to what degree each state excites future outputs.

Let B := [b1 . . .bm] and let xδj
(t) denote the (zero-initial) state-response of

the system to impulse input u(t) = δ(t)ei, where ei ∈ R
m is the canonical ith unit

vector (i.e., each input channel is excited separately). The state impulse response
is then xδ,j(t) =

∫ ∞

0
eA(t−τ)Bu(τ)dτ =

∫ ∞

0
eAtbjδ(τ)dτ = eAtbj , so that the

controllability Gramian Wc is given by4

Wc ,

∫ ∞

0

eAtBBT eAT tdt =

∫ ∞

0

eAt[b1 . . .bm][b1 . . .bm]T eAT tdt

=

∫ ∞

0

[xδ,1(t) . . .xδ,m(t)][xδ,1(t) . . .xδ,m(t)]T dt =

∫ ∞

0

X(t)XT (t)dt.

(5.1.25)

where X(t) := [xδ,1(t) . . .xδ,m(t)]. The similarity between the Gramian expression
(5.1.25) and the (continuous) POD is now obvious: the (continuous) POD modes for
the set of the state impulse-responses are the dominant eigenvectors of Wc, or, in other
words, the most controllable modes of the realization. It is hereby important to
note that since the Gramian matrices depend on the chosen coordinate system, so
do the POD modes of the impulse dataset.

Connection between POD and the observability of a LTI system (5.1.23) can be
illustrated by considering its ’dual’ (or ’adjoint’) system:

dz

dt
= AT z + CT ud , yd(t) = BT z(t), (5.1.26)

and essentially makes use of the result that the controllability of a stable LTI sys-
tem is equivalent to the observability of its dual. The dominant subspace of the
observability Gramian Wo is thus determined by the POD modes of the (zero
initial-state) adjoint system driven by the impulse inputs ud = δ(t)ei.

4Mathematically, the same is achieved by setting u ≡ 0 and considering ẋ = Ax for the initial
conditions x0,j = bj (j = 1, . . . , m).
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Balanced POD

According to the above, the observability Gramian of the original system (5.1.23)
is the same as the controllability Gramian of its adjoint system (5.1.26). If the im-
pulse response data is obtained by numerical simulation, it is usually given at dis-
crete times t1, . . . , tM . The state solutions {xδ,i(tk)}mi=1, k = 1, . . . , M can be assem-
bled in Xδ,M := [xδ,1(t1)

√
α1 . . .xδ,1(tM )

√
αM . . .xδ,m(t1)

√
α1 . . .xδ,m(t1)

√
αM ]

such that the integral in (5.1.25) is approximated by a quadratic sum Xδ,MXT
δ,M =:

Wδ,M
c , with {αj}Mj=1 appropriate quadrature coefficients.

In a completely analogous way, impulse responses of the adjoint states z can be
numerically computed at N discrete time points and, weighted appropriately by
quadrature coefficients, assembled in a data matrix Yδ,M such that Wo is approx-
imated by the empirical5 observability Gramian, Wδ,M

o := Yδ,MYT
δ,M . Assuming

linear independency (for numerical reasons) of both Xδ,M and Yδ,N , and thinking
of these quantities as approximate square-roots of the corresponding Gramians,
an approximate balancing transformation can be found by the Algorithm 1 in Sec-
tion 4.4.3, i.e., by determining an SVD of XT

δ,MYδ,N . The dimension of this matrix
is M × N , i.e., the number of primal snapshots × the number of dual snapshots,
which is typically tractable.

Remark 5.1.2. As one simulation of the forward (adjoint) system is needed for each
component of the input (output), the number of inputs (outputs) must not be too
large in this method. Clearly, if one desires a reduced-order model while approxi-
mating the full state information adequately, i.e., y = x, the associated cost would
be unmanageable. In [233], this issue is addressed by considering an alternate

adjoint system: dz
dt

= AT z + CT Φrw, where the columns of the p × r orthogonal
matrix Φr are the first r POD modes of the the set of impulse responses of the
original system (which is simply the state impulse responses for m inputs pre-
multiplied by C). The underlying idea of this output projection method is projecting
the output of the original system onto a low-dimensional subspace, i.e., taking
y = ΠrCx, with Πr an orthogonal projection of rank r onto an r-dimensional
subspace of the output space, such that the 2-norm of the difference between the
p×m impulse response matrix, H(t) (the element Hij(t) is the output component
yi(t) corresponding to the impulse input uj(t) = δ(t)), and its projection ΠrH(t)
is minimized. The projection Πr achieving this can be written as Π = ΦrΦ

T
r , with

Φr as defined above. See [135, 233] for more detail.

Remark 5.1.3. If snapshots are generated using inputs signals other than impulses,
’weighted’ Gramians become relevant. See [10, Section 7.6] for details on weighted
BTR.

5The terminology Empirical Gramians was introduced in [164, 165], where the POD was used, in a
similar fashion as here, to extend BTR to nonlinear systems.
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5.2 POD applied on two-phase reservoir simulation

In this section the standard POD procedure as outlined above is applied to the
finite-dimensional generalized state-space representation (2.3.6) of the the governing
equations of a typical two-phase (oil-water) reservoir flow, where, for simplicity
of presentation and notation, a two-dimensional horizontal reservoir only is con-
sidered:

V(x̃(t))W(x̃(t))
dx

dt
= T(x̃(t))x + V(x̃(t))F(x̃(t))Lquu, (5.2.1)

where x = [po,11, Sw,11, po,12, Sw,12, . . . , po,nxny
, Sw,nxny

]T is the n-dimensional state
vector containing oil pressures and water saturations for each of the nxny = n

2
grid blocks, V is a diagonal mass matrix with entries that are functions of grid
block volume and fluid densities, W is a block diagonal matrix with entries being
functions of compressibility, porosity and water saturation, T is a block matrix
containing the transmissibilities for oil and water, F is a matrix-valued function
of fractional-flow functions for water and oil, and Lqu is a selection matrix con-
sisting of zeros and ones at appropriate places so that u ≡ LT

quqt is the input
vector containing total liquid rates (generally, qt = qo + qw at the producers and
qw at the injectors). For a mode detailed description refer to (2.3.6). In (5.2.1), the
parameter-dependence of the system matrices has been suppressed for the sake of
shorter notation.

If V(x̃(t))W(x̃(t)) is invertible, which is normally the case for a non-zero com-
pressibility, (5.2.1) may equivalently be written in the standard state-space form
as

dx̃(t)

dt
= Ac(x̃(t))x̃(t) + Bc(x̃(t))u(t). (5.2.2)

where Ac := (VW)−1T and Bc := W−1FLqu. As V and W are diagonal and
block-diagonal, respectively, inverting VW is easy and stable, as it can be done
analytically. The quasi-implicit time-discretization (i.e., the state-dependent co-
efficient matrices and the input evaluated at the current time-step, tk) of (5.2.2)
yields the form

[In −∆tkAc(x̃k)]x̃k+1 = x̃k + ∆tkBc(x̃k)uk, (5.2.3)

where tk+1 := tk+∆tk, and In denotes the n×n identity matrix. To make the anal-
ysis and the discussion in the sequel easier to follow, the alternating state-vector
x̃ will be rearranged, using a suitable permutation matrix P, to x := [pT

o ,ST
w]T ,

where po = [po,11, po,12, . . . , po,nxny
]T and Sw = [Sw,11, Sw,12, . . . , Sw,nxny

]T . Thus,
x̃ = Px, and using PTP = In, (5.2.3) may be rearranged as:

[In −∆tkP
T Ac(Pxk)P]xk+1 = xk + ∆tkP

TBc(Pxk)uk. (5.2.4)
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5.2.1 Derivation of reduced-order models

In a standard POD procedure, (5.2.3) would be simulated and snapshots collected
at a number of time instances, not necessarily uniformly, during a time-interval
[0,T], generally for various, well-designed control excitations. By ’well-designed’,
input signals (here, e.g., pressures) are normally meant that are consistent with
the expected range of operating conditions during the intended application of
the model and, moreover, so that the relevant dynamics is represented in the col-
lected snapshots. Two-phase (or, more generally, multi-phase) reservoir flow sys-
tems, however, possess a number of properties that make a successful straightfor-
ward application of the standard implementations the POD approach generally
unlikely. Therefore, adaptations of the standard POD approach seem inevitable.
The adaptation in the next paragraph is related to the numerical incompatibil-
ity of the state variables that form the state vector, here saturations and pressure.
More critical features, like, e.g., fluid interfaces moving all over the spatial do-
main, shocks, (displacing) fluid breakthrough, etc., are addressed later.

Different variability of state variables: Individual vs. Combined POD projec-
tions

A basic POD implementation would involve substitution xk → Φak (or xk →
Φak + x̄) and projecting (5.2.4) onto the subspace defined by a POD matrix Φ ∈
R

n×ℓ (ℓ≪ n), yielding the following reduced-order model for the coefficients ak :

[Iℓ −∆tkΦ
TPT Ac(PΦak)PΦ]ak+1 = ak + ∆tkΦ

TPTBc(PΦak)uk, (5.2.5)

whereby Φ would ’explain’ most of the variability in X =

[
po,1 . . . po,N

Sw,1 . . . Sw,N

]
.

A problem with this straightforward POD implementation is that p0 and Sw will
generally show different variability in their numerical values. Due to the property
of the POD to favorize variables which numerical values show greater variabil-
ity, this could consequently negatively impact the quality, or even reliability, of a
reduced-order model obtained this way. If all variables were of the same type, the
data could be preprocessed before the application of the POD, e.g., by normalizing
all variables to have unit variance. Because of the totally different both physical
and numerical nature of pressure and saturation variables, data-preprocessing in
the case of multi-phase porous media equations is all but trivial. In the applica-
tions of POD in this thesis, optimal bases for the two different groups, pressures
and saturations, are therefore obtained separately: instead of solving one eigen-
value (or SVD) problem to obtain a single dense n×ℓ POD matrix Φ, two separate
eigenvalue (SVD) problems are solved (one for Xp := [po,1, . . . ,po,N ] and one for
XS := [Sw,1, . . . ,Sw,N ]), yielding two different POD matrices, Φp ∈ R

n
2 ×ℓp and

ΦS ∈ R
n
2 ×ℓS , for pressures and saturations, respectively. The ’total POD matrix’

to use in (5.2.5) is then formed as Φ :=

[
Φp 0n

2 ×ℓS

0n
2 ×ℓp

ΦS

]
∈ R

n×ℓ. This allows
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for choosing a different degree of reduction for the pressures and the saturations6,
however at expense of (possibility of) loosing some of the information about the
coupling between these variables.

Using such a ’decomposed’ Φ and correspondingly defining a := [aT
p ,aT

S ]T ,

where ap ∈ R
ℓp and ap ∈ R

ℓS , the reduced-order model (5.2.5) may be written as

(
Î−∆tkΦ

TPT Ac(PΦak)PΦ
)

︸ ︷︷ ︸
Ed,red(Φak)

[
ap,k+1

aS,k+1

]

︸ ︷︷ ︸
ak+1

=

[
ap,k

aS,k

]

︸ ︷︷ ︸
ak

−∆tk ΦT PTBc(PΦak)︸ ︷︷ ︸
Bd,red(Φak)

uk,

(5.2.6)

where Φ =

[
Φp 0n

2
×ℓS

0n
2 ×ℓp

ΦS

]
and Î :=

[
Iℓp

0ℓp×ℓS

0ℓS×ℓp
IℓS

]
≡ Iℓ+S .

The advantage of (5.2.6) is that it ’uncouples’ the pressure and the saturation
expansion coefficients ap and aS , respectively, and, moreover, that the dimensions
of the different elements are immediately clear. Defining the ’permuted’ POD

matrix Φ̃ := PΦ, the reduced-order model may be expressed more compactly as

[Iℓ −∆tkΦ̃
TAc(Φ̃ak)Φ̃]ak+1 = ak + ∆tkΦ̃

TBc(Φ̃ak)uk. (5.2.7)

Having determined ak+1, the (approximation of the) fine-scale solution is given

by x̂k+1 :=

[
p̂o,k+1

Ŝw,k+1

]
= Φak+1. With Px = x̃ and PΦ = Φ̃, the alternating

state vector from the original reservoir description (5.2.3) may then, if necessary,

be recovered by ˆ̃xk = PΦak .

5.2.2 On the (expected) quality of the approximation

In many nonlinear problems in science a larger approximation error in the state
is not necessarily a catastrophe, as long as it does not contribute substantially to
the output behavior (if one is interested in just that). Multi-phase reservoir sys-
tems are fundamentally different in this respect, because of the active role of the
fluid saturation(s). Indeed, it is unreasonable to expect good approximation of the
production data if the saturation behavior in between the wells is approximated
wrongly. Any potentially successful MOR technique must at least be able to ade-
quately reconstruct the saturation data used to generate the reduced-order model.
This requirement is valid even when all N basis functions representing the N col-
lected linearly independent data points are employed, which is due to fact that

6Note that by separating the POD problems for po and Sw also the issue of ’physically unsensi-
ble” mathematical summation (in XX

T ) of variables having different dimensionality ([Pa] vs. [-]) is
circumvented. This problem could, at least conceptually, also be dealt with by nondimensionalizing
the variables, in which case the choice of nondimensionalization becomes critical, however. Another
possibility is to use a different inner-product definition in the POD optimization problem, as the stan-
dard inner product does not make dimensional sense if the state vector consist of different physical
quantities (indeed, one can not add pressure and saturation).
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the total error in the state besides the snapshots approximation error also contains
an error component coming from the projection of the vector fields involved in
the governing equations onto the chosen basis. The waterflood simulation exper-
iments performed in this research ([123, 184, 185], see Figure 5.3 for an example)
and recently in [55–57] suggest that a given flow scenario can be reproduced ac-
curately if enough snapshots have been used and ’enough’ energy has been cap-
tured in the POD modes (especially saturation ones, see also below). Different
sets of snapshots will of course give raise to different matrix decompositions and
hence to different ’optimal’ linear projections. The generation of good snapshots
is, however, in general by no means a science, but rather an (primitive) art. We
have not been focused on this aspect in this research much, but the simulation
results in our research and in [55–57] seem to indicate that the POD approach
is quite robust in this respect when the snapshots are generated by exciting the
system by manipulating the injection and/or production profiles (i.e., flow-rates
and/or bottom-hole pressures) consistent with the expected range of operating
conditions.

Horizontal reservoir equipped with smart       Permeability field.
well  injector and producer.

SATURATION (left: full order; right: reduced order) PRESSURE (left: full order; right: reduced order)

Figure 5.3: Flow reconstruction with POD. Full-order model: 30 × 30 grid blocks
(1800 states). Reduced-order model (9 states: 2 pressure- and 7 saturation POMs).
Optimality criterion used: min. snapshots energy captured: 95% (First pressure
mode accounted for 67.3 %, second mode for 32.6 %, third mode for 0.04 %, etc.;
First saturation mode accounted for 51.14 %, second mode for 20.99 %, third for
12.85 %, fourth for 6.98 %, etc.). Total flow-rates kept constant. Total simulation
time: 1200 days.
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In order to facilitate easier recognition of possible pitfalls when applying POD
to multi-phase flow, we summarize some of the distinguishing characteristic fea-
tures of multi-phase reservoir systems:

• Moving fluid-interfaces. The traveling nature of the (steep) fluid-front inter-
faces forms a real challenge for any projection basis with spatially global
support and is thus by no means restricted to a POD one. The latter has one
extra disadvantage, which is that it is found by time-averaging. Since any
time-averaging smooths out information that is only expressed over small
intervals of time, correlation information in time will be lost. And so will
also be the information about the time before- and after the displacing fluid
breaks through at the producers. In order to adequately reproduce the col-
lected saturation snapshots, the POD basis will generally be of an order that
(greatly) overestimates the intrinsic order of the dynamics at particular time-
points (or time-intervals). Intuitively, but also supported by the extensive
simulation experiments performed during this research (see also Fig. 5.3),
and recently also elsewhere [55, 56], it can be stated that an accurate repre-
sentation of the saturation behavior requires (much) more POD modes to be
retained than for the pressure.

• Bounded saturation support. Using basis functions having global support, it is
not guaranteed that the local saturations will always and everywhere stay
within their physically feasible values, i.e., within [Swr,1− Sor]. This is true
even when all N basis functions representing the N collected linearly in-
dependent data points are employed, which is due to the abovementioned
contribution of the equation projection error to the total state error. Assum-
ing that the deviation from the feasible interval is not substantial, to proceed
with the simulation the grid-block in the question can be assigned the sat-
uration value at the closest boundary of the interval (i.e., Swr or 1 − Sor),
however at the cost of some mass balance violation. We moreover note that,
because of the square-root error optimality of POD, also the POD approxi-
mants ΦΦTxi of the training snapshots {xi}Ni=1 are not guaranteedly phys-
ically admissible when less than N basis functions are used. In view of this
fact, it is reasonable to question not only the usefulness of the energy cri-
terion (5.1.5) for deciding how many saturation POD modes should be re-
tained in the standard POD basis, but also the optimization problem itself
(that is, the total least squares problem of minimizing (5.1.2)). It seems wise
to explore the possibilities for redefining the POD problem by augmenting
it by a constraint expressing the necessity of staying, at least of the back-
projected snapshots, within the admissible region, and/or clever clustering
of the snapshots, either spatially or temporary. The latter could e.g. done
in a fashion similar to the PID approach mentioned in Section 3.3.2, leading
to multiple, time-local POD bases. We speculate that for a single simulation
run, due to the traveling nature of the saturation fronts, clusters based on
time-information and those based on spatial-information would be closely
related to each other. Needless to say, the extensions/adjustments to the ap-
proach should not lead to an unreasonable increase in the time required to
determine a basis.
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• Upstream mobility weighting. In the computational schemes, the coefficients
are evaluated at the interfaces between the adjacent control volumes (here
grid-cells) as averages of their values within the cells. For instance, absolute
permeability is commonly averaged using harmonic weighting, whereas the
(strongly) saturation (and weakly pressure) dependent fluid mobilities are
averaged according to some upstream weighting principle in order to en-
sure the physical correctness (and stability) of the solution.7 When multiple
producing and injection wells are considered, the upstream direction may
be different in different regions of the reservoir. In a single-point upstream
weighting (also used in our implementations), the fluid mobilities at the in-
terface between two cells will be determined as being the mobility of in the
cell under the higher fluid pressure (or potential in 3D). Expressing pres-
sures (and saturations) in a global (and truncated) basis, there is a risk that,
locally (i.e., across gridblock interfaces), the computed upstream direction
(i.e., the sign of the pressure gradient) is the opposite of what it should be.
Besides to incorrect results, this may (either immediately or eventually) lead
to instabilities/oscillations in the flow solution.8 Evidently, one prefers this
effect not to occur, especially not in regions close to the wells.

5.2.3 On the computational complexity

The overall computational cost of a POD approach consists of two main parts: a)
preprocessing cost of generating ’representative’ snapshots spanning a large por-
tion of operating conditions of interest and, subsequently, determining the POD
basis, and b) the cost of solving the reduced-order model.

Pre-processing cost

The process of generating ’good’ time-snapshots data ensuring a robust predic-
tive capability of the reduced-order model may be quite costly, since it generally
involves multiple simulation runs of the high-dimensional model. Due to the lack
of design of experiments methodologies for flow scenario selection, a more heuris-
tic approach is followed in which the reservoir model is excited by manipulating
the injection and/or production profiles to cover operating conditions of interest.
The signals (well flow-rates and/or bottom-hole pressures) need to be consistent
with expected both the expected ranges of values and expected times of update).
If either the number of pre-processing runs, k, is large or the time-steps in (any

of) the runs were small, the POD analysis on the n × ∑k
i=1 Ni snapshots data

matrices Xξ := [ξ1, . . . , ξN ] ≡ [ξ1
1, . . . , ξ

1
N1

, . . . , ξk
1 , . . . , ξk

Nk
], ξ = po, Sw, may be

computationally too demanding9 (recall that these matrices are dense in general).

7Another popular choice is to use the upstream weighting only for the relative permeabilities and
capillary pressures and arithmetic weighting for the pressure-dependent coefficients as fluid viscosity.

8Note that neither harmonic nor arithmetic averages are sensitive in this respect.
9In terms of computational time it may actually not be so for (iteratively) determining a sufficient

number of pressure POD basis vectors, as this number is generally not substantial. The high memory
demands remain, though.
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To reduce this cost one may decide to base the POD analysis (i.e. solving a SVD
or an EVD problem) on: 1) ’dynamically relevant’ snapshots (not trivial at all),
2) clustered10 snapshots, and 3) ’low-rank’ matrix decomposition (SVD or EVD)
update algorithms (see also Section 5.3).

Cost associated with solving the reduced-order system

Solving the n-dimensional sparse linear system (5.2.4) (or (5.2.3)) has a cost of
O(n1.1∼1.5), whereas solving the ℓ-dimensional dense reduced-order linear system
(5.2.7) has a cost of O(ℓ2), which is much less than the former whenever ℓ << n.
Despite this speed-up, a computational gain in determining the reduced-order
solution is actually not guaranteed (and if there is a gain, it is rarely spectacular).

This is due to that fact that at each time-step the matrix product Φ̃T Ac(Φ̃ak)Φ̃ ∈
R

ℓ×ℓ must be evaluated, which has a cost of O(n× ℓ2).11

There is nothing to do about this except to try to estimate ak+1 by some other,
cheaper means.12 Some recent contributions in the POD literature (see, e.g., [19–

21]) attempt to address the high computational cost of forming Φ̃TAc(Φ̃ak)Φ̃ by
not computing the POD basis coefficients in the usual POD manner (i.e., here, by
solving (5.2.5 or (5.2.7)), but rather estimating these from a partial set of the origi-
nal data at a selected number of points in the spatial domain. In short, instead of

defining xk → Φak ≡
∑ℓ

i=1 ak,iφi and substituting it into the high-order model
(e.g., 5.2.4) to obtain a standard POD reduced-order model (e.g., 5.2.5 or 5.2.7))
for the ℓ POD coefficients {ak}ℓi=1, a G-dimensional subset (of length G) of the

whole state, xG
k → ΦGak ≡

∑ℓ
i=1 ak,iφ

G
i , is considered comprising the elements

of xk at G selected spatial positions, where φG
i is the subset of φi comprising

its elements at the same G positions (note that φ
G
i are, in general, not orthogo-

nal!). As the ℓ POD coefficients in ak are unknown, one defines an estimate of it,
denoted by âk, such that ΦGâk would approximate xG

k well, that is, one writes

10We note reports of snapshots clustering in [55, 56] inspired by the CVT/CVOD idea mentioned in
3.3.2, wherein POD is applied to the collection of cluster centroids, where each centroid represents a
particular cluster of the collected snapshots. The clustering is reported to cause an negligible compu-
tational overhead. The final number of the POD basis vectors seems to be smaller than in the normal
POD analysis for the same quality of the reduced-order model and, moreover, the difference in the
number of pressure and saturation POD modes seems to decrease as well.

11The issue is even more manifested in a fully time-implicit scheme using the Newton-Raphson
solving procedure, whereby the reduced basis is used in the inner loop. There, the next timestep
state solution is determined by iteratively solving (sparse) linear systems of the form Ji

n∆xi+1 = Ri
n,

where, n being the state dimension, Ji
n and Ri

n are the (state-dependent both the) n×n Jacobian matrix
of the system and the n-dimensional equation residual vector at the current iteration i, respectively,
and xi+1 = xi + ∆xi+1. The application of POD in this case could e.g. be iteratively solving, at each
time step, reduced-order (dense) linear systems of the form J

i
ℓ∆a

i+1 = R
i
ℓ, where J

i
ℓ := Φ

T
J

i
nΦ

and R
i
ℓ := Φ

T
R

i
ℓ.

12Actually, the reduced-order model for the expansion coefficients does not even need to be a
projected-version of the high-dimensional model. Conceptually, it can be ANY model of the required
dimension as long as it includes enough free parameters to optimize over by comparing its behavior
with that of the high-dimensional model in a suitable sense. We note that an optimization setting
would allow a simultaneous ’estimation’ of the corresponding basis functions as well (i.e., by not fix-
ing them a priori). Solving the overall optimization problem could be computationally too demanding,
though. See [1, 68, 163] and references therein for some ideas in this direction.
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xG
k ≈ ΦGâk ≡

∑ℓ
i=1 âk,iφ

G
i . A G-dimensional dynamical model for xG

k is set up
by writing the original model in terms of xG

k . Using xG
k ≈ ΦGâk and the so-called

Missing Point Estimation (MPE) expression [(ΦG)T ΦG]âk = (ΦG)T xG
k for an opti-

mal (spatial, static) estimation of the collected data13 from the incomplete informa-
tion, an POD-MPE ℓ-dimensional reduced-order model for âk is derived. Whereas
the number to determine POD coefficients has remained the same as in the normal
POD model, (much) less state-dependent coefficients need to be updated. Once
the next time-step solution âk+1 of the POD-MPE model has been found, it is used
to determine the estimates of the original high-dimensional model at the remain-

ing n − G spatial points as x̂n−G
k = Φ̂n−Gâk . Naturally, the computational gain

may be expected to be bigger the smaller G is, though at the cost of a decreased
performance. See [19] for detailed description of the method.

Remark 5.2.1. [57] reports the application of the MPE idea in a different, subopti-
mal way, namely directly to the reduced-order Jacobian term ΦTJi

nΦ in the inner
loop of the Newton solver by selecting G rows of Φ such that the control variables
(wells) and the boundary conditions are considered mandatory and the remain-
ing points are chosen according to a condition number criterion (generally such
that ΦGΦ ≈ IG). The scheme is suboptimal in that the construction of both the
Jacobian matrix and the residual equations is still based on the total number of
gridblocks n, rather that on G < n selected gridblocks as it would be the case in a
full POD-MPE implementation. The reason for this choice is that a full POD-MPE
implementation requires much more modifications in the existing reservoir simu-
lator code than the suboptimal solution of applying the MPE at the linear solver
level only.

5.3 POD reduced order models as solution predictors

in the full-order simulation

Determining a POD basis (and, possibly, its recomputation) that is robust enough
against flow scenarios different from those used to determine the basis may re-
quire many full runs of the high-dimensional model. This may be very time-
consuming due to the necessity to employ an iterative solving procedure to prop-
agate the solution in time. A good initial guess of the solution is therefore of
paramount importance. As the dynamic reservoir flow problems are evolution
problems, the initial guess is usually taken to be equal to the last time-step solu-
tion (constant extrapolation) or a linear combination of the solutions at the last two
timesteps (linear extrapolation). While the latter may be preferable in the absence
of strongly changing well terms, it may yield worse guesses at the occurrences of
rapid source variations (turn off/on wells).

13MPE tech in [19–21], is inspired by the Gappy POD approach proposed in [85] for recovering miss-
ing data from a static image, and has recently also been used for the inverse problems of (aerodynamic)
fluid flow reconstruction and sensing (including optimal sensor placement, i.e., how many sensors are
really necessary and where to place them such that the full field can be reconstructed accurately) in
[49, 292].
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This section proposes a different way of using solutions from previous time-
steps to obtain an improved initial guess for the current time-step solution. In
particular, a number of previous time-step solutions is combined in the POD
manner to deliver an orthonormal operator Φ which is then used to project both
the state and the equation onto. After solving the projected (and thus reduced-
order) system, the initial guess for the original system is computed by backpro-
jecting the reduced-order solution using Φ (thus just as we do in our common
projection based MOR). For instance, in an IMPES (incompressible) two-phase
flow formulation, wherein the pressure equation to solve at each time-step is a
linear algebraic system of the form M(Sw,k−1)po,k = bk−1, with Sw,k and bk−1

being the water saturation and the source term (wells and gravity) at the last
time-step, respectively, the ’extrapolation’ scheme thus per time-step: 1) solves
an SVD (or EVD) problem to determine, hopefully, persistent global (spatial) cor-
relations among the solution vectors of Nk previous time steps yielding14 an ℓk-
dimensional (ℓk ≤ Nk) POD-basis Φk, b) solves the ℓk-dimensional reduced-order
system ΦT

k M(Sw,k−1)Φkzk = ΦT
k bk−1, and c) projects the reduced-order solution

zk back to the original high-dimensional space to start the ’normal’ iteration, i.e.,

p
(0)
o,k := Φkzk. The solution of the reduced-order model can be interpreted as a

‘shadow’ running in parallel with the solution of high-order model. When the
simulation run starts there will, of course, be no previous time-step solutions. The
first N1 times-steps are therefore solved in the high-dimensional space in the usual
way.15 We stress hereby that the POD basis does not need to be determined by a
full SVD (or EVD) analysis when new solutions become available. It may instead
be approximately updated using fast algorithms (see, e.g., [117, 119, 189]). Only
occasionally, when the approximation gets deteriorated, a full analysis needs to
be performed again. If Nk is small to moderate (in our examples we used max. 15
previous time-step solutions) or the number of basis functions is known a priori
to be rather small, a full (iterative) analysis may be the preferable option.

It is important to note that, if the subsequently applied iterative process (Pre-
conditioned Conjugate Gradient (PCG) method in our M -symmetric case) is con-
sidered as an exact solution method, the initial guess obtained as suggested above
does not necessarily result in a reduced number of iteration steps. Advantageous
effects are expected to occur in approximative iteration process, when the process
is terminated once a prescribed accuracy in the decrease of the relative norms of

the residual vectors is achieved (here,
‖Mk−1p

(j)
0,k

−bk−1‖

‖Mk−1p
(0)
0,k

−bk−1‖
≤ ǫPCG). The convergence

process of Krylov iteration methods is to a large extent determined by the smallest

14Subscript ’k’ in Nk and ℓk emphasizes the fact that these numbers do not need to be fixed.
15The material in this section comes from [182]. A referee pointed us to the fact that this work

is, conceptually, strongly related to that in [67]. There, the projection basis is the orthonormal basis
(obtained, e.g., a Modified Gram-Schmidt process) of the Taylor-based extrapolated initial guesses
from [66]. Obtaining initial guesses based on Taylor-based approximations is computationally a low-
cost operation. No performance comparison has been made in this thesis between this method and our

method. In any case, it is always possible to take a linear combination x
(0) := αx

(0)
1 + (1 − α)x

(0)
2 of

two initial guesses x
(0)
1 and x

(0)
2 for solving Ax = b such that ‖r(0)‖ ≤ min(‖r

(0)
1 ‖, ‖r

(0)
2 ‖), where

r(0) := Ax − b (and r
(0)
1 and r

(0)
2 defined accordingly). The value of α minimizing ‖r(0)‖2 is easily

found to be given by α∗ = −
<r

(0)
2 ,r

(0)
1 −r

(0)
2 >

‖r
(0)
1 −r

(0)
2 ‖2

.
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eigenvalues of the system matrix (here Mk−1) and typically shows a three-stage
behavior. For an arbitrary initial guess, an iteration usually manages to ignore the
effect of these troublesome eigenvalues in the early stages. After a short initial pe-
riod of residual decrease, convergence slows down, as the iteration is then forced
to take these troublesome eigenvalues into account. After this period of stagna-
tion, the number of iterations shows a superlinear residual decrease. The most
benefit can thus be expected in a substantially decrease of the residual before this
period of superlinear convergence starts (i.e., in the stagnation period) or shortly
thereafter.

5.3.1 Model problems

The models chosen to asses the performance of the proposed method all represent
two-phase (oil-water) immiscible porous media flow, but differ in the number of
spatial dimensions, heterogeneity, rock-fluid properties, gravity effects, as well as
in the number and position of water injection and oil production wells.

Model equations: IMPES formulation

We consider implicit-pressure explicit-saturation (IMPES) scheme and investigated
the scope to accelerate the iterative solution of the pressure equation, which is by
far the most time-consuming part of any IMPES scheme. The equations describ-
ing the process are the equations of mass conservation for both phases α ∈ {w, o},
where w and o refer to water and oil respectively (Chapter 2),

∂ (φραSα)

∂t
+∇ · (ραuα) = ραq̃α , (5.3.1)

and the Darcy equations for both phases:

uα = −krα

µα

K (∇pα − ραg̃) , (5.3.2)

with the fluids satisfying the usual closure relationships:
∑

α=w,o

Sα = 1 and Pc :=

Pc (Sw) = po − pw. In all examples the capillary pressure Pc is assumed to be
negligible, so that pw ≈ po =: p. Moreover, the fluids are assumed to be either
incompressible or slightly compressible, while the rock is considered incompress-
ible. In the incompressible case, equations (5.3.1)–(5.3.2) can be rewritten as the
following system of pressure-saturation equations:

• Pressure equation:

∇ · uT ≡ −
∑

α=w,o

∇ · λ̃αK (∇p− ραg̃) = q̃T . (5.3.3)
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• Saturation equation:

φ
∂Sw

∂t
= = −∇ · uw + q̃w. (5.3.4)

Here, uT := uw + uo is the total velocity, λ̃α = krα/µα is the phase mobility,
and q̃T := q̃w + q̃o is the total well flow rate. The relative permeability krα in

equation (5.3.2) and therefore also the mobility λ̃α in equation (5.3.3) are nonlin-
ear functions of Sw, while the water velocity uw in equation (5.3.3) depends on
the pressure according to equation (5.3.2). Equations (5.3.3) and (5.3.4) therefore
form a coupled system of nonlinear equations, but can, under the assumptions
made, individually be considered as linear equations with time-varying coeffi-
cients. Numerically, the reservoirs are represented using block-centered Cartesian
grids, with the continuous spatial domain uniformly discretized into n cells of di-
mensions ∆x, ∆y and ∆z in x, y and z direction respectively. At each time step,
using a 5-point stencil in two dimensions (2D) and a 7-point stencil in 3D, the pres-
sure pi of each grid block i = 1, ..., n is deduced from the linear matrix system:

Tp = q + g, (5.3.5)

where T and g are respectively the (symmetric) inter-block transmissibility matrix
and the inter-block gravity transmissibility vector, q is the vector containing the
well contributions, and the n-dimensional vector p contains the unknown grid-
block pressures. The water saturation Sw is then updated in each grid block with
an explicit scheme using equation (5.3.4), with the velocity field deduced from
the calculated pressure solution using equation (5.3.2) and the water velocity uw

determined from the total velocity using:

uw = fw

[
uT + Kλ̃o (ρw − ρg) g̃

]
, (5.3.6)

where fw := λ̃w

/(
λ̃w + λ̃o

)
is the water fractional flow. Saturations are updated

based on the orientation of the water velocity, with time steps constrained by
Courant-Friedrichs-Levy conditions to ensure stability. Saturation-dependent pa-
rameters are averaged using a conventional upstream weighting [25].

The most time-consuming part of the simulation is clearly obtaining the pres-
sure solution p. The pressure equation (5.3.5) was therefore the model against
which the simulation results were measured. The performance of the initial guess
obtained by the algorithm described above, which was defined to be the average
simulation runtime for each of the three simulation models, was compared with
the performance of the initial guess being the last time-step solution.

Remark 5.3.1. (Nonlinear pressure case.) When the fluids and the reservoir rock are
assumed to be slightly compressible, the pressure equation takes the following
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form:

−
∑

α=w,o

1

ρα

∇ ·
[
λ̃αραK (∇p− ραg̃)

]
= φ [co + cϕ + (cw − co)Sw]

∂p

∂t
+ q̃T .

(5.3.7)

The spatially and temporary discretized pressure equation in the IMPES formula-
tion is then

(Tk+1 −Dk)pk+1 = −Dkpk + qk, (5.3.8)

where k denotes the index of the current simulation time tk, matrix Tk+1 is again a
transmissibility matrix containing discretized left-hand-side flux terms from equa-
tion (5.3.7) and evaluated at time tk+1 = tk + ∆tk, while the ‘current-time’ diag-
onal matrix Dk consists of elements (φi/∆tk) [co + cϕ + (cw − co)Sw]

i
, with i de-

noting the grid-block index. Because the transmissibilities now depend also on
pressure at tk+1, the pressure equation (5.3.8) is non-linear, and requires an itera-
tive treatment on its own, which is usually performed with linearization schemes
as the successive-approximation method or the more advanced Newton-Raphson
method. This case has not been treated in this thesis, but we expect that an ac-
celeration algorithm for these methods could, for this model, consist of perform-
ing, at each time-step k, a few successive-approximation steps r = 0, 1, . . . , re-

stricted to the Φk-subspace: ΦT
k [T(p

(0)
k+1,r) − Dk]Φkzr+1 = ΦT

k (DkΦkzr + qk),

p
(0)
k+1,r+1 = Φkzr+1, whereby the iteration is started for r = 0 using the last time-

step solution, i.e., p
(0)
k+1,0 = pk. For another, more general framework for the use

of POD to compute a better initial guess for a Newton iterative method, the reader
is referred to [264, 265]. 16

5.3.2 Test cases

Numerical tests were performed on three different reservoir models, with a broad
range of permeability fields as shown in Figure 5.4 below. The first model (Model
A) was taken from [24], and the second one (Model B) was taken from [47]. The
third model (Model C) was also taken from [24] and is an upscaled version of a
widely-used test model described in [65]. The relative permeability model used
in all the test cases is the conventional Corey-type relation:

kro = k0
ro (1− S∗

w)no , krw = k0
rw (S∗

w)nw , (5.3.9)

where the variable S∗
w is a normalized water saturation defined as

S∗
w =

Sw − Swc

1− Sor − Swc

, 0 ≤ S∗
w ≤ 1 , (5.3.10)

16Interestingly enough, these contributions and our work [182] were published around the same
time.
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no and nw are the Corey exponents, Sor is the residual oil saturation, Swc is the
connate (irreducible) water saturation and k0

ro and k0
rw are the end-point satu-

rations. Initial conditions were taken as static equilibrium for the pressures and
connate water saturation for the saturations. A short description of the main prop-
erties specific to each of the models follows.

Model A:

This model (Figure 5.4A) corresponds to a 2D case with a fine mesh composed of
30 by 30 cells. The porosity is constant and equal to 0.25, whereas the permeability
field is a binary distribution of high (100 mDarcy, in white) and low (1 mDarcy,
in black) values (1 mDarcy = 9.87 × 10−16 m2). At one corner of the grid, water
is injected at a constant rate of 5 m3/day, and at the opposite corner fluids are
produced at a constant pressure equal to 7.6 MPa. The grid-block dimensions are
10 × 10 × 1 m. The Corey-data are: k0

ro = 1.0, k0
rw = 0.4, Sor = Swc = 0.2, nw=1.5,

and no=2.0. The viscosities are µo = 0.8× 10−3 Pa · s and µw = 1.0× 10−3 Pa · s.

Model B:

This model (Figure 5.4B) is a 2D model with 2025 (45×45) uniform grid blocks.
The grid-block dimensions are 10 × 10 × 10 m. The left-hand side of the reservoir
is equipped with a row of 45 water injection wells, one in each grid block. At the
right-hand side, 45 production wells are located. The injection side is operated
at a total water flow-rate of 242 m3/day, while the producers are operated under
constant pressure of 27.5 MPa. The porosity is constant and equal to 0.2. The
Corey-data are: k0

ro = k0
rw = 1.0, Sor = Swc = 0.1, and no = nw = 1.0. The

viscosities are taken to be equal, µo = µw=1.0 × 10-3 Pa · s. These data lead to
straight-line relative permeabilities and a unit mobility ratio. In order to simulate
a more non-linear waterflood situation, also quadratic relperms were used, i.e.
no = nw = 2.0.

Model C:

Model C (Figure 5.4C) is a 3D model containing 93,500 cells (20 × 55 × 85). Each
cell is a 6.096 × 3.048 × 0.6096 m Cartesian gridblock. Water is injected at a con-
stant rate of 795 m3/day in a vertical injector placed in the middle of the reser-
voir, while four vertical producers at the corners are operated at a constant pres-
sure at the top of the reservoir of 27.5 MPa. The wells are connected to the grid
blocks over the entire height of the reservoir. The Corey-data in this case are:
k0

ro = k0
rw = 1.0, Sor = Swc = 0.2, and no = nw = 2.0. The viscosities are

µo = 3.0 × 10−3 Pa · s and µw = 0.3 × 10−3. Since in this model gravity ef-
fects are included, the fluid densities are also important. These are taken to be
ρo = 850 kg/m3 and ρw = 1000 kg/m3.
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In all examples the total injection rate was controlled. In case of more than one
injection well, this flow rate is distributed among the wells in proportion to the to-
tal fluid mobilities in the corresponding grid blocks. Therefore, strictly speaking,
as long as the fluid mobility in the injection segments changes, so do the injection
rates. However, in the following we will use the term ‘varying injection rates’ only
to indicate varying total injection flow rates. These total flow rate variations are
such that the individual well injection rates change much more abrupt than in the
case of constant surface rates.
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Figure 5.4: Permeability fields for the three test cases used in the study. Model A
(horizontal, 30 x 30); Model B (horizontal, 45x45); Model C (3D, 20x55x85)

5.3.3 Results

The performance of our proposed method, in the sequel referred to as the ‘new
method’, was assessed by comparing its results to those obtained with the solu-
tion of the preceding time step as the initial guess, in the sequel referred to as
the ‘normal method’. Because the transmissibility matrix T in equation (5.3.5)
is symmetric positive-definite, natural candidates to solve equation (5.3.5) were
conjugate-gradient-based Krylov subspace methods. Other methods tested were
the minimal residual Krylov method and the fixed-point successive overrelax-
ation scheme. We will only discuss the results for the preconditioned conjugent
gradient (PCG) cases because these are the most relevant for large-scale prob-
lems. All comparisons were made using Matlab 7 on a Pentium IV machine with
1 Gb RAM. In almost all IMPES simulations the new method performed better
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than the normal method. The latter yielded slightly faster solutions when the
total fluid mobility λT = λo + λw and the total volumetric well rates were inde-
pendent of the saturation distribution, or for a strong tolerance bound, i.e. when
the stopping criterion of the iterative method was given a low value (≤ 10−4,
say). Saturation-independent total mobility occurs for a unit end-point mobil-
ity ratio (k0

ro

/
µo = k0

rw

/
µw) accompanied by straight-line relative permeabilities

(no = nw = 1). In that case the transmissibility matrix T in equation (5.3.5) does
not change during the simulation and has thus to be computed only once. When
at the same time also the volumetric well rates are kept constant, the pressure
distribution is constant during the simulation. The preceding time step solution
being equal to the ‘sought’ solution makes the use of any solver of course super-
fluous, so these special cases can not be used as benchmarks. Furthermore, partic-
ular combinations of permeability field, well configuration and injection strategy
were influential as well. For instance, in Model B the row of 45 injectors and the
opposite-side row of 45 producers together maintained a near-steady-state pres-
sure field when the injection rate was constant, thus causing the number of iter-
ations also in the normal method to be very low. In all other cases, in particular
when flow-rates are varied over time, the saturation-dependent parameters and
the pressure distribution must be updated frequently, and in these situations the
new method often substantially accelerated the convergence of the iterative algo-
rithms. A large gain in performance was observed in situations of: 1) no precondi-
tioning of linear algebraic systems, 2) strong dependence of transmissibilities on
saturation distribution (i.e. strongly nonlinear relative permeabilities), 3) strong
heterogeneity, and 4) changing operating conditions (injection rates).

Figure 5.1 shows the results for the PCG method with a point incomplete
Cholesky factorization as the preconditioner determined every 15th time step, the
‘optimal’ drop tolerance being found to be 10−3. Other preconditioned conjugate-
gradient type iterative methods (bi-conjugate-gradient with point incomplete LU
preconditioning, etc.) yielded similar behavior. We tested model A using steady-
state and rapidly fluctuating random inputs (tests 1 and 2), and we tested three
versions of model C: two truncated versions, C1 and C2, with 22,000 and 55,000
grid blocks respectively, and the full version, C3, with 93,500 grid blocks. The
truncated models were reduced in height, and the injection rates were reduced
proportionally. All versions of model C were tested with steady-state flow rates
(tests 3−5) and with randomly fluctuating rates (tests 6−8). In case of steady–state
rates, the sum of the injection rates was taken equal to the sum of the production
rates, whereas in the case of random rates the averages of injection and produc-
tion rates where equal. While the difference in simulation time was very much
in favor of the new method for all cases, the largest improvement was obtained
when the rates were fluctuating.

Figure 5.5 displays the typical behavior of the iteration process, expressed as
the number of iterations per time step, for the new and the normal methods. This
figure corresponds to test 5 in Table 5.1 (model C3, fixed injection rates) with a
PCG tolerance of 10−5. It required 2270 s to simulate over 300 time steps, of which
191 s (8.4 %) were required to compute the POD basis functions and another 76
s (3.3 %) to solve the reduced system of equations. This computational overhead
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is more than offset by the decrease in the total number of iterations which, in this
test case, resulted in a total reduction in the simulation time of 36%. In this par-
ticular case we used maximally 15 basis functions to represent the 93,500 pressure
variables.

POD-based Normal
Model

Test No. of Simulation No. of Simulation No. of Improvement
no. steps Tolerance time (s) iterations time (s) iterations in time (%)

1 A 1.0E-05 18 (2 for PCG) 342 18 (4 for PCG) 1527 0
1000 1.0E-06 19 (3 for PCG) 565 23 (9 for PCG) 4172 17

1.0E-07 20 (5 for PCG) 850 26 (12 for PCG) 6244 23
1.0E-08 21 (6 for PCG) 1153 28 (14 for PCG) 7648 25

2 A, random 1.0E-05 18 (2 for PCG) 270 29 (16 for PCG) 7314 38
1000 1.0E-06 19 (2 for PCG) 417 30 (17 for PCG) 8274 37

1.0E-07 20 (3 for PCG) 658 31 (18 for PCG) 9441 35
1.0E-08 22 (4 for PCG) 1080 32 (19 for PCG) 10241 31

3 C1 1.0E-05 480 (132 for PCG) 1414 935 (612 for PCG) 7772 49
300 1.0E-06 587 (248 for PCG) 3025 1066 (777 for PCG) 9958 45

1.0E-07 750 (410 for PCG) 4895 1208 (919 for PCG) 11414 38

4 C2 1.0E-05 1720 (752 for PCG) 3595 3560 (2829 for PCG) 14036 52
300 1.0E-06 2500 (1618 for PCG) 8007 4510 (3773 for PCG) 18649 45

5 C3 1.0E-05 2770 (1228 for PCG) 3308 4360 (3090 for PCG) 8775 36
300 1.0E-06 4350 (2685 for PCG) 7614 7800 (6560 for PCG) 19089 44

6 C1, random 1.0E-05 475 (132 for PCG) 1455 1120 (815 for PCG) 10404 58
300 1.0E-06 251 (590 for PCG) 3010 1195 (909 for PCG) 11521 51

1.0E-07 710 (372 for PCG) 4638 1273 (989 for PCG) 12702 44

7 C2,random 1.0E-05 1860 (908 for PCG) 4328 5020 (4300 for PCG) 21286 63
300 1.0E-06 2680 (1670 for PCG) 8366 5400 (4690 for PCG) 23649 50

8 C3,random 1.0E-05 3220 (1617 for PCG) 4355 9850 (8400 for PCG) 24139 67
300 1.0E-06 4830 (3180 for PCG) 8695 10800(9450 for PCG) 26741 55

Table 5.1: Results from using the new (POD-based) method and the normal method, using

PCG with preconditioning at every 15th time step with incomplete Cholesky factorization

(tolerance = 10−3). The simulation time is the total simulation time for all time steps; the time

between brackets refers to the net time used by the iterative solver. The number of iterations is

the total number of iterations for all time steps. Models C1 and C2 refer to truncated versions

of model C with 20x55x20 and 20x55x50 grid blocks respectively. Model C3 refers to the full

version of model C with 20x55x85 grid blocks.[182]

Figure 5.6 displays the number of iterations versus the norm of the residual
for the normal and the new methods, for some typical time steps. The figure
illustrates that as of the third time step the new method indeed results in improved
convergence. Moreover, both in the normal and the new case one can observe the
three typical phases during the convergence of Krylov iteration methods: after
a short initial period of residual decrease convergence slows down, to start to
decrease superlinearly at some point later.
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Figure 5.5: Number of iterations per time step for the normal method and the new,
POD-based, method applied to model C3. Iterative solver: PCG (tolerance 10−5

with preconditioning using incomplete Choleski factorization (tolerance 10−3) ev-
ery 15th timestep.

Figure 5.7 displays the results for the three versions of model C, using steady-
state and randomly fluctuating injection rates (source terms), and two different
tolerances for the PCG solver. It clearly illustrates that the improvement in com-
putational performance are larger for fluctuating rates than for steady-state rates.
The transient pressure fluctuations are apparently effectively captured by the low-
order representation.

5.3.4 Conclusions

The proposed POD-based acceleration method for iterative solvers resulted in im-
proved computational efficiency in almost all cases considered. Exceptions were
pathological cases with steady-state inputs and near-time invariant parameters,
which display near-constant behavior. Reductions in computing time up 67%
were observed for test problems where preconditioning was used. The best result
was achieved in the largest test problem which involved two-phase (oil-water)
porous-media flow through a 3D reservoir, simulated with a 93,500 grid block fi-
nite difference model. Improvements in computational efficiency were observed
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Figure 5.6: Number of iterations versus the 10-log norm of the residual for the first
10 time steps in test 7 (Model C2 with randomly fluctuating injection and produc-
tion rates).

for different iterative solvers, including preconditioned conjugate gradient (PCG),
minimal residual (MinRes), and successive overrelaxation (SOR) methods. The
method seems to be particularly attractive for problems with time-varying pa-
rameters or time-varying source terms, and could, in theory, also be applied to
accelerate the solution of nonlinear systems of equations using Newton-Raphson
iteration. Further work is required to assess the efficiency of the method for such
an application. Initial steps have been undertaken in [265].

5.4 Summary and conclusions of the chapter

Chapter 3 (Sec. 3.3) summarized a majority of the projection-based methods that
can be found in the literature for addressing the problem of order reduction of
large nonlinear models. In this thesis, because of the complexity and potentially
very large size of multi-phase reservoir models, it was decided to employ data-
driven projection subspaces for MOR of two-phase (waterflood) models. In these
methods, the basis functions are determined by processing data obtained from
numerical simulations of the underlying high-dimensional model. In particular,
the applicability and performance of strategies based on the Proper Orthogonal De-
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Figure 5.7: Reduction in simulation time for different (truncated) versions of model
C (C1, C2 and C3 with 22000, 55000 and 93500 grid blocks respectively), different
injection rates (constant or random) and different tolerances of the PCG solver (10−5

and 10−6).

composition (POD) methodology have been assessed. A POD basis of a data set
is orthonormal and it is optimal in that it guarantees the best reconstruction, in
the mean square error sense, of the elements of the set among all (linear) bases of
the same size. The basis functions can be determined either by a SVD analysis of
the collected data or by an eigenvalue analysis of the data correlation matrix (or
the covariance matrix if the mean of the data set is subtracted from the individual
data prior to the analysis).

The state-vector in two-phase systems in this thesis consists of the grid-block
oil-pressures p0 and water saturations Sw. Because of the fact that POD tends
to favorize variables which numerical values show greater variability, in the ap-
plications of POD in this thesis optimal bases for the two different groups, pres-
sures and saturations, are obtained separately: instead of solving one eigenvalue
(or SVD) problem to obtain a single (dense) data matrix, two separate eigen-
value (SVD) problems are solved (one for Xp := [po,1, . . . ,po,N ] and one for
XS := [Sw,1, . . . ,Sw,N ]), yielding two separate projection matrices, Φp and ΦS ,
for pressures and saturations, respectively. The ’total’ projection matrix is formed

as Φ :=

[
Φp 0

0 ΦS

]
. This allows for choosing a different degree of reduction for

the pressures and the saturations.

Being data-driven, POD bases depend on the input signals the state-snapshots
are generated with. Regarding the quality of the approximation, numerical exper-
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iments in this research and elsewhere indicate that:

• a given flow scenario can be reproduced accurately if enough snapshots
have been used and ’enough energy’ has been captured in the POD modes.

• the POD approach is quite robust against non-training input signals if the
snapshots are generated by exciting the system by manipulating the injec-
tion and/or production profiles (i.e., flow-rates and/or bottom-hole pres-
sures) consistent with the expected range of operating conditions.

• an adequate approximation of the high-dimensional behavior generally re-
quires (much) less POD basis functions for pressures than for saturations,
which was attributed to the traveling nature of the saturation front and the
time-averaging property of the (standard) POD approach.

The overall computational cost of a POD approach consists of two main parts:
a) preprocessing cost of generating ’representative’ snapshots spanning a large
portion of operating conditions of interest and, subsequently, determining the
POD basis, and b) the cost of solving the reduced-order model. As for the for-
mer, if either the number of pre-processing runs is large or the time-steps in (any
of) the runs were small, the POD analysis on the complete data set may be compu-
tationally too demanding (data matrices are dense in general). To reduce this cost
one may decide to base the POD analysis (i.e. solving a SVD or an EVD problem)
on: 1) ’dynamically relevant’ snapshots (not trivial at all), 2) ’clustered’ snapshots,
and 3) ’low-rank’ matrix decomposition (SVD or EVD) update algorithms. Re-
garding the cost of solving the reduced-order model, despite a generally drastic
reduction in the size of the model, there is no guarantee that the simulation of the
reduced-order model will actually be faster than the simulation of the high-order
model (and if there is a gain, it is rarely spectacular), which is due to that fact that
at each time-step state-dependent coefficient matrices and their products needs to
be evaluated. The issue is even more manifested in a fully time-implicit scheme
using the Newton-Raphson solving procedure, where the coefficients and the ma-
trix product are evaluated at each inner-loop iteration. The computational cost of
forming the matrix products could potentially be reduced by not computing the
POD basis coefficients in the usual POD manner, but rather estimating these from
a partial set of the original data at a selected number of points in the spatial do-
main. Naturally, the computational gain may be expected to be bigger the smaller
this number is, though at the cost of a decreased performance.

Running fine-scale simulations in order to determine a (robust) POD basis may
be very time-consuming due to the necessity to employ an iterative solving pro-
cedure to propagate the solution in time. A good initial guess of the solution is
therefore of paramount importance. As the dynamic reservoir flow problems are
evolution problems, the initial guess is usually taken to be equal to the last time-
step solution. Section 5.3 has proposed an algorithm for determining an improved
initial solution guess by using solutions from previous time-steps. In particular, a
number of previous time-step solutions is combined in the POD manner to deliver
an orthonormal operator Φ which is then used to project both the state and the
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equation onto. After solving the projected (and thus reduced-order) system, the
initial guess for the original system is computed by backprojecting the reduced-
order solution using Φ. The solution of the reduced-order model can be inter-
preted as a ‘shadow’ running in parallel with the solution of the high-order model.
When the simulation run starts there will, of course, be no previous time-step so-
lutions. First few times-steps are therefore solved in the high-dimensional space
in the usual way. When applied to two-phase (incompressible) two-phase flow in
an IMPES formulation (Chapter 2), the proposed POD-based acceleration method
for iterative solvers resulted in improved computational efficiency in almost all
cases considered. Exceptions were pathological cases with steady-state inputs and
near-time invariant parameters, which display near-constant behavior. The high-
est reduction in computing time (67%) was achieved in the largest test problem
which involved two-phase (oil-water) porous-media flow through a 3D reservoir.
The method seems to be particularly attractive for problems with time-varying
parameters or time-varying source terms, and could, in theory, also be applied to
accelerate the solution of nonlinear systems of equations using Newton-Raphson
iteration. Further work is required to assess the efficiency of the method for such
an application.

Finally, an important system-theoretical connection of POD and the method of
balanced truncation (BTR, Chapter 4) has been shown in Subsection 5.1.3. Essen-
tially, when applied to LTI systems, POD modes for state impulse-responses are
the dominant eigenvectors of the controllability Gramian, or, in other words, the
most controllable modes of the particular state-space realization (a change in the
state-space basis changes the controllability properties of the model). Connection
between POD and the observability of the system can be illustrated by considering
its ’dual’ (or ’adjoint’) system.



6 CHAPTER

Waterflood Optimization Using
Reduced-Order Bases

In this chapter, which is a shorter and slightly adapted version of [272], (POD-
based) reduced-order models are employed to accelerate ’lifecycle’ optimization
of waterflooding processes by dynamically controlling flowrates in (smart) wells.1

The to-be-accelerated solution is based on optimal control and the adjoint equa-
tions method as developed in [46]. Optimal controls are determined iteratively
by performing several forward simulations of the reservoir model and backward
simulations of the corresponding adjoint system of equations. Section 6.1 pro-
vides an in-a-nutshell mathematical formulation of the optimization problem and
the specific method employed to solve it. Subsection 6.1.1 describes the consid-
ered constrained optimization problem and reformulates it as a unconstrained op-
timization problem using the classical method of Lagrange multipliers. The mod-
ified optimization problem is solved by a steepest-ascend gradient method, with
the gradients of the objective function w.r.t. the controls determined using optimal
control theory (OCT) and the adjoint equations method. The elementary steps in
the derivation of the full-order and the reduced-order adjoint systems are given in
Subsections 6.1.2 and 6.1.3, respectively. In order to decrease the time needed to
calculate optimized controls, a nested-loops iterative scheme is presented in Sec-
tion 6.2, where the inner loop makes use of a truncated basis of POD functions to
calculate optimized injection and production rates. In Section 6.3, the methodol-
ogy is applied to a 2-dimensional, 2-phase reservoir model and compared to the
full-order optimal control of [46]. The algorithm was designed and the simulation
performed in the MSc thesis [271]. Section 6.4 concludes the chapter.

1The problem to solve in this chapter is ’uncertainty-free’, meaning that the subsurface reservoir
parameters and parameters that influence fluid flow (krα(Sw) and Pc(Sw) relationships) are exact
and the optimization is based on a single reservoir model. As no model updating takes place here,
we refer to such optimization as ’open-loop’. For ’robust reservoir optimization’, i.e., optimization in
presence of uncertainties in reservoir models, see e.g. [144, 302].

125
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6.1 The optimization problem and its solution in a

nutshell

Lifecycle waterflood optimization generally aims at maximizing, over a time inter-
val [0, T ], the ultimate oil recovery, in which case the quantity to maximize can be

expressed in terms of water saturation at the final time T as
∑Ngridblocks

j=1 (Sw(T ))j ,
or at maximizing a net-present value (NPV), i.e. the sum of the incremental dis-
counted oil production income and water injection and production costs over the
life of the reservoir. In this study separate water injection costs were not consid-
ered and the NPV objective function was:

J =

N−1∑

k=0

∑Nprod

j=1

[
−ro(q

∗
o)j

k − rw(q∗w)j
k

]

(1 + b)τk
∆tk (6.1.1)

=

N−1∑

k=0

Jk, (6.1.2)

where (q∗o)j ≤ 0 and (q∗w)j ≤ 0 are the production rates (at surface conditions)

[m3

s
] in wells j = 1, . . . , Nprod, ro > 0 and rw < 0 are the oil price [ $

m3 ] and the

water cost [ $
m3 ], respectively, tk and ∆tk = tk+1 − tk are the time and the time-

step length corresponding to time step k = 1, . . . , N . The term in the denominator
is a discount factor representing the time-value of money (e.g., interesting rate,

where b is the discount rate (cost of capital) per year [-] and τk =
∑k

1 tk is the time
expressed in years at time step k.

6.1.1 The optimization problem

In what follows it is more convenient to consider J as an abstract function of its
arguments, which here are the state of the system, xk=0:N−1 (here grid-block pres-
sures po and saturations Sw; these appear in J implicitly through the production
flow rates q∗o and q∗w being functions of fluid mobilities), and the well control pa-
rameters uk=0:N−1 with respect to which J is to be optimized. In the applications
in this chapter no well model was used and the controls u comprised well flow
rates (Section 6.3). For a discussion of other possible types of control parameters
and constraints on the controls, see [46].

Let us thus consider (the ’fixed terminal time, free terminal states’ problem of
maximizing):

J(u0:N−1,x0:N−1) =

N−1∑

k=0

Jk(uk,xk) subject to gk+1(uk,xk,xk+1) ≡ 0 (∀k),

(6.1.3)
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where, in the numerical examples in this chapter:

gk+1(uk,xk,xk+1) = (I + ∆tkAk)xk+1 − xk −∆tkBkuk, (6.1.4)

which is a quasi-implicit time-discretized approximation of the reservoir PDEs
(see Chapter 2). The initial state-conditions x0 (i.e., initial oil pressures and water
saturations) are specified, whereas the final state xN is free.

The ’equality’ model constraints g = 0 are dealt with by the aid of the classical
method of Lagrange multipliers for solving equality constrained problems [176]. The
modified objective function (Lagrangian function) is:

J̄(u0:N−1,x0:N , λ1:N ) :=

N−1∑

k=0

[
Jk(uk,xk) + λ

T
k+1gk+1(uk,xk,xk+1)

]

=

N−1∑

k=0

J̄k(uk,xk,xk+1, λk+1). (6.1.5)

A gradient-based iterative scheme: the steepest-ascend algorithm

Optimization problems are commonly solved by gradient-based approaches: once
the gradients have been obtained, a wide variety of gradient-based techniques is
available to iterate to a (locally) optimal solution. At each iteration a gradient
is needed to determine the search direction. In this study the cheap and simple
steepest-ascend iteration scheme is employed, where the search direction is (pos-
itive direction of) the gradient of the (local) Lagrangian function:

u
(j+1)
k = u

(j)
k + ǫ

∂J̄k

∂uk

, (6.1.6)

with k = 0, . . . , N − 1 (i.e., in each iteration an estimation of the full control tra-
jectory is determined, rather than a single value). As the steepest-ascent scheme
performed satisfactory in our examples, with an optimum typically being found
in 5-10 iterations, more advanced iteration schemes as, e.g., conjugate-gradient
methods or quasi-Newton methods were not considered.

6.1.2 Obtaining the required gradients using optimal control and
the adjoint method

Various methods for gradient computation have been developed, including nu-
merical perturbation (finite-difference approximation), sensitivity equation and
adjoint method. Among these, the easiest to implement is the numerical perturba-
tion method (finite difference approximation). However, the computation involved
is proportional to the number of unknown parameters. In our application the
unknown parameters are controls of wells (or smart-well segments) and the to-
tal number of control variables equals the product of the number of wells (or
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well segments) and the number of points in time at which the control variables
are changed. For this reason, the numerical perturbation method is generally too
expensive for our purposes. The required gradients are in this study computed
by the adjoint method, since the gradient computation in this method is rather in-
sensitive to the number of unknowns. An adjoint system typically follows from
necessary conditions for optimality of the to-be-optimized function, here the La-
grangian J̄ defined in (6.1.5):

J̄(u0:N−1,x0:N , λ1:N ) =

N−1∑

k=0

[
Jk(uk,xk) + λ

T
k+1gk+1(uk,xk,xk+1)

]

=

N−1∑

k=0

J̄k(uk,xk,xk+1, λk+1). (6.1.7)

The partial derivatives of J̄ w.r.t. to its arguments are easily found to be given by:

[
∂J̄
∂ui

]N−1

i=0
=

∂Ji(ui,xi)

∂ui

+ λT
i+1

∂gi+1(ui,xi,xi+1)

∂ui

, (6.1.8)

[
∂J̄
∂xi

]N−1

i=0
=

∂Ji(ui,xi)

∂xi

+

i+1∑

k=i

λT
k

∂gk(uk−1,xk−1,xk)

∂xi

, (6.1.9)

∂J̄

∂xN

= λT
N

∂gN

∂xN

, (6.1.10)

[
∂J̄
∂λi

]N

i=1
= gi(ui−1,xi−1,xi) ≡ 0. (6.1.11)

(N.B. It is stressed that (6.1.11) is a consequence of the model constraints ’only
theoretically’. Numerically, the condition gi(ui−1,xi−1,xi) = 0 must be ’ensured’
by solving the forward system as accurate as possible - otherwise the equivalence
between the original and the modified optimization problems is lost.)

The first order variation δJ̄(u0:N−1,x0:N , λ1:N ) =
∑N−1

i=0
∂J̄
∂ui

δui +
∑N

i=0
∂J̄
∂xi

δxi +
∑N

i=1
∂J̄
∂λi

δλi is then given by (using δx0 = 0):

δJ̄ =
N−1∑

i=0

(
∂Ji

∂ui

+λT
i+1

∂gi+1

∂ui

)δui +
N−1∑

i=1

(
∂Ji

∂xi

+λT
i

∂gi

∂xi

+λT
i+1

∂gi+1

∂xi

)δxi +λT
N

∂gN

∂xN

.

(6.1.12)
For an optimal control within its admissible set2, (sufficiently smooth) δJ̄ is nec-
essarily zero, which can be ’achieved’ by 1) ’choosing’ λN to be in the null-space

of ( ∂gN

∂xN
)T (i.e., to satisfy the ’terminal condition’ λT

N
∂gN

∂xN
= 0T ) and 2) zeroing

all the individual elements in the summations, or equivalently (since δu0:N−1 and
δx1:N−1 are free), by setting all the partial derivatives in (6.1.8 − 6.1.10) to zero.

2When the control is on the constraint boundary of the admissible set, then the necessary condition
for a maximum is δJ ≤ 0.
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Then, using the fact that the final state xN in λT
N

∂gN

∂xN
= 0T is free, thus implying

λN = 0, the following (full-order) adjoint algorithm is obtained:

1. Let x0 be given. CHOOSE an initial control trajectory u
(0)
0:N−1. FOR j =

0, 1, . . . DO:

2. DETERMINE the corresponding state-trajectory x
(j)
1:N by satisfying (6.1.11) for

i = 1, . . . , N−1 (i.e., by solving the forward model) as accurately as possible.
Evaluate the objective function.

3. USING λ
(j)
N = 0 DETERMINE, as accurately as possible, the adjoint trajectory

λ
(j)
1:N by solving backwards the adjoint system:

λ
(j)T
i

∂gi

∂xi

= −λ
(j)T
i+1

∂gi+1

∂xi

− ∂Ji

∂xi

. (6.1.13)

4. FOR i = 0, . . . , N − 1 COMPUTE the gradient J̄i from (6.1.8) as

∂J̄i

∂ui

=
∂Ji(u

(j)
i ,x

(j)
i )

∂ui

+ λ
(j)T
i+1

∂gi+1(u
(j)
i ,x

(j)
i ,x

(j)
i+1)

∂ui

(6.1.14)

and use it in the steepest-ascend algorithm (6.1.6) to compute an improved

control trajectory u
(j+1)
0:N−1.

5. REPEAT steps 2-4 until no further improvement can be found (note that, in

an (exact) optimum, ∂J̄i

∂uk
= 0T ).

6.1.3 Reduced-order optimal control and adjoint

For the reduced-order adjoint implementation, instead of the full-order model we
add a POD-based reduced-order model as the model constraint to the objective
function J . That is, if Φ is a ℓ-dimensional POD-based reduced-order basis the
original n-dimensional system g is projected onto, then, using a set of low-order
Lagrange multipliers µ the following ’reduced’ modified objective function is de-
fined:

J̄red(u0:N−1, z0:N−1, µ1:N ) =

N−1∑

k=0

[
Jk(uk,Φzk) + µT

k+1Φ
T gk+1(uk,Φzk,Φzk+1)

]

(6.1.15)

Taking the first order variation ˜̄Jred, and reworking the results, we obtain a reduced-
order equation in terms of reduced-order Lagrange multipliers:

µT
k

(
ΦT ∂gk−1

∂xk
Φ

)

︸ ︷︷ ︸
ℓ×ℓ

= −µT
k+1

(
ΦT ∂gk

∂xk
Φ

)

︸ ︷︷ ︸
ℓ×ℓ

− ∂Jk

∂xk

Φ

︸ ︷︷ ︸
1×ℓ

, (6.1.16)
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Starting from the final condition µT
N = 0, the reduced-order adjoint system (6.1.16)

can be integrated backward in time. Because the derivatives in (6.1.16) consist of
state-dependent parameters we first calculate the full-order derivatives. They are
then transformed and reduced by projecting them on the axes of the low-order
model. After calculating µ every time step we can calculate:

∂J̄k,red

∂uk

=
∂Jk

∂uk

+ µT
k+1

(
ΦT ∂gk+1

∂ui

)
. (6.1.17)

Improved controls using the steepest ascend update (6.1.6): u
(j+1)
i = u

(j)
i +ǫ

∂J̄kred

∂ui
.

The computational advantage of using reduced-order models in OCT is that the
system of equations involves ℓ unknowns, whereas the original system involved
n unknowns. This decreases the simulation time considerably, especially for large
systems where ℓ << n. The gain is limited by the necessity of determining the
high-order Jacobian matrices (although, in an implicit forward model formula-
tion, these are readily available from the forward simulation) and forming the ma-

trices ΦT ∂gk−1

∂xk
Φ and ΦT ∂gk

∂xk
Φ. The cost of forming these products could possibly

be reduced by exploiting the idea of missing point estimation (MPE) as explained
in Chapter 5.

For fully-implicit simulation where more than one systems of equations have to
be solved during every time step the decrease in simulation time is expected to be
even higher (principally because of the absence of the necessity of matrix precon-
ditioning in the reduced-order case).

When we simulated reduced-order reservoir models with the same controls as
the original full-order models we obtained almost identical states, as long as a
sufficient fraction of the relative energy of the full-order model was preserved.
However, if we strongly altered the controls, and therefore the structures of the
states, the states of the full-order model were less well represented by the reduced-
order model. This is in line with the findings of other authors [219]. Because
it is not possible to specify a priori the validity of a reduced-order model, we
will use a nested approach in the development of the optimization methodology
below, such that the reduced-order results are frequently validated by the full-
order model.

6.2 Methodology: a nested-loop iterative scheme

We employ a methodology using nested loops, where the inner iterative loop
makes use of a truncated basis of POD functions to calculate optimized injec-
tion and production rates. After convergence in this loop the original, high-order
model is simulated in the outer loop with the optimized rates and subsequently
the POD basis is adapted. This new basis is used in the next inner loop to calculate
new optimized injection and production rates. This is depicted schematically in
Figure 6.1.
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More specifically, to generate a reduced-order model with POD we first sim-
ulate the dynamical behavior of the system over time interval 0 to N with an
initial choice of u and compute the NPV. Following reference [18, 258], the initial
choice of u reflects a flooding strategy with conventional horizontal wells with
constant pressure along the well bores. Every time step we record and store a to-
tal of κ snapshots of pressures and saturations and calculate POD transformation
matrices Φ. Now instead of using the full-order derivatives of the system we use
the reduced-order derivatives for the backward calculation and calculate µ with
(6.1.16). Based on the derivatives computed with (6.1.17) we compute new con-
trols and use them for the next reduced-order forward simulation. For this simu-
lation we use the same transformation matrices Φ. This means that the computa-
tional ‘overhead’ of calculating Φ is shared by multiple runs of the reduced-order
model. To determine convergence of the inner loop we use a convergence crite-
rion c. The inner loop has converged when the NPV of a reduced-order forward
simulation is less than c times the NPV of the previous reduced-order simulation.
Convergence of the inner loop may occur because a local maximum of the NPV
has been reached or because the controls have changed too much to be accurately
captured in the reduced system representation. Entering the outer loop again we
use the improved controls in a full-order forward simulation and verify if the con-
trols have indeed maximized the NPV. If necessary, the transformation matrices Φ

are replaced with new ones that reflect the altered dynamics and the inner loop is
repeated. The outer loop has converged when the NPV of the full-order forward
simulation is less than the NPV of the previous full-order simulation.

We implemented the methodology in a MATLAB algorithm. The advantage of
the methodology is that we use reduced-order forward simulations and reduced-
order optimal control, which have a shorter simulation time. A disadvantage is
that an improved control of the reduced-order model is not necessarily an im-
proved control for the full-order model. In the numerical example below we will
see that in our example this is, however, not a problem. Assessment of the robust-
ness of this approach requires further research on more realistic reservoir models.

6.3 Numerical example

The methodology was tested on a 2-dimensional model with 2025 (45×45) grid
blocks, which is the same model as used in references [47, 194, 241, 242]. The di-
mensions of the reservoir were 450×450×10 m and the permeability field is shown
in Figure 6.2. Initially the reservoir is completely saturated with oil. Liquid com-
pressibilities of 1×10−10 Pa−1 were assigned to both water and oil. At the left
side of the reservoir one horizontal water injector was introduced, divided in 45
segments by interval control valves (ICV). A horizontal producer, also divided in
45 segments, was introduced at the opposite side of the reservoir. The controls
are therefore formed by the 90 injection and production rates in the smart well
segments at every time step. The objective function represents a simple NPV as
(6.1.1), defined as the sum of the incremental discounted oil production income
and water production costs over the life of the reservoir. The wells were operated
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Figure 6.1: Flow chart for reduced-order OCT for water flooding.

without well model under rate-constraint: the liquid rate in an injection segment
was equal to the water rate, and in a production segment the rate was equal to
the sum of water rate and oil rate. The total production and injection rates were
equal to each other during the entire simulation time. During optimization the
flow rates were redistributed maintaining a constant total sum of the rates. In the

NPV calculation an oil price ro = $80
m3 and a produced water cost rw = $20

m3 were
used. The NPV obtained with the reduced-order and full-order optimal control
algorithms was compared with the NPV of a reference case. In the reference case
the injection and production rates were constant over time and a function of water
and oil mobility, reflecting a conventional water flood where the wells are oper-
ated at constant bottom hole pressure. The reservoir model was simulated for 949
days with variable time step size and in this period one pore volume of liquid
was injected and produced. A saturation distribution was obtained as depicted in
Figure 6.3. The total NPV for the reference case is $10.1 million.
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Figure 6.2: Permeability field (m2).
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Figure 6.3: Final water saturation
after 1 PV production for the refer-
ence case. Red: oil; blue: water.

6.3.1 Full-order optimal control example

The full-order control algorithm was ran starting from the reference case. With a
2.4 GHz Pentium 4 processor and 1 Gb RAM memory it took 8701 seconds (145
minutes) to run the full-order algorithm. Convergence was reached after 19 full-
order forward simulations and 18 full-order backward simulations. The average
simulation time for the full-order forward simulation was 144 seconds and for
the full-order backward simulation 266 seconds; see the left picture in Figure 6.5.
The resulting optimized rates are given in the left and the right picture of Figure
6.4, which correspond to a final oil/water saturation distribution as depicted in
the middle picture of Figure 6.4. The corresponding NPV versus the number of
iterations is plotted in the right picture of Figure 6.5. It can be seen that the NPV
first stabilizes around $15 million and later increases further to its maximum value
of $20.3 million. The NPV of the last iteration is slightly less than the previous one.
When the algorithm was let to continue no further increase in NPV was observed.
Because the optimization procedure is a local one, the maximum NPV should be
regarded as a lower bound of the possible improvements.

6.3.2 Reduced-order optimal control example

For reduced-order optimal control the algorithm described in Section 6.2 was
used. With an energy level of 0.999 as cut-off criterion for POD a final NPV of
$19.3 million was obtained, which is an increase of 87% with respect to the refer-
ence case. The maximum NPV obtained with reduced-order control approached
the NPV obtained with full-order optimal control to within 95%. Convergence
was reached in 5661s, which is a reduction with 35% of the time used for the
full-order optimal control. In this example we needed 10 full-order forward simu-
lations and 13 reduced-order forward simulations. In the first iterations matrices
Φ were shared 2 to 4 times before the inner loop converged and matrices Φ were
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Figure 6.4: Optimized injection rates (left) and production rates (right) in m3

d
vs.

the simulation time, calculated with the full-order control algorithm. In the middle
the resulting water saturation distribution. Red: oil; blue: water.

updated. The reduction in simulation time for the reduced-order forward simu-
lation was 34% and for the reduced-order backward model was 38%. In order to
maintain an energy level of 0.999 we need for the reference case in total 30 POD
basis functions. The number of POD basis functions gradually increased when we
used improved controls and for the optimal case we used 49 POD basis functions.
This speaks in favor of our nested approach where the transformation matrix is
adapted after a full-order forward simulation. Table 6.1 shows the results in more
detail. The resulting optimized rates are given in the left and the right picture
of Figure 6.6, which correspond to a final oil/water saturation distribution as in
the right picture of Figure 6.6. The corresponding NPV versus the number of
iterations is plotted in Figure 6.7. The resulting rates and the final saturation dis-
tribution obtained with reduced-order optimal control differed from the resulting
rates and final saturation distribution obtained with full-order optimal control.
Apparently we ended up in two different optima.

When a lower energy level of 0.99 was specified, less POD basis functions were
required and the simulation time for the reduced-order simulations therefore de-
creased. However, in that case more simulations were needed in order to con-
verge. Conversely, when the energy level was increased to 0.9999 a larger number
of basis functions was required and the simulation time increased. The average
simulation time for the full-order forward simulation was, in the latter case, al-
most equal to the average simulation time for the reduced-order forward model.
The reduced-order backward simulations were still faster. Figure 6.8 displays the
NPV versus the number of iterations in the full-order control algorithm and the
reduced-order algorithm using energy levels of 0.99, 0.999 and 0.9999. The NPV
obtained with reduced-order optimal control increased steeper in the beginning
than the NPV obtained with full-order optimal control - an increase in NPV of
72% was reached already after two full-order forward simulations using an en-
ergy level of 0.999. After four full-order simulations the NPV slowly converged
to its maximum. Changing the convergence criterion c of the inner loop from 1.01
to 1.10, we observed no significant influence on the maximum NPV; see Table 6.1.
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Backward runs:         18

Average time/run:    266s

Forward runs:           19

Average time/run:    144s

Maximum NPV:      $20.3                                         
million

Total time:            2h 25min

Figure 6.5: Performance of the full-order control algorithm. Left: computational
effort and the final optimized NPV; Right: NPV versus number of iterations.

Also the total simulation times were almost identical. Another parameter that we
varied was the number of time steps between updating the parameter-dependent
matrices in the inner loop (Ak and Bk of the forward equation and the derivative
matrices of the adjoint equation). Figure 6.9 displays the NPV versus the number
of iterations using 1, 2, 3 and 4 time steps between the updates. Again we see
a major increase of the NPV after two full-order forward simulations and a sub-
sequent slow converge to the maximum. Not updating the matrices every time
step introduces an error in calculating the improved controls. This is evident from
the 7th and 8th columns of Table 6.1, which represent the number of retained ba-
sis functions, for a given energy level, during the first and the last iteration in
the inner loop respectively. It can be observed that not updating the parameter-
dependent matrices results in the need to use more basis functions in the later
iterations. This effect is probably caused by spurious dynamics resulting from the
more abrupt changes in the system parameters in case of less frequent updating.

6.3.3 Energy level, number of snapshots and grid size

Figure 6.10 depicts a physical interpretation of the saturation POD basis vectors
for the 45×45 reservoir model. Because the vectors have a length equal to the total
number of grid blocks they can be reshaped and projected on a 45×45 matrix. In
the figure this is done for the first three vectors and we can recognize the spatial
characteristics of the permeability field (depicted in Figure 6.2) and of the oil-
water front which are both represented in the snapshots.

The three graphs in Figure 6.11 all display the number of POD basis func-
tions ℓ versus the number of snapshots used in the calculation of Φ. For the first
graph the reference case was simulated and a set of 1000 snapshots was generated
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Simulation Forward Forward Adjoint Adjoint # POD basis # POD basis Final
time full reduced full reduced func. refer. func. optim. NPV $
s h No. of s/call No. of s/call No. of s/call No. of s/call Sw p Tot. Sw p Tot.

cells cells cells s cells

Energy level = 0.99 5809 1.61 10 124 15 87 0 0 15 151 17 2 19 14 7 21 19,479,000
Energy level = 0.999 5661 1.57 9 151 13 100 0 0 13 164 28 2 30 28 13 41 19,315,000
Energy level = 0.9999 6746 1.87 9 129 14 131 0 0 14 200 42 2 44 58 25 83 19,371,000
Inner 5477 1.52 9 126 13 100 0 0 13 166 28 2 30 28 13 41 19,315,000
convergence = 1.01
Inner 5661 1.57 9 151 13 100 0 0 13 164 28 2 30 28 13 41 19,315,000
convergence = 1.05
Inner 5592 1.55 9 128 13 103 0 0 13 170 28 2 30 28 13 41 19,315,000
convergence = 1.10
Constant time 5661 1.57 9 151 13 100 0 0 13 164 28 2 30 18 13 31 19,315,000
step = 1
Constant time 5855 1.63 13 126 17 74 0 0 17 104 28 2 30 29 11 40 18,781,000
step = 2
Constant time 4923 1.37 11 128 16 69 0 0 16 82 28 2 30 40 14 54 18,858,000
step = 3
Constant time 5972 1.66 9 126 19 98 0 0 19 92 28 2 30 75 28 103 18,110,000
step = 4
Full-order optimal 8702 2.42 19 144 0 0 18 266 0 0 - - - - - - 20,335,000
control
Full forward 3774 1.05 11 130 0 0 0 0 10 165 28 2 30 28 11 39 19,139,000
reduced backward

Table 6.1: Results of full-order and reduced-order control algorithms for different energy levels, convergence criteria and number of time
steps between updating the parameter-dependent matrices in the inner loop.
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Figure 6.6: Optimized injection rates (left) and production rates (right) in m3

d
vs.

the simulation time, calculated with reduced-order control algorithm and energy
level 0.999. In the middle the resulting water saturation distribution. Red: oil; blue:
water.

at identical time-intervals. The same case was used also for the second graph,
except that each grid block was divided in four grid blocks with identical perme-
abilities resulting in a 90×90 reservoir model. Also for this mode a set of 1000
snapshots was generated at identical time-intervals. For the 180×180 reservoir
model the same procedure was used, which resulted in a reservoir model with
32400 grid blocks. The number of snapshots was varied by choosing from the
set of 1000 snapshots a subset consisting of respectively 2, 3, 5, 9, 11, 13, 41, 51,
101, 201, 501 and 1000 snapshots at identical time-intervals. The figures illustrate
how an increasing number of retained basis functions corresponds to an increas-
ing energy level. When the number of snapshots for a given energy level was
increased, an increasing number of POD basis functions was needed, which indi-
cates that added snapshots are not a linear combination of the earlier snapshots,
i.e. that they contain new information. More interestingly, we can conclude that
the number of POD basis functions ℓ increases with the number of grid blocks
in a non-linear fashion: when the number of grid blocks is multiplied by 16, the
number of POD functions at an energy level of 99.99% for 1000 snapshots is only
multiplied by 1.87. This illustrates that the reduced–order representation mainly
represents the dominant structures present in the snapshots. Because we did not
change the permeability field, but merely used a larger number of grid blocks
to describe it, the dominant structures in the dynamics of the state variables also
did not change very much. The small increase in basis functions captures some in-
creased detail at the boundaries of the dominant structures. This implies that for a
reservoir model with dominant large-scale geological features, the computational
efficiency of reduced-order simulation will increase with an increasing model size.
For a model that lacks clear dominant structures, e.g. one that has heterogeneities
with a small correlation length, this increase in computational efficiency is less
pronounced or even absent.
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Figure 6.7: Performance of the reduced-order control algorithm (energy level 0.999)
and its comparison with the full-order algorithm. Left: computational effort and the
final optimized NPV; Right: NPV versus number of iterations.

6.4 Conclusion

In the example discussed it was found that reduced-order optimal control of water
flooding using POD improved the NPV with respect to an uncontrolled reference
case. Within a shorter simulation time, the NPV obtained by the full-order optimal
control algorithm was approached closely by the NPV obtained by the reduced-
order algorithm. The increase in computational efficiency was achieved by reduc-
ing the number of states in the forward and backward simulations considerably
and consequently the number of equations that needed to be solved every time
step. Considering a reservoir model with 4050 states (2025 pressures, 2025 satu-
rations) and an adjoint model of 4050 states (Lagrange multipliers) reduced-order
models were obtained with 20 to 100 states only. The NPV obtained by reduced-
order optimal control was approached to within 95% of the NPV obtained by full-
order optimal control. The resulting reduction in computing time was 35%. In
general, the number of POD basis functions preserving a certain fixed level of rel-
ative energy increases during optimization, which speaks in favor of our nested
reduced-order optimal control algorithm where we adapt the transformation ma-
trix after simulating the full-order reservoir model with improved controls.
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Figure 6.8: NPV versus number of iterations in the reduced-order control algo-
rithm, for different energy levels.
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Figure 6.9: NPV versus number of iterations in the reduced-order control algo-
rithm, for different numbers of time steps between the updating the parameter-
dependent matrices.
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Conclusions and Discussion

Numerical models describing subsurface fluid flow are typically large-scale, con-
sisting of O(103− 106) equations and parameters representing a (coupled) system
of discretized (nonlinear) PDEs (Chapter 2). Reservoir optimization and model
updating based on models of such size may be prohibitively time consuming and
error prone, especially when multiple reservoir model realizations and/or several
potential well configurations have to be investigated.

This thesis addresses this ’curse of dimensionality’ problem by reducing the
high-order reservoir models to the appropriate level of detail in suitable low-order
models. Traditionally, low-order reservoir model approximations are generated
by ”grid-coarsening” methods, which range from conventional upscaling to var-
ious multiscale techniques. This study follows a different approach, for we be-
lieve that low-order models based on ’system-theoretic’ and dynamically-intrinsic
properties of the fine-scale state-space system rather than the type (i.e., position,
form, orientation) of the coarse-grid may be more efficient for the the intended
applications. For example, for single-phase systems that can be approximated
by linear systems of ODEs with constant coefficients, e.g. diffusive pressure equa-
tion for slightly compressible porous-media flow, basic system- and control theory
teaches that these properties are, e.g., the system’s transfer function in the Laplace
domain, the eigenstructure of the system’s matrix pencil, or controllability and ob-
servability of the (particular state-space realization of the) system. The structural
properties controllability and observability (and therewith related identifiability)
are particularly interesting, as modeling to a level of detail that can hardly be
observed and controlled is at best wasted effort, but, worse, may lead to wrong
results. For nonlinear state-space models, on the other side, due to both the size
and the overall complexity of these systems (moving fluid interfaces, coupled flow
and transport), intrinsic information needs to be sought in data obtained by sim-
ulating the fine-scale model.

For the slightly compressible single-phase flow, the performance was assessed
of Modal Truncation (MTR), Singular Perturbation Approximation (SPA) (or ’rezid-
ualization’), Transfer Function Moment Matching (TFMM), and Balanced Truncation
(BTR). For two-phase (waterflood) flow, the so-called Proper Orthogonal Decom-
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position (POD) technique was employed, a data-driven technique that guarantees
optimal approximation of the collected data in the mean square error sense. In
the linear case, POD turns out to have important theoretical connections to the
concepts of controllability and observability, though for a particular class of in-
put and initial-state signal forms. All the methods, except the residualization, are
projection-based, meaning that a macromodel of the original large-scale dynam-
ical system is generated by projecting it onto some low-dimensional subspace,
whereby the projection subspace is not restricted to be the same as the subspace
the state variable itself is projected onto (Chapter 3). In MTR, the two subspaces
are generally equal and spanned by dominant eigenvectors of the system ma-
trix/pencil. TFMM methods match a certain number of moments of the system’s
transfer function (around one or multiple frequency points) and obtain their pro-
jection subspaces as certain Krylov subspaces involving the system matrices. Pro-
jection subspaces in BTR are obtained as the dominant eigenspaces of the product
of the system’s controllability and observability Gramians of the system being the
solutions of the corresponding Lyapunov matrix equations. Finally, the common
projection subspace in the standard POD approach is spanned by the basis func-
tions optimally explaining a desired percentage of the variance present in the col-
lected data. The numerical tests conducted on several examples of heterogeneous
reservoir models show that these techniques can produce accurate reduced-order
models of very low order. The main observations are:

• In the slightly compressible single-phase case (Chapter 4), BTR consistently
shows excellent performance. This is attributed to being numerically low-
rank of both the controllability and the observability Gramians, as the rank
of their product determines the intrinsic dimensionality of the system. More-
over, the low-rank nature of the Gramians allows for efficient use of iterative
methods for approximate BTR. For low-frequency piecewise constant inputs
(i.e. well flow-rates and/or BHPs), the shapes of the well control signals typ-
ically encountered in (open-loop) reservoir simulations, accurate reduced
models of even lower order can be obtained by combining BTR with SPA,
the essence of the latter being setting the time-derivative of a part of the sys-
tem’s state dynamics to zero and expressing the dynamics of the remaining
part accordingly. The approximation error is mainly caused at the points
where the input abruptly switches from one constant value to another. For
low-frequency inputs, TFMM around the single frequency s = 0 is often
sufficient for obtaining accurate reduced-order models. Exceptionally well
performing in a majority of the examples considered was a Krylov subspace
method that uses an orthogonalized matrix of state block moments around
s = 0 as the (’congruence’) projection matrix. Finally, for moment matching
it generally holds that the reduced model size is a multiple of the number
of matched moments, whereby the multiplier is an increasing function of
the number of inputs and outputs. For this reason, for an increasing num-
ber of inputs and/or outputs the order of the reduced-order model tends to
increase slower for BTR than for moment matching techniques.

• In waterflooding applications, numerical experiments (Chapter 5) indicate
that a) a given flow scenario can be reproduced accurately if enough snap-
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shots have been used and ’enough energy’ has been captured in the POD
modes, and b) the POD approach is quite robust against non-training input
signals if the snapshots are generated by exciting the system by manipu-
lating the injection and/or production profiles consistent with the expected
range of operating conditions. As POD favorizes variables which numerical
values show greater variability, projection bases for pressures and satura-
tions were obtained separately. This allows for choosing a different degree
of reduction for p and Sw. Apparently, an adequate approximation of the
high-dimensional behavior generally requires (much) less basis functions
for pressures than for saturations, which is attributed to the traveling nature
of the saturation front and the time-averaging property of the (standard)
POD approach. Regarding the cost of solving the reduced-order model,
despite a generally drastic reduction in the size of the model, there is, in
contrast to the single-phase case, no guarantee that the simulation of the
reduced-order model will actually be faster than the simulation of the high-
order model. This is due to that fact that at each time-step state-dependent
coefficient matrices and their products needs to be evaluated. The issue is
even more manifested in a fully time-implicit scheme using the Newton-
Raphson solving procedure, where the coefficients and the matrix product
are evaluated at each inner-loop iteration. The computational cost of form-
ing the matrix products could potentially be reduced by not computing the
POD basis coefficients in the usual POD manner, but rather estimating these
from a partial set of the original data at a selected number of points in the
spatial domain. Naturally, the computational gain may be expected to be
bigger the smaller this number is, though at the cost of a decreased perfor-
mance.

Running fine-scale waterflood simulations in order to determine a (robust) POD
basis may be very time-consuming due to the necessity to employ an iterative
procedure to propagate the solution in time. As dynamic reservoir flow prob-
lems are evolution problems, the initial guess is usually taken to be equal to the
last time-step solution. The approach presented in Chapter 5 determines an im-
proved initial solution guess by a (regularly updated) POD-based reduced-order
model. The solution of the reduced-order model can be interpreted as a ‘shadow’
running in parallel with the solution of high-order model. When applied to two-
phase (incompressible) two-phase flow in an IMPES formulation, the proposed
POD-based acceleration method for iterative solvers resulted in improved com-
putational efficiency in almost all cases considered. Exceptions were pathological
cases with steady-state inputs and near-time invariant parameters, which display
near-constant behavior. The method seems to be particularly attractive for prob-
lems with time-varying parameters or time-varying source terms, and could, in
theory, also be applied to accelerate the solution of nonlinear systems of equations
using Newton-Raphson iteration. Further work is required to assess the efficiency
of the method for such an application.

Modern approaches in reservoir optimization often require performing many re-
servoir flow simulations. The nested loops iterative strategy presented in Chapter
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6 aims at speeding-up adjoint-based waterflooding optimization by employing a
truncated basis of POD functions in the inner loop to calculate optimized injection
and production rates. After convergence in this loop, the high-order model is sim-
ulated in the outer loop with the improved rates obtained in the inner loop. An
adapted POD basis is used in the next inner loop to calculate new optimized in-
jection and production rates, etc. In the numerical example the reduced-order op-
timal control of water flooding using POD improved the net present value (NPV)
with respect to an uncontrolled reference case. Within a shorter simulation time,
the NPV obtained by the full-order optimal control algorithm was approached
closely by the NPV obtained by the reduced-order algorithm.



A APPENDIX

From PDEs to state-space models of
the reservoir flow

This appendix presents in more detail the governing PDEs for two-phase (water-
oil) reservoir fluid flow (under isothermal conditions) and their approximations
by finite-dimensional state-space models.

A.1 PDE descriptions of two-phase reservoir flow

Consider the governing PDEs (2.1.7)-(2.1.8):

∂ (ϕ(1 − Sw)ρo)

∂t
−▽ ·

(
Kkro(Sw)ρo

µo

(▽po − ρog▽D)

)
= qo (A.1.1)

∂(ϕSwρw)

∂t
−▽ ·

(
Kkrw(Sw)ρw

µw

(▽po −▽Pc(Sw)− ρwg▽D)

)
= qw, (A.1.2)

where ▽Pc(Sw) ≡ dPc(Sw)
dSw

▽ Sw. Denoting with cϕ := 1
ϕ

∂ϕ
∂p

and cα := 1
ρα

∂ρα

∂pα

the rock- and the fluid (isothermal) compressibility, respectively, the accumulation
terms on the l.h.s. of (A.1.1)-(A.1.2) may be expanded as

∂(ϕ(1 − Sw)ρo)

∂t
= ϕρo(1− Sw)(co + cϕ)

∂po

∂t
− ϕρo

∂Sw

∂t
, (A.1.3)

∂(ϕSwρw)

∂t
= ϕρwSw(cw + cϕ)

∂(po − Pc)

∂t
+ ϕρw

∂Sw

∂t
, (A.1.4)

so that, using ∂Pc

∂t
= dPc

dSw

∂Sw

∂t
, (A.1.1)-(A.1.2) may be written in the following

matrix-vector form:
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ϕ

[
ρo(1− Sw)(co + cϕ) −ρo

ρwSw(cw + cϕ) ρw

(
1− Sw(cw + cϕ) dPc

dSw

)
] [

∂po

∂t
∂Sw

∂t

]

=

[
▽ · (Kkroρo

µo
▽ po)

▽ · (Kkrwρw

µw
▽ po)−▽ · (Kkrwρw

µw
▽ Pc)

]
+

[
−▽ ·(Kkroρ2

o

µo
g▽D)

−▽ ·(Kkrwρ2
w

µw
g▽D)

]

+

[
qo

qw

]
.

[
kg

m3s

]
(A.1.5)

A.1.1 Various simplifications of the flow equations

System (A.1.5) is a complete PDE flow description, in that it models all major fac-
tors governing the immiscible fluid flow (3D, gravity, capillary effects). Depend-
ing on the assumptions about the physics that should be included in the model,
various simplifications are possible. In field-scale reservoir flow studies, for in-

stance, a generally valid assumption is |∂Pc

∂t
≪ |∂po

∂t
|. Moreover, in waterflooding

applications on reservoir scale the (diffusive) effect of capillary pressure is fre-
quently assumed to be negligible all together as compared to the (advective) effect
of the pressure gradient. The flow is then described by

ϕ

[
ρo(1− Sw)(co + cϕ) −ρo

ρwSw(cw + cϕ) ρw

] [
∂po

∂t
∂Sw

∂t

]

=

[
▽ · (Kkroρo

µo
▽ po)

▽ · (Kkrwρw

µw
▽ po)

]
+

[
−▽ ·(Kkroρ2

o

µo
g▽D)

−▽ ·(Kkrwρ2
w

µw
g▽D)

]
+

[
qo

qw

]
.(A.1.6)

If the flow is two-dimensional and horizontal, gravity effects are also missing, so that
in this case the flow is governed by

ϕ

[
ρo(1− Sw)(co + cϕ) −ρo

ρwSw(cw + cϕ) ρw

(
1− Sw(cw + cϕ) dPc

dSw

)
][

∂po

∂t
∂Sw

∂t

]

=

[
▽ · (Kkroρo

µo
▽ po)

▽ · (Kkrwρw

µw
▽ po)−▽ · (Kkrwρw

µw
▽ Pc)

]
+

[
qo

qw

]
, (A.1.7)

if capillary-effects play a role, and by

ϕ

[
ρo(1 − Sw)(co + cϕ) −ρo

Sw(cw + cϕ) ρw

] [
∂po

∂t
∂Sw

∂t

]

=

[
▽ · (Kkroρo

µo
▽ po)

▽ · (Kkrwρw

µw
▽ po)

]
+

[
qo

qw

]
,

(A.1.8)
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if capillary-effects are neglected.

As long as at least one of the phases or the rock is compressible, the left hand
side in the above equations is always invertible. In the incompressible case, i.e.
cϕ = cw = co = 0, this is not longer the case. For instance, (A.1.8) then becomes:

ϕ

[
0 −ρo

0 ρw

] [
∂po

∂t
∂Sw

∂t

]
=

[
▽ · (Kkroρo

µo
▽ po)

▽ · (Kkrwρw

µw
▽ po)

]
+

[
qo

qw

]
. (A.1.9)

Actually, in this case the time-derivative of pressure disappears from the model
description. Moreover, the phase densities are constant. Defining q̃α := qα

ρα
and

λt := λw + λo = krw

µw
+ kro

µo
, α = w, o, adding the two flow equations yields the

following system:

−∇ · (Kλt∇po) = q̃t

ϕ
∂Sw

∂t
−∇ · (Kλw∇po) = q̃w.

A.2 Spatial discretization

The above partial differential equations are generally not solvable analytically.
Consequently, one generally looks for an approximate numerical solution at time
and spatial points of interest. Construction of spatially discretized reservoir mod-
els is commonly performed using well-established techniques of finite elements
(FE), finite volumes (FV), or, as in this thesis, finite differences (FD). The basic
piece of the spatial domain in a FD discretization is a grid-block, and the primary
variables of the system, here po and Sw, are defined either at grid-nodes or at grid-
centers. In this thesis, a regular centered grid as schematically depicted in Fig. A.1
is always employed. At the grid level, the accumulation part of the system (i.e.,
the l.h.s. in the above equations, including the partial derivative which is approx-
imated by the ordinary time-derivative operators d/dt), is evaluated using the
pressure and saturation values of the corresponding grid-block. The flux terms,
i.e. those the divergence operator∇· applies to, need to be evaluated at the block-
interfaces. For instance, for a diagonal permeability tensor, K := diag(kx, ky, kz),
let us define, for the ijk-block, the direction-dependent phase ’transmissibilities’,

Tα,η := V ijk krαρα

µα
kη and Gα,η := Tα,ηραg, α ∈ {w, o}, η ∈ {x, y, z}, where

V ijk := ∆xi∆yj∆zk is the grid-block volume. In all examples in this thesis, the
grid-block volume is uniform, i,e., V ijk = ∆V , ∀i, j, k. Moreover, in the 2D exam-
ples, ∆xi = ∆yj = ∆ξ is considered only. For the sake of higher generality, the
derivations below uses ∆xi = ∆x and ∆yi = ∆y. Setting p := po, the pressure
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Figure A.1: Left: a grid-block, labeled by (i, j, k), with (ρu)i,j,k± 1
2

, (ρu)i,j± 1
2

,k,

(ρu)i± 1
2

,j,k denoting the mass fluxes across the grid-block interfaces. Right: the

grid-block (i, j, k) and its six adjacent blocks arranged in a regular 7-point stencil.
In 2D (3D) examples in this thesis, a regular 5-point (7-point) stencil is always used.

flux term for the grid-block ijk can then be approximated as

∇ · (V ijk Kkrαρα

µα

∇p)

=
∂

∂x
(Tα,x

∂p

∂x
) +

∂

∂y
(Tα,y

∂p

∂y
) +

∂

∂z
(Tα,z

∂p

∂z
)

≈ 1

(∆x)2
[

(Tα,x)i+ 1
2 ,j,k · (pi+1,j,k − pi,j,k)− (Tα,x)i− 1

2 ,j,k · (pi,j,k − pi−1,j,k)
]

+
1

(∆y)2
[

(Tα,y)i,j+ 1
2 ,k · (pi,j+1,k − pi,j,k)− (Tα,y)i,j− 1

2 ,k · (pi,j,k − pi,j−1,k)
]

+
1

(∆z)2
[

(Tα,z)i,j,k+ 1
2
· (pi,j,k+1 − pi,j,k)− (Tα,z)i,j,k− 1

2
· (pi,j,k − pi,j,k−1)

]

+ (T̃α,z)i,j,k− 1
2
· pi,j,k−1 + (T̃α,y)i,j− 1

2 ,k · pi,j−1,k + (T̃α,x)i− 1
2 ,j,k · pi−1,j,k

− (T̃α)i,j,k · pi,j,k

+ (T̃α,x)i+ 1
2 ,j,k · pi+1,j,k + (T̃α,y)i,j+ 1

2 ,k · pi,j+1,k + (T̃α,z)i,j,k+ 1
2
· pi,j,k+1,

where T̃α,η := 1
(∆η)2 Tα,η, and:

(T̃α)i,j,k = (T̃α,z)i,j,k− 1
2

+ (T̃α,y)i,j− 1
2 ,k + (T̃α,x)i− 1

2 ,j,k + (T̃α,x)i+ 1
2 ,j,k

+(T̃α,y)i,j+ 1
2 ,k + (T̃α,z)i,j,k+ 1

2
.
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A similar derivation can be performed for the gravity1 flux,∇·(V ijk Kkrαρ2
α

µα
g∇D) =∑

η=x,y,z
∂
∂η

(Gα,η
∂D
∂η

), and, if the capillary effects can not be neglected, also for the

flux term ∇ · (V ijk Kkrαρw

µw

dPc

dS
∇S) ≡ ∇ · (Tw

dPc

dS
∇S) = ∇ · (T S

w∇S), where Sw is

replaced by S for convenience.

A.2.1 State-space formulation

With these flux approximations, and recalling that V ijk = ∆V was used here, the
most general PDE system considered here, (A.1.5), can be approximated, for the
grid-block ijk, as

VijkWijk

dxijk

dt
= Tijk




xi,j,k−1

xi,j−1,k

xi−1,j,k

xi,j,k

xi+1,j,k

xi,j+1,k

xi,j,k+1




+ Gijk




Di,j,k−1

Di,j−1,k

Di−1,j,k

Di,j,k

Di+1,j,k

Di,j+1,k

Di,j,k+1




+ Vijkq̃ijk ,

[
kg

s

]

where

xijk =

[
pijk

Sijk

]
, q̃ijk :=

[
qijk

o

ρo

qijk
w

ρw

]

Vijk =

[
∆V ρo 0

0 ∆V ρw

]

ijk

Wijk =

[
ϕ(1 − S)(co + cϕ) −ϕ

ϕS(cw + cϕ) ϕ[1− S(cw + cϕ)(dPc

dS
)]

]

ijk

Tijk =
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T̃o
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2
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T̃o
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2

T̃w
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2
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T̃w
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i,j,k T̃w
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2

]

T̃o
i,j,k± 1

2
=

[
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2
0

]
, T̃o

i,j± 1
2 ,k

=
[

(T̃o,y)i,j± 1
2 ,k 0

]

T̃o
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2 ,j,k
=

[
(T̃o,x)i± 1

2 ,j,k 0
]

, T̃o
i,j,k =

[
(T̃o)i,j,k 0

]

1The approximation becomes particularly simple in the case of a horizontal 3D grid with ∆zk =
∆z. For such a grid, the approximation for the block ijk is given by

∇ · (V ijk Kkrαρ2
α

µα
g∇D) =

∂

∂z
(Gα,z

∂D

∂z
)

∆zk=∆z
≈

1

∆z

ˆ

(Gα,z)i,j,k+1/2 − (Gα,z)i,j,k−1/2

˜

.



150 APPENDIX A: From PDEs to state-space models of the reservoir flow

T̃w
i,j,k± 1

2
=

[
(T̃w,z)i,j,k± 1

2
(T̃ S

w,z)i,j,k± 1
2

]

T̃w
i,j± 1

2 ,k
=

[
(T̃w,y)i,j± 1

2 ,k (T̃ S
w,y)i,j± 1

2 ,k

]

T̃w
i± 1

2 ,j,k
=

[
(T̃w,x)i± 1

2 ,j,k (T̃ S
w,x)i± 1

2 ,j,k

]

T̃w
i,j,k =

[
(T̃w)i,j,k (T̃ S

w )i,j,k

]

Gijk =

[
G̃o

i,j,k− 1
2

G̃o
i,j− 1

2 ,k
G̃o

i− 1
2 ,j,k

−G̃o
i,j,k G̃o

i+ 1
2 ,j,k

G̃o
i,j+ 1

2 ,k
G̃o

i,j,k+ 1
2

G̃w
i,j,k− 1

2

G̃w
i,j− 1

2 ,k
G̃w

i− 1
2 ,j,k

−G̃w
i,j,k G̃w

i+ 1
2 ,j,k

G̃w
i,j+ 1

2 ,k
G̃w

i,j,k+ 1
2

]

G̃α
i,j,k± 1

2
=

[
(G̃α,z)i,j,k± 1

2
0

]
, G̃α

i,j± 1
2 ,k

=
[

(G̃α,y)i,j± 1
2 ,k 0

]

G̃α
i± 1

2 ,j,k
=

[
(G̃α,x)i± 1

2 ,j,k 0
]

, G̃α
i,j,k =

[
(G̃α)i,j,k 0

]
, α = w, o.

Stacking the equations (A.2.1) for all the grid-blocks ijk on top of each other yields
a time-continuous (generalized) state-space formulation:

VW
dx

dt
= Tx + Gd + Vq̃,

[
kg

s

]
(A.2.1)

where the n-dimensional state vector now consists of oil pressures and water satu-
rations for each of the nxny ∗nz = n

2 grid blocks, V is a diagonal mass matrix with
entries that are functions of grid block volume and fluid densities, W is a block
diagonal matrix with entries being functions of compressibility, porosity and wa-
ter saturation, T and G are sparse block matrices accommodating block-interface
transmissibilities for oil and water, d is the depth-vector, and q̃ denotes the well
flow-rates.

It deserves noting that the governing equations can be sorted arbitrarily. How-
ever, some orders of the equations will be more suitable that others from the com-
putational point of view. The ’alternating’ state form used here leads to a system
with a small band width.

A.2.2 Well controls and the well model

An injector well normally injects a single phase (here water). The fluid flowing
into a producer well, however, is generally a composition of more (here two)
phases. Consequently, what directly can be controlled and/or measured at the
producer side is generally not the individual phase flow rates, here qo and qw, but
their total sum, qt = qo + qw. In the flow model, the individual phase rates can be
modeled through their corresponding fractional flows, fo := qo

qt
and fw := qw

qt
. For

the flow-rate controlled case (i.e., water flow-rate for injectors and the total liquid
rate for the producers), the state-space model (A.2.1) transforms into:
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VW
dx

dt
= Tx + Gd + VFLquu, (A.2.2)

where F is a block-diagonal matrix containing fractional-flow functions for water
and oil, and Lqu is a selection (or location) matrix consisting of zeros and ones
at appropriate places so that u ≡ LT

quq̃t is the input vector containing the total
liquid rates (q̃o + q̃w at the producers and q̃w at the injectors). The blocks in F are

two-dimensional column vectors of the form

[
fw

fo

]

i

, where fw = qw

qt
and fo = qo

qt

are the fractional-flow functions for water and oil, respectively, and i denotes the
grid-block in question. Clearly, 0 ≤ fw, fo ≤ 1 and fw + fo = 1. For an exclusively

water injecting well, the fractional-flow vector is

[
1
0

]
. Moreover, for a grid-block

j without wells the fractional-flows are not defined. Since the flow-rate for such a
well is zero, (fw)j and (fo)j may be assigned any finite value.

The well model

If a well in a grid-block i is described by a well model, qt = ω(pwf − pgb), with
prescribed bottom-hole flowing pressure, pwf , the resulting system of equations
is similar, with ui = pwf,i, and T and F adjusted at appropriate places by terms
involving the well-index ωi. Well models used in this thesis are of the type ([82]):

q̃α =
krα

µα

2πdwell
z

3
√

kxkykz

Vgb

(
ln( ro

rw
) + S

) (pwf,α − pgb,α) =
krα

µα

ωz (pwf,α − pgb,α) ,

[
1

s

]
(A.2.3)

where (for a vertical well):

ωz =
2πdwell

z
3
√

kxkykz

Vgb

(
ln( ro

rw
) + S

) [−] ((const.) geometric part of the well-index)

ro = 0.28

[√
kx/ky(∆y)2 +

√
ky/kx(∆x)2

] 1
2

4
√

kx/ky + 4
√

ky/kx

[m] (effect. well radius)

dwell
z : the (vertical) length in [m] of the well part accessible for fluid flow

It is normally assumed that there is a single bottom-hole flowing pressure, i.e.,
pwf,o = pwf,w =: pwf . Using po − pw = Pc and the fact that the only phase grid-
block pressure in the model is po, the individual phase rates can be expressed as:

q̃o =
kro

µo

ωz (pwf − pgb,o) (A.2.4)

q̃w =
krw

µw

ωz (pwf − pgb,w) =
krw

µw

ωz (pwf − pgb,o) +
krw

µw

ωzPc. (A.2.5)
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For a prescribed pwf , the total flow rate can be expressed as2

q̃t =

(
krw

µw

+
kro

µo

)
ωz (pwf − pgb,o) +

krw

µw

ωzPc. (A.2.6)

The phase fractional flow functions can be expressed (using λα = krα

µα
, α = w, o)

as:

fw =
q̃o

q̃t

=
λw��ωz (pwf − pgb,o + Pc)

λw��ωz (pwf − pgb,o + Pc) + λo��ωz (pwf − pgb,o)
=

λw

λw + λo
pwf−pgb,o

pwf−pgb,o+Pc

fo =
q̃o

q̃t

= 1− fw =
λo

λo + λw
pwf−pgb,o+Pc

pwf−pgb,o

.

In the absence of capillary effects, i.e. when Pc = 0, these expressions become the
familiar ones, fα = λα

λt
, α = w, o.

A.2.3 Spatial weighting of parameters

The solutions of a centered grid system are grid-block quantities, therefore an av-
eraging involving these quantities is needed in order to determine the coefficients
at the grid-block interfaces. The permeability k is commonly determined by the
weighted harmonic average. With constant grid block size in the spatial direction
η = i, j, k, this is equal to kη+ 1

2
= 1

1
2kη,i

+ 1
2kη,i+1

.

The weakly pressure dependent coefficients at the grid-block interfaces are
generally approximated by the arithmetic mean. For viscosity µ, for instance, this

means µη+ 1
2

=
µη+1+µη1

2 . Besides the phase viscosities µα, the weighted arithmetic

mean was also used for averaging the fluid densities.

The saturation dependent parameters krα and Pc require special treatment. For
the sake of obtaining a physically relevant solution, these quantities are generally
calculated according to an upstream weighting principle, whereby the upstream
direction is determined by the phase potential gradient, ∇Ψα := ∇pα − ραg∇D.
In the applications in this thesis, the one-point upstream weighting is used, that
is, the interface value is taken equal to the value in the grid-block from which the
flow is coming. For instance, the relative permeability is averaged according to:

krα,η+ 1
2

=
krα,η, if Ψα,η ≥ Ψα,η+1

krα,η+1, if Ψα,η < Ψα,η+1
.

2Note that the water injection rate does not depend only on the water mobility, but rather on the
total fluid mobility around the well.
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Mathematics of POD

B.1 The basis POD solution

Let u(~ξ, t) be the (unknown) solution of the problem one is attempting to solve,

defined at any point (~ξ, t) ∈ Ω × T on some spatial domain Ω and time-interval
T ⊆ R. No distinctions is made here between the finite- and infinite dimensional
cases, i.e. the spatial and the time domain may be infinite dimensional or even

unbounded. Assume further that the solutions u(~ξ, t) : Ω×T→ R belong to some
(separable) Hilbert space H, e.g. H = L2(Ω, R), with L2(Ω, R) denoting a collec-
tion of square-integrable functions1, such as pressure profiles in the examples in
this thesis, for instance. Using the fact that every (separable) Hilbert space admits
an (non-unique) orthonormal basis which spans the whole space, denoting by (·, ·)
the inner product defined onH the solutions u(~ξ, t) may be written as

u(~ξ, t) =
∑

i∈I

aiφi =
∑

i∈I

(u, φi)φi, (B.1.1)

where {φi}i∈I ((φi, φj) = δij , i, j ∈ I) is a particular choice for the orthonormal
basis of H and {ai}i∈I := {(u, φi)}i∈I are the Fourier coefficients of u in the basis
{φi}i∈I, with I ⊆ Z an ordered (countable) index set. In the usual POD litera-
ture, the basis functions φi in (B.1.1) are generally considered to be spatial- and

the expansion coefficients ai time functions, i.e. φ = φ(~ξ) and ai = ai(t). The
same assumption is made also in this thesis. It deserves noting, however, that,
from a mathematical point of view, there is no fundamental reason why it could
not be opposite, i.e., that the basis functions are time- and the coefficients spatial
functions. Though interesting in its own, an investigation of this possibly use-
ful observation is beyond the scope of this thesis. Hence, in the sequel, the basis
functions are always assumed to be spatial. Define Iℓ := {1, . . . , ℓ}. Denoting by

uℓ(~ξ, t) =
∑

i∈Iℓ

aiφi =
∑

i∈Iℓ

(u, φi)φi, (B.1.2)

1*** Definitie van square-integrable functies ***
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an ℓ-order truncated decompositions of u(~ξ, t), the POD problem is basically to find
such orthonormal basis functions {φi}ℓi=1 which solves the following optimization
problem for any ℓ ∈ I:

Minimize
{φi}ℓ

i=1

(φi,φj)=δij

〈|u(~ξ, t)− uℓ(~ξ, t)|2〉 (≡ 〈|u(~ξ, t)−
∑

i∈Iℓ

(u, φi)φi|2〉), (B.1.3)

where 〈·〉 is the employed (time-)averaging operation.

Let uℓ(~ξ, t) =: Pℓ(u(~ξ, t)), where Pℓ is an orthogonal operator that projects u onto
an ℓ-dimensional subspace. Due to the identity

‖u‖2 = ‖u− Pℓ(u)‖2 + ‖Pℓ(u)‖2, (B.1.4)

which holds for any orthogonal projection, the minimization problem (B.1.3) is
equivalent to the maximization problem:

Maximize
{φi}ℓ

i=1

(φi,φj)=δij

J({φi}ℓi=1) := 〈|
∑

i∈Iℓ

(u, φi)φi|2〉. (B.1.5)

Straightforward manipulation:

|
∑

i∈Iℓ

(u, φi)φi|2 =
∑

i∈Iℓ

(u, φi)φi

∑

j∈Iℓ

(u, φj)φj =
∑

i∈Iℓ

∑

j∈Iℓ

(u, φi)(u, φj)φiφj

=
∑

i∈Iℓ

|(u, φi)|2 (≡
∑

i∈Iℓ

a2
i (t)) (B.1.6)

shows that the POD basis problem (B.1.5) can be written as

Maximize
{φi}ℓ

i=1

(φi,φj)=δij

〈
∑

i∈Iℓ

|(u, φi)|2〉, (B.1.7)

thus meaning that the POD basis functions φi maximize the averaged projection of the

time evolution of the flow-field u onto the subspace spanned by these basis functions.

In Appendix *** it is shown by the use of calculus variations that (B.1.7) re-
duces to the eigenvalue problem

∫

Ω

R(~ξ, ~ξ′)φi(~ξ
′)d~ξ′ = λiφi(~ξ), (B.1.8)

where R(~ξ, ~ξ′) := 〈u(~ξ), u(~ξ′)〉 is a time-averaged autocorrelation function. The
optimal basis functions, called the proper orthogonal modes (POMs), are thus
the eigenfunctions of the integral equation (B.1.8), whose kernel is the averaged
correlation function R. The values λi corresponding to φi are named the proper
orthogonal values (POVs). The energy E contained in the observed data is defined
as the sum of the POVs, i.e., E :=

∑
i∈I

λi. The energy percentage captured by the
i-th POM is then given by λi/E . The cumulative sum of relative energies Ei clearly



B.2 POD in infinite-dimensional setting 155

approaches one with the increasing number of modes in the reconstruction.

In practical situations, the state of a system or a numerical model is only
available at discrete spatial grid points and at discrete time instances, so that
the observed data, which we call snapshots, that are used to approximate the au-
tocorrelation function R are vectors rather than continuous functions. In other
words, let the numbers of spatial and time points be n and N , respectively. Then,

Ω = {~ξ1, ~ξ2, . . . , ~ξn}, where ~ξj is the j-th grid point, and u(~ξ, t) is now represented

by the vector ui = [u(~ξ1, ti), u(~ξ2, ti), . . . , u(~ξn, ti)]
T . In this case, the autocorrela-

tion function R is replaced by the tensor product matrix R(~ξ, ~ξ′) = 1/N
∑N

i=1 uiu
T
i .

As the kernel R is Hermitian, the optimal POD basis consists of the orthonormal
vector solutions of the eigenvalue problem Rϕi = λiϕi.

We conclude this part with the observation that, since the basis functions are mu-
tually orthonormal, the individual projections are uncorrelated. Hence it follows
that the optimization problem can conceptually be tackled by first solving

Maximize
{φ1}

〈|(u, φ1)|2〉 with (φ1, φ1) = 1, (B.1.9)

to determine φ1, followed by solving

Maximize
{φ2}

〈|(u, φ2)|2〉 with (φ2, φ2) = 1 and (φ1, φ2) = 0, (B.1.10)

to determine φ2 and so on.

B.2 POD in infinite-dimensional setting

Albeit a practical implementation of MOR techniques will generally be based on
finite-dimensional data and ODEs, a POD model reduction approach can be for-
mulated for PDEs as well. Here the basis procedure for reducing PDEs to a sys-
tem of ODEs is outlined, aiming to help in understanding that the POD method is
more than just a matrix decomposition algorithm as it appears in practical imple-
mentations of a POD approach.

Let a general PDE, defined on some space-time ’region’ Ω× T, be described by

ut = L[u] + f(~ξ, t), (B.2.1)

where ut denotes the partial time-derivative of the variable of interest u, L[·] is
some (possibly non-linear) spatial operator, and f is a source term, e.g. describ-
ing boundary conditions. Assume the possibility of representing u as an infinite-

dimensional spectral decomposition as in (B.1.1), i.e. u(~ξ, t) =
∑∞

i=1 ai(t)φi(~ξ),

and denote by uℓ an ℓ-th order approximation of u as in (B.1.2), i.e. uℓ(~ξ, t) =∑ℓ
i=1 ai(t)φi(~ξ). Assume the spatial basis functions φi to be orthonormal, then
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(B.2.1) may be written as

ℓ∑

i=1

ȧi(t)φi = L[

ℓ∑

i=1

ai(t)φi] + f(~ξ, t) + r(

ℓ∑

i=1

ai(t)φi), (B.2.2)

where r is a residual function describing the error in the equation approximation
caused by the use of a truncated approximation of u itself. Note that (B.2.2) is
exact, in that it is formally equivalent to the starting equation (B.2.1). In general, r
is unknown and non-zero. The task of ROM is then to determine basis functions
{φi}ℓi=1 such that the original equation (B.2.1) are satisfied as good as possible by
minimizing the residual r, viewed as a function on Ω × T, in some well-defined
sense. Due to the orthonormality of the basis functions, by projecting the equation
(B.2.2) onto the span{φi, i = 1, . . . ℓ}, the time-coefficients {aj(t)}ℓj=1 satisfy

ȧj(t) =
(

L[
∑ℓ

i=1 ai(t)φi] + f(~ξ, t), φj

)
+

(
r(

∑ℓ
i=1 ai(t)φi), φj

)
. (B.2.3)

Requiring r to satisfy the Galerkin projection condition,
(

r(
∑ℓ

i=1 ai(t)φi), φj

)
=

0, w.r.t. all {φi}ℓi=1 and for all times t ∈ T, the coefficients aj(t) are determined as
the solutions of the ODE system

ȧj(t) =
(

L[
∑ℓ

i=1 ai(t)φi] + f(~ξ, t), φj

)
. (B.2.4)

Conversely, solving (B.2.4) for all ai(t) exactly for all times t yields the Galerkin
projection condition.

Initial conditions for reduced model

A description of a dynamic system is not complete without specified initial con-

ditions. Let u(~ξ, 0) = g(x) be the initial condition of the PDE (B.2.1). The initial
condition ai(0) for the ODE system (B.2.4) is then obtained simply by projecting
the PDE initial condition onto the corresponding POD mode, i.e.

ai(0) = (g, φi). (B.2.5)

Initial conditions involving higher-order time-derivatives (i.e., when the PDE it-
self involves utt, uttt, etc.) are translated to initial ODE conditions in the similar
way. For instance, for a PDE involving utt, an initial condition ∂u

∂t
(~ξ, 0) = h(~ξ) is

transformed into the corresponding ODE initial condition by ȧi(0) = (h, φi).

Example B.2.1. (Diffusion equation: single-phase 1D compressible reservoir pres-
sure equation)

∂p

∂t
(x, t) = κ

∂2p

∂x2
(x, t) (B.2.6)

p(x, 0) = g(x),

with κ = k
ϕµct

hydraulic diffusivity of the porous medium, k and ϕ the perme-

ability and the porosity of the medium, respectively, µ the viscosity of the fluid,
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and ct the total compressibility (ct = cf + cr, with cf and cr the fluid and the
rock compressibility, respectively). For a pressure independent diffusivity (N.B. κ
is then constant in time only, i.e. it may be nonuniform spatially), approximation

p(x, t) ≃
∑ℓ

i=1 ai(t)φi(x) yields the (linear) dynamics for the coefficients equations

ȧj(t) =
(

κ
∑ℓ

i=1 ai(t)
∂2φi(x)

∂x2 , φj(x)
)

. (B.2.7)

ai(0) = (g, φi).

If diffusivity is a function of the pressure, i.e. κ = κ(p), one should replace κ with

κ̂ := κ(
∑ℓ

i=1 ai(t)φi(x)), denoting the fact that the diffusivity is approximated as
well. Thus, in general case one should write

ȧj(t) =
(

κ̂
∑ℓ

i=1 ai(t)
∂2φi(x)

∂x2 , φj(x)
)

. (B.2.8)

ai(0) = (g, φi).

Note that in the linear case, the inner product (B.2.7) could be evaluated a priori,
i.e. prior to the use of the reduced order model. More specifically, one would

need to compute all inner products 〈∑ℓ
i=1

∂2φi

∂x2 , φj〉 for all i, j ∈ {1, . . . , ℓ}, only
once2, and one would not need φ’s any further. On the other side, when the dif-

fusivity is pressure dependent, κ(
∑ℓ

i=1 ai(t)φi(x)) need to be evaluated at every
time-step during the simulation of the reduced model (B.2.8), so φ’s needs to be
kept and used all the time. This fact is a major obstacle in achieving a considerable
reduction of CPU-time in the general non-linear case.

2The same would also be true in a hypothetical (nonlinear) case of a κ being a polynomial functions

of pressure, i.e. κ :=
Ps

i=1 diφ
ri
i , whereby extra inner products of the type diφ

ri
i φj = {djφ

rj+1

j if i =

j, and 0 otherwise} would appear.
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[184] Markovinović, R., Geurtsen, E.L., Heijn, T., and Jansen, J.D., Generation of
low-order reservoir models using POD, empirical gramians and subspace identifi-
cation, 8th European Conference on the Mathematics of Oil Recovery - EC-
MOR VIII, Freiberg, Germany, Sept 3-6 2002.
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Glossary

H(s) LTI SISO transfer function (s=Laplace variable)
J Objective function
Lc Controllability energy function
Pc (here water-oil) capillary pressure [Pa]
Pd entry capillary pressure [Pa]
SN,α normalized phase saturation [−]
Sαr residual saturation of phase α [−]
Sα saturation of phase α [−]
Ψα phase potential [Pa]
αicv interval control valve parameter [−]
Φ POD projection matrix
Cn Controllability matrix
H Hankel matrix
Hc continuous-time Hankel operator
Hd discrete-time Hankel operator
K denotes a Krylov subspace
On Observability matrix
λ Vector of Lagrange multipliers
φ POD basis function
λα mobility of phase α [ 1

Pa·s ]
λi A pole of an LTI system
µα viscosity of phase α [Pa · s]
ω well-index, but also frequency

ρα density of phase α [ kg
m3 ]

σi A Hankel singular value of an LTI system
K permeability tensor [m2]
P Permutation Matrix
R State snapshots correlation matrix
Wc Controllability Gramian
X State snapshots matrix
uα phase α velocity vector [m

s
]

ϕ rock porosity [−]

α (as subscript) fluid phase indicator (α = w, o)
ct total compressibility [ 1

Pa
]

fα fractional flow of phase α [−]
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g gravitational acceleration constant, 9.81 [ m
s2 ]

krα relative permeability of phase α [−]
k0

rα phase α relative permeability end point [−]
nα empirical coefficient [−] in the Brooks-Corey re-

lation for the relative permeability of phase α
pα pressure of phase α [Pa]
pwf (bottom-hole) well flowing pressure [Pa]

qα well flow-rate of phase α [ kg
m3s

]
A(x),E(x) state-dependent matrices
A,B,E constant matrices describing LTI dynamics
Ar reduced-order system matrix
C,D constant matrices describing LTI output
H(s) LTI MIMO transfer function matrix
I Identity matrix
Lqu input location matrix
V(x),W(x),T(x),F(x) state-dependent two-phase flow matrices
V,W matrices spanning projection subspaces
f(x,u),g(x,u) state and input dependent vector fields
x,u,y (dynamical) system state-,input/control- and

output vector, resp.

AIM Adaptive Implicit Method

BTR Balanced Truncation

CVOD Centroidal Voronoi Orthogonal Decomposition
CVT Centroidal Voronoi Tessellation

EnKF Ensemble Kalman Filter
EOF Empirical Orthogonal Functions
EVD Eigenvalue Decomposition

GLRAM Generalized Low-Rank Approximation of Ma-
trices

HM History Matching
HMR Hybrid Model Reduction
HSVs Hankel Singular Values

ICCG Incomplete Cholesky Conjugate Gradient
IMPES IMplicit-Pressure Explicit-Saturation

KL Karhunen-Loeve
KS Krylov Subspace

LR-ADI Low-Rank Alternating Direction Iteration
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LTI Linear Time-Invariant
LTV Linear Time-Varying

MIMO Multiple-Input Multiple-Output
MOR Model Order Reduction
MTR Modal Truncation

NPV Net Present Value [$]

ODE Ordinary Differential Equation

PCA Principal Component Analysis
PDE Partial Differential Equation
PID Principal Interval Decomposition
POD Proper Orthogonal Decomposition

SISO Single-Input Single-Output
SPA Singular Perturbation Approximation
SVD Singular Value Decomposition

TFMM Transfer Function Moment Matching
TPWL Trajectory-based PieceWise Linear
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Markovinović, R., Geurtsen, E.L., and Jansen, J.D., Subspace identification of low-
order reservoir models, XIV International Conference on Computational Methods in
Water Resources, June 23-28, Delft, The Netherlands, p.281-288.

185



186 List of Publications
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Markovinović, R., Jansen, J.D. and Rommelse, J.R., Reduced representations in reser-
voir simulation - extending POD to include more general optimality conditions, In: Proc.
9th European conference on the mathematics of oil recovery (ECMOR IX), EAGE,
Houten, The Netherlands, 2004, pp. B10–1–B10–6.
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Summary

This thesis is concerned with low-order modeling of heterogeneous reservoir sys-
tems for the purpose of efficient simulation and optimization of flooding processes
with multiple injection and production (smart) wells. Other important applica-
tions of low-order representations could e.g. be in the regularization of inversion
procedures for identification of reservoir properties and/or for optimal placement
of wells. Typically, and in order to incorporate ’as much physics as possible’, one is
initially equipped with a large-scale physics-based (or ’white-box’) model consist-
ing of O(103 − 106) equations and parameters representing a (coupled) system of
discretized PDEs (Chapter 2) defined on a geometric grid. Low-order approxima-
tions of such models are traditionally generated by ”grid-coarsening” methods,
which range from conventional upscaling to various multiscale techniques.

The methodology undertaken in this research is fundamentally different, in
that none of the model-order reduction (MOR) approaches and techniques pre-
sented employs any coarse-grid approximation of the fine-grid problem. Instead,
the reduced-order models are here based on ’system-theoretic’ and dynamically-
intrinsic properties of the fine-scale system. In single-phase flow problems that
can be modeled as linear time-invariant state-space systems these properties are,
e.g., the system’s transfer function in the Laplace domain, the eigenstructure of the
system matrix, or controllability and observability of the (particular state-space
realization of the) system. For multi-phase flow problems, resulting in nonlinear
state-space models, due to both the size and the overall complexity of these sys-
tems (moving fluid interfaces, coupled flow and transport), intrinsic information
needs to be sought in data obtained by simulating the fine-scale model. The con-
tribution of this thesis can be divided into three main themes, summarized below.

Standard ’projection-based’ MOR

For slightly compressible single-phase fluid flow, the performance is assessed
of Modal Truncation (MTR), Singular Perturbation Approximation (SPA) (or ’resid-
ualization’), Transfer Function Moment Matching (TFMM), and Balanced Truncation
(BTR). For two-phase (waterflood) flow, the so-called Proper Orthogonal Decompo-
sition (POD) technique is employed, a data-driven technique that guarantees op-
timal approximation of the collected data in the mean square error sense. All the
methods, except the residualization, are projection-based, meaning that a macro-
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model of the original large-scale dynamical system is generated by projecting it
onto some low-dimensional subspace. The numerical tests show that these tech-
niques can produce accurate reduced-order models of very low order. In water-
flood applications, the tests indicate that the POD approach is quite robust against
non-training input signals if the snapshots are generated by exciting the system
through manipulation of the injection and/or production profiles consistent with
the expected range of operating conditions.

Acceleration of solving the fine-scale problem

In iterative numerical methods for solving nonlinear evolution problems, the ini-
tial solution guess is usually taken to be equal to the last time-step solution. The
POD-based algorithm developed in this study determines the initial guess by us-
ing a regularly updated reduced-order model. The solution of the reduced-order
model can be interpreted as a ‘shadow’ running in parallel with the solution of
high-order model. When applied to two-phase (incompressible) flow in an IMPES
(IMplicit Pressure Explicit Saturation) formulation, the method seems to result in
an improved computational efficiency except in pathological cases with steady-
state inputs and near-time invariant (state-dependent) parameters. The method
seems to be particularly attractive for problems with time-varying parameters or
time-varying source terms.

Acceleration of adjoin-based waterflooding optimization

Modern approaches in reservoir optimization often require performing many re-
servoir flow simulations. The nested-loops iterative strategy developed in this
study (jointly with J.F.M. van Doren) aims at speeding-up adjoint-based water-
flooding optimization by employing a truncated POD-basis in the inner loop to
calculate optimized injection and production rates. After convergence in this loop,
the high-order model is simulated in the outer loop with the improved rates ob-
tained in the inner loop. An adapted POD basis is used in the next inner loop
to calculate new optimized injection and production rates, etc. In the numerical
example, the NPV obtained by the full-order optimal control algorithm was ap-
proached closely by the NPV obtained by the reduced-order algorithm within a
shorter simulation time.



Samenvatting

Dit proefschrift houdt zich bezig met het bepalen van lage-orde modellen van he-
terogene ondergrondse reservoirsystemen met als doel een efficiënte simulatie en
optimalisatie van ’waterflooding’ processen met meerdere injectie- en productie
(’inteligente’) putten. Andere denkbare toepassingen van lage-orde modellen zijn
bijvoorbeeld de regularisatie van inversieprocedures voor identificatie van reser-
voirkenmerken (parameters and toestandsvariabelen) en/of voor optimale posi-
tionering van putten. Men heeft initiëel typisch beschikking over een grootscha-
lig ’physics-based’ (of ’white-box’) model, welk meestal een systeem van ruimte-
lijk gediscretiseerde (gekoppelde) partiële differentiële vergelijkingen (PDEs) is,
bestaand uit O(103 − 106) vergelijkingen en parameters gedefi-niëerd op een fijn
geometrisch grid. Lage-orde benaderingen van zulke modellen worden tradition-
eel gegenereerd met ”grid-coarsening’ technieken, die lopen van de conventionele
opschaling tot meer recente multiscale technieken.

Dit proefschrift benadert het problem volkomen anders, in de zin dat geen
van de gepresenteerde methoden gebruik maakt van enige grof-grid represen-
tatie van het fijne-grid probleem. In plaats daarvan worden de lage-orde mo-
dellen hier bepaald op basis van ’systeem-theoretische’ en dynamisch-intrinsieke
eigenschappen van het fijne-grid probleem. Voor éénfase stroming gemodelleerd
als een lineair tijdsinvariant toestandssysteem zijn deze eigenschappen o.a. de
systemoverdrachtsfunctie in het Laplace domain, de eigenstruktuur van de sys-
teemmatrix, of de regelbaarheid en observeerbaarheid van (de gegeven toestands-
realisatie van) het systeem. Voor meerfasestromingsproblemen maken de niet-
lineariteit, de omvang, en de algehele komplexiteit van deze systemen (bewe-
gende vloeistofgrensvlakken, gekoppelde stroming en transport) het noodzakelijk
intrinsieke informatie te zoeken in fijn-grid simulatiedata. De belangrijkste bijdra-
gen en bevindingen van dit proefschrift kunnen in drie hoodthema’s ingedeeld
worden, opgesomd hieronder.

Standaard ’projectie-gebaseerde’ model-orde reductie (MOR)

Voor zwak samendrukbare éénfase stroming worden de kenmerken en de presta-
ties van de volgende methoden onder de loep genomen: Modal Truncation (MTR),
Singular Perturbation Approximation (SPA) (of ’residualisatie’), Transfer Function Mo-
ment Matching (TFMM), en Balanced Truncation (BTR). Voor tweefasen (water/oil)

189



190 Samenvatting

stroming kan de zogeheten Proper Orthogonal Decomposition (POD) worden ge-
bruikt, een op data gebaseerde techniek die de kleinste gemiddelde kwadratische
fout in de approximatie van de data garandeert. Al deze methoden, op de resid-
ualizatie na, zijn projectie-gebaseerd, hetgeen wil zeggen dat er een macromodel
van het originele grootschalige dynamische systeem mee wordt gegenereerd door
het laatste op laagdimensionele deelruimtes te projecteren. De numerieke voor-
beelden tonen aan dat met deze methoden nauwkeurige lage-orde modellen gege-
nereerd kunnen worden. In waterflooding applicaties blijkt de POD vrij robuust
met betrekking tot voor het genereren van de data (’snapshots’) niet-gebruikte in-
gangssignaalvormen (injectie- en/of productieprofielen) indien de snapshots ge-
genereerd worden met ingangsprofielen die consistent zijn met de verwachte span
van exploatatiecondities.

Versnelling van het oplossen van het fijne-schaal probleem

In iteratieve numerieke methoden voor het oplossen van niet-lineaire tijdsafhanke-
lijke dynamische problemen wordt voor de initiele schatting voor de oplossing
meestal de voorgaande oplossing genomen. Het op POD-gebaseerde algorithme
beschreven in dit proefschrift bepaalt de initiële schatting met behulp van een
regelmatig bijgewerkt lage-orde model. De oplossing van het gereduceerde-orde
model kan worden opgevat als een ’schaduw’ die parallel loopt met de oplossing
van het hoge-orde model. Toegepast op tweefasen (onsamendrukbare) vloeistof-
stroming in een IMPES (IMplicit Pressure Explicit Saturation) formulering schijnt
de methode in een verbeterde rekenefficiëntie te resulteren met als uitzondering
pathologische gevallen met steady-state inputsignalen en nagenoeg tijdsinvari-
ante (toestandsafhankelijke) parameters. Meer winst lijkt haalbaar voor proble-
men met tijdsvarirende parameters of tijdsvariërende brontermen.

Versnelling van adjoint-gebaseerde waterflood optimization

Moderne methoden voor reservoir optimalisatie vereisen vaak een aanzienlijk
aantal simulaties. De geneste lus iteratieve strategie uit dit proefschrift (ontwik-
keld in samenwerking met J.F.M. van Doren) versnelt adjoint-gebaseerde water-
flooding optimalisatie met gebruikmaking van een afgekapte POD basis in de
binnenlus om verbeterde injectie- en productiedebieten te berekenen. Na de con-
vergentie in deze lus wordt met deze verbeterde debieten het hoge-orde model
gesimuleerd in de buitenlus. Voor het berekenen van nieuwe verbeterde injec-
tie en productiedebieten wordt in de volgende binnenlus een aangepaste POD-
basis gebruikt, etcetera. In numerieke voorbeelden ligt de op deze manier geop-
timaliseerde NPV dicht bij de NPV verkregen door het volle-orde ’optimale con-
trole’ algoritme, terwijl de totale simulatietijd in de geneste lus methode verkort
wordt.
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