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Preface 
Dear	reader,		
	
This	 thesis	marks	 the	end	of	a	2-year	 journey	at	 the	Delft	University	of	Technology.	As	 for	many	students,	
and	 almost	 too	 cliché	 to	 put	 on	 paper	 in	 this	 section	 (but	 I	 will	 do	 it	 anyway),	 it	 has	 been	 struggle,	 an	
iterative	process	of	 learning,	 a	process	of	 confrontations	with	my	 self,	 and	a	process	with	 great	 reward.	 I	
would	like	to	express	my	sincere	gratitude	for	everyone’s	support	over	the	past	2	years	and,	especially,	the	
last	months.	But	first,	a	note.	
	
This	thesis	started	even	before	I	started	the	Engineering	and	Policy	Analysis	master.	Technology	is	developed	
at	 an	 accelerating	 pace	 and	 increasingly	 changing	 the	 world	 we	 live	 in.	 This	 provides	 opportunities	 and	
challenges.	 Depending	 on	 your	 position	 and	 perspective	 these	 developments	 may	 be	 favourable	 or	
threatening,	 opportune	 or	 inauspicious,	 and	 motivating	 or	 discouraging.	 This	 may	 seem	 somewhat	
overstated,	but	technology	is	becoming	more	and	more	human	like	and	will	change	how	we	work	and	who	
has	work.	Prior	to	the	master,	 I	worked	for	a	company	that	develops	advanced	robotics	 for	automation	of	
specialised	and	sensorimotor-depended	manual	labour.	In	general,	the	systems	would	replace	employees	in	
production	 and	 design.	 In	 nearly	 all	 cases,	 these	 employees	would	 be	 trained	 to	 operate	 the	 systems	 or	
would	 be	 transferred	 to	 other	 products	 and	 tasks.	 The	 employees	 were	 often	 low	 educated	 and	 clearly	
needed	to	do	their	utmost	best	to	understand	how	the	system	worked	and	how	to	(safely)	operate	it.	In	this	
sense,	 rarely	 did	 a	 company	 fire	 its	 staff	 due	 to	 replacement.	 Yet,	 one	 day	 this	 sparked	 an	 important	
question.	 What	 if	 this	 technology	 will	 (eventually)	 replace	 these	 people,	 what	 if	 this	 technology	 at	 the	
forefront	will	become	widely	adopted,	and	what	if	similar	technologies	emerge	to	perform	a	far	wider	range	
of	 labour?	 These	 were	 not	 necessarily	 moral	 or	 ethical	 dilemmas,	 but	 they	 sparked	 an	 interested	 in	 the	
broader	context,	the	potential	problems,	and	especially	the	opportunities.	And	here	we	are	now,	an	attempt	
in	contributing	to	the	scientific	understanding	and	societal	knowledge	on	what	may	lie	ahead.	
	
As	all	whom	have	been	involved	in,	and	supportive	of,	this	thesis	process	know,	it	has	been	inspiring	but	a	
long	 challenge.	 I	would,	 especially,	 like	 to	 thank	Erik	 Pruyt,	 Servaas	 Storm,	 and	 Jeroen	 van	den	Hoven	 for	
their	continued	support,	understanding,	and	motivating	words	 to	deliver	 the	quality	 I	pursued.	Erik,	as	my	
first	 supervisor,	 has	 been,	 as	 always,	 an	 inspiration	 and	 energy	 boost	 with	 his	 limitless	 enthusiasm	 and	
motivation.	Servaas	Storm,	as	my	second	supervisor,	provided	healthy	criticism	throughout	the	process	and	
the	 occasional	 reality	 checks	 when	 necessary.	 	 And	 Jeroen	 van	 den	 Hoven	 for	 being	 the	 chair	 of	 my	
committee	and	introducing	the	broader	societal	and	political	backbone	of	this	work.		
		
I	would	like	to	thank	the	EPA	students,	with	whom	I	jointly	went	through	a	2-year	learning	curve	of	hurdles	
and	challenges,	for	their	moral	support,	inspiration,	and	comradery.	Guru	for	his	enthusiasms,	dedication	to	
always	go	one	step	further,	and	occasional	pc	lending	service.	Erin,	Ellen,	and	Patrick	for	moral	support	and	
the	occasional	pressure	relief.			
	
Lastly,	 I	 would	 like	 to	 thank	 my	 family	 for	 their	 support,	 occasional	 dinner	 service,	 and	 advice.	 And	 in	
particular,	Marit	for	being	there	with	me	during	the	whole	process	and	providing	the	required	pep	talks.		
	
I	 do	 hope,	 dear	 reader,	 that	 you	 will	 enjoy	 reading	 this	 thesis.	 I	 also	 hope	 it	 can	 contribute	 to	 our	
understanding	 of	 the	 challenges	 we	 face,	 motivate	 future	 research	 and	 policy	 intervention,	 and	 undo	
common	misconceptions	revolving	round	the	threat	of	robotisation.	
	
Koen	Spaanderman	
Oktober	2018	
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Executive Summary 
Technological	 progress	 and	 innovation	 have	 significantly	 contributed	 to	 global	 economic	 growth,	 societal	
advancement,	and	higher	living	standards.	However,	there	is	growing	concern	over	the	future	that	lies	ahead	
because	 of	 increasing	 robotisation	 and	 progress	 in	 artificial	 intelligence	 (AI),	 which	 are	 feared	 to	 cause	
significant	 loss	 of	 labour	 demand.	 The	 body	 of	 posterior	 economic	 scientific	 work	 addressing	 this	 topic	
mostly	 concludes	 on	 a	 positive	 note.	 Namely,	 recent	 technological	 advancements	 have	 resulted	 in	 a	 net	
increase	in	labour	demand,	but	this	demand	is	redistributed	to	different	tasks	and	occupations.	Yet,	future	
oriented	research,	most	notably	by	Frey	and	Osborne	 (2017),	has	sparked	a	debate	on	 the	 future	of	work	
due	 to	 estimations	 that	 indicate	 that	 over	 40%	 of	 jobs	 will	 become	 automatable	 in	 the	 next	 20	 years.	
Therefore,	 the	 societal	 question	 remains:	 Robots	 and	 Artificial	 Intelligence,	 the	 new	 economic	 motor	 or	
downfall	of	the	working	class?	
	
In	consideration	of	this	context,	the	future	effect	of	advanced	information	and	robotic	technology	(IT	and	RT)	
on	 labour	 substitution,	 unemployment,	 and	 labour	 force	 adaptability	 has	 been	 studied	 using	 dynamic	
simulation	 following	 the	 Robust	 Decision	Making	 (RDM)	 framework.	 The	 technological	 change	 and	 labour	
substitution	 framework	 literature	 (Task	 Based	 Technological	 Change	 (TBTC)	 and	 Routine	 Replacing	
Technological	Change	(RRTC))	was	synthesized	with	a	systems	approach	to	conceptualise	and	operationalise	
a	 future-oriented	 model	 to	 simulate	 plausible	 future	 labour	 market	 outcomes	 in	 relation	 with	 future	
technological	 advancements.	 This	model	 has	 been	 operationalised	with	 System	 Dynamics	 (SD),	 simulated	
using	 Exploratory	 Modelling	 and	 Analysis	 (EMA),	 and	 analysed	 using	 the	 Patient	 Rule	 Induction	 Method	
(PRIM)	 algorithm	 to	 determine	 plausible	 future	 unemployment	 and	 potential	 for	 policy	 intervention	 in	
relation	with	technological	change	and	associated	uncertainties	to	answer,		
	

To	what	extend	 is	the	 labour	force	capable	of	adapting	to	 labour	substitution	by	advanced	robotics	
and	artificial	intelligence,	and	can	be	incentivised	to	do	so,	to	mitigate	future	unemployment?	

Future unemployment is highly unlikely to reach beyond current unemployment levels 

Simulation	 across	 a	 variety	 of	 future	 scenarios1	with	 increasing	 automatibility	 and	 labour	 substitution	
(compared	 to	 the	 current	 rate)	 illustrate	 that	 acceleration	 of	 unemployment	 is	 unlikely,	 except	when	 the	
substitution	 rate	 3-	 to	 4-folds	 in	 the	 next	 20	 years	 (from	 the	 current	maximum	 annual	 rate	 of	 0.51%	 of	
labour	 hour	 demand,	 or	 approximately	 10%	 in	 20	 years).	 Although	 technological	 automatibility	 (i.e.	 the	
ability	of	 technology	 to	automate	and	 replace	human	 labour	 input	 in	 tasks)	may	develop	at	 this	pace,	 the	
implementation	 of	 technology	 and	 the	 substitution	 of	 labour	 takes	 considerably	 longer	 due	 to	 financial,	
technological,	competitive,	legal,	social,	sectoral,	and	structural	factors	(Arntz,	Gregory,	and	Zierahn	(2016),	
Brynjolfsson,	Rock,	and	Syverson	(2017)).	Moreover,	the	outcomes	for	the	Netherlands	suggest	that	only	in	
adverse	 conditions	 where	 labour	 input	 in	 abstract	 tasks	 is	 substituted	 in	 addition	 to	manual	 and	 routine	
tasks,	 that	 unemployment	will	 significantly	 rise	 above	 current	 levels	 (i.e.	 a	 combination	 of	 2-	 to	 3-fold	 of	
manual	and	routine	task	 input	substitution	at	1.41%	annually	and	abstract	task	 input	substitution	of	0.57%	
annually).	 In	contrast,	the	literature	highlights	that	 it	 is	highly	 improbable	that	abstract	tasks	-	that	employ	
the	high	skilled	labour	force	-	will	be	automatable	due	to	the	social,	communicative,	creative,	intuition,	and	
inductive	 reasoning	 aspects	 of	 these	 tasks	 (Arntz,	Gregory,	 and	 Zierahn	 (2016),	 Frey	 and	Osborne	 (2017),	
Nedelkoska	and	Quintini	(2018)).	As	a	result,	the	total	substituted	labour	input	of	abstract	tasks	is	expected	
to	be	around	1-1.5%	over	the	next	20	years.	Hence,	this	combination	of	manual,	routine,	and	abstract	task	
labour	input	substitution	conflicts	with	the	current	scientific	consensus.	Therefore,	based	on	the	outcomes	it	
is	concluded	that	technological	advancement	is	highly	improbable	to	result	in	future	unemployment	growth	
in	the	Netherlands	–	even	if	the	substitution	rate	grows	considerably.		

																																																													
1	Gregory,	Salomons,	and	Zierahn	(2016),	Frey	and	Osborne	(2017),	Arntz,	Gregory,	and	Zierahn	(2016),	Nedelkoska	and	Quintini	
(2018),	and	Deloitte	(2016)	
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Labour force adaptability though labour reallocation and skill attainment are central to 
remain at current unemployment levels 

This	study	shows	that,	although	 labour	may	become	 increasingly	substitutable	by	technology,	 labour	 force	
adaptability	via	labour	supply	reallocation	and	skill	attainment	will	be	able	to	successfully	counteract	the	loss	
of	employability	in	most	but	the	extreme	cases.	As	a	result,	the	unemployment	rate	remains	low	(2-6%)	and	
near	or	below	current	unemployment	 levels	 relative	 to	 the	 ratio	of	 substituted	 labour.	The	adaptability	of	
the	labour	force	under	these	conditions	does	require	that	approximately	1.0%	of	the	low,	middle,	and	high	
skilled	labour	force	needs	to	be	reskilled	to	work	with	future	technology	and	approximately	2.3%	of	the	low	
skilled	 and	 7.9%	 of	 the	 middle	 skilled	 labour	 force	 needs	 to	 be	 upskilled	 in	 the	 next	 20	 years	 in	 the	
Netherlands.	 Furthermore,	 spill-over	 effects	 that	 arise	 because	 of	 productivity	 growth	 associated	 with	
technological	change	may	further	offset	the	substituted	labour	demand	loss.	Yet,	it	should	be	noted	that	this	
productivity	 growth	 has	 failed	 to	 materialise,	 resulting	 in	 an	 observed	 Solow	 paradox	 between	 the	
technological	 advancement	 we	 observe	 and	 simultaneous	 stagnation	 of	 productivity	 growth.	 Hence,	
ensuring	 accessibility	 of	 education,	 incentivisation	of	 skill	 attainment,	 and	 adequately	 equipped	education	
systems	is	key	and	a	shared	responsibility	of	governments	and	businesses.		

Inequality will continue to grow across all future scenarios 

In	 respect	of	 both	 inequality	 and	policy	making,	 the	outcomes	highlight	 that	 growing	unemployment	 as	 a	
result	 of	 technological	 advancement	 is	 highly	 unlikely,	 even	when	 treating	 substitution	 as	 being	 equal	 to	
automatibility.	 	 In	contrast,	 the	outcomes	concerning	 the	wage	share	point	 to	a	continuous	decline	of	 the	
position	of	the	labour	force	in	respect	of	economic	growth	and	growing	inequality.	The	outcomes	point	to	a	
continuation	 of	 the	 current	 trend	 of	 a	 reduction	 of	 the	 labour	 share	 of	 0.3%	 annually	 or	 acceleration	 to	
0.58%	 or	 higher.	 Hence,	 inequality	 should	 be	 at	 the	 centre	 of	 the	 policy	 debate	 given	 the	 societal	
implications	associated	with	inequality.	In	respect	of	this	study	and	its	fundamental	academic	underpinnings,	
future	 attention	 should,	 therefore,	 shift	 to	 integrally	 studying	 inequality	 resulting	 from	 technological	
advancement.	To	conclude	and	in	consideration	of	the	title	of	this	thesis,	IT	and	RT	will	not	be	the	downfall	
of	the	working	class	in	terms	of	employment	and	will	only	become	the	economic	motor	if	the	Solow	paradox	
ceases	to	exist.	Yet,	 the	question	that	needs	to	be	raised	for	future	research,	 is	whether	the	working	class	
will	share	in	the	economic	outcomes	that	technology	may	bring.	
	
	



TU Delft EPA  |  K Spaanderman   

	 vii	

List of Figures 
Figure	1	Research	Flow	Diagram	 8 
Figure	2	Conceptual	model	overview	 15 
Figure	3	Production	is	a	combination	of	occupations	comprising	a	set	of	tasks	 16 
Figure	4	Universal	population	model	per	skill	level	 25 
Figure	5	Schematic	population	model	including	natural	aging	flows,	re-skilling,	and	upskilling	for	six	skill	levels	 26 
Figure	6	Expanded	schematic	population	model	for	the	male	and	female	population	 28 
Figure	7	Occupations	and	the	relation	between	skill	levels	and	tasks	on	an	open	market	 36 
Figure	8	Semi-open	labour	market	 37 
Figure	9	Semi-isolated	labour	market	 37 
Figure	10	Aggregate	probability	of	‘high-level	machine	intelligence’	arrival	by	future	years	(source:	Grace,	Salvatier,	Dafoe,	Zhang	&	Evans,	2018,	p.1)	 55 
Figure	11	TFP	development	in	the	Netherlands,	source:	Elbourne	&	Grabska	(2016)	 62 
Figure	12	The	future	position	of	labour	in	production?	 63 
Figure	13	Conceptual	model	overview	with	feedback	mechanisms	 64 
Figure	14	SD	model	overview	 66 
Figure	15	OECD	Economic	growth	analysis	and	prospect	based	on	OECD	data	(2018)	 68 
Figure	16		SD	Model	–	Economic	growth	 69 
Figure	17	SD	Model	–	Labour	input	 69 
Figure	18	SD	Model	–	Male	population	 70 
Figure	19		SD	Model	–	Wage	allocation	(left)	and	Unemployment	allocation	(right)	 70 
Figure	20	SD	Model	–	Task	Labour	market	 71 
Figure	21	SD	Model	–	Working	wage	education	 72 
Figure	22	SD	Model	–	Working	wage	education	 73 
Figure	23	Corrected	initial	population	 74 
Figure	24	Sampled	Economic	growth	based	on	OECD	base	line	and	projection	function	in	Table	3	 76 
Figure	25	Demographic	skill	level	development	students	 78 
Figure	26	Model	Population	Behaviour	validation:	Total	population	 80 
Figure	27	Unemployment	projections	εM	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	 87 
Figure	28	Unemployment	projections	for	uncertainty	B	for	all	skill	levels	(Overview	per	5	years)	 89 
Figure	29	Unemployment	projections	for	the	Netherlands	across	uncertainties	A,	C,	D,	and	G	(Table	4)	for	all	skill	levels	 91 
Figure	30	Unemployment	projections	for	the	Netherlands	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	for	all	skill	levels	 95 
Figure	31	Unemployment	projections	for	the	Netherlands	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	 96 



TU Delft EPA  |  K Spaanderman   

	 viii	

Figure	32	Wage	share	projections	for	uncertainty	A,	C,	D,	and	G	(model	IV)	 100 
Figure	33	Expanded	conceptual	model	with	black	boxes	and	relevant	exogenous	factors	 111 
Figure	34	SD	model	-	Education	model	overview	 140 
Figure	35	SD	model	–	Demographic	model	overview	(Population	(1)	and	Labour	force	(2))	 141 
Figure	36	SD	model	–	Labour	market	model	overview	 142 
Figure	37	SD	model	-	Production	model	overview	 142 
Figure	38	SD	model	-	Technology	model	overview	 143 
Figure	39	SD	Model	–	Enlarged	Children	education	 144 
Figure	40	SD	Model	–	Enlarged	Student	education	 145 
Figure	41	SD	Model	–	Enlarged	Working	age	training	 146 
Figure	42	SD	model	–	Birth	component	 147 
Figure	43	SD	Model	–	Male	population	 148 
Figure	44	SD	Model	–	Female	population	 149 
Figure	45	SD	model	–	Labour	force	and	labour	supply	allocation	(sample	of	component	per	skill	level	per	age	cohort)	 149 
Figure	46	SD	model	–	Labour	market	(sample	of	component	per	task)	 150 
Figure	47	SD	model	–	Labour	market	supply	reallocation	based	on	wages	 150 
Figure	48	SD	model	–	Labour	market	supply	reallocation	based	on	unemployment	 151 
Figure	49	SD	model	–	Production	model	labour	input	with	spill-overs	and	routinisation	(sample	of	component	per	task)	 152 
Figure	50	SD	model	–	Production	model	corrected	economic	growth	projection	with	feedback-mechanisms	 153 
Figure	51	SD	model	–	Production	model	Labour	share,	TFP,	innovation		investment,	and	total	wage	income	 154 
Figure	52	SD	model	–	Technology	model	(sample	of	component	per	task)	 155 
Figure	53	OECD	Economic	growth	inter-recession	fluctutation	 156 
Figure	54	Initial	5-year	age	cohort	demographic	representation	 157 
Figure	55	Incorrect	initial	population	 157 
Figure	56	Corrected	initial	population	 158 
Figure	57	Behaviour	Anomaly	Test	using	substitution	estimates	from	Gregory,	Salomons,	and	Zierahn	(Gregory,	Salomons	&	Zierahn,	2016)	 159 
Figure	58	Behaviour	Anomaly	Test	using	substitution	estimates	from	Frey	and	Osborne	(Frey	&	Osborne,	2017)	 160 
Figure	59	Behaviour	Anomaly	Test	using	substitution	estimates	from	Arntz,	Gregory,	and	Zierahn	(Arntz,	Gregory,	Zierahn,	2016)	 161 
Figure	60	Behaviour	Anomaly	Test	using	substitution	estimates	from	Nedelkoska	and	Quintini	(Nedelkoska	&	Quintini,	2018)	 162 
Figure	61	Model	validation	Population	behaviour	under	different	settings	 163 
Figure	62	Model	validation	Births	behaviour	under	different	settings	 163 
Figure	63	Model	validation	Children	(CH)	Population	behaviour	under	different	settings)	 164 
Figure	64	Model	validation	Student	(ST)	Population	behaviour	under	different	settings	 165 
Figure	65	Model	validation	Young	Adult	(YA)	Population	behaviour	under	different	settings	 166 
Figure	66	Model	validation	Mature	Adult	(MA)	Population	behaviour	under	different	settings	 167 



TU Delft EPA  |  K Spaanderman   

	 ix	

Figure	67	Model	validation	Senior	Adult	(SA)	Population	behaviour	under	different	settings	 168 
Figure	68	Model	validation	Retired	(RE)	Population	behaviour	under	different	settings	 169 
Figure	69	Unemployment	projections	ξH	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	 181 
Figure	70	Unemployment	projections	εH	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	 181 
Figure	71	Unemployment	projections	ξM	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	 182 
Figure	72	Unemployment	projections	εM	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	 182 
Figure	73	Unemployment	projections	ξL	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	 183 
Figure	74	Unemployment	projections	εL	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	 183 
Figure	75	Unemployment	projections	ξH	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	 208 
Figure	76	Unemployment	projections	εH	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	 208 
Figure	77	Unemployment	projections	ξM	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	 209 
Figure	78	Unemployment	projections	εM	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	 209 
Figure	79	Unemployment	projections	ξL	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	 210 
Figure	80	Unemployment	projections	εL	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	 210 
Figure	81	Unemployment	projections	ξH	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	 217 
Figure	82	Unemployment	projections	εH	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	 217 
Figure	83	Unemployment	projections	ξM	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	 218 
Figure	84	Unemployment	projections	εM	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	 218 
Figure	85	Unemployment	projections	ξL	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	 219 
Figure	86	Unemployment	projections	εL	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	 219 
Figure	87	Unemployment	projections	ξH	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	 226 
Figure	88	Unemployment	projections	εH	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	 226 
Figure	89	Unemployment	projections	ξM	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	 227 
Figure	90	Unemployment	projections	εM	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	 227 
Figure	91	Unemployment	projections	ξL	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	 228 
Figure	92	Unemployment	projections	εL	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	 228 
Figure	93	PRIM	analysis	ξH		difference	automatibility	and	substitution	 230 
Figure	94	PRIM	analysis	εH		difference	automatibility	and	substitution	 232 
Figure	95	PRIM	analysis	ξM		difference	automatibility	and	substitution	 234 
Figure	96	PRIM	analysis	εM		difference	automatibility	and	substitution	 236 
Figure	97	PRIM	analysis	ξL		difference	automatibility	and	substitution	 238 
Figure	98	PRIM	analysis	εL		difference	automatibility	and	substitution	 240 
Figure	99	PRIM	analysis	ξM		above	current	levels	 244 
Figure	100	PRIM	analysis	εM		above	current	levels	 247 
Figure	101	PRIM	analysis	εM		unemployment	upper	quartile	 251 



TU Delft EPA  |  K Spaanderman   

	 x	

Figure	102	Re-skill	projections	εH	labour	force	 252 
Figure	103	Re-skill	projections	εM	labour	force	 252 
Figure	104	Re-skill	projections	εL	labour	force	 252 
Figure	105	Up-skill	projections	ξM	labour	force	 253 
Figure	106	Up-skill	projections	εM	labour	force	 253 
Figure	107	Up-skill	projections	ξL	labour	force	 253 
Figure	108	Up-skill	projections	εL	labour	force	 254 
	



TU Delft EPA  |  K Spaanderman   

	 xi	

List of Tables 
Table	1	Labour	market	skill	(supply)	-	task	(demand)	relation	LF → T	 38 
Table	2	Estimates	of	technological	automatibility	 61 
Table	3	Economic	growth	projection	function	 67 
Table	4	Estimates	of	technological	automatibility	for	the	Netherlands	 90 
Table	5	Education	factors	(based	on	Hanushek	&	Woessmann,	2016	and	Woessmann,	2016)	 122 
Table	6	Model	configuration	feedback	mechanism	parameter	settings	 170 
	

	
	 	



TU Delft EPA  |  K Spaanderman   

	 xii	

Contents 
Preface iv 

Executive Summary v 

List of Figures vii 

List of Tables xi 

Contents xii 

1 Introduction 1 
1.1 Societal relevance - The uncertainty revolving around future technological change 1 
1.2 Scientific relevance - Absence of consensus concerning the future 2 
1.3 Outline 3 

2 Research definition 5 
2.1 Research gap and research question 5 
2.2 Research process 6 

	

Part I Production, Demographics, Labour, Education, and Technology: a complex systems model 

3 The balance between substitution and spill-overs 10 
3.1 Labour substitution frameworks – How technology replaces labour 10 
3.2 Spill-over effects – How we benefit from technology 12 
3.3 Framework and spill-over synthesis and current situation 14 

4 Complex systems model introduction 15 

5 Production model 16 
5.1 A basic production function model 16 
5.2 A nested task-based production function model 18 
5.3 Production model synthesis 23 

6 Demographic model 24 
6.1 Structure of the population and labour force 24 
6.2 Demographic development in relation with technological change 28 
6.3 Demographic model synthesis 29 

7 Labour market model 30 
7.1 Participation of the population, income, and income utilisation 30 
7.2 The labour market 33 
7.3 The Labour market model 37 
7.4 Labour market model synthesis 39 

8 Education model 40 
8.1 Funding of education and training 40 
8.2 CH Primary and compulsory (secondary) education system 42 
8.3 ST Higher education system structure and model 46 
8.4 WA Training system structure and model 48 
8.5 Education model synthesis 50 

9 Technology model 51 
9.1 Information technology (IT) 52 
9.2 Robotic technology (RT) 55 
9.3 When IT and RT meet 57 
9.4 Technology model synthesis and relation to other models 59 



TU Delft EPA  |  K Spaanderman   

	 xiii	

10 Complex system model 64 
10.1 Conceptual model synthesis 64 
10.2 System Dynamics implementation 65 
10.3 Model properties 73 

11 Model testing 77 
11.1 Verification 77 
11.2 Validation 79 

	

Part II Case study of the Future impact of Robotics and AI on the Labour market in the Netherlands 

12 Model preparation and setup 83 
12.1 Model configurations and scenarios for exploration and policy identification 83 
12.2 Outcomes of interest and policy levers 84 

13 Exploration and Policy Identification 86 
13.1 The effects of labour force adaptability on future outcomes 87 
13.2 Exploration of future labour markets of the Netherlands under technological uncertainty 88 
13.3 Policy identification with PRIM 97 
13.4 Synthesis of simulation results 98 

	

Part III Synthesis of Findings 

14 Findings & Conclusions 102 

15 Discussion 104 
15.1 Globalisation and offshoring 104 
15.2 Societal and Social context 105 
15.3 Method and model limitations and future work 106 

References 112 

Data References 119 
	

Appendices 

I Education factors 122 

II Model Thesaurus and Dataset 124 

III SD Model 140 

IV OECD Economic growth inter-recession fluctuation 156 

V Demographic configuration 157 

VI Behaviour Anomaly Test 159 

VII Population Behaviour 163 

VIII SD Model configuration settings for feedback mechanisms 170 

IX Uncertainty Scenarios 171 

X EMA Python script Adaptibility 176 

XI Labour force adaptability effect 181 

XII EMA Python script Unemployment 184 

XIII Unemployment projections 208 



TU Delft EPA  |  K Spaanderman   

	 xiv	

XIV EMA Python script Solow Paradox 211 

XV Solow paradox projections 217 

XVI EMA Python script difference 220 

XVII Substitution difference projections 226 

XVIII Substitution difference analysis using PRIM 229 

XIX Policy identification using PRIM 241 

XX Required Re- and up-skilling 252 



TU Delft EPA  |  K Spaanderman   

	 1	

1 Introduction 
Technological	 progress	 and	 innovation	 have	 driven	 economic	 growth	 through	 productivity-	 and	 cost-	
advantages	 on	 a	 global	 scale	 across	 different	 periods	 (DeCanio,	 2016;	 Frey	 &	 Osborne,	 2015,	 2017).	 The	
industrial	 revolutions	 are	 periods	 characterised	 by	 rapid	 technological	 change	 and	 consequential	
productivity	 growth	 that	 reshaped	 the	 economy,	 production,	 labour,	 and	 society.	 Since	 the	 second	world	
war,	various	periods	of	macro-economic	development	have	been	driven	by	the	introduction	of	technology-
based	 production	 or	 labour	 innovations,	 of	 which	 the	 most	 recent	 are	 advanced	 robotics	 and	 Artificial	
Intelligence	 (AI)	 (DeCanio,	 2016;	 Frey	 &	 Osborne,	 2017;	 Arntz,	 Gregory,	 Zierahn,	 2016).	 Although	 the	
developments	have	significantly	contributed	to	global	economic	growth,	societal	advancement,	and	higher	
living	standards,	there	is	growing	concern	over	the	future	ahead.	

1.1 Societal relevance - The uncertainty revolving around future 
technological change 

These	 concerns	 stem	 from	 the	 contrast	 between	 previous	 periods	 of	 labour	 substitution	 and	 the	 current	
technological	development	 forefront.	Prior	 technologies	augmented	 labour	activities	or	 substituted	 labour	
input	 in	unproductive,	 dangerous,	 and/or	heavy	 tasks	 (Autor,	 2015).	Humans,	 as	 in	 the	 labour	production	
factor,	 remained	 a	 vital	 input	 for	 adaptive,	 reactive,	 flexible,	 sensorimotor,	 cognitive,	 and	 social	 activities	
(Autor,	 2015;	 Autor,	 Levy,	 Murnane,	 2003;	 IFR,	 2017).	 However,	 the	 current	 and	 future	 generations	 of	
robotics,	 information	 technology	 (IT),	 and	 combinations	 of	 the	 two	 is	 expected	 to	 shrink	 the	 human-
exclusive	 domain.	 On	 the	 one	 hand,	 physical	 tasks	 become	 more	 automatable	 due	 to	 more	 advanced,	
cheaper,	and	scalable	mechanical	manipulators,	sensors,	and	computational	capabilities.	On	the	other	hand,	
artificial	intelligence	(as	in	the	advanced	form	of	IT	including	sub-types	as	e.g.	machine	learning)	will	become	
able	 to	 reproduce	or	outperform	 rational	 human(-like)	 decision	making,	 analysis,	 and	 interaction	with	 the	
environment.	 In	 this	 sense,	 technology	 is	 becoming	 a	 more	 direct	 competitor	 with	 humans	 to	 perform	
different	tasks.	However,	technology	has	a	distinct	advantage	in	productivity	and	applicability.	
	
Predicting	the	future	capabilities	and	development	pace	of	technology	is	inherently	difficult	(Frey	&	Osborne,	
2017)	 and	 can	be	notoriously	 unreliable	 (Armstrong,	 Sotala,	&	Ó	hÉigeartaigh,	 2014).	 Yet,	 it	 catalyses	 the	
concern	 revolving	 around	 the	 uncertain	 consequences	 of	 technological	 progress	 for	 society,	 particularly	
through	the	labour-side	of	the	economy	(Autor,	2015;	Autor,	Dorn,	&	Hanson,	2015;	Frey	&	Osborne,	2017;	
Goos,	Manning,	&	Salomons,	2014;	 IFR,	2017).	Namely,	 technological	change	 is	 feared	 to	cause	significant	
labour	 substitution2,	 which	 may	 have	 drastic	 adverse	 effects	 for	 society.	 These	 consequences	 manifest	
themselves	 as	 declining	 wages,	 higher	 unemployment,	 job	 polarisation,	 and	 higher	 economic	 inequality.	
Moreover,	economic	 (market)	mechanisms	may	reinforce	this	development,	 resulting	 in	a	wedge	between	
those	 whom	 benefit	 from	 -and	 can	 adopt	 to-	 technological	 progress,	 and	 those	 whom	 are	 essentially	
replaced	 by	 technology	 (Autor,	 Dorn,	 &	 Hanson,	 2015).	 Consequently,	 the	 indelible	 loss	 of	 the	 economic	
position	of	 the	middle/working	class	 is	 feared	to	result	 in	societal	segregation	and	growing	 inequality.	Yet,	
these	societal	 fears	bear	a	 resemblance	to	historic	periods	of	significant	 technological	change	and	fear	 for	
unemployment	 (Frey	 &	 Osborne,	 2015,	 2017;	 Mokyr,	 Vickers,	 &	 Ziebarth,	 2015)3.	 In	 hindsight,	 the	 fears	
turned	out	 to	be	premature.	 Technology	disrupted	 conventional	 labour	markets	 and	 significantly	 changed	
how	 we	 work	 and	 what	 types	 of	 tasks	 and	 occupations	 we	 perform,	 but	 it	 has	 never	 resulted	 in	 mass	
unemployment	due	to	labour	supply	reallocation	and	new	tasks	and	occupations	(in	different	sectors).		

																																																													
2	Replacing	human	occupations	or	tasks	by	capital	(e.g.	machines,	robots,	or	computers)	
3	For	a	more	detailed	evaluation	of	historic	patterns	is	provided	by	Frey	&	Osborne	(2017)	and	Mokyr,	Vickers,	&	Ziebarth	(2015)	
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1.2 Scientific relevance - Absence of consensus concerning the 
future  

Historically,	 the	 process	 and	 impact	 of	 technology	 on	 labour	 has	 been	 central	 to	 the	work	 of	 economists	
(DeCanio,	2016;	Frey	&	Osborne,	2017).	Most	evident	 is	 John	Maynard	Keynes’s	prediction	of	widespread	
technological	 unemployment	 because	 of	 ‘our	 discovery	 of	 means	 of	 economising	 the	 use	 of	 labour	
outrunning	 the	 pace	 at	which	we	 can	 find	 new	uses	 for	 labour’ (Keynes,	 1933,	 p.	 3	 from	Frey	&	Osborne,	
2017,	 p.	 254).	 The	 current	 body	 of	 scientific	 work	 addressing	 this	 topic	 originates	 mostly	 from	 an	
econom(etr)ic	 domain	 using	 an	 economic-statistical	 or	 expert-based	 methodology.	 In	 case	 of	 the	 prior,	
explanatory	models	are	developed	to	perform	posterior	analysis	on	the	effects	of	technology	and	conclude	
on	the	current	trend,	or	project	those	trends	 into	the	future	(Arntz	et	al.,	2016;	Autor	et	al.,	2015;	Frey	&	
Osborne,	 2017;	 Goos	 et	 al.,	 2011;	 Graetz	 &	Michaels,	 2017;	 Gregory,	 Salomons,	 &	 Zierahn,	 2016).	 These	
studies	distinguish	from	one	and	other	by	analysing	the	developments	with	various	specific	datasets	across	
spatial	 demarcations,	 time	 demarcations,	 scopes	 (e.g.	 technology),	 and	 the	 substitution	 framework.	
Therefore,	scientific	literature	provides	different	predictions	depending	on	the	model,	scope,	and	framework	
(Arntz,	 Gregory,	 Zierahn,	 2016).	 However,	 the	 current	 results	 systematically	 demonstrate	 that	 earlier	
technological	changes	have	resulted	in	more	jobs	(although	different	ones,	at	different	levels)	and	economic	
growth	 rather	 than	 the	 portrayed	 doom	 scenario	 for	 the	 working	 class	 (Frey	 &	 Osborne,	 2017;	 Gregory,	
Salomons	&	Zierahn,	2016;	IFR,	2017).		
	
In	case	of	the	latter	methodology,	experts	are	consulted	to	estimate	the	probability	of,	and	timeframe	within	
which,	technology	will	be	able	to	substitute	specific	human	capabilities,	activities,	or	tasks	(Arntz,	Gregory,	
Zierahn,	 2016;	 Frey	 &	 Osborne,	 2015,	 2017;	 Nedelkoska	 &	 Quintini,	 2018).	 These	 results	 are	 then	
extrapolated	across	a	large	set	of	occupations	based	on	their	characteristics	and	calibrated	to	the	economic	
composition.	 The	most	 influential	work	 –	 and	widespread,	 even	 in	 popular	media	 –	 by	 Frey	 and	Osborne	
(Frey	&	Osborne,	2017)	predicts	that	47%	of	jobs	in	the	United	States	are	at	high	risk	to	be	automated	in	the	
next	 2	 decades	 or	 so.	 However,	 this	 estimate	 only	 considers	 the	 technological	 substitutability	 without	
regards	 for	 labour	 adaptation	 and	 economic	 spill-over	 effects	 (Arntz,	 Gregory,	 &	 Zierahn,	 2016;	 Frey	 &	
Osborne,	2017;	Nedelkoska	&	Quintini,	2018).	In	this	respect,	recent	trends	and	future	predictions	contrast	
significantly.	 Moreover,	 literature	 on	 the	 future	 effect	 of	 technology	 such	 as	 robotics	 and	 Artificial	
Intelligence	(AI)	is	scarce	(Frey	&	Osborne,	2017),	especially	when	excluding	expert	estimations.	
	
With	 both	 methodologies	 (econom(etr)ic	 and	 expert	 based),	 the	 dynamic	 interconnectivity	 of	 economic,	
technological,	and	societal	systems	is	rarely	explored	in	an	integral	manner	(Arntz,	Gregory,	Zierahn,	2016).	
Moreover,	an	equilibrium	or	static	model	is	used	without	feedback	mechanisms	to	reduce	complexity	and/or	
simplifications	 to	 limit	 the	number	of	 dependent	 variables	 since	 they	 complicate	 algebraic	 analysis	 (Goos,	
Manning,	 &	 Salomons,	 2011).	 Yet,	 these	 feedback	 mechanisms	 may	 be	 vital	 to	 assess	 the	 impact	 of	
technology	on	the	labour	market	(Arntz,	Gregory,	Zierahn,	2016).	Another	limitation	stems	from	the	inherent	
accuracy	restraints	of	expert	predictions,	in	case	of	technology	(Armstrong,	Sotala,	&	Ó	hÉigeartaigh,	2014),	
and	 in	 general	 (Camerer	 &	 Johnson,	 1991).	 This	 results	 in	 the	 conclusion	 that	 ‘studies	 illustrate	 several	
important	 principles,	 such	 as	 the	 general	 overconfidence	 of	 experts,	 the	 superiority	 of	models	 over	 expert	
judgement	 and	 the	 need	 for	 greater	 uncertainty	 in	 all	 types	 of	 predictions’	 (Armstrong,	 Sotala,	 &	 Ó	
hÉigeartaigh,	2014,	p.	317).	This	conclusion	is	rather	problematic	considering	the	limited	work	exploring	the	
future	 impact	 of	 technology	 on	 the	 labour	 market.	 As	 Frey	 and	 Osborne	 (2017)	 formulate,	 ‘To	 our	
knowledge,	no	study	has	yet	quantified	what	recent	technological	progress	is	likely	to	mean	for	the	future	of	
employment’	 (p.	 255).	 Hence,	 exploration	 of	 this	 uncertainty	 including	 the	 feedback	 mechanisms	 and	
avoiding	 the	 limitations	 of	 expert	 judgements	 seems	 critical	 to	 provide	 robust	 strategies	 and	 useful	
prognosis	of	plausible	future	labour	market	developments	and	robust	strategies.	
	
Concerning	 such	 strategies,	 there	 is	 only	 a	 limited	 body	 of	 literature	 concerned	 with	 policies.	 The	
adaptability	of	 the	 labour	 force	 is	essential	 to	avoid	mass	unemployment	 (as	portrayed	by	 future	oriented	
research)	(Autor	&	Salomons,	2017;	Frey	&	Osborne,	2017;	 IFR,	2017).	Adaptability	 implies	that	the	 labour	
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force	 is	 able	 to	 reallocate	 labour	 supply	 to	 other	 occupation	 sources	 and/or	 is	 able	 to	 attain	 new	 and	
additional	 skills	 to	 improve	 employment	 potential.	 Problematically,	 ‘Given	 the	 gravity	 of	 the	 technological	
transformation	 we	 are	 undergoing,	 there	 is	 astonishingly	 little	 research	 effort	 in	 understanding	 the	
subsequent	 response	 through	 skill	 adjustment.’	Yet,	 the	authors	 continue	based	on	 the	 little	 research	 that	
‘re-qualification	and	upskilling	play	a	key	 role	 in	mitigating	the	difficult	 transitions	awaiting	workers	whose	
skills	 have	 been	 rendered	 obsolete	 by	 technological	 progress.’	 (Nedelkoska	 &	 Quintini,	 2018,	 p.	 36).	
Moreover,	
	

‘we	 are	 far	 from	 a	 satisfactory	 understanding	 of	 how	 automation	 in	 general,	 and	 AI	 and	 robotics	
impact	the	labor	market	and	productivity.’	(Acemoglu	&	Restrepo,	2018,	p.	1)	

	
To	conclude,	 in	 the	current	scientific,	political,	 societal	and	economic	debates,	conflicting	perspectives	are	
emerging	and	contradictory	claims	about	the	impact	of	technology	are	made.	The	significant	economic	and	
societal	impact	of	new	technologies	demands	for	a	structured	exploration	of	the	complex	system	as	a	whole.	
This	 study	 will	 make	 a	 first	 attempt	 in	 bridging	 the	 current	 a	 posteriori	 and	 a	 priori	 methodologies	 and	
findings	 using	 System	 Dynamics	 (SD)	 modelling	 and	 exploration	 of	 the	 uncertainties	 with	 Exploratory	
Modelling	and	Analysis	(EMA)4	(Kwakkel	&	Pruyt,	2013).	This	method	will	incorporate	the	economic	feedback	
mechanisms	 via	 a	 differential	 equation	 model	 (based	 on	 the	 a	 posteriori	 labour	 economic	 models)	 and	
incorporate	 the	 uncertainty	 associated	 with	 future	 technological	 impact	 (based	 on	 the	 a	 priori	 expert	
judgment	 based	 outcomes)	 via	 exploratory	 simulation.	 The	 model	 is	 developed,	 operationalised,	 and	
simulated	following	the	Robust	Decision	Making	(RDM)	framework	to	identify	policy	levers	and	strategies	to	
minimize	unemployment	and	maximize	economic	potential	of	robots	and	AI.		
	
On	a	side	note,	the	following	video5	provides	a	comprehensive	summary	on	the	topic.	

1.3 Outline  

This	 research	 is	 organised	 as	 follows.	 First,	 this	 part	 continues	 with	 a	 definition	 of	 the	 research	 gap,	
theoretical	framework,	and	methodology.	Hereafter,	this	document	is	divided	in	three	parts,	namely	
	

- Part	I	Production,	Demographics,	Labour,	Education,	and	Technology:	a	complex	systems	model	
A	 model	 is	 constructed	 to	 simulate	 the	 plausible	 future	 co-development	 of	 technology	 and	 the	
labour	market.	To	do	so,	the	model	is	structured	according	to	five	interrelated	sub-models,	namely,	
economic	 production,	 demographics,	 labour	 market,	 education,	 and	 technology.	 In	 this	 part,	 the	
process	of	 labour	 substitution	 is	 constructed	based	on	 substitution	 frameworks.	Economic	models	
developed	to	study	the	impact	of	technology	from	a	posterior	perspective	are	adopted	to	define	the	
SD	model	 for	 future	oriented	analysis.	Associated	systems	are	defined	 to	study	 the	adaptability	of	
the	labour	force	in	reaction	to	labour	substitution.	More	specifically,	how	the	labour	force	(as	part	of	
the	 demographic	 model)	 reallocates	 supply	 (labour	 market	 model)	 and	 adapts	 to	 changing	 skill	
demand	 (education	 model).	 Lastly,	 the	 plausible	 future	 scenarios	 of	 technological	 progress	 and	
associated	 uncertainties	 are	 defined	 and	 the	 complete	 conceptual	 model	 constructed	 using	 SD	
software.	
	

- Part	II	Case	study	on	the	future	impact	of	robotics	and	AI	on	the	labour	market	in	the	Netherlands	
The	model	developed	in	Part	I	is	simulated	for	the	Netherlands	based	on	the	current	labour	market	
composition	 for	 the	 next	 20	 years.	 The	 future	 scenarios	 (of	 technological	 development	 and	
uncertainties)	are	simulated	to	determine	how	the	 labour	force	natively	(without	 intervention)	will	
adapt	 to	 replaced	 labour	 inputs	 and	 loss	 of	 labour	 demand.	 This	 provides	 a	 range	 of	 plausible	
futures,	 i.e.	 how	 technology	 and	 labour	 could	 co-develop	 given	 the	uncertainties	 faced.	 This	 base	

																																																													
4	‘The	main	purpose	of	this	combination	of	EMA	and	SD	 is	to	gain	 insight	 into	what	kinds	of	surprising	dynamics	can	occur	given	a	
variety	of	uncertainties	and	a	basic	understanding	of	the	system.’	(Kwakkel	&	Pruyt,	2013	p.419)	
5	If	the	link	does	not	work,	copy	and	paste:	https://youtu.be/TUmyygCMMGA		
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case	 is	 expanded	 upon	 by	 exploring	 the	 critical	 sensitivities	 that	 can	 mitigate	 unemployment.	 A	
profile	of	policies	is	established	given	these	outcomes.	
	

- Part	III	Synthesis	of	findings	
The	 results	 generated	 for	 the	 Netherlands	 are	 reflected	 upon	 from	 a	 theoretical	 and	 empirical	
perspective.	 The	 implications	 of	 technological	 progress	 are	 placed	 in	 a	 broader	 international	 and	
societal/social	 context.	 To	 conclude,	 the	 research	 question	 is	 revisited,	 reflected	 upon,	 and	 the	
methodology	and	outcomes	are	discussed.		 	
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2 Research definition 
The	 focus	 of	 this	 study	 is	 to	 explore	 the	 plausible	 effects	 of	 technology	 on	 future	 labour	markets.	 	More	
specifically	 how	 robot	 and	 information	 technology	 will	 compete	 with	 labour	 and	 change	 the	 skill	
requirements	 of	 the	 labour	 force.	 To	 achieve	 this,	 the	 research	 gap	 and	 research	 question	 are	 explicitly	
defined	and	the	problem	scoped.	Hereafter,	the	applied	method	is	set	forth	and	document	flow	diagram	is	
presented.	

2.1 Research gap and research question 

It	is	difficult	to	assess	the	future	impact	of	robotics	and	information	technology	on	the	labour	market	due	to	
uncertainties	 and	 high	 complexity.	 There	 is	 limited	 research	 to	 date	 that	 explores	 the	 substitution	 of	
technology	from	a	a	priori	perspective	outside	of	expert	elicitation	estimates.	Meanwhile	an	extensive	body	
of	 posterior	 analysis	 of	 technological	 progress	 is	 available.	 Conversely,	 there	 is	 widespread	 concern	 for	
future	 mass	 unemployment	 among	 society,	 academics,	 and	 politicians	 because	 of	 recent	 technological	
advancements.	 These	 advanced	 information	 and	 robotic	 technologies	will	 become	 increasingly	 capable	 of	
replacing	human	labour	and	outperform	our	capabilities.	In	this	respect,	a	paradox	is	observed.	Namely,	the	
concern	 involving,	 and	 projected	 implications	 of,	 labour	 substituting	 technology	 are	 wide	 spread	 but	 the	
scope	for	future	oriented	research	is	limited.	Hence,	the	following	gap	has	been	observed;	
	

There	 is	 a	need	 for	 exploration	of	 the	 implication	of	 future	 technologies	on	 the	 labour	market	and	
labour	force	given	the	current	academic	knowledge	on	substitution	processes	and	in	consideration	of	
the	larger	system	of	influences	and	uncertainties.	

2.1.1 Research question 

This	leads	to	the	following	main	research	question;	
	

To	what	extent	 is	 the	 labour	 force	capable	of	adapting	to	 labour	substitution	by	advanced	robotics	
and	artificial	intelligence,	and	can	be	incentivised	to	do	so,	to	mitigate	future	unemployment?	

	
This	question	addresses	three	key	aspects;	the	 impact	and	advancement	of	technology,	the	adaptability	of	
the	labour	force,	and	possibilities	to	limit	unemployment	due	to	substitution.		

2.1.2 Research sub questions 

The	 scientific	 relevance,	 identified	 research	 gap,	 and	 formulated	 research	 question	 are	 divided	 in	
manageable	and	comprehensible	sub-questions.	First,	the	mechanisms	that	determine	the	development	and	
impact	 of	 technological	 advancement	 and	 the	 labour	 adaptability	 need	 to	 be	 defined.	 Thus,	 an	
understanding	 of	 the	 process	 of	 substitution	 needs	 to	 be	 attained	 and	 operationalised,	 resulting	 in	 the	
following	question:	
	

I	 -	 How	 can	 the	 current	 literature,	 frameworks,	 and	models	 be	 operationalised	 for	 future	 oriented	
analysis	of	the	co-development	of	technology	and	labour?	

	
After	operationalisation,	the	next	step	is	to	determine	what	the	current	expectations	are	concerning	future	
technological	advancement	and	the	labour	market.	This	may	require	adaptation	of	the	operationalisation	to	
allow	for	model	development	and	simulation	in	conformity	with	the	associated	data	(sources,	types,	ranges,	
and	uncertainties)	and	literature.	The	operationalisation	needs	to	be	verified	and	validated	to	determine:	
	

II	–	What	are	the	labour	market	implications	of	technological	advancement	in	the	next	20	years?	
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The	 developed	model	 and	 the	 range	 of	 scenarios	 and	 implications	 is	 then	 used	 to	 study	 the	 potential	 of	
policy	intervention	and	the	absence	of	policy	interventions.	These	interventions	are	aimed	at	the	adaptability	
of	the	labour	force	(established	in	sub	question	I).	Therefore,	the	following	research	question	is	formulated:	
	

III	 –	Which	 policy	 levers	 are	 available	 to	 mitigate	 the	 projected	 future	 unemployment	 trends	 and	
maximise	 economic	 and	 living	 standard	 growth	 brought	 about	 by	 advanced	 robotics	 and	 artificial	
intelligence?	

	
The	 implications	 of	 labour	 substitution	 expand	 beyond	 the	 labour	 market	 and	 economic	 processes.	
Therefore,	the	results	of	the	sub	questions	are	reflected	upon	from	a	socio-economic	perspective	to	place	
the	outcomes	in	a	societal	context.	Moreover,	based	on	the	outcomes,	it	is	then	necessary	to	reflect	on	the	
methodology,	model,	and	results.	

2.1.3 Research deliverables  

Answering	 the	 aforementioned	 research	 question	 and	 sub	 questions,	 the	 following	 deliverables	 are	
provided:	
	

- A	review	of	the	state	of	the	art	literature	to	develop	a	dynamic	model	for	future	oriented	analysis	
- An	operationalisation	of	the	theoretical	model	with	System	Dynamics	(i.e.	a	SD	model)	
- A	 case	 study	of	model	 implementation	 and	 simulation	 to	 determine	 the	plausible	 range	of	 future	

implications	and	policy	alternatives	
- A	reflection	and	discussion	on	the	study,	the	representativeness,	and	a	reflection	from	an	ethical	and	

societal	perspective	

2.2 Research process 

In	 correspondence	 with	 the	 previous	 sub	 section,	 the	 research	 approach,	 theoretical	 framework,	 and	
methodology	are	defined	and	summarised	in	a	flow	diagram.	

2.2.1 Approach 

The	presented	research	questions	dictate	the	suitable	research	approach	to	a	large	extent.	The	final	product	
will	 be	 an	 exploration	 of	 plausible	 future	 unemployment	 and	 available	 policies	 levers	 to	 mitigate	
unemployment	 given	 the	 introduction	 of	 technological	 innovation	 (Robotisation	 and	 AI)	 in	 the	 economy.	
Therefore,	 the	 analysis	 will	 focus	 on	 the	 evaluation	 of	 different	 institutional	 arrangements	 in	 the	 future.	
Hence,	the	modelling	approach	naturally	follows	the	research	question.	However,	within	this	approach,	the	
construction	of	a	model	rooted	in	labour	economics	and	technological	substitution	paradigms	demands	for	
the	establishment	of	qualitative	and	quantitative	causal	relation	between	factors.	In	other	words,	to	make	a	
useful	model	 (that	 is	able	to	provide	accurate	 information	about	the	future	states	of	the	system),	 first	 the	
relation	 between	 elements	 needs	 to	 be	 substantiated	 (how	 does	 A	 influence	 B)	 and	 quantified	 (to	 what	
extent	 does	 a	 change	 in	 A	 result	 in	 change	 in	 B).	 Some	 of	 these	 relations	 can	 be	 extracted	 from	 prior	
scientific	work	(for	example	the	relation	between	the	introduction	of	robots	and	labour	demand	by	Gregory,	
Salomons,	 and	 Zierahn	 (2016).	 However,	many	 relations	will	 need	 to	 be	 determined	 based	 on	 analysis	 of	
data	and	literature.	Therefore,	a	deductive	approach	is	required	in	preparation	of	the	modelling	approach.		
	
Given	the	orientation	towards	societal	benefits	(i.e.	unemployment	and	inequality),	qualitative	research	will	
need	to	be	embedded	in	the	primarily	quantitative	approach.	Therefore,	the	quantitative	results	will	need	to	
be	placed	 into	 the	societal	context	 to	give	 them	meaning.	Moreover,	 the	deductive	approach	may	rely	on	
triangulation	 techniques	 (e.g.	 elicitation	and	 conversion	of	qualitative	estimates	 into	quantitative	ones)	 to	
provide	 input	 into	the	model.	As	a	result,	 the	qualitative	approach	may	provide	 ‘a	more	complete,	holistic,	
and	contextual	portrayal	of	the	unit(s)	under	study’	(Jick,	2010,	p.	603).	To	summarise,	the	research	approach	
relies	on	a	mixed	deductive	and	modelling	approach	using	quantitative	and	qualitative	research	methods.	
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2.2.2 Method 

This	 research	 follows	 the	 Robust	 Decision	 Making	 (RDM)	 framework	 and	 methodology	 to	 explore	 the	
possible	future	labour	scenarios	given	technological	substitution	estimates	versus	demographic	labour	force	
dynamics,	labour	reallocation,	re-	and	up-skilling,	and	spill-over	effects.	RDM	consists	of	four	steps	to	reach	
robust	 policy	 decisions	 given	 the	 uncertainties	 faced	with	 (Kwakkel,	 Haasnoot,	 &	Walker,	 2016).	 The	 first	
three	 steps	 will	 be	 performed	 since	 the	 fourth	 step	 is	 aimed	 at	 trade-off	 analysis	 of	 real	 world	 policies	
(Kwakkel,	Haasnoot,	&	Walker,	2016)	which	extends	beyond	the	scope	of	this	thesis.		
	

“In	 brief,	 RDM	 first	 helps	 decision	makers	 characterize	 the	 vulnerabilities	 of	 a	 series	 of	 candidate	
strategies	 and	 then	 helps	 these	 decision	makers	 identify	 and	 choose	 among	 alternative	means	 for	
ameliorating	the	vulnerabilities.	Scenario	discovery	facilitates	this	first	step,	concisely	summarizing	a	
wide	range	of	future	states	of	the	world	in	a	way	that	helps	decision	makers	more	clearly	understand	
the	strengths	and	weaknesses	of	candidate	strategies.”	(Bryant	&	Lempert,	2010,	p.	36)	

	
First,	 the	 relevant	 system	 is	 conceptualised,	 uncertainties	 identified,	 and	 outcomes	 of	 interest	 specified	
(Kwakkel,	 Haasnoot,	 &	Walker,	 2016).	 The	 system	 conceptualisation	 and	 system	model	 are	 based	 on	 the	
current	 technological	 change	 literature	 and	 labour	 substitution	 frameworks.	 These	 are	 explored	 to	 define	
the	process	of	 labour	substitution.	Following	Frey	and	Osborne’s	 (2017)	and	Arntz,	Gregory,	and	Zierahn’s	
(2016)	 method,	 a	 production	model	 is	 constructed	 to	 study	 future	 labour	 substitution	 and	 technological	
change	with	a	task	based	approach.	This	model	has	 its	foundation	 in	the	Task	Based	Technological	Change	
framework	 (Acemoglu	&	Autor,	 2012;	 Autor,	 Levy,	Murnane,	 2003)	 and	 the	 associated	 Routine	 Replacing	
Technological	 Change	 framework	 (Gregory,	 Salomons	 &	 Zierahn,	 2016).	 This	 model	 is	 expanded	 upon	 to	
include	demographic	labour	force	dynamics,	labour	reallocation,	re-	and	up-skilling,	and	spill-over	effects	as	
the	identified	most	important	associated	mechanisms.	The	labour	market	sub-model	is	constructed	based	on	
the	 relation	 between	 labour	 skills	 and	 production	 tasks	 in	 the	 frameworks.	 Tasks	 and	 their	 required	 skills	
evolve	 over	 time	 due	 to	 technological	 progress	 and	 other	 factors	 (Acemoglu	&	Autor,	 2012;	 Acemoglu	&	
Restrepo,	 2018;	 Autor,	 2015;	 Autor,	 Dorn,	 &	 Hanson,	 2015;	 DeCanio,	 2016;	 IFR,	 2017;	 Nedelkoska	 &	
Quintini,	 2018).	 The	 process	 of	 re-	 and	 up-skilling	 is	 defined	 and	 an	 education	 sub-model	 is	 constructed	
based	on	literature	on	the	causal	relations	that	influence	skill	attainment.	Lastly,	the	future	development	of	
technology	 in	 relation	 to	 labour	 substitution	 is	 explored	 to	 define	 plausible	 future	 substitution	 estimates.	
These	sub-models	are	combined	to	create	a	conceptual	system	model.	
	
Second,	the	conceptualisation	 is	operationalised	 into	one	or	multiple	models	and	simulated	to	explore	the	
behaviour	of	the	system	given	the	identified	uncertainties.	This	also	allows	for	candidate	policy	and	strategy	
identification	(Kwakkel,	Haasnoot,	&	Walker,	2016).	Therefore,	the	theoretical	model	is	operationalised	using	
System	Dynamics	(SD)	modelling.	The	use	of	SD	to	explore	(socio-)	economic	systems	and	provide	decision	
support	dates	to	the	early	complex	system	modelling	efforts	using	SD	(Forrester,	Mass,	&	Ryan,	1976;	Smith	
&	Ackere,	2000).	Economic	models	to	analyse	dynamic	phenomena	and	the	SD	methodology	are	consistent	
due	to	their	mathematical	underpinnings	(Smith	&	Ackere,	2000).	As	a	result,	various	schools	of	economics	
have	 adopted	 SD	 to	 study	 economic	 dynamics	 (Radzicki,	 2009),	 including	 neoclassical	 (Weber,	 2010)	 and	
various	forms	of	heterodox	economics	(Atkinson,	2004;	Radzicki,	2008).	Yet,	the	operational,	complexity,	and	
systems	 approach	 of	 SD	 contrasts	 with	 conventional	 economic	 methodologies	 and	 practices	 (Forrester,	
2003,	2013;	Saeed,	2014).	In	this	respect,	from	an	SD	perspective	the	use	of	SD	in	this	study	is	economically	
and,	most	importantly,	methodologically	substantiated	due	to	the	exploratory	and	future	oriented	nature	of	
this	 study.	 Yet,	 from	 the	 perspective	 of	 economics,	 this	 approach	 diverges	 from	 the	 econom(etr)ic	 and	
expert	methodologies	applied	 in	 technological	 change	and	 labour	 substitution	 studies.	 In	 this	process,	 the	
Exploratory	 Modelling	 and	 Analysis	 (EMA)	 workbench	 is	 used	 in	 Python	 as	 a	 tool	 to	 simulate	 the	
experiments.	This	generates	an	ensemble	of	 future	 scenarios	 (rather	 than	a	 selection	of	manually	defined	
scenarios	or	predictive	models)	(Kwakkel	&	Pruyt,	2013).	‘The	main	purpose	of	this	combination	of	EMA	and	
SD	is	to	gain	insight	into	what	kinds	of	surprising	dynamics	can	occur	given	a	variety	of	uncertainties	and	a	
basic	understanding	of	the	system.’	(Kwakkel	&	Pruyt,	2013,	p.	419).	The	advantage	of	exploratory	modelling	
(step	two	and	three	of	RDM)	and	the	use	of	EMA,	is	that	it	provides	the	opportunity	to	gain	new	insights	in	
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system	behaviour	and	strategy	options	when	strict	validation	 is	 impossible	and/or	when	 faced	uncertainty	
problems.	
	
Third,	scenario	discovery	is	performed	using	machine	learning	algorithms	to	simulate	the	model	across	the	
uncertainty	 space,	 assess	 the	 performance	 of	 the	 strategies,	 and	 identify	 conditions	 under	 which	 they	
perform	inadequately	(Bryant	&	Lempert,	2010).	“Scenario	discovery	provides	a	set	of	analytic	tools	that	help	
decision	makers	identify	such	scenarios	[internally	consistent	and	challenging	descriptions	of	possible	futures]	
by	focusing	on	those	futures	most	important	to	the	design	of	and	choice	among	candidate	robust	strategies.”	
(Bryant	&	Lempert,	2010,	p.	35)	This	step	relies	on	the	Patient	Rule	Induction	Method	(PRIM)	algorithm	to	
sample	 from	 the	 individual	 uncertainty	 ranges	 to	 create	uncertainty	 spaces	 in	which	plausible	 futures	 are	
located	that	are	statistically	significance	to	the	outcomes	of	interest	(Kwakkel,	Haasnoot,	&	Walker,	2016).	In	
relation	with	the	main	research	question,	these	outcomes	of	interest	concern	unemployment	and	potential	
labour	reallocation	and	re-	and	up-skilling	policy	levers.	Note,	that	the	fourth	step	of	the	RDM	framework	is	
not	 performed	 and	 that	 step	 three	 is	 used	 for	 policy	 identification	 and	 potential	 of	 policy	 intervention.	
Therefore,	 the	application	of	RDM	 in	 the	context	and	purpose	of	 this	 study	deviate	 from	the	slightly	 from	
conventional	application	of	the	framework.	

2.2.3 Flow 

The	outline,	research	questions,	and	methodology	are	graphically	depicted	in	the	flow	diagram	(Figure	1).	

	

Figure	1	Research	Flow	Diagram	
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Part I Production, Demographics, 

Labour, Education, and Technology: 
a complex systems model 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

A	model	 is	 constructed	 to	 simulate	 the	 plausible	 future	 co-development	 of	 technology	 and	 the	
labour	 market.	 To	 do	 so,	 the	 model	 is	 structured	 according	 five	 to	 interrelated	 sub-models,	
namely,	 economic	 production,	 demographic,	 labour	 market,	 education,	 and	 technology.	 In	 this	
part,	 the	 process	 of	 labour	 substitution	 is	 defined	 based	 on	 substitution	 frameworks.	 Economic	
models	developed	to	study	the	impact	of	technology	from	a	posterior	perspective	are	adopted	to	
define	 the	 SD	 model	 for	 future	 oriented	 analysis.	 Associated	 systems	 are	 defined	 to	 study	 the	
adaptability	 of	 the	 labour	 force	 in	 response	 to	 labour	 substitution.	 More	 specifically,	 how	 the	
labour	 force	 (as	 part	 of	 the	 demographic	model)	 reallocates	 supply	 (labour	market	model)	 and	
adapts	 to	 changing	 skill	 demand	 (education	 model).	 Lastly,	 the	 plausible	 future	 scenarios	 of	
technological	 progress	 and	 associated	 uncertainties	 are	 defined	 and	 the	 complete	 conceptual	
model	constructed	using	SD	software.	
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3 The balance between substitution 
and spill-overs 

Technology	 is	 increasingly	 capable	of	 substituting	 labour	 in	production	processes	 (Frey	&	Osborne,	 2017).	
Before	being	able	to	determine	how	technology	and	labour	will	co-develop,	it	is	important	to	understand	the	
underlying	 mechanisms.	 Labour	 substitution	 frameworks	 describe	 how	 technological	 change	 impacts	 the	
labour	market	 across	 economies,	 industries,	 and	occupations	with	mechanisms	derived	 from	econometric	
analysis	and	economic	models.	The	mechanisms	through	which	substitution	manifests	itself	also	give	rise	to	
counteractive	effects.	Technology	will	 stimulate	economic	growth	and	can,	via	spill-over	effects,	offset	 the	
loss	 in	 labour.	 This	 chapter	 will	 introduce	 the	 labour	 substitution	 frameworks	 and	 associated	 spill-over	
effects.	The	state-of-art	paradigmatic	frameworks	are	adopted	as	the	foundation	of	the	production	model	in	
the	consequent	chapter.	

3.1 Labour substitution frameworks – How technology replaces 
labour 

Over	 time,	 economists	 and	 econometrists	 have	 argued	 that,	 statistically,	 the	 impact	 of	 technology	 on	
employment	 can	 be	 explained	 through	 various	 frameworks.	 In	 this	 approach,	 production	 function	models	
and	 regression	 analysis	 are	 used	 to	 estimate	 the	 impact	 of	 technology	 based	 on	 causal	 relations.	 The	
perception	that	technology	is	replacing	humans	in	production	is	not	new.	However,	the	relevant	question	is	
how	substitution	manifests	itself.	The	frameworks	attempt	to	theorise	this	manifestation	and	provide	proof	
of	explanatory	consistency	using	posterior	empirical	comparison	across	different	time-frames	and	economic	
scopes.	 The	 theoretical	 production	 and	 labour	 structure	of	 the	 frameworks	 provide	opportunity	 to	 define	
complementary	models	 to	 explain	 and	 inform	about	 the	observed	phenomena.	 Therefore,	 they	provide	 a	
substantiated	starting	point	in	the	exercise	of	modelling	future	substitution.	

3.1.1 Skilled Biased Technological Change (SBTC) 
In	the	past,	scholars	observed	a	decline	in	lower	income	and	education	jobs	and	an	increase	in	the	college-
premium6.	This	 resulted	 in	the	hypothesis	 that	 technology	mainly	substituted	non-college	educated	 labour	
(Autor,	2013).	The	outcome	was	the	Skilled	Biased	Technological	Change	(SBTC)	framework	–	also	known	as	
the	canonical	model	by	Acemoglu	and	Autor	(Mishel,	Shierholz	&	Schmitt,	2013).	The	framework	examined	
the	impact	of	technology	at	the	occupational	level	based	on	a	dichotomy	between	college	and	non-college	
employment.	Technological	substitution	was	argued	to	be	biased	towards	non-college	labour	input.	Critique	
from	 less	 aggregate	 analysis	 revealed	 that	 this	 correlation	 and	 the	 causal	 relation	 behind	 it	 did	 not	 hold	
universally	over	time,	sectors,	and	economies	(Mishel,	Shierholz	&	Schmitt,	2013).	The	observed	skill-biased	
labour	market	 development	 was	 the	 dependent	 variable,	 not	 the	 independent.	 Implying	 that	 technology	
mainly	substitutes	occupations	that	employ	the	non-college	labour	force	but	not	because	of	the	traits	of	the	
employees,	but	because	of	the	characteristics	of	their	jobs.	More	importantly,	the	framework	was	unable	to	
account	for	shifts	technological	change	manifestation	and	associated	effects	on	labour	and	wages	(Autor	&	
Dorn,	2013;	Card	&	Dinardo,	2002).	

3.1.2 Task-Based Technological Change (TBTC) 

Autor,	Levy,	and	Murnane	(2003)	introduced	the	foundations	of	the	Task-Based	Technological	Change	(TBTC)	
framework	 which	 argues	 that	 specific	 tasks	 are	 substituted	 since	 they	 are/can	 be	 routinized	 following	
structured	and	well-understood	procedures.	 Therefore,	 such	 “routine	 tasks”	 can	be	captured	 in	 computer	

																																																													
6	Difference	between	college	or	higher	educated	employment	in	wages	and	labour	hours	compared	to	non-college	educated	labour.	
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code	via	explicit	programmed	rules	and	executed	by	technology	(Autor,	2015;	Autor,	Levy,	Murnane,	2003;	
Goos,	Manning,	&	Salomons,	2009).	These	routine	tasks	include	physical	and	cognitive	activities,	respectively	
termed	routine	manual	and	routine	abstract	 tasks	 (Autor	&	Dorn,	2013;	Cortes,	 Jaimovich,	Nekarda	&	Siu,	
2014;	 Frey	&	Osborne,	2017).	Conversely,	 “non-routine	 tasks”	 comprise	 cognitively	and	physically	 flexible,	
reactive,	and	adaptive	tasks	that	are	significantly	harder	to	capture	in	procedures.	As	of	such,	tasks	relying	
on	 sensorimotor,	 social,	 communicative,	 creative,	 problem-solving,	 and	 reasoning	 capabilities	 can	 (so	 far)	
not	be	executed	by	technology	and	remain	human	domain	–	at	most	complemented	by	technology	(Autor,	
2015;	Autor,	Levy,	Murnane,	2003;	IFR,	2017).	Non-routine	tasks	are	divided	into	two	categories:	“abstract”	
tasks	 and	 “manual”	 tasks.	 Respectively	 the	 tasks	 require	 problem-solving,	 inductive	 reasoning,	 intuition,	
creativity,	and	persuasion	versus	situational	adaptability,	recognition,	and	communicative	interaction	(Autor,	
2015).	 Therefore,	 the	 impact	 of	 technology	 is	 studied	 at	 a	 task	 level	 whereby	 occupations	 consist	 of	 a	
combination	of	routine	(cognitive	and	physical),	abstract,	and	manual	tasks	(Autor,	2015;	Mishel,	Shierholz	&	
Schmitt,	2013).	Within	 the	economy,	businesses	utilise	a	set	of	 those	tasks	 to	produce	products	 (goods	or	
services7)	which	 in	 turn	utilise	 labour	 and	 (technological)	 capital	 production	 factors	 (Gregory,	 Salomons	&	
Zierahn,	 2016).	 In	 the	 process	 of	 technological	 substitution,	 former	 labour	 input	 in	 tasks	 is	 executed	 by	
capital	and	new	labour	tasks	emerge	due	to	restructuring	of	production	processes.	
	
Following	 this	 logic,	 substitution	 takes	 place	 at	 a	 disaggregate	 level	 compared	 to	 the	 SBTC	 framework.	 In	
contrast	 to	 SBTC,	 TBTC	 disconnects	 the	 absolute	 relation	 between	 skill	 level	 and	 occupation	 level	 (and	
consequently	 wage	 level)	 by	 analysing	 individual	 tasks	 within	 occupations	 and	 their	 required	 skill	 level	
(Autor,	2013;	Mishel,	Shierholz	&	Schmitt,	2013).	To	do	so,	the	framework	utilises	a	three-tier	classification	
of	labour	demand	and	supply:	low,	middle,	and	high	skilled	(Autor,	Levy,	Murnane,	2003).	In	relation	to	tasks,	
abstract	tasks	demand	high	skill	levels	and	cognitive	capabilities,	while	manual	tasks	can	be	performed	with	
relatively	low	skill	levels8	(Autor,	2015;	Cortes,	Jaimovich,	Nekarda	&	Siu,	2014;	Mishel,	Shierholz	&	Schmitt,	
2013).	 Therefore,	 occupations	 consisting	 of	 exclusively	 abstract	 or	 exclusively	 manual	 tasks	 are	 at	 the	
opposite	 ends	 of	 a	 continues	 skill	 spectrum	 (Autor,	 2015).	 Similarly,	 high	 (low)	 wage	 occupations	 are	
synonymous	 to	 high	 (low)	 skill	 and	 abstract	 (manual)	 task-rich	 occupations	 (Goos,	Manning,	 &	 Salomons,	
2009).	In	relation	to	the	dichotomy	between	goods	and	services,	non-routine	tasks	are	generally	associated	
to	 the	 production	 of	 services	 and	 routine	 tasks	 to	 the	 production	 of	 goods.	 The	 variety	 of	 task	
compositions/structures	 and	 the	 change	of	 these	 structures	due	 to	 substitution	 shape	 the	 labour	market,	
wages,	 and	 skill	 relevance.	 The	 distinction	 and	 relation	 between	 skills	 and	 tasks	 is	 well	 summarised	 by	
Acemoglu	and	Autor	(2012),	whom	write,	
	

‘Many	 of	 the	 shortcomings	 of	 the	 canonical	 model	 can,	 we	 believe,	 be	 overcome	 by	 relaxing	 the	
implicit	 equivalence	between	workers’	 skills	and	 their	 job	 tasks	 in	 the	model.	 In	our	 terminology,	a	
task	 is	 a	 unit	 of	 work	 activity	 that	 produces	 output.	 A	 skill	 is	 a	 worker’s	 stock	 of	 capabilities	 for	
performing	various	 tasks.	Workers	apply	 their	skills	 to	 tasks	 in	exchange	 for	wages.	Thus,	 the	 task-
based	approaches	emphasize	that	skills	are	applied	to	tasks	to	produce	output—skills	do	not	directly	
produce	output.	The	distinction	between	skills	and	tasks	is	irrelevant	if	workers	of	a	given	skill	always	
perform	the	same	set	of	tasks.	The	distinction	becomes	important,	however,	when	the	assignment	of	
skills	 to	 tasks	 is	 evolving	with	 time,	 either	 because	 shifts	 in	market	 prices	mandate	 reallocation	 of	
skills	 to	 tasks	 or	 because	 the	 set	 of	 tasks	 demanded	 in	 the	 economy	 is	 altered	 by	 technological	
developments,	trade,	or	offshoring’	(p.	444-445)	

	
The	 TBTC	 framework	 has	 demonstrated	 more	 consistent	 statistical	 and	 empirical	 explanatory	 power	 of	
observed	 labour	 market	 phenomena	 than	 SBTC	 (Mishel,	 Shierholz	 &	 Schmitt,	 2013).	 Consistent	 with	
empirical	 data,	 the	 TBTC	 task	 categorisation	 self-explains	 the	 observed	 polarising	 nature	 of	 technological	
substitution:	the	middle	skilled	are	employed	in	occupations	with	a	significant	share	of	routine	tasks	(Autor,	
2015).	Therefore,	at	the	opposite	sides	of	the	skill-spectrum,	occupations	rich	in	high	skilled	abstract	tasks	or	

																																																													
7	Respectively	defined	as	 tangible	hard-ware	or	 soft-ware	 items	and	 intangible	benefits.	 In	 this	document,	products	 refer	 to	both	
goods	and	services	and	production	to	the	creation/manufacturing	of	both	goods	and	services,	unless	specifically	stated	otherwise.		
8	Hence,	manual	tasks	can	be	performed	by	a	very	large	share	of	the	labour	force	as	middle	and	high	skilled	labour	is	equally	capable	
of	performing	the	tasks	(Autor,	2015).	
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rich	in	low	skilled	manual	tasks	remained	non-automated.	Although	TBTC	is	not	completely	uncriticised	(see	
Mishel,	 Shierholz	 &	 Schmitt	 (2013)),	 later	 refinement	 to	 the	 framework	 and	 growing	 evidence9	have	
established	TBTC	as	the	standard	because	of	its	explanatory	consistency.	Especially	the	works	of	scholars	like	
Acemoglu,	Autor,	and	Dorn	have	contributed	to	this	status.		

3.1.3 Routine Replacing Technological Change (RRTC) 
Goos,	Manning,	and	Salomons	 (2011)	and	Gregory,	Salomons,	Zierahn	 (2016)	 revised	 the	TBTC	 framework	
into	 the	 Routine	 Replacing	 Technological	 Change	 (RRTC)	10	framework	 based	 on	 model	 and	 regression	
alternatives	 (Gregory,	Salomons	&	Zierahn,	2016).	Similar	 to	 the	TBTC	 framework,	 the	model	 is	defined	at	
the	 task	 level	 (Goos,	 Manning,	 &	 Salomons,	 2011).	 However,	 the	 model	 uses	 task-level	 CB	 production	
functions	whereby	‘industry	output	is	produced	from	a	common	set	of	‘tasks’,	used	in	different	proportions	by	
different	 industries.’	 (Goos,	 Manning,	 &	 Salomons,	 2011,	 p.	 2).	 Consequently,	 the	 labour	 market	 is	
established	wherein	 the	occupations	comprise	a	combination	of	 those	 tasks.	 In	contrast	with	TBTC,	a	dual	
substitution	effect	is	introduced.	That	is,	exogenous	reduction	of	capital	prices	incentivises	businesses	to	not	
only	substitute	 labour	directly	but	also	to	restructure	production	processes	through	routinisation11	(Frey	&	
Osborne,	2017;	Gregory,	Salomons	&	Zierahn,	2016).	‘Recent	technological	breakthroughs	are,	in	large	part,	
due	 to	 efforts	 to	 turn	 non-routine	 tasks	 into	 well-defined	 problems’	 (Frey	 &	 Osborne,	 2017,	 p.	 259).	 The	
routinisation	 effect	 implies	 that	 businesses	 substitute	 tasks	 for	 routine	 tasks	 following	 a	 CES	 production	
function.	As	a	result,	there	is	an	emphasis	on	the	balance	between	spill-over	effects	and	substitution	effects	
(Goos,	Manning,	&	Salomons,	2011).	Hence,	 the	 framework	 is	more	production-oriented	compared	 to	 the	
more	labour	market-oriented	TBTC.		
	
The	 current	 status	 of	 TBTC	 among	 scholars	 and	 added	 production	 structure	 of	 RRTC	 provide	 the	 starting	
point	 to	model	 future	 substitution.	 Therefore,	 in	 contrast	 to	 prior	 studies,	 the	 time-frame	 is	 shifted	 from	
posterior	to	a	prior	evaluation	of	the	plausible	future	effect	of	technology.	In	this	respect,	the	TBTC	and	RRTC	
framework	 determine	 the	 structure	 of	 the	 labour	 market,	 the	 production	 process,	 the	 effects	 of	
technological	change,	and	the	labour	force’s	ability	to	adapt	to	changing	tasks.	

3.2 Spill-over effects – How we benefit from technology 

The	 substitution	 of	 labour	 for	 more	 productive	 technology	 does	 not	 necessarily	 need	 to	 imply	 a	 loss	 of	
labour	 demand.	 The	 productivity	 growth	 will	 reduce	 the	 production	 costs	 of	 a	 task	 and	 create	 spill-over	
effects	depending	on	the	allocation	of	the	costs	benefits.	These	spill-over	effects	can	offset	the	initial	loss	of	
labour	demand	via	feedback	mechanisms	(Gregory,	Salomons	&	Zierahn,	2016).	The	productivity	growth	can	
be	allocated	to	different	purposes,	which	eventually	will	determine	to	what	extend	substitution	is	offset.	 If	
used	purely	competitively,	 the	 reduction	 in	production	costs	 (per	unit)	 is	 fully	allocated	 to	price	 reduction	
(thus	constant	wage	and	profit	mark-up).	Alternatively,	strict	allocation	towards	profitability	implies	that	the	
reduction	in	production	costs	is	purely	used	for	profit	(thus	constant	wage	and	product	price).	This	would	be	
the	case	 if	 the	companies	are	 strictly	profit	maximising.	Conversely,	 the	 reduction	 in	production	costs	 can	
also	 be	 completely	 transferred	 to	wages	 (thus	 constant	 profit	mark-up	 and	 product	 price).	 The	 effects	 of	
each	of	the	distribution	channels	feed	back	to	the	economy	via	spill-over	effects.	
	

‘one	 cannot	 obtain	 an	 adequate	 understanding	 of	 the	 changing	 structure	 of	 employment	 if	 one	
ignores	the	channels	by	which	a	change	affecting	the	demand	for	one	type	of	 labor	 is	 likely	to	spill	
over	to	every	other	type	of	labor.’	(Goos,	Manning,	&	Salomons,	2011,	p.	3)	

	

																																																													
9	The	evidence	empirically	confirmed	the	existence	of	the	phenomenon	of	job-polarisation	from	1980’s	to	the	financial	crisis	in	2007.	
Therefore,	 providing	 a	 theoretically	 and	 empirically	 consistent	 framework	 and	 giving	 technology	 driven	 job-polarisation	 a	
paradigmatic	status	(see	Autor	(2015)	for	extensive	list	of	studies).	
10	Initially	named	the	Routine	Biased	Technological	Change	(RBTC)	framework	by	Goos,	Manning,	and	Salomons	(2011)	
11	Defined	as	the	Substitution	effects	by	Gregory,	Salomons,	and	Zierahn	(2016).		
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Technological	 substitution	 studies	 argue	 that	 spill-over	 effects	 can	offset	 the	 substituted	 labour	 tasks	 and	
labour	 hours	 altogether	 within	 the	 organisation,	 along	 the	 supply	 chain,	 and	 across	 sectors	 (Autor	 &	
Salomons,	2017;	Goos,	Manning,	&	Salomons,	2011;	Gregory,	Salomons	&	Zierahn,	2016;	 IFR,	2017).	First,	
competitive	allocation	results	 in	 increased	product	demand	(given	the	price	elasticity	of	demand)	followed	
by	increased	production	and	thus	increased	labour	demand	of	the	remaining	labour	in	the	organisation	and	
in	the	supply	chain	of	complementary	sectors.	Therefore,	the	reduction	of	prices	can	result	in	more	overall	
labour	 demand12	(Goos,	 Manning,	 &	 Salomons,	 2011;	 Graetz	 &	 Michaels,	 2017;	 Gregory,	 Salomons	 &	
Zierahn,	2016;	IFR,	2017).	Moreover,	 if	the	increase	in	remaining	labour	and	associated	increase	in	 income	
exceeds	 the	 substituted	 labour	 income,	 additional	 product	 demand	 is	 created	 across	 sectors	 via	
consumption13	(Gregory,	Salomons	&	Zierahn,	2016;	IFR,	2017).	Therefore,	the	increase	in	product	demand	
due	to	competitive	allocation	has	a	dual	nature:	increasing	exogenous	demand	for	tradable	products	due	to	
declining	(relative14)	prices	and	increasing	endogenous	demand	for	tradable	and	non-tradable	products	due	
to	reducing	prices	and	increased	total	labour	income15	(Gregory,	Salomons	&	Zierahn,	2016).		
	
Second,	allocation	towards	profits	can	be	retained	in	the	business	or	distributed	as	dividend.	Profits	that	are	
retained	within	the	company	can	be	invested	in	business	activities	and	innovation.	This	can	create	additional	
labour	demand	within	the	organisation	or	at	the	supplier	(IFR,	2017).	Moreover,	investment	in	technological	
innovation	can	result	 in	a	second-order	effect	whereby	further	productivity	growth	 is	realised.	This	 implies	
that	a	new	round	of	spill-over	effects	 is	set	 in	motion	 in	the	distant	 future.	Distribution	of	dividend	across	
shareholders	 increases	 their	 non-wage	 income	 and,	 therefore,	 possibly	 their	 product	 demand	 (given	 the	
propensity	 to	 consume	and	 to	 save	of	 the	 shareholders).	However,	part	of	 this	 spill-over	effects	may	 leak	
away	if	the	additional	income	flows	out	of	the	economy	to	foreign	capital	owners	and	expenditure	(Gregory,	
Salomons	&	Zierahn,	2016).		
	
Third,	 allocation	 towards	wages	will	 directly	 increase	 consumption	 (given	 the	 propensity	 to	 consume	 and	
income	elasticity	of	demand)	resulting	in	growing	product	demand	across	sectors,	growing	production,	and	
so	 forth	 (IFR,	 2017).	 In	 addition,	 a	 second	 order	 spill-over	 effect	 may	 arise	 when	 the	 additional	 labour	
demand	creates	a	shortage	of	labour	supply	and	result	in	higher	wages	(IFR,	2017).	Conversely,	limitations	in	
(adequately	equipped)	labour	supply	compared	to	labour	demand	can	also	inhibit	additional	production	and	
hinder	 the	spill-over	effects.	Therefore,	 the	dynamics	of	 the	 labour	market	 influence	the	realisation	of	 the	
spill-over	effects.	As	a	result,	the	interactions	between	production,	product	markets,	and	labour	markets	are	
essential	 to	 determine	 the	 effects	 of	 technological	 change	 (e.g.	 robotics	 and	 artificial	 intelligence)	 on	
employment	(Gregory,	Salomons	&	Zierahn,	2016).	
	
Overall,	the	ability	to	offset	labour	substitution	depends	on	the	relative	allocation	of	the	productivity	gains	to	
the	 spill-over	 mechanisms	 and	 the	 elasticities	 within	 the	 spill-over	 mechanisms	 (Gregory,	 Salomons	 &	
Zierahn,	 2016).	 It	 is	 certain	 that	 technological	 substitution	 will	 result	 in	 productivity	 and	 output	 growth.	
However,	it	is	uncertain	whether	spill-over	effects	are	continuously	and	universally	able	to	offset	the	effects	
of	substitution	on	labour.	As	Graetz	and	Micheals	conclude,	‘the	effect	on	hours	worked	is	ambiguous’	(2017,	
p.12).	 This	 ambiguous	 nature	 is	 the	 result	 of	 the	 relative	 strength	 and	 dominance	 of	 spill-over	 effects	 on	
labour	versus	the	substituted	labour	(Gregory,	Salomons	&	Zierahn,	2016).	If	the	feedback	effect	of	spill-over	
mechanisms	are	weak,	product	demand	does	not	react	strongly	and	hence	labour	demand	does	not	increase	
significantly	enough:	
	

‘the	 size	of	 the	product	demand	 spillover	depends	 critically	on	where	 the	gains	 from	 the	 increased	
productivity	of	technological	capital	accrue.’	(Gregory,	Salomons	&	Zierahn,	2016,	p.	1)	

	

																																																													
12	Defined	as	the	Product	demand	effect	by	Gregory,	Salomons,	and	Zierahn	(2016)	
13	Altogether,	the	effect	of	consumption	spill-over	to	other	sectors	can	result	in	an	additional	net	increase	of	1,4	to	1,6	jobs	per	job	
created	in	the	sector	of	technological	substitution	(See	Gregory,	Salomons	and	Zierahn	(2016	for	details)	
14	In	comparison	to	the	price	development	of	product	substitutes	produced	abroad.		
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In	this	regard,	the	allocation	of	the	gains	is	not	monotonous.	Evidence	from	robot	driven	productivity	growth	
suggests	that	approximately	two	thirds	of	the	labour	productivity	gains	are	used	competitively	and	a	tenth	
goes	 to	 wages	 (Graetz	 &	 Michaels,	 2017).	 Therefore,	 the	 relative	 share	 of	 competitive,	 profit,	 or	 wage	
allocation	determines	the	initial	strength	of	the	spill-over	effects.		

3.3 Framework and spill-over synthesis and current situation 

Current	evidence	suggests	that	the	spill-over	effects	are	dominant	over	substitution	effects	and	off-set	the	
substituted	labour	at	an	aggregate	level.	Gregory,	Salomons,	and	Zierahn	(2016)	demonstrate	overall	growth	
of	 labour	demand	at	a	 regional	 level	as	productivity	growth	results	 in	higher	wage	and	non-wage	 incomes	
which	 feed	 back	 via	 product	 demand.	 However,	 the	 growth	 in	 labour	 demand	 is	 dispersed	 across	 the	
regional	economy	(Gregory,	Salomons	&	Zierahn,	2016).	Similarly,	Salomons	and	Autor	(2017)	find	spill-over	
dominance	 at	 an	 industry	 level	 where	 industry	 specific	 productivity	 growth	 increases	 aggregate	 labour	
demand	across	 sectors.	However,	 at	 a	disaggregate	 level,	 the	 technology	adopting	 industries	 that	actually	
realise	 higher	 productivity	 growth	 experience	 falling	 labour	 hours	 themselves.	 Therefore,	 the	 spill-over	
effects	end	up	in	the	remaining	industries	of	the	economy	(Autor	&	Salomons,	2017).	Likewise,	Michaels	and	
Graetz	(2015)	indicate	that	disaggregation	at	the	labour	force	level	is	required	since	technological	progress	
affects	groups	heterogeneously	across	 sectors,	occupations,	and	skill	 levels	 (Michaels	&	Graetz,	2015;	 IFR,	
2017).	Moreover,	technologies	affect	the	labour	market	in	heterogeneous	ways	(Michaels	&	Graetz,	2015).		
Which	implies	that	aggregation	of	substitution	technologies,	as	if	a	single	force	acting	upon	labour,	overlooks	
underlying	effects.	Therefore,	an	incomplete	image	may	arise	when	only	considering	the	aggregate	macro-
level	 impact	 of	 technology	 as	 a	 whole	 (i.e.	 all	 technological	 advancement	 have	 the	 same	 impact)	 on	
employment	as	a	whole	(i.e.	all	tasks	are	influenced	in	the	same	way)	(Mishel,	Shierholz	&	Schmitt,	2013).		
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4 Complex systems model 
introduction 

A	conceptual	model	is	constructed	based	on	the	substitution	frameworks	and	associated	systems	according	
five	 interrelated	 sub-models,	 namely,	 economic	 production,	 demographic,	 labour	market,	 education,	 and	
technology	 (Figure	 2).	 The	 conceptual	model	 depicts	 the	 interrelations	 between	 the	 sub-models	 and	 the	
connection	 between	 the	 labour	 demand	 and	 labour	 supply	 side	 of	 the	 socio-economic	 system.	 	 In	 the	
subsequent	chapters,	each	of	the	sub-models	and	their	interrelations	is	defined.	Here	after,	this	conceptual	
model	is	operationalised	using	SD.	Additionally,	the	three	spill-over	effects	are	included.	The	profit	spill-over	
is	divided	in	two	flows,	one	towards	(additional)	innovation	investment	and	one	leaking	out	of	the	economy	
(note:	financialisation	is	introduced	in	a	subsequent	chapter).	The	price	spill-over	is	internalised	and	results	
in	additional	demand.	Lastly,	the	wage	spill-over	results	 in	additional	household	income	and	feeds	back	via	
consumption.	

	

Figure	2	Conceptual	model	overview	
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5 Production model 
The	models	 associated	with	 the	presented	 substitution	 frameworks	 form	 the	 foundation	of	 the	 economic	
component	 of	 the	 model.	 This	 economic	 production	 model	 represents	 a	 country’s	 economy	 based	 on	 a	
nested	set	of	production	functions.	Technological	substitution	is	 implemented	via	shifts	 in	the	composition	
of	 tasks	and	 input	within	 the	production	 functions.	This	chapter	will	 introduce	the	process	of	substitution,	
derive	 a	macro-economic	 production	model	 based	 on	 the	 labour	 substitution	 frameworks,	 and	 provide	 a	
synthesis	 of	 the	 relations	 with	 the	 socio-economic	 system.	 The	 effect	 and	 impact	 of	 and	 on	 labour,	
education,	and	technology	is	covered	in	separate	subsequent	chapters.	

5.1 A basic production function model 

Following	 TBTC	 and	 RRTC,	 occupations	 and	 production	 consist	 of	 a	 combination	 of	 routine,	 abstract,	 and	
manual	tasks	types	performed	by	low,	middle,	and	high	skilled	employees	(Autor,	2015;	Mishel,	Shierholz	&	
Schmitt,	 2013).	Overall	 production	[+]	 consists	of	 a	 specific	 composition	of	 tasks	 [+ = -., -0, … , -2 ]	 and	
employees	 perform	 a	 part	 of	 those	 tasks	 depending	 on	 their	 occupation	 [3]	 (Figure	 3).	 Therefore,	
occupations	 comprise	 a	 subset	 of	 all	 the	 tasks	 in	 production	[3 ⊂ +]	 (Autor,	 2013).	 Tasks	 are	 defined	 in	
accordance	with	Acemoglu	and	Autor	(2012),	namely	‘a	task	is	a	unit	of	work	activity	that	produces	output’	
(p.	445).	Therefore,	each	task	is	separately	identifiable	and	categorisable	responsibility/activity	with	distinct	
output	that	contributes	to	the	overall	output	of	a	production	process.	Each	of	the	tasks	[-]	is	characterised	
as	a	 type	 (routine	 [ℛ],	 abstract	 [6],	or	manual	 [ℳ])	with	an	 individual	 share	 in	 total	production	 [8,9, :]	
such	 that	 [ 	8, 9, : 	= 1	and	0 < 8,9, : < 1]	with	8	representing	 the	 share	of	 routine	 tasks,	9	the	 share	
of	abstract	 tasks,	and	:	the	share	of	manual	 tasks.	Therefore,	 the	overall	production	 function	 is	defined	at	
the	tasks	level.	Tasks	themselves	have	individual	production	functions	defined	at	the	factor	input	level,	as	is	
conventionally	done	with	production	functions.	

	

Figure	3	Production	is	a	combination	of	occupations	comprising	a	set	of	tasks	

Following	RRTC,	each	task	[-]	requires	certain	labour	factor	input	[?@]	and	task-specific
16	capital	factor	input	

[A@]	 (Goos,	 Manning,	 &	 Salomons,	 2011;	 Gregory,	 Salomons	 &	 Zierahn,	 2016).	 The	 inputs	 respectively	
introduce	factor	specific	costs,	namely	the	labour	costs	[B@]	and	capital	costs	[Π@]	of	production	(Gregory,	

																																																													
16	Implying	 that	 non-specific	 capital	 in	 the	businesses	 is	 not	 relevant.	 In	 this	 respect,	 capital	 is	 only	 referred	 to	 as	 specific	 capital	
utilised	to	perform	a	task.	
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Salomons	&	Zierahn,	2016).	The	share	of	the	inputs	is	expressed	via	the	capital	share	of	production	[α]	and	
the	labour	share	of	production	[β = 1 − α]	such	that	[0 ≤ α ≤ 1].	Herein,	the	labour	input	factor	requires	a	
level	of	skill	[H]	and	the	capital	factor	depends	upon	technology	[I].	The	overall	task	productivity	operates	as	
the	 Total	 Factor	 Productivity	 (TFP)	 of	 the	 task	 [A@],	 which	 is	 defined	 as	 the	 aggregate	 of	 the	 labour	
productivity	[J@]	and	capital	specific	productivity	[K@].	Therefore,	production	relies	on	a	set	of	tasks	which,	in	
turn,	 utilise	 a	 combination	 of	 labour	 and	 capital.	 The	 result	 is	 a	 set	 of	 equations	 wherein	 input	 level	
production	functions	are	nested	inside	the	task	level	production	function.		

5.1.1 Input Substitution 

Technology	does	not	simply	substitute	the	labour	production	factor	by	replacing	it	for	capital	–	which	would	
imply	that	former	tasks	utilising	labour	input	are	replaced	one-on-one	by	tasks	only	requiring	capital	 input.	
Rather,	labour	input	within	tasks	is	substituted	for	capital	input	to	raise	the	overall	productivity	(Autor,	2015;	
IFR,	 2017).	 This	 implies	 that	 substitution	 shifts	 the	 input	 from	 labour	 towards	 capital	 in	 the	 task	 level	
production	 function	 (e.g.	Lα = −i	|	δβ = i).	 Therefore,	 it	 does	 not	 necessarily	 imply	 that	 labour	 input	 is	
replaced	all	together.	Complementary	technology	replaces	existing	capital	input	for	more	productive	capital	
and/or	replaces	part	of	the	labour	input	with	more	productive	capital.	Therefore,	labour	input	is	still	required	
but	 the	 execution	 of	 the	 task	 and	 the	 interaction	with	 the	 technology	 has	 changed.	 As	 a	 result,	 the	 skills	
required	 to	perform	the	 task	 [HPQ.]	may	have	changed	and	so	does	 the	 relevance	of	prior	 skills	 [HPQR].	 To	
accommodate	this	difference,	a	human	capital	factor	is	added	[ST]	which	is	skill-	and	technology-specific.	In	
other	words,	 it	depicts	 the	additionally	required	technological	skills	 introduced	by	the	substituted	 input(s).	
The	increase	in	task	productivity	improves	labour	performance	and,	with	it,	increases	the	potential	for	labour	
augmenting	spill-over	effects.	In	which	case,	technology	complements	the	labour	factor	and	results	in	labour	
augmentation	–	albeit	possibly	with	different	skill	requirements	and	in	different	tasks.	

5.1.2 Task Substitution (routinisation) 

The	 routinisation	 of	 processes	 does	 imply	 that	 the	 tasks	 themselves	 are	 reorganised	 and	 substituted	 for	
commutable	 routine	 alternatives.	 Businesses	 are	 incentivised	 to	 substitute	 abstract	 and	manual	 tasks	 for	
routine	 tasks	 since	 especially	 routine	 labour	 can	 be	 (and	 will	 be)	 substituted	 when	 financially	 and	
technologically	 feasible	 (Autor,	 2015;	 Goos,	 Manning,	 &	 Salomons,	 2011;	 Gregory,	 Salomons	 &	 Zierahn,	
2016;	 Michaels	 &	 Graetz,	 2015).	 Therefore,	 technological	 progress	 is	 task	 type	 specific	 (note:	 not	 type	
exclusive)	and	the	effects	of	technologies	are	different.	This	 introduces	a	dual	substitution	effect:	(1)	 input	
substitution	within	tasks	(if	labour	input	is	substituted)	and	(2)	task	substitution	across	tasks	(if	routinisation	
takes	place).	Since	routinisation	substitutes	the	task	altogether,	the	type-factor	shares	change	accordingly	in	
the	overall	production	function.	Evidence	suggests	that	routinisation	deteriorates	labour	input	demand	and	
thus	 substitutes	 employment	 (Gregory,	 Salomons	 &	 Zierahn,	 2016).	 However,	 the	 adoption	 of	 new	
technology	 may	 introduce	 new	 associated	 tasks	 in	 support	 of	 the	 new	 capital	 and	 process.	 This	 would	
suggest	 that	 additional,	 albeit	 different,	 labour	 input	 is	 required	which	may	offset	 the	 substituted	 labour.	
Unfortunately,	 this	 is	 only	 possible	 if	 the	 employees	 providing	 the	 former	 labour	 input	 have	 the	 newly	
required	skills	or	 if	 they	are	capable	of	attaining	 those	skills	 in	a	 reasonable	 time	 (Autor,	Dorn,	&	Hanson,	
2015;	IFR,	2017).	This	attainment	aspect	equally	applies	to	skill	changes	induced	by	input	substitution.		

5.1.3 Substitution Elasticity 
Input	and	task	substitution	occurs	in	reaction	to	relative	price	developments	of	labour	and	capital	-	given	the	
technological	automatibility	possible.	Hence,	 ‘Firms’	technology	choice	 is	simple:	adopt	robots	when	profits	
from	doing	so	exceed	profits	from	using	the	labor-only	technology	by	at	least	the	fixed	setup	cost’	(Graetz	&	
Michaels,	2017,	p.	11).	The	rate	of	 substitution	depends	on	 the	respective	elasticity	of	 substitution	 [U]	 for	
input	and	tasks.	Therefore,	at	the	input	level,	the	ratio	of	capital	input	over	labour	input	follows	the	change	
in	capital	costs	over	labour	costs	(effectively	nominal	wage	of	the	task).	The	value	of	the	input	substitution	
elasticity	has	been	under	debate	since	the	first	definition	of	the	product	function,	but	is	estimated	between	
0.4	 to	0.6	according	 to	DeCanio	 (2016).	 Similarly,	 at	 the	 task	 level,	 the	 ratio	of	 routinized	 tasks	over	non-
routine	 tasks	 follows	 the	change	 in	 routinized	 tasks	 costs	over	non-routine	 task	 costs.	Gregory,	 Salomons,	
and	Zierahn	 (2016)	estimate	 the	elasticity	of	 task	 substitution	 [UV]	 at	 0.66	 (with	 standard	error	of	0.175),	
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while	 Goos	 at	 al.	 estimate	 a	 substitution	 elasticity	 of	 0.9	 (according	 to	 Gregory,	 Salomons	 &	 Zierahn	
(2016))17.	This	 suggests	 that	 there	are	 inhibiting	 factors	 to	substitution	outside	of	 financial	 feasibility	since	
the	 elasticities	 are	 not	 equal	 to	 unity	 (Gregory,	 Salomons	 &	 Zierahn,	 2016)	 (that	 will	 be	 covered	 in	 the	
Technology	model	sections).	However,	the	substitution	elasticities	need	not	be	static	and	can	change	due	to	
technological	advancement	(Schneider,	2011).	

5.1.4 Production composition and substitution 

The	substitution	of	input	is	defined	using	a	CB	production	function	(following	the	TBTC	and	RRTC	frameworks	
(Goos,	 Manning,	 &	 Salomons,	 2011,	 2014;	 Gregory,	 Salomons	 &	 Zierahn,	 2016))	 and	 nested	 Leontief	
function.	The	input	production	function	(Eq.	1)	and	substitution	of	input	(Eq.	2)	within	tasks,	to	the	extent	of	
input	elasticity	[U@],	requiring	skill	level	[H],	and	depending	on	task	specific	technology	[I]	are	expressed	as,	
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Eq.	2	

Note	 that	 the	 substitution	 function	 corresponds	 to	 Solow’s	 capital	 intensity	 of	 production	 [A/?]	 (Weber,	
2010).	A	nested	Leontief	function	is	defined	to	accommodate	the	co-development	of	human	capital	[ST]	as	a	
requirement	to	operationalise	new	technology	in	the	specific	task	[I@].	The	Leontief	alternative	is	used	since	
technology	and	the	associated	skills	would	not	be	utilised/are	not	operational	without	the	other	(Acemoglu	
&	Restrepo,	2018).	Human	capital	 is	technology	dependent	and	an	extension	of	the	pre-attained	skill	 level,	
hence	[H@c]	or	simplified	to	[?dZ].	Since	technological	progress	is	task	specific,	the	Leontief	function	(Eq.	3)	

with	relative	weights	[e]	is	expressed	as,	

W@ = fgh
?dZ
ei

,
I@
eT

	 Eq.	3	

The	 model	 incorporates	 task-biased	 technological	 progress	 via	 task	 specific	 technology	 [I@]	 and	 task	
dependent	 productivities	 [W@].	 Therefore,	 the	model	 follows	 Goos,	Manning,	 and	 Salomons	 (2011,	 2014)	
whom	simplify	the	model	by	assuming	non-industry	specific	technology	(and	provide	substantiation	why	this	
assumption	holds).	The	relative	weights	[e]	set	the	amount	of	labour	hours	and	technological	development	
required	to	realise	the	associated	productivity	growth.	

5.2 A nested task-based production function model 

The	 substitution	 of	 tasks	 requires	 a	 more	 elaborate	 definition	 than	 proposed	 above	 in	 order	 to	
accommodate	 routinisation.	 The	 substitution	 of	 abstract	 and	 manual	 tasks	 for	 routine	 alternatives	
introduces	 four	complications.	First,	 the	 routine	alternative	still	 requires	 the	skill	 level	of,	 respectively,	 the	
prior	abstract	[H6]	or	manual	[Hℳ]	task.	Hence,	substitution	with	conventional	routine	tasks	[Hℛ]	would	be	
incorrect.	Second,	routinisation	is	fundamentally	incentivized	by	the	possibilities	for	substitution.	Therefore,	
routinized	tasks	have	an	automatibility	ratio	in	line	with	routine	tasks	(further	defined	and	discussed	in	the	

																																																													
17	The	estimated	real	world	task	substitution	elasticities	[UV]	are	used	as	input	in	the	model.	
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Technology	 model	 sections).	 Third,	 the	 technology	 used	 for	 routinisation	 differs	 from	 both	 conventional	
routine	 tasks	 and	 the	 prior	 abstract	 or	manual	 task.	 Otherwise,	 routinisation	would	 be	 identical	 to	 input	
substitution	from	a	technological	point	of	view.	Lastly,	an	overall	production	function	with	routine,	abstract	
and	manual	tasks	would	result	in	an	identical	substitution	elasticity	between	all	task	types.	However,	manual	
and	abstract	tasks	are	not	substitutable	with	each	other.	In	addition,	a	routinised	alternative	of	routine	tasks	
is	 introduced.	 This	 may	 seem	 counterintuitive,	 but	 new	 technologies	 will	 require	 additional	 skills	 (as	 is	
described	 in	 subsequent	 chapters).	 This	 also	 applies	 to	 routine	 tasks.	 As	 a	 result,	 a	 system	 of	 nested	
production	functions	(Eq.	4	A-D)	is	introduced	with	routinised	routine	[ℛℛ],	abstract	[ℛ6],	and	manual	[ℛℳ]	
tasks	and	associated	variables,		
	

- ∈ kℛ, k6, kℳ ,					kℛ = ℛ,ℛℛ ,					k6 = 6,ℛ6 ,						kℳ = ℳ,ℛℳ 		
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Eq.	4	D	

For	notation	convenience	and	comprehensibility,	the	notation	of	the	time	variable	has	been	left.	The	nested	
production	function	includes	four	levels.	The	first	is	the	overall	production	function	at	the	task	level	(Eq.	4	A)	
that	defines	the	economic	composition	of	routine,	abstract,	and	manual	tasks.	In	the	nested	task	level	(Eq.	4	
B),	 the	 routinisation	 of	 abstract	 and	 manual	 tasks	 is	 incorporated	 depending	 on	 the	 task	 substitution	
elasticity	[UV],	resulting	in	six	task	factor	ℛ, ℛℛ,6, ℛ6,ℳ,ℛℳ .	At	the	input	level	(that	is	nested	in	the	task	
level)	 (Eq.	 4	 C),	 each	 task	 has	 a	 specific	 production	 function	 composition,	 introducing	 six	 capital	 inputs	
[ ATℛ, ATℛℛ

, AT6, ATℛ6
, ATℳ, ATℛℳ

]	 and	 six	 labour	 inputs	 of	 which	 three	 human	 capital	 extended	

[?^ℛ, ?^6, ?^ℳ, ?dℛ, ?d6, ?dℳ ]18.	Lastly,	nested	within	the	input	level,	productivity	growth	is	realised	through	
technological	progress	that	requires	adequately	skilled	labour	input	and	specific	technology	(Eq.	4	D).	
	

																																																													
18	The	labour	input	notation	has	been	simplified.	The	full	notation	would	be:	?^Zcp

with	H@	expressing	the	task-dependent	skill	level,	ST	

the	 technology	depended	human	 capital	 factor,	wherein	 the	I	is	 tasks	 specific.	However,	 since	 skill	 level	 and	 technology	 are	 task	
specific	and	human	capital	is	technology	specific	the	notation	is	simplified	to	?^Z 	and	?dZ .		
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The	use	of	production	function	variants	(CES	and	CD)	corresponds	to	the	RRTC	framework	and	models	based	
on	the	TBTC	framework	(see	Goos,	Manning,	&	Salomons,	2011,	2014;	Gregory,	Salomons	&	Zierahn,	2016)	
19.	 In	 addition,	 the	 model	 draws	 from	 multi-factor	 nested	 production	 function	 literature	 to	 confirm	 the	
structural	 integrity	 (Koesler	 &	 Schymura	 (2012)	 for	 substitution	 elasticities	 variation,	 Frieling	 &	Madlener	
(2016)	 for	 nesting).	 Furthermore,	 the	model	 definition	 is	 consistent	 and	 operationalisable	 with	 economic	
System	 Dynamics	 models	 to	 allow	 for	 simulation	 (Weber,	 2010;	 Radzicki,	 2009).	 Therefore,	 the	 task	
production	functions	(Eq.	4	B)	are	defined	as	CES	functions	and	the	input	production	functions	(Eq.	4	C)	are	
defined	as	CB	functions	(since	[α + β = 1])	-	as	is	done	in	the	RRTC	framework	(Goos,	Manning,	&	Salomons,	
2011,	2014;	Gregory,	Salomons	&	Zierahn,	2016).	The	model	is	extended	to	accommodate	relevant	empirical	
and	framework	principles.	Firstly,	the	model	 is	extended	to	explicitly	 include	the	skill	 levels	as	proposed	by	
Acemoglu	and	Autor	(2011)	and	Autor	(2013)	to	enable	labour	market	dynamics	(Eq.	4	C	and	D).	Moreover,	
the	labour	division	is	expanded	via	the	introduction	of	technology	dependent	human	capital/skill	factor	[ST]	
to	 resemble	 the	dynamics	of	 skills	 required	 to	operate	new	 technology	 (Acemoglu	&	Restrepo,	 2018;	 IFR,	
2017).	Secondly,	the	explicit	separation	and	pooling	of	task	types	differs	from	Goos,	Manning,	and	Salomons	
(2011,	2014)	since	the	macro-level	is	studied	and	not	industries	or	regions	(whom	may	use	a	disaggregation	
within	 the	 types).	 Therefore,	 the	model	 is	 consistent	with	 the	RRTC	and	TBTC	 framework	and	expands	on	
existing	models	to	facilitate	dynamic	modelling.	

5.2.1 Production costs 

The	 input	 factor	 costs	 [ATZ → ΠTZ	and	?@ → B@]	 for	 task	 production	 sum	 to	 the	 task-specific	 costs	 [q@].	
Businesses	are	naturally	costs	minimising	by	reducing	the	overall	costs	of	the	factor	input	depending	on	the	
relative	 marginal	 costs	 of	 labour	 versus	 capital	 (Graetz	 &	Michaels,	 2017;	 Gregory,	 Salomons	 &	 Zierahn,	
2016).	 The	 production	 costs	 follow	 the	 input	 CB	 production	 function	 as	 done	 by	Gregory,	 Salomons,	 and	
Zierahn	 (2016)	with	 [r]	 indicating	 the	cost	 share	of	 the	 input	 factors	 (Eq.	5).	Developments	 in	 input	price	
influence	substitution	as	expressed	in	Eq.	2.	The	relative	change	in	production	price	[Lq@]	can	be	allocated	to	
the	various	 spill-over	effects	 (see	3.2):	 competitive	allocation	 towards	 the	product	price	 [stu],	profitability	
allocation	 towards	 the	profit	mark-up	 [vtu]

20,	 and	wage	 allocation	 [Btu].	 The	wx	notation	 indicates	 that	 it	
concerns	the	spill-over	quantity	depending	on	the	allocation	fraction.	Respectively,	the	spill-over	allocation	
fractions	[y]	for	the	three	options	are	expressed	as	[z],	[{],	and	[|]	such	that	[y = 	 {z, {, |},	 yl = 1,	and	
0 ≤ yl ≤ 1].	Evidence	from	robot	driven	productivity	growth	suggests	that	approximately	two	thirds	of	the	
labour	 productivity	 gains	 are	 used	 competitively	 and	 a	 tenth	 goes	 to	 wages	 (Graetz	 &	 Michaels,	 2017).	
Therefore,	z=0.667,	|=0.1,	and	{=0.233.		Therefore,	the	spill-over	effects	are	expressed	as	a	product	of	the	
derivative	of	task-specific	costs	(Eq.	6).	The	price	of	products	[sP]	is	defined	as	the	task-specific	costs	prior	to	
input	costs	changes	[q@P�.]	increased	with	the	conventional	profit-mark-up	[vÄ]	and	price	spill-over	effects	
(Eq.	7).	

q@P = ΠTZ
Å

P
B@

.�Å
P
	 Eq.	5	

stu = z
Lq@P
L`

,					vtu = {
Lq@P
L`

,						Btu = |
Lq@P
L`

	 Eq.	6	

sP = q@P�. 1 + vÄ +
Lq@P
L`

{ − z 	 Eq.	7	

The	task	specific	profit	[Ç@P]	is	the	summation	of	the	conventional	profit	mark-up	[vÄ]	over	input	costs	and	
the	 profitability	 spill-over	 [vtu].	 The	 generated	 profit	 can	 be	 retained	 in	 the	 business	 or	 distributed	 as	
dividend	(Eq.	8).	The	prior	is	assumed	to	fully	contribute	to	growth	of	the	respective	productivity	factor	[W@].	
Whereas	the	latter	is	assumed	to	be	relocated	to	capital	owners	and	the	financial	markets	outside	the	model	

																																																													
19	Goos,	Manning,	and	Salomons	 (2011)	provide	a	more	detailed	evaluation	of	 the	use	of	production	 functions	 (CES	and	CB).	 The	
principle	of	nested	functions	is	however	not	explicitly	mentioned.	Hence,	multi-factor	nested	production	function	literature	has	been	
referred.	
20	The	spill-over	effect	mark-up	[vtu]	is	financial,	while	the	conventional	mark-up	[vÄ]	is	a	dimensionless	fraction.	
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[ÉP].	The	share	of	both	 is	 respectively	expressed	as	 the	 innovation	 investment	share	 [Ñ@]	and	the	dividend	
share	[ν@ = 1 − Ñ@]	such	that	[0 ≤ Ñ@ ≤ 1].		

Ç@P = q@P�.vÄ + vtu,					Ü@P = Ñ@Ç@P,					É@P = (1 − Ñ@)Ç@P	 Eq.	8	

The	wage	allocation	spill-over	effect	is	not	included	in	the	equations	since	it	feeds	back	in	the	Labour	market	
model	 where	 the	 wages	 are	 established.	 Productivity	 growth	 stands	 at	 the	 centre	 of	 living	 standard	
improvement	 (Dew-Becker	&	Gordon,	 2005;	OECD,	2015b).	 Yet,	 if	wages	do	not	proportionally	 grow	with	
economic	 outcomes	 and	 productivity	 growth,	 this	 well-established	 paradigm	 becomes	 questionable.	 ‘The	
failure	 of	 the	 productivity	 growth	 revival	 to	 boost	 the	 real	 incomes	 and	 wages	 of	 the	median	 family	 and	
median	 worker	 calls	 into	 question	 the	 standard	 economic	 paradigm	 that	 productivity	 growth	 translates	
automatically	 into	 rising	 living	 standards’	 (Dew-Becker	 &	 Gordon,	 2005,	 p.	 1-2).	 As	 a	 result,	 the	
conventionally	 parallel	 growth	 of	 productivity	 and	wages	 resulting	 in	 a	 constant	 wage	 share	 is	 no	 longer	
present	(Dew-Becker	&	Gordon,	2005).	The	fact	that	wages	do	not	benefit	from	economic	and	productivity	
growth	 is	demonstrated	by	 the	consistent	decline	 in	 the	wage	 share	across	OECD	countries	over	 the	past	
three	decades	(OECD,	2015b;	Stockhammer,	2013).		In	relation	with	the	production	model,	the	wage	share,	
also	referred	to	as	labour	share,	acts	as	an	indicator	of	the	income	distribution	between	labour	and	capital.		

5.2.2 Wage share and profit share 
From	 the	 production	 function	 (Eq.	 4),	 the	 overall	wage	 share	 [áV]	 and	 per	 tasks	 [á@]	 are	 determined	 as	
follows	(Schneider,	2011),	

áV = á@

@

lQ.

∗
-
+
,						á@ =

B@?^Z
q@-

	 Eq.	9	

And	thus,	the	profit	share	is	as	follows	(Schneider,	2011),	

àV = à@

@

lQ.

∗
-
+
,						à@ = 1 − á@ 	

Eq.	10	

Therefore,	the	shares	depend	on	labour	supply,	labour	demand,	the	level	of	output,	and	the	mechanisms	of	
production,	wage	setting,	and	employment	(Schneider,	2011).	Following	the	CB	production	function	at	the	
task	 level,	 the	wage	shares	would	be	equal	 to	 the	respective	marginal	product	of	 labour	and	stable	 in	 the	
long	 term	 (Schneider,	 2011).	 Yet,	 this	 only	 holds	 under	 balanced	 growth	 and/or	 the	 assumption	 that	 the	
wage	and	capital	bills	sum	to	the	total	output,	which	does	not	necessarily	need	to	be	the	case	(Schneider,	
2011).	 Shifts	 in	 the	 wage	 share	 stem	 from	 unbalanced	 growth	 across	 sectors,	 changing	 sectoral	
compositions,	 globalisation,	 financialisation,	market	 interventions,	 (market)	 institutions,	 financial	 markets,	
bargaining,	and	technological	advancement	shift	the	factor	shares	away	from	their	steady	state	and	marginal	
products	(OECD,	2015b;	Schneider,	2011;	Stockhammer,	2013).	
	
The	wage-share	of	national	income	was	often	perceived	as	a	constant	ratio	or	used	a	stylised	fact	in	macro-
economic	theories	and	models	(Autor	&	Salomons,	2017;	OECD,	2015b;	Schneider,	2011).	However,	short	to	
medium	term	fluctuations	countercyclical	to	the	business	cycle	are	present	(OECD,	2015b;	Schneider,	2011).	
The	fluctuations	have	been	allotted	to	various	factors	and	rigidities	depending	on	the	economic	school	and	
the	model	 definition	 (Schneider,	 2011).	 Furthermore,	measurement	of	 the	 real-world	wage	 share	 is	more	
complicated	 due	 variation	 in	 the	 measurement	 and	 definition	 of	 the	 variables	 (OECD,	 2015b;	 Schneider,	
2011).	 Most	 of	 the	 attention	 for	 the	 wage	 share	 and	 its	 behaviour	 stems	 from	 Neo-classical	 approach	
(Schneider,	2011).	Yet,	the	factors	explaining	the	behaviour	of	the	wage	share	have	not	reached	a	definitive	
state	of	consensus	 (OECD,	2015b;	Schneider,	2011).	These	discussions	are	beyond	the	scope	of	 this	study.	
Yet,	the	relation	with	technological	change	and	its	impact	on	labour	and	spill-over	effects	is	relevant	as	are	
financialisation	and	bargaining.	
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In	 contrast	 with	 the	 constant	 wage	 share	 trend	 in	 the	 past,	 developments	 over	 the	 past	 three	 decades	
demonstrate	 a	 consistent	 decline	 in	 the	 wage	 share	 in	 relation	 with	 technological	 change	 across	 OECD	
countries	 (OECD,	 2015b;	 Stockhammer,	 2013)21.	 This	 secular	 trend	 concerns	 scholars	 and	 policy	 makers	
since	 ‘main	 macroeconomic	 aggregates,	 namely	 household	 consumption,	 private	 sector	 investment,	 net	
exports	and	government	consumption	(ILO	2012;	Wolf	2014)’	(OECD,	2015b,	p.	2)	deteriorate.	Therefore,	a	
feedback	mechanisms	 is	present	 from	economic	outcomes,	 to	wages,	 to	demand,	 to	economic	outcomes.	
Moreover,	 inequality	 grows	 and	 political	 support	 for	 economic	 policy	 declines	 (OECD,	 2015b).	 More	
importantly,	 the	 current	 rate	 at	 which	 AI	 and	 advanced	 robotics	 are	 increasingly	 capable	 of	 substituting	
labour	sparks	debates	whether	the	balance	between	wage-share	and	profit-share	is	becoming	ever-in	favour	
of	 capital	 owners	 (Autor	&	Salomons,	 2017).	 This	would	 imply	 that	 the	declining	 trend	of	 the	wage	 share	
since	the	1990’s	of	approximately	0.3%	annually	(OECD,	2015b)	will	continue	or	even	accelerate.	
	
The	nature	of	technological	change	(i.e.	labour	or	capital	augmenting	or	saving)	together	with	the	associated	
productivity	growth	determines	the	shift	in	factor	input	and	output	(Schneider,	2011;	Stockhammer,	2013).	
In	 combination	with	 the	 relative	 factor	prices	 this	determines	 the	 rate	of	 substitution	and	 thus	 the	 factor	
input	 demand.	 In	 respect	 of	 productivity	 growth,	 ‘when	 the	 growth	 in	 average	wages	 lags	 the	 growth	 in	
labour	productivity,	 the	 result	 is	a	decline	 in	 the	 labour	share.’	 (OECD,	2015b,	p.	7).	The	OECD	determined	
that	 ‘total	 factor	 productivity	 (TFP)	 growth	 and	 capital	 deepening	 –	 the	 key	 drivers	 of	 economic	 growth	 –	
accounted	 for	most	 of	 the	 average	within-industry	 decline	 of	 the	 labour	 share	 in	OECD	 countries	 between	
1990	and	2007’	(OECD,	2015b,	p.	9).	Therefore,	the	spill-over	effect	whereby	productivity	growth	is	allocated	
towards	wages	influences	the	wage	share.	Furthermore,	the	spill-over	effect	whereby	productivity	growth	is	
allocated	 towards	 prices	 should	 result	 in	 additional	 demand	 from	 consumption	 and	 export.	 Yet,	
materialisation	of	this	consumption	growth	lacks	when	wages	do	not	grow	proportionally	with	productivity	
and	 economic	 growth.	Moreover,	 wage	 allocation	 is	 not	 necessarily	 equally	 distributed	 across	 skill	 levels	
(Dew-Becker	&	Gordon,	2014).	Over	 the	past	decades,	most	of	 the	productivity	 growth	allocated	 towards	
wages	has	accrued	to	high	skilled	wage	incomes	(Dew-Becker	&	Gordon,	2014).	Therefore,	the	distribution	
within	 the	wage	 allocation	 is	 skewed	 towards	 high	 skilled	 labour	 input.	 As	 a	 result,	 disproportionate	 and	
unequal	wage	share	growth	can	be	the	result	of	technological	change.		
	
Stockhammer	(2013)	finds	that	financialisation	is	the	single	most	important	factor	of	the	decline	in	the	wage	
share	and	refutes	the	prevailing	claimed	importance	of	technological	change22	(based	on	empirical	findings	
and	 the	 fact	 that	 it	 is	 based	 on	 Neo-classical	 assumptions	 and	 over-stylised	 properties23).	 Although	 the	
financial	market	is	outside	of	the	model,	profit	allocation	of	productivity	growth	and	utilization	of	the	capital	
share	 of	 income	 are	within	 the	 boundaries	 of	 the	model.	 This	 implies	 that	 the	 increase	 in	 capital	 income	
leaking	to	the	financial	markets	[ÉP]	results	in	a	reduction	of	the	wage	share.	Theoretically,	an	economy	can	
benefit	from	a	growing	capital	share	if	it	is	invested	in	the	economy.	Yet,	financialisation	has	prevented	this	
mechanism	from	occurring:	‘It	might	be	argued	that	lower	wages	are	necessary	to	boost	profits	 in	order	to	
increase	 investment	and,	 in	 turn,	 job	creation.	However,	 in	developed	economies,	 the	shift	 in	 income	away	
from	labour	towards	capital	has	not	produced	the	expected	results	on	investment.’	(OECD,	2015b,	p.	11-12).	
According	 to	 the	 OECD	 (2015b)	 this	 is	 for	 three	 reasons,	 for	 one,	 profits	 mainly	 accrued	 in	 the	 financial	
sector;	second,	profits	have	increasingly	been	used	to	pay	dividends	and	invest	in	financial	assets;	and	third,	
productive	investment	has	declined	due	to	declining	household,	government,	and	export	consumption	and	
stricter	credit	provision.	The	latter	can	directly	be	accredited	to	the	reducing	wage	share.	The	income	from	
growing	 capital	 share	 predominantly	 ends	 up	 in	 the	 hands	 of	 the	 top	 10,	 1,	 and	 mainly	 0.1	 percent	 of	
incomes	 (wage	and	 capital)	 (OECD,	2015b;	 Stockhammer,	 2013).	Which,	 in	 turn,	 is	mostly	used	 for	 saving	
and	 subsequent	 investment	 instead	 of	 consumption	 (OECD,	 2015b;	 Stockhammer,	 2013).	 Therefore,	 this	
development	catalyses	the	inequality	growth	and	restraints	productivity	growth.	In	the	model,	the	spill-over	

																																																													
21	Note:	in	developing	countries	technological	change	is	positively	related	with	technological	change,	see	Stockhammer	(2013).	
22	Stockhammer	 (2013)	even	goes	as	 far	 to	say,	 ‘the	view	that	changes	 in	 income	distribution	 in	advanced	economies	have	mainly	
been	driven	by	 technological	 change.	 This	 is	 not	 correct.	While	 technological	 change	has	had	a	negative	 effect	on	wage	 shares	 in	
developed	economies,	this	effect	is	smaller	than	that	of	other	factors	and	it	is	less	robust.’	(p.	viii)	
23	‘In	a	world	of	complete	markets,	perfect	competition,	full	employment	and	well	behaved	aggregate	production	functions,	 income	
shares	 are	 determined	 by	 technology.	 This	 is	 the	 core	 of	 the	 neoclassical	 theory	 of	 income	 distribution.	 However,	 none	 of	 these	
assumptions	is	likely	to	hold	in	the	real	world.’	(Stockhammer,	2013,	p.	5)	
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effect	whereby	productivity	growth	is	allocated	towards	profits	in	combination	with	the	ratio	of	profits	used	
for	investment	[Ñ@]	determines	the	leakage	towards	the	financial	markets.		
	
In	addition,	a	deteriorating	(collective)	wage	bargaining	position	of	employees	in	combination	with	declining	
union	density	negatively	 influences	 the	wage	 level.	The	OECD	 (2015b)	concludes	 that	 ‘Among	 institutional	
factors,	empirical	evidence	 suggests	 that	 the	 role	of	 factors	 that	affect	 the	bargaining	power	of	workers	 is	
largest	(OECD,	2012).’	(p.	10).	The	wage	setting	process	is	defined	in	the	Labour	market	model	(see	7).	

5.3 Production model synthesis  

To	synthesize,	substitution	will	increase	the	aggregate	productivity	of	tasks	and	overall	production	giving	rise	
to	spill-over	effects.	The	relative	strength	of	the	spill-over	effects	and	where	they	will	accrue	depends	on	the	
allocation	pattern	(i.e.	the	values	of	the	allocation	fractions	[z,{, |])	and	the	values	of	associated	variables	
along	 feedback	 mechanisms	 (Autor	 &	 Salomons,	 2017;	 Goos,	 Manning,	 &	 Salomons,	 2014;	 Graetz	 &	
Michaels,	 2017;	 Gregory,	 Salomons	 &	 Zierahn,	 2016).	 In	 this	 sense,	 labour	 substitution	 impoverishes	 the	
position	of	labour	but	can	be	countered	by	the	effects	of	spill-overs.	Therefore,	the	effect	of	technology	on	
the	 labour	market	depends	on	the	relative	dominance	and	accumulation	of	 the	substitution	effects	versus	
the	 spill-overs	 (Goos,	Manning,	&	 Salomons,	 2011;	 Gregory,	 Salomons	&	 Zierahn,	 2016).	 Consequentially,	
technology	 that	 enabled	 substitution	 can	 complement	or	displace	 labour	 input	 and,	 respectively,	 result	 in	
labour-augmentation	 or	 capital-augmentation	 on	 the	 labour	market24.	Hence,	 the	 effect	 of	 technology	 on	
labour	is	not	predetermined	to	be	negative	or	positive	(Autor,	2015).	
	
Technological	 progress	 facilitates	 cost	 reduction	 via	 productivity	 growth.	 The	 extent	 to	which	 substitution	
takes	 place	 depends	 on	 the	 relative	 price	 development	 of	 capital	 and	 wages	 and	 the	 extent	 to	 which	
technology	is	capable	of	replacing	humans	(Autor,	2015;	Gregory,	Salomons	&	Zierahn,	2016;	Weber,	2010).	
The	latter	is	determined	in	the	Technology	model	(see	9).	In	the	process,	substitution	changes	the	task	and	
skill	composition	and	sets	labour	market	dynamics	in	motion.	The	development	of	the	dynamics	depends	on	
the	 market’s	 clearing	 ability	 in	 response	 to	 the	 change	 in	 skill	 demand.	 In	 this	 respect,	 technological	
progress,	wage	dynamics,	consumption,	and	skill	attainment	influence	the	substitution	effects	and	spill-over	
effects.	 Therefore,	 the	 balance	 between	 substitution	 and	 spill-over	 is	 influenced	 by	 the	 dynamics	 of	 the	
labour	and	capital	factor.		
	
The	reason	to	refer	to	the	sub-model	as	the	Production	model	instead	of	the	Economic	model	is	because	it	is	
restricted	 to	 include	 only	 a	 part	 of	 a	 macro-economy	 in	 line	 with	 the	 scope	 of	 the	 TBTC	 and	 RRTC	
frameworks	 to	 study	 the	plausible	 impact	of	 technological	 change	and,	 in	 this	 study,	 the	effects	of	 labour	
force	 adaptability.	 Therefore,	 capital	 and	 financial	 markets,	 interest	 rates,	 exchange	 rates,	 import	 and	
export,	economic	and	technological	competitive	position,	globalisation,	government	consumption,	monetary	
and	fiscal	policy,	sectoral	composition,	and	exogenous	factors/shocks	are	not	considered	which	are	part	of	
conventional	macro-economic	models	 depending	 on	 the	 economic	 school	 and	 scope.	 In	 this	 respect,	 the	
model	 and	 this	 study	 are,	 as	 far	 as	 the	 literature	 available	 at	 the	 time	 of	 writing,	 the	 first	 attempt	 to	
(dynamically)	 model	 labour	 adaptability	 in	 reaction	 to	 technological	 substitution	 in	 the	 context	 of	 future	
technological	 change	 and	 associated	 uncertainties.	 This	 also	 implies	 that	 the	 model	 can	 benefit	 from	
extensions	that	reach	beyond	the	TBTC	and	RRTC	based	production	model	and	incorporate	and	endogenise	
more	sectors,	markets,	and	factors.	Therefore,	the	results	should	be	considered	within	these	limitations.	The	
production	model	forms	the	foundation	for	the	operationalisation	with	SD	and	describes	the	interrelations,	
composition,	and	processes	in/of	the	economy,	economic	growth,	labour	demand,	and	labour	substitution.	
In	relation	with	the	production	model,	wages	are	determined	in	the	 labour	market	model	and	feedback	to	
the	economic	outcomes	via	consumption.	In	addition,	the	technological	change	variables	of	the	production	
model	are	determined	in	the	Technology	model.	 	

																																																													
24	E.g.	 technology	substitutes	 labour	 input	 for	capital	 input	and	enables	 routinisation	which	 in	 turn	can	have	a	 labour-augmenting	
effect	 (complementary	technology	=	 if	 the	 labour	hour	 input	does	not	decrease	and	benefits	 from	the	 increase	 in	productivity)	or	
capital-augmenting	effect	(displacing	technology	=	if	the	labour	hour	input	is	reduced	as	a	result	of	the	increase	in	productivity).		



TU Delft EPA  |  K Spaanderman   

	 24	

6 Demographic model 
Labour	input	is	supplied	by	the	labour	force	which	includes	all	population	members	whom	participate	in	the	
labour	 market.	 However,	 labour	 input	 and	 supply	 are	 not	 homogenous.	 Firstly,	 different	 skill	 levels	 exist	
which	participate	in	different	activities	in	the	economy.	Secondly,	different	age	cohorts25	can	be	identified	in	
the	 population	with	 difference	 participation	 rates	 across	 skill	 levels	 and	 sex.	 Lastly,	 the	 age	 cohorts	 have	
distinct	 societal	 and	 social	 roles	 and	 position	 (e.g.	 children	 or	 parenthood).	 The	 population	members	 age	
over	 time	 and	 flow	 (horizontally)	 from	 age	 cohort	 to	 age	 cohort,	 from	 birth	 to	 death.	 Moreover,	 the	
members	can	climb	the	social-economic	ladder	by	attaining	a	higher	skill	level	via	re-skilling	and	up-skilling.	
The	 population	 model	 is	 structured	 accordingly	 to	 study	 socio-economic	 outcomes	 of	 technological	
substitution	including	(un-)employment,	inequality,	incomes,	and	participation	across	cohorts.	In	this	sense,	
demographic	 dynamics	 resonate	 in	 the	 labour	 force	 and	 therefore	 influence	 labour	 input	 and	 economic	
processes.	Moreover,	 the	economic	conditions	 feedback	to	the	population	and	 labour	 force	via	the	 labour	
market,	wages,	 and	 skill	 attainment.	 In	 this	 paragraph,	 the	 population	model	 is	 developed	 by	 defining	 its	
structure,	 the	 process	 of	 skill	 attainment,	 and	 defining	 the	 demographic	 processes.	 In	 the	 subsequent	
chapter	the	process	of	skill	attainment	is	covered.	

6.1 Structure of the population and labour force 

The	TBTC	and	RRTC	 frameworks	 simplify	 the	population	and	 labour	 force	 in	 three	categories,	namely	 low,	
middle,	 and	 high	 skilled.	 However,	 the	 definition	 of	 each	 skill	 level	 is	 rather	 ambiguous	 since	 education	
systems	 vary	 across	 countries.	 This	 results	 in	 country	 specific	 skill	 level	 definitions	 which	 complicate	
comparison	 of	 labour	 market	 effects	 and	 studies	 (Autor	 &	 Salomons,	 2017;	 Graetz	 &	 Michaels,	 2017).	
Therefore,	 the	 2011	 Unesco	 International	 Standard	 Classification	 of	 Education	 (ISCED)	 is	 adopted	 in	 this	
study	 (see	UNESCO	 Institute	 for	 Statistics	 (2012)).	 The	 low	 skilled	 group	 [Hâ]	 is	 defined	as	 individuals	 that	
completed	primary	education	or	 the	 first	 years	of/lower	 secondary	education	 -	 i.e.	 level	1	 and	2	of	 ISCED	
2011.	 Middle	 skilled	 [Hä]	 includes	 individuals	 whom	 completed	 (upper)	 secondary	 or	 profession-specific	
education	 –	 i.e.	 level	 3,	 4	 and	 5	 of	 ISCED	 2011.	 The	 latter	 [Hℍ]	 consists	 of	 individuals	 whom	 completed	
tertiary	education	and	have	a	bachelor,	master,	or	doctoral	degree	–	i.e.	level	6,	7	and	8	of	ISCED	2011.	This	
enables	 effective	 comparison	 between	 studies26	and	 countries,	 and	 conforms	 with	 the	 TBTC	 and	 RRTC	
frameworks27.	
	
The	population	and	labour	force	are	structured	accordingly	[Hâ, Hä, Hℍ]	and	are	related	via	the	participation	
rate	 [å].	 However,	 as	 defined	 in	 the	 production	 model,	 the	 labour	 force	 is	 expanded	 with	 a	 technology	
specific	human	capital	factor	[ST]	to	incorporate	skill	dynamics.	This	implies	that	the	ISCED	categorisation	still	
applies	 but	 a	 human	 capital	 extended	 variant	 exists	 for	 each	 skill	 level	 (Hâ	and	Sâ,	Hä	and	Sä,	 and	Hℍ	and	
Sℍ).	Therefore,	the	population	and	labour	force	consist	of	six	levels	[Hâ, Hä, Hℍ, Sâ, Sä, Sℍ].	The	participation	
rate	is	defined	as	the	share	of	 individuals	of	working	age	(15	to	64	years28)	 in	the	population	offering	their	
labour	supply	 in	the	 labour	market	-	 independent	of	the	number	of	contracted	hours.	The	rate	 is	different	
for	each	skill	 level	 [H],	different	between	male	 [♂]	and	 female	 [♀]	populations,	and	different	 for	each	age	
cohort	 [çℂ]	 within	 the	working	 age	 population.	 Therefore,	 the	 population	model	 consists	 of	 an	 identical	
male	and	female	sub-model	with	six	skill	levels	and	separate	age	cohorts.	�
	
The	age	cohorts	[çℂ]	can	be	organised	according	to	various	criteria,	including	demographic,	biological,	or	-	
as	 in	this	study	–	professional	age	categories.	Prior	to	entering	the	working	age	population,	 individuals	are	

																																																													
25	i.e.	a	group	of	persons	sharing	a	particular	statistical	or	demographic	characteristic	
26	The	definitions	used	in	literature	often	refer	to	the	US	education	system	of	high-schools	and	colleges	and	fits	these	classifications	
to	the	production	function	labour	input	(Autor	&	Salomons,	2017;	Goos,	Manning,	&	Salomons,	2011).		
27	Although	not	explicitly	stated,	Arntz,	Gregory,	and	Zierahn	(2016)	also	use	the	ISCED	standardisation.,	among	others	
28	Following	the	OECD	Definition	of	Working	age	population	(https://data.oecd.org/pop/working-age-population.htm)	
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born	and	are	 children	 [ℂℍ]	up	 to	 the	age	of	15.	 Since	 secondary	and	 tertiary	education	expands	 into	 the	
working	age	population,	 the	 first	professional	age	cohort	 is	defined	as	students	 [èê].	The	age	span	of	 this	
group	depends	on	the	skill	level	since	the	education	levels	have	different	durations	[∆`èê^].	Some	students	
may	already	enter	the	 labour	market	within	the	timespan	of	the	student	age	cohort	[èê^],	 for	example	to	
work	part-time	or	during	a	full-time	gap	year.	This	depends	on	the	students’	participation	rate	per	skill	level	
[åèê^].	Hereafter,	 individuals	 enter	 their	 professional	 life	 consisting	 of	 three	 age	 cohorts:	 young	 adults	 or	
junior	professionals	[íç^]	with	duration	[∆`íç^],	mature	adults	[äç^]	for	[∆`äç^]	years;	and	senior	adults	
or	senior	professionals	[èç^]	for	[∆`èç^]	years.	Logically,	retirement	[ℝî]	follows	professional	life	as	the	last	
phase	 in	 life	 from	 the	 retirement	 age	 [`ℝî]	 up	 until	 the	 average	 life	 expectancy	 per	 skill	 level	 [`ïñ].	 This	
structuring	creates	a	 skill	 level-based	population	model	 for	males	and	 females	organised	according	 the	six	
age	cohorts.	The	result	is	a	population	flow	per	skill-level	per	sex	that	entails	the	whole	national	population	
when	summed	(Figure	3	for	each	skill	level).	

	

Figure	4	Universal	population	model	per	skill	level	

Note	in	Figure	3	that	the	duration	of	the	student	and	young	adult	age	cohorts	is	different	for	the	various	skill	
levels	since	the	education	duration	 is	different	while	 the	transition	to	mature	adults	occurs	at	an	 identical	
age.	Secondly,	note	that	the	diagram	is	sex	independent	[ó ∈ �,	 ]	and	that	the	average	life	expectancy	
is	 different	 for	 the	 skill	 levels.	 Lastly,	 the	 participation	 rate	 [åçℂñ],	 age	 cohort	 duration	 [∆`çℂ^],	 and	 life	
expectancy	 [`ïñ]	 are	 identical	 for	 the	 respective	 normal	 and	 extended	 skill	 levels	 (e.g.	åçℂñâ = åçℂcâ 	

etcetera).	

6.1.1 Skill attainment, labour adaptation, and adaption delay 

Technological	 progress	 is	 expected	 to	 significantly	 change	 labour	 in	 the	 future	 (Arntz,	 Gregory,	 Zierahn,	
2016;	Frey	&	Osborne,	2015,	2017;	Nedelkoska	&	Quintini,	2018).	Adaptation	of	the	labour	force	can	only	be	
realized	through	attainment	of	new	skills	(Acemoglu	&	Restrepo,	2018).	The	importance	of	skill	attainment	is	
commonly	 recognized	among	scholars	 (see	Acemoglu	&	Restrepo	 (2018))	as	well	as	 institutes	and	 interest	
groups	(e.g.	IFR,	2017,	OECD,	2017b,	EU	Skills	Panorama	2014,	2015).	However,	labour	skill	adaptation	is	not	
friction-less	and	constant	across	society	(Acemoglu	&	Restrepo,	2018;	Gregory,	Salomons	&	Zierahn,	2016).	
In	general,	adjustments	within	the	 labour	force	 in	reaction	to	 labour	market	demand	shifts	are	a	slow	and	
incomplete	 process	 (Autor,	 Dorn,	 &	 Hanson,	 2015).	More	 importantly,	 these	 adjustments	 depend	 on	 the	
ability	of	the	labour	force	to	adapt	to	new	tasks	and	learn	new	skills,	which	is	not	homogenous	among	the	
labour	force	(Autor,	Dorn,	&	Hanson,	2015).	Less	educated	members	have	been	less	successful	in	adjusting	
to	new	labour	market	conditions	after	technological	shocks	(Autor,	Dorn,	&	Hanson,	2015).	 In	this	respect,	
the	labour	adaptation	elasticity	increases	with	skill	level.	As	a	result,	especially	the	low-skilled	labour	force	is	
vulnerable	 if	 they	are	unable	to	adjust	and	to	keep	up	with	the	more	demanding	and	different	skill	sets	 in	
time.	Simultaneously,	routinisation	and	job-polarisation	put	pressure	on	the	middle-skilled	labour	force	since	
their	 jobs	are	most	 likely	 to	be	 substituted	 (Autor,	2015).	Moreover,	 recent	 technological	 substitution	has	
universally	 been	 in	 favour	 of	 high-skilled	 employment	 (IFR,	 2017;	 Mishel,	 Shierholz	 &	 Schmitt,	 2013).	
Therefore,	education	and	training	are	essential	 for	a	successful	 transition	towards	a	highly-automated	and	
digitalised	society	and	economy.	Moreover,	unsuccessful	attainment	and	provision	of	newly	demanded	skills	
may	catalyse	inequality.		
	
Education	and	training	of	 the	 labour	 force	 includes	 (1)	 re-skilling	 [ℝ],	which	 is	attainment	of	 the	extended	
skill	set	at	the	same	skill	 level	(e.g.	[Hâ]	to	[Sâ]),	and	(2)	up-skillin	g	[ò],	which	is	defined	as	attainment	of	a	
higher	 skill	 level	 to	adjust	 to	more	demanding	 tasks	 (e.g.	 [Hâ]	 to	 [Hä])	 (Arntz,	Gregory,	 Zierahn,	2016;	 IFR,	
2017;	OECD,	2017b).	Therefore,	the	constructed	population	model	has	flows	from	normal	to	extended	skill	
levels	 and	 between	 the	 skill	 levels	where	 individuals	 climb	 the	 socio-economic	 ladder.	Note,	 that	 the	 age	
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cohort	to	which	an	individual	belongs	defines	the	highest	attained	skill	level.	This	may	not	be	the	actual	level	
at	 which	 the	 individual	 participates	 in	 the	 labour	 market.	 When	 considering	 the	 six	 levels	 and	 the	
intermediate	 flows,	 a	 6x3x2	 matrix	 of	 age	 cohort	 stocks	 appears	 per	 sex	 (Figure	 5).	 The	 process	 of	 skill	
attainment	 depends	 on	 the	 relative	 economic	 conditions	 of	 the	 skill	 levels	 (and	 associated	 tasks)	 and	 the	
education	and	training	system.	The	labour	market	model	and	education	and	training	model	is	developed	in	
subsequent	paragraphs	(Labour	market	model).		
	

	

Figure	5	Schematic	population	model	including	natural	aging	flows,	re-skilling,	and	upskilling	for	six	skill	levels		

6.1.2 Demographic expansion of the model 

The	 schematic	 population	model	 presented	 (Figure	 5)	 is	 a	 simplified	 form	 that	 needs	 to	 be	 expanded	 to	
realistically	represent	demographic	behaviour.	The	different	age	cohort	are	based	on	professional	stages	of	
the	working	age	population.	However,	the	population	structure	also	represents	the	stages	of	household	life.	
Young	 adults	 get	 children	 and	 children	 leave	 the	 household	 around	 the	 transition	 from	mature	 adult	 to	
senior	adults	of	their	parents.	This	 introduces	births	and	creates	shifts	 in	participation	and	full-time	versus	
part-time	labour	supply	across	age	cohorts.	Another	addition	to	the	model	is	deaths	[ô]	for	age	cohort	other	
than	the	retired	depending	on	the	death	rate	per	age	cohort	[†çℂ].	
	
The	births	per	education	level	are	determined	based	on	two	sets	of	parameters.	The	first	set	determines	the	
ratios	of	children’s	skill	 level	in	respect	to	the	parents’	skill	 level	for	all	combinations	[Hâ, Hä, Hℍ]	and	[íç	ó	
and	ℂℍ	ó].	 The	 second	 set	 operationalises	 these	 ratios	 to	 determine	 the	 actual	 births	 per	 skill	 level.	 The	
outcome	is	combined	with	the	normal	rate	of	extended	skill	 [õd]	to	determine	the	actual	births	for	the	six	
skill	levels.	Firstly,	the	skill	ratios	are	based	on	three	parameters,	namely:		
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(1) young	adult	couple	ratios	[ú^íç�^íç		]	across	all	combinations	of	 low,	middle	and	high	skill	 level	of	

mother	[íç�]	and	father	[íç	]29;		
(2) parent-child	skill	level	relation	ratios	[ù^íç	ó^ℂℍ	ó

]	across	all	combinations	of	mother	and	father	[íç	ó]	
in	ration	to	daughter	and	son	[ℂℍ	ó]30;	and		

(3) relative	dominance	ratios	[ûíçℂℍ	ó
]	of	the	mother	or	the	father	on	the	skill	level	of	a	daughter	or	son	

(identical	for	all	skill	levels)31.		
These	normalised	parameters	result	 in	 the	effective	ratio	of	children	per	skill	 level	per	 female	young	adult	
per	skill	level	[ü^íç�^ℂℍ	ó

]	(Eq.	11)32.	

ü^íç�^ℂℍ	ó
= ûíçℂℍ	ó

ú^íç�^íç	 ∗ ù^íç�^ℂℍ	ó
+ 1 − ûíçℂℍ	ó

ú^íç�^íç	 ∗ ù^íç	^ℂℍ	ó
,					ág`ℎ		

Eq.	11	

ú:					Híç� ∈ 	 Hâíç�, Häíç�, Hℍíç� ,					¢h£				Híç	 = Hâíç	, Häíç	, Hℍíç	 ,					
	

									→ ú^íç�§ = 1

^íç	

§∈^íç	

,					0 < • < 1	

ù:					Híç	ó ∈ 	 Hâíç�, Häíç�, Hℍíç�, Hâíç	, Häíç	, Hℍíç	 	,					ó ∈ �,	 ,						¢h£	
									Hℂℍ	ó = Hâℂℍ	ó, Häℂℍ	ó, Hℍℂℍ	ó ,												

	

									→ ù^íç	ó¶ = 1

^ℂℍ	ó

¶∈^ℂℍ	ó

,					0 < ß < 1	

û:					ó ∈ �,	 ,						0 ≤ ûíçℂℍ	ó
≤ 1	 	

Secondly,	this	dimensionless	number	is	multiplied	by	three	population	properties	to	determine	the	births	for	
each	of	the	non-extended	skill	levels	[Hâ, Hä, Hℍ],	which	are:	

(4) the	birth	rate	of	young	adult	females	for	each	of	the	three	skill	levels	[®^];		
(5) the	ratio	male	and	female	children	[©];	and		
(6) the	female	young	adult	population	per	skill	level	[íç^�™d�].		

´g¨`ℎw^� = ü^íç�^ℂℍ	ó
∗ ®^ ∗ 1 − © ∗ íç^�™d� ∗ 1 − õd ,	

´g¨`ℎwd� = ü^íç�^ℂℍ	ó
∗ ®^ ∗ 1 − © ∗ íç^�™d� ∗ õd,	

	
	´g¨`ℎw^	 = ü^íç�^ℂℍ	ó

∗ ®^ ∗ © ∗ íç^�™d� ∗ 1 − õd ,	
´g¨`ℎwd	 = ü^íç�^ℂℍ	ó

∗ ®^ ∗ © ∗ íç^�™d� ∗ õd 	

Eq.	12	

This	 multiplication	 provides	 the	 actual	 births	 for	 each	 of	 the	 three	 skill	 levels	 and	 encompasses	 all	
combinations	of	parent	couples,	parents	to	child	combinations,	and	parent	influences.	However,	the	number	
is	 still	 only	 divided	 over	 the	 basic	 three	 skill	 levels.	 Therefore,	 the	 division	 between	 conventional	 and	

																																																													
29	This	results	in	a	3x3	matrix	for	all	combinations	of	íç�	and	íç	.	
30	This	results	in		4	3x3	matrices	for	all	combinations	of	mother	[íç�]	and	daughter	[ℂℍ�],	mother	[íç�]	and	son	[ℂℍ	],	father	
[íç	]	and	daughter	[ℂℍ�],	and	father	[íç	]	and	son	[ℂℍ	].	
31	This	results	in	2	values,	one	for	daughters	[ℂℍ�]	and	one	for	sons	[ℂℍ	]	wherein	a	value	over	0.5	makes	the	mother	dominant	
and	vice	versa.	
32	For	high	skilled	female	with	high	skilled	daughter	this	results	in	the	equation:	

üℍíç�ℍℂℍ�
= ûíçℂℍ�

úℍíç�^íç	 ∗ ùℍíç�ℍℂℍ�
+ 1 − ûíçℂℍ�

úℍíç�^íç	 ∗ ù^íç	ℍℂℍ�
	

=	ûíçℂℍ�
úℍíç�âíç	 ∗ ùℍíç�ℍℂℍ�

+ 1 − ûíçℂℍ�
úℍíç�âíç	 ∗ ùâíç	ℍℂℍ�

	

+	ûíçℂℍ�
úℍíç�äíç	

∗ ùℍíç�ℍℂℍ�
+ 1 − ûíçℂℍ�

úℍíç�äíç	
∗ ùäíç	ℍℂℍ�

	

+	ûíçℂℍ�
úℍíç�ℍíç	

∗ ùℍíç�ℍℂℍ�
+ 1 − ûíçℂℍ�

úℍíç�ℍíç	
∗ ùℍíç	ℍℂℍ�
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extended	skills	needs	 to	be	established.	This	division	 is	determined	based	on	 the	normal	 rate	of	extended	
skill	[õd]	per	skill	level.	Subsequent	paraphrases	of	education	provide	a	more	detailed	definition	of	extended	
skills,	re-skilling,	and	the	normal	rate	of	extended	skills.	Multiplication	with	this	ratio	provides	the	final	births	
per	skill	level	for	male	and	female	children	(Eq.	12).	This	results	in	the	complete	schematic	population	model	
with	births,	deaths,	re-skilling,	and	up-skilling	(Figure	6).	
	

	

Figure	6	Expanded	schematic	population	model	for	the	male	and	female	population	

6.2 Demographic development in relation with technological 
change 

Demographic	 developments	 are	 associated	 to	 labour	 market	 dynamics	 through	 direct	 and	 indirect	
mechanisms.	 Aging	 of	 the	 population	 and	 labour	 force	 has	 two	 distinct	 economic	 effects.	 First,	 ‘an	 aging	
population	creates	an	excess	of	savings	relative	to	investments’	(Acemoglu	&	Restrepo,	2017c,	p.	174),	which	
results	 in	 lower	 demand	 and	 economic	 growth.	 Secondly,	 ‘an	 older	 population	 will	 reduce	 labor	 force	
participation	and	productivity’	 (Acemoglu	&	Restrepo,	2017c,	p.	174),	 thus	 reducing	 the	 total	output	 from	
labour,	ceteris	paribus.	The	negative	effect	of	aging	populations	can	result	in	a	reduced	economic	growth	of	
half	a	percent	annually	and	suppressed	employment	demand	(IFR,	2017).	
	
However,	these	causal	mechanisms	do	not	show	up	in	real	world	data	of	aging	OECD	countries.	Contrarily,	
societal	aging	and	GDP	are	statistically	positively	correlated.	According	to	Acemoglu	and	Restrepo	(2017c),	
this	 is	 the	 result	 of	 the	 simultaneous	 significant	 correlation	 between	 aging	 populations	 and	 industrial	
robotics	adoption.	Therefore,	‘the	scarcity	of	younger	and	middle-age	labor	can	trigger	sufficient	adoption	of	
robots	(and	other	automation	technologies)	so	as	to	actually	increase	aggregate	output,	despite	the	reduced	
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labor	input.’	(Acemoglu	&	Restrepo,	2017c,	p.	177).	In	essence,	robots	do	not	influence	the	demo-economic	
causal	mechanisms	but	are	able	to	offset	the	negative	effects.	One	can	argue	that	innovation	and	technology	
therefore	provide	a	solution	to	increasing	economic	and	budgetary	demographic	pressures.	

6.3 Demographic model synthesis 

The	 demographic	 model	 relies	 heavily	 on	 national	 demographic	 and	 statistical	 data.	 Especially	 the	 birth	
component	 of	 the	 model	 is	 based	 on	 the	 statistical	 data	 and	 causal	 relations	 between	 parent	 couples’	
highest	achieved	skill	 levels	and	between	parent’s	and	children’s	highest	completed	skill	 levels.	Therefore,	
the	births	represent	the	highest	attained	skill	level	of	the	children	when	they	enter	the	labour	force.	In	this	
sense,	the	dynamic	flows	of	re-	and	up-skilling	children	and	student	age	cohorts	 is	simplified	such	that	the	
highest	 achieved	 skill	 level	 is	 set	 at	 birth	 rather	 than	over	 an	 individual’s	 youth.	 This	 is	 for	 three	 reasons.	
Firstly,	detailed	modelling	of	all	specific	flows	of	an	education	system	would	inhibit	reusability	of	the	model	
and	 analysis	 across	 countries	 (e.g.	 see	 UNESCO-IBE	 (2012)).	 This	 constraint	 is	 further	 explicated	 in	 the	
subsequent	section	on	education.	Secondly,	it	would	complicate	the	model	significantly,	while	the	outcomes	
when	entering	the	professional	age	cohorts	are	identical.	Thirdly,	the	additionally	required	data	may	not	be	
available	 for	 all	 the	 countries	 or	 time-frames	 of	 interest.	 Moreover,	 in	 the	 current	 configuration	 of	 the	
model,	any	re-skilling	and	up-skilling	of	children	and	students	represent	additional	skill	attainment	over	the	
normal	values	due	to	policies	and	investment.	Hence,	the	effects	of	additional	skill	attainment	can	be	more	
easily	assessed	and	the	robustness	of	policies	evaluated.	
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7 Labour market model 
Recent	 studies	demonstrate	 that	 technologies	put	pressure	on	 the	 labour	market	and	create	 shifts	 in	 skill	
demand	(see	for	example	Autor	and	Salomons	(2017),	Graetz	and	Michaels	(2017),	and	Michaels	and	Graetz	
(2015)).	The	 labour	market	 is	not	 frictionless	nor	perfectly	clearing.	Tasks	require	different	types	of	 labour	
input	 and	 associated	 skills.	 The	 introduction	 of	 technological	 progress	 changes	 the	 task	 composition	 and	
skills	 to	 fulfil	 those	 tasks	 (Acemoglu	&	 Restrepo,	 2017b,	 2018).	 Therefore,	mismatches	 continuously	 exist	
between	 labour	 demand	 and	 supply,	 resulting	 in	 reallocation	 and	 wage	 dynamics.	 The	 satisfaction	 of	
changing	 labour	 demand	 depends	 on	 skill	 attainment	 of	 the	 labour	 force,	 which	 in	 turn	 determines	 the	
financial	and	employment	stability	of	labour	force	members	(Autor	&	Salomons,	2017;	IFR,	2017).	Taken	all	
together,	 the	 labour	market	 is	structured	according	to	supply	and	demand	resulting	 in	 flows	between	and	
within	employment,	unemployment,	and	non-participation	across	skill	levels.	

7.1 Participation of the population, income, and income 
utilisation 

Population	members	participate	 in	production	processes	 to	earn	a	 living,	 for	 social	 inclusion,	 social	 status,	
and	personal	 fulfilment.	Economically	speaking,	employees	receive	a	nominal	wage	[B]	 -	 that	depends	on	
the	skill	level	and	market	situation	-	in	return	for	providing	labour	input	(Acemoglu	&	Autor,	2012).	However,	
employment	 is	not	 simply	 a	 rational	means	 to	generate	 income	and	 satisfy	expenditure	needs	and	utility.	
The	 utility	 gained	 from	 employment	 extends	 to	 an	 emotional	 and	 social	 level.	 The	 process	 of	 labour	
substitution	 introduces	 (perceived)	 employment	 uncertainty	 resulting	 in	 a	 societal	 sense	 of	 fear	 for	
deteriorating	income	and	unemployment	(IFR,	2017;	Mishel,	Shierholz	&	Schmitt,	2013).	Later	sections	will	
provide	a	more	 in	depth	analysis	on	the	qualitative	social	and	societal	 implications.	 In	addition,	 the	model	
results	will	be	reflected	upon	from	this	qualitative	perspective.	However,	model	formulation	is	restricted	to	
the	 quantitative	 (financial	 and	 employment)	 perspective	 of	 labour33.	 Therefore,	 it	 is	 assumed	 that	 labour	
force	members	strive	 for	employment	stability	and	wage	maximisation	without	concern	for	emotional	and	
social	utility.		
	
The	 embedded	 mechanisms	 for	 wage	 setting	 (also	 named	 formation	 or	 determination)	 in	 an	 economic	
model	influences	the	wage	level	and	the	wage	share.	These	mechanisms	depend	on	the	wage	determination	
regime,	of	which	various	 forms	exist	across	perfect	 competition	and	 imperfect	 competition	 labour	market	
models34	(Booth,	 2014).	 The	 extensive	 literature	 concerning	 labour	 market	 theory,	 models,	 and	 their	
representative	and	statistical	accuracy	is	beyond	the	scope	of	this	study.	Yet,	the	wage	setting	processes	in	
the	models	and	the	feedback	of	income	via	consumption	to	economic	outcomes	are	relevant	and	explored.	
An	 imperfectly	 competitive	 model	 is	 adopted	 since	 delays	 in	 labour	 market	 information,	 imperfect	
information,	 delays	 in	 labour	 reallocation,	 skill	 and	 wage	 barriers,	 and	 wage	 and	 task	 preferences	 are	
included	in	the	model	in	line	with	the	TBTC	and	RRTC	frameworks	and	findings.	

7.1.1 Wage income from labour 
Occupations	 consist	 of	 a	 combination	 of	 different	 tasks	 requiring	 a	 certain	 skill	 level	 which	 contribute	
towards	 a	 certain	wage	 level.	 Dynamics	 in	wages	 are	 created	 by	mismatches	 between	 labour	 supply	 and	
demand	and	wage	bargaining.	Concerning	mismatches,	a	deficit	(excess)	in	labour	supply	with	the	required	

																																																													
33	In	 this	 respect,	 the	 labour	 and	 consumption	 decisions	 to	 create	 utility	 are	 based	 on	 relevant	 variables	 and	 concepts	 only.	 The	
implication	of,	and	concepts	associated	to,	rationality,	decision	making,	cognitive	limitation,	preference,	marginalism,	and	utility	will	
only	briefly	be	discussed	since	such	level	of	detail	exceeds	the	model	attempt	made.	
34	‘Perfectly	 competitive	markets	 are	 described	 in	 economic	 theory	 as	 those	 in	 which	 no	 participants	 (buyers	 or	 sellers)	 have	 the	
market	power	to	set	the	price	of	a	homogeneous	product.	The	conditions	for	perfect	competition	are	strict;	for	example,	an	infinite	
number	of	agents,	no	barriers	to	entry	or	exit,	perfect	factor	mobility,	perfect	information,	and	no	transactions	costs.’	(Booth,	2014,	p.	
54)	
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skill	 will	 shift	 the	 wage	 distribution	 upwards	 (downward)	 (Autor,	 2013).	 In	 reaction,	 labour	 supply	 is	
reoriented	 to	 the	 relative	 increase	 or	 decrease	 unemployment	 and	 wages	 –	 whereby	 labour	 supply	 is	
attracted	 towards	 higher	 wages	 and	 employment	 opportunities	 (DeCanio,	 2016).	 This	 operates	 as	 a	
balancing	 feedback	 mechanism	 since	 the	 additional	 labour	 supply	 will	 counteract	 the	 prior	 shortage.	
However,	 labour	market	adjustment	mechanisms	are	 slow	and	 incomplete	 (Autor,	Dorn,	&	Hanson,	2015)	
due	 to	 imperfect	 information,	 employment	 substitution	 elasticity,	 employment	 relation	 rents,	 and	
heterogeneous	 preferences	 (Booth,	 2014).	 Moreover,	 wage	 developments	 lag	 behind	 economic	
developments	 (OECD,	 2015b;	 Schneider,	 2011).	 Furthermore,	 technological	 progress	 introduces	 new	 skills	
which	 the	 labour	 force	may	 not	 have	 attained	 (to	 a	 satisfactory	 degree)	 yet	 (IFR,	 2017).	 Therefore,	 flow	
delays	are	present	and	deficit	or	excess	fluctuations	may	continue	to	exist.	As	a	result,	the	labour	market	is	
not	clearing,	not	frictionless	and	wage	dynamics	are	present.	
	
Contrarily,	wage	dynamics	do	not	naturally	follow	labour	supply	and	demand	dynamics,	e.g.	job-polarisation	
does	 not	 necessarily	 lead	 to	 wage-polarisation	 (Goos,	 Manning,	 &	 Salomons,	 2011;	 Mishel,	 Shierholz	 &	
Schmitt,	 2013).	 The	 strength	 of	 this	 relation	 is	 country	 specific	 and	 depends	 on	 the	 institutional	
arrangement.	 Various	 studies	 demonstrate	 a	 consistent	 significant	 positive	 correlation	 between	 labour	
polarisation	 and	wage	 inequality	 developments	 in	 the	 US.	 Yet,	 this	 correlation	 does	 not	 hold	 for	 Europe,	
most	 probably	 due	 to	 protective	 institutions35	that	 result	 in	 relatively	 rigid	 wages	 (Goos,	 Manning,	 &	
Salomons,	2011;	Gregory,	Salomons	&	Zierahn,	2016).	Wages	have	barely	reacted	to	mismatches	 in	 labour	
markets	across	countries,	sectors,	and	in	reaction	to	substitution	(Autor	&	Salomons,	2017).	Most	evidently,	
lower	skilled	occupations	have	seen	a	larger	reduction	in	labour	force	then	a	loss	of	labour	demand,	yet	the	
wages	 have	 reduced	 (Autor	 &	 Salomons,	 2017).	 In	 contrast,	 the	 high	 skilled	 labour	 force	 benefits	
disproportionally	from	recent	technology	when	it	comes	to	wages	and	the	wage	share	(Graetz	&	Michaels,	
2017;	Mishel,	Shierholz	&	Schmitt,	2013;	OECD,	2015b).	Due	to	these	counterintuitive	developments	and	the	
rigidity	 of	wages	 in	 Europe,	 the	 RRTC	 framework	 assumes	 homothetic	 preferences	 (no	 change	 in	 relative	
product	demand	and	expenditure	patterns	following	changing	wages)36	and	simplified	wage	dynamics	since	
‘In	 sum,	 the	 evidence	 does	 not	 strongly	 support	 the	 idea	 that	 changes	 in	 aggregate	 income	 or	 income	
dispersion	–	possibly	following	technological	progress	and	globalization–	play	an	important	part	in	explaining	
changes	in	relative	employment.’	(Goos,	Manning,	&	Salomons,	2011,	p.	21).	In	the	model,	it	is	assumed	that	
mismatches	do	not	result	in	wage	dynamics.	Wage	setting	through	bargaining	does.	
	
The	 wage	 bargaining	 process	 depends	 on	 the	 relative	 position	 of	 the	 agents	 involved	 and	 the	 balance	
between	wages,	employment,	and	profits	(Schneider,	2011).	Pareto	optimal	outcomes	can	be	reached	based	
on	the	utility	curves	of	 firms	and	unions/employees	on	the	wage-employment	balance.	 In	this	case,	wages	
exceed	the	marginal	product	of	labour	(Schneider,	2011).	There	are,	however,	conflicting	theories	whether	
collective	 bargaining	 (with	 unions)	 and	 deviation	 from	 the	 marginal	 product	 results	 in	 inefficiencies	 or	
efficiency	 and	 productivity	 losses	 or	 gains	 (Booth,	 2014).	 Deteriorating	 union	 positions	 and	 bargaining	
strength	 of	 employees	 results	 in	 downward	 shift	 of	 wages	 and	 the	 wage	 share	 (in	 the	 direction	 of	 the	
marginal	 product)	 (Schneider,	 2011).	 This	 implies	 that,	 both	 firms	 and	 unions/employees	 have	 a	
simultaneous	bargaining	position	on	 the	balance	between	wages	and	employment	 (Schneider,	2011).	As	a	
result,	 the	 relative	power	of	 the	 actors	 determines	 the	 factor	 shares	due	 to	 conflict	 of	 interests	 between	
wages,	profits,	and	employment	(Booth,	2014;	OECD,	2015b;	Schneider,	2011).				
	
In	respect	of	the	bargaining	process,	wage	adjustments	are	slow	and	relatively	rigid	to	economic	outcomes	
and	 factors	 input	 changes	 (OECD,	 2015b;	 Schneider,	 2011).	 The	 bargaining	 process	 does	 not	 react	
immediately	 to	 changes	 in	 substitution,	 input	 demand,	 productivity	 growth,	 and	 economic	 outcomes	
(Schneider,	 2011).	 Moreover,	 bargaining	 is	 decentralised,	 periodic,	 and	 independent	 for	 each	 wage	 or	

																																																													
35	Minimum	wage	legislation	and	collective	bargaining	(Goos,	Manning,	&	Salomons,	2011)	
36	‘The	assumption	of	homotheticity	implies	that	changes	in	both	the	level	and	the	distribution	of	aggregate	income	have	no	effect	on	
the	distribution	of	demand	across	industries.	This	might	be	thought	unduly	restrictive	because	it	has	been	argued	(Manning	2004;	and	
Mazzolari	and	Ragusa	2013)	that	job	polarization	might	be	caused	by	increasing	inequality	leading	to	increased	demand	for	low-skill	
service	sector	jobs	from	high-wage	workers	to	free	up	more	of	their	time	for	market	work.	However,	we	cannot	find	evidence	for	non-
homotheticity	at	our	level	of	industry	aggregation	(Autor	and	Dorn	2013	arrive	at	similar	conclusions).’	(Goos,	Manning,	&	Salomons,	
2014,	p.	2518)	
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collective	 wage	 level	 (Schneider,	 2011).	 In	 this	 process,	 unions	 act	 in	 behalf	 of	 employees	 to	 bundle	
bargaining	power	into	a	collective	effort	(Booth,	2014;	Hirsch,	Merkl,	Mueller,	&	Schnabel,	2014).	The	wage	
formation	 regime	differs	 from	 firm	to	 firm	and	economy	 to	economy	 (Hirsch,	Merkl,	Mueller,	&	Schnabel,	
2014).	Therefore,	wages	can	be	collectively	bargained	 for,	 yet,	 this	effort	occurs	per	 firm	or	 industry	 (and	
thus	 is	 still	 decentralised,	 periodic,	 and	 independent,	 although	 to	 a	 lesser	 degree).	 The	 preferred	 wage	
formation	 regime	depends	 on	 the	 firms	 relative	 TFP37	and	 the	 relative	 bargaining	 process	 efficiency	 given	
national	labour	institutions	(Hirsch,	Merkl,	Mueller,	&	Schnabel,	2014).	These	regime	dynamics	occur	at	the	
micro-level	 (Hirsch,	Merkl,	Mueller,	&	Schnabel,	2014)	and	are,	 therefore,	beyond	the	scope	of	 this	 study.	
Currently,	 collective	 bargaining	 is	 the	 main	 wage	 formation	 regime	 in	 Europe	 (Hirsch,	 Merkl,	 Mueller,	 &	
Schnabel,	2014).	This	implies,	that	in	the	model	it	is	assumed	that	bargaining	occurs	at	the	task	level	(since	
the	sectoral	composition	is	not	included	in	the	model,	as	explicated	later	in	this	work)	and	is	delayed.		
	
The	 bargaining	 process	 is	 more	 complicated	 in	 the	 defined	 production	 model	 (Eq.	 4)	 due	 to	 the	
disaggregation	 in	 tasks	 and	 skill	 levels	 compared	 to	 aggregate	 production	 functions.	 First,	 technological	
change	is	task	specific	and	therefore	the	capital	factor	price,	substitution	elasticity,	and	productivity	growth	
are	heterogeneous.	Second,	each	task	and	skill	level	has	an	associated	wage	which	develops	independently	
based	 on	 bargaining	 and	 institutions,	 yet	 depends	 on	 the	 overall	 economic	 outcomes	 across	 tasks	
(Schneider,	 2011).	 Last,	 the	 sectoral	 composition	 of	 the	 economy	 continuously	 changes	 (OECD,	 2015b;	
Schneider,	 2011).	 Therefore,	 the	 aggregate	 and	 disaggregate	wages	 and	wage	 share	 at	 the	 industry	 level	
need	 not	 necessarily	 be	 equal	 or	 develop	 in	 parallel	 (OECD,	 2015b;	 Schneider,	 2011).	 In	 the	model,	 this	
materialises	as	differences	between	tasks.		The	wage	share	of	the	low	and	medium	skilled	labour	force	has	
declined	while	the	high	skilled	labour	force’s	wage	share	has	increased	(OECD,	2015b).	As	a	result,	inequality	
has	grown	across	skill	 levels	(OECD,	2015b;	Stockhammer,	2013).	 In	this	respect,	the	factors	that	 influence	
wages	and	the	wage	share	are	heterogeneous	across	tasks	and	result	 in	within	and	between	task	and	skill	
level	variation	(OECD,	2015b).	 In	the	model	this	 implies	that	even	though	CB	functions	are	used,	the	wage	
share	various	across	tasks,	does	not	need	to	be	equal	to	the	marginal	product	of	labour	per	tasks,	and	does	
not	need	to	be	stable	in	the	long	term	(as	set	forth	in	5.2).		
	

‘At	 a	 basic	 level,	 the	 distinction	 between	 high,	middle	 and	 low	 skills	 adds	 an	 important	 degree	 of	
freedom	to	the	model,	allowing	for	non-monotone	movements	in	wage	levels	and	wage	inequality	as	
seen	in	the	data.’	(Autor,	2013,	p.	9)	

 
The	 bargaining	 process	 is	 incorporated	 in	 the	 model	 through	 the	 share	 of	 productivity	 growth	 that	 is	
allocated	 towards	 wages.	 This	 implementation	 is	 a	 simplified	 and	 rather	 quantitative	 approach	 to	 the	
bargaining	 process.	 The	 process	 itself	 is	 not	 included.	 Future	 research	 can	 expand	 on	 this	 limitation	 by	
adopting	 an	 (agent	 based)	 bargaining	 model	 that	 simulates	 and	 represents	 agent	 interaction	 and	
incorporates	various	wage	setting	regimes.	In	terms	of	policies	related	to	the	actors,	labour	institutions	such	
as	unemployment	benefits,	minimum	wages,	transaction	costs,	wages	taxes,	and	firing	costs	influence	wage	
setting	 and	 the	 wage	 share	 (OECD,	 2015b;	 Hirsch,	 Merkl,	 Mueller,	 &	 Schnabel,	 2014;	 Schneider,	 2011).	
Arguably,	 such	 instruments	 could	 be	 used	 to	 counteract	 the	 declining	 wage	 share.	 However,	 these	
instruments	may	function	in	the	short	to	medium	term,	but	stimulate	technological	substitution	in	the	long	
term	 due	 to	 an	 increasing	 relative	 price	 of	 labour	 compared	 to	 capital	 (Schneider,	 2011).	 The	 effects	 of	
different	wage	allocation	distributions	across	tasks	is	simulated	to	determine	the	effect	of	wages,	the	wage	
share,	and	inequality.	

7.1.2 Income from capital 

Other	forms	of	income	exist	in	addition	to	wage	and	stem	from	the	capital	share.	Non-wage	income	mainly	
comprises	returns	from	assets	and	investment	including	divided,	rent,	and	profits.	This	form	of	income	has	
grown	because	of	 an	 increasing	profit	 share	 and	 increasing	 accumulation	of	 capital	 returns	with	 a	 limited	
number	 of	 capital	 holders	 (Autor,	 2015).	 The	 latter	 is	 especially	 relevant	 since	 it	 reinforces	 inequality	

																																																													
37	In	 relation	with	 production	 technology,	 Hirsch,	Merkl,	Mueller,	 and	 Schnabel	 (2014)	 demonstrate	 that,	 in	Germany,	 firms	with	
larger	TFPs	are	inclined	to	“hide”	behind	collective	bargaining	schemes,	arguably,	to	benefit	profit-	and	competitive-wise	from	their	
relative	productivity	advantage	in	the	industry.	
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developments	and	increases	employment	uncertainty	across	generations	(see	studies	by	Sachs	and	Kotlikoff	
(2012)	and	Sachs,	Benzell,	and	LaGarda	(2015)	according	to	Autor	(2015)).	Thereby,	older	generations	whom	
have	 been	 able	 to	 build	 up	 wealth	 over	 their	 lifetime	 and	 hold	 a	 portfolio	 of	 capital	 assets/investment	
benefit,	 while	 younger	 generations	 face	 increasing	 employment	 pressure	 and	 uncertainty.	 For	 the	 labour	
force	this	implies	that	productivity	and	economic	output	increase	but	they	do	not	share	in	the	benefits.		

7.1.3 The utilisation of income 

Income	from	wages	and	capital	feedback	to	the	economy	via	utilisation.	 Income	is	utilised	in	various	ways,	
depending	 on	 the	 demographic	 and	 socio-economic	 conditions	 of	 the	 household.	 Generally,	 the	
expenditures	can	be	categorised	 in	two	forms:	consumption	by	 immediately	utilising	earnings	 in	return	for	
products,	or	saving	for	later	utilisation	and	investment.	The	balance	between	the	share	of	income	utilised	for	
consumption	 [≠]	 and	 savings	 [w]	 is	defined	by	 the	propensity	 to	 save	 [Æ]	 and	propensity	 to	 consume	 [Ø =
1 − Æ].	 Economy-wide,	 household	 consumption	has	developed	 in	parallel	 to	historic	 income	development	
(Autor,	 2015).	 Therefore,	 the	 aggregate	 propensity	 to	 consume	 across	 incomes	 has	 remained	 stable.	
However,	a	large	share	of	the	income	from	capital	is	used	for	saving	(OECD,	2015b;	Stockhammer,	2013).	As	
a	 result,	 the	 increase	 of	 the	 capital	 share	 and	 reduction	 of	 income	 share	 results	 in	 reduced	 consumption	
(OECD,	 2015b;	 Stockhammer,	 2013).	 This	 loss	 in	 consumption	 can	 be	 offset	 by	 investment	 from	 capital	
income.	However,		
	

‘It	might	be	argued	that	lower	wages	are	necessary	to	boost	profits	 in	order	to	increase	investment	
and,	 in	 turn,	 job	creation.	However,	 in	developed	economies,	 the	 shift	 in	 income	away	 from	 labour	
towards	capital	has	not	produced	the	expected	results	on	investment.’	(OECD,	2015b,	p.	12)	

	
This	is	mainly	the	result	of	financialisation	(see	5.2).	This	implies	that	in	the	model,	a	reduction	of	the	wage	
share	results	in	a	decline	of	consumption	and,	concequentially,	a	relative	proportional	reduction	of	economic	
growth	 (i.e.	 relative	áVP	compared	 to	áVPQR).	 On	 the	 other	 hand,	 the	 effect	 of	 an	 increasing	 profit	 share	
depends	on	the	ratio	of	profits	used	for	investment	[Ñ@]	which	determines	the	flow	out	of	the	model	for	use	
in	the	financial	market	[ÉP]	(see	5.2).	
	
The	income	utilised	for	consumption	is	distributed	across	different	products.	In	the	model,	this	materialises	
in	 a	 demand	 distribution	 across	 tasks.	 The	 relevance	 of	 the	 consumption	 distribution	 followed	 from	
suggestions	 that	 higher	 income	 groups	 mainly	 consume	 additional	 services	 (See	 Goos,	 Manning,	 and		
Salomons	(2011,	2014)	and	Autor	(2015)	for	studies	and	argument).	As	a	result,	the	task	composition	would	
change	in	favour	of	manual	tasks.	However,	there	is	no	evidence	available	that	confirms	this	theory	(Goos,	
Manning	 &	 Salomons,	 2011,	 2014).	 Hence,	 in	 line	 with	 the	 RRTC	 framework,	 it	 is	 assumed	 that	 demand	
growth	 is	 equally	 distributed	 across	 the	 tasks	 in	 the	model.	Moreover,	 the	 impact	 of	 changes	 in	 income	
appear	 to	 be	 relatively	 limited	 compared	 to	 price	 changes	 due	 to	 productivity	 growth	 (Goos,	Manning	&	
Salomons,	2011).	Changes	in	output	price	and	(consequential)	changes	in	demand	have	the	ability	to	weaken	
job-polarisation	effects	(Goos,	Manning	&	Salomons,	2011).	In	relation	with	the	spill-over	effects,	this	implies	
that	 competitive	 utilisation	 of	 productivity	 growth	 results	 in	 additional	 demand,	 offsetting	 labour	
substitution.	 Therefore,	 competitive	 allocation	 per	 task	 in	 the	model	 results	 in	 a	 reduction	 of	 the	 output	
price	of	a	task	and,	consequentially,	increasing	task	output	demand	given	the	price	elasticity	of	demand	per	
task	[U∞Z]	(as	defined	in	3.2).	It	is	assumed	that	the	price	elasticity	of	demand	is	constant	over	time.	

7.2 The labour market  

The	dynamic	nature	of	labour	is	created	by	changes	in	economic	production	on	one	hand,	and	demographic	
and	skill	changes	on	the	other.	These	dynamics	meet	on	the	 labour	market.	 It	 is	here	that	 labour	demand	
stemming	 from	 the	production	model	 [?^ℛ, ?^6, ?^ℳ, ?dℛ, ?d6, ?dℳ ]	 and	 labour	 supply	 stemming	 from	 the	
population	model	 [?^â, ?^ä, ?^ℍ, ?dâ, ?dä, ?dℍ]	need	 to	be	matched	 to	 create	economic	value	and	 incomes	
for	households.	This	process	depends	on	 the	 labour	market	 structure	which	dictates	which	skill	 levels	and	
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tasks	match.	 In	 this	paragraph,	 the	 labour	market	model	 is	developed	by	defining	 labour	 supply,	demand,	
and	market	structure	prior	to	implementation	in	an	operational	model.		

7.2.1 Labour supply [±] 
The	 labour	 force	 [â≤^ó]	 includes	 all	 individuals	 who	 participate	 in	 the	 labour	 market,	 depending	 on	 the	
participation	rate	[å≥çñó

]	per	age	cohort	per	skill	level	for	each	sex.	This	participating	population	stems	from	

all	working	age	cohorts	[≥ç^]	plus	retired	and	includes	both	part-time	[¥]	and	full-time	[µ]	participants	(Eq.	
13).	The	actual	part-time	[?^â≤	¥]	and	full-time	[?^â≤	µ]	labour	supply	per	skill	level	is	established	based	on	the	
fulltime	ratio	of	employment	[∂≥çñó

]	and	the	participation	rate	[å≥çñó
]	per	age	cohort	per	skill	level	for	each	

sex	 (Eq.	14).	The	participation	 rate	 is	assumed	 to	 remain	 stable	 since	 the	prior	 trend	of	 increasing	 female	
participation	(due	to	social	and	societal	changes	in	the	position	of	woman	in	households	and	society	across	
generations)	has	slown	down	and	will	not	continue	in	the	future	(Euwals,	Knoef,	&	Van	Vuuren,	2011;	 ILO,	
2018).	 Note	 that	 the	 aggregate	 participation	 rate	 (and	 the	 labour	 force	 size)	 are	 still	 variable	 due	 to	
demographic	shifts	 in	 the	age	cohort	size	and	composition.	 Identical	male	and	 female	skill	 levels	 feed	 into	
the	 same	 labour	 market	 supply	 groups.	 Therefore,	 no	 distinction	 is	 made	 between	 age	 cohorts	 and	 sex	
resulting	 into	 twelve	 labour	 supply	 groups	 –	 one	 full-time	 and	 one	 part-time	 for	 each	 skill	 level	
[Hâ, Hä, Hℍ, Sâ, Sä, Sℍ]

38.	

≥ç^ó = èê^ó, íç^ó,äç^ó, èç^ó, ℝî^ó ,					≥ç^ó ⊂ çℂ^ó 	
â≤^ó = èê^ó ∗ åèêñó

, íç^ó ∗ åíçñó
,äç^ó ∗ åäçñó

, èç^ó ∗ åèçñó
, ℝî^ó ∗ åℝîñó 	

Eq.	13	

?^â≤	µ = ∂§ ∗ å§ ∗ •

≥çñó

§∈≥çñó

										 = ∂¶ ∗ ß

â≤ñó

¶∈â≤ñó

,											

	

?^â≤	¥ = 1 − ∂§ ∗ å§ ∗ •

≥çñó

§∈≥çñó

= 1 − ∂¶ ∗ ß

â≤ñó

¶∈â≤ñó

	

Eq.	14	

The	production	sector	requires	task	specific	 labour	 input	[?^ℛ, ?^6, ?^ℳ, ?dℛ, ?d6, ?dℳ ]	which	is	matched	to	
labour	force’s	skill	levels.	Hereby,	the	labour	supply	per	skill	level	[?^â≤]	(e.g.	?^â)	is	linked	to	the	appropriate	
tasks	[?^Z],	 resulting	 in	the	task	specific	 labour	supply	[?^â≤→Z

]	per	skill	 level	per	task	(e.g.	?^â→ℳ
	indicating	

the	 low	skilled	 labour	supply	to	manual	 tasks).	The	task	specific	 labour	supplies	are	summed	to	create	the	
total	labour	supply	per	task	[?^Z	∑].	In	this	respect,	studies	use	different	labour	market	structures	that	dictate	
which	 skill	 levels	 match	 which	 tasks	 (and	 therefore	 how	 labour	 supply	 is	 distributed	 and	 which	 supplies	
should	be	summed).	

7.2.2 Labour demand [∏] 

On	 the	demand	 side,	 the	 task	 production	 functions	 dictate	 how	many	 labour	 hours	 are	 required	per	 task	
type	[?^ℛ, ?^6, ?^ℳ, ?dℛ, ?d6, ?dℳ ].	This	total	amount	of	labour	input	is	divided	between	part-time	hours	[ℎ¥]	
and	 full-time	 hours	 [ℎµ]	 given	 the	 fulltime	 ratio	 [∂@]	 per	 task.	 Hence,	 the	 demanded	 labour	 hours	 are	
converted	into	a	specific	quantity	of	full-time	and	part-time	jobs	per	tasks	(Eq.	15).	These	positions	are	filled	
with	 linked	 labour	 supply.	 The	difference	between	 the	demanded	 labour	 [?^Z	π]	 and	 total	 supplied	 labour	
[?^Z∑]	per	 task	 (for	 full-time	and	part-time)	 results	 in	 the	unemployed	 labour	 force	per	 task	 type	 [∫@]	and	
unemployment	rate	[ª@].	All	unemployment	is	involuntary	and	all	non-participation	is	voluntary.	

																																																													
38	This	 implies	that	the	working	age	[≥ç^ó]	population	comprises	five	age	cohorts	across	six	skill	 levels	and	two	sexes.	The	labour	
force	[â≤^ó]	comprises	all	population	members	active	on	the	labour	market	out	of	the	working	age	population	whom	flow	into	the	
actual	 labour	supply	across	six	 skill	 levels	and	 two	contract	 types	 (part-time	and	 full-time),	e.g.	 the	 full-time	extended	high	skilled	
labour	supply:		

?dℍ	µ
= 	 ∂èêcℍ	µ	

∗ åèêcℍ	µ	
∗ èêdℍ	µ	

+ ∂íçcℍ	µ	
∗ åíçcℍ	µ	

∗ íçdℍ	µ	
+ ∂äçcℍ	µ	

∗ åäçcℍ	µ	
∗ äçdℍ	µ	

+ ∂èçcℍ	µ	
∗ åèçcℍ	µ	

∗ èçdℍ	µ	
+ ∂ℝîcℍ	µ	

∗ åℝîcℍ	µ	
∗ ℝîdℍ	µ	

+	

∂èêcℍ	µ�
∗ åèêcℍ	µ�

∗ èêdℍ	µ�
+ ∂íçcℍ	µ�

∗ åíçcℍ	µ�
∗ íçdℍ	µ�

+ ∂äçcℍ	µ�
∗ åäçcℍ	µ�

∗ äçdℍ	µ�
+ ∂èçcℍ	µ�

∗ åèçcℍ	µ�
∗ èçdℍ	µ�

+ ∂ℝîcℍ	µ�
∗ åℝîcℍ	µ�

∗ ℝîdℍ	µ�
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?^Z	πµ
=
?^Z	π ∗ ∂@

ℎµ
,						?^Z	π¥

=
?^Z	π ∗ 1 − ∂@

ℎ¥
,	

ª@ = 	1 −
?^Z	∑	 − ?^Z	π

?^Z	∑	
,						∫@ = 	 ª@ ∗ ?^Z	∑ 	

Eq.	15	

7.2.3 Labour market structure 
The	most	simplified	structure	would	reduce	the	labour	market	to	an	isolated	relation	between	skill	level	and	
task	type	as	is	done	within	the	SBTC	framework	(Acemoglu	&	Autor,	2012).	This	implies	that	the	low	skilled	
labour	 force	 can	 only	 supply	 labour	 to	manual	 tasks	[?^â	 → ?^ℳ ],	middle	 skilled	 to	 routine	 tasks	 [?^ä	

→
?^ℛ ],	and	high	skilled	to	abstract	tasks	[?^ℍ	

→ ?^6 ].	This	relation	between	skill	and	tasks	is	referred	to	as	the	
natural	 task.	 However,	 Acemoglu	 and	 Autor	 (2012)	 emphasize	 that	 this	 practise,	 although	 commonly	
adopted	and	statistically	well	 representative	of	real-world	outcomes,	 is	only	accurate	under	static	skill	and	
task	relations.	This	implies	that	the	same	skill	 level	would	always	perform	the	same	tasks	across	the	labour	
force	and	over	time.	However,	tasks	and	associated	skills	evolve	over	time,	due	to	technological	progress	and	
other	factors	(Acemoglu	&	Autor,	2012;	Acemoglu	&	Restrepo,	2018;	Autor,	2015;	Autor,	Dorn,	&	Hanson,	
2015;	DeCanio,	2016;	IFR,	2017;	Nedelkoska	&	Quintini,	2018).	Moreover,	labour	force	members	shift	their	
supply	to	other	task	types	in	reaction	to	labour	market	developments	(Arntz,	Gregory,	Zierahn,	2016;	Frey	&	
Osborne,	2017).	Therefore,	technology-driven	dynamics	and	labour	allocation	dynamics	need	to	be	included.	
Hence,	the	TBTC	and	RRTC	use	different	labour	market	structures	that	accommodate	these	dynamics.	
	
The	 extended	 skill	 set	 [S]	 was	 introduced	 in	 the	 model	 to	 accommodate	 the	 dynamics	 associated	 to	
technology-driven	skill	development	within	 tasks.	However,	 the	dynamics	associated	 to	 the	 reallocation	of	
labour	supply	across	task	types	mainly	determines	the	labour	market	structure.	TBTC	and	RRTC	studies	have	
adapted	 the	 prior	 SBTC	 structure	 into	 more	 free-flowing	 market	 that	 disconnects	 the	 isolated	 relations	
(Mishel,	 Shierholz	 &	 Schmitt,	 2013).	 Generally	 speaking,	 three	 market	 structures	 can	 be	 identified	 in	
literature.		
	
The	most	 elaborate	 structure	 includes	 all	 combinations	 of	 skill	 level	 and	 task	 type	 to	 create	 a	 fully	 open	
market.	As	defined	earlier,	occupations	consist	of	a	combination	of	manual,	routine,	and	abstract	tasks.	The	
most	 extreme	 cases	 are	 occupations	 consisting	 exclusively	 of	 tasks	 of	 one	 type	 and	 the	 most	 moderate	
occupations	have	an	even	share	of	the	task	types.	As	a	result,	each	task	type	is	performed	by	each	skill	level	
depending	on	the	 intensity	of	task	types	within	the	occupations	 in	the	economy.	Therefore,	some	abstract	
tasks	within	manual-task	 intense	occupations	will	be	performed	by	 low	skilled	employment	and	vice	versa.	
However,	statistical	and	labour	market	evidence	suggests	that	the	relations	between	task	type	and	skill	level	
are	 rather	 robust	 –	 especially	 for	 high	 skill	 levels	 (Autor,	 Dorn,	 &	 Hanson,	 2015;	 Frey	 &	 Osborne,	 2017).	
Therefore,	 the	 low,	middle,	and	high	skilled	 labour	 force	tends	to	be	employed	 in	occupations	with	a	high	
intensity	of	the	natural	task	type.	Since	occupations	consists	of	a	combination	of	task	types,	abstract-intense	
occupations	require	highly	skilled	employees	and	manual-intense	occupations	can	be	performed	by	the	low	
skilled	 labour	 force	 (Autor,	 2015;	 Autor,	 Dorn,	 &	 Hanson,	 2015;	 Cortes,	 Jaimovich,	 Nekarda	 &	 Siu,	 2014;	
Mishel,	Shierholz	&	Schmitt,	2013).	Therefore,	occupations	can	be	placed	in	a	continues	space	with	opposite	
extremes	 of	 abstract,	 routine,	 and	 manual	 task	 exclusive	 occupations	 (Figure	 7)	 and	 a	 strong	 relation	
between	natural	type-intensity	and	skill	level	(Colours	in	the	corners	of	the	triangle).		Examples	of	jobs	in	the	
extremes	are	hairdressers	(for	ℳ),	product	manufacturing	(for	ℛ),	and	academic	analysists	(for	6).		
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Figure	7	Occupations	and	the	relation	between	skill	levels	and	tasks	on	an	open	market	

Various	 scholars	 argue	 that	 there	 is	 a	 significant	 difference	between	 the	 cognitive	 capabilities	 of	 the	high	
skilled	labour	forces	compared	to	the	other	two	skill	levels	(Acemoglu	&	Restrepo,	2017b,	2018;	Autor,	Levy,	
Murnane,	2003).	Moreover,	the	definition	of	the	task	types	suggests	that	a	revision	in	the	relation	between	
middle	and	low	skilled	labour	and	routine	and	manual	tasks	is	required.	Given	these	two	observations,	two	
alternative	market	structures	have	been	identified.	Both	structures	incorporate	an	overlap	between	routine	
and	manual	labour	markets.	However,	the	position	of	the	high	skilled	labour	force	is	different.		
	
Manual	 tasks	 are	 mainly	 service	 oriented	 and	 routine	 tasks	 are	 predominantly	 associated	 to	 production	
(Autor,	2015;	Autor,	Dorn,	&	Hanson,	2015).	 In	contrast	with	the	 isolated	 labour	market	structure,	manual	
task	 intense	services	may	require	a	middle	skill	education	background	and	routine	task	 intense	production	
may	operate	equally	well	with	low	skilled	input.	Moreover,	labour	force	members	shift	their	supply	to	other	
task	types	in	reaction	to	labour	market	developments.	For	example,	recent	labour	market	flows	suggest	that	
part	of	 the	middle	 skilled	 labour	 force,	 formerly	employed	 in	 routine-intense	occupations,	 shift	 to	manual	
task	 intense	 service	 jobs	 in	 reaction	 to	 automation	 (Frey	&	Osborne,	 2015,	 2017).	 Therefore,	 the	 isolated	
relation	between	 low	skilled	 labour	supply	and	manual	 tasks	[?^â	 → ?^ℳ ]	and	middle	skilled	 labour	supply	

and	 routine	 tasks	 [?^ä	
→ ?^ℛ ]	 is	 incomplete.	 Hence,	 the	 low	 and	 middle	 skilled	 labour	 force	 share	 the	

market	for	manual	and	routine	tasks.	
	
The	 cognitive	 capabilities	 of	 the	 high	 skilled	 labour	 force	 create	 a	 distinct	 comparative	 advantage	 (Autor,	
Levy,	Murnane,	2003).	 In	this	respect,	 limited	cognitive	means	and	human	capital	 inhibit	middle	and	lower	
skilled	 individuals	 from	performing	abstract	 task	 intense	occupations	 (Acemoglu	&	Restrepo,	2017b,	2018;	
Autor,	 Levy,	 Murnane,	 2003).	 Therefore,	 Acemoglu	 and	 Restrepo	 (2017b,	 2018)	 argue	 that	 all	 tasks	 and	
occupations	can	be	performed	by	the	high	skilled	labour	force	while	the	other	skill	levels	run	into	an	upper	
limit	above	which	the	abstract-task	intensity	is	too	high.	This	results	in	a	semi-open	labour	market	where	all	
skill	 levels	 can	perform	manual	 and	 routine	 intense	occupations	while	 abstract	 tasks	 remain	 the	exclusive	
domain	 of	 the	 high	 skilled	 labour	 force	 (Figure	 8).	 Other	 scholars	 isolate	 the	 abstract	market	 altogether,	
resulting	 in	a	 semi-isolated	 labour	market	 in	which	 the	high	skilled	 labour	 force	 is	exclusively	employed	 in	
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abstract	 intense	 occupations	 as	 is	 done	 by	 Autor,	 Katz	 and	 Kearney	 (2006)39,	 Acemoglu	 &	 Autor	 (2011),	
Gregory,	Salomons	&	Zierahn	(2016),	and	Goos,	Manning,	&	Salomons	(2009)	(Figure	9).	

	 	

Figure	8	Semi-open	labour	market	 Figure	9	Semi-isolated	labour	market40	

7.3 The Labour market model 

Essentially,	all	these	market	structures	(isolated,	open,	semi-open,	semi-isolated)	can	be	modelled	with	the	
current	methodology.	However,	the	semi-open	labour	market	structure	is	adopted	since	the	model	is	task-
based	 (thus	 not	 occupation-based),	 is	 developed	 to	 consider	 the	 allocation	possibilities	 (as	 highlighted	 by	
Acemoglu	&	Autor	(2012)	in	the	section	on	Task-Based	Technological	Change	(TBTC)	(see	3.1))	and	fits	within	
the	TBTC	and	RRTC	framework.	The	task-based	approach	results	 in	a	simplified	representation	of	 the	real-
world	 occupation-based	 labour	 market41.	 As	 stated	 before,	 businesses	 utilise	 a	 specific	 combination	 and	
particular	quantity	of	tasks	to	produce	output	(be	it	goods	or	services)	(Figure	3).	Occupations	consists	of	a	
coherent	 set	 of	 tasks	 that	 are	 part	 of	 the	 overall	 set	 of	 tasks	 in	 production.	 Each	 of	 those	 tasks	 can	 be	
characterised	 according	 the	 TBTC	 task	 types	 [ℛ,6,ℳ]	 and	 the	 RRTC	 routinized	 alternatives	 [	ℛ6, ℛℳ].	
Therefore,	 the	 occupations	 can	 be	 placed	 in	 the	 continues	 space	 presented	 in	 Figure	 7	 and	 Figure	 8	
depending	on	the	share	of	the	task	types	(only	including	the	three	TBTC	levels	for	illustrative	clarity).	In	turn,	
the	production	of	the	tasks	requires	specific	labour	and	capital	input	(Eq.	4).	Therefore,	a	particular	quantity	
of	 every	 occupation	 is	 demanded	 given	 the	 quantity	 of	 task	 input	 required	 for	 the	 intended	production	 -	
which	equates	to	the	number	of	 job	positions.	Consequently,	a	corresponding	tasks-specific	 labour	input	is	
demanded	given	the	labour	market	structure.	
	
In	this	sense,	the	task	approach	simplifies	the	continues	space	of	occupations	(as	presented	in	Figure	7	and	
Figure	 8)	 into	 a	 polarised	 market	 of	 discrete	 categories	 -	 namely	 the	 tasks	 within	 occupations	 that	
characterise	the	labour	input	required.	The	advantage	of	using	a	systematic	categorisation	of	tasks	is	that	it	
provides	a	robust	approach	across	different	time-frames	and	economies	at	the	macro	level	(Arntz,	Gregory,	
Zierahn,	2016).	Occupations	and	sectors	continuously	develop,	emerge,	and	 fade	over	 time.	However,	 the	
components	(i.e.	tasks)	that	make	up	those	occupations	and	labour	 input	do	not	fundamentally	change.	 In	
this	 respect,	 the	 changes	 are	 captured	 in	 the	 input-level	 production	 functions	 of	 the	 tasks.	 On	 the	 other	
hand,	 shifts	 of	 labour	 supply	 are	 captured	 at	 the	 task	 level.	 Therefore,	 the	 dynamics	 of	 occupations	 and	
sectoral	 labour	 input	 can	be	 captured	with	a	 simplified	 task-based	model42.	 The	 semi-open	 labour	market	

																																																													
39	According	to	Goos,	Manning,	&	Salomons	(2011)	
40	The	rate	of	abstract	tasks	in	the	high	skilled	labour	market	domain	is	set	at	9 = 0.5	for	convenience	and	visual	purposes.	
41	Which	would	also	require	sector-specific	and	experience-specific	human	capital	(e.g.	junior	and	senior	functions)	to	be	considered.	
42	Occupations	emerge,	develop,	and	fade	over	time	Acemoglu	and	Restrepo	(2017b).	These	new	occupations	have	become	a	larger	
fraction	of	the	US	labour	market	over	the	past	three	decades	Acemoglu	and	Restrepo	(2017b).	An	occupation-based	model	would	
need	 to	 be	 able	 to	 predict	 and	 adapt	 to	 the	 unforeseen	 future	 occupations	 and	 consider	 sectoral	 economic	 dynamics	 (Frey	 &	
Osborne,	 2015).	 This	 would	 require	 a	 sub-model	 for	 every	 occupation	 type	 across	 all	 sectors	 including	 sectoral	 interaction	 and	
dynamics,	Therefore,	severely	complicating	the	model.	



TU Delft EPA  |  K Spaanderman   

	 38	

results	in	the	relations	between	skill	levels	and	task	types	as	presented	in	Table	1.	The	inner	matrix	matches	
supply	and	demand	to	define	all	 task	specific	 labour	supplies	 [?^â≤→Z

].	These	relations	are	noted	such	that	
[æ]	notes	the	natural	relation	between	skills	and	tasks	and	[ø]	notes	the	additional	labour	supply	possibilities	
per	skill	level	for	which	the	individuals	are	qualified.		
	

Table	1	Labour	market	skill	(supply)	-	task	(demand)	relation	â≤ → -	

	
	 Labour	demand	[?^Z]	

	
	 ?^ℳ 	 ?dℳ 	 ?^ℛ 	 ?dℛ 	 ?^6 	 ?d6 	

La
bo

ur
	s
up

pl
y	
[?

^ â
≤
]	

?dℍ	
	 ø	 ø	 ø	 ø	 ø	 æ		

?^ℍ	
	 ø	 	 ø	 	 æ		 	

?dä	
	 ø	 ø	 ø	 æ		 	 	

?^ä	
	 ø	 	 æ		 	 	 	

?dâ	 	 ø	 æ	 ø	 ø		 	 	

?^â	 	 æ	 	 ø		 	 	 	

	
The	actual	structure	of	the	labour	market	connects	the	production	model	and	demographic	model	via	labour	
demand	and	supply.	The	prior	 labour	supply	equitation	(Eq.	14)	 is	expanded	to	 incorporate	the	semi-open	
labour	market	 including	 the	dual	 relation	between	 low	and	middle	 skilled	 labour	 and	manual	 and	 routine	
tasks.	 It	 is	assumed	that	employees	are	normally	oriented	towards	their	natural	tasks	type	[æ],	avoid	tasks	
with	 higher	 unemployment	 rates	 [ª],	 and	 strive	 to	maximise	wages	 [B].	 This	 implies	 that	 employees	will	
supply	labour	to	the	natural	task	type,	unless	another	task	type	has	a	lower	unemployment	rate,	but	only	if	
the	 loss	 in	 wage	 is	 acceptable	 [¿]	 or	 an	 increase	 in	 wage	 is	 realised.	 The	 relative	 strength	 of	 the	 labour	
allocation	 reaction	 to	unemployment	depends	on	 the	 reallocation	 sensitivity	 [0 ≤ Uª ≤ 1]	 and	on	 the	utility	
elasticity	of	wages	[	0 ≤ U¡ ≤ 1].	This	reactive	adjustment	process	is	delayed	[∆`?]	because	of	legal	resignation	
period	 constraints,	 job	 application	 process	 duration,	 and	 the	 period	 before	 the	 labour	market	 trends	 are	
recognised	and	picked	up	as	common	knowledge.	Therefore,	the	task	specific	labour	supply	[?^â≤→Z

]	per	skill	
level	 (Eq.	16)	are	summed	per	 task	 to	get	 the	 labour	supply	per	 task	 [?^Z	∑]	 (Eq.	17)	and	summed	per	skill	
level	to	the	total	labour	supplied	per	skill	level	[?^â≤]	(Eq.	18).	
	
The	 labour	demand	equations	remain	unchanged	since	demand	stems	from	the	task	production	functions.	
However,	since	the	relation	between	skill	and	task	has	been	established,	the	unemployment	equations	can	
be	 extended	 to	 calculate	 the	 age	 cohort	 specific	 unemployment	 [∫â≤ñó].	 Thereby,	 the	 distribution	 of	
unemployment	among	the	supplying	age	cohorts	is	determined.	Since	the	model	treads	males	and	females	
across	all	age	cohorts	as	equals,	the	unemployment	rate	per	task	equal	across	participating	age	cohorts.	In	
other	words,	unemployment	is	normally	distributed	relative	to	the	share	of	each	supplying	age	cohort	to	the	
total	 labour	 supply	of	 the	 task.	However,	higher	educated	 labour	 supply	and	demand	are	shifting	 towards	
lower	requirement	tasks	(Autor	&	Salomons,	2017).	‘They	[res.	Beaudry	et	al.	(2013)]	show	that	high-skilled	
workers	 have	 moved	 down	 the	 occupational	 ladder,	 taking	 on	 jobs	 traditionally	 performed	 by	 low-skilled	
workers,	pushing	 low-skilled	workers	even	 further	down	the	occupational	 ladder	and,	 to	 some	extent,	even	
out	of	the	labour	force.’	(Frey	&	Osborne,	2017,	p.	258).	This	aspect	is	incorporated	in	the	model	via	a	labour	
supply	skill	level	selection	order.		
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Eq.	16	

?^Z	∑ = …

iñâ≤→Z

 ∈iñâ≤→Z

,					ág`ℎ					?^â≤→Z
= ?^â→Z

, ?dâ→Z
, ?^ä→Z

, ?dä→Z
, ?^ℍ→Z

, ?dℍ→Z
	 Eq.	17	

?^â≤ = …

iñâ≤→Z

 ∈iñâ≤→Z

,					ág`ℎ					?^â≤→Z
= ?^À, ?^ÃÕ 	 Eq.	18	

7.4 Labour market model synthesis 

The	 labour	 market	 model	 is	 task-based	 and	 semi-open	 whereby	 all	 skill	 levels	 can	 perform	 manual	 and	
routine	intense	occupations	while	abstract	tasks	remain	the	exclusive	domain	of	the	high	skilled	labour	force.	
The	 task	 specific	 labour	 input	 [?^ℛ, ?^6, ?^ℳ, ?dℛ, ?d6, ?dℳ ]	 stemming	 from	 the	 production	 model	 is	
converted	 into	 the	 task	 specific	 labour	 demand	 [?^Z	π]	 (i.e.	 the	 number	 of	 jobs	 demanded).	 Given	 the	
matched	labour	skills	in	Table	1,	the	total	labour	supply	per	task	[?^Z	∑]	is	determined	via	summation	of	the	
task	specific	labour	supplies	[?^â≤→Z

].	This	labour	market	is	 identical	for	both	part-time	[¥]	and	full-time	[µ]	
jobs.	 Simplification	 of	 the	 labour	 market	 implies	 that	 quantitative	 and	 qualitative	 information	 at	 the	
occupation	and	sector	 level	 is	stripped	from	the	 input	data	to	satisfy	the	task-based	structure.	As	a	result,	
part	 of	 the	 information	 will	 be	 lost	 and	 simulation	 of	 the	 model	 may	 generate	 polarised	 quantitative	
outcomes.	However,	 in	 similar	 fashion	 to	 the	 social	 analysis	 of	 the	quantitative	 results,	 the	outcomes	 are	
analysed	 from	 the	 perspective	 of	 the	 broader	 initial	 conditions.	 Thus,	 the	 results	 are	 analysed	 from	 an	
occupation-based	 frame	 of	 reference	 given	 the	 broader	 initial	 context	 of	 the	 simulation.	 Therefore,	 the	
specific	 and	distinguishable	 impact	of	 various	 technologies	provide	opportunity	 to	 induce	 the	quantitative	
data	into	broader	informed	conclusion.	 	
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8 Education model 
The	 required	 and	 relevant	 skills	 in	 the	 economy	 change	 as	 technology	 enables	 substitution	 of	 input	 and	
tasks.	Some	skills	are	rendered	obsolete	while	new	skill	requirements	emerge	(Autor,	2015;	DeCanio,	2016).	
From	 an	 economic	 perspective,	 management	 of	 the	 skill	 set	 of	 the	 current	 and	 future	 labour	 force	 is	
essential	to	ensure	continuation	of	the	economic	advantages	provided	by	technology	(Acemoglu	&	Restrepo,	
2018;	Arntz,	Gregory,	Zierahn,	2016;	IFR,	2017).	From	the	perspective	of	employees,	there	is	consensus	that	
equipping	 the	 labour	 force	with	 the	 relevant	 skills	 is	essential	 to	ensure	employment	and	 income	stability	
(Autor	&	Salomons,	2017;	Frey	&	Osborne,	2017;	 IFR,	2017);	 ‘The	reason	why	human	 labour	has	prevailed	
relates	to	its	ability	to	adopt	and	acquire	new	skills	by	means	of	education.’	(Frey	&	Osborne,	2017,	p.	258).	
The	ability	of	the	labour	force	to	adapt	to	the	evolving	labour	markets	determines	their	future	employment	
certainty	 and	wage	 level	 (Autor,	 2015).	 Consequently,	 the	 rate	 of	 successful	 adjustment	 to	 new	 skill	 sets	
determines	 the	 realisation	 of	 feasible	 productivity	 growth,	 welfare	 stability,	 and	 inequality	 control	
(Acemoglu	 &	 Restrepo,	 2018;	 Autor,	 2015;	 OECD,	 2017b;	 IFR,	 2017).	 In	 this	 respect,	 the	 labour	 force,	
government,	and	employers	have	a	shared	interest	and	responsibility	(IFR,	2017).	Problematically,		
	

‘Given	the	gravity	of	the	technological	transformation	we	are	undergoing,	there	is	astonishingly	little	
research	effort	in	understanding	the	subsequent	response	through	skill	adjustment.’	Yet,	the	authors	
continue	based	on	the	little	research	that	‘re-qualification	and	upskilling	play	a	key	role	in	mitigating	
the	difficult	transitions	awaiting	workers	whose	skills	have	been	rendered	obsolete	by	technological	
progress.’	(Nedelkoska	&	Quintini,	2018,	p.	36)	

	
The	 education	 and	 training	 model	 is	 an	 attempt	 to	 narrow	 this	 gap.	 Education	 and	 training	 systems	 are	
critical	 for	 skill	 attainment.	 The	 process	 of	 skill	 attainment	 (re-skilling	 and	 up-skilling)	 depends	 on	 the	
facilities	and	resources	 (made)	available	 to	 the	population	by	government	education	spending,	employers’	
human	capital	investment,	and	personal	expenditure.	However,	a	lack	of	awareness,	information,	mandate,	
and	action	can	inhibit	timely	skill	adjustment	even	if	the	financial	resources	are	sufficient	(OECD,	2017b).	The	
education	and	training	system	comprises	all	facilities	and	resources	for	skill	attainment.	The	system	itself	can	
be	 separated	 in	 compulsory	 (primary	 and	 secondary)	 education	 for	 the	 children	 age	 cohort,	 optional	
(secondary,	 post-secondary,	 vocational,	 and	 tertiary)	 education	 for	 the	 student	 age	 cohort,	 and	
professional/adult	training	for	the	working	population	age	cohorts.	Together,	these	sub-systems	determine	
the	 skill	 attainment	 and	 adaptability	 of	 the	 labour	 force.	 In	 this	 process,	 the	 quality	 and	 quantity	 of	 skill	
attainment	is	 influenced	by	critical	factors	in	education	and	training	systems.	Combining	these	factors	with	
the	 financial	 supports	 results	 in	 the	 skill	 attainment	 model	 for	 children,	 students	 and	 the	 working	 age	
population.	In	this	paragraph,	the	skill	attainment	model	is	developed	by	defining	the	financial	resources,	the	
critical	factors	across	the	cohort-specific	sub-systems	(ℂℍ,	èê	and	≥ç),	and	structure	of	the	education	and	
training	systems.	

8.1 Funding of education and training 

Both	 governments	 and	 companies	 have	 a	 roll	 in	 the	 skill	 adaptation	 process	 (IFR,	 2017;	 OECD,	 2017b).	
Herein,	 governments	 should	 focus	 on	 economy	 wide	 skill	 adjustment	 with	 policies,	 programmes	 and	
incentive	 creation	 (IFR,	2017).	 These	 initiatives	 should	not	be	 static	 in	 time	but	 consider	 life-long	 learning	
(LLL)	 due	 to	 the	 continuously	 changing	 skill	 relevance	 on	 the	 labour	 market	 (IFR,	 2017;	 Nedelkoska	 &	
Quintini,	 2018).	Moreover,	 governments	 should	actively	monitor	 the	 labour	market	 and	 cooperate	 closely	
with	 the	private	sector	 to	determine	which	 low-skilled	opportunities	 remain	or	emerge	 for	employees	not	
able	to	re-skill	or	up-skill	(IFR,	2017).	As	a	result,	labour	force	education	and	training	should	not	be	isolated	
to	re-	and	up-skilling,	but	should	also	safeguard	future	low-skilled	opportunities	that	emerge	as	an	indirect	or	
spill-over	result	of	substitution	(IFR,	2017).			
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Simultaneously,	 companies	 carry	 responsibility	 over	 their	 employees	 to	 provide	 relevant	 skill	 training.	
Conflictingly,	 the	current	trend	among	businesses	demonstrates	declining	 investment	 in	employee	training	
and	 knowledge-intensive	 capital	 and	 development	 (IFR,	 2017).	 This	 trend	 should	 be	 reversed	 to	mitigate	
possible	 skill	mismatches	 and	 sustain	 the	 possible	 productivity	 growth	 path	 (Acemoglu	&	Restrepo,	 2018;	
IFR,	 2017).	 Therefore,	 the	 investment	 stream	 [Ü@ ]	 from	 profits	 is	 divided	 into	 employment	 training	
investment	[Ü@i]	and	technological	innovation	R&D	investment	[Ü@T].	If	employment	training	is	neglected,	all	
investments	 fully	 contribute	 to	 technological	 innovation	 and	 thus	 the	 respective	 productivity	 factor	 [W@].	
However,	as	discussed	before,	the	absence	of	adequately	skilled	employees	may	inhibit	the	realisation	of	this	
productivity	 growth	 since	 the	 technology	 cannot	 be	 implemented	 and	 operationalised	 (Acemoglu	 &	
Restrepo,	2018;	IFR,	2017).	The	share	of	the	investment	streams	[Ü@T	and	Ü@i]	and	dividend	stream	[É@P]	is	
respectively	 determined	 by	 the	 innovation	 investment	 share	 [Ñ@],	 the	 employment	 investment	 share	 [Œ@],	
and	 the	 dividend	 share	 [ν@]	 such	 that	 [œ = 	 {Ñ@, ν@, Œ@},	 œl = 1,	 and	0 ≤ œl ≤ 1].	 Therefore,	 Eq.	 8	 is	
expanded	into	(Eq.	19),		

Ç@P = q@P�.vÄ + vtu,					Ü@T = Ñ@Ç@,					Ü@i = Œ@Ç@,					É@P = ν@Ç@ 	 Eq.	19	

This	 implies	 that,	 the	 outcomes	 of	 the	 model	 in	 respect	 of	 re-skilling,	 up-skilling,	 and	 adequately	 skilled	
labour	shortages	will	qualitatively	support	the	current	insistence	concerning	company	training	investment.				
	
Company	 training	 investment	 is	 isolated	 to	 a	 task-level	 basis	 to	 tackle	mismatches.	 Yet,	 companies	 use	 a	
combination	of	tasks	to	produce	final	output	(Autor,	2013,	2015;	Mishel,	Shierholz	&	Schmitt,	2013).	Hence	
employment	investment	is	allocated	towards	re-skilling	[ℝ]	and	up-skilling	[ò].	Government	investment	into	
education	of	the	labour	force	[–i^]	and	labour	force	consumption	of	personal	training	[≠i^]	can	be	allocated	
toward	 re-skilling	 or	 up-skilling.	 The	 government	 has	 a	 triple	 mandate	 in	 this	 context:	 ensure	 economic	
wellbeing	of	the	population,	maximise	economic	returns	[+ - ]	with	the	realisation	of	productivity	growth	
[W@],	 and	 ensure	 a	 balanced	 government	 budget	 [–].	 The	 first	 includes	 maintaining	 a	 healthy	 level	 of	
unemployment;	 realising	 a	 societally	 acceptable	 level	 of	 inequality	 between	 socio-economic	 groups;	 and	
ensuring	 economic	 welfare	 of	 the	 population	 via	 wage	 levels43.	 The	 second	 includes	 maintaining	 an	
adequately	 skilled	 population	 via	 the	 public	 education	 system	 and	 stimulating	 innovation	 via	 government	
investment	 in	 technological	 innovation	 [–@T].	 Lastly,	 government	 expenditure,	 including	 investments	 and	
unemployment	 benefits	 [–—],	 needs	 to	 be	 minimised	 (Eq.	 20)	 -	 within	 the	 minima	 set	 by	 the	 national	
unemployment	institutions	[“].		

min
’

–i^+	–@T+	–— 	 Eq.	20	

The	routine	biased	nature	of	technological	progress	demands	dichotomous	and	multidisciplinary	education	
(EU	 Skills	 Panorama	 2014,	 2015;	 European	 Commission,	 2015;	 IFR,	 2017).	 On	 the	 one	 hand,	 the	
development	of	technology	and	 its	growing	societal	and	economic	 importance	demand	for	STEM	(Science,	
Technology,	Engineering	and	Mathematics),	Technology	Literacy	(TL),	and	Digital	Literacy	(DL)	competences	
(Bybee,	2010;	EU	Skills	Panorama	2014,	2015;	IFR,	2017;	Sanders,	2009).	In	this	context,	taken	together	and	
termed	STEM	from	here	on	foreword	since	STEM	encompasses	TL	and	DL	in	its	approach	(see	Bybee	(2010)).	
The	earlier	definition	of	the	extended	skill	levels	[Sâ, S÷, S◊]	are	thus	STEM	trained	individuals	depending	on	
the	skill	level.	These	individuals	have	an	education	background	within	the	corresponding	standardised	ISCED-
F	2013	 fields	 (05,	06,	or	07)44	of	education	 (UNESCO	 Institute	 for	Statistics,	2015).	 In	simplified	words,	 the	
extended	 skill,	 ‘STEM’,	 labour	 force	 encompasses	 all	 individuals	 with	 adequate	 technological	 skills	 to	
operate,	and	make	use	of,	the	full	extend	off	(productive)	capabilities	of	new	technology	within	a	task.	
	
However,	 these	routine	and	systematic	practises	are	most	vulnerable	 to	automation	by	computers	 (Autor,	
2015).	On	the	other	hand,	the	inability	of	technology	to	substitute	non-routine	tasks	increases	the	relevance	
and	labour	market	value	of	social	and	cognitive	skills	(Frey	&	Osborne,	2017;	IFR,	2017).	Autor	(2015)	notes,	
‘many	of	 the	middle-skill	 jobs	 that	persist	 in	 the	 future	will	 combine	 routine	 technical	 tasks	with	 the	 set	of	
																																																													
43	Note	that	this	only	concerns	the	economic	variables	exogenous	to	the	model.		
44	05	 =	 Natural	 Sciences,	Mathematics	 and	 Statistics,	 06	 = Information	 and	 Communication	 Technologies,	 and	 07	 =	 Engineering,	
Manufacturing	and	Construction		
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nonroutine	 tasks	 in	 which	 workers	 hold	 comparative	 advantage:	 interpersonal	 interaction,	 flexibility,	
adaptability,	 and	 problem	 solving.’	 (p.	 27).	 These	 tasks	 fit	 squarely	 in	 the	 abstract	 and	manual	 domains.	
Moreover,	the	expected	future	impact	of	technology	will	increase	the	relevance	of,	demand	for,	and	exclude	
substitution	of,	 tasks	 requiring	creative	and	social	 intelligence	 (Frey	&	Osborne,	2017).	 In	 this	 respect,	 the	
demand	 for	 multi-disciplinary	 STEM	 labour	 outgrows	 STEM	 exclusive	 labour	 demand	 growth	 by	 50%	 in	
European	countries	and	this	trend	is	expected	to	continue	(European	Commission,	2015).	Therefore,	STEM	
education	 should	 focus	 on	 multi-disciplinarity	 and	 conventional	 education	 should	 increase	 basic	 STEM	
capability	attainment	(to	ensure	an	adequate	fundamental	STEM	understanding).	
	
Hence,	company	training	 investment	[Ü@i],	government	education	 investment	[–i^]	and	employee	training	
expenditure	 [≠i^ ]	 need	 to	 be	 balanced	 across	 re-skilling	 and	 up-skilling	 in	 reaction	 to	 task-specific	
technological	 progress,	 shifts	 in	 labour	 demand,	 and	 task-specific	 unemployment.	 Moreover,	 the	
investments	need	to	be	balanced	across	age	cohorts.	The	demographic	groups	have	different	labour	market	
positions	 (i.e.	 how	 the	 group’s	 labour	 supply	 is	 divided	 across	 the	 tasks)	 and	 rates	 of	 extended	 skill.	
Therefore,	the	impact	of	substitution	is	not	homogenous	across	the	groups.	This	implies	that,	education	and	
training	 investment	 should	 be	 sensitive	 to	 both	 economic	 as	 well	 as	 socio-economic	 outcomes.	 This	
investment	process	and	the	consequential	improvements	are,	however,	delayed	and	reactive.	Meaning	that	
undesired	developments	in	the	labour	market	(shortages	and	excesses)	result	in	investment.	Hereafter,	the	
population	(and	thus	the	labour	force)	will	reorganise	to	the	desired	state.	However,	problem	identification,	
funding,	 policy	 implementation,	 and	 finally	 education	 and	 training	 takes	 time	 (Bybee,	 2010).	 Adjustments	
within	 the	 labour	 force	 in	 reaction	 to	 labour	 market	 demand	 are	 slow	 and	 incomplete	 (Autor,	 Dorn,	 &	
Hanson,	2015).	The	investment	process	itself	is	not	incorporated	in	the	model	as	it	would	extend	beyond	the	
scope	of	this	study.	Rather,	the	outcomes	of	the	modelling	exercise	provide	necessary	guidance	on	allocation	
of	resources	to	mitigate	unemployment	and	materialise	potential	socio-economic	benefits.	

8.2 ℂℍ Primary and compulsory (secondary) education system 

National	education	systems	vary	significantly	from	country	to	country,	which	not	only	complicates	skill-level	
definition	and	labour	outcome	comparison	(Autor	&	Salomons,	2017;	Graetz	&	Michaels,	2017)	but	can	also	
inhibit	 common	 problem	 and	 solution	 identification,	 and	 policy	 intervention	 (Hanushek	 &	 Woessmann,	
2016;	Ryan	&	Feller,	2009).	A	globalisation	trend	in	education	has	popularised	universal	evaluation	of	critical	
resources	and	inputs	versus	evidence-based	performance	outcomes	(Hanushek	&	Woessmann,	2016;	Ryan	
&	Feller,	2009)45.	However,	education	systems	differ	in	constitutional	and	legislative	support	and	financing;	
the	 relative	 position	 of	 public	 and	 private	 education;	 system	 size;	 and	 historic	 system	 path-dependence	
(Ryan	&	 Feller,	 2009).	Decentralised	new	management/governance	methods	 and	 standardised	parametric	
performance	measurements	provide	a	more	localised,	flexible,	and	demand-driven	approach	in	combination	
with	comparable	indicators	for	education	quality	(Ryan	&	Feller,	2009).	Among	such	standardisations	is	the	
OECD	 Program	 for	 International	 Student	 Assessment	 (PISA)	 (OECD,	 2016)46.	 Hanushek	 and	 Woessmann	
(2016)	emphasise	the	value	of	such	tests,	
	

‘These	 common	 international	 assessments	 provide	 unique	 data	 for	 understanding	 both	 the	
importance	 of	 various	 factors	 determining	 achievement	 and	 the	 impact	 of	 skills	 on	 economic	 and	
social	outcomes.’	(p.	150)	

	
The	standardised	international	assessments	of	student	and	education	system	performance	have	sparked	an	
extensive	literature	on	school	effectiveness	and	the	cause-effect	relation	between	resources	(e.g.	class	size)	
and	 schooling	 quality	 within	 and	 across	 countries	 (Hanushek	 &	 Woessmann,	 2016;	 Levačić	 &	 Vignoles,	

																																																													
45	See	p.150-151	of	Hanushek	and	Woessmann	(2016),	Ryan	and	Feller	(2009),	and	Ryan	and	Cousins	(2009)	
46	See	 The	 World	 Bank	 Education	 statistics	 (EdStats)	 Query	 database	 for	 an	 extensive	 dataset	 of	 standardized	 assessments	 at	
http://datatopics.worldbank.org/education/wQueries/qlearning.	 Also	 consider	 the	 UNESCO	 World	 Data	 on	 Education:	 Seventh	 edition	
2010-11	 for	 information	on	all	associated	national	education	systems	at	http://www.ibe.unesco.org/en/document/world-data-education-
seventh-edition-2010-11.	
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2002)47.	 These	 causal	 relations	 provide	 opportunity	 to	 enrich	 the	 model	 with	 empirical	 evidence	 and	
construct	 a	 representative	 simplified	 education	 system	model.	 A	majority	 of	 literature	 uses	 an	 education	
production	 function	 in	 the	 form	of	Eq.	21	to	describe	and	analyse	the	relations	 (Hanushek	&	Woessmann,	
2016;	Levačić	&	Vignoles,	2002;	Woessmann,	2016).	

- = ¢R + ¢.ÿ + ¢0Ÿ + ¢nÜ + ¢⁄W + €	 Eq.	21	

‘where	T	 is	 the	outcome	of	 the	educational	production	process	as	measured,	e.g.,	by	 test	scores	of	
mathematics,	science,	and	reading	achievement.	The	vector	F	captures	facets	of	student	and	family	
background	characteristics,	R	is	a	vector	of	measures	of	school	resources,	I	are	institutional	features	
of	 schools	 and	 education	 systems,	 and	 A	is	 individual	 ability.’	 (Hanushek	 &	Woessmann,	 2016,	 p.	
152)	

	
Note:	the	Fraktur	notation	is	used	from	this	point	onward	for	the	education	system	to	separate	it	from	the	
production	 model	 and	 population	 model	 notations.	 Therefore,	- = ‹,	ÿ = ›,	Ÿ = ℜ,	Ü = ℑ,	 and	W = ‡	
with	the	factors	within	being	noted	in	lower-case.	
	
In	the	model	developed	 in	this	study,	 the	student	and	family	background	characteristics	 [›]	and	 individual	
ability	vector	[‡]	are	incorporated	in	the	population	model	via	the	birth	mechanisms	(Eq.	11	to	Eq.	12).	This	
incorporation	 is	 consistent	 with	 the	 methodology	 (with	 relative	 influence	 ratios)	 and	 the	 factors	 in	 the	
studies	referred	to	by	Hanushek	and	Woessmann	(e.g.	skill	level	relations	and	family	composition)	(see	table	
8.1	 at	 p.154	 of	 Hanushek	 &	 Woessmann	 (2016)).	 Moreover,	 the	 social	 factors	 are	 largely	 outside	 the	
influence	of	school	systems	(Woessmann,	2016).	Hence,	the	education	production	function	is	simplified	to	a	
vector	 for	 school	 resources	 and	 institutional	 features	 (ℜ	and	ℑ).	 It	 is	 important	 to	 note	 that	 the	 required	
aggregation	of	individuals’	and	exogenous	characteristics	within	the	education	system	only	holds	at	a	macro-
level	 (Hanushek	&	Woessmann,	 2016)48.	 Despite	 this,	 the	model	 is	 still	 insensitive	 to	 unobserved	 cultural	
factors,	cultural	heterogeneity,	and	selection	biases	which	poses	problems	for	cross-country	and	micro-level	
comparison	(Hanushek	&	Woessmann,	2016;	Woessmann,	2016).		However,	these	concerns	are	limited	since	
the	model	developed	in	this	study	is	an	isolated	macro-level	model.		
	
The	 four	 vectors	 in	 the	 education	 production	 function	 comprise	 a	 set	 of	 factors	 that	 influence	 education	
quality	 and,	 therefore,	 student	 skill	 level	 outcomes	 (Hanushek	 &	 Woessmann,	 2016).	 A	 more	 detailed	
explanation	 is	provided	 in	Appendix	 I.	The	 factors	contribute	 to	an	overall	 score	via	 their	 coefficient	value	
multiplied	by	the	factor	value	 in	the	education	system	(e.g.	 factor	coefficient	of	weekly	 instruction	time	 in	
minutes	per	week	times	the	number	of	minutes).	The	overall	score	on	the	assessment	gives	an	insight	in	the	
quality	 of	 the	 education	 system	 and	 student	 performance	 between	 and	 within	 countries	 (Hanushek	 &	
Woessmann,	2016;	Woessmann,	2016).	Students	(should)	realise	a	25-30	point	(or	one	standard	deviation)	
increase	 on	 the	 assessments	 for	 each	 year	 of	 education	 (scoring	 scale	 applies	 to	 nearly	 all	 national	 and	
international	 tests)	 (Woessmann,	 2016).	 However,	 the	 variation	 in	 education	 quality	 between	 and	within	
countries	 results	 in	 variation	 in	 the	 actual	 attained	 skills	 and	 thus	 accumulated	 points	 (Hanushek	 &	
Woessmann,	2016;	Woessmann,	2016).	The	associated	factors	provide	opportunity	to	establish	strategies	to	
improve	education	systems	and	resource	allocation49	(Hanushek	&	Woessmann,	2016;	OECD,	2017a).		
	
Improving	 the	 factors	 results	 in	 higher	 average	 student	 performance	 and,	 thus,	 a	 higher	 skill	 level	 when	
transitioning	 from	the	child	age	cohort	 [ℂℍ]	 to	 student	 [èê]50.	Factor	and	capacity	 improvement	 requires	
investments	 and	 depends	 on	 the	 availability	 of	 resources	 (e.g.	 shortage	 of	 certified	 teachers,	 wages,	

																																																													
47	See	Hanushek	&	Woessmann	(2016)	for	a	comprehensive	and	rich	overview	of	the	field	of	science	including	methodological	and	
scope	variation	as	well	as	paradigmatic	shifts	and	see	Woessmann	(2010)	for	summary	of	the	origin	of	the	international	assessments.	
48	At	 the	micro-level,	 the	 results	 need	 to	 be	 controlled	 for	 all	 relevant	 observable	 and	 unobservable	 factors	 as	 well	 as	 reversed	
causation	 (e.g.	 education	 systems	 where	 less-performing	 schools	 receive	 additional	 funding)	 to	 ensure	 comparative	 equivalence	
(Hanushek	&	Woessmann,	2016,	Woessmann,	2016).	
49	Given	awareness	for	the	inherent	limitations	stemming	from	the	aggregation	and	insensitivities	when	considering	comparisons	and	
micro-levels	(see	Hanushek	&	Woessmann	(2016)	
50	This	is	methodologically	consistent	since	the	assessments	are	performed	at	the	age	of	15	(Hanushek	&	Woessmann	(2016).	
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budgets,	autonomy).	The	implementation	of	a	representative	and	elaborate	education	system	in	the	model	
would	be	 required	 to	 realise	 such	dynamics.	However,	 this	would	extend	 the	model	outside	 the	 intended	
scope	 and	 would	 require	 extensive	 research	 into	 education	 systems,	 causal	 relations,	 and	 associated	
(financial)	factors	across	countries	(e.g.	OECD	(2017a)).	The	OECD	PISA	database	and	associated	publications	
provide	 a	 systematic,	 empirical,	 and	 substantiated	 foundation	 (i.e.	 suitable	 for	 simulation	 for	 different	
countries)	 and	 extensive	 set	 of	 parameters	 for	 such	 an	 extension.	 The	 model	 developed	 in	 this	 study	 is	
simplified	 to	 a	macro-level	 black	 box	 to	 determine	 the	 effects	 of	 factor	 inputs	 on	 skill	 attainment	 output	
based	on	Hanushek	and	Woessmann	(2010,	2016)	and	Woesmann	(2016).	 In	other	words,	the	relative	skill	
attainment	 increase	 (based	on	 the	 factor	values)	 is	used	 to	determine	how	 it	effects	 the	 labour	 force	and	
how	 it	 can	 change	 unemployment.	 Future	 expansion	 of	 the	 model	 could	 include	 a	 more	 complete,	
representative,	and	dynamic	education	sector	model	to	replace	this	black	box.	

8.2.1 ℂℍ Education system structure and model 

For	each	skill	level	[Hâ, Hä, Hℍ]	an	identical	model	is	constructed,	which	is	expanded	to	consider	the	extended	
skill	 levels.	 Improvement	 of	 the	 education	quality	will	 result	 in	 up-skilling	 of	 children.	 In	 this	 process,	 one	
standard	 deviation	 of	 difference	 in	 score	 [‹·]	 can	 be	 associated	 to	 one	 skill	 level	 difference	 (Feskens,	
Kuhlemeier	&	 Limpens,	 2016)51.	 The	 average	 national	 score	 at	 the	 initiation	 of	 the	model	 is	 taken	 as	 the	
index	value	of	1.	The	score	improvements	associated	to	the	factors	are	also	normalized	whereby	an	increase	
of	one	normalised	standard	deviation	 (25-30	points	of	conventional	assessment	score)	 results	 in	a	 shift	of	
the	children	to	one	skill	level	higher.	This	results	in	the	rate	of	up-skilling	of	children	[·ℂℍ]	which	is	assumed	
to	be	identical	for	both	sexes	(Eq.	23).		
	
However,	 a	 limited	 capacity	 [ℭ^™.]	will	 create	 a	 temporary	 ceiling	 by	 inhibiting	 students	 from	 joining	 the	
higher	 skill	 level.	 The	 temporary	 nature	 follows	 from	 a	 delay	 in	 creating	 additional	 education	 facilities	
including	classrooms,	material,	and	teachers	[∆`ℭ].	The	increase	in	capacity	after	the	delay	time	depends	on	
the	planning	constant	[„]	which	determines	for	how	many	years	to	come	additional	capacity	is	created	(Eq.	
24).	In	this	respect,	the	delay	and	planning	constants	are	related,	either	plan	for	smaller	increases	that	take	
less	 time,	or	plan	 larger	 increases	that	 take	 longer.	 In	 the	first	case,	constant	adjustment	may	be	required	
that	could	be	costlier.	On	the	other	hand,	a	too	long	delay	can	result	in	a	generation	of	students	that	did	not	
have	the	opportunity	to	up-skill	and	therefore	create	a	 lasting	disruption	that	trickles	through	the	working	
age	population.	The	up-skill	rate	function,	up-skill	population	flow	function	(Eq.	23)	and	capacity	generation	
function	(Eq.	24)	are	provided	below.	For	comprehensibility,	the	skill	level	to	up-skill	to	is	noted	as	H + 1.	

‹ = ¢R + ¢.ℜ + ¢0ℑ + €	 Eq.	22	
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	 Eq.	24	

																																																													
51	Using	the	ISCED	2011	definition	of	skill	levels,	as	is	done	by	Feskens,	Kuhlemeier	&	Limpens	(2016)	and	the	PISA	assessment.	For	
the	Netherlands	one	standard	deviation	is	equal	to	up-skilling	from	VMBO	to	HAVO	or	MBO	to	HBO	and	HAVO	to	VWO	or	HBO	to	
WO.	
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8.2.2 ℂℍ Extended skill factors 

The	general	education	quality	factors	also	apply	to	the	attainment	of	extended	skills,	and	thus	re-skilling.	The	
extended	skills	require	STEM	education.	The	PISA	assessments,	among	others,	cover	multiple	disciplines	(e.g.	
literacy,	mathematics,	science)	(Woessmann,	2016).	Across	the	disciplines,	the	teachers’	subject	knowledge,	
access	 to	 subject-specific	 textbooks,	 and	 instruction	 time	 spend	 on	 the	 subject	 influences	 performance	
(Woessmann,	 2016).	Successful	 continuation	 in	 the	 STEM	 field	 is	 associated	 with	 strong	 performance	 in	
associated	 courses	 during	 compulsory	 education	 (Wang,	 2013).	 Following	 the	 literature	 on	 improving	
performance,	 a	 similar	 set	 of	 factors,	 as	 introduced	 for	 overall	 education,	 is	 created	 for	 extended	 skills.	
Therefore,	an	extended	factor	is	introduced	for	each	factor	in	the	resources	vector,	resulting	in	the	extended	
resource	vector	[ℜd].		
	
Especially	the	instruction	time	spend	on	science	has	a	more	substantial	effect	on	performance	compared	to	
mathematics	and	literacy	(OECD,	2016).	However,	the	total	instruction	time	in	a	curriculum	and	the	number	
of	teachers	are	limited	(Gromada	&	Shewbridge,	2016;	Masdeu	Navarro,	2015).	 In	this	respect,	the	limited	
time	 needs	 to	 be	 allocated	 to	 different	 subjects	 and	 learning	 activities	 within	 each	 subject	 (Gromada	 &	
Shewbridge,	2016).	The	effectiveness	of	the	subjects’	allocated	resources	needs	to	be	maximized	to	increase	
performance	 (Gromada	&	Shewbridge,	2016).	However,	 there	are	diminishing	 returns	on	additional	hours	
spent	and	students	experience	a	 (personal)	maximum	 learning	capacity	across	 the	day	and	over	 the	years	
(Gromada	 &	 Shewbridge,	 2016).	 The	 quality	 of	 the	 activities	 and	 provided	 support	 is	 vital.	 Learning	
supportive	 staff	 could	 provide	 this	 needed	 support	 (Masdeu	 Navarro,	 2015).	 The	 teacher	 remains	
responsible	 for	 the	 learning	process	and	 lessons,	but	 the	supportive	staff	 can	ensure	 the	students	get	 the	
instruction	 time	 and	 (personal)	 subject	 support	 required	 (Masdeu	 Navarro,	 2015).	 This	 will	 increase	 the	
productivity	 and	effectiveness	of	 the	 teachers	without	 increasing	 the	 instruction	 time	or	workload	on	 the	
students	and	teachers.		
	
In	the	STEM	education	process,	limited	subject	knowledge	among	teachers	can	inhibit	re-skilling	of	students	
(Ottenbreit-Leftwich,	Glazewski,	Newby,	&	Ertmer,	2010).	However,	training	the	teachers	in	the	subjects	up	
to	the	desired	level	of	STEM	expertise	and	associated	pedagogical	content	knowledge	is	unrealistic	according	
to	Sanders	 (2009).	Rather,	STEM	trained	educators	and	staff	 can	assist	 integration	of	STEM	 in	curriculums	
with	 the	 help	 of	 national	 programs.	 Such	 an	 approach	 is	 possible	 by	 involving	 existing	 STEM	 educators	
(Sanders,	 2009)	 to	 provide	 implementable	material	 for	 untrained	 teachers	 across	 skill	 levels	 and	 student	
ages	 (Bybee,	 2010;	 Kearney,	 2011).	 Practical,	 project	 oriented,	 and	 real-world	problem	associated	 lessons	
have	been	found	to	be	most	effective	(Sanders,	2009).	However,	the	actual	implementation	of	such	material	
and	 technology	depends	on	 the	attitude,	beliefs,	and	 (practical)	 technological	knowledge52	of	 the	 teachers	
(Ottenbreit-Leftwich,	Glazewski,	Newby,	&	Ertmer,	2010;	Polly,	Mims,	Shepherd,	&	Inan,	2010).	53	
	
Stimulating	re-skilling	[ℝ]	considering	expected	labour	developments	is	not	a	walk	in	the	park.	The	process	is	
slow,	‘Achieving	higher	levels	of	STEM	literacy	cannot	be	accomplished	quickly;	it	will	take	a	minimum	of	ten	
years.’	(Bybee,	2010,	p.	33),	and	not	all	children	with	adequate	STEM	training	pursue/succeed	in	subsequent	
STEM	education	and	professions.	Firstly,	 this	 implies	 that	 the	effect	of	STEM	stimulation	requires	a	period	
over	which	the	effect	of	ℜd 	improvement	gradually	materialise.	The	rate	of	students	in	STEM	secondary	and	
tertiary	 education	 at	 the	moment	 of	 initialisation	 is	 used	 as	 the	 normal	 rate	 of	 extended	 skills	 [õd].	 The	
additional	 extended	 skill	 attainment	 is	 determined	 by	 the	 rate	 of	 re-skilling	 [üℂℍ]	 under	 influence	 of	ℜd .	
Secondly,	 this	 implies,	 that	 in	 the	model,	 children	 do	 not	 necessarily	 have	 to	 continue	 in	 secondary	 and	
tertiary	 STEM	 education	 when	 flowing	 to	 the	 student	 age	 cohort	 [èêd].	 This	 depends	 on	 the	 attitude	
towards,	 and	 interest	 in,	 a	 future	 career	 in	 associated	 occupations	 and	 tasks	 (Kearney,	 2011).	 The	 STEM	
sensitivity	 factor	 [Uℝ	|	0 ≤ Uℝ ≤ 1]	 is	 introduced	to	determine	the	actual	rate	of	re-skilling,	 i.e.	 the	rate	of	
children	continuing	to	subsequent	STEM	secondary	and	tertiary	education	in	the	student	age	cohorts.		

																																																													
52	Meaning,	how	to	use	computers,	technology,	and	the	materials	provided	(Polly,	Mims,	Shepherd,	&	Inan,	2010).	
53	These	 influences	are	 implemented	 in	 the	 respective	 factors,	meaning	 that	 the	 time	 spend	on	STEM	 is	 implemented	 in	 [Íd],	 the	
implementable	material	available	 in	existing	education	system	with	[Îd],	and	technology/STEM	knowledge	and	attitude	of	teachers	
via	[Ïd].	
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Multiple	 models	 exist	 to	 study	 the	 possibilities	 to	 increase	 re-skilling	 of	 the	 population	 (with	 STEM	
certificates	and	degrees)	 in	the	US	using	system	dynamics,	 including	the	BHEF	U.S.	STEM	Education	Model	
(BHEF,	 2010;	 BHEF,	 2013;	Wells,	 Sanchez	&	 Attridge,	 2007)54	and	 Boeing’s	 STEM	model	 (Newton,	 Richey,	
Mojtahedzadeh,	 2009),	 among	 others.	 As	with	 the	 extension	 of	 the	 education	model,	 the	 effect	 of	 STEM	
programs	and	education	systems	is	implemented	as	a	black	box,	since,	as	Wang	(2013),	concludes,	
	

‘the	process	leading	to	entrance	into	STEM	fields	of	study	is	complex;	numerous	influences	individual,	
psychological,	contextual,	and	social—act	together	to	shape,	develop,	and	sustain	one’s	interest	and	
eventually	turn	it	into	an	actual	choice.’	(p.	1111)	
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The	maximum	effect	of	multidimensional	STEM	programs	 is	estimated	at	1,67	 times	 the	normal	extended	
skill	 rate	 based	 on	 BHEF	 findings55	(BHEF,	 2013).	 Which	 is	 assumed	 to	 be	 the	 ceiling	 for	 re-skilling	 by	
normalising	the	impact	of	STEM	stimulation	via	ℜd 	on	[‹d]	(Eq.	25).	The	sensitivity	factor,	Uℝ,	is	normally	set	
to	 0,4	 based	 on	 Wells,	 Sanchez	 &	 Attridge,	 2007	 findings	 of	 STEM	 educated	 versus	 STEM	 graduated	
students.	Future	expansion	of	 the	model	could	 implement	an	extensive	STEM	system	model	similar	 to	the	
models	 for	 the	 US,	 but	 universally	 applicable	 across	 education	 systems	 -	 see	 Wells,	 Sanchez	 &	 Attridge	
(2007)	 for	 BHEF	model,	 Kelic	&	 Zagonel	 (2008)	 for	 a	 hybrid	 variant,	 and	Newton,	 Richey,	Mojtahedzadeh	
(2009)	for	an	overview	of	SD	STEM	models.	

8.3 èê Higher education system structure and model 

After	primary	(and	compulsory	secondary)	education,	students	can	continue	following	subsequent	education	
and/or	enter	 the	 labour	 force	part-time	or	 full-time.	The	population	model	 is	 structured	 to	determine	 the	
highest	achieved	form	of	education	at	birth	based	on	various	parameters	that	are	consist	with	the	vectors	
influencing	 compulsory	 education56	and	 re-skilling	 and	 up-skilling	 during	 secondary	 and	 tertiary	 education	
(Leach	 &	 Zepke,	 2005;	 Moktar	 Hossain	 &	 Robinson,	 2012).	 In	 this	 respect,	 the	 secondary	 and	 tertiary	
education	system	model	comprises	the	additional	flow	of	re-skilling	and	up-skilling	above	the	status	quo.	In	
similar	fashion	to	the	compulsory	education	system	for	children,	multiple	factors	influence	skill	attainment	in	
higher	education.	However,	unlike	compulsory	education,	this	is	mainly	a	personal	process,	including	the	skill	
level,	specialisation	(sector	and/or	occupation	group),	and	institution(s)	to	apply.	This	process	 is	 influenced	
by	interrelated	factors	in	the	personal	background,	preferences	and	interests,	external	influences,	and	prior	
achievement	in	(compulsory)	education	(Germeijs,	Luyckx,	Notelaers,	Goossens,	&	Verschueren,	2012;	Leach	

																																																													
54	An	online	version	of	the	model	is	provided	here:	https://forio.com/simulate/bhef/u-s-stem-education-model/simulation/		
55	By	using	an	 identical	method	with	a	baseline	prior	 to	program	 implementation,	 i.e.	õd 	in	 this	 study,	and	a	 ratio	 increase	due	to	
STEM	program	implementation.	
56	This	 simplification	 has	 been	made	 to	 facilitate	modelling	 and	 simulation	 of	 various	 educations	 systems.	 Otherwise,	 a	 separate	
stock-flow	structure	across	skill	levels	needs	to	be	constructed	for	every	country	due	to	variation	in	the	education	system.	
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&	 Zepke,	 2005;	 Moogan,	 Baron	 &	 Harris,	 1999;	 Wang,	 2013).	 Additionally,	 career	 prospects	 influence	
secondary	and	tertiary	education	decisions.	These	decisions	are	mostly	related	to	specialisations	within	skill	
levels	 (sectoral	 and	 occupational)	 and	 therefore	 beyond	 the	 scope	 of	 this	 study.	 However,	 the	 rational	
factors	 influencing	 additional	 re-skilling	 and	 up-skilling	 are	 implemented	 to	 create	 the	 student	 education	
system	within	the	skill	attainment	model.	
	
A	simplified	secondary	and	tertiary	education	system	is	constructed	to	model	re-skilling	and	up-skilling	in	the	
student	 age	 cohort.	 Unlike	 compulsory	 education,	 defining	 a	 consistent	 set	 of	 factors	 that	 determine	 the	
rate	of	re-skilling	and	up-skilling	is	complex.	Ups-killing	depends	on	‘a	considerable	array	of	psychological	and	
social	decision-making	processes	and	factors.	These	create	a	very	complex	process.’	(p.	4)	according	to	Leach	
and	Zepke	(2005),	based	on	a	review	of	the	literature.	Problematically,	extending	the	model	to	incorporate	
the	complex	interdependencies	of	influential	factors	is	beyond	the	scope	of	this	study	and	model	and	would	
have	 limited	value	given	the	aggregation	to	a	task-based	model	 (i.e.	 instead	of	an	occupation	and	sectoral	
based	model).	Moreover,	it	would	extend	beyond	the	intended	goal	of	the	model,	namely	to	determine	the	
effect	on	potential	of	 the	 rate	of	 re-skilling	and	up-skilling.	The	 relation	between	up-skilling	and	 income	 is	
mostly	one	of	pursuing	an	 identical	socio-economic	status	 (i.e.	skill	 level	and	wage	 level)	as	an	 individual’s	
parents	(Leach	&	Zepke,	2005).	The	decision	to	re-skill	(or	pursue	a	STEM	career	directly)	is	influenced	by	a	
balance	 of	 labour	 market	 factors,	 personal	 preferences,	 and	 (external)	 influences	 (Moktar	 Hossain	 &	
Robinson,	 2012).	 Also,	 in	 other	 specialisations,	 job	 opportunities	 (for	 20,5%	 of	 students)	 and	 projected	
earnings	 (for	 8,7%	 of	 students)	 are	 important	 factors	 in	 the	motivation	 to	 pursue	 a	 particular	 sector	 and	
career	(Kim,	Markham,	&	Cangelosi,	2002).	Strangely	enough,	STEM	careers	are	better	paid	then	non-STEM	
at	 the	 same	 skill	 level.	 Yet,	 this	 systematic	 difference	 does	 not	 draw	 enough	 students	 to	 counteract	 the	
shortage	of	STEM	professionals	(Moktar	Hossain	&	Robinson,	2012).	Hence,	the	relation	between	wages	and	
career	decisions	 is	ambiguous	and/or	can	be	specialisation	specific.	However,	 students	are	drawn	towards	
favourable	opportunities	on	the	labour	market	and	are	inclined	to	pursue	a	similar	socio-economic	status	as	
their	parents.		
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It	 is	assumed	that	re-skilling	and	up-skilling	of	the	students	age	cohort	only	depends	on	the	 labour	market	
since	the	initial	distribution	of	the	population	among	the	skill	levels	at	birth	is	based	on	the	socio-economic,	
family	 and	 individual	 background	 and	 differences	 between	 individuals.	 Therefore,	 the	 relative	



TU Delft EPA  |  K Spaanderman   

	 48	

unemployment	rate	of	young	adults	between	non-extended	skill	[ªíçñ
]	and	extended	skill	[ªíçc

]	at	the	same	

level	determines	 re-skilling	 (Eq.	27).	Up-skilling	 is	determined	by	 the	 relative	unemployment	 rate	between	
the	skill	 level	and	one	skill	 level	higher	of	young	adults	(e.g.	ªíçñâ

and	ªíçñä
)	 (Eq.	29).	Both	depend	on	the	

labour	market	prospect	sensitivity	factor	[Ô]	and	are	limited	by	the	capacity	[ℭèêc
]	of	the	re-skilled	and	up-

skilled	level	(Eq.	28	and	Eq.	30).	Similarly	to	compulsory	education,	each	skill	level	of	secondary	and	tertiary	
education	has	a	maximum	capacity	which	can	inhibit	students	from	up-skilling	or	re-skilling.	Hence,	the	same	
mechanisms	to	capacity	expansion	of	compulsory	education	apply	(Eq.	24	and	Eq.	26).	

8.4 ≥ç Training system structure and model 

Potentially	 the	 most	 critical	 form	 of	 education	 is	 professional	 training	 of	 the	 working	 age	 population	 to	
counteract	labour	market	mismatches	(Nedelkoska	&	Quintini,	2018).	It	is	expected	the	current	shortage	of	
multi-disciplinary	STEM	skilled	employees	is	to	continue	to	grow,	reinforcing	the	associated	socio-economic	
and	 economic	 difficulties	 (EU	 Skills	 Panorama	 2014,	 2015).	 These	 mismatches	 need	 to	 be	 counteracted	
across	 the	 labour	 force	 by	 creating	more	 entry	 points	 to	multi-disciplinary	 STEM	professions	 and	 training	
possibilities	(EU	Skills	Panorama	2014,	2015;	Frey	&	Osborne,	2015).	Moreover,	there	are	mismatches	on	the	
labour	 market	 due	 to	 polarisation,	 creating	 an	 increasing	 demand	 for	 higher	 educated	 (Nedelkoska	 &	
Quintini,	2018;	OECD,	2017b).	However,	 the	education	mobility	of	 the	 labour	 force	 is	 relatively	 low	 in	 the	
short-run	since	education	is	typically	fixed	prior	to	entering	the	labour	force	(i.e.	during	the	child	and	student	
age	cohorts)	(Goos,	Manning,	&	Salomons,	2011).	In	the	long	run,	the	work	force	is	capable	of	adjusting	to	
labour	market	mismatches	via	education	(Goos,	Manning,	&	Salomons,	2011).	The	question	is,	which	factors	
contribute	to	the	labour	force	re-	and	up-skilling?	
	
The	 process	 of	 re-skilling	 and	 up-skilling	 is	 a	 multi-actor	 effort	 including	 governments,	 employers,	
employees,	and	skill	development	assessment	bodies	(OECD,	2017b).	Depending	on	the	national	institutional	
arrangement,	 the	 actors	 are	 involved	 in	different	 roles	 in	 education	of	 the	 labour	 force.	Unlike	 education	
prior	 to	 entering	 the	 labour	 force,	 this	 is	 not	 a	 process	 of	 performance	 and	 personal	 decisions.	 ‘The	
theoretical	training	literature	(see	for	instance	Acemoglu	and	Pischke,	1998;	Becker,	1962;	Hashimoto,	1981)	
emphasizes	 that	 joint	decisions	by	workers	and	 firms	are	behind	actual	 training	participation’	 (Maximiano,	
2012,	 p.	 2).	 Employers,	 employed	 individuals,	 unemployed	 individuals,	 and	 governments	 can	 initialise	
education	 (OECD,	2017b).	Moreover,	 the	 influence	of	 the	 labour	market	 is	not	unilateral	 as	with	 students	
(drawn	to	low	unemployment).	This	emerges	as	a	lack	of	incentive	for	both	the	employed	and	unemployed	
to	participate	in	education	and	training	to	improve	their	job	prospects,	even	though	this	would	make	sense	
given	the	labour	market	(OECD,	2017b).	The	OECD	(2017b)	provides	an	extensive	set	of	policies	in	the	hands	
of	 the	 actors	 to	 improve	 skill	 attainment	 of	 the	 labour	 force	 to	 counteract	 mismatches.	 Which	 includes	
financial	 support/investment/	 subsidy,	 informing,	 career	 guidance,	 legislation,	 institutional	
reform/adaptation,	 and	 technological	 stimulus/innovation.	 Essentially,	 all	 policies	 aim	 at	 incentivising	
employees	and	employers	to	target	mismatches	by	re-skilling	and	up-skilling57.		
	
From	 the	 perspective	 of	 the	 employee	 and	 employers,	multiple	 factors	 are	 relevant58.	 The	 probability	 of	
attaining	 training	 increases	 with	 skill-level	 due	 to	 an	 advantage	 in	 learning	 capabilities	 and	 return	 of	
investment	 (Albert,	 García-Serrano	 &	 Hernanz,	 2010;	 Maximiano,	 2012;	 O’Connell	 &	 Byrne,	 2010).	
Accordingly,	a	skill	level	specific	training	factor	is	introduced	[^].	Age,	seniority,	years	of	experience,	and	sex	
of	 employees	 does	 not	 influence	 training	 attainment	 significantly	 between	 the	 age	 of	 25	 and	 55	 across	
Europe	according	to	Albert,	García-Serrano,	and	Hernanz	(2010).	Evidence	from	Ireland	confirms	this	finding	
																																																													
57	Within	 the	 scope	 of	 this	 study	 and	 the	 task-based	 approach,	 only	 general	 training	 is	 considered	 and	 not	 firm	 or	 job	 specific	
training.	This	also	 implies	 that	 the	conventional	dichotomy	between	 firm	specific	and	general	 training	and	associated	 rent	on	 the	
labour	market	is	not	considered	(Konings	&	Vanormelingen,	2015).	Moreover,	the	productivity	growth	associated	with	training	(see	
Konings	 and	 Vanormelingen	 (2015))	 and	 the	 productivity	 effect	 of	 relatively	 over	 or	 under	 educated	 labour	 (Mahy,	 Rycx,	 &	
Vermeylen,	2015)	are	not	implemented.	
58	However,	 empirically	 determining	 the	 structure	 of	 these	 factors	 that	 lead	 to	 the	 (shared)	 decision	 to	 participate	 in	 training	 is	
difficult	 and	 the	 required	 empirical	 data	 has	 only	 become	 available	 relatively	 recently	 (Albert,	 García-Serrano	 &	 Hernanz,	 2010;	
Maximiano,	2012).	
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(O’Connell	&	Byrne,	2010).	However,	employees	above	55	are	significantly	less	likely	to	receive/participate	in	
training	 (O’Connell	 &	 Byrne,	 2010).	 This	 is	 mainly	 due	 to	 an	 unwillingness	 of	 employers	 to	 provide	 or	
investment	 in	 training	 of	 older	 employees	 (Maximiano,	 2012).	 This	 implies,	 that	 training	 is	 not	 evenly	
distributed	across	the	working	age	cohorts.	Hence,	an	age	cohort	specific	training	factor	is	introduced	[Òâ≤]	
that	affects	the	èç	and	ℝî	age	cohorts.	Moreover,	full-time	[µ]	employees	tend	to	receive	or	participate	in	
more	 training	 possibilities	 then	 their	 part-time	 [¥]	 counterparts,	 as	 is	 the	 case	 with	 permanent	 versus	
temporary	contracted	employees	(Almeida	&	Aterido,	2008;	O’Connell	&	Byrne,	2010).	This	is	mainly	due	to	
unwillingness	 of	 employees,	 although	 employers	 are	 more	 reluctant	 to	 provide	 training	 to	 part-timers	
(Maximiano,	 2012).	 Therefore,	 a	 contract	 specific	 training	 factor	 is	 introduced	 [Ú].	 Trained	 labour	 force	
members	do	not	 receive	higher	wages	 after	 attainment	of	 additional	 skills	when	 corrected	 for	biases	 and	
endogeneity	(Albert,	García-Serrano	&	Hernanz,	2010).	Without	this	correction,	the	increase	after	training	is	
between	10	and	20	percent	(Albert,	García-Serrano	&	Hernanz,	2010;	O’Connell	&	Byrne,	2010).	However,	
this	effect	is	undone	when	corrected	for	unobserved	heterogeneous	related	factors	(Albert,	García-Serrano	
&	 Hernanz,	 2010).	 Conversely,	 one	 could	 argue	 that,	 for	 that	 reason,	 re-skilling	 and	 up-skilling	 is	 not	
incentivised	by	wage	differences	from	the	perspective	of	the	labour	force.	Re-skilling	or	up-skilling	depends	
on	 the	 cooperative	 nature	 of	 training	 participation	 between	 employee	 and	 employer	 (Maximiano,	 2012).	
Therefore,	 the	 balance	 between	 re-skilling	 and	 up-skilling	 is	 targeting	 tasks	 where	 a	 larger	 shortage	 is	
experienced,	based	on	the	relative	task-specific	unemployment	rate.		

ℝâ≤ñó
= ℝâ≤Z + ℝâ≤Û 	

ℝâ≤Z =

0																																																																																												,					ª@c > ª@ñ
	

1 −
ªâ≤Zc
ªâ≤Z

∗ ^ ∗ Òâ≤ ∗ Ú ∗ ?^â≤→Z
∗ 1 − ª^â≤→Z

	,					ª@c < ª@ñ
	

	

ℝâ≤Û =

0																																																	,					ªâ≤c > ªâ≤ñ
	

1 −
ªâ≤c
ªâ≤ñ

∗ Ù ∗ â≤^ ∗ ªâ≤ñ	,					ªâ≤c < ªâ≤ñ
																																								

Eq.	31	

òâ≤ñó
= òâ≤Z + òâ≤Û 	

òâ≤Z =

0																																																																																															,					ª@c > ª@ñ
	

1 −
ªâ≤ZñÁÊ
ªâ≤Z

∗ ^ ∗ Òâ≤ ∗ Ú ∗ ?^â≤→Z
∗ 1 − ª^â≤→Z

	,					ª@c < ª@ñ
	

òâ≤Û =

0																																																					,					ªâ≤c > ªâ≤ñ
	

1 −
ªâ≤ñÁÊ
ªâ≤ñ

∗ Ù ∗ â≤^ ∗ ªâ≤ñ	,					ªâ≤c < ªâ≤ñ
																																								

Eq.	32	

From	the	perspective	of	the	unemployed,	it	is	assumed	that	the	main	drive	is	to	become	employed	as	soon	
as	 possible.	 Therefore,	 re-skilling	 and	 up-skilling	 depends	 on	 the	 relative	 unemployment	 rate	 in	 similar	
fashion	 as	 with	 the	 students	 age	 cohorts.	 However,	 a	 success-rate	 factor	 is	 introduced	 to	 control	 for	
inhibiting	financial,	incentive,	and	socio-economic	factors	[Ù].	If	the	difference	is	small,	few	people	will	invest	
time,	 effort,	 and	 money	 in	 training	 since	 the	 increased	 probability	 to	 become	 employed	 is	 small.	 If	 the	
unemployment	ratio	is	higher,	no-one	will	up-	or	re-skill	and	simply	allocate	the	labour	supply	to	a	task	with	
lower	unemployment.	For	re-skilling	and	up-skilling	of	the	working	age	population,	it	 is	assumed	that	there	
are	no	capacity	limitations	due	to	the	growing	and	broad	availability	of	courses	and	programmes	with	public	
(e.g.	 post-secondary	 vocational	 education)	 and	 private	 (e.g.	 online	 certificates)	 organisations	 and	 this	
markets	 capability	 to	 respond	 to	 increasing	 demand	 (Frey	&	Osborne,	 2015).	 Although	 both	 streams	 (i.e.	
employed	 and	 unemployed)	 of	 re-skilling	 and	 up-skilling	 are	 aimed	 at	 improving	 employability,	 there	 is	 a	
distinct	difference.	The	employed	 [ℝâ≤Z 	and	òâ≤Z]	 are	 incentivised	 from	 the	 labour	demand’s	perspective	
based	on	the	unemployment	rate	per	tasks,	whereas	the	unemployed	[ℝâ≤Û 	and	òâ≤Û]	are	incentivised	from	
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the	 labour	force’s	perspective	based	on	unemployment	per	socio-economic	group	(Eq.	31	and	Eq.	32).	For	
comprehensibility,	the	skill	 level	to	up-skill	to	is	noted	as	H + 1,	the	task	to	up-skill	to	is	noted	as	-̂ ™.,	and	
the	task	to	re-skill	to	is	noted	as	-d 	-	as	restricted	by	Table	1.	

8.5 Education model synthesis 

The	education	and	training	systems	are	vital	to	ensure	that	the	labour	force	adopt	to	changing	skills	 in	the	
economy	 to	 realise	 the	 feasible	 productivity	 growth,	 welfare	 stability,	 and	 inequality	minimisation.	 Three	
simplified	 education	 systems	 have	 been	 constructed	 based	 on	 the	 relevant	 factors;	 one	 concerning	
compulsory	 education	 up	 to	 the	 age	 of	 15	 (ℂℍ	age	 cohort);	 one	 concerning	 secondary	 and	 tertiary	
education	 (concerning	èê	age	 cohort);	 and	 one	 for	 the	 labour	 force	 (concerning	≥ç	age	 cohorts).	 These	
sub-systems	 are	 combined	 into	 the	 overall	 education	model	 which	 is	 closely	 related	 to	 the	 demographic	
model	and	labour	market.	The	latter	two	are	based	on	the	labour	market	conditions	and	aimed	at	improving	
the	economic	position	of	the	population	member.	This	is	a	rational	approach	to	determine	the	effect	of	re-	
and	up-skilling	on	unemployment	outcomes.	Yet,	as	described,	education	and	skill	attainment	are	based	on	
personal	 motivation,	 interests,	 and	 preferences.	 Therefore,	 the	 model	 is	 insensitive	 to	 these	 aspects	 of	
education	but	will	be	discussed	in	the	reflections.		
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9 Technology model 
Over	time,	multiple	waves	of	automation	technology	have	altered	the	way	we	work	and	reshaped	the	labour	
market	 (Arntz,	 Gregory,	 Zierahn,	 2016;	 Frey	 &	 Osborne,	 2017).	 Technology	 is	 increasingly	 capable	 of	
performing	human	activities	and	therefore	replace	labour	in	production	(Frey	&	Osborne,	2017).	The	effect	
of	various	substituting	technologies	can	be	measured	across	a	similar	set	of	dependent	variables	and	provide	
similar	casual	relations,	yet	the	effect	on	the	labour	market	is	distinct	(Graetz	&	Michaels,	2017;	IFR,	2017).	
In	 other	 word,	 technologies	 affect	 the	 labour	market	 in	 heterogeneous	 ways	 (Michaels	 &	 Graetz,	 2015).	
Michaels	and	Graetz	 (2015)	conclude	 that	 robotic	 substitution	 is	 skewed	towards	 low-skilled	employment.	
On	the	other	hand,	ICT	appears	to	be	polarising	by	mainly	affecting	middle	skilled	occupations	and	favouring	
high	skilled	employment	(Frey	&	Osborne,	2017;	Michaels	&	Graetz,	2015).	However,	it	is	uncertain	how	and	
what	technological	capabilities	will	be	developed	since	technological	progress	is	inherently	difficult	to	predict	
(Frey	 &	Osborne,	 2017).	 Therefore,	 the	 present	 developments	may	 not	 be	 representative	 for	 the	 future.	
Moreover,	 the	 adoption	 of	 technology	 and	 the	 substitution	 of	 labour	 depends	 mostly	 on	 the	 associated	
relative	costs	(Autor,	2015;	Autor,	Dorn,	&	Hanson,	2015;	Autor,	Levy,	Murnane,	2003;	Graetz	&	Michaels,	
2017;	Gregory,	Salomons	&	Zierahn,	2016).	Essentially,	technology	will	only	be	adopted	if	it	provides	a	(large	
enough)	 financial	 advantage	 (in	 a	 short	 enough	 amount	 of	 time).	 Based	 on	 the	 current	 literature,	 the	
expected	technological	and	associated	financial	developments	are	operationalised	for	implementation	in	the	
technology	 sector	 in	 the	 model.	 Yet,	 this	 literature	 is	 limited;	 ‘no	 study	 has	 yet	 quantified	 what	 recent	
technological	 progress	 is	 likely	 to	 mean	 for	 the	 future	 of	 employment.’	 (Frey	 &	 Osborne,	 2017,	 p.	 255).	
Hence,	this	study	is,	per	definition,	a	future	exploration.	
	
The	 extent	 to	 which	 input	 and	 task	 substitution	 are	 feasible	 depends	 on	 technological	 progress,	 relative	
costs,	 and	 the	 complexity	 of	 activities	 within	 the	 task	 types	 (routine,	 abstract,	 or	 manual).	 Actual	
implementation	depends	critically	on	economic,	regulatory,	and	societal	conditions	(Arntz,	Gregory,	Zierahn,	
2016;	Brynjolfsson,	Rock	&	Syverson,	2017).	Financial	feasibility	is	achieved	if	the	gain	in	productivity	offsets	
the	additional	costs	involved	with	the	new	capital	(Graetz	&	Michaels,	2017).	Universally	across	technology,	
the	reduction	in	price	of	technological	capital	 is	a	(if	not	‘the’)	major	factor	that	drives	substitution	(Autor,	
2015;	 Autor,	 Dorn,	 &	 Hanson,	 2015;	 Autor,	 Levy,	 Murnane,	 2003;	 Graetz	 &	 Michaels,	 2017;	 Gregory,	
Salomons	&	Zierahn,	2016).	The	reduction	in	price	directly	improves	the	relative	factor	price	of	capital	over	
labour	(i.e.	given	developments	in	wages).	Therefore,	‘Firms’	technology	choice	is	simple:	adopt	robots	when	
profits	 from	doing	 so	 exceed	 profits	 from	using	 the	 labor-only	 technology	 by	 at	 least	 the	 fixed	 setup	 cost’	
(Graetz	&	Michaels,	2017,	p.	11).	Especially	the	combination	of	reducing	capital	prices	and	rapidly	improving	
capital	quality	has	driven	technology	adoption	over	time	(Graetz	&	Michaels,	2017;	Michaels	&	Graetz,	2015;	
Sirkin,	Zinser	&	Rose,	2015).	As	a	 result,	 the	quality-adjusted	price	 reduction	exceeds	 the	price	 level	drop.	
This	trend	 is	expected	to	continue	for	robotics	up	to	2025	with	an	adjusted	annual	cost	reduction	of	2-8%	
and	productivity	growth	of	5%	for	robotics	(Sirkin,	Zinser	&	Rose,	2015).	Graetz	and	Michaels	(2017)	find	an	
annual	 labour	productivity	growth	of	0.37%	for	robots	and	a	TFP	that	 is	 ‘roughly	two	thirds	as	 large	as	the	
increase	 in	 labor	 productivity’	 (p.	 31).	 In	 comparison,	 IT	 is	 responsible	 for	 0.6-1.0%	 labour	 productivity	
growth	 in	 total	 (Graetz	 &	 Michaels,	 2017)	 or	 between	 0.1%	 to	 0.17%	 concerning	 specific	 technologies	
(Brynjolfsson,	 Rock	 &	 Syverson,	 2017).	 The	 TFP	 reflects	 the	 actual	 effect	 of	 technological	 progress	 on	
economic	 outcomes	 (Brynjolfsson,	 Rock	 &	 Syverson,	 2017).	 	 The	 difference	 (5%	 to	 0.1-1.0%)	 can	 be	
explained	by	the	method	of	measurement.	The	prior	 is	a	production	level	while	the	latter	 is	a	macro-level.	
However,	implementation	is	somewhat	delayed.	According	to	the	Boston	Consulting	Group	(Sirkin,	Zinser	&	
Rose,	2015)	there	is	a	threshold	difference	between	robotic	production	costs	and	labour	production	costs	of	
15%	beyond	which	companies	pursue	automation.		
	
The	 technological	 feasibility	 critically	depends	on	 the	development	of	humanlike	 technological	 capabilities	
(Frey	&	Osborne,	2015;	Graetz	&	Michaels,	2017).	In	relation	to	labour	substitution	and	the	TBTC	and	RRTC	
frameworks,	this	implies	that	feasibility	is	determined	by	whether	the	activities	in	the	tasks	can	be	captured	
in	 computer	 code	 and/or	 be	 physically	 performed	 by	 technology	 (Gregory,	 Salomons	 &	 Zierahn,	 2016).	
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However,	 the	 increasing	 autonomous	 and	 self-learning	 capabilities	 of	 technology	will	 extend	beyond	 rule-
based	computer	code	(Frey	&	Osborne,	2015).	Therefore,	cognitive	intense	tasks	are	unlikely	to	remain	the	
exclusive	 domain	 of	 humans.	 Moreover,	 the	 tangible	 and	 intangible	 domains	 are	 slowly	 becoming	
technologically	 integrated	due	 to	sensors	and	 interconnectivity	 (De	Backer,	DeStefano,	Menon	&	Ran	Suh,	
2018;	Frey	&	Osborne,	2015).	Therefore,	it	is	slowly	becoming	possible	for	technology	to	automate	adaptive	
intelligence-depended	activities	and	substitute	the	associated	labour	input.		
	
The	 various	 technologies	 are	 introduced,	 categorised	 into	 Information	 Technology	 (IT)	 and	 into	 Robotic	
Technology.	 Studies	 have	 different	 technological	 scopes	 (e.g.	 technological	 change,	 robotics,	 computers),	
use	different	definitions	 for	 the	 technologies	 (e.g.	 automating	 technology	or	 ISO8373	 compliant	 industrial	
robots)	and,	consequently,	come	to	different	estimations	of	the	 impact	on	 labour	(Frey	&	Osborne,	2015).	
The	 adopted	 definition,	 impact	 of	 both	 technology	 categories,	 and	 impact	 once	 technology	 become	
interconnected	is	defined.		

9.1 Information technology (IT) 
	 	 	

	 information	technology	noun	[U]		•			abbreviation	IT	
	

The	 study	or	use	of	 systems	 (especially	 computers	and	 telecommunications)	 for	
storing,	retrieving,	and	sending	information.	
	

computer	noun	[C]		•		
	

An	 electronic	 device	 for	 storing	 and	 processing	 data,	 typically	 in	 binary	 form,	
according	to	instructions	given	to	it	in	a	variable	program.		
(Oxford	University	Press)	

	
	 	

	 	
	 	 	

	
In	contrast	with	robotics,	IT	technology	is	restricted	in	the	tasks	it	can	automate	since	three	dimensional	and	
complex	 physical	 tasks	 cannot	 be	 addressed	 (Graetz	 &	 Michaels,	 2017).	 The	 introduction	 of	 IT	 changed	
labour	through	multiple	channels	and	 is	often	referred	to	as	computerisation	or	digitalisation.	First,	within	
existing	 labour	 arrangements,	 IT	 is	 strongly	 complementary	 to	 abstract	 task-intensive	 occupations	 by	
providing	more	extensive	and	cost	effective	 information	and	analysis	resources	(Autor,	2015).	The	result	 is	
that	abstract	tasks	can	be	performed	more	productively	by	shifting	labour	resources	from	performing	data	
analysis	 to	 data	 utilisation	 and	 application.	 Contrarily	 and	 simultaneously,	 IT	 substitutes	 the	 supportive	
occupations	 (often	 manual	 task	 intense)	 associated	 to	 such	 abstract	 task-intensive	 jobs	 (Autor,	 2015).	
Manual	 tasks-intensive	 occupations	 barely	 utilise	 IT	 to	 perform	 their	 tasks	 and,	 thus,	 provide	 limited	
possibilities	 for	 IT	 to	 complement	 (Autor,	 2015).	 In	 contrast,	 computerisation	 has	 resulted	 in	 a	 decline	 in	
routine	 intensive	 employment	 (Frey	 &	 Osborne,	 2017).	 Hence,	 IT	 is	 polarising	 in	 nature	 by,	 mainly	
substituting	 middle	 skilled	 tasks	 and	 reducing	 the	 middle	 skilled	 labour	 hour	 share,	 while	 improving	 the	
position	 of	 high	 skilled	 employment	 (Michaels	 &	 Graetz,	 2015).	 Second,	 IT	 facilitates	 globalisation	 by	
relieving	location	constraints	in	production	processes	(Autor,	2015).	As	a	result,	processes	can	be	offshored	
to	 realise	 lower	 production	 costs	 due	 to	 lower	 labour	 factor	 costs.	 Therefore,	 physical	 routine	 jobs	were	
offshored	and	thus	not	substituted	for	technology	but	for	low	wage	labour	elsewhere.	In	this	respect	IT	has	a	
dual	polarising	nature.	
	
Even	 though	 IT	 has	 become	an	 integral	 part	 of	 today’s	 society,	 and	 is	 sometimes	 referred	 to	 as	 the	 third	
industrial	revolution,	computers	and	internet	have	(so	far)	had	limited	productivity	effect	(Brynjolfsson,	Rock	
&	Syverson,	2017).	Conversely,	 the	effects	of	 IT	on	 labour	markets	 is	widely	noted	and	noticeable	through	
increasing	automation	of	 information	processing	tasks	 in	 the	service	sector	 (Autor,	Dorn,	&	Hanson,	2015,	
Frey	&	Osborne,	2017).	 This	 is	 catalysed	by	 reducing	prices	 for	 computing	equipment	and	an	accelerating	
pace	of	technological	development	(De	Backer,	DeStefano,	Menon	&	Ran	Suh,	2018;	Frey	&	Osborne,	2017).	
Consequently,	expediting	the	urge	 for	adequate	socio-economic	policy	 (Frey	&	Osborne,	2017).	Moreover,	
the	conclusion	on	the	limited	productivity	growth	sparked	by	IT	may	be	premature	as	the	revolution	is	still	
ongoing	 and	 arguably	 the	 most	 significant	 technologies	 are	 still	 to	 come	 (IFR,	 2017).	 The	 future	 of	
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information	technology	is	mainly	embodied	by	various	(sub-)forms	of	Artificial	Intelligence	(Frey	&	Osborne,	
2017).		

9.1.1 Artificial Intelligence  
	

	 	 	

	 big	data	noun	[U]		•	
	

Extremely	 large	 data	 sets	 that	 may	 be	 analysed	 computationally	 to	 reveal	
patterns,	 trends,	 and	 associations,	 especially	 relating	 to	 human	 behaviour	 and	
interactions.	
	

machine	learning	noun	[U]		•			abbreviation	ML	
	

The	capacity	of	a	computer	to	learn	from	experience,	i.e.	to	modify	its	processing	
on	the	basis	of	newly	acquired	information.	
	

artificial	intelligence	noun	[U]		•		abbreviation	AI	
	

The	theory	and	development	of	computer	systems	able	to	perform	tasks	normally	
requiring	 human	 intelligence,	 such	 as	 visual	 perception,	 speech	 recognition,	
decision-making,	and	translation	between	languages.	(Oxford	University	Press)	

	
	 	

	 	
	 	 	

	
Unlike	 the	polarising	nature	of	 current	 IT,	 the	new	generation	of	 IT	 (consisting	of	big	data,	ML,	and	other	
forms	 of	 AI)	 will	 become	 cognitively	 competitive	 with,	 and	 operationally	 superior	 to,	 humans	 (DeCanio,	
2016;	 Frey	&	Osborne,	 2017).	 This	 suggests	 that	 IT	 technology	may	 have	 a	 negative	 impact	 on	 the	 high-
skilled	labour	force.	Especially	the	progress	in	AI	will	result	in	automation	technology	that	will	surpass	human	
capabilities	 beyond	 routine	 tasks	 (Frey	 &	 Osborne,	 2015;	 IFR,	 2017).	 Consequently,	 cognitive	 tasks	 will	
become	 a	 shared	 domain	 of	 technology	 and	 humans.	 The	 advantages	 of	 new	 IT	 are	 flexibility,	 scalability,	
information	processing	capacity,	rational	unbiased	processing,	and	continues	uninterrupted	operation	(Frey	
&	Osborne,	2017).	This	shifts	the	activities	demanding	labour	input	in	abstract	tasks	and	widens	the	scope	of	
IT	application	and	automation.	Therefore,	the	high	skilled	labour	augmenting	nature	of	IT	may	shift	in	part	to	
a	substituting	one	(Frey	&	Osborne,	2017).		
	
In	this	respect,	the	current	substitution	paradigms	may	fall	short	and	the	elasticity	of	substitution	between	AI	
and	humans	will	increase	(DeCanio,	2016).	AI	is	distinctly	different	from	earlier	forms	of	computerisation	in	
the	 capabilities	 it	 holds	 (Brynjolfsson,	 Rock	 &	 Syverson,	 2017)	 –	 as	 mostly	 discussed	 and	 analysed	 by	
posterior	analysis	sited	in	this	study.	The	problem	with	AI,	and	especially	the	currently	most	promising	sub-
form	 ML,	 is	 that	 the	 potential	 productivity	 advantages	 have	 not	 materialised	 yet	 (Brynjolfsson,	 Rock	 &	
Syverson,	2017).	Moreover,	it	is	uncertain	when	and	to	what	extent	productivity	growth,	augmentation,	and	
substitution	 will	 materialise.	 Recent	 breakthroughs	 in	 AI,	 for	 instance	 in	 medical	 diagnostic	 imaging	 in	
cooperation	 with	 Google	 DeepMind59,	 demonstrates	 how	 AI	 can	 outperform	 humans	 in	 abstract	 tasks	
(Brynjolfsson,	Rock	&	Syverson,	2017;	De	Fauw	et	al.,	2018).	However,	the	development	of	such	diagnostic	
AI-driven	 technology	 dates	 back	 at	 least	 three	 decades	 (see	 for	 instance	 the	work	 of	 Szolovits,	 Patil,	 and	
Schwartz	 (1988)	 from	1988).	Moreover,	 the	principle	of	AI	and	the	possibility	 it	would	be	able	to	replicate	
human-level	intelligence	in	all	forms	dates	back	to	the	1950s	(Müller	&	Bostrom,	2016).	AI	is	not	an	outlier	in	
this	 respect	 since	other	 emergent	 technologies	 took	 similar	periods	before	becoming	widely	 adopted	and	
measurable	 in	 productivity	 statistics	 (Brynjolfsson,	 Rock	 &	 Syverson,	 2017).	 However,	 there	 is	 significant	
contrast	 between	 the	 technological	 potential	 we	 observe	 and	 the	 effects	 we	 measure.	 Especially	 the	
perspective	of	the	labour	force	is	bleak	since	wages	have	stagnated	and	productivity	growth	has	halved	over	
the	 past	 2-3	 decades,	 ‘We	 thus	 appear	 to	 be	 facing	 a	 redux	 of	 the	 Solow	 (1987)	 Paradox:	 we	 see	
transformative	 new	 technologies	 everywhere	 but	 in	 the	 productivity	 statistics.’	 (Brynjolfsson,	 Rock	 &	
Syverson,	2017,	p.	1).		

																																																													
59	The	 same	 platform	 and	Google	 subordinate	 have	 also	 been	 able	 to	 outperform	 human	 cognitive	 capabilities	 in	 various	 games	
(Brynjolfsson,	Rock	&	Syverson,	2017).		
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Problematically,	the	theoretical	boost	in	productivity	associated	with	technologies	like	AI	 is	 likely	to	remain	
theoretical	 for	 a	 significant	period	 (Brynjolfsson,	Rock	&	Syverson,	2017).	According	 to	Brynjolfsson,	Rock,	
and	Syverson	(2017)	this	is	for	four	reasons.	Firstly,	the	technology	may	not	live	up	to	the	expectations	as	it	
never	 matures	 and	 materialises	 up	 to	 an	 operationally	 or	 financially	 feasible	 level.	 Secondly,	 the	 limited	
productivity	growth	during	the	past	wave	of	new	technology	(i.e.	IT)	may	be	due	to	mismeasurement	since	
the	 effects	 materialise	 in	 other	 forms	 than	 productivity	 growth,	 i.e.	 utility,	 or	 leak	 via	 profit	 offshoring.	
Thirdly,	the	effects	of	new	technologies	are	concentrated	with	a	few	beneficiaries	and	applications,	thereby	
limiting	dissipation,	entrance	of	competitors,	realisation	of	feasible	productivity	growth,	and	trickling	down	
of	the	advantages	to	the	labour	force.	This	problem	materialises	in	the	form	of	increasing	inequality	(income-
wise	and	profits	share-wise	between	large	and	small	firms)	and	market	and	wage	setting	power	of	the	few	
beneficiaries.	 Lastly,	 and	 probably	most	 relevant,	 is	 that	 it	 takes	 considerable	 time	 for	 the	 real	 impact	 of	
technology	to	materialise.	Therefore,	there	is	a	period	in	which	actors	have	a	notion	of	the	technology	and	
its	potential,	but	the	technology	needs	more	time	and	development	resources	until	it	is	ready	for	economy-
wide	implementation	and	for	the	productivity	growths	to	be	noticeable.	Currently,	the	economy	with	limited	
productivity	 growth	 yet	 significant	 technological	 progress	 (both	 tangible	 and	 intangible),	 is	 in	 such	a	 state	
(Brynjolfsson,	Rock	&	Syverson,	2017).	
	
Yet,	 it	 is	 uncertain	when	 and	 to	what	 extent	 AI	will	 accelerate	 productivity	 growth	 and	 substitute	 labour.	
Multiple	studies	attempt	to	bridge	this	gap	 in	knowledge	based	on	expert	elicitation.	Based	on	this	expert	
input,	operational	high-level	AI	 is	expected	to	be	realised	 in	2040-2050	with	a	0.5	probability,	and	 in	2075	
with	0.9	probability	(Frey	&	Osborne,	2015;	Müller	&	Bostrom,	2016).	From	that	moment,	it	is	estimated	that	
it	will	 take	 less	 than	 three	decades	 for	Super	 Intelligence	 to	be	operational	 -	although	the	development	 is	
likely	to	accelerate	due	to	AI	self-evolving	(Müller	&	Bostrom,	2016).	Another	study	concludes	that	within	45	
years	AI	driven	 technology	will	be	able	 to	outperform	humans	 in	all	 (cognitive	or	 intelligent)	 tasks	 (Grace,	
Salvatier,	Dafoe,	Zhang	&	Evans,	2018)	(Figure	10).	Hereafter,	this	pace	of	development	is	expected	to	result	
in	full	automation	of	labour	in	122	years	with	a	probability	of	0.5.	Although	optimists	(or	pessimists	from	the	
perspective	of	the	labour	force)	estimate	that	high-level	Machine	intelligence	(HLMI)	can	be	reached	as	early	
as	2029	according	to	Korinek	and	Stiglitz	(2017).	The	large	difference60	between	technological	automatibility	
(i.e.	when	 technology	 is	 capable	of	automating	human	activities	or	 tasks)	and	actual	 substitution	 is	 in	 line	
with	 the	 observed	 paradox	 by	 Brynjolfsson,	 Rock,	 and	 Syverson	 (Brynjolfsson,	 Rock	 &	 Syverson,	 2017)	 –	
although	the	expert	studies	do	not	provide	such	underlying	mechanisms.	
	
The	 problem	 with	 predicting	 the	 impact	 of	 technology	 is	 that	 productive	 trends	 are	 only	 significantly	
correlated	over	short	time	periods	–	not	even	with	adjacent	decades	(Brynjolfsson,	Rock	&	Syverson,	2017).	
Therefore,	 forecasting	 the	 future	 impact	 of	 technology	 by	 extrapolating	 the	 current	 trend	 would	 lead	 to	
unreliable	conclusions.	Moreover,	some	expert	consultation	studies	are	faced	with	systematic	shortcoming	
that	 can	 prove	 to	 be	 problematic	 when	 assessing	 the	 future	 of	 IT	 technology	 (Armstrong,	 Sotala,	 &	 Ó	
hÉigeartaigh,	2014).	Moreover,	the	four	constraints	identified	by	Brynjolfsson,	Rock,	and	Syverson	(2017)	can	
continue	to	 inhibit	realisation	of	the	technological	automatibility	estimates	(i.e.	actual	substitution	 is	 lower	
than	technological	automatiblity).	Yet,	when	exploring	the	 impact	of	technology	under	uncertainty,	 i.e.	the	
methodology	 employed	 in	 this	 study,	will	 account	 for	 this	 uncertainty	 space	 and	 use	 it	 to	 determine	 the	
robustness	 of	 policies	 (e.g.	 re-skilling	 and	 up-skilling	 stimulation)	 and	 the	 effects	 on	 critical	 factors	 (i.e.	
unemployment).	Especially	the	S-shaped	growth	variance	(Figure	10)	provides	opportunities	to	simulate	the	
model	across	a	broad	space	of	scenarios.	 In	practical	terms	this	 implies	that	the	estimates	and	the	relative	
substitution	growth	behaviour	are	used	as	input	in	the	model	to	determine	the	technological	substitutability	
of	 labour.	 Hereafter,	 the	model	 is	 simulated	 from	 the	 same	 initial	 point	 across	 the	 space	 of	 plausible	 AI	
developments.	

																																																													
60	HLMI	 is	 expected	 between	 20	 and	 107.5	 years	 from	 now	 with	 median	 of	 45	 years	 (confidence	 interval	 0.25	 to	 0.75),	 actual	
substitution	is	expected	between	55	and	212.5	years	from	now	with	median	of	122	years	(confidence	interval	0.25	to	0.75)	(Grace,	
Salvatier,	 Dafoe,	 Zhang	 &	 Evans,	 2018).	 Therefore,	 the	 difference	 between	 technological	 substitution	 and	 automatibility	 is	
approximately	2.71	to	2.75.	
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Figure	10	Aggregate	probability	of	‘high-level	machine	intelligence61’	arrival	by	future	years	(source:	Grace,	Salvatier,	Dafoe,	Zhang	&	
Evans,	2018,	p.1)	

9.2 Robotic technology (RT) 
	 	 	

	 robot	noun	[C]		•	
	

1	 A	 machine	 resembling	 a	 human	 being	 and	 able	 to	 replicate	 certain	 human	
movements	and	functions	automatically.		
1.1	A	machine	capable	of	carrying	out	a	complex	series	of	actions	automatically,	
especially	one	programmable	by	a	computer.	
1.2	A	person	who	behaves	in	a	mechanical	or	unemotional	manner.	
(Oxford	University	Press)	

	
	 	

	 	
	 	 	

	
The	general	utilisation	of	a	robot	is	to	automate	physical	human	activities,	either	as	an	actual	representation	
of	 a	 human	 or	 as	machinery.	 Studies	 exploring	 the	 impact	 of	 technology	 use	 different	 definitions	 for	 the	
technology	studied,	which	complicates	comparison	and	creates	ambiguity.	The	prior	definition	(above	in	the	
text	box)	 implies	that	the	robot	resembles	a	human	as	a	productive	source,	yet,	a	robot	 is	associated	with	
unemotional	behaviour.	Therefore,	a	robot	is	only	a	simplified	system	capable	of	performing	physical	human	
activities	autonomously.	It	is	not	resembling	an	actual	human	being	since	it	is	insensitive	to	emotions;	lacks	
cognition,	intelligence,	and	reasoning;	and	does	not	have	social	capabilities	and	conscience.	This	distinction	
is	 relevant	 considering	 other	 technologies	 that	 can	 add	 such	 traits	 and	 expand	 the	 capabilities	 of	 robots	
beyond	 physical	 automation	 of	 routine	 tasks.	 The	 latter	 definition,	 as	 a	 machine,	 is	 consistent	 with	 the	
standardised	definition	of	robots	and	robotic	devices	(ISO,	2012).	Within	this	definition,	there	is	a	distinction	
between	 applications,	 i.e.	 industrial	 and	 service	 robots,	 and	 types	 of	 robotic	 technology62	(IFR,	 2017;	 ISO,	

																																																													
61	‘	“High-level	machine	intelligence”	(HLMI)	is	achieved	when	unaided	machines	can	accomplish	every	task	better	and	more	cheaply	
than	human	workers.	[…]	The	LOESS	curve	is	a	non-parametric	regression	on	all	data	points.’	(Grace,	Salvatier,	Dafoe,	Zhang	&	Evans,	
2018	p.2)	
62	The	common	definition	between	the	applications	is	that	of	a	multipurpose	mechanical	manipulator	that	has	two	or	more	axes	of	
freedom,	 is	 reprogrammable,	 and	 performs	 tasks	 with	 a	 degree	 of	 autonomy	 based	 on	 a	 control	 system	 that	 senses	 and/or	
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2012).	 For	 completeness	 and	 comprehensibility,	 the	 terms	 robotic	 technology	 (RT)	 is	 used	 from	 here	 on	
forward	 encompassing	 all	 types	 of	 robotic	 devices	 and	 robots	 as	 defined	 in	 ISO	 documentation,	 i.e.	 all	
actuated	mechanisms	that	automate	physical	human	labour	activities.		
	
Following	this	definition,	RT	substitutes	labour	input	since	such	systems	do	not	require	human	intervention	
except	 for	 programming	 and	 maintenance.	 As	 a	 result,	 industrial	 robots	 have	 substituted	 labour	 across	
various	industries	(Graetz	&	Michaels,	2017).	However,	these	substituted	labour	hours	are,	thus	far,	offset	by	
spill-over	 effects	 elsewhere	 in	 the	 industry	 and	 economy	 due	 to	 productivity	 growth	 (Autor	 &	 Salomons,	
2017;	Graetz	&	Michaels,	2017;	Gregory,	Salomons	&	Zierahn,	2016).	Consequently,	the	implementation	of	
RT	has	had	no	significant	 implication	 for	 the	overall	 labour	share	 (Graetz	&	Michaels,	2017).	Nevertheless,	
mainly	 low	 skilled	 occupations	 and	 task	 are	 substituted,	 shifting	 the	 labour	 demand	 to	 middle	 and	 high	
skilled	labour	(De	Backer,	DeStefano,	Menon	&	Ran	Suh,	2018;	Michaels	&	Graetz,	2015).	Hence,	the	effects	
of	the	spill-over	effects	accumulate	in	other	socio-economic	groups.	In	contrast,	RT	may	augment	labour	by	
relieving	humans	from	physical	work	(i.e.	 the	human	controls	 the	physical	 labour	that	 is	performed	by	the	
device).	 The	 problem	 with	 these	 findings	 is	 that	 they	 stem	 from	 posterior	 analysis	 and	 may	 not	 be	
representative	of	future	developments.	
	
The	future	impact	of	robotics	is	tied	to	three	developments.	The	first	development	concerns	the	integration,	
or	confluence,	of	technologies	into	more	flexible	and	adaptive	robots,	termed	advanced	robotics	and	mobile	
robotics	 (as	used	by	Frey	&	Osborne	(2017)).	The	majority	of	current	generation	RT	 is	pre-programmed	to	
perform	a	(set	of)	task(s)	with	limited	sensory	feedback	or	control	(De	Backer,	DeStefano,	Menon	&	Ran	Suh,	
2018).	 RT	 equipped	 with	 sensors	 and	 computational	 capabilities	 due	 to	 machine	 learning,	 or	 artificial	
intelligence	will	be	able	to	self-correct	and	perform	a	wider	range	of	tasks	(De	Backer,	DeStefano,	Menon	&	
Ran	Suh,	2018;	Sirkin,	Zinser	&	Rose,	2015).	As	a	result,	RT	will	gain	sensorimotor	capabilities	and	become	
physically	 flexible,	 reactive,	 and	 (situationally)	 adaptive.	Consequently,	 automation	will	move	 from	 routine	
tasks	to	non-routine	tasks	(De	Backer,	DeStefano,	Menon	&	Ran	Suh,	2018;	Frey	&	Osborne,	2017).	Hence,	
consistent	 with	 the	 task	 definitions	 in	 TBTC	 and	 RRTC,	 RT	 will	 start	 to	 automate	manual	 tasks,	 e.g.	 non-
routine	 maintenance	 tasks	 (Frey	 &	 Osborne,	 2017),	 whereas	 abstract	 tasks	 are	 not	 impacted	 since	 the	
technology	only	automates	physical	processes.	In	the	contrary,	RT	is	highly	likely	to	complement	high	skilled	
labour	and	wages	(De	Backer,	DeStefano,	Menon	&	Ran	Suh,	2018;	Sirkin,	Zinser	&	Rose,	2015).	The	result	of	
the	confluence	of	technologies	is	that	current	technological	bottlenecks	are	resolved,	creating	a	vastly	wider	
array	of	tasks	where	labour	can	be	substituted.		
	
The	 second	 development	 is	 related	 to	 product	 and	 production	 quality	 and	 innovation.	 The	 flexible,	
adaptable,	sensory,	and	performance	capabilities	of	advanced	RT	enable	day-round	production	at	 reduced	
production	times	and	of	higher	quality	(control),	consistency,	and	reliability	(De	Backer,	DeStefano,	Menon	&	
Ran	 Suh,	 2018;	 Frey	 &	 Osborne,	 2017).	 In	 addition,	 products	 themselves	 continuously	 change	 due	 to	
innovation	 and	 emergence.	 Furthermore,	 the	 development	 cycle	 is	 speeding	 up	 whereby	 products	 are	
becoming	 more	 customised,	 have	 shorter	 production	 runs,	 and	 need	 to	 be	 available	 faster	 (De	 Backer,	
DeStefano,	 Menon	 &	 Ran	 Suh,	 2018).	 The	 confluence	 of	 technology	 will	 aid	 product	 and	 production	
innovation	 by	 facilitating	 such	 requirements.	 Yet,	 for	many	 products	 and	 processes	 this	 technology	 is	 too	
expensive	 in	comparison	 to	 labour	 intensive	production.	However,	 reducing	costs	will	 also	 trickle	down	 to	
advanced	RT,	expanding	the	activities	and	tasks	that	can	economically	and	competitively	be	automated	(De	
Backer,	DeStefano,	Menon	&	Ran	Suh,	2018).	
	
Thirdly,	and	related	to	the	prior	development,	the	price	of	RT	will	continue	to	reduce	while	the	productivity	
increases	 (De	 Backer,	 DeStefano,	Menon	&	 Ran	 Suh,	 2018;	 Graetz	 &	Michaels,	 2017;	Michaels	 &	 Graetz,	
2015;	Sirkin,	Zinser	&	Rose,	2015).	This	expands	the	adoption	of	RT	to	SMEs	(IFR,	2017;	Sirkin,	Zinser	&	Rose,	
																																																																																																																																																																																																										
communicates	with	its	environment	(equipment	or	users).	Robotic	devices	comply	to	the	same	definition	but	lack	the	autonomy	or	
degrees	 of	 freedom	 (Organisation	 Internationale	 de	Normalisation	 (ISO),	 2012).	 Commonly,	 the	 ISO	 8373	 definition	 for	 industrial	
robots	is	used:	“An	automatically	controlled,	reprogrammable,	multipurpose	manipulator	programmable	in	three	or	more	axes,	which	
may	 be	 either	 fixed	 in	 place	 or	 mobile	 for	 use	 in	 industrial	 automation	 applications.”	 (Graetz	 &	 Michaels,	 2017,	 009IFR).	 See	
International	 Federation	 of	 Robotics	 (2017)	 for	 an	 overview	 of	 definitions	 or	 https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-
2:v1:en	for	the	detailed	glossary	and	terminology.	
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2015)	 and	 more	 complex	 tasks	 (Frey	 &	 Osborne,	 2017),	 across	 a	 larger	 set	 of	 industries	 than	 currently	
observed	 (De	 Backer,	 DeStefano,	 Menon	 &	 Ran	 Suh,	 2018;	 Sirkin,	 Zinser	 &	 Rose,	 2015).	 In	 this	 respect,	
technologically	feasibility	will	(only)	materialise	when	automation	becomes	financially	feasible.		
	
The	 Boston	 Consulting	 Group	 expects	 that	 the	 real	 impact	 of	 robots	 on	 labour	 is	 only	 about	 to	 unfold,	
resulting	in	accelerating	robot	adoption	in	the	next	decade(s)	(Sirkin,	Zinser	&	Rose,	2015).	The	share	of	tasks	
performed	by	RT	will	increase	from	currently	approximately	10%	to	25%	across	all	manufacturing	industries	
by	2025	and	up	to	40%	in	some	industries	(Sirkin,	Zinser	&	Rose,	2015).	In	developing	countries,	RT	provides	
an	opportunity	to	leapfrog	in	technology,	productivity,	and	product	quality,	resulting	in	an	overall	automated	
task	share	that	could	reach	50%	by	2025	(Sirkin,	Zinser	&	Rose,	2015).	However,	industries	that	have	a	longer	
and	 richer	 history	 of	 RT	 implementation	 demonstrate	 diminishing	marginal	 returns	 and	 productivity	 gains	
when	 technological	 implementation	 matures	 (Graetz	 &	 Michaels,	 2017;	 Michaels	 &	 Graetz,	 2015).	
Moreover,	 the	market	saturation	point	 for	technology	 is	around	60%,	beyond	which	substitution	 is	 limited	
(Sirkin,	 Zinser	 &	 Rose,	 2015).	 Therefore,	 the	 continues	 adoption	 of	 robotics	 and	 associated	 productivity	
growth	may	slow	down	after	the	forthcoming	robotic	transformation	up	to	2025	–	expected	by	Sirkin,	Zinser,	
and	Rose	of	 the	Boston	Consulting	Group	 (2015).	 This	 results	 in	 a	 scenario	 of	 linear	 costs	 reductions	 and	
productivity	growth	for	the	next	decade,	where	after	both	slow	down	to	an	equilibrium	state.	

9.3 When IT and RT meet 

The	predictions	 by	 the	Boston	Consulting	Group	 concern	 advanced	RT,	 not	 the	whole	 array	 of	 RT,	 IT	 and	
confluence	systems.	The	most	influential	publication	concerning	the	future	impact	of	technology	is	the	work	
of	 Frey	 and	 Osborne	 (2017).	 However,	 there	 is	 limited	 additional	 literature	 concerning	 plausible	 future	
developments	 and,	 concurrently,	 the	 impact	 on	 labour	 of	 substituting	 production	 technologies	 (Frey	 &	
Osborne,	2017).	
	
Frey	and	Osborne	(2017)	estimate	that	47%	of	occupations	are	technically	(including	both	IT	and	RT63)	highly	
probable	 (>0.7)	 to	be	automated	 in	 the	next	decades,	although	 the	exact	progress	over	 time	 is	uncertain.	
Another	19%	of	jobs	have	a	medium	probability	(0.3-0.7)	to	be	“computerised”	(Frey	&	Osborne,	2017).	This	
trend	will	start	with	routine	task	 intense	jobs	and	progress	to	manual	task	 intense	service	occupations,	 i.e.	
‘The	 computerisation	 of	 production	 occupations	 simply	 suggests	 a	 continuation	 of	 a	 trend	 that	 has	 been	
observed	 over	 the	 past	 decades’	 (p.265).	 Hereafter,	 persistent	 technological	 bottlenecks	 will	 slow	 down	
further	substitution,	first	in	perception	and	manipulation	complex	tasks,	and	continuously	in	tasks	involving	
creative	and	social	 intelligence.	 In	 this	 respect,	 tasks	 involving	creativity,	human	heuristics,	emotion,	social	
perceptiveness,	 social	 intelligence,	 and	 social	 interaction	 are	 the	 least	 probable	 to	 be	 substituted	 (Frey	&	
Osborne,	 2017).	 This	 brings	 us	 back	 to	 the	 initial	 definition	 of	 a	 robot.	 The	 inherent	 lack	 of	 social	 and	
emotional	capabilities	will	be	the	last,	if	not	lasting,	hurdle	for	robotics	to	fully	substitute	humans.	Following	
Frey	and	Osborne’s	(2017)	results,	this	leads	to	the	conclusion	that	mainly	abstract	tasks	and	some	manual	
tasks	will	remain	to	be	challenges	for	automation.	In	this	respect,	the	future	trend	is	expected	to	break	with	
the	 past	 polarizing	 labour	market	 trend,	 catalyse	 the	 current	 high-skill	 favouring	 trend,	 and	 highlight	 the	
importance	of	 re-skilling	and	up-skilling	towards	a	higher	skilled	creative	and	social	 intelligent	 labour	 force	
(Autor,	2015;	Autor	&	Salomons,	2017;	Frey	&	Osborne,	2017;	Nedelkoska	&	Quintini,	2018).		
	
Frey	 and	Osborne’s	 findings	 sparked	a	wide	discussion	on	 the	 future	 impact	of	 technology	 and	 should	be	
considered	as	the	upper	bound	of	substitution	for	two	reasons	(Arntz,	Gregory,	Zierahn,	2016).	That	is,	only	
technological	feasibility	is	considered	and	an	occupation	based	approach	is	likely	to	result	in	overestimation	
of	 substitutability	 since	 it	 assumes	 that	 technology	 automates	 all	 activities	 within	 an	 occupation	 (Arntz,	
Gregory,	Zierahn,	2016).	It	should	be	noted	that	Frey	and	Osborne	(Frey	&	Osborne,	2017)	adopt	an	adapted	
task-based	 model	 based	 on	 the	 TBTC	 framework.	 Yet,	 they	 aggregate	 and	 extrapolate	 a	 sample	 of	 task	
automatibility	across	the	economy-wide	composition	of	occupations	in	the	US,	resulting	in	a	deviation	from	

																																																													
63	It	 is	 important	 to	 note	 that	 Frey	 and	 Osborne	 (Frey	 &	 Osborne,	 2017)	 ‘make	 no	 attempt	 to	 forecast	 future	 changes	 in	 the	
occupational	composition	of	the	labour	market’	(p.	265).		
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the	 TBTC-framework	 in	 their	 results	 (which	 are	 occupation	 based).	 Other	 studies	 applying	 the	 same	
methodology	 reach	 country	 specific	 estimates	 of	 35%	 and	 59%	 and	 an	 estimated	 range	 of	 45-60%	 for	
European	countries	(see	Arntz,	Gregory,	Zierahn	(2016)	for	the	respective	literature).	Brynjolfsson,	Rock,	and	
Syverson	(2017)	cite	studies	that	demonstrate	similar	substitution	estimates,	namely	that	even	with	current	
technology	45%	of	activities	performed	in	US	can	be	automated.	Deloitte	(2016)	performed	a	similar	study	
for	 the	Netherlands	and	concluded	that	42,3%	of	middle	skilled	and	between	19,3%	(bachelor)	and	10,4%	
(master)	 of	 high	 skilled	 occupations	 is	 highly	 probable	 to	 be	 automated	 in	 upcoming	 decades.	 Consistent	
with	the	findings	of	Frey	and	Osborne	(Frey	&	Osborne,	2015,	2017),	mainly	routine	and	shortly	thereafter	
manual	tasks	intense	occupations	will	be	automated.	
	
Arntz,	Gregory,	and	Zierahn	(2016)	find	that	6%	to	12%	of	jobs	are	substitutable	(probability	>0.7)	based	on	a	
task-based	approach	rather	than	an	occupation	based	approach.	Another	difference	between	the	studies	is	
the	dataset	that	is	used,	namely,	O*NET	data	(Frey	&	Osborne,	2017)	and	Survey	of	Adult	Skills	(PIAAC)	data	
(Arntz,	 Gregory,	 Zierahn,	 2016).	 They	 argue	 that,	 given	 the	 current	 state	 of	 knowledge	 and	 substitution	
frameworks,	a	task-based	approach	 is	more	reliable	and	will	provide	more	realistic	results	 (Arntz,	Gregory,	
Zierahn,	 2016;	OECD,	 2017c).	 This	 is	 especially	 the	 result	 of	 the	 fact	 that	 not	 occupations	 as	 a	whole	but	
activities	within	the	occupations,	i.e.	tasks,	are	substituted.	Moreover,	the	task	based	approach	accounts	for	
reallocation	of	labour	within	occupations	(i.e.	from	automated	tasks	to	remaining	tasks),	which	leads	to	TFP	
productivity	 growth	 (Arntz,	 Gregory,	 Zierahn,	 2016;	Graetz	&	Michaels,	 2017).	 This	 results	 in	 a	 difference	
between	task	automation	and	actual	substitution	of	occupations64.	Frey	and	Osborne	(2017)	do	incorporate	
this	development	in	their	model	but	do	not	account	for	it	 in	their	results65.	The	automatibility	estimates	of	
Arntz,	Gregory,	and	Zierahn	(2016)	per	country	are	similar	to	Frey	and	Osborne’s	(2015,	2017),	e.g.	for	the	
Netherlands	 39-40%,	 but	 the	 substitution	 estimates	 are	 significantly	 lower,	 e.g.	 10%	 for	 the	Netherlands.	
Concequently,	Arntz,	Gregory,	and	Zierahn	(2016)	find	similar	percentages	as	Frey	and	Osborne	at	the	task	
level,	but	because	of	the	methodology,	occupation	substitution	is	significantly	lower.		
	
Nedelkoska	 and	Quintini	(2018)	 expand	on	 the	work	of	 Frey	 and	Osborne	 (2017)	 and	Arntz,	Gregory,	 and	
Zierahn	(2016)	with	a	wider	set	of	analyses	based	on	the	Survey	of	Adult	Skills	(PIAAC).	The	results	suggest	
that	14%	of	occupation	have	a	high	risk	to	be	automated	(>0.7	probability)	in	the	next	decades	and	another	
32%	are	likely	to	automated	(0.5-0.7	probability)	in	the	long	run	(Nedelkoska	&	Quintini,	2018).	In	terms	of	
wages,	 a	 1%	 increase	 in	 automatibility	 is	 consistent	with	 a	 0,43%	 lower	wage.	 However,	 Nedelkoska	 and	
Quintini	 (2018)	use	 the	same	approach	as	Frey	and	Osborne	 (2017)	and	do	note	 that	 the	 results	 consider	
exogenous	and	feedback	mechanisms	to	a	limited	degree.	Hence,	the	limitation	identified	by	Arntz,	Gregory,	
and	 Zierahn	 (2016)	 apply.	Nedelkoska	 and	Quintini	(2018)	 emphasise	 that	 their	 findings	 demonstrate	 that	
high	skilled	occupations	may	be	relieved	all-together	and	that	substitution	will	mostly	hit	young	adults	and	
the	labour	force	that	receives	or	participates	in	little	training.	This	especially	deteriorates	the	labour	market	
position	 of	 the	 already	 vulnerable	 low	 skilled	 labour	 force.	 Consistently,	 all	 three	 studies	 find	 that	
automations	will	substitute	low	and	middle	skilled	labour	and	favour	high	skilled	groups.	The	studies	agree	
on	 the	 future	 trend	 of	 substitution,	 albeit	 with	 different	 impact	 depending	 on	 endogeneity	 of	 associated	
factors.	
	
One	striking	conclusion	that	is	made	by,	or	can	be	concluded	from,	Frey	and	Osborne	(2017),	Arntz,	Gregory,	
and	Zierahn	(2016),	and	Nedelkoska	and	Quintini	(2018)	 is	the	shift	 in	automation	manifestation.	The	prior	
polarising	 trend	 of	 routine-task	 automation	 will	 continue	 at	 the	 current	 pace,	 but	 the	 majority	 of	
automatibility	 can	 be	 found	 in	 low-skilled	 and	 manual	 tasks.	 Frey	 and	 Osborne	 (2017)	 emphasise	 that	
technological	bottlenecks	will	 inhibit	manual	task	automation	at	first	but	will	expand	quickly	thereafter	in	a	
second	wave	of	automation	until	new	bottlenecks	prevent	further	automation	(which	are	likely	to	continue	
to	exist).	Arntz,	Gregory,	and	Zierahn	(2016)	emphasise	the	decrease	of	automatibility	with	ISCED	skill	level,	
whereby	mainly	 low	skilled	employment	-thus	employed	in	manual	tasks-	will	become	automatable.	Lastly,	
Nedelkoska	and	Quintini	(2018)	state,	‘There	is	no	indication	that	the	risk	of	automation	brought	about	by	AI	

																																																													
64	Based	on	Arntz,	Gregory,	and	Zierahn	(2016)	calculations	of	the	‘Automatibility	by	OECD	Countries’…’ based	on	the	Survey	of	Adult	
Skills	(PIAAC)’,	see	table	4	on	p.	33	in	respective	literature.	
65	In	comparison,	Arntz,	Gregory,	and	Zierahn	(2016)	provide	a	literature	review	of	similar	substitution	estimates	(13%	and	15%).	
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and	ML	is	particularly	high	for	the	medium	skilled	jobs,	as	observed	in	the	polarisation	literature	based	on	the	
routine	content	of	jobs.’	(p.	53).	In	this	respect,	the	current	polarising	trend	and	theories	appear	to	fall	short	
for	future	technological	change	including	rigid	and	isolated	labour	markets	which	are	inconsistent	with	such	
findings.	
	
The	limitations	of	the	expert-based	and	extrapolating	methodology	are	significant,	since	spill-over	effects	are	
ignored;	price	development,	economic,	legal,	and	societal	hurdles	are	excluded;	and	the	adaptability	of	the	
labour	 force	 via	 educational	 and	 labour	 supply	 is	 not	 considered	 (Arntz,	 Gregory,	 Zierahn,	 2016)66.	 Other	
scholars	stress	that	these	factors	will	dictate	the	pace	of	automation	(De	Backer,	DeStefano,	Menon	&	Ran	
Suh,	2018).	Moreover,	even	though	technology	may	be	developed	at	an	accelerating	pace,	the	adoption	of	
technology	and	the	realisation	of	productivity	growth	significantly	depends	on,	and	may	be	slowed	down	by,	
firms’	ability	to	reorganise	and	change	culture	(Brynjolfsson,	Rock	&	Syverson,	2017;	OECD,	2015a).	At	the	
industry	and	sector	 level,	 this	effect	 is	amplified	due	 to	changes	 in	 cross-firm	supply	chains	 that	demands	
reorganisation	 of	 the	 sector	 as	 a	 whole	 (Brynjolfsson,	 Rock	 &	 Syverson,	 2017)	 -	 and	 similarly	 input	 and	
output	from	other	sectors.	
	
A	 key	 variable	 in	 the	 variation	 of	 substitution	 estimates	 between	 countries	 is	 the	 organisation	 of	 tasks,	
occupations,	and	sectors	 in	an	economy	(Arntz,	Gregory,	Zierahn,	2016;	Nedelkoska	&	Quintini,	2018).	For	
example,	 robot	 density,	 tends	 to	 be	 concentrated	 in	 specific	 industrial	 sectors	 in	 economies67	and	 not	 all	
industries	(can)	adopt	robots	(Brynjolfsson,	Rock	&	Syverson,	2017;	Sirkin,	Zinser	&	Rose,	2015).	Within	the	
sectors,	 cost	 effectiveness	 and	 technological	 feasibility	 of	 process	 automation	 are	 the	 main	 inhibiters	 or	
catalysers	(Sirkin,	Zinser	&	Rose,	2015).		This	results	in	significant	variation	in	automation	estimates	between	
countries	 (6-12%	 in	 case	 of	 Arntz,	 Gregory,	 and	 Zierahn	 (2016)	 and	 6-33%	 in	 case	 of	 Nedelkoska	 and	
Quintini	(2018))68.	Modelling	an	economy	according	to	sectors	would	severely	complicate	the	model	since	it	
would	require	a	separate	production	model	for	each	sector;	 incorporate	all	 inter-sectoral	 input	and	output	
flows;	account	for	future	reorganisation	and	dynamics	of	the	sectoral	structure;	and	include	sector-specific	
labour	markets,	 educated	 labour	 forces	 and	 labour	 forces	 exchangeability.	 In	 subsequent	 future	 research,	
this	would	be	possible	by	subscripting	the	model	according	to	the	World	Input-Output	Database	(WIOD)	(see	
Timmer,	Dietzenbacher,	Los,	Stehrer	&	Vries	(2015)	and	as	done	with	posterior	statistical	analysis	by	Graetz	
&	 Michaels	 (2017)	 and	 Autor	 &	 Salomons	 (2017)).	 However,	 the	 task-base	 structure	 incorporates	 the	
economic	production	composition	at	a	more	aggregate	scale.	Industries	with	high	shares	of	employment	in	
manufacturing	sectors	will	correspond	with	high	proportions	of	routine	and	manual	task	labour	demand.	In	
this	respect,	the	model	accounts	for	sectoral	composition	in	an	aggregated	manner.	

9.4 Technology model synthesis and relation to other models 

The	 impact	 of	 IT	 on	 the	 labour	 market	 has	 been	 noticeable	 but	 the	 bulk	 of	 substituted	 labour	 and	
productivity	growth	is	only	about	to	materialise.	RT	has	a	more	profound	effect	on	labour	demand,	especially	
in	manufacturing	 sector	 intense	 economies.	 Yet,	 the	 decisive	moment	 is	 arriving	when	 IT	 and	 RT	 system	
confluence	to	become	able	to	reproduce	and	outperform	humans	at	lower	costs.	This	may	sound	somewhat	
science	fictional.	However,	the	automatibility	is	estimated	to	range	from	35%	to	60%	with	a	median	value	of	
around	45%	and	probability	 of	 70%-100%.	 The	estimated	 time	 frames	within	which	 this	 development	will	
take	 place	 range	 from	 approximately	 two	 decades	 to	 45	 years,	 within	 which	 first	 routine	 tasks	 are	
automated	and	manual	 tasks	 follow	 in	a	 later	 stage.	To	put	 these	 figures	 into	 context,	 the	 recent	 level	of	
substitution	in	the	European	union	has	been	between	4.5-5.1%	per	decade69	(Gregory,	Salomons	&	Zierahn,	
2016).	 As	 discussed,	 there	 are	 significantly	 more	 factors	 and	 mechanisms	 that	 influence	 the	 actual	
manifestation	 of	 labour	 substitution	 including	 globalising,	 financial,	 societal,	 legal,	 organisational,	 and	

																																																													
66	See	pages	21	to	24	of	Arntz,	Gregory,	and	Zierahn	(2016)	for	a	detailed	evaluation	of	the	shortcomings.	
67	E.g.	‘Transport	equipment,	computers	and	electronics	and	chemical	and	mineral	production	and	food	and	beverage	production.’	(De	
Backer,	DeStefano,	Menon	&	Ran	Suh,	2018,	p.	14)	
68	Based	on	Arntz,	Gregory,	and	Zierahn	(2016)	calculations	of	the	‘Share	of	Workers	with	High	Automatibility	by	OECD	Countries’…’ 
based	on	the	Survey	of	Adult	Skills	(PIAAC)’,	see	figure	3	on	p.	16	in	respective	literature.	
69	Based	on	8.9	to	10.1	million	substituted	jobs	from	180	million	jobs	over	11	years	(Gregory,	Salomons	&	Zierahn,	2016).		
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sectoral	systems.	This	highlights	that	the	current	model	is	nested	in	a	significantly	larger	and	more	complex	
system.	 In	 this	 respect,	 the	 effects	 studied	 in	 this	 research	 focus	 on	 the	most	 critical	 factors	 identified	 in	
literature:	 labour	 adaptability	 (via	 labour	 supply	 reallocation	 and	 via	 re-skilling	 and	up-skilling),	 spill-overs,	
and	a	task	based	approach).	
	
The	 importance	 of	 the	 latter	 is	 highlighted	 by	 the	 tasks	 where	 most	 of	 the	 substitution	 will	 accrue.	 IT	
technology	will	 continue	 to	 automate	manual	 tasks	whereas	RT	will	 continue	 to	 substitute	 routine	 labour	
input	 and	 eventually	 move	 towards	 manual	 tasks.	 Therefore,	 the	 current	 high-skill	 favouring	 trend	 will	
continue	in	the	near	future	(since	automation	of	abstract	tasks	is	unlikely	(Nedelkoska	&	Quintini,	2018)	or	is	
only	 possible	 in	 the	 long	 run,	 e.g.	 90-120	 years	 (Grace,	 Salvatier,	 Dafoe,	 Zhang	 &	 Evans,	 2018;	Müller	 &	
Bostrom,	 2016)).	 Moreover,	 European	 economies	 are	 increasingly	 becoming	 knowledge-based	 in	 general	
and	 thus	 high-skill	 favouring	 (European	 Commission,	 2015).	 In	 this	 sense,	 and	 as	 emphasised	 before,	 the	
adaptability	 of	 the	 labour	 force	 is	 essential	 to	 mitigate	 mass	 unemployment	 and	 realise	 the	 potential	
productivity	growth.	
	
The	substitution	of	 labour	 is	generated	 (to	 represent	 the	bottlenecks	defined	by	Frey	and	Osborne	 (2017)	
and	 Nedelkoska	 and	Quintini	 (2018))	 using	 a	 delay	 structure	 and	 the	 parametric	 uncertainty	 ranges.	 This	
implies	that	the	range	of	growth	profiles	is	combined	with	the	range	of	substitution	estimates;	the	range	of	
time	frames	wherein	these	estimates	are	reached;	and	the	range	of	probabilities	across	the	tasks	(Table	5).	
This	 will	 generate	 an	 ensemble	 of	 futures	 of	 task	 specific	 technological	 development,	 i.e.	 the	 range	 of	
outcomes	given	 the	 same	 initial	 conditions	 and	 sampling	 from	 the	 ranges	of	uncertain	parameters.	 These	
simulations	are	combined	with	the	uncertainty	ranges	of	parameters	in	other	sub-models	(e.g.	re-skilling	and	
up-skilling	rates	across	skill	levels	and	age	cohorts).		

9.4.1 Limitations 
Note,	 that	 there	 is	 difference	 between	 technological	 automatibility	 and	 materialisation	 thereof	 into	
technological	substitution.	Unfortunately,	terminology	(e.g.	computerisation,	automation,	substitution)	and	
implications	are	ambiguously	and	interchangeably	used	in	the	literature.	The	studies	exploring	the	impact	of	
AI	clearly	demarcate	the	difference	between	HLMI	and	actual	automation	(thus	implying	substitution).	Frey	
&	 Osborne	 (2015,	 2017),	 Nedelkoska	 and	 Quintini	(2018),	 and	 similar	 studies	 describe	 whether	 an	
occupation	can	be	automated	and	what	this	 implies	 for	the	 labour	market.	Yet,	 the	conclusions	 from	such	
studies	are	often	treated	as	technological	substitution	and	unemployment	estimates.	Given	the	definitions	
of	the	literature,	the	estimates	are	treated	as	technological	automatibility	estimates.	The	implementation	of	
advanced	 technology	 (such	 as	 operational	 AI)	 in	 production	 processes	 and	 the	 materialisation	 of	 their	
productivity	and	substitution	effects	will	take	considerably	longer	(De	Backer,	DeStefano,	Menon	&	Ran	Suh,	
2018;	 Grace,	 Salvatier,	 Dafoe,	 Zhang	&	 Evans,	 2018;	Müller	 &	 Bostrom,	 2016)	 under	 influence	 of	 a	 wide	
variety	of	 factors	defined,	 for	 instance,	by	Arntz,	Gregory,	 and	Zierahn	 (2016)	and	Brynjolfsson,	Rock,	and	
Syverson	(2017).	Unfortunately,	modelling	these	factors	extends	beyond	the	scope	of	this	research	as	they,	
similarly	 to	the	complex	models	of	STEM	education,	would	require	separate	sub-models	–	not	unlikely	the	
size	 of	 the	model	 developed	 in	 this	 research.	 In	 this	 sense,	 the	 factors	 are	 treated	 as	 exogenous	 and	 are	
included	 as	 a	 black	 box	 that	 influences	 the	 realisation	 of	 technological	 automatibility	 into	 technological	
substitution.	This	black	box	is	defined	as	a	delay	function	with	an	uncertainty	range	of	delay	time	(e.g.	in	case	
of	AI	it	will	take	2.71	times	longer	than	HLMI70	(Grace,	Salvatier,	Dafoe,	Zhang	&	Evans,	2018)).		
	
	
	

																																																													
70	HLMI	 is	 expected	 between	 20	 and	 107.5	 years	 from	 now	 with	 median	 of	 45	 years	 (confidence	 interval	 0.25	 to	 0.75),	 actual	
substitution	is	expected	between	55	and	212.5	years	from	now	with	median	of	122	years	(confidence	interval	0.25	to	0.75)	(Grace,	
Salvatier,	 Dafoe,	 Zhang	 &	 Evans,	 2018).	 Therefore,	 the	 difference	 between	 technological	 substitution	 and	 automatibility	 is	
approximately	2.71	to	2.75	according	to	this	study.	
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Table	2	Estimates	of	technological	automatibility	

Source	 Technology	 Task	

Automation	

estimate
71
	 Time	frame	 Probability	range	

Substitution	

difference	

	 [!]	 ["]	 [Ξ$]	 [∆&']	 [($]	 	

	 	 	 	 	 	 	
Gregory,	Salomons,	and	Zierahn	(2016)	 Technology	 Overall	 4.9-5.6%	 11	Years	(1999-2000)	 1.0	 -	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Frey	and	Osborne	(2017)	

(I)	First	wave	of	Automation	Technology	

(II)	Second	wave	of	Automation	Technology	

Advanced	RT	

and	IT
72
	

ℳ	 (I)	47%	&	(II)	19%	 (I)	±	20	&	(II)	±	30	Years	 (I)	0.7-1.0	&	(II)	0.3-0.7	 Not	specified	

	ℛ,	ℛℛ,	ℛℳ 		 (I)	47%	&	(II)	19%	 (I)	±	20	&	(II)	±	30	Years	 (I)	0.7-1.0	&	(II)	0.3-0.7	

+,	ℛ+ 		 33%	 30+	Years	 0-0.3	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Arntz,	Gregory,	and	Zierahn	(2016)

	73
	 Advanced	RT	

and	IT	

ℳ	 21-77%	 ±	20	Years	 0.7-1.0	 0.17-0.34	

times	

Automation	

ℛ,	ℛℛ,	ℛℳ 		 4-17%	 ±	20	Years	 0.7-1.0	

+,	ℛ+ 	 0-1.5%	 ±	20	Years	 0.7-1.0	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Nedelkoska	and	Quintini	(2018)

74
	

(I)	High	Probability	

(II)	Medium	Probability	

Advanced	RT	

and	IT	

ℳ	 (I)	14%	&	(II)	32%	 (I)	±	20	&	(II)	±	30	Years	 (I)	0.7-1.0	&	(II)	0.5-0.7	 Not	specified	

ℛ,	ℛℛ,	ℛℳ 		 (I)	14%	&	(II)	32%	 (I)	±	20	&	(II)	±	30	Years	 (I)	0.59-0.94	&	(II)	0.39-0.64	

+,	ℛ+ 	 0%	 ±	20	Years	 (I)	0.47-0.85	&	(II)	0.27-0.55	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Grace,	Salvatier,	Dafoe,	Zhang,	and	Evans	

(2018)	

	

AI	 ℳ	 100%	 ±	45-90	Years	 0.5-0.9	 2.71	times	

Time	Frame	ℛ,	ℛℛ,	ℛℳ 		 100%	 ±	45-90	Years	 0.5-0.9	

+,	ℛ+ 	 100%	 ±	45-90	Years	 0.5-0.9	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	Müller	and	Bostrom	(2016)

	
	 AI	 ℳ	 100%	 ±	30-60	Years	 0.5-0.9	 Not	specified	

ℛ,	ℛℛ,	ℛℳ 		 100%	 ±	30-60	Years	 0.5-0.9	

+,	ℛ+ 	 100%	 ±	30-60	Years	 0.5-0.9	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	Deloitte	(2016)

	
	 Technology	

	

ℳ	 42.3%	 ±	20	Years	 0.7-1.0	 Not	specified	

ℛ,	ℛℛ,	ℛℳ 		 42.3%	 ±	20	Years	 0.7-1.0	

+,	ℛ+ 	 10.4-19.3%	 ±	20	Years	 0.7-1.0	

																																																													
71
	In	case	of	AI	the	automation	estimates	are	set	equal	to	HLMI.	

72
	‘we	focus	on	advances	in	fields	related	to	Machine	Learning	(ML),	including	Data	Mining,	Machine	Vision,	Computational	Statistics	and	other	sub-fields	of	Artificial	Intelligence	(AI),	in	which	efforts	are	

explicitly	dedicated	to	 the	development	of	algorithms	that	allow	cognitive	 tasks	 to	be	automated.	 In	addition,	we	examine	the	application	of	ML	technologies	 in	Mobile	Robotics	 (MR),	and	thus	the	
extent	of	computerisation	in	manual	tasks.’	(Frey	&	Osborne,	2017,	p.	258)	
73
	Automation	estimates	based	on	ISCED	skill	level	High	Automatibility	in	Table	5	(Arntz,	Gregory,	Zierahn,	2016,	p.	35)	and	Substitution	difference	based	on	Table	4	(Arntz,	Gregory,	Zierahn,	2016,	p.	

34).	Due	to	the	natural	relation	between	skill	levels	and	tasks,	the	shifts	away	from	routinization	can	be	explained.		For	the	Netherlands,	the	estimates	are	as	follows:	ℳ =	37%-51%,	ℛ,	ℛℳ =	7%,	and	
+,	ℛ+ =	0%-1%	and	∆&$ =	0.25	times	
74
	Automation	estimates	based	on	Table	4.5	(Nedelkoska	&	Quintini,	2018,	p.	46)	corrected	for	OLS	regression	probability	percent	point	deviation	based	on	ISCED	skill	levels	in	Table	4.6	(Nedelkoska	&	

Quintini,	2018,	p.	54).	For	country	specific	estimates	consult	table	4.5	(Nedelkoska	&	Quintini,	2018,	p.	46)	and	Figure	4.2	(Nedelkoska	&	Quintini,	2018,	p.	49).	
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9.4.2 Productivity growth associated to technological advancement 

Future	total	factor	productivity	is	highly	uncertain	due	to	the	uncertainty	revolving	around	the	development	
of	 the	 current	 technological	 frontier	 (OECD,	2015a).	Nevertheless	 the	 ‘average	annual	MFP	growth	 in	 the	
OECD	is	anticipated	to	fall	from	1.1%	in	the	decade	to	2030	to	1.0%	to	2040	and	0.9%	to	2050’	(OECD,	2015a	
p.27).	 Countries	 at	 the	 forefront	 of	 technology	 adoption,	 lower	 labour	market	mismatches	 (+0.2%),	more	
trade	 (+0.33%),	 and	 more	 investment	 in	 basic	 research	 (+0.2%)	 will	 realise	 higher	 average	 growth	 rates	
(compared	 to	 a	 base	 of	 2%)75	(OECD,	 2015a).	 Similar	 numbers	 are	 found	 for	 the	 Netherlands	 by	 the	
Netherlands	Bureau	of	 Economics	 (Figure	11).	 The	data	 also	 clearly	 demonstrates	 a	 relation	between	TFP	
growth	 and	 the	 business	 cycle	 (i.e.	 parallel	 development	 of	 economic	 growth	 and	 TFP	 in	 2001	 and	 2009	
recessions).	 This	 link	 is	 incorporated	 in	 the	 model	 with	 a	 sensitivity	 factor.	 The	 relation	 between	 ICT	
productivity	growth	and	the	business	cycle	is	weak	and	appears	to	be	delayed.	The	associated	TFP	growth	to	
RT	and	IT	is	estimated	in	the	range	of	0.1-0.17	percent	point	at	the	level	of	individual	technologies,	0.25%	for	
industrial	 robotics	 (out	 of	 a	 total	 TFP	 of	 2%	 (Graetz	 &	 Michaels,	 2017)),	 and	 0.4%-0.67%	 for	 all	 current	
generation	 IT.	 Greats	 and	Micheals	 (2017)	 highlight	 that,	 up	 to	 the	moment	 of	 publication,	 there	 are	 no	
further	estimates	of	productivity	growth	of	robotics.	Therefore,	information	is	scarce.	

	

Figure	11	TFP	development	in	the	Netherlands,	source:	Elbourne	&	Grabska	(2016)	

Given	 the	 status	 of	 the	 influential	 factors	 and	 the	 expectation	 that	 they	 will	 not	 improve	 from	 the	
perspective	 of	 technological	 substitution	 (e.g.	 Arntz,	 Gregory,	 Zierahn	 (2016)	 and	 De	 Backer,	 DeStefano,	
Menon	 &	 Ran	 Suh	 (2018)),	 these	 rates	 are	 considered	 as	 representative	 for	 future	 technology	 driven	
productivity	growth.	 In	 this	 respect,	 ‘Robots’	contribution	could	well	 continue	 for	years	 to	come’	 (Graetz	&	
Michaels,	2017,	p.	5).	Therefore,	within	a	range	of	uncertainty,	productivity	growth	can	be	defined	given	the	
current	adoption	rates	versus	the	potential	future	rates	(0.6%-1.0%	Labour	productivity	and	0.4%-0.67%	TFP	
for	IT	and	RT76).	The	predictions	of	the	OECD	(2015a)	provide	a	down	sloping	base	line	of	productivity	growth	
up	 to	 2060	 that	 does	 consider	 IT	 advancement,	 but	 it	 is	 unclear	 how	and	 to	what	 extent.	 An	uncertainty	
range	of	deviation	from	the	baseline	is	defined	given	the	technology	estimates	(max	33,5%	for	IT	at	2%	TFP	
growth)	 that	 are	 proportion-wise	 realistic	 given	 the	OECD	 estimates	 of	 factors	 (total	 of	 36,5%	 at	 2%	 TFP	
growth	 based	 on	 OECD	 (2015a)).	 This	 implies	 that	 a	 baseline	 scenario	 is	 created	 equal	 to	 the	 OECD	
prediction	 and	 corrected	 for	 the	 range	 of	 IT	 productivity	 growth	 (uncertainty	 range	 of	 0.4%-0.67%).	 This	
resembles	 the	 macro-economic	 TFP	 growth	 that	 is	 independent	 of	 task-specific	 productivity	 growth.	
Therefore,	each	task	has	a	 (relative)	 task-specific	 technology	dependent	productivity	growth	 in	addition	to	
the	corrected	baseline.		

9.4.3 In relation to the system model 

In	relation	to	the	other	sub-models,	task	specific	investment	in	technology	[!"#]	and	economic	growth	[∆% >
0]	 will	 accelerate	 development.	 Vice	 versa,	 decelerating	 economic	 growth	 will	 reduce	 technological	

																																																													
75	Compared	to	a	base	MFP	of	2%,	thus	respectively	 lower	skill	mismatches	(+10%),	more	trade	(+16.5%),	and	more	 investment	 in	
basic	research	(+10%)	in	terms	of	MFP.	
76	The	influence	of	RT	is	set	equal	to	IT	since	the	estimate	of	Greatz	and	Micheals	(2017)	only	considers	industrial	robots	and	not	the	
wider	definition	of	RT	(including	service	robots	and	robotic	systems).	This	is	because	Industrial	robots	have	been	responsible	for	0.25	
percent	point	TFP	growth	and	other	technologies	can	realize	0.1%	to	0.17%	growth.	
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advancement	and	thus	substitution.	The	absence	of	adequately	skilled	employees	may	inhibit	the	realisation	
of	 productivity	 growth	 since	 the	 technology	 cannot	 be	 implemented	 and	 operationalised	 (Acemoglu	 &	
Restrepo,	2018;	IFR,	2017).	Therefore,	when	the	associated	extended	skill	 labour	supplies	reach	demand,	a	
shortage	 in	 adequately	 trained	 personnel	 will	 arise	 which	 will	 limit	 substitution	 and	 productivity	 growth	
[∆("].	This	problem	 is	 reinforced	by	a	growing	demand	 for	extended	skill	 labour	 in	 relation	 to	 technology	
development.	Data	on	 the	exact	 relation	between	STEM	 labour	demand	and	RT	and	 IT	 implementation	 is	
scarce.	The	demand	for	STEM	labour	(thus	including	IT	and	other	technology	augmenting	skills)	is	expected	
to	grow	in	relation	to	how	technology	is	changing	labour	markets	(including	digitalisation,	advanced	robotics,	
types	of	AI,	and	other	technologies)	(European	Commission,	2015).		
	
The	 estimates	 range	 from	 5%-19%	 (Caprile,	 Palmén,	 Sanz	 &	 Dente,	 2015)	 to	 12,1%-18%77	(European	
Commission,	 2015)	 in	 European	 countries	 over	 12	 years	 up	 to	 2025	 that	will	mainly	 or	 nearly	 exclusively	
accrue	in	high	skilled	labour	demand	(European	Commission,	2015).	In	the	prior	period	from	2000	to	2013,	
STEM	 labour	 demand	 grew	 by	 12%	 (Caprile,	 Palmén,	 Sanz	 &	 Dente,	 2015).	 However,	 there	 is	 significant	
variation	between	 countries	 in	 estimates	 to	2025,	 including	 contracting	 STEM	markets	 (e.g.	Netherlands	 -
5.9%	occupations),	nearly	stable	markets	(e.g.	Sweden	+0.1%),	and	significantly	growing	markets	(majority	of	
countries).	Moreover,	 the	 issue	of	 these	 estimates	 is	 that	 they	 are	 based	on	macro-economic	 projections	
with	limited	scenario	and	critical	uncertainty	exploration	and	therefore	these	methods	are	 ‘not	suitable	for	
analysing	 the	 combination	 of	 quantitative	 and	 qualitative	 effects	 of	 for	 example	 advanced	 forms	 of	
automation	and	digitalisation’	(European	Commission,	2015,	p.	50).	In	this	sense,	the	model	created	in	this	
study	can	enrich	 this	 shortcoming	but	 the	data	should	be	used	cautiously.	The	estimates	are	 taken	as	 the	
extremes	of	 extended	 labour	 demand	 growth	per	 country	 at	 the	 respective	 country	 specific	 estimate	 (EU	
wide	market	would	imply	0.42%	to	1.5%	annual	STEM	labour	demand	growth).	 In	relation	to	the	extended	
skill	 labour	 force,	 routinisation	 manifests	 as	 an	 increase	 in	 extended	 skill	 labour	 demand	 relative	 to	 the	
substitution	rate	of	routinised	versus	conventional	task	types.78		

	

Figure	12	The	future	position	of	labour	in	production?	

	
	 	

																																																													
77	The	prior	number	concerns	the	EU	wide	growth	in	STEM	occupations	and	the	latter	are	multi-	or	trans-disciplinary	occupations	in	
the	EU.	
78	In	 the	 model,	 the	 contraction	 of	 STEM	 labour	 demand	 across	 skill	 levels	 in	 the	 Netherlands	 as	 projected	 by	 the	 European	
Commission	(2015)	results	in	a	relation	between	technological	advancement	and	extended	skill	demand	of	0.	
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10 Complex system model 
In	 the	 prior	 sections,	 a	 model	 has	 been	 constructed	 based	 on	 five	 interrelated	 sub-models,	 namely,	
economic	production,	demographic,	labour	market,	education,	and	technology.	In	this	part,	the	sub-models	
are	combined	in	to	a	conceptual	model	where	after	this	model	is	operationalised	as	a	SD	model.	

10.1 Conceptual model synthesis 

The	model	and	its	sub-models	have	distinct	interrelations,	feedback	mechanism,	boundaries,	and	extension	
possibilities.	To	summarise	(Figure	13),	at	the	centre	of	the	model	is	the	labour	market	model	that	connects	
the	 economic	 and	 social	 sides	 of	 the	 technological	 change	 process.	 From	 top	 to	 bottom,	 the	 production	
model	 influences	technological	change	via	economic	growth	and	innovation	allocation.	Simultaneously,	the	
technology	model	determines	the	rate	of	labour	substitution,	technological	productivity	growth,	and	output	
price	development	which	 feedback	 to	 the	production	model.	 The	 latter,	materialises	 the	 spill	 over	effects	
associated	 with	 technological	 labour	 substitution.	 In	 relation	 with	 the	 labour	 market,	 the	 two	 models	
determine	the	labour	input	demanded	per	task	and	across	tasks	for	production	and	to	support	technological	
change.	 Conversely,	 labour	 market	 shortages	 inhibit	 economic	 growth	 due	 to	 mismatches	 and	 inhibit	
technological	change	via	shortages	of	adequately	skilled	labour	input.	Moreover,	labour	market	outcomes	in	
the	form	of	income	(via	wages	and	employment)	feedback	to	the	production	model.	

	

Figure	13	Conceptual	model	overview	with	feedback	mechanisms	

Within	 the	 labour	 market,	 labour	 demand	 and	 supply	 meet	 and	 determine	 the	 unemployment	 rate	
depending	on	 the	 labour	allocation	per	age	cohort	per	 skill	 level	per	 tasks	and	 if	businesses	prefer	higher	
educated	labour	supply.	Therefore,	reallocation	of	labour	supply	is	internalised	in	the	labour	market	model.	
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On	 the	 supply	 side	 of	 the	 labour	 market,	 the	 relative	 unemployment	 rate	 and	 wage	 per	 task	 determine	
whether,	 and	 to	 what	 extent,	 labour	 is	 reallocated79.	 In	 relation	 to	 the	 labour	 market,	 demographic	
developments	in	the	population	model	will	change	the	composition	and	size	of	the	labour	force	over	time.	In	
addition,	 re-	 and	 up-skilling	 under	 the	 influence	 of	 the	 relative	 unemployment	 rates	 drives	 further	
demographic	 reform.	 This	 introduces	 the	 last	 sub-model,	 namely	 the	 education	 model.	 Labour	 force	
members	will	opt	for	re-	or	up-skilling	depending	on	the	relative	unemployment	rates	given	their	current	skill	
level.	In	addition,	employers	are	incentivised	to	re-	and/or	up-skill	their	employees	to	reduce	relative	labour	
supply	shortages	and	mismatches.	

10.2 System Dynamics implementation 

The	sub-models	developed	in	Part	I	and	summarised	in	the	previous	section	(Figure	13)	are	operationalised	
using	SD	 in	Ventana	Systems	Vensim	DSS.	The	model	 is	developed	 in	a	modular	 fashion	by	separating	 the	
economic	 production,	 demographic,	 labour	 market,	 education,	 and	 technology	 sub-models	 and	 their	
components	 within.	 This	 approach	 facilitates	 comprehensibility,	 reusability	 and	 the	 development	 of	 the	
model,	sub-models,	components.	A	complete	overview	of	the	relation	between	the	developed	model	in	Part	
I	and	synonymous	factors	in	the	Vensim	model	are	provided	in	Appendix	II.	This	overview	includes	the	data	
set,	 type	 of	 data,	 type	 in	 model,	 and	 sources.	 The	 operationalisation	 of	 the	 model	 required	 multiple	
simplifications	 to	ensure	consistency	and	conformity	with	 the	associated	data	 (sources,	 types,	 ranges,	and	
uncertainties),	frameworks,	and	literature.	A	brief	overview	of	the	model	is	provided	in	Figure	14	SD	model	
overview.	The	large	red	boxes	in	the	model	comprise	uncertainties,	the	large	grey	boxes	comprise	policies,	
and	the	thin	grey	boxes	are	model	property	settings.	The	sub-models	are	individually	discussed	below	and	a	
complete	overview	of	enlarged	images	can	be	found	in	Appendix	III.	

	

																																																													
79	When	businesses	prefer	higher	educated	labour	supply,	the	allocation	process	remains	to	be	based	on	the	average	unemployment	
rate	 per	 task	 since	 the	 various	 skill	 level	 labour	 supplies	 still	 compete	 as	 before,	 only	 businesses	 are	 inclined	 to	 hire	 a	 higher	
educated	individual.	
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Figure	14	SD	model	overview	

10.2.1 Production model 
To	 operationalise	 the	 model,	 the	 production	 model	 is	 simplified	 to	 model	 the	 impact	 on	 labour	 input	
demand	 only	 while	 preserving	 the	 spill-over	 mechanisms.	 This	 is	 done	 to	 connect	 the	 technological	
substitution	 estimates	with	 the	model	 (i.e.	match	 the	 technology	model	with	 the	 production	model)	 and	
account	 for	 long	 term	 trends	 (i.e.	 productivity	 and	 economic	 growth).	 The	 economic	 outcomes	 can	 be	
generated	with	the	production	model,	yet	endogenising	the	sub-model	and	its	factors	 in	 its	entirety	would	
complicate	the	model	severely,	add	a	significant	quantity	of	associated	data	requirements,	and	complicate	
the	connection	between	the	technological	substitution	estimates	and	the	other	sub-models.	The	TBTC	and	
RRTC	 economic	models,	 upon	 which	 the	 production	model	 is	 based,	 are	 used	 for	 posterior	 econometric	
analysis	 for	which	these	problems	do	not	exist.	Moreover,	 the	automatibility	estimates	do	not	account	 for	
economic	growth	due	to	their	static	nature.		Furthermore,	economic	growth	depends	on	significantly	larger	
systems	including,	but	not	restricted	to,	capital	and	financial	markets,	interest	rates,	exchange	rates,	import	
and	 export,	 economic	 and	 technological	 competitive	 position,	 globalisation,	 government	 consumption,	
monetary	and	 fiscal	policy,	 sectoral	composition,	and	exogenous	 factors/shocks.	 In	 this	 respect,	predicting	
the	aggregate	macro-economic	outcomes	with	the	current	production	model	would	be	oversimplified.	From	
the	 perspective	 of	 boundary	 adequacy	 and	 representativeness	 of	 the	 model,	 these	 components	 would	
ultimately	be	 initialised	 to	generate	outcomes	 that	 represent	current	projections	 (both	 from	a	verification	
and	 validation	 point	 of	 view).	 Therefore,	 the	 task	 structure,	 labour	 input,	 substitution,	 routinisation,	 and	
technology	definitions	in	the	production	model	are	incorporated	while	economic	growth	is	pushed	into	the	
model	across	an	uncertainty	range,	while	preserving	the	spill-over	mechanisms.		
	



TU Delft EPA  |  K Spaanderman   

	 67	

The	OECD	expects	 future	annual	economic	growth	to	settle	around	1,9%	from	2020	to	2060	(Figure	15)80.	
The	 estimate	 differs	 per	 country	 from	 0,5%	 to	 2,9%	 and	 the	 ‘Forecast	 is	 based	 on	 an	 assessment	 of	 the	
economic	 climate	 in	 individual	 countries	 and	 the	 world	 economy,	 using	 a	 combination	 of	 model-based	
analyses	and	expert	judgement’	(OECD,	2018).	Two	observations	need	to	be	made	concerning	the	long-term	
projection.	First,	the	economies	are	currently	 in	the	boom	phase	of	the	business	cycle	relative	to	the	long-
term	 projection.	 Which	 implies	 that	 economic	 growth	 is	 projected	 to	 decline	 in	 the	 next	 two	 years	 and	
recover	 and	 stabilise	 in	 the	 years	 after.	 Second,	 the	 historic	 trend	 demonstrates	 significant	 fluctuation	 in	
behaviour	 and	 significant	 variance	 in	 fluctuation	 patterns	 between	 countries	 and	 over	 time,	 e.g.	 the	
economic	 crisis	 in	 2009	 is	 clearly	 identifiable,	 but	 the	 impact	 differs	 between	 economies.	 The	 long-term	
projections	lack	such	business	cycle	fluctuation.	The	absence	of	such	variation	is	confirmed	by	the	low	and	
stabilising	 standard	 deviation	 in	 the	 lower	 yellow	 boxed	 graph.	 The	 consistently	 stable	 projection	 across	
countries	over	 time	 from	2020	onwards	 is	 strikingly	 contrasting	with	 the	measured	economic	 growth	and	
behaviour	patterns	over	the	past	20+	years.		
	
For	this	reason,	the	projections	are	used	as	a	country-specific	long-term	baseline	with	a	marginal	error	rate	
that	 is	 corrected	 to	better	 represent	 economic	 growth	 and	business	 cycle	 behaviour.	 Therefore,	 the	base	
line	 is	 corrected	 for	 business	 cycle	 recessions,	 random	 short-term	 fluctuation,	 and	 probability	 for	 severe	
recessions	in	the	run	time	of	the	model	according	to	consistent	patterns	in	the	past	(Table	3).	 It	should	be	
noted	that	prior	economic	developed	cannot	simply	be	projected	into	the	future.	For	this	reason,	the	model	
is	run	across	an	ensemble	of	plausible	economic	futures	samples	from	the	uncertainty	space	of	the	variables	
associated	with	the	correction	functions	(i.e.	as	presented	in	Table	3).	In	other	words,	each	configuration	of	
the	 model,	 concerning	 the	 population,	 education,	 labour	 market,	 and	 technology	 is	 run	 across	 a	 set	 of	
sampled	economic	scenarios	that	resemble	the	fluctuating	behaviour	observed	over	the	past	20	years	given	
the	OECD	projected	baseline	economic	growth	of	the	country.		
	

Table	3	Economic	growth	projection	function	

	 Variable	 Uncertainty	range	
	 	 	
	 	 	Long	term	economic	growth81	 Base	line	error	margin	 -0.05	to	0.05	

	 	 	
	 	 	
Business	cycle	recession82	 Occurrence	 8	to	9.4	years83	

Duration	 3	to	3.64	quarters	
Proportion	of	time	in	recession	 0.18	to	0.21	
Amplitude	 -2.63	to	-1.87%	GDP	per	quarter	

	 	 	
	 	 	
Business	cycle	fluctuation84	 Occurrence	 2	to	3	years	

Duration	 ½	occurrence	period	
Amplitude	 0.1	to	0.33%	GDP	per	year	

	 	 	
	 	 	
Severe	recessions85	 Occurrence	 0	to	1.14	times86	

Duration	 4	to	4.7	quarters	
Proportion	of	time	in	recession	 0.18	to	0.21	
Amplitude	 -4.89	to	-6.31%	GDP	per	quarter	

	 	 	
	
This	methodology	may,	 at	 first	 sight,	 closely	 resemble	 an	 equilibrium	 approach	 in	 conventional	 economic	
modelling.	 However,	 the	 baseline	 is	 corrected	 for	 spill-over	 effects	 (and	 thus	 creating	 feedback-loops).	
Therefore,	the	generated	economic	growth	rate	is	sensitive	to	endogenous	developments	that	will	dampen	
or	stimulate	economic	growth	compared	to	the	baseline.	

																																																													
80	The	variation	in	the	mode	of	the	dataset	can	be	attributed	to	coincidental	equal	values	of	two	country	specific	projections.	
81	Assumption	based	on	OECD	(2018)	dataset	
82	(Claessens,	Ayhan	Kose,	&	Terrones,	2009)	
83	(Claessens,	Ayhan	Kose	&	Terrones,	2009;	Estrella	&	Mishkin,	1998)	
84	See	Appendix	IV	
85	(Claessens,	Ayhan	Kose,	&	Terrones,	2009)	
86	Based	on	“severe	recessions”	between	1960-2007	from	Claessens,	Ayhan	Kose,	and	Terrones	(2009),	converted	to	25	year	span.	
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Figure	15	OECD	Economic	growth	analysis	and	prospect	based	on	OECD	data	(2018)		
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First,	the	macro-economic	growth	rate	is	corrected	for	relative	total	wage	income	dynamics	(comprising	all	
wages	 times	 the	 employed	 labour	 force	 across	 the	 tasks)	 under	 the	 assumption	 that	 the	 propensity	 to	
consume	is	constant.	This	implies	that,	the	macro-economic	growth	rate	may	increase	or	decline	compared	
to	the	baseline	due	to	changes	in	demand	depending	on	the	unemployment	rate	and	wage	per	tasks	(given	
technological	 progress,	 substitution,	 productivity	 growth,	 and	 allocation).	 Second,	 at	 the	 tasks	 level,	
productivity	 growth	 that	 exceeds	 the	 projected	 technological	 productivity	 growth	 (see	 9.4)	 will	 further	
reduce	prices	and	create	a	task-specific	demand	effect	in	addition	to	the	projected	macro-economic	growth	
rate.	 Since	 the	 economic	 growth	 baseline	 incorporates	 the	 projected	 productivity	 growth,	 the	 spill-over	
effect	 is	 based	 on	 the	 relative	 price	 development	 compared	 to	 continuation	 of	 the	 current	 levels	 of	
technological	change.	This	implies,	that	technological	advancement	that	exceeds	the	current	pace	will	result	
in	 higher	 productivity	 growth,	 lower	 prices,	 and	 additional	 demand.	 Lastly,	 the	 profit	 spill-over	 effect	 is	
assumed	to	fully	contribute	to	technological	developed	and	leakage	via	financialisation,	and	thus,	does	not	
result	in	additional	demand.	To	summarise,	the	(country	specific)	OECD	economic	growth	projection	is	used	
as	a	baseline,	which	is	corrected	to	represent	the	business	cycle	fluctuation	and	associated	uncertainty,	and	
incorporated	 in	 the	 feedback	mechanisms	 associated	with	 technological	 advancement	 (at	 the	macro	 and	
task	level).	The	model	component	that	generates	the	macro-economic	growth	rate	is	provided	in	Figure	16,	
as	 is	 an	 example	 of	 the	 labour	 input	 component	 in	 Figure	 17.	 A	 complete	 and	 enlarged	 overview	 can	 be	
found	in	Appendix	III).	

	

	

Figure	16		SD	Model	–	Economic	growth	 Figure	17	SD	Model	–	Labour	input	

10.2.2 Demographic model 

The	 demographic	 model	 implementation	 is	 identical	 to	 the	 described	 system	 (see	 6).	 The	 SD	 sub	model	
structure	 is	 divided	 in	 five	main	 components:	 births,	male	 population,	 female	 population,	 re-	 and	 up-skill	
percentages,	and	population	characteristics.	The	latter	two	are	included	to	monitor	and	specify	outcomes	of	
interest	during	simulation	and	have	no	further	interrelation	with	the	model.	The	prior	three	determine	the	
demographic	 composition	 of	 the	 population	 via	 births,	 aging,	 and	 re-	 and	 up-skilling	 (in	 relation	with	 the	
education	model).	 The	male	 population	model	 component	 is	 presented	 in	 Figure	 18	 (complete	 overview	
including	enlarged	 images	can	be	found	 in	Appendix	 III).	Note	that	the	female	and	male	population	model	
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are	identical	with	the	exception	that	the	skill	 level	and	size	composition	of	young	adult	females	(YA	f	 in	SD	
model)	feedback	to	the	births	of	new	population	members.	
	

	

Figure	18	SD	Model	–	Male	population	

	
	

Figure	19		SD	Model	–	Wage	allocation	(left)	and	Unemployment	allocation	(right)	
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10.2.3 Labour market model 

The	labour	market	model	implementation	is	identical	to	the	described	system	except	for	the	division	in	full-
time	 and	 part-time	 labour	 (see	 7).	 Therefore,	 labour	 reallocation	 is	 based	 on	 the	 relative	 unemployment	
rates	and	wage	of	 the	 tasks	 for	which	 labour	 force	members	are	qualified	 (Table	1).	The	division	between	
full-time	 and	 part-time	 labour	 markets	 is	 excluded	 from	 the	 model	 since	 the	 technological	 substitution	
would	be	identical.	More	importantly,	the	TBTC	and	RRTC	framework	do	not	make	the	distinction	between	
the	two.	In	this	respect,	this	approach	is	consistent	with	the	frameworks	and	substantiated.	Introducing	both	
markets	 would	 also	 require	 interaction	 and	 flows	 of	 labour	 between	 the	 markets	 in	 consideration	 of	
reducing	 hours	 in	 existing	 full-time	 jobs	 (Borowczyk-Martins,	 2017),	 involuntary	 part-time	 employment	
(Borowczyk-Martins	&	Lalé,	2017;	Horemans,	Marx,	&	Nolan,	2016;	Valletta,	Bengali,	&	Van	der	List,	2016)	
and	 increasing	 non-standard	 employment	 (NSE)	 (Schmid,	 2010).	 However,	 this	 would	 extend	 beyond	 the	
scope	 of	 the	model	 and	 this	 study.	 Therefore,	 for	 consistency	with	 the	model	 and	 frameworks,	 only	 one	
labour	market	is	simulated.	The	labour	market	is	divided	in	five	main	components:	labour	supply	(with	a	sub-
component	for	each	labour	force	age	cohort	and	skill	level),	the	labour	market	per	tasks,	labour	reallocation	
(including	 a	 sub-component	 for	 the	 relative	wage	 and	 a	 sub-component	 for	 the	 relative	 unemployment),	
labour	supply	properties,	and	wage	and	unemployment	outcomes.	The	 latter	 two	are	 included	to	monitor	
and	 specify	outcomes	of	 interest	during	 simulation	and	have	no	 further	 interrelation	with	 the	model.	 The	
sub-component	for	the	relative	wage	and	unemployment	is	presented	in	Figure	26,	and	an	example	of	a	task	
labour	market	in	Figure	20	(a	complete	overview	can	be	found	in	Appendix	III).	

	

Figure	20	SD	Model	–	Task	Labour	market	

10.2.4 Education model 

The	education	model	 implementation	 for	children,	 students,	and	 the	working	age	population	 is	 consistent	
with	the	described	systems	(see	8).	The	education	model	is	divided	in	three	components	(Children,	Students,	
Working	 Age)	 with	 different	 sub-components	 to	 determine	 the	 rate	 of	 re-	 and	 up-skilling	 based	 on	
stimulation	 programs	 (for	 children),	 stimulation	 and	 young	 adult	 unemployment	 (for	 students),	 and	
stimulation	and	unemployment	(for	the	working	age	labour	force)	(Figure	21,	enlarged	images	can	be	found	
in	Appendix	III).	In	relation	with	the	population	model,	the	rate	of	re-	and	up-skilling	is	determined	based	on	
the	labour	market	conditions	and	education	stimulation.		

10.2.5 Technology model 

The	 technology	model	 is	developed	 to	 link	 the	 future	 substitution	and	productivity	growth	estimates	with	
the	production	model.	Substitution	of	input	normally	follows	the	relative	price	development	of	inputs	given	
the	substitution	elasticity	(see	5).	However,	these	projections	are	not	available.	More	importantly,	this	study	
is	performed	to	determine	the	effect	of	adaptability	and	adaptability	 incentivisation	for	the	future	of	work	
given	 the	current	automatibility	estimates	within	 the	TBTC	and	RRTC	 framework.	Therefore,	 the	effects	of	
adaptability	are	tested	with	the	current	estimates	as	the	point	of	departure.	Hence	the	model	is	structured	
accordingly.	 From	 an	 economic	 perspective,	 the	 model	 can	 be	 improved	 by	 incorporating	 the	 complete	
production	functions	once	such	price	estimates	and	substitution	elasticity	estimates	become	available.	
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The	technology	model	consists	of	a	component	per	tasks	to	determine	the	rate	of	substitution,	productivity	
growth,	productivity	spill-overs,	wage	development	(wage	development	is	 located	in	the	technology	model	
and	not	in	the	labour	market	because	of	the	spill-overs),	labour	share,	and	additional	labour	input	to	support	
the	 technology.	 Therefore,	 the	 automation	 estimate,	 time	 frame,	 probability	 range,	 and	 substitution	 time	
difference	 uncertainty	 ranges	 (Table	 2)	 are	 combined	 to	 generate	 the	 substitution	 rate	 and	 productivity	
growth.	 In	 relation	 with	 the	 other	 sub-models,	 labour	 input	 shortages,	 economy	 wide	 and	 task	 specific	
innovation	allocation,	and	macro-economic	growth	rate	 feedback	 to	 the	substitution	 rate	and	productivity	
growth.	The	technology	model	components	of	one	tasks	 is	provided	 in	Figure	22	 (enlarged	version	can	be	
found	in	Appendix	III		
	

	

Figure	21	SD	Model	–	Working	wage	education	
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Figure	22	SD	Model	–	Working	wage	education	

10.3 Model properties 

The	 model	 can	 be	 simulated	 for	 any	 country	 as	 long	 as	 the	 input	 data	 is	 available	 or	 adequately	
representative	assumptions	or	uncertainty	ranges	can	be	defined.	The	model	is	initialised	with	four	types	of	
input,	 namely,	 settings	 (to	 ensure	 the	model	 runs	 properly),	 initial	 values	 (constants	 and	 initial	 values	 of	
variables),	policy	variables	(to	evaluate	levers	to	favourably	alter	outcomes),	and	uncertainties	(variables	of	
which	the	exact	value	is	not	ascertainable,	not	definable	without	an	error	margin,	a	distribution,	or	its	effect	
on	outcomes	is	of	interest	across	a	range	of	values).	A	complete	overview	of	model	input	for	the	case	study	
can	be	found	in	Appendix	II.	The	settings,	 initial	value	corrections	from	the	data	sources,	policy	levers,	and	
uncertainty	space	per	sub-model	are	briefly	introduced	below.	

10.3.1 Model settings 
The	Vensim	SD	model	is	run	for	the	next	20	years	(model	settings:	base	date	=	01-01-2018,	Initial	time	=	0,	
and	Final	time	=	240,	Time	step	=	0.0625)	using	the	Runge-Kutta	4	fixed	integration	method	(RK4	fixed).	An	
integration	 error	 check	 was	 performed	 for	 validation	 (see	 Sterman	 (2000)).	 The	 model	 returns	 one	 or	
multiple	 accuracy	 errors	 when	 the	 time	 step	 size	 is	 equal	 or	 larger	 than	 0.125.	 Below	 0.125,	 the	model	
returned	 identical	 results	 for	 all	 time	 step	 configurations.	 The	 integration	 method	 did	 not	 influence	 the	
results	 across	 RK2	 Fixed,	 RK2	 Auto,	 RK4	 Fixed,	 and	 RK4	 Auto	with	 the	 same	 time	 step	 setting.	 However,	
simulation	times	did	differ	significantly87.	Therefore,	a	time	step	of	0.0625	and	integration	using	RK	4	Fixed	is	
adopted.	

10.3.2 Initial values 

The	model	is	initialised	using	the	latest	available	data	from	various	sources	to	configure	the	model	according	
to	 the	 current	 state	 of	 a	 country.	 Naturally,	 the	model	 is	 a	 simplified	 and	 isolated	 representation	 of	 the	
actual	real	world	system	with	distinct	system	boundaries.	The	initial	values	set	the	demographic,	education	
system,	 labour	market,	economic,	and	technology	conditions	 from	which	the	future	 is	explored.	The	 initial	
values	 can	 be	 found	 in	 Appendix	 II.	 One	 correction	 in	 the	 initial	 values	 is	made	 due	 to	 inconsistent	 data	
concerning	 the	 skill	 level	proportions	of	 children	and	 students.	 The	 skill	 level	proportions	 (i.e.	 the	 relative	
ratio	of	individuals	per	skill	level	per	age	cohort)	of	young	adults	is	also	used	for	children	and	students	since	
the	dataset	contained	unexplained	deviation	from	the	demographic	skill	 level	trend.	This	deviation	 is	most	

																																																													
87	With	the	same	system	running	as	a	virtual	machine	with	dedicated	processing,	RAM,	and	memory	capacity.	Times	at	RK2	Fixed	(1.2	
seconds),	RK2	Auto	(3.3	seconds),	RK4	Fixed	(1.7	seconds),	and	RK4	Auto	(6.5	seconds).	
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probably	 the	 result	 of	 the	 definition	 of	 the	 highest	 achieved	 skill	 level,	which	 is	 only	measured	 above	 25	
years	 of	 age.	 The	 initial	 demographic	 configuration	 is	 provided	 in	 Appendix	 V	 (including	 the	 incorrect	
configuration	and	the	disaggregate	5	year	age	cohort	population	relative	to	the	age	cohorts	 in	 the	model)	
and	in	Figure	23.	

	

	

Figure	23	Corrected	initial	population	

10.3.3 Policy variables 

The	policy	space	in	the	model	is	closely	related	to	the	sub-models	and	presented	actors	(i.e.	the	labour	force,	
businesses,	 and	 the	 government).	 Three	 categories	 of	 policies	 can	 be	 identified	 in	 the	model.	 The	 policy	
levers	can	be	found	in	Appendix	II.	
	
Education	policy	to	stimulate	Re-	and	Up-skilling	
Technological	change	is	associated	with	changing	skill	requirements	resulting	in	a	need	for	re-	and	up-skilling	
of	 the	 labour	 force.	 This	 development	 is	 in	 the	 interest	 of	 all	 actors.	 Firstly,	 from	 the	 perspective	 of	 the	
labour	 force,	 re-skilling	 and	 up-skilling	 improves	 employability	 and	wage	 potential	 and	 reduces	wage	 and	
employment	 uncertainty.	 Secondly,	 from	 the	 perspective	 of	 businesses,	 inadequately	 trained	 personnel	
reduce	 productivity,	 inhibit	 production	 growth	 and	 innovation,	 and	 thus	 damages	 economic	 outcomes.	
Lastly,	from	the	perspective	of	the	government,	the	interests	of	all	three	actors	needs	to	be	balanced	while	
satisfying	budget	constraints	(including	labour	institutions,	education	resources,	innovation	stimulation,	and	
economic	 policy).	 In	 the	model,	 re-	 and	 up-skilling	 is	 determined	by	 education	 programs	 for	 children	 and	
labour	 market	 conditions	 for	 students	 and	 the	 working	 age	 population.	 The	 prior	 develops	 parallel	 to	
demographic	 developments	 and	 is	 influenced	 by	 stimulation	 of	 education	 performance	 and	 STEM	
graduation	 via	 government	 intervention.	 The	 latter	 depends	 on	 the	 relative	 unemployment	 rates	 and	
sensitivity	of	the	labour	force	to	labour	market	conditions.	The	sensitivity	is	influenced	by	intervention	of	the	
government	or	businesses	to	incentivise	re-	and	up-skilling	of	the	employed	and	unemployed	labour	force.		

	
Labour	market	flexibility	and	reallocation	
The	reallocation	of	labour	supply	to	different	tasks	within	occupations	and	across	occupations	in	reaction	to	
technological	change	 is	a	critical	 feedback	mechanism.	 It	allows	the	 labour	force	to	adjust	to	technological	
change	within	the	limited	possibilities	of	reallocation	(see	Labour	market	model)	and	it	allows	businesses	for	
more	effective	and	productive	allocation	of	production	input.	In	the	model,	reallocation	is	influenced	by	the	
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wage	 and	 unemployment	 sensitivity	 of	 the	 labour	 force	 and	 restricted	 by	 the	 willingness	 to	 sacrifice	 a	
relative	 proportion	 of	 wage	 in	 return	 for	 employment.	 	 The	 government	 can	 influence	 the	 sensitivity	 by	
incentivising	the	unemployed	to	seek	employment	elsewhere	or	increase	the	willingness	to	sacrifice	income,	
e.g.	via	compensation	or	tax	reforms.		
	
Technological	innovation	stimulation	
Stimulation	of	technological	innovation	–	and	thus	indirectly	stimulation	of	substitution	–	is	in	the	interest	of	
businesses	 but	 may	 accelerate	 technological	 unemployment	 development.	 This	 would	 suggest	 that	
stimulation	improves	productivity	and	economies	growth	in	return	for	a	higher	level	of	unemployment.	Yet,	
the	labour	force	is	expected	to	shrink	under	the	influence	of	societal	aging	and	may	cause	economic	growth	
constraints	 in	 the	 upcoming	 decades	 (Peterson,	 2017).	 Moreover,	 demographic	 skill	 development	 will	
change	 the	 composition	 of	 the	 labour	 force.	When	 this	 development	 is	 skewed	 towards	 a	 higher	 skilled	
labour	 force,	 the	effects	of	 technological	 substitution	 in	manual	and	 routine	 tasks	may	be	 limited	or	even	
completely	 compensated	 for	 (while	 in	 return	 higher	 productivity	 and	 economic	 outcomes	 can	be	 realised	
with	 technological	 innovation	 stimulation).	 In	 the	model,	 business	 can	allocate	a	higher	 share	of	GDP	and	
task-specific	 profits	 to	 technological	 development,	 while	 governments	 can	 stimulate	 technological	
innovation.	

10.3.4 Uncertainty space 

Exploration	of	the	future	with	a	simplified	and	isolated	representation	of	a	highly	complex	and	interrelated	
real	world	system	ask	for	awareness	of	the	limitations,	boundaries,	and	uncertainties	of	the	model.	This	does	
not	 render	 modelling	 and	 simulation	 exercises,	 as	 performed	 in	 this	 research,	 useless.	 On	 the	 contrary,	
exploration	of	the	future	provides	the	opportunity	to	gain	an	insight	in	the	plausible	situations	we	may	face.	
This	 notion	 has	 been	 central	 during	 model	 development	 by	 stating	 research	 and	 model	 boundaries,	
limitations,	 corrections,	 and	 assumptions.	 Methodologically,	 this	 notion	 is	 extended	 to	 the	 simulation	
exercise	with	the	use	of	uncertainty	space	exploration	in	the	Exploratory	Modelling	and	Analysis	workbench	
(Kwakkel	&	Pruyt,	2013).	This	Python	extension	runs	the	SD	model	while	sampling	the	uncertain	parameters	
from	the	specified	uncertainty	ranges	and	creating	an	ensemble	of	scenarios	–	also	termed	futures.	In	other	
words,	 the	 model	 is	 simulated	 for	 the	 specified	 number	 of	 experiments	 with	 a	 different	 value	 for	 each	
uncertain	 parameter	 from	 the	 specified	 range.	 As	 an	 example,	 Figure	 24	 	 depicts	 a	 random	 selection	 of	
economic	growth	projections	based	on	the	parameter	ranges	from	Table	3	with	a	run	time	of	240	months.	
The	uncertain	parameters	and	associated	ranges	are	provided	in	Appendix	II,	and	summarised	as:	
	
Production	model	 As	presented	in	Table	3	to	generate	economic	outcomes	
Labour	market	model	 Sensitivity	 to	 wage	 differences,	 Wage	 sacrifice	 ratio,	 and	 Sensitivity	 for	

unemployment	
Population	model	 Birth	rate	
Education	model	 Student	labour	market	awareness	and	sensitivity,	Time	before	young	adults’	 labour	

market	positions	are	general	knowledge	among	students,	and	Working	age	re-	and	
up-skill	sensitivity	for	employed	and	unemployed	labour	force	members	

Technology	model	 As	 presented	 in	 Table	 2	 to	 generate	 labour	 substitution	 estimates,	 Proportion	 of	
profit	 invested	 in	 innovation,	 Innovation	allocation	sensitivity	to	the	business	cycle,	
and	Prior	substituted	labour		
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Figure	24	Sampled	Economic	growth	based	on	OECD	base	line	and	projection	function	in	Table	3	
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11 Model testing 
System	Dynamics	modelling	 is	not	aimed	at	building	the	most	correct	representation	of	the	real	world	but	
building	a	model	that	represent	the	real	world	to	a	degree	that	assists	knowledge	generation	and	decisions	
making	to	the	best	extent	possible	(Pruyt,	2013).	In	this	sense,	model	verification	and	validation	is	aimed	at	
model	 integrity	 and	 purposefulness	 instead	 of	 representativeness.	 The	 model	 developed	 in	 Part	 I	 and	
operationalised	 in	 the	previous	 section,	 is	 tested	 to	ensure	validity	of,	 and	confidence	 in,	 the	outcomes	 it	
generates.		

11.1 Verification 

Prior	 to	 model	 verification	 the	 model	 has	 been	 debugged	 to	 check	 for	 integration	 errors,	 equation	
consistency,	simultaneous	initials	and	equations,	floating	point	errors,	and	replacement	of	discrete	functions	
with	 continues	 alternatives.	 A	 unit	 check	 and	 model	 check	 provided	 no	 model	 or	 simulation	 errors	 or	
inconsistencies.	 Verification	 of	 the	 model	 is	 aimed	 at	 checking	 the	 operation,	 comprehensibility,	 and	
replicability	 of	 the	 model	 (Pruyt,	 2013).	 This	 check	 has	 been	 performed	 by	 switching	 on	 the	 feedback	
mechanisms	of	related	sub-models	in	sequence.	The	model	was	initiated	with	economic,	population,	labour	
market,	and	education	data	from	the	Netherlands88.	

11.1.1 Normalisation factor check 
The	model	includes	multiple	normalisation	equations	to	ensure	value	and	scale	consistency.	The	normalised	
factors	 associated	 with	 labour	 allocation;	 wages;	 children	 up-skilling	 and	 re-skilling	 indexes;	 student	 re-
skilling	and	up-skilling	indexes;	and	working	age	re-skilling	and	up-skilling	indexes	have	been	checked	to	sum	
to	 one.	 Hereafter,	 the	 actual	 labour	 allocation	 per	 skill	 level	 per	 age	 cohort	 have	 been	 checked	 for	
consistency	 by	 summing	 to	 the	 total	 amount	 of	 labour	 supply	 per	 skill	 level	 per	 age	 cohort.	 Note	 that	
normalisation	 of	 the	 birth	 ratio’s	 is	 not	 included	 in	 the	model	 since	 it	 is	 in	 the	 statistical	 input	 data.	 This	
implies	that,	when	using	a	different	dataset,	it	should	be	checked	whether	these	rates	are	normalised	across	
the	combinations	of	gender	and	skill	levels	of	the	parents	and	children.	

11.1.2 Population model check 

The	demographic	model	 is	based	on	a	complicated	stock-flow	structure	that	 includes	aging,	re-skilling,	and	
up-skilling.	 Its	 integrity	 has	 been	 verified	 by	 switching	 all	 births	 and	 deaths	 off,	 which	 should	 result	 in	 a	
constant	 population	 that	 experiences	 societal	 aging	 over	 time.	 Both	 characteristics	 are	 present.	 Secondly,	
this	check	is	repeated	with	re-skilling	and	up-skilling	to	ensure	the	demographic	model	continues	to	function.	
This	is	confirmed	to	be	the	case.	Thirdly,	the	re-skilling	and	up-skilling	structure	relies	on	delay	functions	to	
simulate	 the	 flow	 of	 population	 members	 with	 aging	 consistency,	 i.e.	 every	 person	 is	 born	 and	 ages	
consistent	 with	 run	 time	 of	 the	 model.	 This	 check	 is	 performed	 by	 verifying	 if	 the	 scale	 of	 the	 flows	 is	
consistent	 with	 the	 associated	 stock	 and	 equations,	 and	 re-	 and	 up-skill	 ratios.	 Both	 are	 confirmed	 to	
function	properly.	It	should	be	noted	that	the	transition	stocks,	containing	upskilled	and	reskilled	individuals	
are	equal	to	0	at	initiation	since	those	individuals	are	included	in	the	associated	stock	(where	the	individuals	
have	upskilled	or	 reskilled	 to)	 in	 statistical	 input	data.	 Lastly,	 the	proportion	of	births	 is	 verified	 to	ensure	
consistency	in	the	birth	sub-model.	This	should	imply	that	the	younger	age	cohorts	become	increasingly	high	
educated	without	re-	and	up-skilling.	This	is	confirmed	to	be	the	case	and	is	consistent	with	historic	trends	of	
the	Netherlands89.	

																																																													
88	Details	on	this	dataset	are	provided	in	Part	II	and	in	Appendix	II.	
89	Note	that	the	young	adult	age	cohort	is	used	since	this	is	the	earliest	state	from	which	the	highest	achieved	skill	level	is	recorded	in	
statistics	data.	The	model	trends	(greyscale)	remain	stable	for	the	past	5	years	where	after	the	indexes	accelerate	and	stabilize.	This	
is	the	result	of	the	delayed	feedback	mechanism	of	births	and	young	adult	composition.	The	actual	historic	trend	demonstrates	more	
fluctuation,	most	probably	due	to	exogenous	factors.	However,	more	importantly,	the	relative	index	values	and	scale	correspond	to	
the	prior	trend,	especially	considering	the	timespan.		
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Figure	25	Demographic	skill	level	development	students	

11.1.3 Labour market and initial unemployment stability check 

The	 labour	market	model	 is	built	 to	ensure	 consistency	between	unemployment	 rates	per	age	 cohort	per	
skill	 level	and	per	task.	At	 initiation	of	the	model	this	should	result	 in	an	unemployment	rate	per	skill	 level	
that	 is	 consistent	 with	 the	 allocation	 to	 the	 natural	 task	 type	 and	 qualified	 tasks	 and	 their	 respective	
unemployment	rates.	Here	after	economic,	labour	market,	education,	and	technology	dynamics	will	result	in	
shifts	and	reallocation.	First,	all	associated	feedback	mechanisms	have	been	switched	off:	re-skilling	and	up-
skilling;	 labour	 and	 wage	 reallocation;	 and	 labour	 input	 development	 and	 labour	 substitution	 are	 set	 to	
current	levels.	This	should	imply	that	unemployment	of	tasks	and	their	natural	labour	supply	should	develops	
in	 parallel.	Moreover,	 this	 unemployment	 rate	 should	develop	 in	 parallel	 to	 relative	 labour	 input	 demand	
versus	 natural	 labour	 supply	 changes	 under	 influence	 of	 demographic	 changes.	 Both	 are	 confirmed	 to	
function	properly.	Second,	the	labour	reallocation	feedbacks	are	switched	on	and	tested	at	three	sensitivities	
(0.1,	 0.5,	 and	1.0).	Compared	 to	 the	 test	without	 reallocation,	 the	unemployment	 rates	 should	 decline	or	
increase	 depending	 on	 their	 relative	 value	 to	 each	 other	 and	 reallocation	 possibilities.	 	 This	 behaviour	 is	
confirmed.	 Thirdly,	 this	 test	 is	 repeated	 but	with	 the	 student	 and	working	 age	 education	model	 active	 at	
three	 sensitivities	 (0.1,	 0.5,	 and	 1.0).	 The	 same	 behaviour	 should	 arise	 including	 a	 shift	 towards	 high	 skill	
levels	when	abstract	unemployment	is	lower	(since	abstract	tasks	are	the	exclusive	domain	of	the	high	skilled	
labour	force).	This	behaviour	is	present	(F).		

11.1.4 Education model check 

The	process	of	re-skilling	and	up-skilling	of	students	in	reaction	to	the	labour	market	has	been	confirmed	to	
function	 as	 expected,	 i.e.	 students	 and	 the	 working	 age	 population	 will	 re-	 and	 up-skill	 when	 the	
unemployment	rate	of	the	associated	skill	level	is	lower	and	do	this	more	when	the	sensitivity	is	increased.	
Within	 the	 education	 model,	 multiple	 checks	 are	 performed.	 First,	 for	 each	 of	 the	 children	 and	 student	
education	capacity	sub-models	(per	skill	level)	the	capacity	limitation	has	been	verified	to	limit	re-skilling	and	
up-skilling.	 One	 adaption	 has	 been	made	 in	 the	model,	 namely,	 that	 the	 children	 and	 student	 education	
capacities	 grow	 (not	 declines)	 in	 correspondence	with	 demographic	 shifts.	 In	 addition,	 a	 natural	 capacity	
expansion	index	is	added	to	keep	track	of	the	additionally	required	capacity	to	enable	for	the	demographics	
shifts	 (thus	 excluding	 re-skilling	 and	 up-skilling).	 The	 student	 education	 capacity	 growth	 (in	 reaction	 to	
children	skill	level	development)	can	also	be	switched	off,	and	will	in	that	scenario	prevent	re-skilling	and	up-
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skilling	outside	 the	 spare	 capacity	 that	may	be	present.	Not	doing	 so	would	 inhibit	 any	 re-skilling	and	up-
skilling,	effectively	rendering	the	education	model	obsolete.	Second,	the	delay	in	capacity	growth	has	been	
verified	 by	 variation	 of	 the	 realisation	 time	 (should	 slowdown	 or	 accelerate	 capacity	 growth),	 the	 fixed	
period	 (should	 shift	 the	 capacity	 growth),	 and	 planning	 parameter	 (should	 increase	 or	 decrease	 capacity	
growth).	All	are	confirmed.	

11.1.5 Technology and production model check 

The	 technology	 and	 production	 model	 are	 closely	 related	 due	 to	 the	 model	 implementation.	 First,	 the	
technology	 model	 is	 verified	 by	 checking	 if	 the	 productivity	 growth	 follows	 the	 substitution	 rate.	 This	 is	
confirmed.	 Second,	 the	 substitution	 growth	 is	 verified	 by	 variation	 of	 the	 implementation	 period	 (should	
slowdown	or	accelerate	the	curve),	the	bottleneck	period	(should	shift	the	curve),	and	possible	substitution	
(should	increase	or	decrease	the	maximum	value).	All	are	confirmed.	In	relation	with	the	production	model,	
labour	substitution	behaviour	should	run	parallel	to	the	technological	substitution	rate	given	the	delay	due	
to	 exogenous	 factors.	 One	 test	 is	 performed	without	 a	 delay	 and	 a	 second	 including	 the	 implementation	
delay.	 The	 labour	 input	 stock	 and	 labour	 substitution	 flow	behaved	 as	 expected	 in	 both	 cases.	 Lastly,	 the	
aggregate	 TFP	 should	 sum	 to	 the	 baseline	 plus	 the	weighted	 technological	 productivity	 growth	 given	 the	
relative	proportions	of	the	tasks	in	the	economy.	This	is	confirmed.	

11.2 Validation 

Model	 validation	 relies	on	multiple	 test	 that	extend	beyond	 the	conventional	 representability	approach	 in	
modelling	(Pruyt,	2013).	In	this	respect,	it	is	important	to	note	-	especially	for	readers	with	a	background	in	
labour	economics	(and	study	the	impact	of	technological	change)	-		that	validation	does	test	the	goodness	of	
fit	with	historic	data	due	to	the	system	approach	and	future	orientation.	The	latter,	naturally,	implies	that	a	
good	 fit	 with	 historic	 trends	 may	 not	 imply	 good	 representativeness	 of	 (plausible)	 future	 trends	 (Pruyt,	
2013).	The	validation	process	is	an	iterative	and	integrated	process	during	model	development.	These	efforts	
include	intermediate	verification	and	validation	(as	presented	in	the	previous	section).	To	ensure	the	validity	
of	the	model	multiple	tests	have	been	performed.		

11.2.1 Model Structure 

The	 structural	 (i.e.	 task	 based	 approach	 at	 macro-level)	 and	 equational	 (i.e.	 mathematical,	 dimensional,	
parametric)	substantiation	of	the	model	has	been	provided	in	Part	I	to	ensure	the	model’s	foundation	stems	
from	the	current	paradigms	in	associated	literature.	In	this	sense,	structural	validation	has	been	performed.	
Some	operationalisation	 improvements	and	simplifications	have	been	made	during	the	construction	of	the	
model	and	implementation	in	the	SD	software	package	(see	10.2).	These	simplifications	correspond	with	the	
intended	scope	of	the	model	and	this	research	and	thus	do	not	degrade	the	structural	validity	of	the	model.	
Yet,	 the	 simplifications	 represent	 otherwise	 functioning	 feedback-loops	 that	 could	 alter	 dynamics	 and	
behaviour.	Therefore,	as	will	be	discussed	in	the	last	sections	of	Part	III	of	this	document,	the	limitation	and	
system	 boundaries	 provide	 opportunity	 for	 expansion.	 The	 most	 evident	 simplifications	 concern	 wage	
dynamics	and	rationalisation	of	labour	allocation	and	education	of	students	and	the	working	age	population.	
Literature	 emphasises	 that	 wages	 have	 not	 reacted	 to	 labour	 market	 developments	 under	 technological	
change	as	economic	theory	would	dictate	(Goos,	Manning,	&	Salomons,	2011;	Mishel,	Shierholz	&	Schmitt,	
2013).	 Moreover,	 wages	 have	 been	 insensitive	 to	 market	 developments	 in	 Europe	 due	 to	 institutional	
rigidities	 (Goos,	Manning,	 &	 Salomons,	 2011;	 Gregory,	 Salomons	 &	 Zierahn,	 2016).	 The	 rationalisation	 of	
labour	market	decisions	by	labour	force	agents	is	based	on	the	intended	goal	of	the	model	(see	7.1)	and	is	
controllable	 via	 the	 sensitivity	 levers	 in	 the	 model.	 In	 this	 respect,	 Boundary	 adequacy,	 Structure	
Assessment,	Dimensional	consistency,	and	Parameter	assessment	have	been	performed	(Forrester	&	Senge,	
1979;	Sterman,	2000).		

11.2.2 Model Behaviour 

During	model	development,	each	of	the	components	of	the	five	sub-models	has	been	tested	to	perform	with	
a	wide	range	of	configurations,	initial	values,	and	extreme	values.	The	most	evident	weaknesses	were	found	



TU Delft EPA  |  K Spaanderman   

	 80	

in	the	education	capacity	model	for	children	and	students	and	the	technology	models	per	task.	The	prior	has	
been	 fixed	 by	 created	 a	 demographic	 growth	 rate	 that	would	 otherwise	 inhibit	 re-	 and	 up-skilling.	 In	 the	
technology	model,	 the	 technological	 productivity	 growth	 did	 not	 behave	 as	 expected	 under	 circumstance	
where	 the	 substitution	 rate	was	 lower	 than	 the	 current	 rate	 of	 substitution	or	 significantly	 higher.	 This	 is	
issue	was	caused	due	to	relative	weighing	of	the	actual	substitution	rate	versus	unrestricted	rate.	This	issue	
has	been	resolved.	Therefore,	extreme	value	testing	was	performed	(Sterman,	2000).	

	
The	 verification	 of	 the	 model	 included	 behavioural	 anomaly	 testing	 by	 switching	 of	 re-	 and	 up-skilling,	
reallocation,	 and	 substitution	 feedback	 loops	 in	 the	model.	 For	 validation	purposes,	 a	 separate	 behaviour	
anomaly	 test	 has	 been	 performed	 using	 EMA.	 The	 model	 was	 simulated	 without	 feedback	 mechanisms,	
including	 labour	 supply	 reallocation,	 and	 including	 reallocation	 and	 re-	 and	 up-skilling	 for	 each	 of	 the	
automatilibity	 estimates	 (excluding	 the	 AI	 estimates)	 in	 Table	 2	 with	 50	 simulations	 per	 feedback	
configuration	(750	experiments).	The	results	are	provided	in	Appendix	VI	and	demonstrate	that	switching	off	
feedback	 loops	does	change	outcomes	drastically	 value-wise	but	not	behaviour-wise.	To	be	more	 specific,	
the	outcomes	are	more	extreme	and	can	be	clearly	separated	value-wise	but	the	behavioural	patterns	are	
similar.	A	dichotomy	in	behaviour	can	be	observed	between	dynamic	unemployment	and	consistent	minimal	
unemployment	at	the	set	minimal	employment	mismatch.	The	latter	case	implies	that	there	is	a	consistent	
shortage	of	skilled	labour	supply	or	 labour	supply	willing	to	sacrifice	wage	to	be	employed.	The	population	
model	 demonstrates	 identical	 outcomes,	 independent	 of	 feedback	 configuration.	 The	 outcomes	 per	
automatilibity	 estimate	 correspond	 to	 the	 uncertainty	 ranges	 in	 the	 simulation	 configuration	 –	 most	
evidently	the	technological	substitution	per	task.	The	outcomes	do	provide	deviating	results	but	these	can	be	
explained	by	the	mechanisms	in	the	model	relative	to	the	uncertainty	ranges	of	the	estimates.	In	this	respect	
behavioural	 anomaly	 testing	 has	 been	 performed	 and	 provides	 reason	 for	 confidence	 in	model	 reliability	
(Sterman,	2000).	

	
In	 addition,	 behaviour	 reproduction	was	 performed	 for	 the	 population	model	 (Sterman,	 2000).	 Behaviour	
wise,	the	model	corresponds	to	population	estimates	from	the	Dutch	Central	Bureau	of	Statistics	(CBS)	for	
total	 population	 size90,	 births,	 children	 (CH),	 students	 (ST),	 Young	 Adults	 (YA),	 and	 Retirees	 (RE)	 (see	
Appendix	VII)	 (Figure	53).	Deviation	 in	behaviour	 for	 the	mature	 adult	 (MA),	 and	 senior	 adult	 (SA)	 can	be	
explained	 by	 the	 aggregation	 of	 individual	 age	 cohort	 into	 larger	 groups	 (see	 5-year	 age	 cohort	
demographics	versus	model	structure	age	cohorts	in	Demographic	configuration).	Consequently,	the	model	
evens	out	the	otherwise	distinct	demographic	dynamics.		

	

Figure	26	Model	Population	Behaviour	validation:	Total	population	

During	model	 development,	 and	 in	 comparison	with	CBS	data	on	 future	births,	 it	was	 concluded	 that	 the	
fertility	rate	had	to	become	dynamic	over	time	since	it	is	expected	to	grow.	Therefore,	a	Lookup	was	added	
to	the	model	based	on	an	 index	of	the	fertility	rate	 in	CBS	data	over	time	(termed	“Indexed	Birth	Rate”	 in	
Figure	53).	Model-wise,	the	population	structure	required	an	additional	re-	and	up-skilled	population	stock	

																																																													
90	Note:	the	CBS	estimate	is	corrected	for	immigration	since	the	model	does	not	consider	immigration	patterns.	
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per	skill	level	and	age	cohort	for	integration	consistency.	As	a	result,	a	time	fraction	needed	to	be	added	to	
aid	mathematically	correct	integration	and	population	outcomes,	which	is	set	at	0.1.	 	
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Part II Case study of the Future 
impact of Robotics and AI on the 
Labour market in the Netherlands  

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The	model	developed	in	Part	I	is	simulated	for	the	Netherlands	based	on	the	current	labour	market	
composition	 for	 the	 next	 20	 years.	 The	 future	 scenarios	 (of	 technological	 development	 and	
uncertainties)	are	simulated	to	determine	how	the	labour	force	natively	(without	intervention)	will	
adapt	 to	 replaced	 labour	 inputs	 and	 loss	 of	 labour	 demand.	 This	 provides	 a	 range	 of	 plausible	
futures,	i.e.	how	technology	and	labour	could	co-develop	given	the	uncertainties	faced.	This	base	
case	 is	 expanded	 upon	 by	 exploring	 the	 critical	 sensitivities	 that	 can	mitigate	 unemployment.	 A	
profile	of	policies	is	established	given	these	outcomes.	
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12 Model preparation and setup 
Part	 I	 of	 this	 thesis	 operationalised	 a	 simulation	model	 to	 study	 possible	 future	 labour	 substitution	 given	
technological	change.	The	main	outcome	of	interest	is	unemployment	across	socio-economic	groups	and	the	
ability	 to	adapt	 to	changing	 labour	market	conditions	via	 labour	supply	reallocation	and	re-skilling	and	up-
skilling.	Simultaneously,	demographic	dynamics	continuously	change	the	composition	of	the	population	and	
labour	force	on	the	 labour	supply	side	while,	on	the	 labour	demand	side,	spill-over	effects	counterbalance	
labour	substitution.	In	this	part,	RDM	analysis	is	performed	with	the	SD	model	using	the	EMA	workbench	and	
PRIM	 algorithm	 to	 determine	 plausible	 future	 unemployment	 scenarios	 for	 the	 Netherlands	 and	 identify	
policy	levers.		

12.1 Model configurations and scenarios for exploration and 
policy identification 

The	second	and	third	step	of	the	RDM	framework	are	performed	since	the	first	step	has	been	performed	in	
Part	I,	i.e.	the	relevant	system	is	conceptualised,	uncertainties	identified,	and	outcomes	of	interest	specified	
(Kwakkel,	Haasnoot,	&	Walker,	2016).	Some	further	specification	is	performed	concerning	the	outcomes	of	
interest	and	data	input	for	the	Netherlands.	Following	RDM,	the	second	step	employs	exploratory	modelling	
of	 different	 model	 configurations	 to	 analyse	 the	 behaviour	 of	 the	 system	 given	 the	 uncertainties	 and	 in	
consideration	of	feedback	limitations.	This	implies	that	four	SD	model	configurations	are	used,	namely:	
	

I. Without	any	form	of	feedback	mechanism	in	relation	to	the	labour	market	-	conforming	to	Frey	and	
Osborne	(2017)	and	Nedelkoska	and	Quintini	(2018)	in	respect	of	occupation	substitution	

II. Including	labour	reallocation	-	conforming	to	Arntz,	Gregory,	and	Zierahn	(2016)	and	the	semi-open	
labour	market	 structure	with	dynamic	 skill-tasks	 relations	as	described	by	Acemoglu	and	Restrepo	
(2017,	2018),	among	others	

III. Including	labour	reallocation	and	re-	and	up-skilling	-	conforming	to	the	TBTC	frameworks	
IV. Including	labour	reallocation,	re-	and	up-skilling,	routinisation,	and	spill-over	effects	-	conforming	to	

the	RRTC	 framework	and	 implying	 that	 in	additional	 to	projected	economic	growth,	spill-overs	will	
further	 increase	 output	 demand	 (defined	 as	 the	 productivity	 effect	 by	 Acemoglu	 and	 Restrepo	
(2018)	and	product	demand	effect	by	Gregory,	Salomons,	and	Zierahn	(2016))	

	
The	SD	model	parameters	to	switch	off	the	feedback	mechanisms	is	provided	in	Appendix	VIII.	 In	addition,	
one	 model	 is	 used	 to	 determine	 the	 effect	 of	 increased	 productivity	 growth.	 This	 implies	 that	 future	
technological	advancement	is	to	diverge	from	the	current	trend	of	a	stagnant	productivity	growth	compared	
to	the	technological	development	pace,	termed	as	‘a	redux	of	the	Solow	(1987)	Paradox’91	By	Brynjolfsson,	
Rock,	and	Syverson	(2017,	p.	1).	In	the	model	this	would	shift	the	spill-over	effects	resulting	in	higher	relative	
price	 decreases	 and	 thus	 task-specific	 demand	 growth,	 higher	 wage	 growth,	 stimulation	 of	 technological	
development	 through	 innovation	 investment	 from	 profits,	 but	 also	 less	 labour	 demand	 compared	 the	
macro-economic	growth	rate.		
	
V. Including	 labour	 reallocation,	 re-	 and	 up-skilling,	 routinisation,	 spill-over	 effects,	 and	 increased	

productivity	 growth	 –	 conforming	 to	 plausible	 future	 conditions	 under	which	 productivity	 growth	
exceeds	the	current	levels	due	to	technological	advancement	

	
In	sense	of	scientific	relevance,	 incorporating	these	dynamic	mechanisms	extends	the	current	static	expert	
projections	 to	 include	 the	 fundamental	adjustments	 to	 technological	change:	 ‘the	 labor	market	 impacts	of	

																																																													
91	i.e.	‘we	see	transformative	new	technologies	everywhere	but	in	the	productivity	statistics.’	(Brynjolfsson,	Rock	&	Syverson,	2017,	p.	
1).	
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new	 technologies	 depend	 not	 only	 on	 where	 they	 hit	 but	 also	 on	 the	 adjustment	 in	 other	 parts	 of	 the	
economy’.	 (Acemoglu	 &	 Restrepo,	 2017a,	 p.	 1).	 The	 five	 model	 configurations	 are	 simulated	 across	 the	
future	 automatibility	 estimates	 in	 Table	 2.	 However,	 country	 specific	 estimates	 are	 adopted	 for	 Arntz,	
Gregory,	and	Zierahn	(2016)	and	Nedelkoska	and	Quintini	(2018)	since	both	sources	specify	such	estimates	
for	 the	Netherlands	based	on	 labour	market	and	sectoral	 composition.	This	 results	 in	a	 set	of	 seven	 input	
uncertainty	scenarios,	namely;	
	

A. Gregory,	Salomons,	and	Zierahn	(2016)		
B. Frey	and	Osborne	(2017)		
C. Arntz,	Gregory,	and	Zierahn	(2016)		
D. Nedelkoska	and	Quintini	(2018)		
E. Grace,	Salvatier,	Dafoe,	Zhang,	and	Evans	(2018)		
F. Müller	and	Bostrom	(2016)	
G. Deloitte	(2016)		

	
However,	the	AI	automation	estimates	of	Grace,	Salvatier,	Dafoe,	Zhang,	and	Evans	(2018)	and	Müller	and	
Bostrom	(2016)	(E	and	F)	are	not	used	because	they	are	not	consistent	with	the	TBTC	and	RRTC	framework	
and/or	 methodology.	 This	 prevents	 accurate	 implementation	 and	 comparison	 since	 the	 estimates	 only	
activities	in	general.	Therefore,	estimates	A,	B,	C,	D,	and	G	are	used	to	ensure	comparative	and	substantive	
consistency.	The	exploration	(thus	step	2)	of	the	plausible	future	impact	of	technology	on	unemployment	is	
divided	in	two	tests.	One	test	is	performed	to	determine	the	effect	of	labour	reallocation,	re-	and	up-skilling,	
and	spillovers	and	routinisation	on	unemployment.	The	second	test	 is	performed	to	simulate	the	plausible	
outcomes	for	the	Netherlands.	
	
The	 third	step	of	RDM,	scenario	discovery,	 is	performed	to	 identify	policy	 levers	and	the	conditions	under	
which	they	fail	to	prevent	high	unemployment	rates.	This	analysis	employs	the	PRIM	algorithm	to	determine	
these	 conditions	 for	 the	 unemployment	 outcomes	 of	 interest.	 The	 algorithm	 generates	 a	 set	 of	 boxed	
uncertainty	 spaces	 (given	 the	 dimensions	 set	 by	 the	 uncertain	 parameters)	 which	 are	 characterized	 by	
coverage	and	density:	“Coverage	is	the	fraction	of	all	the	cases	that	are	of	 interest	that	fall	within	the	box.	
Density	 is	 the	 fraction	 of	 cases	 within	 the	 box	 that	 are	 of	 interest.”	 (Kwakkel,	 Haasnoot,	 &	Walker,	 2016	
p.169).	 Based	 on	 the	 ensemble	 of	 boxes,	 the	 most	 relevant	 is	 selected	 depending	 on	 the	 Coverage	 and	
Density	characteristics.	Within	this	box,	the	influence	of	the	uncertain	parameters	is	analyzed	using	quasi-p	
values	 to	evaluate	 for	 statistical	 significance	and	 comparative	parameter	 relevance	 (Kwakkel,	Haasnoot,	&	
Walker,	 2016,	 Bryant	 &	 Lempert,	 2010).	 These	 outcomes	 assist	 behavior	 explanation	 and	 policy	 lever	
identification	to	determine	labour	force	adaptability,	policy	lever	sensitivity,	and	system	properties	relevant	
to	unemployment	caused	by	advanced	RT	and	AI.		

12.2 Outcomes of interest and policy levers 

Briefly	 returning	to	the	main	research	question,	To	what	extend	 is	 the	 labour	 force	capable	of	adapting	to	
labour	 substitution	 by	 advanced	 robotics	 and	 artificial	 intelligence,	 and	 can	 be	 incentivised	 to	 do	 so,	 to	
mitigate	future	unemployment?,	provides	three	outcome	categories	of	interest:	unemployment,	adaptability,	
and	 adaptability	 incentivisation.	 First,	 unemployment	 is	 measurable	 per	 task,	 per	 skill	 level,	 and	 per	 age	
cohort	for	all	combinations	of	skills	and	tasks	in	the	labour	market	(Table	1).	In	relation	with	the	substitution	
frameworks,	 we	 are	 interested	 in	 the	 unemployment	 rate	 per	 skill	 level.	 In	 addition,	 relative	 wage	
developments	 per	 skill	 level	 are	 of	 interest	 to	 study	 inequality	 dynamics	 associated	 with	 technological	
change.		
	
Second,	 the	 effects	 of	 adaptability	 are	 first	 and	 foremost	 measured	 with	 the	 five	 model	 configurations.	
Within	 these	 configurations,	 the	 relative	 adaptability	 is	 determined	 by	 sensitivity	 factors	 across	 an	
uncertainty	range.	During	exploratory	modelling	the	sensitivities	are	treated	as	a	Boolean,	i.e.	0	to	switch	the	
feedback	mechanisms	off	and	1	to	switch	it	on.	In	economic	terms,	a	sensitivity	of	1.0	implies	that	the	tasks	
are	 effectively	 perfect	 employment	 substitutes	 from	 the	 perspective	 of	 labour	 supply.	 During	 scenario	



TU Delft EPA  |  K Spaanderman   

	 85	

discovery,	 the	 sensitivities	 are	 treated	 as	 uncertainty	 ranges	 from	 0	 to	 1	 to	 determine	 their	 effect	 on	
unemployment	and	potential	as	policy	levers.	
	
Lastly,	 the	 outcomes	 concerning	 the	 adaptability	 sensitivities	 from	 the	 exploratory	 step	 and	 scenario	
discovery	are	used	for	a	new	round	of	scenario	discovery	including	policy	levers.	More	specifically,	the	policy	
levers	identified	in	Part	I	are	tested	across	an	uncertainty	range	to	evaluate	their	statistical	significance	and	
comparative	parameter	 relevance.	 This	 is	possible	by	 isolating	 the	ensemble	of	 futures	 to	 a	 limited	 set	of	
futures	of	interest	based	on	unemployment	values	and	using	the	PRIM	algorithm	to	search	within	this	set.	In	
relation	 to	 the	 main	 question,	 this	 set	 contains	 all	 futures	 with	 unemployment	 rates	 beyond	 a	 certain	
threshold	(e.g.	the	current	level	of	unemployment	per	skill	 level).	In	addition,	 labour	market	(labour	supply	
per	 skill	 level,	 labour	 demand	 per	 task,	 labour	 allocation	 per	 skill	 level	 per	 task)	 and	 technological	
substitution	 (Total	 technological	 substitution	 per	 task)	 parameters	 are	 monitored	 during	 exploratory	
modelling.		
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13 Exploration and Policy Identification  
The	exploration	of	future	labour	markets	under	the	influence	of	technological	change	is	performed	using	the	
EMA	 workbench	 in	 Python	 in	 combination	 with	 the	 Vensim	 SD	 model	 configurations.	 The	 five	 model	
configurations	are	setup	with	the	same	initial,	constant,	setting,	and	lookup	values	but	differ	in	the	feedback	
mechanisms	 that	are	switched	off	or	on.	 In	 the	EMA	workbench	 in	Python,	 the	uncertainty	 ranges	are	set	
depending	on	the	uncertainty	scenarios	(A,	B,	C,	D,	and	G)	and	the	outcomes	of	interests	are	universal.	This	
exploration	using	simulation	serves	two	purposes.		
	
First,	 the	effects	 of	 labour	 force	 adaptability	 on	unemployment	 are	determined	using	 Frey	 and	Osborne’s	
(2017)	automatibility	estimates	(thus	running	uncertainty	scenario	B	across	model	configurations	I,	II,	III	and	
IV).	 These	 original	 estimates	 are	 restricted	 to	 automatibility	 and	 do	 not	 account	 for	 demographic	 labour	
force	 shifts,	 labour	 supply	 reallocation	 at	 the	 task	 level,	 skill	 attainment,	 and	 spill-over	 effects.	 In	 other	
words,	the	automatibility	estimates	are	static	predictions	of	the	demand	side	of	the	labour	market	(Frey	&	
Osborne,	 2017)92.	 In	 this	 respect,	 this	 experiment	 is	 aimed	 at	 contributing	 to	 our	 understanding	 of	
technological	change	by	exploring	the	dynamics	of	supply	and	demand.	Therefore,	the	current	automatibility	
estimates	are	extended	upon	 to	 include	unemployment	given	 the	adaptability	of	 the	 labour	 force.	Hence,	
the	first	purpose	of	exploration	is	to	make	an	attempt	in	bridging	the	current	knowledge	gaps,	since,	‘Given	
the	gravity	of	the	technological	transformation	we	are	undergoing,	there	is	astonishingly	little	research	effort	
in	understanding	the	subsequent	response	through	skill	adjustment’	(Nedelkoska	&	Quintini,	2018,	p.	36)	and	
since	the	automatibility	estimates	do	not	account	for	the	reallocation	of	labour	across	tasks	which	is	critical	
to	understand	the	impact	of	technological	change	(Acemoglu	&	Autor,	2012;	Acemoglu	&	Restrepo,	2018).		
	
Second,	the	plausible	future	impact	of	technology	is	explored	using	three	tests.	First,	the	difference	between	
automatibility,	 substitution,	 and	 unemployment	 is	 tested	 given	 the	 labour	 force	 adaptability	 using	 Arntz,	
Gregory,	 and	 Zierahn’s	 (2016),	 Nedelkoska	 and	 Quintini’s	 (2018),	 and	 Deloitte’s	 (2016)	 estimates	 for	 the	
Netherlands93.	This	creates	a	diverse	set	of	uncertainty	scenario’s.	Respectively,	with	high	substitution	rates	
of	manual	tasks;	manual	and	routine	tasks;	and	manual,	routine	and	(relatively)	abstract	tasks	(see	Table	2).	
The	three	uncertainty	scenarios	are	simulated	across	model	configurations	IV.	Uncertainty	ranges	are	used	
for	reallocation,	re-	and	up-skilling,	and	price	elasticity	of	demand	instead	of	Booleans	(0	or	1).	In	addition,	
the	 current	 substitution	 rate	 obtained	 from	 Gregory,	 Salomons,	 and	 Zierahn	 (2016)	 is	 simulated	 to	
determine	 the	 plausible	 futures	 under	 continuation	 of	 the	 substitution	 status	 quo.	 Second,	 uncertainty	
scenario	D	is	simulated	using	model	configuration	V	to	study	the	effect	of	spill-overs	and	abolishment	of	the	
currently	observed	Solow	paradox.	In	other	words,	the	effect	of	increasing	productivity	growth	in	the	future	
is	evaluated.	Third,	scenario	D	 is	simulated	using	model	configuration	 IV	to	study	the	effect	 the	difference	
between	 automatibility	 and	 substitution94	in	 consideration	 of	 exogenous	 factors	 that	 inhibit	 technological	
advancement	and	implementation	(as	discussed	in	9).	
	
Hereafter,	 the	 outcomes	 of	 interest	 from	 the	 previous	 tests	 are	 analysed	 using	 PRIM	 to	 evaluate	 the	
conditions,	 and	 identify	 potential	 policy	 levers,	 under	 which	 unemployment	 will	 grow	 in	 relation	 with	
technological	 advacements	 in	 RT	 and	 IT.	 Therefore,	 the	 simulation	 outcomes	 above	 the	 current	
unemployment	 rates	 are	 analysed	 to	 determine	 which	 factors	 contribute	 to	 these	 outcomes	 and	 which	
policy	levers	are	among	those	factors	that	can	be	influenced	to	reduce	the	unemployment	rate.	In	addition,	
the	required	re-	and	up-skilling	in	the	next	20	years	is	explored	to	ensure	adequate	labour	force	adaptiblity	
and	minimize	unemployment.		

																																																													
92	‘We	make	no	attempt	to	forecast	future	changes	in	the	occupational	composition	of	the	labour	market.’	(Frey	&	Osborne,	2017,	
p.265)	
93	Note	 that	 Frey	 and	 Osborne’s	 (2017)	 estimates	 are	 not	 used	 since	 they	 are	 specific	 to	 the	 US	 and	 Nedelkoska	 and	 Quintini	
(Nedelkoska	&	Quintini,	2018)	provide	a	country	specific	update	on	Frey	and	Osborne	using	the	same	dataset	and	methodology.		
94	This	requires	one	adaptation	to	model	configurations	IV	and	V,	whereby	‘SWITCH	Difference	automation	vs	substitution’	is	set	to	1	
instead	of	0.	
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13.1 The effects of labour force adaptability on future outcomes 

The	 results	 generated	 across	 the	 four	 models	 (1000	 experiments	 per	 model	 with	 the	 script	 provided	 in	
Appendix	 X)	 demonstrate	 a	 consistent	 relation	 between	 unemployment	 and	 feedback	mechanisms,	 albeit	
dependent	on	demographic	developments.	An	overview	across	 the	 skill	 levels	 is	 provided	 in	 Figure	28	 for	
uncertainty	B	 (Frey	and	Osborne	 (2017)).	A	detailed	 representation	per	 skill	 level	over	 time	 is	provided	 in	
Appendix	 XI,	 and	 an	 example	of	 such	 a	 representation	 is	 provided	 in	 Figure	 27.	 The	box-whisker	 plots	 (in	
Figure	28	 and	 at	 the	bottom	of	 Figure	27)	 provide	 an	overview	of	 the	plausible	 unemployment	 given	 the	
uncertainty	projected	over	time	at	5	year	 intervals	per	model	(I,	 II,	 III,	and	IV).	The	boxes	indicate	the	first,	
second,	and	third	quartile	of	the	outcomes	given	the	standard	deviation	and	outcome	distribution,	the	dots	
indicate	the	mean	value	of	the	uncertainty	range,	and	the	whiskers	encompass	the	whole	range	of	outcomes	
(and	 thus	 the	 uncertainty	 range).	 It	 is	 important	 to	 note	 that	 the	 unemployment	 outcomes	 are	 only	
indicative	 since	 the	 test	 is	 performed	 to	 determine	 the	 effect	 of	 adaptability	 compared	 to	 current	
shortcomings	of	future	automatibility	estimates	and	methodologies.	The	results	are	polarised	due	to	the	use	
of	 Boolean	 values	 (i.e.	 the	 highest	 sensitivities	 are	 used	 to	 demonstrate	 the	 effect	 of	 adaptability	 and	
feedback	 mechanisms).	 The	 subsequent	 test	 will	 explore	 the	 actual	 plausible	 future	 of	 work	 for	 the	
Netherlands.	

	

Figure	27	Unemployment	projections	)*	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	

From	 a	 systems	 perspective,	 multiple	 conclusions	 need	 to	 be	 drawn	 from	 the	 results	 concerning	 labour	
reallocation,	re-	and	up-skilling,	and	spill-overs.	Concerning	reallocation,	the	difference	between	model	I	(i.e.	
isolated	labour	market)	and	II	(i.e.	reallocation	across	qualified	tasks)	is	apparent	for	middle	skilled	()*	and	
+*)	 and	 low	 skilled	 unemployment	 (),	and	+,).	 Respectively,	 accounting	 for	 reallocation	 results	 in	 lower	
unemployment	and	lower	uncertainty	()*	and	+*)	and	higher	unemployment	and	lower	uncertainty	(),	and	
+,).	The	results	stem	from	the	middle	skilled	 labour	 force	reallocating	 labour	supply	 to	 low	skilled	tasks	 in	
reaction	 to	 the	 reduced	 labour	 demand.	 Initially	 in	 model	 I,	 the	 combination	 of	 demographic	 skill	
development	and	labour	substitution	of	low	skilled	labour	demand	results	in	relatively	low	unemployment	or	
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even	labour	supply	shortages.	However,	when	middle	skilled	labour	starts	to	reallocate	supply	(in	model	II),	
the	 low	skilled	 labour	force	needs	to	compete	with	the	middle	skilled	over	the	same	tasks.	 In	this	respect,	
this	demonstrates,	and	is	consistent	with,	the	current	observations	where	higher	skilled	labour	is	forcing	out	
low	skilled	labour	(Autor	&	Salomons,	2017;	Frey	&	Osborne,	2017)95.		
	
Concerning	 re-	 and	 up-skilling,	 the	 difference	 between	model	 II	 and	 III	 is	 apparent	 across	 the	 skill	 levels,	
albeit	 with	 different	 behaviour.	 The	 ability	 to	 attain	 new	 skills	 in	 reaction	 to	 technological	 substitution	
reduces	 unemployment	 and	 uncertainty	 of	 the	 low	 and	 middle	 skilled.	 However,	 due	 to	 up-skilling,	 in	
reaction	to	the	relatively	low	unemployment	of	the	high	skilled,	more	individuals	climb	the	socio-economic	
ladder	 and	 increase	 the	 high	 skilled	 ()ℍ	and	+ℍ)	 labour	 force.	 Therefore,	 the	 high	 skilled	 labour	 supply	
increases	 and	 unemployment	 grows	 relative	 to	 model	 II.	 In	 this	 respect,	 the	 labour	 demand	 effects	 of	
technological	 change	 in	 routine	 and	manual	 tasks	 are	 spread	 towards	 abstract	 tasks.	 In	 other	words,	 the	
drastic	 increase	 in	 unemployment	 associated	 with	 future	 technologies	 is	 spread	 across	 skill	 levels.	
Furthermore,	accounting	for	re-	and	up-skilling	reduces	the	unemployment	uncertainty	range.	
	
Concerning	the	spill-over	effect	(model	IV),	the	outcomes	do	not	demonstrate	behaviour	as	expected	based	
on	the	 increased	output	demand	(defined	as	the	productivity	effect	by	Acemoglu	and	Restrepo	(2018)	and	
product	 demand	 effect	 by	 Gregory,	 Salomons,	 and	 Zierahn	 (2016)).	 This	would	 imply	 that	 unemployment	
reduces	relative	to	model	III	across	all	skill	 levels.	The	outcomes	(see	boxes	for	model	IV	compared	to	III	 in	
Figure	28)	only	show	minor	reductions	of	the	third	quartile	for	low	skilled	(),	and	+,)	and	high	skilled	()ℍ	and	
+ℍ)	unemployment.	The	model	deviates	from	the	expected	behaviour	due	to	the	continuation	of	the	current	
levels	of	productivity	growth.	As	a	result,	the	relative	increase	of	productivity	growth	above	current	levels	is	
limited	 and	 therefore	 the	 spill-over	 effect	 (task	 specific	 and	 in	 addition	 to	 the	 projected	macro-economic	
growth)	is	limited	(in	addition	to	the	projected	economic	growth	rate).	This	is	not	necessarily	a	weakness	of	
the	model	but	a	logical	consequence	of	relative	limited	productivity	growth	and	therefore	limited	spill-over	
effects	(additional	test	performed	in	subsequent	section).	The	spill-over	effect	does	reduce	the	uncertainty	
range	 of	 plausible	 future	 unemployment	 slightly	 compared	 to	model	 III	 even	 though	more	 uncertainty	 is	
introduced	in	the	model.		
	
Accounting	for	labour	force	adaptability	drastically	changes	and	reduces	unemployment	projections.	In	this	
respect,	the	outcomes	are	consistent	with,	and	confirm,	the	premise	of	Arntz,	Gregory,	and	Zierahn	(2016)	
whom	 state	 that	 not	 accounting	 for	 adaptability	 results	 in	 overestimation	 of	 the	 impact	 of	 technological	
change	 (as	 is	 the	case	with	Frey	and	Osborne	 (2017)	according	 to	Arntz,	Gregory,	and	Zierahn	 (2016)	and	
therefore	Nedelkoska	and	Quintini’s	(2018)	whom	adopt	the	same	methodology).	From	scientific	relevance	
point	of	view,	these	outcomes	demonstrate	that	the	current	methodologies	can	be	enriched	by	accounting	
for	dynamic	behaviour	associated	with	adaptability.	

13.2 Exploration of future labour markets of the Netherlands 
under technological uncertainty 

The	plausible	future	impact	of	technology	is	explored	using	three	tests:	one	with	continuation	of	the	current	
productivity	growth	(Solow	paradox),	one	to	explore	the	effect	of	increasing	productivity	growth,	and	one	to	
determine	 the	 effect	 of	 the	 difference	 between	 automatibility	 and	 substitution	 under	 influence	 of	
exogenous	factors	(see	9).	The	difference	between	automatibility,	substitution,	and	unemployment	is	tested	
given	the	labour	force	adaptability	using	Arntz,	Gregory,	and	Zierahn’s	(2016)	(C),	Nedelkoska	and	Quintini’s	
(2018)	(D),	and	Deloitte’s	(2016)	(G)	estimates	for	the	Netherlands.	In	addition,	the	current	substitution	rate	
obtained	from	Gregory,	Salomons,	and	Zierahn	(2016)	(A)	is	simulated	(Table	4).	Two	adaptations	have	been	
made	to	the	data.	First,	Nedelkoska	and	Quintini’s	(2018)	(D)	estimates	across	two	probability	levels	for	the	
Netherlands	have	been	recalculated	into	a	corrected	single	estimate	fitting	the	upper	probability	range	and		
	

																																																													
95	It	should	be	noted	that	he	model	is	simulated	without	a	preference	for	higher	skill	levels	for	the	same	labour	demand.	This	option	
can	be	switched	on	using	“SWITCH	Equal	Labour	market	OR	Skill	level	preference”.		
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Figure	28	Unemployment	projections	for	uncertainty	B	for	all	skill	levels	(Overview	per	5	years)	
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time	frame.	Second,	Gregory,	Salomons,	and	Zierahn’s	(2016)	(A)	estimate	has	been	corrected	to	continue	at	
the	current	substitution	rate	for	the	entire	time	period	of	the	simulation.	

13.2.1 Future labour markets with Solow Paradox 
The	results	generated	across	the	four	uncertainty	ranges	(1000	experiments	per	uncertainty	using	the	scripts	
provided	in	Appendix	XII)	demonstrate	different	outcomes	and	behaviour.	An	overview	across	the	skill	levels	
is	provided	in		Figure	29.	Whereas,	a	detailed	representation	per	skill	level	over	time	is	provided	in	Appendix	
XIII.	For	each	of	the	automatibility	estimates	the	results	are	discussed.	
	

Table	4	Estimates	of	technological	automatibility	for	the	Netherlands		

Uncertainty	 Task	
Automation	

Estimate	for	NL	 Time	frame	
Probability	

range	
	 [.]	 [Ξ#]	 [∆01]	 [2#]	
	 	 	 	 	

A.	Gregory,	Salomons,	and	Zierahn	(2016)	 Others	 9.0-10.2%	 20	Years	 1.0	
	 3,	ℛ3 	 0.9-1.02%	 20	Years	 1.0	

	 	 	 	 	
	 	 	 	 	C.	Arntz,	Gregory,	and	Zierahn	(2016)96	 ℳ,	ℛℳ 	 37-51%	 ±	20	Years	 0.7-1.0	

ℛ,	ℛℛ 	 7%	 ±	20	Years	 0.7-1.0	
3,	ℛ3 	 0.1-1%	 ±	20	Years	 0.7-1.0	

	 	 	 	 	
	 	 	 	 	D.	Nedelkoska	and	Quintini	(2018)97	 ℳ	 24.5%-42.2%	 ±	20	Years	 0.7-1.0	

ℛ,	ℛℛ,	ℛℳ 		 28.9%-32.6%	 ±	20	Years	 0.59-0.94	
3,	ℛ3 	 0.001-0.01%	 ±	20	Years	 0.27-0.85	

	 	 	 	 	
	 	 	 	 	G.	Deloitte	(2016)98	
	

ℳ	 42.3%	 ±	20	Years	 0.7-1.0	
ℛ,	ℛℛ,	ℛℳ 		 42.3%	 ±	20	Years	 0.7-1.0	
3,	ℛ3 	 10.4-19.3%	 ±	20	Years	 0.7-1.0	

	 	 	 	 	
	
	

A. Gregory,	Salomons,	and	Zierahn	(2016)		
The	 outcomes	 for	 A	 (Grey	 boxes	 in	 plots	 in	 	 Figure	 29	 and	 in	 Appendix	 XIII)	 demonstrate	 that	
continuation	 of	 the	 current	 rate	 of	 labour	 substitution	 is	 likely	 (75%	 of	 outcomes	 across	 the	
uncertainty	range)	to	result	in	reducing	unemployment	across	all	skill	 levels	up	to	2028,	albeit	with	
the	upper	25%	of	outcomes	demonstrating	 small	 increases	 in	unemployment.	 The	unemployment	
rates	 for	 those	 later	 cases	 outside	 of	 the	 third	 quartile	 are,	 however,	 similar	 to	 current	
unemployment	rates	with	a	maximum	ranging	from	6,1%	for	the	high	skilled	()ℍ	and	+ℍ),	and	6%	for	
the	middle	skilled	()*	and	+*),	and	6-8%	for	the	low	skilled	(),	and	+,).	Yet,	from	2028	to	2038	the	
unemployment	 rates	 are	 expected	 to	 decline	 and	 result	 in	 labour	 supply	 shortages	 across	 all	 skill	
levels	for	the	upper	quartile	(i.e.	the	top	25%	range	of	most	adverse	outcomes).	These	values	occur	
at	 the	 same	 point	 in	 time	 of	 the	 recessions	 in	 the	 economic	model	 and	 demonstrate	 temporary	
peaks	during	 this	 period	 (Appendix	 XIII).	Hence,	 these	 values	 are	most	 likely	 the	 result	 of	 adverse	
economic	conditions	and	not	technology.	Concerning	the	outcomes	within	the	first	to	third	quartile,	
unemployment	 is	 likely	 to	develop	 in	parallel	with	 the	business	cycle	and	 remain	near	 the	current	
levels	up	to	2028.	Here	after	a	consistent	shortage	of	labour	supply	can	be	observed.	These	shortage	
projections	 are	 in	 line	 with	 the	 currently	 observed	 trends	 in	 relation	 to	 demographic	 and	 labour	
force	developments	due	to	societal	aging	(Bloom,	Canning	&	Fink,	2001,	2008;	Peterson,	2017).	Note	
that	the	model	does	not	include	regional	and	intercontinental	migration.		

																																																													
96	Based	on	Table	5	in	Arntz,	Gregory,	and	Zierahn	(2016,	p.	34),	for	the	single	7%	estimate	a	5%	error	margin	is	used	and	for	the	time	
frame	a	10%	up	and	down	margin	is	used.	
97	Based	on	Figure	4.2	in	Nedelkoska	and	Quintini	(2018,	p.	49),	estimates	corrected	with	5%	up	and	down	to	account	for	possible	
measurement	error	in	graph	interpretation	and	a	10%	up	and	down	margin	is	used	for	the	time	frame.	
98	For	the	single	42,2%	estimate	a	5%	error	margin	is	used	and	for	the	time	frame	a	10%	up	and	down	margin	is	used	(Deloitte	does	
not	specify	a	concrete	timeframe	or	timeline)	
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	Figure	29	Unemployment	projections	for	the	Netherlands	across	uncertainties	A,	C,	D,	and	G	(Table	4)	for	all	skill	levels	
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C. Arntz,	Gregory,	and	Zierahn	(2016)		
The	outcomes	for	C	(Yellow	boxes	in	plots	in		Figure	29	and	Appendix	XIII)	demonstrate	a	consistent	
decline	in	unemployment	across	the	skill	levels	up	to	2023	for	all	projections.	Hereafter,	a	systematic	
shortage	in	labour	supply	can	be	observed.	The	contrast	with	automatibility	estimate	A	stems	from	
the	lower	automatibility	estimate	for	routine	tasks.	The	considerably	higher	automatibility	of	manual	
tasks	 is	 offset	 by	 reallocation	 to	 routine	 tasks	 and	 by	 declining	 low	 skilled	 labour	 force	 under	
demographic	trends.	Therefore,	the	drastic	difference	in	projected	outcomes	compared	to	the	other	
automatibility	estimates	can	be	explained	by	the	contrasting	manual	task-skewed	nature.	Moreover,	
the	 automatibility	 estimate	 for	 routine	 tasks	 is	 below	 the	 current	 rate	 and,	 thus,	 reduces	
simultanoes	pressure	on	 labour	 supply	 reallocation.	Hence,	 the	 results	demonstrate	 that	even	 if	 a	
significant	share	of	a	task	type	(Manual	tasks	ℳ,	ℛℳ 	in	this	case)	is	substituted,	reallocation	and	re-	
and	 up-skilling	 will	 be	 counterbalance	 this	 trend.	 Furthermore,	 the	 automatibility	 estimates	 are	
based	on	Arntz,	Gregory,	and	Zierahn’s	(2016)	ISCED	categorised	outcomes	which	may	have	caused	
inconsistency	in	the	relation	between	skill	levels	and	tasks	in	respect	of	the	methodology	employed	
in	this	study.		

D. Nedelkoska	and	Quintini	(2018)		
The	outcomes	for	D	(Orange	boxes	 in	plots	 in	 	Figure	29	and	Appendix	XIII)	demonstrate	relatively	
stable	unemployment	projections	across	the	skill	levels	up	to	2033	within	the	first	to	third	quartile	of	
the	projections.	The	unemployment	 rate	projections	 range	 from	2.1-3.1%	(2023),	2.0-2.7%	(2028),	
2.0-2.2%	(2033),	and	a	consistent	shortage	of	supply	at	2.0%	(2038)	for	the	high	skilled	()ℍ	and	+ℍ).	
For	the	middle	skilled	()*	and	+*),	the	projections	range	from	2.2-3.4%	(2023),	2.5-4.2%	(2028),	2.1-
4.1%	(2033),	and	a	consistent	shortage	of	supply	around	2.0-2.1%	(2038).	Lastly,	the	unemployment	
rates	 for	 the	 low	skilled	 (),	and	+,)	 range	 from	2.4-3.9%	(2023),	2.3-4.3%	(2028),	2.1-4.1%	(2033),	
and	2.0-2.1%	with	a	shortage	of	supply	(2038).		
However,	 in	 the	 upper	 quartile	 of	 most	 adverse	 conditions	 the	 uncertainty	 range	 demonstrates	
unemployment	rates	upto	6%	(2023),	4.8%	(2028),	4.9%	(2033),	and	3.0%	(2038)	for	the	high	skilled;	
5.8-7.0%	(2023),	7.2-9.5%	(2028),	9.0-12.0%	(2033),	and	7.0-10.8%	(2038)	for	the	middle	skilled;	and	
6.2-7.1%	(2023),	8.0-9.9%	(2028),	9.1-13.2%	(2033),	and	7.3-12.9%	(2038)	for	the	low	skilled.		Across	
all	 skill	 levels,	 the	 extended	 skilled	 labour	 force	 (+,,	+*,	 and	+ℍ)	 has	 a	 consistently	 0.1%	 lower	
projected	unemployment	rate	than	the	non-extended	skill	labour	force	within	first	to	third	quartile.	
For	 the	 fourth	quartile	projections	of	 the	middle	and	 low	extended	skill	 labour	 force,	 respectively,	
have	a	1.2-3%	and	0.9-5.6%	lower	unemployment	rate.		
From	2033	to	2038,	the	same	labour	supply	shortage	trend	as	with	automatibility	estimate	A	can	be	
observed	 for	 the	projections	within	 the	 first	 to	 third	quartile.	However,	 in	 the	 fourth	quartile,	 the	
uncertainty	 range	 demonstrates	 continuation	 of	 the	 higher	 unemployment	 rates	 across	 the	 skill	
levels,	 albeit	 with	 a	 small	 decline.	 The	 results	 demonstrate	 that	 there	 is	 a	 significant	 difference	
between	automatiblity,	consequential	substitution,	and	actual	unemployment.	Although	2	to	3	times	
as	 many	 tasks	 are	 automatable	 compared	 to	 the	 current	 rate	 (A),	 the	 first	 to	 third	 quartile	
unemployment	 rates	 remain	 within	 present	 unemployment	 rate	 margins	 across	 the	 skill	 levels,	
ranging	from	2.0%	to	4.3%.		

G. Deloitte	(2016)		
The	outcomes	for	G	(Orange	boxes	in	plots	in		Figure	29	and	Appendix	XIII)	demonstrate	consistently	
higher	 unemployment	 rates	 compared	 to	 A,	 C,	 and	 D	 -	which	 is	 to	 be	 expected	 given	 the	 higher	
automatibility	 estimates	 (Table	 4).	 The	 projections	 demonstrate	 a	 consist	 increase	 in	 the	 lower	
bound	(lower	whisker),	the	first	to	third	quartile,	and	upper	bound	(top	whisker)	of	unemployment.	
The	 unemployment	 rate	 of	 the	 high	 skilled	 labour	 force	 contrasts	 significantly	 with	 other	
automatibility	 estimates.	 Whereas	 with	 A,	 C,	 and	 D	 the	 high	 skilled	 labour	 force	 experiences	 a	
consistently	 lower	 and	 declining	 unemployment	 rate,	 the	 unemployment	 rate	with	G	 increases	 in	
parallel	with	the	other	skill	levels.	This	difference	in	behaviour	can	be	attributed	to	the	relatively	high	
automatibility	of	abstract	in	scenario	G	(i.e.	0-1.02%	compared	to	10.4-19.3%).		
The	 unemployment	 rate	 projections	 for	 the	 high	 skilled	 ()ℍ	and	+ℍ)	 range	 from	 6.0-7.7%	 (2023),	
10.2-12.9%	 (2028),	 13.9-16.8%	 (2033),	 and	 15.0-19.0%	 (2038).	 For	 the	middle	 skilled	 ()*	and	+*)	
the	projections	 range	 from	5.1-6.5%	 (2023),	9.5-10.7%	 (2028),	13.3-16.5%	 (2033),	and	14.8-19.5%	
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(2038)	 and	 for	 the	 low	 skilled	 (),	and	+,)	 from	 5.5-7.2%	 (2023),	 9.0-11.7%	 (2028),	 12.1-15.9%	
(2033),	and	13.0-18.5%	(2038)	for	the	low	skilled	(),	and	+,).		
Interestingly,	the	automatibility	of	abstract	tasks	is	54-75%	lower	compared	to	the	other	task	types,	
yet	 the	unemployment	 rate	 is	 comparable.	 This	 dissonance	 can	be	 explained	by	 the	demographic	
growth	 of	 the	 high	 skilled	 labour	 force	 share.	 Again,	 the	 results	 demonstrate	 that	 there	 is	 a	
significant	difference	between	automatibility,	consequential	substitution,	and	actual	unemployment.	

13.2.2 Future labour markets without Solow Paradox 

The	simulation	of	automatibility	uncertainty	scenario	B	to	determine	the	effect	of	adaptability	and	spill-overs	
(see	13.1)	highlighted	that	the	difference	between	model	configuration	III	(without	productivity	spill-overs)	
and	 IV	 (with	 spill-overs)	 was	 minimal.	 This	 behaviour	 deviates	 from	 the	 expected	 behaviour	 due	 to	 the	
continuation	of	 the	 current	 levels	 of	 productivity	 growth.	As	 a	 result,	 the	 relative	 increase	of	 productivity	
growth	above	current	levels	is	limited	and	therefore	the	spill-over	effect	(task	specific	and	in	addition	to	the	
projected	 macro-economic	 growth)	 is	 limited.	 To	 demonstrate	 the	 effect	 of	 increasing	 productivity	 and	
therefore	 spill-overs,	 the	 simulation	 of	 uncertainty	 scenario	 G	 was	 repeated	 (1000	 experiments	 with	 the	
script	provide	 in	Appendix	XIV)	with	a	 task-specific	productivity	growth	1.5	to	2	times	higher	 (i.e.	0.9-2.0%	
instead	 of	 0.6-1.0%).	 The	 results	 (Figure	 30	 for	 a	 brief	 overview	 and	 Appendix	 XV	 for	 detailed	 results)	
demonstrate	 that	 the	 spill-over	 effects	 can	 offset	 substituted	 labour	 input.	 Therefore,	 the	 model	 is	
consistent	with	 the	productivity	 effect	 as	 defined	 by	 Acemoglu	 and	 Restrepo	 (2018)	 and	product	 demand	
effect	by	Gregory,	Salomons,	and	Zierahn	(2016).	

13.2.3 Accounting for the automatibility versus substitution difference 
Using	the	most	extreme	scenario	for	the	Netherlands,	i.e.	G,	the	effect	of	the	plausible	difference	between	
technological	 automatibility	 and	 actual	 implementation,	 and	 thus	 substitution,	 is	 simulated	 (1000	
experiments	 with	 the	 script	 provided	 in	 Appendix	 XVI).	 Outside	 of	 the	 scope	 of	 the	model,	 Brynjolfsson,	
Rock,	 and	 Syverson	 (2017)	 and	 Arntz,	 Gregory,	 and	 Zierahn’s	 (2016)	 identified	 a	 range	 of	 factors	 that	
influence	 the	 development	 and	 implementation	 of	 technology.	 In	 relation	 to	 the	 difference	 between	
automatilibity	and	substitution	Brynjolfsson,	Rock,	and	Syverson	(2017)	describe	that,	first,	technology	may	
not	mature	up	to	an	operationally	or	financially	feasible	 level.	Second,	technology	may	not	become	widely	
adopted	due	to	(legal)	 limitations	and	firm	size/power	whereby	technology	is	exclusively	available	to	few	a	
beneficiaries	 and	 applications,	 and	 thus	 limiting	 dissipation,	 entrance	 of	 competitors,	 and	 economy	wide	
implementation.	Third,	 the	 implementation	of	advanced	technologies	will	 require	organisational,	business-
cultural,	and	structural	changes	within	and	between	firms.	As	a	result,	cross-firm	supply	chains	and	sectors	
will	need	to	undergo	reorganisation	to	adapt	to	the	changing	production	processes	and	products.	In	relation	
with	 the	 latter,	 technology	 itself	 changes	products	and	production	by	 speeding	up	 the	development	 cycle	
and	scalability	(De	Backer,	DeStefano,	Menon	&	Ran	Suh,	2018;	Frey	&	Osborne,	2017).	In	a	reflection	of	the	
expert	judgment	based	estimates,	Arntz,	Gregory,	and	Zierahn’s	(2016)	highlight	that	future	data	processing	
and	storage	(availability)	limitations	may	inhibit	wide	spread	implementation	of	advanced	IT	and	RT	systems.	
Moreover,	 ethical,	 legal,	 and	 legislative	 factors	 can	 prevent	 the	 implementation	 of	 technology	 (e.g	 self-
driving	cars	or	drones).	Unfortunately,	modelling	these	factors	extends	beyond	the	scope	of	this	research	as	
they,	 similarly	 to	 the	complex	education	models,	would	 require	 separate	 sub-models	 that	are	not	unlikely	
the	size	of	the	model	developed	in	this	research.	In	this	sense,	the	factors	are	treated	as	exogenous	and	are	
included	as	a	black	box	via	a	factor	that	creates	a	difference	between	automatibility	and	substitution	(i.e.	the	
endogenous	feedback	mechanisms	are	operational).		
	
To	simulate	uncertainty	scenario	D,	this	factor	was	set	to	range	between	1	(automatibility	and	substitution	
are	equal)	to	2.90399	(therefore	the	automatibility	is	equal	to	the	range	in	Table	4	times	1	divided	by	a	value	
from	the	range	1	to	2.903).	The	latter	number	is	set	to	ensure	the	substitution	rate	does	not	drop	below	the	
current	levels	(from	uncertainty	scenario	A).	The	results	(Figure	31	and	Appendix	XVII)	demonstrate	that	75%	
(up	to	third	quartile)	of	 the	outcomes	show	a	declining	or	stable	unemployment	rate.	Analysis	using	PRIM	
(Appendix	XVIII)	indicates	that	upper	quartile	outcomes	occur	when	the	substitution	difference	factor	is	1.0-

																																																													
99	Since	42.3%	times	0.7	probability	divided	by	the	maximum	current	rate	of	10.2	and	probability	1	of	A	results	in	2.903.		
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1.7	 for	+ℍ;	 1.0-1.6	 for	)ℍ;	 and	 1.0-1.5	 for	+* ,	)* ,	+,,	),.	 This,	 in	 practical	 terms,	 implies	 that	 when	
substitution	 of	ℳ,	ℛ,	ℛℛ,	ℛℳ 	exceeds	 28.2%	 (D	 estimate	 is	 42.%)	 and	 substitution	 of	3,	ℛ3 	exceeds	
11.4%	 (D	 estimate	 is	 10.4-19.3%),	 unemployment	 may	 drastically	 increase.	 Respectively,	 these	 number	
equate	to	an	annual	substitution	rate	of	1.41%	and	0.57%	(compared	to	the	current	maximum	of	0.51%	and	
0.051%	in	scenario	A).	Yet,	 it	 is	unlikely	that	this	pace	of	substitution	is	realistic	given	the	current	evidence	
concerning	 the	 exogenous	 factors.	 In	 future	 research,	 the	 model	 can	 be	 expanded	 with	 a	 separate	
technology	 sector	 to	 embed	 these	 factor	 in	 the	 model	 and	 study	 their	 effects	 in	 detail	 for	 the	 extreme	
scenarios	(substitution	difference	factor	value	of	1.0-1.7)	rather	than	using	the	current	implementation.	
	
In	relation	with	the	automatibility	estimates	and	findings	for	scenario	C	(Yellow	boxes	in	plots	in		Figure	29	
and	Appendix	XIII),	 it	 is	 concluded	 that	especially	 substitution	of	abstract	 tasks	and	 the	 loss	of	high-skilled	
labour	 demand	 will	 result	 in	 unemployment	 trickling	 down	 because	 re-	 and	 up-skilling	 to	 improve	
employability	 is	 no	 longer	 a	 viable	 strategy	 and	 labour	 supply	 re-allocation	 increases	 competition	 over	
routine	 and	 manual	 tasks.	 However,	 the	 high	 automatibility	 of	 abstract	 tasks	 in	 estimate	 D	 is	 in	 sharp	
contrast	with	 the	 empirical	 and	 theoretical	 findings	 of	 Frey	 and	Osborne	 (2017),	Nedelkoska	 and	Quintini	
(2018),	Arntz,	Gregory,	and	Zierahn	(2016).	The	first	argue	that	only	after	the	next	two	decades	and	 if	 the	
expected	 technological	 bottleneck	 concerning	 social,	 communicative,	 and	 creative	 (see	 3.1)	 aspects	 of	
abstract	tasks	are	resolved,	then	abstract	task	will	become	automatable.	The	second	specifically	emphasise	
that	 substitution	 of	 abstract	 tasks	 and	 high	 skilled	 (cognitive)	 labour	 is	 highly	 unlikely.	 Moreover,	 Arntz,	
Gregory,	and	Zierahn	(2016)	expect	that	at	maximum	1.5%	of	high	skilled	labour	is	automatable	in	the	next	
20	years	across	OECD	countries.	In	addition,	Arntz,	Gregory,	and	Zierahn	(2016)	specifically	emphasise	that	
the	current	automatibility	estimates	of	all	three	are	likely	to	be	overestimations,		
	

‘However,	 even	 for	 the	 less	 restrictive	 task-based	approach,	 there	are	good	 reasons	 to	be	 cautious	
when	 interpreting	 the	 results.	 Firstly,	 the	 approach	 still	 reflects	 technological	 capabilities	 based	on	
experts’	 assessments	 rather	 than	 the	 actual	 utilisation	 of	 such	 technologies,	 which	might	 lead	 an	
overestimation	 of	 job	 automatibility.	 Secondly,	 even	when	 new	 technologies	 are	 increasingly	 used,	
the	effect	this	has	on	employment	prospects	depends	on	whether	workplaces	adjust	to	a	new	division	
of	 labour	or	not.	Workers	might	adjust	by	 increasingly	performing	tasks	 that	are	complemented	by	
the	new	technologies.	Thirdly,	the	approach	considers	only	existing	jobs.’	(Arntz,	Gregory,	&	Zierahn,	
2016,	p.	21)	

	
From	this	point	of	departure,	and	in	consideration	that	the	SD	model	does	account	for	these	dynamics,	this	
hypothesis	can	partially	be	confirmed.	Labour	force	adjustment	through	reallocation	and	re-	and	up-skilling	
reduces	unemployment	drastically.	Moreover,	spill-over	effects	associated	with	technological	advancement	
will	counteract	the	loss	of	labour	input	demand.	Therefore,	the	methodology	applied	in	this	study	accounts	
for	 these	 factors	 that	 result	 in	 overestimation.	 The	 results	 from	 the	 three	 tests	 in	 13.2	 indicate	 that	
unemployment	will	 only	 increase	drastically	under	extreme	conditions,	 i.e.	when	 substitution	 is	 3-fold	 the	
current	 rate	 (which	 is	 improbable	due	 to	 external	 factors)	 and/or	 a	 significant	 portion	of	 abstract	 tasks	 is	
substituted	 (which	 conflicts	 with	 empirical	 and	 theoretical	 evidence).	 From	 the	 outcomes	 of	 13.1	
(concerning	 adaptability)	 it	 can	 be	 concluded	 that	 unemployment	 will	 only	 increase	 drastically	 under	
conditions	where	 adaptability	 is	 non-existent	 (which	 conflicts	with	 empirical	 and	 theoretical	 evidence).	 In	
respect	of	the	research	question,	‘What	are	the	labour	market	implications	of	technological	advancement	in	
the	next	20	years?’,	 it	 is	concluded	that	unemployment	 is	will	 remain	at	current	 levels	or	reduce	to	 labour	
input	shortages	(within	the	boundaries	of	the	model).	
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Figure	30	Unemployment	projections	for	the	Netherlands	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	
(Table	4)	for	all	skill	levels	
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Figure	 31	 Unemployment	 projections	 for	 the	 Netherlands	 for	 uncertainties	 G	 with	 and	 without	 time	 difference	 between	
automatibility	and	substitution	
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13.3 Policy identification with PRIM 

The	exploratory	outcomes	from	13.2	demonstrate	that	unemployment	is	unlikely	to	increase	beyond	current	
levels	 in	 the	Netherlands,	 except	 for	 uncertainty	 scenario	G	 and	 the	upper	quartile	 of	D.	As	 stated	 in	 the	
previous	sections,	the	high	automatibility	of	abstract	tasks	projected	by	Deloitte	(2016)	(G),	conflicts	with	the	
scientific	 consensus.	 Yet,	 for	 exploratory	 purposes,	 uncertainty	 scenario	 G	 provided	 a	 suitable	 range	 of	
outcomes	to	determine	the	effect	of	productivity	growth	spill-overs	and	the	difference	between	substitution	
and	 automatibility.	 The	 outcomes	 of	 the	 other	 estimates	 are	 not	 suitable	 for	 this	 purpose	 due	 to	 the	
projected	 distribution	 and	 shortages	 (i.e.	 because	 of	 which	 the	 effects	 would	 not	 be	 present	 in	 the	
outcomes).	 In	 contrast,	 policy	 identification	 is	 performed	 based	 on	 the	 estimates	 that	 correspond	 to	 the	
current	 scientific	 consensus,	 TBTC	 paradigm,	 and	 real	world	 representatives.	 Hence,	within	 the	 TBTC	 and	
RRTC	 framework,	 the	 outcomes	 of	 uncertainty	 C	 and	 D,	 respectively	 demonstrate	 a	 consistent	 decline	 in	
unemployment	 and	 relatively	 stable	 unemployment	 rate.	 However,	 the	 upper	 quartile	 outcomes	 of	
uncertainty	D	imply	that	growing	unemployment	can	occur.	These	upper	outcomes	are	studied	to	determine	
whether	policy	levers	exists	(within	the	current	model	operationalisation)	that	could	prevent	future	growth	
of	unemployment.	Moreover,	analysing	these	outcomes	facilitates	comparison	with	the	findings	of	Frey	and	
Osborne	(2017),	Nedelkoska	and	Quintini	(2018),	and	Arntz,	Gregory,	and	Zierahn	(2016).	
	
PRIM	is	used	with	the	outcomes	of	estimate	D	from	the	exploration	simulation	(Figure	29)	to	determine	the	
conditions	 under	 which	 technological	 advancement	 results	 in	 growing	 unemployment	 and	 identify	 policy	
levers	 that	 can	 be	 used	 under	 such	 condition.	 PRIM	 creates	 boxes	 of	 projections	 of	 interest	 that	 are	
characterised	 by	 coverage	 and	 density	 (Kwakkel,	 Haasnoot,	 &	 Walker,	 2016).	 After	 running	 the	 PRIM	
algorithm,	 the	boxes	with	 a	 coverage	and	density	 rate	 above	0.8	 are	 selected	and	analysed.	Within	 these	
boxes,	PRIM	defines	the	relative	influence	of	the	uncertain	parameters	based	on	quasi-p	values.	The	values	
express	the	statistical	significance	and	comparative	relevance	(Bryant	&	Lempert,	2010;	Kwakkel,	Haasnoot,	
&	Walker,	2016).	The	 lower	 the	quasi-p	values	of	an	uncertain	parameter	within	a	box,	 the	more	relevant	
and	 statistically	 significant	 it	 is.	 Note,	 as	 described	 in	 2.2,	 that	 use	 of	 RDM	 and	 PRIM	 deviates	 from	 the	
conventional	 application	 of	 the	 four	 steps	 for	 development	 and	 evaluation	 of	 alterative	 policies	 and	
strategies.	Therefore,	 in	 line	with	the	goals	and	research	question	of	 this	 thesis,	 the	effects	of	adaptability	
have	been	identified.	PRIM	is	employed	in	this	analysis	to	determine	the	potential	and	need	for	incentivising	
policies.	
	
The	results	of	 the	PRIM	analysis	are	provided	 in	Appendix	XIX	 (including	script).	For	the	high	skilled	 labour	
force,	 98%	 outcomes	 are	 equal	 or	 below	 the	 current	 unemployment	 rate	 (current	 average	 across	 age	
cohorts	of	3.1%	for	)ℍ	and	3.0%	for	+ℍ)	with	a	maximum	future	unemployment	rate	of	3.9%	for	)ℍ	and	+ℍ.	
Moreover,	 PRIM	 cannot	 return	 a	 consistent	 enough	 set	 of	 boxes	 to	meet	 the	 threshold	 criteria.	 In	 other	
words,	 the	 upper	 outlying	 projections	 do	 not	 have	 consistent	 input	 factor	 to	 which	 the	 outliers	 can	 be	
contributed.	 Furthemore,	 given	 the	 consistency,	 these	 results	 would	 not	 provide	 fruitful	 levers	 since	 the	
unemployment	rate	is	not	projected	to	increase	compared	to	the	current	levels.	For	the	middle	skilled	(initial	
unemployment	4.4%	for	)*	and	4.0%	for		+*),	the	projections	above	the	current	unemployment	rates	(87	of	
1000	for	)*	and	95	of	1000	for	+*)	do	not	contain	boxes	with	a	density	and	coverage	above	0.8.	Therefore,	
the	 projections	 are	 diverse	 and	 cannot	 be	 attributed	 to	 a	 consistent	 combination	 of	 factors.	 The	 only	
influential	factor	and	potential	policy	lever	that	was	identified,	was	the	re-	and	up-skill	sensitivity	for	)*.	This	
suggests	 a	 lack	 of	 re-skilling	 contributes	 to	 the	 higher	 unemployment	 rate	 of	 these	 outliers.	 It	 should	 be	
noted	that	95%	of	the	projections	for	)*	result	in	an	unemployment	rate	of	5.0%	or	lower	(98%	of	outcomes	
below	6.0%	and	maximum	of	8.4%)	and	4.5%	for	+*		(98%	of	outcomes	below	5.0%	and	maximum	of	6.4%).		
For	 the	 low	 skilled	 labour	 force,	 the	 same	 problem	 as	 with	 the	 high	 skilled	 projections	 was	 present.	
Therefore,	98-99%	of	the	outcomes	(22	of	1000	for	),	and	8	of	1000	for	+,)	are	equal	or	below	the	current	
unemployment	rate	(current	average	across	age	cohorts	of	6.2%	for	)ℍ	and	5.7%	for	+ℍ).	Even	though	the	
upper	quartile	whiskers	(Figure	29)	for	the	low	skilled	labour	force	suggest	the	possibility	of	unemployment	
growth,	these	outcomes	are	highly	unlikely.	Moreover,	within	the	upper	quartile	projections	and	projections	
of	unemployment	growth	(compared	to	the	current	unemployment	rates)	most	outcomes	are	close	to	the	
third	quartile	boundary	with	 some	extreme	outliers.	 The	current	unemployment	 rates	of	 lower	 skilled	are	
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considerably	 higher	 than	 the	 other	 skill	 levels.	 Unfortunately,	 the	 outcomes	 above	 the	 highest	
unemployment	 rate	 of	 the	 other	 skill	 levels	 (4.4%	 of	)*)	 do	 not	 provide	 consistent	 policy	 levers	 for	 the	
future	to	reduce	the	low	skilled	unemployment	rate	within	the	scope	of	the	model.	
	
To	conclude,	 the	upper	quartile	projections	and	projections	of	unemployment	growth	across	all	 skill	 levels	
are	the	result	of	a	diverse	combination	of	factors,	that	together	create	the	adverse	conditions	for	the	labour	
force.	These	outcomes	do	not	provide	consistent	opportunities	for	policy	 intervention,	mostly	because	the	
projections	 predict	 unemployment	 rates	 that	 remain	 close	 to	 the	 current	 levels	 because	 of	 which	 policy	
intervention	 is	 unlikely	 to	 be	 necessary	within	 the	 scope	 of	 this	 study.	 The	 projections	 of	 unemployment	
growth	 only	 occur	 under	 extreme	 conditions	 (>2%)	 and	 the	 growth	 is	 generally	 limited	 to	 1	 to	 2	 percent	
point	and	maxima	of	2	to	4	percent	point.	In	this	respect,	the	sub-research	question	‘Which	policy	levers	are	
available	to	mitigate	the	projected	future	unemployment	trends	and	maximise	economic	and	living	standard	
growth	brought	about	by	advanced	robotics	and	artificial	 intelligence?’,	 leads	to	the	conclusion	that	policy	
intervention	in	reaction	to	advanced	RT	and	IT	is	unlikely	to	be	required	concerning	unemployment.	Yet,	the	
results	 from	 13.1	 concerning	 the	 effect	 of	 adaptability	 do	 highlight	 that	 adequate	 re-	 and	 up-skilling	 will	
reduce	 the	 future	 unemployment	 rate.	 Visually	 representing	 the	 total	 re-	 and	 up-skilling	 outcomes	 of	
estimate	D	from	the	exploration	simulation	 in	Appendix	XX	reveals	that	a	considerable	share	of	the	 labour	
force	 will	 need	 to	 be	 trained	 when	 substitution	 materialises	 at	 the	 pace	 of	 the	 automatibility	 estimates	
(which	 are	 2-	 to	 3-fold	 the	 current	 levels,	 see	 Table	 4).	 Concerning	 reskilling,	 1.1-1.2%	of	 the	 high	 skilled	
labour	 force	 ()ℍ)	 will	 need	 to	 be	 reskilled	 (to	+ℍ)	 in	 the	 next	 10-20	 years;	 1.0-1.3%	 of	 the	middle	 skilled	
labour	force	()*)	will	need	to	be	reskilled	(to	+*)	in	the	next	20	years;	and	0.5-1.0%	of	the	low	skilled	labour	
force	 (),)	will	need	 to	be	 reskilled	 (to	+,)	 in	 the	next	20	years.	Concerning	upskilling,	6.4-8.3%	of	+*;	7.7-
9.0%	 of	)*;	 1.4-2.4%	 of	+,;	 and	 1.9-3.5%	 of	),	will	 need	 to	 be	 up-skilled	 in	 the	 next	 20	 years.	 The	 lower	
percentage	of	up-skilling	of	the	 low	skilled	 labour	force	 is	partially	due	to	the	demographic	trend	whereby	
younger	generations	 in	the	 labour	force	are	higher	educated	and	 lower	educated	older	generations	retire.	
Therefore,	 to	 revisit	 the	 sub-question,	 policy	 intervention	 should	 focus	 on	 improving	 the	 employability	 of	
vulnerable	groups	in	the	future,	i.e.	the	middle	skilled,	through	stimulation	and	incentivising	skill	attainment.	

13.4 Synthesis of simulation results 

The	 unemployment	 outcomes	 for	 the	 Netherlands	 under	 automatibility	 estimates	 A,	 C,	 D,	 and	 G	
demonstrate	a	diverse	set	of	outcomes.	Most	notable	are	the	shortage	in	labour	supply	in	scenario	A	and	C	
and	the	low	unemployment	rates	of	D	up	to	the	third	quartile	relative	to	the	automatibility	of	labour	input.	
Based	 on	 the	 exploratory	 projections	 across	 automatibility	 estimate	 G	 and	 the	 upper	 quartile	 of	 D,	 the	
conclusion	 is	 drawn	 that	 excessive	 unemployment	 will	 only	 occur	 in	 the	 extreme	 cases	 that	 substitution	
materialises	 at	 a	 similar	 pace	 as	 technological	 automatibility.	 Therefore,	 unemployment	 is	 unlikely	 to	
drastically	increase	in	the	next	twenty	years.	The	analysis	of	the	conditions	under	which	unemployment	will	
increase	(within	the	scientific	consensus	concerning	abstract	task)	reveal	that	the	upper	outliers	are	scarce	
(>2%)	 and	 cannot	 be	 attributed	 to	 a	 single	 factor	 or	 potential	 policy	 intervention.	 These	 findings	 are	
consistent	 with	 the	 notion	 that	 the	 current	 future	 estimates	 (based	 on	 expert	 judgement,	 static	 task	
compositions,	 and	 not	 exclusion	 of	 adaptability)	 are	 likely	 to	 overestimate	 the	 impact	 of	 technological	
change	on	labour	(Arntz,	Gregory,	and	Zierahn	(2016).	
	
The	scope	and	aim	of	this	study	concerned	unemployment	and	moving	from	static	analysis	of	the	plausible	
future	 of	 work	 to	 dynamic	 simulation	 based	 on	 the	 TBTC	 and	 RRTC	 framework	 of	 technological	 change.	
Hence,	 the	model	 has	been	developed	 to	 study	plausible	 future	unemployed	 resulting	 from	 technological	
advancement.	Closely	related	to	the	concerns	of	future	unemployment,	are	concerns	for	growing	inequality	
and	a	reducing	wage	share	(see	5.2	and	7.1).	Over	the	past	three	decades,	the	wage	share	has	consistently	
declined	 at	 an	 annual	 0.3%	 percent	 point	 rate	 (OECD,	 2015b).	 One	 on	 hand,	 the	 position	 of	 labour	
deteriorates,	while	on	the	other,	technological	productivity	growth	mainly	attributed	to	profits.	As	a	result,	
inequality	grows	as	income	form	capital	accrues	mainly	with	the	higher	wage	income	groups	(as	discussed	in	
5.2).	 The	 current	 rate	 at	 which	 IT	 and	 RT	 are	 increasingly	 capable	 of	 substituting	 labour	 sparks	 debates	
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whether	 the	 balance	 between	 wage-share	 and	 profit-share	 is	 becoming	 ever-in	 favour	 of	 capital	 owners	
(Autor	&	Salomons,	2017).	
	
An	analysis	of	the	development	of	the	wage	share	in	association	with	the	substitution	process	in	the	model,	
suggest	 that	 the	 concern	 over	 growing	 inequality	 are	 justified	 (Figure	 32).	 The	 wage	 share	 continues	 to	
decline	across	all	unemployment	scenarios	(A,	C,	D,	and	G).	However,	from	approximately	2033	onward	the	
wage	share	appears	to	stabilise	for	scenarios	A,	C,	and	D.	The	scatter	plot	at	the	bottom	demonstrates	that	
the	wage	share	systematically	declines	across	all	initial	wage	shares	(an	initial	uncertainty	range	is	used	since	
multiple	 definitions	 exists,	 see	 Cho,	 Hwang,	 &	 Schreyer	 (2017))	 and	 uncertainty	 scenarios.	 If	 the	 current	
substitution	 and	 productivity	 rate	 continues	 in	 the	 future	 (A),	 the	 wage	 share	 will	 on	 average	 annually	
decline	with	0.34%.	This	is	consistent	with	the	recent	trend	of	0.3%.	In	case	of	scenario	C,	the	same	decline	
can	be	expected	(0.34%).	If	technological	advancement	accelerates,	the	wage	share	will	decline	faster	with	
an	annual	rate	of	0.58%	(D)	and	up	to	1.16%	(G).	The	latter	only	occurs	in	the	extreme	case	of	scenarios	G	
(which	are	not	consistent	with	the	scientific	consensus	concerning	abstract	task	automatibility).	To	conclude,	
inequality	will	grow	across	all	uncertainty	scenarios.	Hence,	the	negative	economic	and	societal	implications	
associated	with	 inequality	growth	will	continue	to	be	a	challenge	that	needs	to	be	resolved.	 In	contrast,	 in	
labour	 economic	 literature	 of	 the	 future	 of	 work,	 an	 emphasis	 is	 placed	 on	 plausible	 unemployment	
outcomes	because	of	technological	advancement.	In	this	respect,	and	in	consideration	of	the	unemployment	
outcomes,	this	study	suggest	that	unemployment	will	not	be	a	major	concern.	Instead,	the	growing	decline	
of	 the	 wage	 share	 implies	 that	 wage	 owners	 do	 not	 share	 in	 future	 economic	 growth	 and	 the	 plausible	
welfare	effect	of	technological	advancement.	Therefore,	a	shift	of	focus	towards	inequality	 in	relation	with	
the	future	effect	of	technological	advancement	of	RT	and	IT	is	required	in	future	research.		
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Figure	32	Wage	share	projections	for	uncertainty	A,	C,	D,	and	G	(model	IV)	
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Part III Synthesis of Findings  
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The	 results	 generated	 for	 the	 Netherlands	 are	 reflected	 upon	 from	 a	 theoretical	 and	 empirical	
perspective.	The	 implications	of	 technological	progress	are	placed	 in	a	broader	 international	and	
societal/social	 context.	 To	 conclude,	 the	 research	 question	 is	 revisited,	 reflected	 upon,	 and	 the	
methodology	and	outcomes	are	discussed.	
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14 Findings & Conclusions 
Technological	advancement	is	situated	at	the	centre	of	economic	growth	and	reshapes	how	we	work,	what	
kind	of	work	we	do,	and	who	has	work.		Concerning	the	latter,	there	is	growing	fear	that	future	technological	
advancement	will	deteriorate	the	position	of	the	working	class	because	IT	and	RT	are	becoming	increasingly	
capable	of	performing	human	labour	 input	 in	production	tasks.	Therefore,	the	potential	 impact	of	robotics	
and	artificial	intelligence	is	at	the	centre	of	the	academic	and	societal	debate	about	labour	and	the	future	of	
work.	An	important	factor	contributing	to	this	debate	is	the	uncertainty	involved	with	predicting	the	future	
capabilities	of	technology	and	the	impact	it	may	have	on	work	and	society.	Advancements	in	IT	and	RT	will	
result	in	technological	assimilation	and	extension	of	the	range	of	tasks	technology	can	perform.	As	a	result,	
the	 current	 polarisation	 paradigm	 and	 routine	 biased	 explanation	 will	 fall	 short	 to	 describe	 future	
substitution	due	to	expanding	technological	capabilities.	That	is,	the	combination	of	sensorimotor,	adaptive,	
flexible,	and	mobile	RT	with	cognitively	capable	AI	will	extend	the	range	of	automatable	tasks	from	routine	to	
manual	tasks	-	and	abstract	tasks	in	the	long	run.	Moreover,	continuous	price	reduction	of	such	technology	
will	make	capital	 increasingly	competitive	with	 labour	and	substitution	 increasingly	financially	 feasible	over	
the	next	two	to	three	decades.		
	
In	 consideration	 of	 this	 context,	 the	 future	 effect	 of	 advanced	 IT	 and	 RT	 on	 labour	 substitution,	
unemployment,	and	labour	force	adaptability	has	been	studied	using	dynamic	simulation	following	the	RDM	
framework.	 The	 technological	 change	 and	 labour	 substitution	 framework	 literature	 (TBTC	 and	 RRTC)	 was	
synthesized	 with	 a	 systems	 approach	 to	 conceptualise	 and	 operationalise	 a	 future	 oriented	 model.	 This	
model	has	been	implemented	in	SD,	simulated	using	EMA,	and	analysed	using	PRIM	to	determine	the	range	
of	plausible	futures	and	potential	 for	policy	 intervention.	The	main	findings	contribute	to	answer	the	main	
question,	
	

To	what	extend	 is	the	 labour	force	capable	of	adapting	to	 labour	substitution	by	advanced	robotics	
and	artificial	intelligence,	and	can	be	incentivised	to	do	so,	to	mitigate	future	unemployment?	

	
This	study	shows	that,	although	 labour	may	become	 increasingly	substitutable	by	technology,	 labour	 force	
adaptability	via	labour	supply	reallocation	and	skill	attainment	will	be	able	to	successfully	counteract	the	loss	
of	employability	in	all	but	the	extreme	cases.	Moreover,	spill-over	effects	that	arise	because	of	productivity	
growth	 associated	with	 technological	 change	will	 further	 counterbalance	 the	 substituted	 labour	 demand.	
Continuation	of	the	current	substation	rate	and	technological	advancement	pace	is	likely	to	constrain	future	
economic	 outcomes	 due	 to	 labour	 supply	 shortages	 rather	 than	 growing	 unemployment.	 Moreover,	
simulation	 across	 a	 variety	 of	 future	 scenarios	 illustrate	 that	 acceleration	 of	 unemployment	 is	 unlikely,	
except	when	the	substitution	rate	3-	to	4-folds	in	the	next	20	years	(from	current	maximum	annual	rate	of	
0.51%	 of	 labour	 hour	 demand,	 or	 approximately	 10%	 in	 20	 years	 (Gregory,	 Salomons,	 &	 Zierahn,	 2016)).	
Although	technological	automatibility	(i.e.	the	ability	of	technology	to	automate	and	replace	human	labour	
input	 in	 tasks)	may	develop	at	 this	pace,	 the	 implementation	of	 technology	and	the	substitution	of	 labour	
takes	considerably	 longer	due	 to	 financial,	 technological,	 competitive,	 legal,	 social,	 sectoral,	and	structural	
factors.	Therefore,	the	outcomes	demonstrate	that	sufficient	labour	force	adaptability	should	be	able	offset	
labour	 substitution.	 Yet,	 the	 adaptability	 of	 the	 labour	 force	 under	 these	 conditions	 does	 require	 that	
approximately	 1.0%	 of	 the	 low,	middle,	 and	 high	 skilled	 labour	 force	 needs	 to	 be	 reskilled	 to	 work	 with	
future	 technology	 and	 approximately	 2.3%	 of	 the	 low	 skilled	 and	 7.9%	 of	 the	middle	 skilled	 labour	 force	
needs	 to	 be	 upskilled	 in	 the	 next	 20	 years	 in	 the	 Netherlands.	 Furthermore,	 the	 outcomes	 for	 the	
Netherlands	 suggest	 that	 only	 in	 adverse	 conditions	where	 labour	 input	 in	 abstract	 tasks	 is	 substituted	 in	
addition	 to	manual	and	 routine	 tasks,	 that	unemployment	will	 significantly	 rise	above	current	 levels	 (i.e.	a	
combination	of	2-	to	3-fold	of	manual	and	routine	task	input	substitution	at	1.41%	annually	and	abstract	task	
input	substitution	of	0.57%	annually)	since	adaptation	via	re-and	up	skilling	does	not	improve	employability.	
However,	 the	 literature	 highlights	 that	 it	 highly	 improbable	 that	 the	 abstract	 tasks	 that	 employ	 the	 high	
skilled	labour	force	will	be	automatable	due	to	the	social,	communicative,	creative,	 intuition,	and	inductive	
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reasoning	aspects	of	these	tasks	(as	found	by	Arntz,	Gregory,	and	Zierahn	(2016),	Frey	and	Osborne	(2017),	
Nedelkoska	and	Quintini	(2018)).	As	a	result,	the	total	substituted	labour	input	of	abstract	tasks	is	expected	
to	be	at	around	1-1.5%	over	the	next	20	years.	Hence,	this	combination	of	manual,	routine,	and	abstract	task	
labour	 input	substitution	conflicts	with	the	current	scientific	consensus.	Therefore,	 it	 is	concluded	that	the	
future	unemployment	rate	is	likely	to	be	equal	or	below	the	current	skill	level-specific	unemployment	rates.	
In	 addition,	 the	 labour	 force	 is	 likely	 to	 able	 to	 adapt	 to	 changing	 employability	 and	 labour	 markets	 to	
mitigate	potential	unemployment	growth	in	relation	with	future	technological	advancements.	
	
These	 findings	 are	 consistent	 with	 the	 current	 literature	 and	 empirical	 evidence	 even	 though	 the	
methodology	 employed	 in	 this	 study	 deviates	 from	 the	 existing	 body	 of	 work.	 In	 this	 respect,	 this	 study	
contributes	 to	 the	academic	 field	 in	 an	attempt	 to	 resolve	 the	 shortcomings	of	 current	 expert	 judgement	
based	a	priori	studies	that	examine	plausible	future	 job	 losses	associated	with	technological	advancement.	
Therefore,	 this	 study	 advances	 on	 these	 expert-based	 future	 labour	 market	 projections	 by	 embedding	
demographic	dynamics,	labour	supply	reallocation	across	tasks,	re-	and	up-skilling,	and	spill-over	effects.	The	
model	 and	 this	 study	 are,	 as	 far	 as	 the	 literature	 available	 at	 the	 time	 of	 writing,	 the	 first	 attempt	 to	
operationalise	the	TBTC	and	RRTC	framework	to	dynamically	model	and	simulate	future	outcomes	including	
these	dynamics.	This	naturally	implies	that	the	model	can	benefit	from	improvement	within	the	frameworks	
and	 extensions	 that	 reach	 beyond	 the	 TBTC	 and	 RRTC	 frameworks	 to	 incorporate	 sectors,	 markets,	 and	
factors.	 Therefore,	 the	 results	 should	 be	 considered	 within	 these	 aggregation	 limitations	 as	 well	 as	 the	
inherent	space	for	improvement	of	representativeness	and	accuracy	of	a	first	and	exploratory	attempt.	As	a	
result,	 the	 adaptability	 of	 the	 labour	 force	may	 be	 overestimated	 due	 to	 unobserved	 barriers	 (which	 are	
discussed	 in	 the	 discussion).	 Moreover,	 the	 model	 still	 relies	 on	 data	 from	 studies	 that	 employ	 expert	
judgments	to	study	the	future	of	work.			
	
From	 a	 policy	 perspective,	 the	 exploratory	 outcomes	 highlight	 that	 re-	 and	 up-skilling	 improves	 the	
employability	 of	 the	 labour	 force	 and	 consistently	 reduces	 unemployment	 across	 the	 uncertainty	 space.	
Moreover,	the	outcomes	suggest	that	these	mechanisms	naturally	occur	through	employees	that	seek	better	
employment	possibilities	and	employers	 that	 seek	possibilities	 to	 resolve	mismatches.	However,	 to	ensure	
these	 mechanisms	 function,	 governments	 and	 businesses	 have	 a	 shared	 responsibility	 and	 interest	 in	
adequately	equipping	the	labour	force	though	education.	Hence,	education	and	advancement	of	education	
systems	is	a	shared	effort	and	responsibility	that	needs	continuous	attention.	Even	more	so	since,	the	lack	of	
education	possibilities	will	prevent	the	labour	force	from	adapting,	as	a	result,	increasing	unemployment	and	
inequality.	 In	 respect	 of	 both	 inequality	 and	 policy	 making,	 the	 outcomes	 highlight	 that	 growing	
unemployment	as	result	of	technological	advancement	is	highly	unlikely,	even	when	treating	substitution	as	
being	equal	 to	 automatibility.	 	 In	 contrast,	 the	outcomes	 concerning	 the	wage	 share	point	 to	 a	 continues	
decline	 of	 the	 position	 of	 the	 labour	 force	 in	 respect	 of	 economic	 growth	 and	 growing	 inequality.	 The	
outcomes	point	to	a	continuation	of	the	current	trend	of	a	reduction	of	the	labour	share	of	0.3%	annually	or	
acceleration	 to	 0.58%	 (or	 higher	 in	 extreme	 scenarios).	 Hence,	 inequality	 should	 be	 at	 the	 centre	 of	 the	
policy	 debate	 given	 the	 societal	 implications	 associated	 with	 inequality.	 In	 respect	 of	 this	 study	 and	 its	
fundamental	 academic	 underpinnings,	 future	 attention	 should	 therefore	 shift	 to	 integrally	 studying	
inequality	as	a	result	of	technological	advancement.		

	
Robots	and	Artificial	Intelligence,	the	new	economic	motor	or	downfall	of	the	working	class?	

	
To	conclude,	and	return	to	the	title	of	this	thesis,	IT	and	RT	will	not	be	the	downfall	of	the	working	class	in	
terms	of	employment	and	will	only	become	the	economic	motor	if	the	Solow	paradox	currently	associated	
with	 the	 technologies	 ceases	 to	 exist.	 Yet,	 the	 question	 that	 needs	 to	 be	 raised	 for	 future	 research,	 is	
whether	the	working	class	will	share	in	the	economic	outcomes	that	technology	may	bring.		
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15 Discussion 
The	 complex	 systems	 model	 was	 developed	 to	 simulate	 future	 unemployment	 projections	 given	 the	
identified	uncertainties.	The	model	is,	as	far	as	described	in	available	literature,	the	first	simulation	model	of	
the	 TBTC	 and	 RRTC	 frameworks	 to	 study	 future	 impact	 of	 technological	 change	 and	 the	 first	 attempt	 to	
incorporate	 dynamics	 and	 feedback	 mechanisms	 in	 comparison	 to	 the	 a	 priori	 automatibility	 studies.	
Therefore,	 scope	 boundaries	 were	 set,	 and	 simplifications	 and	 assumptions	 made	 during	 model	
development	 and	 operationalisation.	 The	 quantitative	 nature	 of	 the	 model	 and	 analysis	 is	 insensitive	 to	
qualitative	factors.	Hence,	the	outcomes	of	the	model	need	to	be	reflected	upon	from	a	more	holistic	social	
and	 societal	 perspective.	 The	 European	 Commission	 and	 European	 Group	 on	 Ethics	 in	 Science	 and	 New	
Technologies	 (EGE)	 are	 currently	working	 on	 a	 policy	 perspective	 and	 evaluation	 of	 the	 future	 of	work	 in	
consideration	of	the	changes	we	face.	This	study	and	the	results	will	be	reflected	upon	from	an	ethical	and	
societal	perspective.	Furthermore,	the	 literature	and	process	of	technological	change	and	globalisation	are	
closely	related.	For	that	reason,	this	perspective	is	reflected	upon.		

15.1 Globalisation and offshoring 

Parallel	to	the	development	of	production	technology,	globalisation	has	shifted	and	relocated	former	labour	
through	 offshoring	 (Autor,	 2015;	 Goos,	 Manning,	 &	 Salomons,	 2011;	 Graetz	 &	 Michaels,	 2017;	 Mishel,	
Shierholz	 &	 Schmitt,	 2013).	 Initially	 globalisation	 was	 thought	 to	 completely	 reallocate	 manufacturing.	
However,	later	evidence	revealed	that	tasks	within	the	processes	where	offshored	–	as	with	substitution	by	
technology	 (0112GMS).	 Hence,	 the	 observed	 loss	 of	 routine,	 production,	 and/or	 middle-skilled	 jobs	 was	
associated	 with	 both	 developments	 (Autor,	 2013).	 Consequently,	 the	 simultaneous	 emergence	 of	
automation	and	globalisation	complicated	measurement	and	separation	of	the	effects	(Autor,	2013;	Autor,	
Dorn,	&	Hanson,	2015;	Goos,	Manning,	&	Salomons,	2011;	Graetz	&	Michaels,	2017).	The	complication	with	
this	 co-emergence	 is	 that	 globalisation	was	 partly	made	possible	 by	 technological	 development	 (DeCanio,	
2016;	 Goos,	 Manning,	 &	 Salomons,	 2009).	 	 Moreover,	 from	 a	 financial	 perspective,	 the	 motivation	 to	
offshore	or	automate	the	production	process	appears	to	be	identical	and	target	the	same	tasks.	Namely,	to	
reduce	production	costs	by	substituting	routine	task	labour	for	either	technology	or	low-wage	labour	abroad	
–	catalysed	by	falling	trade	costs	(Autor,	Dorn,	&	Hanson,	2015).		
	
Although	 co-emergent,	 the	 effect	 of	 globalisation	 and	 automation	 are	 distinct,	 industry	 dependent,	 and	
occupation	 specific100	(Autor,	 Dorn,	 &	 Hanson,	 2015,	 Goos,	 Manning,	 &	 Salomons,	 2009).	 In	 the	 US,	
industries	 facing	 competition	 from	 low-wage	 labour	 imports	 experienced	 significant	 declines	 in	 labour	
demand	for	manufacturing	and	non-college	employment.	Therefore,	globalisation	altered	the	overall	labour	
market	composition	and	factor	productivity	of	the	tasks	that	remain	(Autor,	Dorn,	&	Hanson,	2015).	On	the	
other	 hand,	 technological	 substitution	 resulted	 in	 job	 polarisation	 and	 shifting	 occupational	 compositions	
but	not	a	net	decline	in	overall	employment	(Autor,	Dorn,	&	Hanson,	2015).	In	Europe,	the	negative	effect	of	
globalisation	on	employment	appears	 to	have	been	 limited	 compared	 to	 technological	 substitution	 (Goos,	
Manning,	&	Salomons,	2009,	Goos,	Manning,	&	Salomons,	2011).	Altogether,	globalisation	results	in	a	loss	of	
jobs	 (mainly	 in	 low	 skill	 manufacturing)	 while	 technological	 substitution	 results	 in	 a	 shift	 in	 the	 labour	
composition.	 However,	 like	 technological	 change	 over	 the	 past	 decades,	 offshoring	 result	 in	 inequality	
growth	and	has	been	in	favour	of	the	high	skilled	labour	force	(Hummels,	Jørgensen,	Munch,	&	Xiang,	2014).		
	
Contrarily	 to	 historic	 developments,	 the	 current	 progress	 in	 robotics	 enables	 manufacturers	 to	 re-shore	
parts	of	production	back	 to	 the	 country	of	origin	 (IFR,	 2017).	 The	 relative	 costs	 reduction	and	 increase	 in	
productivity	 of	 robotic	 equipment	 can	 spark	 a	 new	 spill-over	 effect,	 termed	 reshoring	 (IFR,	 2017).	 This	
implies	 that	 the	 increase	 in	 productivity	 and	 reduction	 of	 costs	 provides	 economically	 competitive	

																																																													
100	See	Goos,	Manning,	&	Salomons	(2009)	for	methodology	and	results	on	separating	the	impact	of	globalization	and	technological	
progress	on	an	occupation-specific	level.	
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production	 in	 high-wage	 countries.	 As	 a	 result,	 reshoring	 reclaims	 lost	 labour	 hours	 and	 restores	 the	
economic	 spill-over	 effects.	 In	 similar	 fashion,	 companies	 that	 already	 invested	 in	 substituting	 technology	
appear	 to	 be	 less	 likely	 to	 offshore	 parts	 of	 production	 at	 a	 later	 stage	 (IFR,	 2017).	 The	 current	 evidence	
indicates	that	the	lower	price	of	robotics	has	slowed	down	off-shoring,	but	no	re-shoring	has	occurred	(De	
Backer,	DeStefano,	Menon	&	Ran	 Suh,	 2018).	 Interestingly,	 China	 is	 currently	 the	 largest	 buyer	of	 robotic	
equipment	and	will	become	a	major	 technology	manufacturer	 (Graetz	&	Michaels,	2017;	Frey	&	Osborne,	
2015;	 IFR,	 2017).	 This	 trend	 extends	 to	 other	 developing	 countries	 (De	 Backer,	 DeStefano,	Menon	&	 Ran	
Suh,	2018;	Graetz	&	Michaels,	2017;	Sirkin,	Zinser	&	Rose,	2015).	The	adoption	of	robotics	allows	developing	
countries	to	leap	frog	in	technology,	quality,	and	competitiveness	especially	due	to	lower	operational	costs	
(Sirkin,	 Zinser	 &	 Rose,	 2015).	 Therefore,	 the	 question	 that	 arises	 is	 if	 eventually	 robots	 (and	 other	
technology)	will	reinitiate	a	globalisation	trend	due	to	capital	cost	offshoring	-	 instead	of	prior	 labour	costs	
offshoring.	 This	 implies	 production	 is	 (re-)	 located	 in	 (/to)	 countries	 with	 lower	 production	 costs	 due	 to	
higher	capital	factor	productivity	and	thus	undermining	the	re-shoring	claims.	

15.2 Societal and Social context 

The	methodology,	framework,	and	model	employed	in	this	study	relate	to	labour	as	a	two-sided	means	to	an	
end.	On	 the	 one	 hand,	 labour	 input	 is	 a	 resource	 for	 production	 and	 is	 treated	 as	 a	 service	 in	 return	 for	
financial	compensation.	On	the	other	hand,	 labour	provides	an	 income	to	households	 to	pay	 for	expenses	
and	 satisfy	 utility	 through	 consumption	 and	 saving.	 This	 economic	 perspective	 is	 embedded	 in	 the	model	
through	relative	unemployment-based	labour	allocation	and	re-	and	up-skilling.	The	literature	and	results	in	
this	study	demonstrate	that	technological	advancements	will	change	the	tasks	we	perform,	the	employment	
opportunities	we	have,	the	competition	and	uncertainty	we	face,	and	inequality	we	may	encounter.	Each	of	
these	 aspects	 influences	 individuals,	 households,	 communities,	 demographic	 groups,	 and	 society	 beyond	
employment	and	income.		
	
From	 an	 ethical	 perspective,	 the	 implications	 of	 technological	 advancements	 are	 diverse.	 In	 this	 study,	
technological	 substitution	of	 labour	 is	 treated	 from	a	 labour	economic	narrative.	However,	 the	changes	 in	
the	task	composition	and	task	themselves	will	change	work	from	a	value-based	narrative.	Firstly,	the	process	
of	 labour	 substitution	 implies	 that	 labour	 is	 replaced	by	capital	which	would	suggest	an	 impending	 loss	of	
income	 and	 social	 security.	 This	 raises	 ethical	 questions	 whether	 societies	 will	 find	 such	 outcomes	
acceptable	 as	 it	 may	 violate	 humanitarian,	 social,	 and	 moral	 standards	 in	 society.	 Secondly,	 society	 may	
prefer	 activities	 and	 decision	 making	 to	 be	 performed	 by	 humans	 for	 social	 or	 ethical	 reasons.	 Both	
developments	could	imply	that	technological	change	is	impaired	as	social	forces	prevent	the	implementation	
of	 technology	 (as	 also	 argued	 by	 Arntz,	 Gregory,	 and	 Zierahn	 (2016)).	 Conversely,	 this	 also	 implies	 that,	
implementation	of	 technology	by	businesses	 and	 legislation	 concerning	 technology	by	 governments,	 thus,	
comes	with	a	social	an	ethical	responsibility.		
	
The	work	we	do	and	the	tasks	we	perform	extend	to	a	personal	level	of	motivation,	self-fulfilment,	personal	
development,	 (societal)	engagement,	and	contribution	 to	our	 (social)	environment.	Therefore,	our	work	 is	
part	of	our	social	role	and	identity	and	extends	beyond	a	financial	means	to	an	end.	 In	sharp	contrast,	the	
model	assumes	that	 labour	supply	allocation	and	employment	are	a	rational	process	whereby	labour	force	
members	perform	tasks	according	to	the	changing	composition	of	labour	opportunities	available.	However,	
these	changes	may	imply	that	labour	force	members	are	forced	to	be	employed	and	perform	tasks	that	are	
dissonant	with	their	intrinsic	personal	incentives.	As	a	result,	people	may	feel	disengaged	from	the	social	and	
societal	environment	and	the	meaning	they	seek	in	their	work.		In	relation	with	the	model,	this	implies	that,	
even	 though	 unemployment	 may	 be	 low	 and	 wages	 satisfactory,	 yet,	 the	 actual	 welfare	 and	 wellbeing	
growth	we	experience	may	be	limited	or	impeded.		Moreover,	growing	inequality	deteriorates	this	position	
since	it	inhibits	individuals	from	pursuing	work	that	brings	them	value	and	satisfies	those	personal	elements	
of	work.	Therefore,	growing	 inequality	 (as	projected	by	 the	 results	 in	 this	 study)	not	only	deteriorates	 the	
financial	 position	 of	 the	 labour	 force	 and	 the	 ability	 of	 households	 to	 safeguard	 the	 affordability	 of	
fundamental	needs,	living	standards,	and	ability	to	accumulate	wealth	and	financial	independence.		
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Lastly,	the	model,	and	associated	literature,	treat	re-	and	up-skilling	as	a	vital	mechanism	to	counteract	the	
loss	 of	 labour	 demand	 due	 to	 technological	 advancement.	 From	 a	 labour	 economic	 narrative,	 the	 results	
confirm	 the	 criticality	 of	 skill	 attainment	 to	 adjust	 to	 changing	 labour	 demand.	 Yet,	 the	 model	
implementation	 is	 restricted	 to	 a	 rational	 process.	 However,	 people	 pursue	 education	 and	 training,	 not	
necessarily	 because	 of	 financial	 and	 employability	motives,	 but	 because	 of	 intrinsic	 interest	 and	 personal	
development.	Moreover,	 the	 process	 of	 skill	 attainment	 is	 a	multi-actor	 problem	 that	 involves	 the	 labour	
force,	 employers,	 and	 governments	 to	 ensure	 education	 systems	 are	 equipped	 to	 provide	 adequate	 and	
relevant	 skills	 given	 how	 technology	 changes	 the	 demand	 for	 skills.	 This	 also	 implies,	 that	 business	 and	
government	have	an	economic,	financial,	and	social	obligation	to	contribute	to	the	capabilities	of	the	labour	
force,	 rather	 than	a	 rational	narrative	where	 labour	 force	members	engage	 in	 skill	 attainment	 to	 improve	
their	employability	(and	economic	and	professional	success	in	life).	In	combination	with	the	notion	that	not	
all	labour	force	members	will	be	able	to	re-	and	up-	skill	(IFR,	2017),	future	research	should	focus	on	these	
multi-actor	and	social	aspects	of	education	to	ensure	(financial)	accessibility	of	skill	attainment	and	inclusive,	
decent,	and	equal	work	opportunities.		
	
These	concurrent	developments	with	 technical	advancement	deteriorate	 the	position	of	 the	working	class	
beyond	 unemployment.	 The	 findings	 using	 a	 dynamic	 simulation	model	 in	 this	 study	 and	 the	 findings	 of	
Arntz,	 Gregory,	 and	 Zierahn	 (2016)	 and	 Nedelkoska	 and	 Quintini	 (2018)	 suggest	 that	 unemployment	 in	
reaction	 to	 future	 technological	 change	 will	 be	 limited	 –	 albeit	 in	 consideration	 of	 the	 limitations	 of	 the	
model.	 Therefore,	 future	 research	 and	 modelling	 should	 focus	 more	 on	 an	 integrated	 approach	 that	
considers	 the	 co-development	of	 unemployment,	 inequality	 aspects,	 and	deteriorating	positions	of	 labour	
force	groups	rather	than	restricting	research	into	future	unemployment.	This	suggests,	that	future	modelling	
should	 focus	 on	 expanding	 the	 system	 boundaries	 to	 include	 a	 more	 representative	 labour	 market	 of	
contract	 types,	 labour	hours,	 and	wage	 formation.	Moreover,	 from	a	policy	perspective,	 expansion	of	 the	
model	to	include	these	aspects	will	also	enable	more	holistic	policy	analysis.		

15.3 Method and model limitations and future work 

Throughout	 the	 development	 of	 the	model,	 adaptations	 have	 been	made	 to	 ensure	 consistency	with	 the	
TBTC	 and	 RRTC	 frameworks	 and	 methodology,	 future	 automatibility	 estimates	 and	 methodology,	 and	 to	
ensure	 consistent	 scope	 boundaries.	 This	 approach	 followed	 from	 the	 identified	 scientific	 gap	 concerning	
future	estimates	of	unemployment	in	relation	with	technological	advancement	of	IT	and	RT.	These	estimates	
are	 based	 on	 expert	 judgements	 on	 the	 automatibility	 and	 automation	 probability	 of	 tasks	 which	 are	
projected	across	the	current	occupational	composition	using	the	TBTC	framework.	Therefore,	the	estimates	
do	not	account	 for	 reallocation,	 re-	and	up-skilling,	 spill-overs,	and	changing	 task	compositions.	Yet,	 these	
factors	 have	 consistently	 been	 identified	 as	 critical	 mechanisms	 that	 change	 the	 materialisation	 of	
technological	advancement	and	its	 impact.	From	this	point	of	departure,	a	dynamics	simulation	model	was	
developed	to	account	for	these	effects	and	determine	their	implications	in	relation	with	the	static	estimates.	
Hence,	 the	 effect	 of	 adaptability	was	 simulated	 across	 technological	 advancement	 estimates.	 In	 addition,	
these	outcomes	have	been	analysed	to	identify	policy	levers.	
	
The	 simplifications	 equate	 to	 an	 isolated	 and	 simplified	 representation	 of	 the	 real-world	 system	 that	 is	
consistent	with	TBTC	and	RRTC	framework	but	expands	on	the	economy(etr)ic	production	function	models.	
These	expansions	 include	a	demographic	model	to	simulate	a	changing	 labour	force	composition;	a	 labour	
market	model	 to	 account	 for	 labour	 supply	 reallocation	 across	 tasks;	 an	 education	 to	 include	 re-	 and	up-
skilling	in	reaction	to	unemployment;	and	technology	model	(in	combination	with	the	production	model)	to	
account	for	spill-over	effects.	During	development	of	these	sub-models	scope	boundaries	have	been	set	and	
simplifications	have	been	made.	These	decisions,	potential	implications,	and	improvements	and	expansions	
are	discussed	for	each	sub-model	and	graphically	summarised	in		Figure	33.	
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15.3.1 Demographic Model 

The	 demographic	 model	 is	 structured	 into	 age	 cohorts	 and	 skill	 levels,	 respectively,	 based	 on	 the	
international	definition	for	the	work	force	(and	associated	statistics	to	ensure	consistent	input	data)	and	the	
skill	 level	 composition	 of	 the	 TBTC	 and	 RRTC	 frameworks.	 The	 age	 cohorts	 encompass	 are	 pragmatically	
divided	 to	 represent	different	 phases	 in	 life	 and	 associated	 societal	 or	 demographic	 roles.	 The	 result,	 is	 a	
structure	 of	 six	 age	 cohorts	 across	 six	 skill	 levels	 that	 ensure	 accurate	 representation	 of	 demographic	
dynamics	 during	 mathematical	 integration	 of	 the	 population	 flows.	 The	 current	 age	 cohort	 structure	
aggregates	 the	 population	 of	 multiple	 ages	 into	 single	 cohorts	 (see	 Appendix	 V).	 However,	 the	
representativeness	 of	 the	 demographic	 model	 can	 be	 improved	 using	 subscripting	 in	 the	 SD	 model.	
Subscripting	 can	 be	 used	 to	 slice	 each	 age	 cohort	 into	 1-year	 ‘sub’-cohorts	without	 the	 need	 to	 create	 a	
stock-flow	 structure	 for	each	1	 year	 cohort.	 The	narrower	age	 cohorts	will	more	accurately	 represent	 the	
real-world	demographic	composition	of	the	population	at	initialisation.	Moreover,	the	integration	process	of	
aging	will	more	 accurately	 represent	 real-world	 demographic	 projections	 (Appendix	 VII).	 Yet,	 it	 should	 be	
noted	that	this	improvement	requires	year-based	initial	population	data	per	sex	per	skill	level.	It	would	also	
require	expansion	of	the	demographic	model	with	a	returning	flow	for	each	population	stock.	On	one	hand,	
Expansion	of	the	model	based	on	this	subscripting	will	ensure	that	the	demographic	composition	does	not	
deviate	from	the	project	trend.	On	the	other	hand,	it	 is	unlikely	that	the	unemployment	outcomes	per	skill	
level	would	be	significantly	different,	albeit	they	may	be	slightly	different	per	age	cohort	per	skill	level.		
	
The	birth	component	in	the	model	is	based	on	the	current	statistical	correlations	between	parents’	skill	level	
and	their	children’s	highest	achieved	skill	level	for	all	combinations	of	parent,	parent	couples,	and	child.	This	
information	 is	available	 in	multiple	 forms	for	 the	Netherlands	via	 the	Central	Bureau	of	Statistics	database	
and	associated	publications	(Appendix	II).	The	result	is	a	detailed	and	accurate	birth	model.	Yet,	the	required	
data	input	may	not	be	available	for	other	countries.	Therefore,	from	a	reusability	perspective,	the	model	can	
be	improved	with	a	birth	model	components	that	is	based	on	universally	available	dataset	across	countries.	
The	education	factors	in	the	OECD	PISA	database	(see	8.2)	provide	a	systematic	set	of	indicators	that	could	
be	 used	 for	 this	 purpose.	 The	 family	 background	 [6]	 and	 individual	 ability	 factors	 [7]	 in	 the	 database101	
provide	a	comprehensive	starting	point.	This	would	enable	simulation	for	different	countries	and	comparison	
of	the	outcomes.		
	
The	 demographic	model	 is	 isolated	 from	 interaction	with	 the	models’	 environment.	 Therefore,	migration	
was	not	 included	 in	 the	model.	However,	migration	will	 continuously	 change	 the	demographic	and	 labour	
force	 composition.	 Therefore,	 for	 better	 representativeness,	 the	model	 needs	 to	 be	 expanded	 to	 include	
refugee	 and	 employment/economic	 migration.	 Migration	 is	 related	 to	 the	 model	 through	 multiple	
mechanisms.	 Firstly,	migration	 changes	 the	 demographic	 composition	 of	 the	 population	 and	 labour	 force	
across	age	cohorts	and	skill	levels.	In	addition,	migration	influences	births	due	to	changes	in	the	young	adult	
population.	 Second,	 (economic)	migration	 is	 incentivised	 by	 better	 living	 conditions	 and	 employability	 (as	
well	 as	 environmental,	 political	 and	 social	 factors).	 Therefore,	 the	 relative	 unemployment	 rate	 and	wage	
level	 between	 countries	 will	 influence	 migration	 patterns.	 Thirdly,	 the	 skill	 level	 and	 skill	 attainment	
capabilities	 of	 migrants	 is	 likely	 to	 be	 different	 due	 to	 differences	 in	 education	 system	 quality	 during	
childhood,	 skill	 attainment,	 and	 language	 barriers.	 Fourthly,	 the	 skill	 set	 is	 likely	 to	 be	 different	 due	 to	
differences	 in	 occupational	 compositions	 and	 labour	 practises	 in	 the	 country	 of	 origin.	 Therefore,	 labour	
adaptability	 is	 likely	 to	 be	 lower	 and	 requires	 attention	 to	 ensure	 economic	 integration	 and	 equal	
opportunities.	 Incorporating	 migration	 in	 the	 model	 requires	 an	 incoming	 immigration	 and	 outgoing	
emigration	 flow	 for	 each	 population	 stock.	 The	 quantity	 of	 the	 incoming	 and	 outgoing	 population	 can	 be	
forced	 into	the	model	based	on	projected	data	or	generated	based	on	a	separate	migration	sub-model.	 In	
both	cases,	the	data	should	include	skill	level	and	age	cohort	specific	quantifications.	In	relation	with	labour	
force	adaptability,	the	model	can	be	simulated	under	the	assumption	of	unchanged	reallocation	and	re-	and	
up-skilling	 sensitives	 or	 a	 correction	 in	 these	 factors	 can	 be	 made	 depending	 on	 empirical	 evidence	 in	
relation	with	migration.	Including	migration	in	the	model	is	likely	to	change	unemployment	outcomes	due	to	
population	growth,	 shifts	 in	 the	 labour	 force	across	 skill	 levels,	 and	changes	 in	 labour	 supply	across	 tasks.	

																																																													
101	http://www.oecd.org/pisa/data/		
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Therefore,	 future	 expansion	 of	 the	 model	 with	 an	 embedded	 migration	 model	 will	 improve	
representativeness	and	accuracy.	

15.3.2 Labour Market Model 
The	labour	market	model	is	based	on	the	task	division	of	the	TBTC	and	RRTC	frameworks	and	is	expanded	to	
include	 the	 new	 skills	 associated	 with	 technological	 change.	 The	 relation	 between	 skills	 and	 tasks	 is	 not	
consistent	across	models	and	studies	within	the	frameworks.	The	cognitive	capabilities	required	for	abstract	
tasks	 inhibit	 middle	 and	 low	 skilled	 individuals	 from	 performing	 occupations	 that	 consists	 mainly	 out	 of	
abstract	tasks	(see	7.2).	Therefore,	the	high	skilled	labour	force	has	a	comparative	advantage	over	the	other	
skill	 levels.	The	semi-open	labour	market	was	adopted	based	on	the	current	state	of	models	and	empirical	
evidence.	The	mechanisms	of	labour	reallocation	are	based	on	rational	motivations	to	improve	employability	
and	maximise	wages	 given	 the	willingness	 to	 sacrifice	 income	 in	 return	 for	 employment.	 The	 tasks	 based	
structure	of	 labour	 input	 demand	 and	 skill	 level	 supply	 simplify	 the	 labour	market,	 because	of	which	 two	
points	need	to	be	discussed.	
	
Skills	 are	 assumed	 to	be	universal.	 Therefore,	 there	 are	no	barriers	 to	 reallocate	 labour	 to	different	 tasks	
outside	of	the	supply	allocation	possibilities	per	skill	level	(Table	1).	In	contrast,	in	the	real-world,	education,	
skills,	 and	 human	 capital	 can	 be	 universal	 or	 domain,	 occupation,	 firm,	 and	 sector	 specific.	 Hence,	
reallocation	of	 labour	supply	to	different	tasks	within	the	same	occupational	category,	production	process,	
and/or	sector	in	reaction	to	substitution	is	 likely	to	be	unrestricted.	However,	there	are	barriers	in	the	real	
world	that	prevent	individuals	from	reallocating	labour	across	domains,	occupations,	firms,	and	sectors	due	
to	 specific	 skill	 or	 human	 capital	 requirement	 (e.g.	 a	 doctor	 cannot	 suddenly	 perform	 the	 tasks	 of	 an	
electrician	 while,	 vice	 versa,	 the	 electrician	 will	 legally	 not	 be	 allowed	 to	 perform	medical	 tasks).	 In	 this	
respect,	the	task-based	labour	market	can	be	improved	by	accounting	for	the	sectoral	composition	(Autor	&	
Salomons,	 2017);	 Graetz	 &	 Michaels,	 2017)	 (using	 the	 World	 Input-Output	 Database	 (WIOD)	 Timmer,	
Dietzenbacher,	Los,	Stehrer	&	Vries	(2015)),	occupational	categorisation	(using	the	International	Assessment	
of	Adult	Competencies	(PIAAC)	and	ILO	International	Standard	Classification	of	jobs	(ISCO)	as	done	by	Arntz,	
Gregory,	 and	 Zierahn	 (2016)	 and	 Nedelkoska	 and	 Quintini	 (2018)	 among	 others 102 ),	 labour	 force	
compatibility	within	and	between	sectors,	and	(legal)	limitations.	This	would	require	a	significantly	enlarged	
and	 more	 complicated	 model	 but	 would	 improve	 representativeness	 significantly.	 However,	 this	 would	
require	 reliable	 data	 of	 labour	 demand	 and	 supply	 per	 task	 and	 per	 skill	 levels	 across	 the	 sectoral	
composition	and	inter-sectoral	dynamics	and	compatibility.	Moreover,	given	the	uncertainty	associated	with	
future	technological	change	the	added	value	of	this	detail	level	is	questionable.	
	
The	model	was	developed	to	study	the	effect	of	future	technological	change	on	unemployment.	The	model	
can	be	adapted	and	expanded	to	study	wage	inequality	in	more	detail.	This	would	require	an	income	model	
component	 that	 incorporates	 labour	 market	 institutions,	 wage	 bargaining	 and	 formation	 processes,	 and	
income	from	capital	across	tasks	and	skill	 levels.	 In	relation	with	the	current	model,	this	component	would	
connect	 to	 the	spill-over	effects	 in	 the	 technological	model	via	 the	allocation	 ratios	and	 feedback	 into	 the	
model	 via	 consumption	 and	 saving	 (following	 the	 propensity	 to	 consume	 and	 save).	 In	 addition,	 this	
component	can	be	improved	by	incorporating	age	cohort	and	wage	dependent	propensities	and	expenditure	
behaviour.	An	 income	model	with	wage	 formation	and	capital	 income	will	 improve	the	current	wage	spill-
over	effect	and	facilitate	simulation	of	wealth,	inequality,	and	wage	dynamics.	

15.3.3 Education Model 

The	 three	 education	 systems	 (i.e.	 children,	 students,	 and	 labour	 force)	 in	 the	 model	 are	 simplified	 to	
simulate	 the	 effects	 of	 skill	 attainment.	 Therefore,	 the	 education	 systems	 themselves	 are	 not	 part	 of	 the	
model.	 Including	 these	 systems	 in	 the	 model	 is	 beyond	 the	 current	 scope	 and	 would	 not	 change	 the	
outcomes	 in	 their	 current	 scope	 and	 form.	 However,	 future	 policy	 research	 to	 determine	 the	 costs,	
robustness,	and	effectiveness	of	education	policy	strategies	to	improve	labour	force	adaptability	through	re-	
and	up-skilling	would	require	an	expansion	of	the	current	black	box	method	to	 include	separate	education	

																																																													
102	Including	Goos,	Manning,	and	Salomons	(2009,	2011,	2014)	and	Gregory,	Salomons,	and	Zierahn	(2016)		
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models	 for	 the	 three	systems	across	 the	 skill	 levels.	Meanwhile,	 the	expected	developments	and	 required	
changes	 in	 skills	 require	 education	 systems	 to	 be	 adjusted	 and	 offer	 programs	 to	 attain	 those	 skills	 (IFR,	
2017).	 In	 this	 respect,	 expansion	of	 the	model	with	 an	 education	model	will	 improve	policy	 and	 resource	
strategy	 analysis.	 For	 children’s	 education,	 the	 OECD	 PISA	 database	 and	 studies	 (e.g.	 OECD	 (2017a),	
Hanushek	and	Woessmann	(2010,	2016))	provide	a	starting	point	 for	a	model	 that	accounts	 for	education	
system,	 resource,	 institutional,	 and	 cultural/background	 heterogeneity.	 The	 STEM	 stimulation	 SD	 models	
(BHEF,	2010;	BHEF,	2013;	Newton,	Richey,	Mojtahedzadeh,	2009;	Wells,	Sanchez	&	Attridge,	2007)	provide	
an	 existing	 operationalisation	 that	 can	 be	 implemented,	 expanded,	 and	 connected	 to	 the	 model.	 For	
students	and	the	labour	force,	a	similar	education	model	can	be	build	based	on	further	research.		
	
Consistency	with	the	PIAAC	data	will	ensure	compatibility	and	consistency	with	the	labour	market	model	and	
other	studies	(e.g.	Arntz,	Gregory,	and	Zierahn	(2016)	and	OECD	publications).	This	would	also	allow	for	the	
implementation	of	 a	 financial	 component	 including	government,	 firm,	 and	 labour	 force	 investment	 in	 skill	
attainment.	In	the	context	of	current	developments,	companies	carry	responsibility	over	their	employees	to	
provide	 relevant	 skill	 training	 and	 human	 capital	 development	 (especially	 since	 it	 essential	 to	 ensure	
realisation	 of	 productivity	 growth	 (Crook,	 Todd,	 Combs,	Woehr,	 &	 Ketchen,	 2011)).	 Conflictingly,	 current	
trend	 among	 business	 demonstrates	 declining	 investment	 in	 employee	 training	 and	 knowledge-intensive	
capital	 and	 development.	 Besides	 companies,	 responsibility	 also	 lies	with	 government	 and	 the	 employees	
themselves.	By	extending	the	education	model	with	an	expenditure	sub-model	covering	 investments	 in	re-
skilling	 and	 up-skilling	 by	 government,	 companies,	 and	 employees,	 it	 might	 be	 possible	 to	 measure	 the	
effects	of	 shifting	 responsibilities,	 investment,	 and	policies.	 From	a	policy	 and	multi-actor	perspective	 this	
can	enrich	the	model	and	outcomes	and	move	from	an	exploratory	phase	into	a	policy	analysis	phase.	

15.3.4 Production and Technology Model 
The	technology	and	production	model	in	their	current	form	are	closely	related	and	have	been	simplified	to	
ensure	 consistency.	 The	models	 have	 been	 developed	 to	 implement	 the	 TBTC	 and	 RRTC	 frameworks	 and	
automatibility	 estimates	 concerning	 future	 technological	 advancement	 into	 a	 dynamic	 model.	 From	 an	
academic	perspective,	this	study	advances	on	the	current	expert-based	future	labour	market	projections	in	
relation	with	 technological	 change.	Moreover,	 it	 resolves	 five	 shortcomings	 of	 the	 current	 estimates	 and	
methodology,	 namely,	 accounting	 for	 production	 adjustment	 via	 reallocation	 of	 labour	 supply	 (Arntz,	
Gregory,	 &	 Zierahn,	 2016);	 accounting	 for	 task	 composition	 dynamics	 (Arntz,	 Gregory,	 &	 Zierahn,	 2016);	
including	 the	 potential	 effect	 of	 adequately	 skilled	 labour	 force	 shortages	 in	 association	 with	 the	
development	and	implementation	of	technology	(Arntz,	Gregory,	&	Zierahn,	2016);	implementing	spill-over	
effects	 associated	 with	 technological	 advancement	 (Acemoglu	 &	 Restrepo,	 2018;	 Gregory,	 Salomons,	 &	
Zierahn,	2016);	and	incorporating	skill	attainment	(Acemoglu	&	Restrepo,	2018;	Autor,	2015;	Nedelkoska	&	
Quintini,	2018;	OECD,	2017b;	IFR,	2017).	Unfortunately,	one	aspect	has	not	been	incorporated	in	the	model,	
namely,	 consistent	 with	 the	 estimate	 studies	 and	 TBTC	 and	 RRTC	 framework	 the	 current	 model	 uses	
‘technological	 capabilities	 based	 on	 experts’	 assessments	 rather	 than	 the	 actual	 utilisation	 of	 such	
technologies.’	(Arntz,	Gregory,	&	Zierahn,	2016,	p.	21).	Moreover,	the	model	uses	a	substitution	difference	
factor	as	a	dummy	for	multiple	factors	that	influence	implementation	and	substitution	of	labour.		
	
Therefore,	 in	association	with	 the	production	model	and	wage	 formation	 in	 the	 labour	market,	 the	model	
can	 be	 improved	 by	 incorporating	 the	 actual	 production	 functions	 in	 combination	with	 a	wage	 formation	
model	component	and	technology	(price)	model	component.	Firstly,	 this	would	eliminate	the	need	for	the	
current	 economic	 growth	 component	 –	 albeit	 this	 improved	model	 should	 consider	 exogenous	 economic	
factors103.	 Secondly	 and	more	 importantly,	 this	will	 ensure	more	 realistic	 substitution	behaviour	based	on	
relative	price	developments	and	associated	feedback	mechanism	(Arntz,	Gregory,	&	Zierahn,	2016).	Relative	
factors	price	dynamics,	upon	which	substitution	is	normally	based,	are	not	incorporated	in	the	methodology	
of	Arntz,	Gregory,	and	Zierahn	(2016),	Nedelkoska	and	Quintini	(2018),	and	Frey	and	Osborne	(2017)	nor	in	
the	model	developed	in	this	study.	In	relation	with	the	suggested	expansion	of	the	labour	market	model	to	

																																																													
103	Including,	but	not	 restricted	 to,	 capital	and	 financial	markets,	 interest	 rates,	exchange	 rates,	 import	and	export,	economic	and	
technological	 competitive	position,	 globalisation,	 government	 consumption,	monetary	 and	 fiscal	 policy,	 sectoral	 composition,	and	
exogenous	factors/shocks.	
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include	wage	bargaining	and	 formation,	 this	will	 ensure	accurate	 representation	of	 the	actual	 substitution	
process.	The	technology	model	needs	be	expanded	to	incorporate	the	process	of	technology	development,	
prices,	and	availability.		
	
Brynjolfsson,	 Rock,	 and	 Syverson	 (2017)	 and	 Arntz,	 Gregory,	 and	 Zierahn’s	 (2016)	 identified	 a	 range	 of	
factors	 that	 influence	 the	 development	 and	 implementation	 of	 technology.	 In	 relation	 to	 the	 difference	
between	automatibility	and	substitution	Brynjolfsson,	Rock,	and	Syverson	(2017)	describe	multiple	factors	in	
addition	 to	 factors	 that	 influence	 productivity	 growth	 of	 future	 technology	 (described	 in	 9.1).	 First,	
technology	may	not	mature	up	to	an	operationally	or	financially	feasible	level.	Second,	technology	may	not	
become	 widely	 adopted	 due	 to	 (legal)	 limitations	 and	 firm	 size/power	 whereby	 technology	 is	 exclusively	
available	to	few	a	beneficiaries	and	applications,	and	thus	limiting	dissipation,	entrance	of	competitors,	and	
economy	 wide	 implementation.	 Third,	 the	 implementation	 of	 advanced	 technologies	 will	 require	
organisational,	 business-cultural,	 and	 structural	 changes	within	 and	 between	 firms.	 As	 a	 result,	 cross-firm	
supply	chains	and	sectors	will	need	to	undergo	reorganisation	to	adapt	to	the	changing	production	processes	
and	products.	In	relation	with	the	latter,	technology	itself	changes	products	and	production	by	speeding	up	
the	 development	 cycle	 and	 scalability	 (De	 Backer,	 DeStefano,	Menon	 &	 Ran	 Suh,	 2018;	 Frey	 &	 Osborne,	
2017).	In	a	reflection	of	the	expert	judgment	based	estimates,	Arntz,	Gregory,	and	Zierahn’s	(2016)	highlight	
that	future	data	processing	and	storage	(availability)	limitations	may	inhibit	wide	spread	implementation	of	
advanced	IT	and	RT	systems.	Moreover,	ethical,	legal,	and	legislative	factors	can	prevent	the	implementation	
of	technology	(e.g	self-driving	cars	or	drones).		
	
Therefore,	future	model	expansion	should	be	focused	on	creating	a	technology	model	that	incorporates	the	
technology	 development	 process,	 price	 development,	 patents	 and	 availability,	 resource	 shortages,	 and	
supply	chains.	The	most	complicated	aspect	in	modelling,	as	with	wage	formation,	is	the	social	aspects	that	
influence	 the	 implementation	of	 technology,	 the	preferences	of	 society,	 and	 interactions	between	 actors.	
Agent	based	modelling	may	provide	a	solution	to	model	these	processes.	In	relation	with	the	current	model,	
the	 technology	 model	 expansion	 can	 be	 implemented	 as	 separate	 components	 that	 dictates	 the	 rate	 of	
substitution	based	on	the	relative	price	compared	to	the	wage	component.	

15.3.5 Model reusability and simulation for other case studies 

The	 developed	 model	 can	 be	 used	 to	 simulate	 and	 explore	 the	 plausible	 impact	 of	 technology	 across	
countries.	 This	 does	 require	 country	 specific	 data.	 The	 case	 study	 for	 the	 Netherlands	 was	 based	 on	
demographic	data	from	the	CBS	database	(CBS,	2017a,	2017b,	2018a-2018g);	economic	growth	projection	of	
the	 OECD	 database	 (OECD,	 2018);	 country	 specific	 business	 cycle	 properties	 (Claessens,	 Ayhan	 Kose	 &	
Terrones,	 2009);	 country	 specific	 wage	 share	 data	 (Cho,	 Hwang,	 &	 Schreyer,	 2017);	 PISA	 education	
performance	data	(OECD,	2015c);	universal	data	from	technical	advancement	and	labour	economics	studies	
(see	 Appendix	 II);	 and	 (country	 specific)	 automatibility	 estimates	 (see	 Table	 2	 and	 Table	 4).	 Adopting	 the	
model	for	other	countries	will	require	four	data	changes.	Firstly,	the	demographic	data	needs	to	be	sourced,	
which	 is	most	probably	available	at	 the	national	 statistics	 institute	or	an	 international	database.	However,	
the	 data	 should	 have	 the	 adequate	 and	 consistent	 age	 cohort	 and	 skill	 level	 disaggregation	 and	
categorisation	 (this	 was	 part	 of	 the	 reason	 to	 adopt	 standardised	 divisions).	 Note,	 that	 special	 attention	
needs	to	be	paid	to	the	births	model	inputs,	as	suggested	above.	Secondly,	the	economic	growth	projection	
needs	to	be	updated	with	the	respective	country	specific	sample	from	the	OECD	database.	Thirdly,	the	age	
share	needs	to	be	updated.	Fourthly,	the	automatibility	estimates	need	to	be	changed	to	the	country	specific	
estimates	(notes	at	the	bottom	of	Table	2	provide	the	relevant	pages,	tables,	and	figures	in	the	sources).	This	
will	 require	 some	 manual	 effort	 since	 some	 of	 the	 data	 is	 only	 provided	 in	 graphs.	 Updating	 the	 PISA	
education	data	is	not	necessary	unless	this	specific	aspect	of	the	model	is	studies.	Therefore,	once	the	data	is	
collected,	the	model	can	readily	be	simulated	for	other	countries.	
	
Subscripting	 can	 be	 used	 to	 simulate	 multiple	 countries	 simultaneously.	 The	 model	 is	 isolated	 from	 its	
environment	in	its	current	form.	Future	expansion	of	the	model	can	open	interactions	between	countries	to	
allow	 for	 migration,	 import	 and	 export,	 relative	 economic	 performance	 and	 costs,	 globalisation,	 and	
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technology	 development.	 However,	 it	 is	 advised	 to	 only	move	 to	 this	 interactive	 state	 after	 the	model	 is	
improved	with	migration	flows,	production	functions,	wage	formation,	and	technology	sector.	

	

Figure	33	Expanded	conceptual	model	with	black	boxes	and	relevant	exogenous	factors	
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I Education factors 
Educational	 achievement	 is	 mostly	 influenced	 by	 the	 individual	 and	 family	 background	 [6]	 and	 the	
institutional	 structure	of	 the	 school	 system	 [ℑ],	 as	well	 as	 the	qualitative	 factors	 in	 the	 schools’	 resources	
[ℜ],	although	to	a	somewhat	lesser	extend	(Hanushek	&	Woessmann,	2016,	Woessmann,	2016,	Wößmann,	
2003).	Together	these	vectors	are	capable	of	accounting	for	87%	of	variation	at	the	country	level	(Hanushek	
&	Woessmann,	 2016).	 First,	within	 the	 schools’	 resources	 (also	 referred	 to	 as	 school	 input)	 class	 size	 (i.e.	
students	 per	 class	 or	 students	 per	 teacher)	 and	 financial	 input	 (i.e.	 educational	 expenditure	 per	 student)	
have	 a	 limited	effect	 on	 schooling,	whereas	qualitative	 factors	do	not	 (e.g.	 quality	 teachers)	 (Hanushek	&	
Woessmann,	 2016,	 Woessmann,	 2016).	 In	 this	 respect,	 ‘evidence	 that	 differences	 in	 teacher	 quality	 and	
instruction	 time	 do	 matter	 suggests	 that	 what	 matters	 is	 not	 so	 much	 the	 amount	 of	 inputs	 that	 school	
systems	are	endowed	with,	but	rather	how	they	use	them’	(Hanushek	&	Woessmann,	2016	p.	168).	In	other	
words,	 additional	 financial	 resources	 do	 not	 result	 in	 a	 significant	 increase	 in	 performance,	 of	 which	 US	
expenditure	versus	performance	is	most	evident	(Woessmann,	2016).	Better	allocation	of	the	resources	and	
focused	 investment	 for	 factor	 improvement	will	 yield	more	 significant	 improvements	 (Woessmann,	 2016,	
OECD,	 2017a).	 Second,	 the	 individual	 and	 family	 background	 factors	 are	 incorporated	 in	 the	 population	
model	 as	 motivated	 before.	 Third,	 the	 institutional	 structure	 of	 the	 school	 systems	 introduces	 multiple	
relevant	 factors.	 However,	 education	 system	 changes	 are	 slow	 (Bybee,	 2010)	 and	 the	 factors	 are	 hard	 to	
quantify	(e.g.	level	of	autonomy)	(Woessmann,	2016).	Therefore,	these	factors	are	not	implemented	as	they	
are	assumed	to	be	constant	properties	of	the	education	system.	An	overview	of	the	factors	that	cover	83-
87%	 of	 performance	 variation,	 according	 to	 Woessmann	 (Woessmann,	 2016)	 and	 Hanushek	 and	
Woessmann	 (Hanushek	 &	 Woessmann,	 2016),	 is	 provided	 in	 Table	 5.	 The	 OECD	 PISA	 assessments	
database 104 	contains	 a	 significantly	 larger	 set	 of	 criteria	 and	 variables.	 In	 this	 respect,	 the	 factor	
implementation	is	a	simplification.	
	
Table	5	Education	factors	(based	on	Hanushek	&	Woessmann,	2016	and	Woessmann,	2016)	

Vector	 Factor	 	

ℜ105	

Shortage	of	(adequate)	instruction	material:	Not	at	all	or	Strongly	 <	
Instruction	time:	Minutes	per	week	 =	
Teachers	education:	%	Tertiary	degree	pedagogy	in	staff	 >	

ℑ106	

Choice:	private	operation	or	government	funding	 @	
External	exit	exam:	Yes	or	NO	 A	
Assessments	used	to	decide	about	students’	retention/promotion:	Yes	or	NO	 B	
Monitoring	of	teacher	lessons:	Internal,	External,	or	NO	 C	
Autonomy	in	management:	Yes	or	NO	 D	
Autonomy	in	hiring	teachers:	Yes	or	NO	 E	

	
Following	 Hanushek	 and	 Woessmann	 (2016),	 please	 consider	 Hanushek	 and	 Woessmann	 (2010)	 and	
Woesmann	 (2016)	 for	 a	 detailed	 evaluation	 of	 the	 institutional	 and	 resource	 factors	 and	 Hanushek,	
Piopiunik,	and	Wiederhold	(2014)	for	the	effect	of	teachers	on	the	skill	attainment	of	students.		
	
The	set	of	factors	is	not	identical	to	the	assessment	analyses	in	the	referenced	literature	since	factors	with	
no	significant	or	inconsistent	influence	are	excluded.	The	class-size	factor	has	been	omitted	from	the	set	but	

																																																													
104	Available	via	http://pisadataexplorer.oecd.org/ide/idepisa/dataset.aspx		
105	Note	 that	 the	 factors	 “Class-size”	 and	 “Educational	 expenditure	 per	 student”	 has	 been	 omitted	 due	 to	 their	 limited	 effect.	
Moreover,	the	proportion	of	Fully	certified	teachers	is	omitted	since	nearly	all	OECD	countries	have	a	100%	certified	level	except	for	
Chile	 and	 Mexico	 (See	 criteria	 ‘Index	 proportion	 of	 all	 teachers	 fully	 certified’	 in	 OECD	 PISA	 database	 at	
http://pisadataexplorer.oecd.org/ide/idepisa/dataset.aspx		
106	Note	 that	 the	 factors	 “Monitoring	 of	 teacher	 lessons	 by	 principal”,	 “Monitoring	 of	 teacher	 lessons	 by	 external	 inspectors”,	
“Assessments	 used	 to	 compare	 school	 to	 district/national	 performance”,	 and	 “Assessments	 used	 to	 group	 students"	 have	 been	
omitted	 due	 to	 limited	 effect.	 Moreover,	 the	 autonomy	 in	 management	 factor	 includes	 “Autonomy	 in	 formulating	 budget”,” 

Autonomy	in	establishing	starting	salaries”,	and	“Autonomy	in	determining	course	content”.	
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is	 not	 completely	 excluded	 from	 the	 model.	 In	 many	 countries,	 there	 is	 a	 legal	 maximum	 class-size	 rule	
(Woessmann,	 2016).	 Moreover,	 school	 facilities	 will	 have	 a	 limited	 physical	 or	 resource	 capacity	 (e.g.	
classroom	size,	number	of	classrooms,	teachers	available)	resulting	 in	a	maximum	capacity	 in	students	per	
classroom	and	maximum	total	number	students	at	each	skill	levels.	Hence,	a	rule	based	factor	is	introduced	
for	the	total	schooling	capacity	[ℭG]	at	each	skill	level	and	maximum	(legal)	capacity	per	classroom	[ℭH].	The	
effect	of	the	 latter	 is	distinct	since	the	students	are	equally	distributed	across	classes	up	to	the	maximum.	
One	student	over	the	maximum	and	a	new	additional	class	needs	to	be	formed	(Woessmann,	2016)107.	
	

																																																													
107	‘Say	that	the	maximum	class	size	is	40,	and	that	a	certain	grade	has	120	students	divided	into	three	classes	of	40	students	each.	If	
the	grade	rises	to	121	students,	the	group	is	then	divided	into	four	classes	-	three	of	30	students	and	one	of	31	students.	In	this	way,	
the	rules	give	rise	to	discontinuous	jumps	in	average	class	sizes	whenever	the	enrollment	in	a	grade	in	a	school	passes	multiples	of	the	
maximum	class	size.’	(Woessmann,	2016,	p.20)	
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II Model Thesaurus and Dataset 
Thesaurus 
Symbol	 Name	 Model	Parameter	

!	 Overall	production	 	

"	 Occupation	 Not	included	

#	 Task	 See	specific	tasks	

ℛ	 Routine	tasks	 Routine	I	

%	 Abstract	tasks	 Abstract	I	

ℳ	 Manual	tasks	 Manual	I	

ℛℛ 	 Routinised	routine	tasks	 Routine	L	

ℛ% 	 Routinised	abstract	tasks	 Abstract	L	

ℛℳ 	 Routinised	manual	tasks	 Manual	L	

'	 Share	of	routine	tasks	 Not	needed	

(	 Share	of	abstract	tasks	 Not	needed	

)	 Share	of	manual	tasks	 Not	needed	

*+	 Task	specific	labour	input	 Labour	input	{Task	name}	

,+	 Task	specific	capital	input	 Not	included	

-+	 Labour	costs	 Average	wage	{Task	name}	

Π+	 Capital	costs	 Not	included	

β	 Labour	input	share	 Not	needed	

α	 Capital	input	share	 Not	needed	

1	 Normal	skill	level	 LI,	MI,	HI	

23	 Extended	skill	level	(skill-	and	technology-specific)	 LL,	ML,	HL	

4+	 Input	elasticity	of	substitution	 Not	included	

45	 Task	elasticity	of	substitution	 Task	substitution	elasticity	

6+	 Task	specific	technology	 Not	directly	included	

7+	 Production	price	 Not	directly	included	

89:	 Competitive	allocation	towards	product	price	 Productivity	growth	competitive	allocation	

;9:	 Profitability	allocation	towards	the	profit	mark-up	 Productivity	growth	profit	allocation	

-9:	 Wage	allocation	 Productivity	growth	wage	allocation,	and	TFP	wage	allocation	{Task	name}	

<	 Competitive	allocation	share	 Productivity	growth	competitive	allocation	

=	 Profitability	allocation	share	 Productivity	growth	profit	allocation	

>	 Wage	allocation	share	 Productivity	growth	wage	allocation,	and	TFP	wage	allocation	{Task	name}	

8?	 Product	price	 Price	index	{Task	name}	



TU Delft EPA  |  K Spaanderman   

	
125	

Symbol	 Name	 Model	Parameter	

@+?	 Task	specific	profit	 Profit	index	{Task	name}	

;A	 conventional	profit	mark-up	 Not	included	

B+	 Task	specific	Total	Factor	Productivity	(TFP)	 Technological	productivity	growth	{Task	name},	and	Long	term	TFP	growth	combined	

C?	 Profit	not	used	for	productivity	growth	 Not	directly	included		

D+	 Innovation	investment	share	of	profit	 Proportion	of	profit	invested	in	innovation	

ν+	 Dividend	share	of	profit	 Not	directly	included	(=1-Proportion	of	profit	invested	in	innovation)	

1	 Skill	level	 See	each	skill	level	

1F	 Low	skill	(level	1	and	2	of	ISCED	2011)	 LI	

1G	 Middle	skill	(level	3,	4	and	5	of	ISCED	2011)	 MI	

1ℍ	 High	skill	(level	6,	7	and	8	of	ISCED	2011)	 HI	

2F	 Low	extended	skill	 LL	

2G	 Middle	extended	skill	 ML	

2ℍ	 High	extended	skill	 HL	

I	 Sex	 See	each	sex	

♂	 Male	population	 m	

♀	 Female	population	 f	

Jℂ	 Age	cohort	 See	each	age	cohort	

ℂℍ	 Childeren	(age	0-15)	 CH	

LM	 Students	(age	15-25)	 ST	

NJ	 Young	Adults	(age	25-35)	 YA	

GJ	 Mature	Adults	(age	35-55)	 MA	

LJ	 Senior	Adults	(55-65)	 SA	

ℝP	 Retirees	(65-Life	expectancy)	 RE	

∆RJℂS	 Skill	level	specific	age	cohort	periods	 t	upto	{age	cohort}	to	{age	cohort}	

RℝP	 Retirement	age	 Retirement	age	

RTU 	 Life	expectancy	per	skill	level	 Life	expectancy	{skill	level}	{sex}		

ℝ	 Re-skilling	 {Age	cohort}	{skill	level}	to	{skill	level}	{sex}	

V	 Up-skilling	 {Age	cohort}	{skill	level}	to	{skill	level}	{sex}	

WSNJ�SNJ	� 	 Young	Adult	couple	ratio	 Parents	YA	{skill	level}	{sex}to	{skill	level}	{sex}	

YSNJ	ISℂℍ	I 	 Parent	–	Child	skill	level	relation	ratio	 YA	{skill	level}	{sex}	birth	{skill	level}	{sex}	

ZNJℂℍ	I 	 Relative	dominance	ratio	 Based	on:	Correlation	strength	YA	SL	{sex}	on	CH	SL	{sex}	

[S	 Skill	level	specific	birth	rate	 Avg	birth	per	{skill	level}	f	

\	 Ratio	female	and	male	childeren	 Ratio	female	to	male	at	birth	

]^ 	 normal	rate	of	extended	skill	 Normale	ratio	{skill	level}	to	{skill	level}	at	birth	{sex}	

*S_ 	 Task	specific	labour	demand	(*Sℛ, *S%, *Sℳ, *^ℛ, *^%, *^ℳ )	 	

*S	 Skill	specific	labour	supply	(*SF, *SG, *Sℍ, *^F, *^G, *^ℍ)	 	

aJS	 Working	age	population	 WA	
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Symbol	 Name	 Model	Parameter	

FbSI	 Labour	force	 LF	

c	 Part-time	contract	 Not	included	

d	 Full-time	contract	 Not	needed	

e	 Full-time	ratio	 Not	included	

faJUI 	
Participation	rate	 {age	cohort}	{skill	level}	{sex}	participation	

ℎc	 Part-time	contract	hours	 Not	included	

ℎd	 Full-time	contract	hours	 Hours	fulltime	contracts	

*SFb→_ 	 Task	specific	labour	supply	 LF{skill	level}	ft	supply	{Task	name}	

*S_	i 	 Total	task-specific	labour	demand	 Labour	demand	{Task	name}	ft	

*S_j 	 Total	task-specific	labour	supply	 Labour	supply	{Task	name}	ft	

k	 Natural	task	type	 Not	directly	included	

l	 Qualified	task	type	 Not	directly	included	

m	 Unemployment	rate	 Unemployment	rate	{Task	name}	ft	

n	 Acceptable	ratio	of	lost	wage	 Wage	sacrifice	ratio	for	employment	

4o	 Reallocation	sensitivity	 Sensitivity	Unemployment	reallocation	

4p	 Utility	elasticity	of	wages	 Sensitivity	Wage	reallocation	

qFbUI 	 Unemployment	 {Age	cohort}	{skill	level}	ft	Unemployment	rate	

r+	 Investment	 Not	included	

r+s	 Labour	training	investment	 Not	included	

r+3	 Technology	innovation	investment	 Not	included	

t+	 Employment	investment	share	of	profit	 Not	included	

usS	 Government	investment	into	education	of	the	labour	force	 Not	included	

u+3	 Government	investment	in	technological	innovation	 Not	included	

uv	 Unemployment	benefits	 Not	included	

wsS	 Labour	force	consumption	of	educational	and	training	 Not	included	

x	 Children’s	education	performance	 CH	Edu	performance	Overall	{skill	level}	

y	 Capacity	planning	constant	 CH	Edu	capacity	planning	

∆Rℭ	 Time	to	realise	capacity	growth	 Time	to	realise	CH	Edu	capacity	expansion	

{	 Re-skill	rate	 Reskill	rate	{age	cohort}	{skill	level}	{sex}	

|	 Up-skill	rate	 Upskill	rate	{age	cohort}	{skill	level}	{sex}	

}	 Labour	market	prospect	sensitivity	factor	 ST	Labour	market	awareness	and	sensitivity,	WAu	reskill	and	upskill	sensitivity,	WAe	reskill	and	upskill	

sensitivity	

~S	 Skill	level	specific	training	factor	 Socioeconomic	influence	education	and	training	{skill	level}	

�Fb	 Age	cohort	specific	training	factor	 SA	and	RE	LF	relative	reducation	in	training	

Ä	 Contract	specific	training	factor	 Not	included	
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Dataset 
Production	model	

Parameter_Name	 Type	 Value	 Source	

Initial	Unemployment	rate	Manual	I	ft	 Initial	 0,062	 CBS	(2018d)	

Initial	Unemployment	rate	Manual	L	ft	 Initial	 0,057	 CBS	(2018d)	

Initial	Unemployment	rate	Routine	I	ft	 Initial	 0,044	 CBS	(2018d)	

Initial	Unemployment	rate	Routine	L	ft	 Initial	 0,04	 CBS	(2018d)	

Initial	Unemployment	rate	Abstract	I	ft	 Initial	 0,031	 CBS	(2018d)	

Initial	Unemployment	rate	Abstract	L	ft	 Initial	 0,03	 CBS	(2018d)	

Initial	Unemployment	rate	Manual	I	pt	 Initial	 0,083	 CBS	(2018d)	

Initial	Unemployment	rate	Manual	L	pt	 Initial	 0,074	 CBS	(2018d)	

Initial	Unemployment	rate	Routine	I	pt	 Initial	 0,053	 CBS	(2018d)	

Initial	Unemployment	rate	Routine	L	pt	 Initial	 0,049	 CBS	(2018d)	

Initial	Unemployment	rate	Abstract	I	pt	 Initial	 0,035	 CBS	(2018d)	

Initial	Unemployment	rate	Abstract	L	pt	 Initial	 0,037	 CBS	(2018d)	

Initial	Average	Wage	Abstract	L	 Initial	 38600	 CBS	(2018f)	

Initial	Average	Wage	Abstract	I	 Initial	 38600	 CBS	(2018f)	

Initial	Average	Wage	Routine	L	 Initial	 30600	 CBS	(2018f)	

Initial	Average	Wage	Routine	I	 Initial	 30600	 CBS	(2018f)	

Initial	Average	Wage	Manual	L	 Initial	 28900	 CBS	(2018f)	

Initial	Average	Wage	Manual	I	 Initial	 28900	 CBS	(2018f)	

Hours	fulltime	contracts	 Policy	 38	 Policy	

Price	elasticity	of	demand	Abstract	L	 Constant	 1	 ASSUMPTION	

Price	elasticity	of	demand	Abstract	I	 Constant	 1	 ASSUMPTION	

Price	elasticity	of	demand	Routine	L	 Constant	 1	 ASSUMPTION	

Price	elasticity	of	demand	Routine	I	 Constant	 1	 ASSUMPTION	

Price	elasticity	of	demand	Manual	L	 Constant	 1	 ASSUMPTION	

Price	elasticity	of	demand	Manual	I	 Constant	 1	 ASSUMPTION	

Task	substitution	elasticity	 Uncertainty	 0,66-0,9	 Gregory,	Salomons,	and	Zierahn	(2016)	
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Long	term	annual	economic	growth	LOOKUP	 Lookup	 LOOKUP	 OECD	(2018)	

Long	term	economic	growth	error	margin	 Uncertainty	 0-0,05	 OECD	(2018)	

Business	cycle	fluctuation	amplitude	 Uncertainty	 0,001-0,0033	 Based	on	OECD	(2018)	

Business	cycle	fluctuation	period	 Uncertainty	 2-3	 Based	on	OECD	(2018)	

Time	to	first	recession	 Uncertainty	 2-5	 Estimation	based	on	OECD	(2018)	

Business	cycle	recession	amplitude	 Uncertainty	 0,0187-0,0263	 Claessens,	Ayhan	Kose,	and	Terrones	(2009)	

Business	cycle	recession	duration	 Uncertainty	 3-3,64	 Claessens,	Ayhan	Kose,	and	Terrones	(2009)	

Busines	cycle	recession	period	 Uncertainty	 8-9,4	 Estrella	and	Mishkin	 (1998)	and	Claessens,	Ayhan	Kose,	

and	Terrones	(2009)	

Severe	recession	timing	 Uncertainty	 1-3	 Uncertainty	

Severe	recession	duration	 Uncertainty	 4-4,7	 Claessens,	Ayhan	Kose,	and	Terrones	(2009)	

Severe	recession	amplitude	 Uncertainty	 0,0489-0,0631	 Claessens,	Ayhan	Kose,	and	Terrones	(2009)	

Severe	recession	occurance	 Uncertainty	 0-1	 Claessens,	Ayhan	Kose,	and	Terrones	(2009)	

Proportion	of	time	in	recession	 Uncertainty	 0,18-0,21	 Claessens,	Ayhan	Kose,	and	Terrones	(2009)	

Initial	Labour	share	 Uncertainty	 0,554-0,714	 Cho,	Hwang,	and	Schreyer	(2017)	

Smooting	period	 Setting	 6	 Setting	

SWITCH	Routinisation	OFF	 Setting	 0	 Setting	

SWITCH	Spillover	effect	OFF	 Setting	 0	 Setting	

	

Demographic	model	

Parameter_Name	 Type	 Value	 Source	

Initial	CH	LI	m	 Initial	 164730	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	LL	m	 Initial	 49419	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	MI	m	 Initial	 399470	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	ML	m	 Initial	 205912	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	HI	m	 Initial	 420061	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	HL	m	 Initial	 174339	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	LI	m	 Initial	 126041	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	LL	m	 Initial	 37812	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	MI	m	 Initial	 305649	 CBS	(2017a)	together	with	CBS	(2018a)	
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Initial	ST	ML	m	 Initial	 157551	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	HI	m	 Initial	 321405	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	HL	m	 Initial	 133393	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	LI	m	 Initial	 127343	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	LL	m	 Initial	 38203	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	MI	m	 Initial	 308808	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	ML	m	 Initial	 159179	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	HI	m	 Initial	 324725	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	HL	m	 Initial	 134772	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	LI	m	 Initial	 307034	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	LL	m	 Initial	 148186	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	MI	m	 Initial	 590613	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	ML	m	 Initial	 395519	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	HI	m	 Initial	 593811	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	HL	m	 Initial	 273985	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	LI	m	 Initial	 194271	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	LL	m	 Initial	 121959	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	MI	m	 Initial	 289248	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	ML	m	 Initial	 170527	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	HI	m	 Initial	 265503	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	HL	m	 Initial	 102532	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	LI	m	 Initial	 360499	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	LL	m	 Initial	 172336	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	MI	m	 Initial	 323570	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	ML	m	 Initial	 203990	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	HI	m	 Initial	 293675	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	HL	m	 Initial	 130131	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	LI	f	 Initial	 136353	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	LL	f	 Initial	 3971	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	MI	f	 Initial	 485841	 CBS	(2017a)	together	with	CBS	(2018a)	
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Initial	CH	ML	f	 Initial	 19857	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	HI	f	 Initial	 656613	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	CH	HL	f	 Initial	 43686	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	LI	f	 Initial	 104994	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	LL	f	 Initial	 3058	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	MI	f	 Initial	 374104	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	ML	f	 Initial	 15290	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	HI	f	 Initial	 505601	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	ST	HL	f	 Initial	 33639	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	LI	f	 Initial	 108089	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	LL	f	 Initial	 3148	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	MI	f	 Initial	 385133	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	ML	f	 Initial	 15741	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	HI	f	 Initial	 520507	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	YA	HL	f	 Initial	 34630	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	LI	f	 Initial	 414045	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	LL	f	 Initial	 13696	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	MI	f	 Initial	 928177	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	ML	f	 Initial	 66374	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	HI	f	 Initial	 804911	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	MA	HL	f	 Initial	 75856	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	LI	f	 Initial	 405924	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	LL	f	 Initial	 10796	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	MI	f	 Initial	 418879	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	ML	f	 Initial	 25910	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	HI	f	 Initial	 267737	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	SA	HL	f	 Initial	 18353	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	LI	f	 Initial	 913177	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	LL	f	 Initial	 32041	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	MI	f	 Initial	 466602	 CBS	(2017a)	together	with	CBS	(2018a)	
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Initial	RE	ML	f	 Initial	 46059	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	HI	f	 Initial	 262338	 CBS	(2017a)	together	with	CBS	(2018a)	

Initial	RE	HL	f	 Initial	 10013	 CBS	(2017a)	together	with	CBS	(2018a)	

Retirement	age	 Policy	 780	 Policy	

Life	expectancy	H	f	 Constant	 1069,2	 CBS	(2018b)	

Life	expectancy	M	f	 Constant	 1052,4	 CBS	(2018b)	

Life	expectancy	L	f	 Constant	 1027,2	 CBS	(2018b)	

Life	expectancy	H	m	 Constant	 1035,6	 CBS	(2018b)	

Life	expectancy	M	m	 Constant	 1006,8	 CBS	(2018b)	

Life	expectancy	L	m	 Constant	 987,6	 CBS	(2018b)	

Death	rate	infants	H	 Constant	 0,0023	 CBS	(2018b)	

Death	rate	infants	M	 Constant	 0,0029	 CBS	(2018b)	

Death	rate	infants	L	 Constant	 0,0074	 CBS	(2018b)	

Death	rate	CH	 Constant	 0	 CBS	(2018b)	

Death	rate	ST	 Constant	 0	 CBS	(2018b)	

Death	rate	YA	 Constant	 0	 CBS	(2018b)	

Death	rate	MA	 Constant	 0	 CBS	(2018b)	

Death	rate	SA	 Constant	 0	 CBS	(2018b)	

Normal	ratio	HL	to	HI	at	birth	f	 Constant	 0,062	 CBS	(2018a)	

Normal	ratio	ML	to	MI	at	birth	f	 Constant	 0,039	 CBS	(2018a)	

Normal	ratio	LL	to	LI	at	birth	f	 Constant	 0,028	 CBS	(2018a)	

Normal	ratio	HL	to	HI	at	birth	m	 Constant	 0,293	 CBS	(2018a)	

Normal	ratio	ML	to	MI	at	birth	m	 Constant	 0,34	 CBS	(2018a)	

Normal	ratio	LL	to	LI	at	birth	m	 Constant	 0,293	 CBS	(2018a)	

ratio	of	no	SL	level	difference	 Constant	 0,432	 CBS	(2017c)	

ratio	of	1	SL	level	difference	 Constant	 0,409	 CBS	(2017c)	

ratio	of	2	SL	level	difference	 Constant	 0,145	 CBS	(2017c)	

ratio	YA	f	higher	SL	than	YA	m	 Constant	 0,322	 CBS	(2017c)	

ratio	YA	f	same	SL	as	YA	m	 Constant	 0,466	 CBS	(2017c)	

ratio	YA	f	lower	SL	than	YA	m	 Constant	 0,212	 CBS	(2017c)	
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Correlation	strenght	YA	SL	f	on	CH	f	 Constant	 0,117	 CBS	(2011b)	

Correlation	strenght	YA	SL	m	on	CH	f	 Constant	 0,132	 CBS	(2011b)	

Correlation	strenght	YA	SL	f	on	CH	m	 Constant	 0,099	 CBS	(2011b)	

Correlation	strenght	YA	SL	m	on	CH	m	 Constant	 0,132	 CBS	(2011b)	

ratio	YA	H	f	birth	H	f	 Constant	 0,502	 CBS	(2011a)	

ratio	YA	H	f	birth	M	f	 Constant	 0,338	 CBS	(2011a)	

ratio	YA	H	f	birth	L	f	 Constant	 0,16	 CBS	(2011a)	

ratio	YA	M	f	birth	H	f	 Constant	 0,418	 CBS	(2011a)	

ratio	YA	M	f	birth	M	f	 Constant	 0,334	 CBS	(2011a)	

ratio	YA	M	f	birth	L	f	 Constant	 0,248	 CBS	(2011a)	

ratio	YA	L	f	birth	H	f	 Constant	 0,244	 CBS	(2011a)	

ratio	YA	L	f	birth	M	f	 Constant	 0,332	 CBS	(2011a)	

ratio	YA	L	f	birth	L	f	 Constant	 0,424	 CBS	(2011a)	

ratio	YA	H	f	birth	H	m	 Constant	 0,525	 CBS	(2011a)	

ratio	YA	H	f	birth	M	m	 Constant	 0,3	 CBS	(2011a)	

ratio	YA	H	f	birth	L	m	 Constant	 0,175	 CBS	(2011a)	

ratio	YA	M	f	birth	H	m	 Constant	 0,366	 CBS	(2011a)	

ratio	YA	M	f	birth	M	m	 Constant	 0,355	 CBS	(2011a)	

ratio	YA	M	f	birth	L	m	 Constant	 0,28	 CBS	(2011a)	

ratio	YA	L	f	birth	H	m	 Constant	 0,217	 CBS	(2011a)	

ratio	YA	L	f	birth	M	m	 Constant	 0,327	 CBS	(2011a)	

ratio	YA	L	f	birth	L	m	 Constant	 0,457	 CBS	(2011a)	

ratio	YA	H	m	birth	H	f	 Constant	 0,505	 CBS	(2011a)	

ratio	YA	H	m	birth	M	f	 Constant	 0,318	 CBS	(2011a)	

ratio	YA	H	m	birth	L	f	 Constant	 0,177	 CBS	(2011a)	

ratio	YA	M	m	birth	H	f	 Constant	 0,373	 CBS	(2011a)	

ratio	YA	M	m	birth	M	f	 Constant	 0,35	 CBS	(2011a)	

ratio	YA	M	m	birth	L	f	 Constant	 0,277	 CBS	(2011a)	

ratio	YA	L	m	birth	H	f	 Constant	 0,269	 CBS	(2011a)	

ratio	YA	L	m	birth	M	f	 Constant	 0,325	 CBS	(2011a)	
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ratio	YA	L	m	birth	L	f	 Constant	 0,406	 CBS	(2011a)	

ratio	YA	H	m	birth	H	m	 Constant	 0,523	 CBS	(2011a)	

ratio	YA	H	m	birth	M	m	 Constant	 0,302	 CBS	(2011a)	

ratio	YA	H	m	birth	L	m	 Constant	 0,175	 CBS	(2011a)	

ratio	YA	M	m	birth	H	m	 Constant	 0,359	 CBS	(2011a)	

ratio	YA	M	m	birth	M	m	 Constant	 0,354	 CBS	(2011a)	

ratio	YA	M	m	birth	L	m	 Constant	 0,287	 CBS	(2011a)	

ratio	YA	L	m	birth	H	m	 Constant	 0,211	 CBS	(2011a)	

ratio	YA	L	m	birth	M	m	 Constant	 0,327	 CBS	(2011a)	

ratio	YA	L	m	birth	L	m	 Constant	 0,462	 CBS	(2011a)	

ratio	female	to	male	at	birth	 Constant	 0,95	 CBS	(2017a)	

Normal	fertility	rate	per	f	 Uncertainty	 1,62	 CBS	(2018c)	

Fertility	index	LOOKUP	 LOOKUP	 LOOKUP	 LOOKUP	(see	11.2)	

Fertility	correction	H	f	 Variable	 0,89	 CBS	(2012a)	

Fertility	correction	M	f	 Variable	 1	 CBS	(2012a)	

Fertility	correction	L	f	 Variable	 1,08	 CBS	(2012a)	

t	upto	CH	to	ST	 Constant	 180	 Based	on	labour	market	dataset	

t	upto	ST	to	YA	H	 Constant	 120	 Based	on	labour	market	dataset	

t	upto	ST	to	YA	M	 Constant	 120	 Based	on	labour	market	dataset	

t	upto	ST	to	YA	L	 Constant	 120	 Based	on	labour	market	dataset	

t	upto	ST	to	MA	 Constant	 240	 Based	on	labour	market	dataset	

t	upto	MA	to	SA	 Constant	 240	 Based	on	labour	market	dataset	

POPULATION	TEST	SETTING	 Setting	 1	 Setting	

Fraction	of	delay	 Setting	 0,1	 Setting	

Delay	order	 Setting	 15	 Setting	

Set	Initial	reskill	and	upskill	flows	to	zero	 Setting	 0	 Setting	

SWITCH	SL	segregation	in	society	 Setting	 0	 Setting	

	

Labour	market	

Parameter_Name	 Type	 Value	 Source	
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ST	L	m	participation	 Constant	 0,615	 CBS	(2018d)	

ST	M	m	participation	 Constant	 0,73	 CBS	(2018d)	

ST	H	m	participation	 Constant	 0,724	 CBS	(2018d)	

YA	L	m	participation	 Constant	 0,808	 CBS	(2018d)	

YA	M	m	participation	 Constant	 0,912	 CBS	(2018d)	

YA	H	m	participation	 Constant	 0,949	 CBS	(2018d)	

MA	L	m	participation	 Constant	 0,82	 CBS	(2018d)	

MA	M	m	participation	 Constant	 0,919	 CBS	(2018d)	

MA	H	m	participation	 Constant	 0,968	 CBS	(2018d)	

SA	L	m	participation	 Constant	 0,699	 CBS	(2018d)	

SA	M	m	participation	 Constant	 0,799	 CBS	(2018d)	

SA	H	m	participation	 Constant	 0,867	 CBS	(2018d)	

RE	L	m	participation	 Constant	 0,078	 CBS	(2018d)	

RE	M	m	participation	 Constant	 0,102	 CBS	(2018d)	

RE	H	m	participation	 Constant	 0,146	 CBS	(2018d)	

ST	L	f	participation	 Constant	 0,614	 CBS	(2018d)	

ST	M	f	participation	 Constant	 0,753	 CBS	(2018d)	

ST	H	f	participation	 Constant	 0,804	 CBS	(2018d)	

YA	L	f	participation	 Constant	 0,569	 CBS	(2018d)	

YA	M	f	participation	 Constant	 0,817	 CBS	(2018d)	

YA	H	f	participation	 Constant	 0,922	 CBS	(2018d)	

MA	L	f	participation	 Constant	 0,608	 CBS	(2018d)	

MA	M	f	participation	 Constant	 0,83	 CBS	(2018d)	

MA	H	f	participation	 Constant	 0,905	 CBS	(2018d)	

SA	L	f	participation	 Constant	 0,453	 CBS	(2018d)	

SA	M	f	participation	 Constant	 0,656	 CBS	(2018d)	

SA	H	f	participation	 Constant	 0,755	 CBS	(2018d)	

RE	L	f	participation	 Constant	 0,023	 CBS	(2018d)	

RE	M	f	participation	 Constant	 0,04	 CBS	(2018d)	

RE	H	f	participation	 Constant	 0,068	 CBS	(2018d)	
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ST	L	m	ratio	fulltime	 Constant	 0,182	 CBS	(2018d)	

ST	M	m	ratio	fulltime	 Constant	 0,36	 CBS	(2018d)	

ST	H	m	ratio	fulltime	 Constant	 0,492	 CBS	(2018d)	

YA	L	m	ratio	fulltime	 Constant	 0,806	 CBS	(2018d)	

YA	M	m	ratio	fulltime	 Constant	 0,812	 CBS	(2018d)	

YA	H	m	ratio	fulltime	 Constant	 0,833	 CBS	(2018d)	

MA	L	m	ratio	fulltime	 Constant	 0,869	 CBS	(2018d)	

MA	M	m	ratio	fulltime	 Constant	 0,865	 CBS	(2018d)	

MA	H	m	ratio	fulltime	 Constant	 0,845	 CBS	(2018d)	

SA	L	m	ratio	fulltime	 Constant	 0,787	 CBS	(2018d)	

SA	M	m	ratio	fulltime	 Constant	 0,76	 CBS	(2018d)	

SA	H	m	ratio	fulltime	 Constant	 0,75	 CBS	(2018d)	

RE	L	m	ratio	fulltime	 Constant	 0,308	 CBS	(2018d)	

RE	M	m	ratio	fulltime	 Constant	 0,28	 CBS	(2018d)	

RE	H	m	ratio	fulltime	 Constant	 0,196	 CBS	(2018d)	

ST	L	f	ratio	fulltime	 Constant	 0,041	 CBS	(2018d)	

ST	M	f	ratio	fulltime	 Constant	 0,149	 CBS	(2018d)	

ST	H	f	ratio	fulltime	 Constant	 0,354	 CBS	(2018d)	

YA	L	f	ratio	fulltime	 Constant	 0,263	 CBS	(2018d)	

YA	M	f	ratio	fulltime	 Constant	 0,271	 CBS	(2018d)	

YA	H	f	ratio	fulltime	 Constant	 0,499	 CBS	(2018d)	

MA	L	f	ratio	fulltime	 Constant	 0,194	 CBS	(2018d)	

MA	M	f	ratio	fulltime	 Constant	 0,214	 CBS	(2018d)	

MA	H	f	ratio	fulltime	 Constant	 0,33	 CBS	(2018d)	

SA	L	f	ratio	fulltime	 Constant	 0,149	 CBS	(2018d)	

SA	M	f	ratio	fulltime	 Constant	 0,186	 CBS	(2018d)	

SA	H	f	ratio	fulltime	 Constant	 0,297	 CBS	(2018d)	

RE	L	f	ratio	fulltime	 Constant	 0,1	 CBS	(2018d)	

RE	M	f	ratio	fulltime	 Constant	 0,111	 CBS	(2018d)	

RE	H	f	ratio	fulltime	 Constant	 0,118	 CBS	(2018d)	
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Sensitivity	Wage	reallocation	 Uncertainty	 0-0,	999	 Uncertainty	space	

Wage	sacrifice	ratio	for	employment	 Uncertainty	 0,01-0,5	 Uncertainty	space	

Sensitivity	Unemployment	reallocation	 Uncertainty	 0-1	 Uncertainty	space	

Normal	Labour	Supply	Demand	Mismatch	ratio	 Constant	 0,02	 ASSUMTION:	 Effective	 minimum	 unemployment	 due	 to	

regional	and	sectoral	mismatches	

Labour	reallocation	delay	 Uncertainty	 12	 Uncertainty	space	6	to	24	

SWITCH	Wage	discrete	criteria	OR	relative	factor	 Setting	 0	 Setting	

SWITCH	Equal	Labour	market	OR	Skill	level	preference	 Setting	 0	 Setting	

Error	MINMAX	corrector	 Setting	 1,00E+16	 Setting	

SWITCH	part	time	labour	market	OFF	 Constant	 0	 Setting	

Minimum	Labour	Supply	 Setting	 1	 Setting	

	

Education	model	

Parameter_Name	 Type	 Value	 Source	

Time	to	introduction	STEM	program	 Policy	 60	 Policy	

Period	for	STEM	program	to	become	fully	integrated	 Constant	 120	 Bybee	(2010)	

STEM	initial	program	score	 Constant	 0	 -	

CH	Edu	performance	Reskill	equivalent	 Variable	 30	 Woessmann	(2016)	

CH	Edu	performance	Upskill	equivalent	 Variable	 30	 Woessmann	(2016)	

STEM	educated	vs	STEM	graduated	ratio	 Policy	 0,4	 Wells,	Sanchez,	and	Attridge	(2007)	

Time	to	realise	CH	Edu	capacity	expansion	 Policy	 48	 Ministry	of	Education,	Culture	and	Science	(2018b)	

Minimum	fixed	period	CH	Edu	capacity	expansion	 Constant	 36	 Ministry	of	Education,	Culture	and	Science	(2018b)	

CH	Edu	capacity	planning	 Policy	 1	 Policy	

ST	STEM	stimulation	and	awareness	 Policy	 1	 Policy	

ST	High	Edu	stimulation	and	awareness	 Policy	 1	 Policy	

ST	Labour	market	awareness	and	sensitivity	 Uncertainty	 0-1	 Uncertainty	space	

ST	knowledge	YA	Unemployment	delay	 Uncertainty	 12-48	 Uncertainty	space		

ST	STEM	Edu	capacity	expansion	stimulation	 Policy	 1	 ASSUMPTION:	STEM	creation	can	not	be	done	faster	

Time	to	realise	ST	Edu	capacity	expansion	 Policy	 60	 Policy	

Fixed	period	ST	Edu	capacity	expansion	 Constant	 12	 ASSUMPTION:	 it	 takes	 one	 year	 to	 find	 the	 required	

resources,	 financially	 (due	 to	 annual	 budget),	 staff	
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(contracts),	and	find	(temporary)	space	

ST	Edu	capacity	planning	 Policy	 1	 Policy	

WA	STEM	stimulation	and	awareness	 Policy	 1	 Policy	

WA	High	Edu	stimulation	and	awareness	 Policy	 1	 Policy	

WAu	reskill	and	upskill	sensitivity	 Uncertainty	 0-1	 Uncertainty	space	

WAe	reskill	and	upskill	sensitivity	 Uncertainty	 0-1	 Uncertainty	space	

SA	and	RE	LF	relative	reduction	in	training	 Variable	 1-0,952	 CBS	(2018d)	

Socioeconomic	influence	education	and	training	H	 Constant	 1,297	 CBS	(2018d)	

Socioeconomic	influence	education	and	training	M	 Constant	 0,895	 CBS	(2018d)	

Socioeconomic	influence	education	and	training	L	 Constant	 0,561	 CBS	(2018d)	

MANUAL	CH	Edu	performance	overall	improvement	H	 Policy	 0	 Policy	

MANUAL	CH	Edu	performance	overall	improvement	M	 Policy	 0	 Policy	

MANUAL	CH	Edu	performance	overall	improvement	L	 Policy	 0	 Policy	

MANUAL	CH	Edu	performance	STEM	improvement	H	 Policy	 0	 Policy	

MANUAL	CH	Edu	performance	STEM	improvement	M	 Policy	 0	 Policy	

MANUAL	CH	Edu	performance	STEM	improvement	L	 Policy	 0	 Policy	

SWITCH	Overall	Education	factors	OR	MANUAL	performance	increase	 Setting	 0	 Setting	

SWITCH	STEM	Education	factors	OR	MANUAL	performance	increase	 Setting	 0	 Setting	

Time	to	realise	CH	Edu	HL	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	CH	Edu	HI	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	CH	Edu	ML	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	CH	Edu	MI	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	CH	Edu	LL	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	CH	Edu	LI	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	ST	Edu	HL	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	ST	Edu	HI	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	ST	Edu	ML	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	ST	Edu	MI	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	ST	Edu	LL	demographic	growth	 Setting	 1	 Setting	

Time	to	realise	ST	Edu	LI	demographic	growth	 Setting	 1	 Setting	
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Technology	model	

Parameter_Name	 Type	 Value	 Source	

Prior	Substituted	Labour	demand	 Uncertainty	 8,9-10,1	 Gregory,	Salomons,	and	Zierahn	(2016)	

Prior	stock	of	Labour	demand	 Initial	 180	 Gregory,	Salomons,	and	Zierahn	(2016)	

Prior	period	of	labour	substitution	 Initial	 11	 Gregory,	Salomons,	and	Zierahn	(2016)	

Current	rate	of	substitution	Abstract	correction	 Initial	 0,4	 Setting	

Long	term	annual	TFP	growth	LOOKUP	 Lookup	 LOOKUP	 OECD	(2015a)	

Macro	economic	Technological	TFP	growth	 Constant	 0,0067	 Graetz	&	Michaels	(2017)	

Skill	mismatch	GDP	factor	 Constant	 0	 OECD	(2015a)	

Innovation	allocation	GDP	factor	 Constant	 0	 OECD	(2015a)	

Initial	Economic	Innovation	allocation	 Initial	 0,02013	 The	World	Bank	(2015)	

Productivity	growth	Profit	allocation	 Constant	 0,233	 Graetz	and	Michaels	(2017)	

Productivity	growth	Competitive	allocation	 Constant	 0,667	 Graetz	and	Michaels	(2017)	

Productivity	growth	Wage	allocation	 Constant	 0,1	 Graetz	and	Michaels	(2017)	

Proportion	profit	invested	in	innovation	 Uncertainty	 0-1	 Uncertainty	space	

Solow	Paradox	multiplier	 Uncertainty	 0-1	 Uncertainty	space	

Wage	decline	in	relation	to	substitution	 Constant	 0	 Nedelkoska	and	Quintini	(2018)	

Innovation	allocation	sensivitity	to	business	cycle	 Uncertainty	 0-0,1	 Uncertainty	space	

Minimum	Economic	Innovation	allocation	 Constant	 0,7	 ASSUMPTION	

SWITCH	net	OECD	TFP	vs	Technology	corrected	TFP	 Setting	 0	 Setting	

SWITCH	Difference	automation	vs	substitution	 Setting	 0	 Setting	

Time	difference	automation	and	substitution	 Uncertainty	 Table	2	 Uncertainty	

Upper	bound	technological	bottleneck	proportion	of	tasks	 Uncertainty	 0,01-0,1	 Setting	

SWITCH	Relief	Solow	Paradox	 Setting	 0	 Setting	

TFP	Wage	allocation	Manual	I	 Uncertainty	 0-1	 Uncertainty	

TFP	Wage	allocation	Manual	L	 Uncertainty	 0-1	 Uncertainty	

TFP	Wage	allocation	Routine	I	 Uncertainty	 0-1	 Uncertainty	

TFP	Wage	allocation	Routine	L	 Uncertainty	 0-1	 Uncertainty	

TFP	Wage	allocation	Abstract	I	 Uncertainty	 0-1	 Uncertainty	
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TFP	Wage	allocation	Abstract	L	 Uncertainty	 0-1	 Uncertainty	
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III SD Model  
A	high	resolution	of	the	SD	model	overview	image	(Figure	34	to	Figure	38)	can	be	found	here

108
.	

	
Figure	34	SD	model	-	Education	model	overview	

	 	

																																																													
108

	If	the	link	does	not	work,	copy	and	paste	the	following	address:		https://drive.google.com/open?id=1FPkYn0sRTRkiVz4PAEPdnQKjCz28qo7d		
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Figure	35	SD	model	–	Demographic	model	overview	(Population	(1)	and	Labour	force	(2))	
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Figure	36	SD	model	–	Labour	market	model	overview	

	
Figure	37	SD	model	-	Production	model	overview	
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Figure	38	SD	model	-	Technology	model	overview	
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Figure	39	SD	Model	–	Enlarged	Children	education	
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Figure	40	SD	Model	–	Enlarged	Student	education	
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Figure	41	SD	Model	–	Enlarged	Working	age	training	
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Figure	42	SD	model	–	Birth	component	
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Figure	43	SD	Model	–	Male	population	
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Figure	44	SD	Model	–	Female	population	

	

Figure	45	SD	model	–	Labour	force	and	labour	supply	allocation	(sample	of	component	per	skill	level	per	age	cohort)	
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Figure	46	SD	model	–	Labour	market	(sample	of	component	per	task)	

	

Figure	47	SD	model	–	Labour	market	supply	reallocation	based	on	wages	
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Figure	48	SD	model	–	Labour	market	supply	reallocation	based	on	unemployment	
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Figure	49	SD	model	–	Production	model	labour	input	with	spill-overs	and	routinisation	(sample	of	component	per	task)	
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Figure	50	SD	model	–	Production	model	corrected	economic	growth	projection	with	feedback-mechanisms	
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Figure	51	SD	model	–	Production	model	Labour	share,	TFP,	innovation		investment,	and	total	wage	income	
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Figure	52	SD	model	–	Technology	model	(sample	of	component	per	task)	
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IV OECD Economic growth inter-
recession fluctuation 

Based	on	OECD	data,	the	fluctuations	have	a	half-period	(-	-)	between	1	and	1,5	years	between	recessions	

(—)	with	an	amplitude	(from	—)	ranging	between	approximately	between	0,05%	and	0,33%	(OECD,	2018):	

		

	

Figure	53	OECD	Economic	growth	inter-recession	fluctutation	
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V Demographic configuration 
Initial	5-year	age	cohort	demographic	representation	

	

Figure	54	Initial	5-year	age	cohort	demographic	representation	

Incorrect	population	configuration	

	

	

Figure	55	Incorrect	initial	population	
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Corrected	population	configuration	

	

	

Figure	56	Corrected	initial	population	
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VI Behaviour Anomaly Test 
Data	set	from	Gregory,	Salomons,	and	Zierahn	(2016)	

	

Figure	57	Behaviour	Anomaly	Test	using	substitution	estimates	from	Gregory,	Salomons,	and	Zierahn	(Gregory,	Salomons	&	Zierahn,	

2016)	
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Data	set	from	Frey	and	Osborne	(2017)	

	

Figure	58	Behaviour	Anomaly	Test	using	substitution	estimates	from	Frey	and	Osborne	(Frey	&	Osborne,	2017)	
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Data	set	from	Arntz,	Gregory,	and	Zierahn	(2016)	

	

Figure	59	Behaviour	Anomaly	 Test	 using	 substitution	 estimates	 from	Arntz,	Gregory,	 and	 Zierahn	 (Arntz,	Gregory,	 Zierahn,	

2016)	
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Data	set	from	Nedelkoska	and	Quintini	(2018)	

	

Figure	60	Behaviour	Anomaly	Test	using	substitution	estimates	from	Nedelkoska	and	Quintini	(Nedelkoska	&	Quintini,	2018)	
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VII Population Behaviour 
Model	behaviour	test	across	model	integration	settings	for	time	fraction	of	delay	(T	fraction	=)	and	re-	and	

up-skilling	compared	to	Netherlands	Central	Bureau	of	Statistics	(CBS)	projections:	

	

Population	

	

	

Figure	61	Model	validation	Population	behaviour	under	different	settings	

Births	

	

Figure	62	Model	validation	Births	behaviour	under	different	settings	
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CH	Population	

	

	

	

Figure	63	Model	validation	Children	(CH)	Population	behaviour	under	different	settings)	
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ST	Population	

	

	

	

Figure	64	Model	validation	Student	(ST)	Population	behaviour	under	different	settings	
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YA	Population	

	

	

	

Figure	65	Model	validation	Young	Adult	(YA)	Population	behaviour	under	different	settings	
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MA	Population	

	

	

	

Figure	66	Model	validation	Mature	Adult	(MA)	Population	behaviour	under	different	settings	
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SA	Population	

	

	

	

Figure	67	Model	validation	Senior	Adult	(SA)	Population	behaviour	under	different	settings	
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RE	Population	

	

	

	

Figure	68	Model	validation	Retired	(RE)	Population	behaviour	under	different	settings	
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VIII SD Model configuration settings 
for feedback mechanisms 

Table	6	Model	configuration	feedback	mechanism	parameter	settings	

	 	 Model	Configuration	

Feedback	 Parameter	 I	 II	 III	 IV	 V	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Labour	supply	reallocation	 Sensitivity	Wage	reallocation	 0	 0.999	 0.999	 0.999	 0.999	

Wage	sacrifice	ratio	for	employment	 0	 0.999	 0.999	 0.999	 0.999	

Sensitivity	Unemployment	reallocation	 0	 1	 1	 1	 1	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Re-	and	up-skilling	 ST	Labour	market	awareness	and	sensitivity	 0	 0	 1	 1	 1	

WAu	reskill	and	upskill	sensitivity	 0	 0	 1	 1	 1	

WAe	reskill	and	upskill	sensitivity	 0	 0	 1	 1	 1	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Spillover	 SWITCH	Spillover	effect	OFF	 0	 0	 0	 1	 1	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Routinisation	 SWITCH	Routinisation	OFF	 0	 0	 0	 1	 1	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
Solow	Paradox	 SWITCH	Relief	Solow	Paradox	 0	 0	 0	 0	 1	

	 	 	 	 	 	 	
	

	

	  



TU Delft EPA  |  K Spaanderman   

	 171	

IX Uncertainty Scenarios 
A. Gregory, Salomons, and Zierahn (2016)  
#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	240,	241),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.009,	0.0102),	

													RealParameter("Automation	probability	Abstract	L",	0.999,	1),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	240,	241),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.009,	0.0102),	

												RealParameter("Automation	probability	Abstract	I",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	240,	241),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.09,	0.102),	

												RealParameter("Automation	probability	Routine	L",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	240,	241),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.09,	0.102),	

												RealParameter("Automation	probability	Routine	I",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	240,	241),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.09,	0.102),	

												RealParameter("Automation	probability	Manual	L",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	240,	241),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.09,	0.102),	

												RealParameter("Automation	probability	Manual	I",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	
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B. Frey and Osborne (2017)  
#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	360,	600),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.329,	0.331),	

													RealParameter("Automation	probability	Abstract	L",	0.01,	0.3),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	360,	600),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.329,	0.331),	

												RealParameter("Automation	probability	Abstract	I",	0.01,	0.3),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.524,	0.559),	

												RealParameter("Automation	probability	Routine	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.524,	0.559),	

												RealParameter("Automation	probability	Routine	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.524,	0.559),	

												RealParameter("Automation	probability	Manual	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.524,	0.559),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

	

	

C. Arntz, Gregory, and Zierahn (2016)  
								#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	216,	264),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.001,	0.01),	
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													RealParameter("Automation	probability	Abstract	L",	0.7,	1.0),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.001,	0.01),	

												RealParameter("Automation	probability	Abstract	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.06825,	0.07175),	

												RealParameter("Automation	probability	Routine	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.06825,	0.07175),	

												RealParameter("Automation	probability	Routine	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.37,	0.51),	

												RealParameter("Automation	probability	Manual	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.37,	0.51),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

					

	

D. Nedelkoska and Quintini (2018) 
#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	216,	264),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.001,	0.01),	

													RealParameter("Automation	probability	Abstract	L",	0.27,	0.85),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	216,	264),	



TU Delft EPA  |  K Spaanderman   

	 174	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.001,	0.01),	

												RealParameter("Automation	probability	Abstract	I",	0.27,	0.85),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.289,	0.326),	

												RealParameter("Automation	probability	Routine	L",	0.59,	0.94),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.289,	0.326),	

												RealParameter("Automation	probability	Routine	I",	0.59,	0.94),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.289,	0.326),	

												RealParameter("Automation	probability	Manual	L",	0.59,	0.94),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.245,	0.422),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

	

	

G. Deloitte (2016)  
#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	216,	264),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.104,	0.193),	

													RealParameter("Automation	probability	Abstract	L",	0.7,	1.0),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.104,	0.193),	

												RealParameter("Automation	probability	Abstract	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	
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												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Routine	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Routine	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Manual	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	
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X EMA Python script Adaptibility 
	

#	Simulation	configuration	

	

import	numpy	as	np	

import	matplotlib	

import	matplotlib.pyplot	as	plt	

import	pandas	as	pd	

import	SALib	

import	seaborn	as	sns	

import	mpl_toolkits.axisartist	as	AA	

import	scipy	as	sp	

import	copy	

import	matplotlib.ticker	as	ticker	

	

from	ema_workbench	import	(Model,		

																											RealParameter,		

																											IntegerParameter,		

																											CategoricalParameter,		

																											Constant,		

																											TimeSeriesOutcome,		

																											ScalarOutcome,		

																											perform_experiments,		

																											ema_logging,		

																											save_results,		

																											load_results)	

from	ema_workbench	import	(Policy)	

from	ema_workbench	import	(MultiprocessingEvaluator)	

from	ema_workbench.connectors	import	vensimDLLwrapper	

from	ema_workbench.connectors.vensim	import	VensimModel	

from	ema_workbench.em_framework.samplers	import	sample_levers,	sample_uncertainties	

from	ema_workbench.util	import	load_results	

from	ema_workbench.util	import	ema_logging	

	

from	ema_workbench.analysis	import	prim	

import	matplotlib.pyplot	as	plt	

from	ema_workbench.analysis.plotting	import	lines,	multiple_densities,	kde_over_time	

from	ema_workbench.analysis.plotting_util	import	KDE	

from	ema_workbench.analysis.plotting_util	import	determine_time_dimension	

from	ema_workbench.analysis.pairs_plotting	import	pairs_scatter	

	

from	SALib.sample	import	saltelli	

from	SALib.analyze	import	sobol,	morris	

from	SALib.test_functions	import	Ishigami	

	

from	mpl_toolkits.axes_grid1	import	host_subplot	

	

from	scipy.stats	import	linregress	

	

ema_logging.log_to_stderr(ema_logging.INFO)	
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vensimModel	 =	 VensimModel("ThesisModel",	

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final.vpm"	)	

	

#	Uncertainty	configuration	Technological	Substitution	Dataset	Frey,	Osborne	(2013-2017)	

	

vensimModel.uncertainties	=	[	

				#POPULATION	MODEL	UNCERTAINTIES	

												RealParameter("Normal	fertility	rate	per	f",	1.58,	1.7),	

					

				#EDUCATION	MODEL	UNCERTAINTIES	

#									#CH	Education	

#													RealParameter("CH	Edu	performance	Reskill	equivalent",	25,	30),	

#													RealParameter("CH	Edu	performance	Upskill	equivalent",	25,	30),	

#											#Policy	

#													#RealParameter("Time	to	introduction	STEM	program",	0,	300),	

#													#RealParameter("Minimum	fixed	period	CH	Edu	capacity	expansion",	1,	36),	

#													#RealParameter("Time	to	realise	CH	Edu	capacity	expansion",	1,	48),	

#													#RealParameter("STEM	educated	vs	STEM	graduated	ratio",	0.4,	1),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	H",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	M",	0,	25),			

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	L",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	H",	0,	16.75),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	M",	0,	16.75),			

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	L",	0,	16.75),	

#									#ST	Education	

#													RealParameter("ST	Labour	market	awareness	and	sensitivity",	0,	1),	

#													RealParameter("ST	knowledge	YA	Unemployment	delay",	12,	48),	

#											#Policy	

#													#RealParameter("ST	STEM	stimulation	and	awareness",	1,	2),	

#													#RealParameter("ST	High	Edu	stimulation	and	awareness",	1,	2),	

#													#RealParameter("Time	to	realise	ST	Edu	capacity	expansion",	12,	60),	

#													#RealParameter("Fixed	period	ST	Edu	capacity	expansion",	1,	12),			

#									#WA	Education	

#													RealParameter("WAu	reskill	and	upskill	sensitivity",	0,	1),	

#													RealParameter("WAe	reskill	and	upskill	sensitivity",	0,	1),	

#											#Policy	

#													#RealParameter("WA	STEM	stimulation	and	awareness",	1,	2),	

#													#RealParameter("WA	High	Edu	stimulation	and	awareness",	1,	2),	

#													#RealParameter("Socioeconomic	influence	education	and	training	H",	1,	2),	

#													#RealParameter("Socioeconomic	influence	education	and	training	M",	0.895,	2),			

#													#RealParameter("Socioeconomic	influence	education	and	training	L",	0.561,	2),	

					

				#LABOUR	MARKET	MODEL	UNCERTAINTIES	

								#Labour	reallocation	

#													RealParameter("Sensitivity	Wage	reallocation",	0,	0.999),					

#													RealParameter("Wage	sacrifice	ratio	for	employment",	0.01,	0.5),					

#													RealParameter("Sensitivity	Unemployment	reallocation",	0,	1),					

#											#Policy	

#													#RealParameter("Labour	reallocation	delay",	12,	48),		

#											#Setting	

												RealParameter("Error	MINMAX	corrector",	10000000000000000,	100000000000000000),	

					

				#PRODUCTION	MODEL	UNCERTAINTIES		
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								#Labour	input					

#													RealParameter("Price	elasticity	of	demand	Abstract	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Abstract	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	I",	0,	1),	

								#GDP	growth	

												RealParameter("Long	term	economic	growth	error	margin",	0,	0.05),	

												RealParameter("Business	cycle	fluctuation	amplitude",	0.001,	0.0033),	

												RealParameter("Business	cycle	fluctuation	period",	2,	3),	

												RealParameter("Time	to	first	recession",	2,	5),						

												RealParameter("Business	cycle	recession	amplitude",	0.0187,	0.0263),	

												RealParameter("Business	cycle	recession	duration",	3,	3.64),	

												RealParameter("Busines	cycle	recession	period",	8,	9.4),	

												RealParameter("Severe	recession	timing",	1,	3),	

												RealParameter("Severe	recession	duration",	4,	4.7),	

												RealParameter("Severe	recession	amplitude",	0.0489,	0.0631),	

												RealParameter("Severe	recession	occurance",	0,	1),	

												RealParameter("Proportion	of	time	in	recession",	0.18,	0.21),	

												RealParameter("Initial	Labour	share",	0.554,	0.714),	

								#Others	

#												RealParameter("Macro	economic	Technological	TFP	growth",	0.004,	0.0067),	

												RealParameter("Task	substitution	elasticity",	0.66,	0.9),	

											#Policy	

												#RealParameter("Hours	fulltime	contracts",	32,	38),		

	

				#TECHNOLOGY	MODEL	UNCERTAINTIES					

												RealParameter("Proportion	profit	invested	in	innovation",	0.02,	1),	

												RealParameter("Innovation	allocation	sensivitity	to	business	cycle",	0,	0.1),	

												RealParameter("Prior	Substituted	Labour	demand",	8.9,	10.1),	

												RealParameter("Solow	Paradox	multiplier",	0,	0.5),	

												RealParameter("Time	difference	automation	and	substitution",	0.999,	1.001),	

												RealParameter("TFP	Wage	allocation	Abstract	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Abstract	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	I",	0.1,	1),	

				#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	360,	600),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.329,	0.331),	

													RealParameter("Automation	probability	Abstract	L",	0.01,	0.3),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	360,	600),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.329,	0.331),	

												RealParameter("Automation	probability	Abstract	I",	0.01,	0.3),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	
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												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.524,	0.559),	

												RealParameter("Automation	probability	Routine	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.524,	0.559),	

												RealParameter("Automation	probability	Routine	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.524,	0.559),	

												RealParameter("Automation	probability	Manual	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.524,	0.559),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

													

												RealParameter("Upper	bound	technological	bottleneck	proportion	of	tasks",	0.001,	0.01)					

]	

	

vensimModel.outcomes	=	[	

				#POPULATION	MODEL	OUTCOMES	

#											TimeSeriesOutcome('Total	population'),	

				#EDUCATION	MODEL	OUTCOMES	

				#LABOUR	MARKET	OUTCOMES						

												TimeSeriesOutcome('HL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('HI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('ML	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('MI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LI	Avg	ft	Unemployment	rate'),	

				#PRODUCTION	MODEL	OUTCOMES	

												TimeSeriesOutcome('Annual	Macro	Economic	growth	rate'),	

												TimeSeriesOutcome('Total	wage	income	index'),	

												TimeSeriesOutcome('Aggregate	annual	TFP'),	

												TimeSeriesOutcome('Average	Labour	share'),	

												TimeSeriesOutcome('Relative	price	development	Abstract	L'),	

												TimeSeriesOutcome('Relative	price	development	Abstract	I'),	

												TimeSeriesOutcome('Relative	price	development	Routine	L'),	

												TimeSeriesOutcome('Relative	price	development	Routine	I'),	
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												TimeSeriesOutcome('Relative	price	development	Manual	L'),	

												TimeSeriesOutcome('Relative	price	development	Manual	I'),	

				#TECHNOLOGY	MODEL	OUTCOMES	

												TimeSeriesOutcome('Technological	substitution	Abstract	L'),	

												TimeSeriesOutcome('Technological	substitution	Abstract	I'),	

												TimeSeriesOutcome('Technological	substitution	Routine	L'),	

												TimeSeriesOutcome('Technological	substitution	Routine	I'),	

												TimeSeriesOutcome('Technological	substitution	Manual	L'),	

												TimeSeriesOutcome('Technological	substitution	Manual	I')	

]	

	

policies	=	[	

												Policy('Model_I',	

																			

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_I.vpm"),	

												Policy('Model_II',	

																			

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_II.vpm"),	

												Policy('Model_III',	

																			

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_III.vpm"),	

												Policy('Model_IV'	

																	

											]	

	

#	Model	simulation	

	

results	=	perform_experiments(vensimModel,	1000,	policies=	policies)	

#	Save	results	

	

results_name	=	'./EMA_Adaptibility_Uncertainty_B_Results.tar.gz'	

save_results(results,	results_name)	
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XI Labour force adaptability effect 

	

Figure	69	Unemployment	projections	!ℍ	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	

	

Figure	70	Unemployment	projections	#ℍ	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	
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Figure	71	Unemployment	projections	!$	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	

	

Figure	72	Unemployment	projections	#$	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	
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Figure	73	Unemployment	projections	!%	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	

	

Figure	74	Unemployment	projections	#%	for	uncertainty	B	with	and	without	adaptability	and	spill-over	(models	I,	II,	III,	and	IV)	
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XII EMA Python script Unemployment  
For uncertainty A: 
#	Simulation	configuration	

	

import	numpy	as	np	

import	matplotlib	

import	matplotlib.pyplot	as	plt	

import	pandas	as	pd	

import	SALib	

import	seaborn	as	sns	

import	mpl_toolkits.axisartist	as	AA	

import	scipy	as	sp	

import	copy	

import	matplotlib.ticker	as	ticker	

	

from	ema_workbench	import	(Model,		

																											RealParameter,		

																											IntegerParameter,		

																											CategoricalParameter,		

																											Constant,		

																											TimeSeriesOutcome,		

																											ScalarOutcome,		

																											perform_experiments,		

																											ema_logging,		

																											save_results,		

																											load_results)	

from	ema_workbench	import	(Policy)	

from	ema_workbench	import	(MultiprocessingEvaluator)	

from	ema_workbench.connectors	import	vensimDLLwrapper	

from	ema_workbench.connectors.vensim	import	VensimModel	

from	ema_workbench.em_framework.samplers	import	sample_levers,	sample_uncertainties	

from	ema_workbench.util	import	load_results	

from	ema_workbench.util	import	ema_logging	

	

from	ema_workbench.analysis	import	prim	

import	matplotlib.pyplot	as	plt	

from	ema_workbench.analysis.plotting	import	lines,	multiple_densities,	kde_over_time	

from	ema_workbench.analysis.plotting_util	import	KDE	

from	ema_workbench.analysis.plotting_util	import	determine_time_dimension	

from	ema_workbench.analysis.pairs_plotting	import	pairs_scatter	

	

from	SALib.sample	import	saltelli	

from	SALib.analyze	import	sobol,	morris	

from	SALib.test_functions	import	Ishigami	

	

from	mpl_toolkits.axes_grid1	import	host_subplot	

	

from	scipy.stats	import	linregress	

	

ema_logging.log_to_stderr(ema_logging.INFO)	
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vensimModel	 =	 VensimModel("ThesisModel",	

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final.vpm"	)	

	

#	Uncertainty	configuration	Technological	Substitution	Dataset	Gregory,	Salomons,	&	Zierahn	(2016)	for	the	

Netherlands	

	

vensimModel.uncertainties	=	[	

				#POPULATION	MODEL	UNCERTAINTIES	

												RealParameter("Normal	fertility	rate	per	f",	1.58,	1.7),	

					

				#EDUCATION	MODEL	UNCERTAINTIES	

#									#CH	Education	

#													RealParameter("CH	Edu	performance	Reskill	equivalent",	25,	30),	

#													RealParameter("CH	Edu	performance	Upskill	equivalent",	25,	30),	

#											#Policy	

#													#RealParameter("Time	to	introduction	STEM	program",	0,	300),	

#													#RealParameter("Minimum	fixed	period	CH	Edu	capacity	expansion",	1,	36),	

#													#RealParameter("Time	to	realise	CH	Edu	capacity	expansion",	1,	48),	

#													#RealParameter("STEM	educated	vs	STEM	graduated	ratio",	0.4,	1),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	H",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	M",	0,	25),			

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	L",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	H",	0,	16.75),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	M",	0,	16.75),			

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	L",	0,	16.75),	

#									#ST	Education	

													RealParameter("ST	Labour	market	awareness	and	sensitivity",	0,	1),	

													RealParameter("ST	knowledge	YA	Unemployment	delay",	12,	48),	

#											#Policy	

#													#RealParameter("ST	STEM	stimulation	and	awareness",	1,	2),	

#													#RealParameter("ST	High	Edu	stimulation	and	awareness",	1,	2),	

#													#RealParameter("Time	to	realise	ST	Edu	capacity	expansion",	12,	60),	

#													#RealParameter("Fixed	period	ST	Edu	capacity	expansion",	1,	12),			

#									#WA	Education	

													RealParameter("WAu	reskill	and	upskill	sensitivity",	0,	1),	

													RealParameter("WAe	reskill	and	upskill	sensitivity",	0,	1),	

#											#Policy	

#													RealParameter("WA	STEM	stimulation	and	awareness",	1,	2),	

#													RealParameter("WA	High	Edu	stimulation	and	awareness",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	H",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	M",	0.895,	2),			

#													RealParameter("Socioeconomic	influence	education	and	training	L",	0.561,	2),	

					

				#LABOUR	MARKET	MODEL	UNCERTAINTIES	

								#Labour	reallocation	

													RealParameter("Sensitivity	Wage	reallocation",	0,	0.999),					

													RealParameter("Wage	sacrifice	ratio	for	employment",	0.01,	0.5),					

													RealParameter("Sensitivity	Unemployment	reallocation",	0,	1),					

												#Policy	

													RealParameter("Labour	reallocation	delay",	12,	48),		

												#Setting	

													RealParameter("Error	MINMAX	corrector",	10000000000000000,	100000000000000000),	
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				#PRODUCTION	MODEL	UNCERTAINTIES		

								#Labour	input					

#													RealParameter("Price	elasticity	of	demand	Abstract	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Abstract	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	I",	0,	1),	

								#GDP	growth	

												RealParameter("Long	term	economic	growth	error	margin",	0,	0.05),	

												RealParameter("Business	cycle	fluctuation	amplitude",	0.001,	0.0033),	

												RealParameter("Business	cycle	fluctuation	period",	2,	3),	

												RealParameter("Time	to	first	recession",	2,	5),						

												RealParameter("Business	cycle	recession	amplitude",	0.0187,	0.0263),	

												RealParameter("Business	cycle	recession	duration",	3,	3.64),	

												RealParameter("Busines	cycle	recession	period",	8,	9.4),	

												RealParameter("Severe	recession	timing",	1,	3),	

												RealParameter("Severe	recession	duration",	4,	4.7),	

												RealParameter("Severe	recession	amplitude",	0.0489,	0.0631),	

												RealParameter("Severe	recession	occurance",	0,	1),	

												RealParameter("Proportion	of	time	in	recession",	0.18,	0.21),	

												RealParameter("Initial	Labour	share",	0.554,	0.714),	

								#Others	

#												RealParameter("Macro	economic	Technological	TFP	growth",	0.004,	0.0067),	

												RealParameter("Task	substitution	elasticity",	0.66,	0.9),	

								#Policy	

												#RealParameter("Hours	fulltime	contracts",	32,	38),		

	

				#TECHNOLOGY	MODEL	UNCERTAINTIES					

												RealParameter("Proportion	profit	invested	in	innovation",	0.02,	1),	

												RealParameter("Innovation	allocation	sensivitity	to	business	cycle",	0,	0.1),	

												RealParameter("Prior	Substituted	Labour	demand",	8.9,	10.1),	

												RealParameter("Time	difference	automation	and	substitution",	0.999,	1.001),	

												RealParameter("TFP	Wage	allocation	Abstract	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Abstract	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	I",	0.1,	1),	

				#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	240,	241),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.009,	0.0102),	

													RealParameter("Automation	probability	Abstract	L",	0.999,	1),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	240,	241),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.009,	0.0102),	

												RealParameter("Automation	probability	Abstract	I",	0.999,	1),	
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												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	240,	241),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.09,	0.102),	

												RealParameter("Automation	probability	Routine	L",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	240,	241),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.09,	0.102),	

												RealParameter("Automation	probability	Routine	I",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	240,	241),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.09,	0.102),	

												RealParameter("Automation	probability	Manual	L",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	240,	241),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.09,	0.102),	

												RealParameter("Automation	probability	Manual	I",	0.999,	1),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

													

												RealParameter("Upper	bound	technological	bottleneck	proportion	of	tasks",	0.001,	0.01)					

]	

	

vensimModel.outcomes	=	[	

				#POPULATION	MODEL	OUTCOMES	

#											TimeSeriesOutcome('Total	population'),	

				#EDUCATION	MODEL	OUTCOMES	

												TimeSeriesOutcome('ST	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	m	total	reskill	percentage'),	
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												TimeSeriesOutcome('LF	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	upskill	percentage'),	

				#LABOUR	MARKET	OUTCOMES	

												TimeSeriesOutcome('Labour	force	ft	Index'),	

												TimeSeriesOutcome('HL	ft	average	wage	index'),	

												TimeSeriesOutcome('HI	ft	average	wage	index'),	

												TimeSeriesOutcome('ML	ft	average	wage	index'),	

												TimeSeriesOutcome('MI	ft	average	wage	index'),	

												TimeSeriesOutcome('LL	ft	average	wage	index'),	

												TimeSeriesOutcome('LI	ft	average	wage	index'),	

												TimeSeriesOutcome('HL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('HI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('ML	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('MI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LI	Avg	ft	Unemployment	rate'),	

#													TimeSeriesOutcome('Total	Labour	Force	HL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	HI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	ML	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	MI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LI	ft'),	

#													TimeSeriesOutcome('LI	to	Manual	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('MI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('ML	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	I	for	employment	ft'),	

#												TimeSeriesOutcome('LL	to	Manual	L	for	employment	ft'),	

#												TimeSeriesOutcome('ML	to	Manual	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	L	for	employment	ft'),	

#													TimeSeriesOutcome('LI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('MI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('HI	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	I	for	employment	ft'),	
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#													TimeSeriesOutcome('HL	to	Abstract	L	for	employment	ft'),	

				#PRODUCTION	MODEL	OUTCOMES	

												TimeSeriesOutcome('Annual	Macro	Economic	growth	rate'),	

												TimeSeriesOutcome('Total	wage	income	index'),	

												TimeSeriesOutcome('Aggregate	annual	TFP'),	

												TimeSeriesOutcome('Average	Labour	share'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	L'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	I'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	L'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	I'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	L'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	I'),	

				#TECHNOLOGY	MODEL	OUTCOMES		

												TimeSeriesOutcome('Technological	substitution	Abstract	L'),	

												TimeSeriesOutcome('Technological	substitution	Abstract	I'),	

												TimeSeriesOutcome('Technological	substitution	Routine	L'),	

												TimeSeriesOutcome('Technological	substitution	Routine	I'),	

												TimeSeriesOutcome('Technological	substitution	Manual	L'),	

												TimeSeriesOutcome('Technological	substitution	Manual	I'),	

												TimeSeriesOutcome('Profit	index	Abstract	L'),	

												TimeSeriesOutcome('Profit	index	Abstract	I'),	

												TimeSeriesOutcome('Profit	index	Routine	L'),	

												TimeSeriesOutcome('Profit	index	Routine	I'),	

												TimeSeriesOutcome('Profit	index	Manual	L'),	

												TimeSeriesOutcome('Profit	index	Manual	I')	

#													TimeSeriesOutcome('Labour	share	index	Abstract	L'),	

#													TimeSeriesOutcome('Labour	share	index	Abstract	I'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	L'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	I'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	L'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	I'),	

#													TimeSeriesOutcome('Wage	index	Abstract	L'),	

#													TimeSeriesOutcome('Wage	index	Abstract	I'),	

#													TimeSeriesOutcome('Wage	index	Routine	L'),	

#													TimeSeriesOutcome('Wage	index	Routine	I'),	

#													TimeSeriesOutcome('Wage	index	Manual	L'),	

#													TimeSeriesOutcome('Wage	index	Manual	I'),	

]	

	

policies	=	[	

													Policy('Model_IV',	

																				

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_IV.vpm")	

												]	

	

#	Model	simulation	

	

results	=	perform_experiments(vensimModel,	1000,	policies=	policies)	

#	Save	results	

	

results_name	=	'./EMA_NED_Uncertainty_A_Results.tar.gz'	

save_results(results,	results_name)	
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For uncertainty C: 
#	Simulation	configuration	

	

import	numpy	as	np	

import	matplotlib	

import	matplotlib.pyplot	as	plt	

import	pandas	as	pd	

import	SALib	

import	seaborn	as	sns	

import	mpl_toolkits.axisartist	as	AA	

import	scipy	as	sp	

import	copy	

import	matplotlib.ticker	as	ticker	

	

from	ema_workbench	import	(Model,		

																											RealParameter,		

																											IntegerParameter,		

																											CategoricalParameter,		

																											Constant,		

																											TimeSeriesOutcome,		

																											ScalarOutcome,		

																											perform_experiments,		

																											ema_logging,		

																											save_results,		

																											load_results)	

from	ema_workbench	import	(Policy)	

from	ema_workbench	import	(MultiprocessingEvaluator)	

from	ema_workbench.connectors	import	vensimDLLwrapper	

from	ema_workbench.connectors.vensim	import	VensimModel	

from	ema_workbench.em_framework.samplers	import	sample_levers,	sample_uncertainties	

from	ema_workbench.util	import	load_results	

from	ema_workbench.util	import	ema_logging	

	

from	ema_workbench.analysis	import	prim	

import	matplotlib.pyplot	as	plt	

from	ema_workbench.analysis.plotting	import	lines,	multiple_densities,	kde_over_time	

from	ema_workbench.analysis.plotting_util	import	KDE	

from	ema_workbench.analysis.plotting_util	import	determine_time_dimension	

from	ema_workbench.analysis.pairs_plotting	import	pairs_scatter	

	

from	SALib.sample	import	saltelli	

from	SALib.analyze	import	sobol,	morris	

from	SALib.test_functions	import	Ishigami	

	

from	mpl_toolkits.axes_grid1	import	host_subplot	

	

from	scipy.stats	import	linregress	

	

ema_logging.log_to_stderr(ema_logging.INFO)	

	

vensimModel	 =	 VensimModel("ThesisModel",	

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final.vpm"	)	
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#	 Uncertainty	 configuration	 Technological	 Substitution	 Dataset	 Arntz,	 Gregory,	 &	 Zierahn	 (2016)	 for	 the	

Netherlands	

	

vensimModel.uncertainties	=	[	

				#POPULATION	MODEL	UNCERTAINTIES	

												RealParameter("Normal	fertility	rate	per	f",	1.58,	1.7),	

					

				#EDUCATION	MODEL	UNCERTAINTIES	

#									#CH	Education	

#													RealParameter("CH	Edu	performance	Reskill	equivalent",	25,	30),	

#													RealParameter("CH	Edu	performance	Upskill	equivalent",	25,	30),	

#											#Policy	

#													#RealParameter("Time	to	introduction	STEM	program",	0,	300),	

#													#RealParameter("Minimum	fixed	period	CH	Edu	capacity	expansion",	1,	36),	

#													#RealParameter("Time	to	realise	CH	Edu	capacity	expansion",	1,	48),	

#													#RealParameter("STEM	educated	vs	STEM	graduated	ratio",	0.4,	1),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	H",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	M",	0,	25),			

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	L",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	H",	0,	16.75),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	M",	0,	16.75),			

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	L",	0,	16.75),	

#									#ST	Education	

													RealParameter("ST	Labour	market	awareness	and	sensitivity",	0,	1),	

													RealParameter("ST	knowledge	YA	Unemployment	delay",	12,	48),	

#											#Policy	

#													#RealParameter("ST	STEM	stimulation	and	awareness",	1,	2),	

#													#RealParameter("ST	High	Edu	stimulation	and	awareness",	1,	2),	

#													#RealParameter("Time	to	realise	ST	Edu	capacity	expansion",	12,	60),	

#													#RealParameter("Fixed	period	ST	Edu	capacity	expansion",	1,	12),			

#									#WA	Education	

													RealParameter("WAu	reskill	and	upskill	sensitivity",	0,	1),	

													RealParameter("WAe	reskill	and	upskill	sensitivity",	0,	1),	

#											#Policy	

#													RealParameter("WA	STEM	stimulation	and	awareness",	1,	2),	

#													RealParameter("WA	High	Edu	stimulation	and	awareness",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	H",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	M",	0.895,	2),			

#													RealParameter("Socioeconomic	influence	education	and	training	L",	0.561,	2),	

					

				#LABOUR	MARKET	MODEL	UNCERTAINTIES	

								#Labour	reallocation	

													RealParameter("Sensitivity	Wage	reallocation",	0,	0.999),					

													RealParameter("Wage	sacrifice	ratio	for	employment",	0.01,	0.5),					

													RealParameter("Sensitivity	Unemployment	reallocation",	0,	1),					

												#Policy	

													RealParameter("Labour	reallocation	delay",	12,	48),		

												#Setting	

													RealParameter("Error	MINMAX	corrector",	10000000000000000,	100000000000000000),	

					

				#PRODUCTION	MODEL	UNCERTAINTIES		

								#Labour	input					

#													RealParameter("Price	elasticity	of	demand	Abstract	L",	0,	1),	
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#													RealParameter("Price	elasticity	of	demand	Abstract	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	I",	0,	1),	

								#GDP	growth	

												RealParameter("Long	term	economic	growth	error	margin",	0,	0.05),	

												RealParameter("Business	cycle	fluctuation	amplitude",	0.001,	0.0033),	

												RealParameter("Business	cycle	fluctuation	period",	2,	3),	

												RealParameter("Time	to	first	recession",	2,	5),						

												RealParameter("Business	cycle	recession	amplitude",	0.0187,	0.0263),	

												RealParameter("Business	cycle	recession	duration",	3,	3.64),	

												RealParameter("Busines	cycle	recession	period",	8,	9.4),	

												RealParameter("Severe	recession	timing",	1,	3),	

												RealParameter("Severe	recession	duration",	4,	4.7),	

												RealParameter("Severe	recession	amplitude",	0.0489,	0.0631),	

												RealParameter("Severe	recession	occurance",	0,	1),	

												RealParameter("Proportion	of	time	in	recession",	0.18,	0.21),	

												RealParameter("Initial	Labour	share",	0.554,	0.714),	

								#Others	

#												RealParameter("Macro	economic	Technological	TFP	growth",	0.004,	0.0067),	

												RealParameter("Task	substitution	elasticity",	0.66,	0.9),	

								#Policy	

												#RealParameter("Hours	fulltime	contracts",	32,	38),		

	

				#TECHNOLOGY	MODEL	UNCERTAINTIES					

												RealParameter("Proportion	profit	invested	in	innovation",	0.02,	1),	

												RealParameter("Innovation	allocation	sensivitity	to	business	cycle",	0,	0.1),	

												RealParameter("Prior	Substituted	Labour	demand",	8.9,	10.1),	

												RealParameter("Time	difference	automation	and	substitution",	0.999,	1.001),	

												RealParameter("TFP	Wage	allocation	Abstract	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Abstract	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	I",	0.1,	1),	

				#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	216,	264),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.001,	0.01),	

													RealParameter("Automation	probability	Abstract	L",	0.7,	1.0),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.001,	0.01),	

												RealParameter("Automation	probability	Abstract	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	
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												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.06825,	0.07175),	

												RealParameter("Automation	probability	Routine	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.06825,	0.07175),	

												RealParameter("Automation	probability	Routine	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.37,	0.51),	

												RealParameter("Automation	probability	Manual	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.37,	0.51),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

													

												RealParameter("Upper	bound	technological	bottleneck	proportion	of	tasks",	0.001,	0.01)					

]	

	

vensimModel.outcomes	=	[	

				#POPULATION	MODEL	OUTCOMES	

#											TimeSeriesOutcome('Total	population'),	

				#EDUCATION	MODEL	OUTCOMES	

												TimeSeriesOutcome('ST	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	upskill	percentage'),	
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												TimeSeriesOutcome('LF	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	upskill	percentage'),	

				#LABOUR	MARKET	OUTCOMES	

												TimeSeriesOutcome('Labour	force	ft	Index'),	

												TimeSeriesOutcome('HL	ft	average	wage	index'),	

												TimeSeriesOutcome('HI	ft	average	wage	index'),	

												TimeSeriesOutcome('ML	ft	average	wage	index'),	

												TimeSeriesOutcome('MI	ft	average	wage	index'),	

												TimeSeriesOutcome('LL	ft	average	wage	index'),	

												TimeSeriesOutcome('LI	ft	average	wage	index'),	

												TimeSeriesOutcome('HL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('HI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('ML	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('MI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LI	Avg	ft	Unemployment	rate'),	

#													TimeSeriesOutcome('Total	Labour	Force	HL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	HI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	ML	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	MI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LI	ft'),	

#													TimeSeriesOutcome('LI	to	Manual	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('MI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('ML	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	I	for	employment	ft'),	

#												TimeSeriesOutcome('LL	to	Manual	L	for	employment	ft'),	

#												TimeSeriesOutcome('ML	to	Manual	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	L	for	employment	ft'),	

#													TimeSeriesOutcome('LI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('MI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('HI	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	L	for	employment	ft'),	

				#PRODUCTION	MODEL	OUTCOMES	

												TimeSeriesOutcome('Annual	Macro	Economic	growth	rate'),	

												TimeSeriesOutcome('Total	wage	income	index'),	
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												TimeSeriesOutcome('Aggregate	annual	TFP'),	

												TimeSeriesOutcome('Average	Labour	share'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	L'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	I'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	L'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	I'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	L'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	I'),	

				#TECHNOLOGY	MODEL	OUTCOMES		

												TimeSeriesOutcome('Technological	substitution	Abstract	L'),	

												TimeSeriesOutcome('Technological	substitution	Abstract	I'),	

												TimeSeriesOutcome('Technological	substitution	Routine	L'),	

												TimeSeriesOutcome('Technological	substitution	Routine	I'),	

												TimeSeriesOutcome('Technological	substitution	Manual	L'),	

												TimeSeriesOutcome('Technological	substitution	Manual	I'),	

												TimeSeriesOutcome('Profit	index	Abstract	L'),	

												TimeSeriesOutcome('Profit	index	Abstract	I'),	

												TimeSeriesOutcome('Profit	index	Routine	L'),	

												TimeSeriesOutcome('Profit	index	Routine	I'),	

												TimeSeriesOutcome('Profit	index	Manual	L'),	

												TimeSeriesOutcome('Profit	index	Manual	I')	

#													TimeSeriesOutcome('Labour	share	index	Abstract	L'),	

#													TimeSeriesOutcome('Labour	share	index	Abstract	I'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	L'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	I'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	L'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	I'),	

#													TimeSeriesOutcome('Wage	index	Abstract	L'),	

#													TimeSeriesOutcome('Wage	index	Abstract	I'),	

#													TimeSeriesOutcome('Wage	index	Routine	L'),	

#													TimeSeriesOutcome('Wage	index	Routine	I'),	

#													TimeSeriesOutcome('Wage	index	Manual	L'),	

#													TimeSeriesOutcome('Wage	index	Manual	I'),	

]	

	

policies	=	[	

													Policy('Model_IV',	

																				

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_IV.vpm")	

												]	

	

#	Model	simulation	

	

results	=	perform_experiments(vensimModel,	1000,	policies=	policies)	

#	Save	results	

	

results_name	=	'./EMA_NED_Uncertainty_C_Results.tar.gz'	

save_results(results,	results_name)	
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For uncertainty D: 
#	Simulation	configuration	

	

import	numpy	as	np	

import	matplotlib	

import	matplotlib.pyplot	as	plt	

import	pandas	as	pd	

import	SALib	

import	seaborn	as	sns	

import	mpl_toolkits.axisartist	as	AA	

import	scipy	as	sp	

import	copy	

import	matplotlib.ticker	as	ticker	

	

from	ema_workbench	import	(Model,		

																											RealParameter,		

																											IntegerParameter,		

																											CategoricalParameter,		

																											Constant,		

																											TimeSeriesOutcome,		

																											ScalarOutcome,		

																											perform_experiments,		

																											ema_logging,		

																											save_results,		

																											load_results)	

from	ema_workbench	import	(Policy)	

from	ema_workbench	import	(MultiprocessingEvaluator)	

from	ema_workbench.connectors	import	vensimDLLwrapper	

from	ema_workbench.connectors.vensim	import	VensimModel	

from	ema_workbench.em_framework.samplers	import	sample_levers,	sample_uncertainties	

from	ema_workbench.util	import	load_results	

from	ema_workbench.util	import	ema_logging	

	

from	ema_workbench.analysis	import	prim	

import	matplotlib.pyplot	as	plt	

from	ema_workbench.analysis.plotting	import	lines,	multiple_densities,	kde_over_time	

from	ema_workbench.analysis.plotting_util	import	KDE	

from	ema_workbench.analysis.plotting_util	import	determine_time_dimension	

from	ema_workbench.analysis.pairs_plotting	import	pairs_scatter	

	

from	SALib.sample	import	saltelli	

from	SALib.analyze	import	sobol,	morris	

from	SALib.test_functions	import	Ishigami	

	

from	mpl_toolkits.axes_grid1	import	host_subplot	

	

from	scipy.stats	import	linregress	

	

ema_logging.log_to_stderr(ema_logging.INFO)	

	

vensimModel	 =	 VensimModel("ThesisModel",	

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final.vpm"	)	
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#	 Uncertainty	 configuration	 Technological	 Substitution	 Dataset	 Nedelkoska	 &	 Quintini	 (2018)	 for	 the	

Netherlands	

	

vensimModel.uncertainties	=	[	

				#POPULATION	MODEL	UNCERTAINTIES	

												RealParameter("Normal	fertility	rate	per	f",	1.58,	1.7),	

					

				#EDUCATION	MODEL	UNCERTAINTIES	

#									#CH	Education	

#													RealParameter("CH	Edu	performance	Reskill	equivalent",	25,	30),	

#													RealParameter("CH	Edu	performance	Upskill	equivalent",	25,	30),	

#											#Policy	

#													#RealParameter("Time	to	introduction	STEM	program",	0,	300),	

#													#RealParameter("Minimum	fixed	period	CH	Edu	capacity	expansion",	1,	36),	

#													#RealParameter("Time	to	realise	CH	Edu	capacity	expansion",	1,	48),	

#													#RealParameter("STEM	educated	vs	STEM	graduated	ratio",	0.4,	1),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	H",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	M",	0,	25),			

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	L",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	H",	0,	16.75),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	M",	0,	16.75),			

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	L",	0,	16.75),	

#									#ST	Education	

													RealParameter("ST	Labour	market	awareness	and	sensitivity",	0,	1),	

													RealParameter("ST	knowledge	YA	Unemployment	delay",	12,	48),	

#											#Policy	

#													#RealParameter("ST	STEM	stimulation	and	awareness",	1,	2),	

#													#RealParameter("ST	High	Edu	stimulation	and	awareness",	1,	2),	

#													#RealParameter("Time	to	realise	ST	Edu	capacity	expansion",	12,	60),	

#													#RealParameter("Fixed	period	ST	Edu	capacity	expansion",	1,	12),			

#									#WA	Education	

													RealParameter("WAu	reskill	and	upskill	sensitivity",	0,	1),	

													RealParameter("WAe	reskill	and	upskill	sensitivity",	0,	1),	

#											#Policy	

#													RealParameter("WA	STEM	stimulation	and	awareness",	1,	2),	

#													RealParameter("WA	High	Edu	stimulation	and	awareness",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	H",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	M",	0.895,	2),			

#													RealParameter("Socioeconomic	influence	education	and	training	L",	0.561,	2),	

					

				#LABOUR	MARKET	MODEL	UNCERTAINTIES	

								#Labour	reallocation	

													RealParameter("Sensitivity	Wage	reallocation",	0,	0.999),					

													RealParameter("Wage	sacrifice	ratio	for	employment",	0.01,	0.5),					

													RealParameter("Sensitivity	Unemployment	reallocation",	0,	1),					

												#Policy	

													RealParameter("Labour	reallocation	delay",	12,	48),		

												#Setting	

													RealParameter("Error	MINMAX	corrector",	10000000000000000,	100000000000000000),	

					

				#PRODUCTION	MODEL	UNCERTAINTIES		

								#Labour	input					

#													RealParameter("Price	elasticity	of	demand	Abstract	L",	0,	1),	
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#													RealParameter("Price	elasticity	of	demand	Abstract	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	I",	0,	1),	

								#GDP	growth	

												RealParameter("Long	term	economic	growth	error	margin",	0,	0.05),	

												RealParameter("Business	cycle	fluctuation	amplitude",	0.001,	0.0033),	

												RealParameter("Business	cycle	fluctuation	period",	2,	3),	

												RealParameter("Time	to	first	recession",	2,	5),						

												RealParameter("Business	cycle	recession	amplitude",	0.0187,	0.0263),	

												RealParameter("Business	cycle	recession	duration",	3,	3.64),	

												RealParameter("Busines	cycle	recession	period",	8,	9.4),	

												RealParameter("Severe	recession	timing",	1,	3),	

												RealParameter("Severe	recession	duration",	4,	4.7),	

												RealParameter("Severe	recession	amplitude",	0.0489,	0.0631),	

												RealParameter("Severe	recession	occurance",	0,	1),	

												RealParameter("Proportion	of	time	in	recession",	0.18,	0.21),	

												RealParameter("Initial	Labour	share",	0.554,	0.714),	

								#Others	

#												RealParameter("Macro	economic	Technological	TFP	growth",	0.004,	0.0067),	

												RealParameter("Task	substitution	elasticity",	0.66,	0.9),	

								#Policy	

												#RealParameter("Hours	fulltime	contracts",	32,	38),		

	

				#TECHNOLOGY	MODEL	UNCERTAINTIES					

												RealParameter("Proportion	profit	invested	in	innovation",	0.02,	1),	

												RealParameter("Innovation	allocation	sensivitity	to	business	cycle",	0,	0.1),	

												RealParameter("Prior	Substituted	Labour	demand",	8.9,	10.1),	

												RealParameter("Time	difference	automation	and	substitution",	0.999,	1.001),	

												RealParameter("TFP	Wage	allocation	Abstract	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Abstract	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	I",	0.1,	1),	

				#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	216,	264),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.001,	0.01),	

													RealParameter("Automation	probability	Abstract	L",	0.27,	0.85),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.001,	0.01),	

												RealParameter("Automation	probability	Abstract	I",	0.27,	0.85),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	
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												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.289,	0.326),	

												RealParameter("Automation	probability	Routine	L",	0.59,	0.94),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.289,	0.326),	

												RealParameter("Automation	probability	Routine	I",	0.59,	0.94),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.289,	0.326),	

												RealParameter("Automation	probability	Manual	L",	0.59,	0.94),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.245,	0.422),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

													

												RealParameter("Upper	bound	technological	bottleneck	proportion	of	tasks",	0.001,	0.01)					

]	

	

vensimModel.outcomes	=	[	

				#POPULATION	MODEL	OUTCOMES	

#											TimeSeriesOutcome('Total	population'),	

				#EDUCATION	MODEL	OUTCOMES	

												TimeSeriesOutcome('ST	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	upskill	percentage'),	
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												TimeSeriesOutcome('LF	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	upskill	percentage'),	

				#LABOUR	MARKET	OUTCOMES	

												TimeSeriesOutcome('Labour	force	ft	Index'),	

												TimeSeriesOutcome('HL	ft	average	wage	index'),	

												TimeSeriesOutcome('HI	ft	average	wage	index'),	

												TimeSeriesOutcome('ML	ft	average	wage	index'),	

												TimeSeriesOutcome('MI	ft	average	wage	index'),	

												TimeSeriesOutcome('LL	ft	average	wage	index'),	

												TimeSeriesOutcome('LI	ft	average	wage	index'),	

												TimeSeriesOutcome('HL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('HI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('ML	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('MI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LI	Avg	ft	Unemployment	rate'),	

#													TimeSeriesOutcome('Total	Labour	Force	HL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	HI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	ML	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	MI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LI	ft'),	

#													TimeSeriesOutcome('LI	to	Manual	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('MI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('ML	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	I	for	employment	ft'),	

#												TimeSeriesOutcome('LL	to	Manual	L	for	employment	ft'),	

#												TimeSeriesOutcome('ML	to	Manual	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	L	for	employment	ft'),	

#													TimeSeriesOutcome('LI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('MI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('HI	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	L	for	employment	ft'),	

				#PRODUCTION	MODEL	OUTCOMES	

												TimeSeriesOutcome('Annual	Macro	Economic	growth	rate'),	

												TimeSeriesOutcome('Total	wage	income	index'),	
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												TimeSeriesOutcome('Aggregate	annual	TFP'),	

												TimeSeriesOutcome('Average	Labour	share'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	L'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	I'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	L'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	I'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	L'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	I'),	

				#TECHNOLOGY	MODEL	OUTCOMES		

												TimeSeriesOutcome('Technological	substitution	Abstract	L'),	

												TimeSeriesOutcome('Technological	substitution	Abstract	I'),	

												TimeSeriesOutcome('Technological	substitution	Routine	L'),	

												TimeSeriesOutcome('Technological	substitution	Routine	I'),	

												TimeSeriesOutcome('Technological	substitution	Manual	L'),	

												TimeSeriesOutcome('Technological	substitution	Manual	I'),	

												TimeSeriesOutcome('Profit	index	Abstract	L'),	

												TimeSeriesOutcome('Profit	index	Abstract	I'),	

												TimeSeriesOutcome('Profit	index	Routine	L'),	

												TimeSeriesOutcome('Profit	index	Routine	I'),	

												TimeSeriesOutcome('Profit	index	Manual	L'),	

												TimeSeriesOutcome('Profit	index	Manual	I')	

#													TimeSeriesOutcome('Labour	share	index	Abstract	L'),	

#													TimeSeriesOutcome('Labour	share	index	Abstract	I'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	L'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	I'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	L'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	I'),	

#													TimeSeriesOutcome('Wage	index	Abstract	L'),	

#													TimeSeriesOutcome('Wage	index	Abstract	I'),	

#													TimeSeriesOutcome('Wage	index	Routine	L'),	

#													TimeSeriesOutcome('Wage	index	Routine	I'),	

#													TimeSeriesOutcome('Wage	index	Manual	L'),	

#													TimeSeriesOutcome('Wage	index	Manual	I'),	

]	

	

policies	=	[	

													Policy('Model_IV',	

																				

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_IV.vpm"),	

												]	

	

#	Model	simulation	

	

results	=	perform_experiments(vensimModel,	1000,	policies=	policies)	

#	Save	results	

	

results_name	=	'./EMA_NED_Uncertainty_D_Results.tar.gz'	

save_results(results,	results_name)	
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For uncertainty G: 
#	Simulation	configuration	

	

import	numpy	as	np	

import	matplotlib	

import	matplotlib.pyplot	as	plt	

import	pandas	as	pd	

import	SALib	

import	seaborn	as	sns	

import	mpl_toolkits.axisartist	as	AA	

import	scipy	as	sp	

import	copy	

import	matplotlib.ticker	as	ticker	

	

from	ema_workbench	import	(Model,		

																											RealParameter,		

																											IntegerParameter,		

																											CategoricalParameter,		

																											Constant,		

																											TimeSeriesOutcome,		

																											ScalarOutcome,		

																											perform_experiments,		

																											ema_logging,		

																											save_results,		

																											load_results)	

from	ema_workbench	import	(Policy)	

from	ema_workbench	import	(MultiprocessingEvaluator)	

from	ema_workbench.connectors	import	vensimDLLwrapper	

from	ema_workbench.connectors.vensim	import	VensimModel	

from	ema_workbench.em_framework.samplers	import	sample_levers,	sample_uncertainties	

from	ema_workbench.util	import	load_results	

from	ema_workbench.util	import	ema_logging	

	

from	ema_workbench.analysis	import	prim	

import	matplotlib.pyplot	as	plt	

from	ema_workbench.analysis.plotting	import	lines,	multiple_densities,	kde_over_time	

from	ema_workbench.analysis.plotting_util	import	KDE	

from	ema_workbench.analysis.plotting_util	import	determine_time_dimension	

from	ema_workbench.analysis.pairs_plotting	import	pairs_scatter	

	

from	SALib.sample	import	saltelli	

from	SALib.analyze	import	sobol,	morris	

from	SALib.test_functions	import	Ishigami	

	

from	mpl_toolkits.axes_grid1	import	host_subplot	

	

from	scipy.stats	import	linregress	

	

ema_logging.log_to_stderr(ema_logging.INFO)	

	

vensimModel	 =	 VensimModel("ThesisModel",	

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final.vpm"	)	
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#	Uncertainty	configuration	Dataset	Deloitte	(2016)	for	the	Netherlands	

	

vensimModel.uncertainties	=	[	

				#POPULATION	MODEL	UNCERTAINTIES	

												RealParameter("Normal	fertility	rate	per	f",	1.58,	1.7),	

					

				#EDUCATION	MODEL	UNCERTAINTIES	

#									#CH	Education	

#													RealParameter("CH	Edu	performance	Reskill	equivalent",	25,	30),	

#													RealParameter("CH	Edu	performance	Upskill	equivalent",	25,	30),	

#											#Policy	

#													#RealParameter("Time	to	introduction	STEM	program",	0,	300),	

#													#RealParameter("Minimum	fixed	period	CH	Edu	capacity	expansion",	1,	36),	

#													#RealParameter("Time	to	realise	CH	Edu	capacity	expansion",	1,	48),	

#													#RealParameter("STEM	educated	vs	STEM	graduated	ratio",	0.4,	1),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	H",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	M",	0,	25),			

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	L",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	H",	0,	16.75),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	M",	0,	16.75),			

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	L",	0,	16.75),	

#									#ST	Education	

													RealParameter("ST	Labour	market	awareness	and	sensitivity",	0,	1),	

													RealParameter("ST	knowledge	YA	Unemployment	delay",	12,	48),	

#											#Policy	

#													#RealParameter("ST	STEM	stimulation	and	awareness",	1,	2),	

#													#RealParameter("ST	High	Edu	stimulation	and	awareness",	1,	2),	

#													#RealParameter("Time	to	realise	ST	Edu	capacity	expansion",	12,	60),	

#													#RealParameter("Fixed	period	ST	Edu	capacity	expansion",	1,	12),			

#									#WA	Education	

													RealParameter("WAu	reskill	and	upskill	sensitivity",	0,	1),	

													RealParameter("WAe	reskill	and	upskill	sensitivity",	0,	1),	

#											#Policy	

#													RealParameter("WA	STEM	stimulation	and	awareness",	1,	2),	

#													RealParameter("WA	High	Edu	stimulation	and	awareness",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	H",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	M",	0.895,	2),			

#													RealParameter("Socioeconomic	influence	education	and	training	L",	0.561,	2),	

					

				#LABOUR	MARKET	MODEL	UNCERTAINTIES	

								#Labour	reallocation	

													RealParameter("Sensitivity	Wage	reallocation",	0,	0.999),					

													RealParameter("Wage	sacrifice	ratio	for	employment",	0.01,	0.5),					

													RealParameter("Sensitivity	Unemployment	reallocation",	0,	1),					

												#Policy	

													RealParameter("Labour	reallocation	delay",	12,	48),		

												#Setting	

													RealParameter("Error	MINMAX	corrector",	10000000000000000,	100000000000000000),	

					

				#PRODUCTION	MODEL	UNCERTAINTIES		

								#Labour	input					

#													RealParameter("Price	elasticity	of	demand	Abstract	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Abstract	I",	0,	1),	
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#													RealParameter("Price	elasticity	of	demand	Routine	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	I",	0,	1),	

								#GDP	growth	

												RealParameter("Long	term	economic	growth	error	margin",	0,	0.05),	

												RealParameter("Business	cycle	fluctuation	amplitude",	0.001,	0.0033),	

												RealParameter("Business	cycle	fluctuation	period",	2,	3),	

												RealParameter("Time	to	first	recession",	2,	5),						

												RealParameter("Business	cycle	recession	amplitude",	0.0187,	0.0263),	

												RealParameter("Business	cycle	recession	duration",	3,	3.64),	

												RealParameter("Busines	cycle	recession	period",	8,	9.4),	

												RealParameter("Severe	recession	timing",	1,	3),	

												RealParameter("Severe	recession	duration",	4,	4.7),	

												RealParameter("Severe	recession	amplitude",	0.0489,	0.0631),	

												RealParameter("Severe	recession	occurance",	0,	1),	

												RealParameter("Proportion	of	time	in	recession",	0.18,	0.21),	

												RealParameter("Initial	Labour	share",	0.554,	0.714),	

								#Others	

#												RealParameter("Macro	economic	Technological	TFP	growth",	0.004,	0.0067),	

												RealParameter("Task	substitution	elasticity",	0.66,	0.9),	

								#Policy	

												#RealParameter("Hours	fulltime	contracts",	32,	38),		

	

				#TECHNOLOGY	MODEL	UNCERTAINTIES					

												RealParameter("Proportion	profit	invested	in	innovation",	0.02,	1),	

												RealParameter("Innovation	allocation	sensivitity	to	business	cycle",	0,	0.1),	

												RealParameter("Prior	Substituted	Labour	demand",	8.9,	10.1),	

												RealParameter("Time	difference	automation	and	substitution",	0.999,	1.001),	

												RealParameter("TFP	Wage	allocation	Abstract	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Abstract	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	I",	0.1,	1),	

				#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	216,	264),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.104,	0.193),	

													RealParameter("Automation	probability	Abstract	L",	0.7,	1.0),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.104,	0.193),	

												RealParameter("Automation	probability	Abstract	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	



TU Delft EPA  |  K Spaanderman   

	 205	

												RealParameter("Technological	automation	estimate	Routine	L",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Routine	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Routine	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Manual	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

													

												RealParameter("Upper	bound	technological	bottleneck	proportion	of	tasks",	0.001,	0.01)					

]	

	

vensimModel.outcomes	=	[	

				#POPULATION	MODEL	OUTCOMES	

#											TimeSeriesOutcome('Total	population'),	

				#EDUCATION	MODEL	OUTCOMES	

												TimeSeriesOutcome('ST	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	m	total	upskill	percentage'),	
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												TimeSeriesOutcome('LF	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	upskill	percentage'),	

				#LABOUR	MARKET	OUTCOMES	

												TimeSeriesOutcome('Labour	force	ft	Index'),	

												TimeSeriesOutcome('HL	ft	average	wage	index'),	

												TimeSeriesOutcome('HI	ft	average	wage	index'),	

												TimeSeriesOutcome('ML	ft	average	wage	index'),	

												TimeSeriesOutcome('MI	ft	average	wage	index'),	

												TimeSeriesOutcome('LL	ft	average	wage	index'),	

												TimeSeriesOutcome('LI	ft	average	wage	index'),	

												TimeSeriesOutcome('HL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('HI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('ML	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('MI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LI	Avg	ft	Unemployment	rate'),	

#													TimeSeriesOutcome('Total	Labour	Force	HL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	HI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	ML	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	MI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LI	ft'),	

#													TimeSeriesOutcome('LI	to	Manual	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('MI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('ML	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	I	for	employment	ft'),	

#												TimeSeriesOutcome('LL	to	Manual	L	for	employment	ft'),	

#												TimeSeriesOutcome('ML	to	Manual	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	L	for	employment	ft'),	

#													TimeSeriesOutcome('LI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('MI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('HI	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	L	for	employment	ft'),	

				#PRODUCTION	MODEL	OUTCOMES	

												TimeSeriesOutcome('Annual	Macro	Economic	growth	rate'),	

												TimeSeriesOutcome('Total	wage	income	index'),	

												TimeSeriesOutcome('Aggregate	annual	TFP'),	
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												TimeSeriesOutcome('Average	Labour	share'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	L'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	I'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	L'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	I'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	L'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	I'),	

				#TECHNOLOGY	MODEL	OUTCOMES		

												TimeSeriesOutcome('Technological	substitution	Abstract	L'),	

												TimeSeriesOutcome('Technological	substitution	Abstract	I'),	

												TimeSeriesOutcome('Technological	substitution	Routine	L'),	

												TimeSeriesOutcome('Technological	substitution	Routine	I'),	

												TimeSeriesOutcome('Technological	substitution	Manual	L'),	

												TimeSeriesOutcome('Technological	substitution	Manual	I'),	

												TimeSeriesOutcome('Profit	index	Abstract	L'),	

												TimeSeriesOutcome('Profit	index	Abstract	I'),	

												TimeSeriesOutcome('Profit	index	Routine	L'),	

												TimeSeriesOutcome('Profit	index	Routine	I'),	

												TimeSeriesOutcome('Profit	index	Manual	L'),	

												TimeSeriesOutcome('Profit	index	Manual	I')	

#													TimeSeriesOutcome('Labour	share	index	Abstract	L'),	

#													TimeSeriesOutcome('Labour	share	index	Abstract	I'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	L'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	I'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	L'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	I'),	

#													TimeSeriesOutcome('Wage	index	Abstract	L'),	

#													TimeSeriesOutcome('Wage	index	Abstract	I'),	

#													TimeSeriesOutcome('Wage	index	Routine	L'),	

#													TimeSeriesOutcome('Wage	index	Routine	I'),	

#													TimeSeriesOutcome('Wage	index	Manual	L'),	

#													TimeSeriesOutcome('Wage	index	Manual	I'),	

]	

	

policies	=	[	

													Policy('Model_IV',	

																				

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_IV.vpm"),	

												]	

	

#	Model	simulation	

	

results	=	perform_experiments(vensimModel,	1000,	policies=	policies)	

#	Save	results	

	

results_name	=	'./EMA_NED_Uncertainty_G_Results.tar.gz'	

save_results(results,	results_name)	
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XIII Unemployment projections  

	

Figure	75	Unemployment	projections	!ℍ	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	

	

Figure	76	Unemployment	projections	#ℍ	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	
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Figure	77	Unemployment	projections	!$	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	

	

Figure	78	Unemployment	projections	#$	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	
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Figure	79	Unemployment	projections	!%	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	

	

Figure	80	Unemployment	projections	#%	for	the	Netherlands	across	uncertainty	A,	C,	D,	and	G	(Table	4)	
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XIV EMA Python script Solow Paradox 
#	Simulation	configuration	

	

import	numpy	as	np	

import	matplotlib	

import	matplotlib.pyplot	as	plt	

import	pandas	as	pd	

import	SALib	

import	seaborn	as	sns	

import	mpl_toolkits.axisartist	as	AA	

import	scipy	as	sp	

import	copy	

import	matplotlib.ticker	as	ticker	

	

from	ema_workbench	import	(Model,		

																											RealParameter,		

																											IntegerParameter,		

																											CategoricalParameter,		

																											Constant,		

																											TimeSeriesOutcome,		

																											ScalarOutcome,		

																											perform_experiments,		

																											ema_logging,		

																											save_results,		

																											load_results)	

from	ema_workbench	import	(Policy)	

from	ema_workbench	import	(MultiprocessingEvaluator)	

from	ema_workbench.connectors	import	vensimDLLwrapper	

from	ema_workbench.connectors.vensim	import	VensimModel	

from	ema_workbench.em_framework.samplers	import	sample_levers,	sample_uncertainties	

from	ema_workbench.util	import	load_results	

from	ema_workbench.util	import	ema_logging	

	

from	ema_workbench.analysis	import	prim	

import	matplotlib.pyplot	as	plt	

from	ema_workbench.analysis.plotting	import	lines,	multiple_densities,	kde_over_time	

from	ema_workbench.analysis.plotting_util	import	KDE	

from	ema_workbench.analysis.plotting_util	import	determine_time_dimension	

from	ema_workbench.analysis.pairs_plotting	import	pairs_scatter	

	

from	SALib.sample	import	saltelli	

from	SALib.analyze	import	sobol,	morris	

from	SALib.test_functions	import	Ishigami	

	

from	mpl_toolkits.axes_grid1	import	host_subplot	

	

from	scipy.stats	import	linregress	

	

ema_logging.log_to_stderr(ema_logging.INFO)	

	

vensimModel	 =	 VensimModel("ThesisModel",	
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model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final.vpm"	)	

	

#	Uncertainty	configuration	Dataset	Deloitte	(2016)	for	the	Netherlands	

	

vensimModel.uncertainties	=	[	

				#POPULATION	MODEL	UNCERTAINTIES	

												RealParameter("Normal	fertility	rate	per	f",	1.58,	1.7),	

					

				#EDUCATION	MODEL	UNCERTAINTIES	

#									#CH	Education	

#													RealParameter("CH	Edu	performance	Reskill	equivalent",	25,	30),	

#													RealParameter("CH	Edu	performance	Upskill	equivalent",	25,	30),	

#											#Policy	

#													#RealParameter("Time	to	introduction	STEM	program",	0,	300),	

#													#RealParameter("Minimum	fixed	period	CH	Edu	capacity	expansion",	1,	36),	

#													#RealParameter("Time	to	realise	CH	Edu	capacity	expansion",	1,	48),	

#													#RealParameter("STEM	educated	vs	STEM	graduated	ratio",	0.4,	1),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	H",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	M",	0,	25),			

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	L",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	H",	0,	16.75),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	M",	0,	16.75),			

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	L",	0,	16.75),	

#									#ST	Education	

													RealParameter("ST	Labour	market	awareness	and	sensitivity",	0,	1),	

													RealParameter("ST	knowledge	YA	Unemployment	delay",	12,	48),	

#											#Policy	

#													#RealParameter("ST	STEM	stimulation	and	awareness",	1,	2),	

#													#RealParameter("ST	High	Edu	stimulation	and	awareness",	1,	2),	

#													#RealParameter("Time	to	realise	ST	Edu	capacity	expansion",	12,	60),	

#													#RealParameter("Fixed	period	ST	Edu	capacity	expansion",	1,	12),			

#									#WA	Education	

													RealParameter("WAu	reskill	and	upskill	sensitivity",	0,	1),	

													RealParameter("WAe	reskill	and	upskill	sensitivity",	0,	1),	

#											#Policy	

#													RealParameter("WA	STEM	stimulation	and	awareness",	1,	2),	

#													RealParameter("WA	High	Edu	stimulation	and	awareness",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	H",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	M",	0.895,	2),			

#													RealParameter("Socioeconomic	influence	education	and	training	L",	0.561,	2),	

					

				#LABOUR	MARKET	MODEL	UNCERTAINTIES	

								#Labour	reallocation	

													RealParameter("Sensitivity	Wage	reallocation",	0,	0.999),					

													RealParameter("Wage	sacrifice	ratio	for	employment",	0.01,	0.5),					

													RealParameter("Sensitivity	Unemployment	reallocation",	0,	1),					

												#Policy	

													RealParameter("Labour	reallocation	delay",	12,	48),		

												#Setting	

													RealParameter("Error	MINMAX	corrector",	10000000000000000,	100000000000000000),	

					

				#PRODUCTION	MODEL	UNCERTAINTIES		

								#Labour	input					
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#													RealParameter("Price	elasticity	of	demand	Abstract	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Abstract	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	I",	0,	1),	

								#GDP	growth	

												RealParameter("Long	term	economic	growth	error	margin",	0,	0.05),	

												RealParameter("Business	cycle	fluctuation	amplitude",	0.001,	0.0033),	

												RealParameter("Business	cycle	fluctuation	period",	2,	3),	

												RealParameter("Time	to	first	recession",	2,	5),						

												RealParameter("Business	cycle	recession	amplitude",	0.0187,	0.0263),	

												RealParameter("Business	cycle	recession	duration",	3,	3.64),	

												RealParameter("Busines	cycle	recession	period",	8,	9.4),	

												RealParameter("Severe	recession	timing",	1,	3),	

												RealParameter("Severe	recession	duration",	4,	4.7),	

												RealParameter("Severe	recession	amplitude",	0.0489,	0.0631),	

												RealParameter("Severe	recession	occurance",	0,	1),	

												RealParameter("Proportion	of	time	in	recession",	0.18,	0.21),	

												RealParameter("Initial	Labour	share",	0.554,	0.714),	

								#Others	

#												RealParameter("Macro	economic	Technological	TFP	growth",	0.004,	0.0067),	

												RealParameter("Task	substitution	elasticity",	0.66,	0.9),	

								#Policy	

												#RealParameter("Hours	fulltime	contracts",	32,	38),		

	

				#TECHNOLOGY	MODEL	UNCERTAINTIES					

												RealParameter("Proportion	profit	invested	in	innovation",	0.02,	1),	

												RealParameter("Innovation	allocation	sensivitity	to	business	cycle",	0,	0.1),	

												RealParameter("Prior	Substituted	Labour	demand",	8.9,	10.1),	

												RealParameter("Solow	Paradox	multiplier",	0.5,	1.0),	

												RealParameter("Time	difference	automation	and	substitution",	0.999,	1.001),	

												RealParameter("TFP	Wage	allocation	Abstract	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Abstract	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	I",	0.1,	1),	

				#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	216,	264),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.104,	0.193),	

													RealParameter("Automation	probability	Abstract	L",	0.7,	1.0),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.104,	0.193),	

												RealParameter("Automation	probability	Abstract	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	



TU Delft EPA  |  K Spaanderman   

	 214	

								#Routine	L:	

												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Routine	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Routine	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Manual	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

													

												RealParameter("Upper	bound	technological	bottleneck	proportion	of	tasks",	0.001,	0.01)					

]	

	

vensimModel.outcomes	=	[	

				#POPULATION	MODEL	OUTCOMES	

#											TimeSeriesOutcome('Total	population'),	

				#EDUCATION	MODEL	OUTCOMES	

												TimeSeriesOutcome('ST	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	reskill	percentage'),	
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												TimeSeriesOutcome('LF	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	upskill	percentage'),	

				#LABOUR	MARKET	OUTCOMES	

												TimeSeriesOutcome('Labour	force	ft	Index'),	

												TimeSeriesOutcome('HL	ft	average	wage	index'),	

												TimeSeriesOutcome('HI	ft	average	wage	index'),	

												TimeSeriesOutcome('ML	ft	average	wage	index'),	

												TimeSeriesOutcome('MI	ft	average	wage	index'),	

												TimeSeriesOutcome('LL	ft	average	wage	index'),	

												TimeSeriesOutcome('LI	ft	average	wage	index'),	

												TimeSeriesOutcome('HL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('HI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('ML	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('MI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LI	Avg	ft	Unemployment	rate'),	

#													TimeSeriesOutcome('Total	Labour	Force	HL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	HI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	ML	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	MI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LI	ft'),	

#													TimeSeriesOutcome('LI	to	Manual	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('MI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('ML	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	I	for	employment	ft'),	

#												TimeSeriesOutcome('LL	to	Manual	L	for	employment	ft'),	

#												TimeSeriesOutcome('ML	to	Manual	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	L	for	employment	ft'),	

#													TimeSeriesOutcome('LI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('MI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('HI	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	L	for	employment	ft'),	

				#PRODUCTION	MODEL	OUTCOMES	
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												TimeSeriesOutcome('Annual	Macro	Economic	growth	rate'),	

												TimeSeriesOutcome('Total	wage	income	index'),	

												TimeSeriesOutcome('Aggregate	annual	TFP'),	

												TimeSeriesOutcome('Average	Labour	share'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	L'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	I'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	L'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	I'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	L'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	I'),	

				#TECHNOLOGY	MODEL	OUTCOMES		

												TimeSeriesOutcome('Technological	substitution	Abstract	L'),	

												TimeSeriesOutcome('Technological	substitution	Abstract	I'),	

												TimeSeriesOutcome('Technological	substitution	Routine	L'),	

												TimeSeriesOutcome('Technological	substitution	Routine	I'),	

												TimeSeriesOutcome('Technological	substitution	Manual	L'),	

												TimeSeriesOutcome('Technological	substitution	Manual	I'),	

												TimeSeriesOutcome('Profit	index	Abstract	L'),	

												TimeSeriesOutcome('Profit	index	Abstract	I'),	

												TimeSeriesOutcome('Profit	index	Routine	L'),	

												TimeSeriesOutcome('Profit	index	Routine	I'),	

												TimeSeriesOutcome('Profit	index	Manual	L'),	

												TimeSeriesOutcome('Profit	index	Manual	I')	

#													TimeSeriesOutcome('Labour	share	index	Abstract	L'),	

#													TimeSeriesOutcome('Labour	share	index	Abstract	I'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	L'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	I'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	L'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	I'),	

#													TimeSeriesOutcome('Wage	index	Abstract	L'),	

#													TimeSeriesOutcome('Wage	index	Abstract	I'),	

#													TimeSeriesOutcome('Wage	index	Routine	L'),	

#													TimeSeriesOutcome('Wage	index	Routine	I'),	

#													TimeSeriesOutcome('Wage	index	Manual	L'),	

#													TimeSeriesOutcome('Wage	index	Manual	I'),	

]	

	

policies	=	[	

													Policy('Model_V',	

																				

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_V.vpm")	

												]	

	

#	Model	simulation	

	

results	=	perform_experiments(vensimModel,	1000,	policies=	policies)	

#	Save	results	

	

results_name	=	'./EMA_NED_Uncertainty_G_Results_Solow.tar.gz'	

save_results(results,	results_name)	
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XV Solow paradox projections 

	

Figure	81	Unemployment	projections	!ℍ	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	

	

Figure	82	Unemployment	projections	#ℍ	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	
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Figure	83	Unemployment	projections	!$	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	

	

Figure	84	Unemployment	projections	#$	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	
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Figure	85	Unemployment	projections	!%	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	

	

Figure	86	Unemployment	projections	#%	for	uncertainties	G	with	and	without	continuation	of	the	Solow	paradox	(Table	4)	
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XVI EMA Python script difference 
#	Simulation	configuration	

	

import	numpy	as	np	

import	matplotlib	

import	matplotlib.pyplot	as	plt	

import	pandas	as	pd	

import	SALib	

import	seaborn	as	sns	

import	mpl_toolkits.axisartist	as	AA	

import	scipy	as	sp	

import	copy	

import	matplotlib.ticker	as	ticker	

	

from	ema_workbench	import	(Model,		

																											RealParameter,		

																											IntegerParameter,		

																											CategoricalParameter,		

																											Constant,		

																											TimeSeriesOutcome,		

																											ScalarOutcome,		

																											perform_experiments,		

																											ema_logging,		

																											save_results,		

																											load_results)	

from	ema_workbench	import	(Policy)	

from	ema_workbench	import	(MultiprocessingEvaluator)	

from	ema_workbench.connectors	import	vensimDLLwrapper	

from	ema_workbench.connectors.vensim	import	VensimModel	

from	ema_workbench.em_framework.samplers	import	sample_levers,	sample_uncertainties	

from	ema_workbench.util	import	load_results	

from	ema_workbench.util	import	ema_logging	

	

from	ema_workbench.analysis	import	prim	

import	matplotlib.pyplot	as	plt	

from	ema_workbench.analysis.plotting	import	lines,	multiple_densities,	kde_over_time	

from	ema_workbench.analysis.plotting_util	import	KDE	

from	ema_workbench.analysis.plotting_util	import	determine_time_dimension	

from	ema_workbench.analysis.pairs_plotting	import	pairs_scatter	

	

from	SALib.sample	import	saltelli	

from	SALib.analyze	import	sobol,	morris	

from	SALib.test_functions	import	Ishigami	

	

from	mpl_toolkits.axes_grid1	import	host_subplot	

	

from	scipy.stats	import	linregress	

	

ema_logging.log_to_stderr(ema_logging.INFO)	

	

vensimModel	 =	 VensimModel("ThesisModel",	
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model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final.vpm"	)	

	

#	Uncertainty	configuration	Dataset	Deloitte	(2016)	for	the	Netherlands	

	

vensimModel.uncertainties	=	[	

				#POPULATION	MODEL	UNCERTAINTIES	

												RealParameter("Normal	fertility	rate	per	f",	1.58,	1.7),	

					

				#EDUCATION	MODEL	UNCERTAINTIES	

#									#CH	Education	

#													RealParameter("CH	Edu	performance	Reskill	equivalent",	25,	30),	

#													RealParameter("CH	Edu	performance	Upskill	equivalent",	25,	30),	

#											#Policy	

#													#RealParameter("Time	to	introduction	STEM	program",	0,	300),	

#													#RealParameter("Minimum	fixed	period	CH	Edu	capacity	expansion",	1,	36),	

#													#RealParameter("Time	to	realise	CH	Edu	capacity	expansion",	1,	48),	

#													#RealParameter("STEM	educated	vs	STEM	graduated	ratio",	0.4,	1),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	H",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	M",	0,	25),			

#													#RealParameter("MANUAL	CH	Edu	performance	overall	improvement	L",	0,	25),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	H",	0,	16.75),	

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	M",	0,	16.75),			

#													#RealParameter("MANUAL	CH	Edu	performance	STEM	improvement	L",	0,	16.75),	

#									#ST	Education	

													RealParameter("ST	Labour	market	awareness	and	sensitivity",	0,	1),	

													RealParameter("ST	knowledge	YA	Unemployment	delay",	12,	48),	

#											#Policy	

#													#RealParameter("ST	STEM	stimulation	and	awareness",	1,	2),	

#													#RealParameter("ST	High	Edu	stimulation	and	awareness",	1,	2),	

#													#RealParameter("Time	to	realise	ST	Edu	capacity	expansion",	12,	60),	

#													#RealParameter("Fixed	period	ST	Edu	capacity	expansion",	1,	12),			

#									#WA	Education	

													RealParameter("WAu	reskill	and	upskill	sensitivity",	0,	1),	

													RealParameter("WAe	reskill	and	upskill	sensitivity",	0,	1),	

#											#Policy	

#													RealParameter("WA	STEM	stimulation	and	awareness",	1,	2),	

#													RealParameter("WA	High	Edu	stimulation	and	awareness",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	H",	1,	2),	

#													RealParameter("Socioeconomic	influence	education	and	training	M",	0.895,	2),			

#													RealParameter("Socioeconomic	influence	education	and	training	L",	0.561,	2),	

					

				#LABOUR	MARKET	MODEL	UNCERTAINTIES	

								#Labour	reallocation	

													RealParameter("Sensitivity	Wage	reallocation",	0,	0.999),					

													RealParameter("Wage	sacrifice	ratio	for	employment",	0.01,	0.5),					

													RealParameter("Sensitivity	Unemployment	reallocation",	0,	1),					

												#Policy	

													RealParameter("Labour	reallocation	delay",	12,	48),		

												#Setting	

													RealParameter("Error	MINMAX	corrector",	10000000000000000,	100000000000000000),	

					

				#PRODUCTION	MODEL	UNCERTAINTIES		

								#Labour	input					



TU Delft EPA  |  K Spaanderman   

	 222	

#													RealParameter("Price	elasticity	of	demand	Abstract	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Abstract	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Routine	I",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	L",	0,	1),	

#													RealParameter("Price	elasticity	of	demand	Manual	I",	0,	1),	

								#GDP	growth	

												RealParameter("Long	term	economic	growth	error	margin",	0,	0.05),	

												RealParameter("Business	cycle	fluctuation	amplitude",	0.001,	0.0033),	

												RealParameter("Business	cycle	fluctuation	period",	2,	3),	

												RealParameter("Time	to	first	recession",	2,	5),						

												RealParameter("Business	cycle	recession	amplitude",	0.0187,	0.0263),	

												RealParameter("Business	cycle	recession	duration",	3,	3.64),	

												RealParameter("Busines	cycle	recession	period",	8,	9.4),	

												RealParameter("Severe	recession	timing",	1,	3),	

												RealParameter("Severe	recession	duration",	4,	4.7),	

												RealParameter("Severe	recession	amplitude",	0.0489,	0.0631),	

												RealParameter("Severe	recession	occurance",	0,	1),	

												RealParameter("Proportion	of	time	in	recession",	0.18,	0.21),	

												RealParameter("Initial	Labour	share",	0.554,	0.714),	

								#Others	

#												RealParameter("Macro	economic	Technological	TFP	growth",	0.004,	0.0067),	

												RealParameter("Task	substitution	elasticity",	0.66,	0.9),	

								#Policy	

												#RealParameter("Hours	fulltime	contracts",	32,	38),		

	

				#TECHNOLOGY	MODEL	UNCERTAINTIES					

												RealParameter("Proportion	profit	invested	in	innovation",	0.02,	1),	

												RealParameter("Innovation	allocation	sensivitity	to	business	cycle",	0,	0.1),	

												RealParameter("Prior	Substituted	Labour	demand",	8.9,	10.1),	

												RealParameter("Time	difference	automation	and	substitution",	1.000,	2.903),	

												RealParameter("TFP	Wage	allocation	Abstract	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Abstract	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Routine	I",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	L",	0.1,	1),	

												RealParameter("TFP	Wage	allocation	Manual	I",	0.1,	1),	

				#Substitution	

									#Abstract	L:	

													#RealParameter("Technological	bottleneck	period	Abstract	L",	0,	12),	

													RealParameter("Technological	implementation	period	Abstract	L",	216,	264),	

													RealParameter("Technological	automation	estimate	Abstract	L",	0.104,	0.193),	

													RealParameter("Automation	probability	Abstract	L",	0.7,	1.0),	

													#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	L",	0.0042,	0.015),	

													RealParameter("Annual	technological	productivity	growth	Abstract	L",	0.006,	0.01),	

								#Abstract	I:	

												#RealParameter("Technological	bottleneck	period	Abstract	I",	0,	12),	

												RealParameter("Technological	implementation	period	Abstract	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Abstract	I",	0.104,	0.193),	

												RealParameter("Automation	probability	Abstract	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Abstract	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Abstract	I",	0.006,	0.01),	

								#Routine	L:	
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												#RealParameter("Technological	bottleneck	period	Routine	L",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	L",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Routine	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	L",	0.006,	0.01),	

								#Routine	I:	

												#RealParameter("Technological	bottleneck	period	Routine	I",	0,	12),	

												RealParameter("Technological	implementation	period	Routine	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Routine	I",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Routine	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Routine	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Routine	I",	0.006,0.01),					

								#Manual	L:	

												#RealParameter("Technological	bottleneck	period	Manual	L",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	L",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	L",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Manual	L",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	L",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	L",	0.006,	0.01),	

								#Manual	I:	

												#RealParameter("Technological	bottleneck	period	Manual	I",	0,	12),	

												RealParameter("Technological	implementation	period	Manual	I",	216,	264),	

												RealParameter("Technological	automation	estimate	Manual	I",	0.412425,	0.433575),	

												RealParameter("Automation	probability	Manual	I",	0.7,	1.0),	

												#RealParameter("Annual	labour	input	increase	for	technological	change	Manual	I",	0.0042,	0.015),	

												RealParameter("Annual	technological	productivity	growth	Manual	I",	0.006,	0.01),	

													

												RealParameter("Upper	bound	technological	bottleneck	proportion	of	tasks",	0.001,	0.01)					

]	

	

vensimModel.outcomes	=	[	

				#POPULATION	MODEL	OUTCOMES	

#											TimeSeriesOutcome('Total	population'),	

				#EDUCATION	MODEL	OUTCOMES	

												TimeSeriesOutcome('ST	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('ST	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('ST	LI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	m	total	upskill	percentage'),	
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												TimeSeriesOutcome('LF	MI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	m	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	HI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	reskill	percentage'),	

												TimeSeriesOutcome('LF	ML	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	MI	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LL	f	total	upskill	percentage'),	

												TimeSeriesOutcome('LF	LI	f	total	upskill	percentage'),	

				#LABOUR	MARKET	OUTCOMES	

												TimeSeriesOutcome('Labour	force	ft	Index'),	

												TimeSeriesOutcome('HL	ft	average	wage	index'),	

												TimeSeriesOutcome('HI	ft	average	wage	index'),	

												TimeSeriesOutcome('ML	ft	average	wage	index'),	

												TimeSeriesOutcome('MI	ft	average	wage	index'),	

												TimeSeriesOutcome('LL	ft	average	wage	index'),	

												TimeSeriesOutcome('LI	ft	average	wage	index'),	

												TimeSeriesOutcome('HL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('HI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('ML	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('MI	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LL	Avg	ft	Unemployment	rate'),	

												TimeSeriesOutcome('LI	Avg	ft	Unemployment	rate'),	

#													TimeSeriesOutcome('Total	Labour	Force	HL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	HI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	ML	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	MI	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LL	ft'),	

#													TimeSeriesOutcome('Total	Labour	Force	LI	ft'),	

#													TimeSeriesOutcome('LI	to	Manual	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('MI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('ML	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Manual	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	I	for	employment	ft'),	

#												TimeSeriesOutcome('LL	to	Manual	L	for	employment	ft'),	

#												TimeSeriesOutcome('ML	to	Manual	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Manual	L	for	employment	ft'),	

#													TimeSeriesOutcome('LI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('MI	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HI	to	Routine	I	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	I	for	employment	ft'),	

#													TimeSeriesOutcome('LL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('ML	to	Routine	L	for	employment	ft'),	

												TimeSeriesOutcome('HL	to	Routine	L	for	employment	ft'),	

#													TimeSeriesOutcome('HI	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	I	for	employment	ft'),	

#													TimeSeriesOutcome('HL	to	Abstract	L	for	employment	ft'),	

				#PRODUCTION	MODEL	OUTCOMES	

												TimeSeriesOutcome('Annual	Macro	Economic	growth	rate'),	
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												TimeSeriesOutcome('Total	wage	income	index'),	

												TimeSeriesOutcome('Aggregate	annual	TFP'),	

												TimeSeriesOutcome('Average	Labour	share'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	L'),	

#													TimeSeriesOutcome('Relative	price	development	Abstract	I'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	L'),	

#													TimeSeriesOutcome('Relative	price	development	Routine	I'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	L'),	

#													TimeSeriesOutcome('Relative	price	development	Manual	I'),	

				#TECHNOLOGY	MODEL	OUTCOMES		

												TimeSeriesOutcome('Technological	substitution	Abstract	L'),	

												TimeSeriesOutcome('Technological	substitution	Abstract	I'),	

												TimeSeriesOutcome('Technological	substitution	Routine	L'),	

												TimeSeriesOutcome('Technological	substitution	Routine	I'),	

												TimeSeriesOutcome('Technological	substitution	Manual	L'),	

												TimeSeriesOutcome('Technological	substitution	Manual	I'),	

												TimeSeriesOutcome('Profit	index	Abstract	L'),	

												TimeSeriesOutcome('Profit	index	Abstract	I'),	

												TimeSeriesOutcome('Profit	index	Routine	L'),	

												TimeSeriesOutcome('Profit	index	Routine	I'),	

												TimeSeriesOutcome('Profit	index	Manual	L'),	

												TimeSeriesOutcome('Profit	index	Manual	I')	

#													TimeSeriesOutcome('Labour	share	index	Abstract	L'),	

#													TimeSeriesOutcome('Labour	share	index	Abstract	I'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	L'),	

#													TimeSeriesOutcome('Labour	share	index	Routine	I'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	L'),	

#													TimeSeriesOutcome('Labour	share	index	Manual	I'),	

#													TimeSeriesOutcome('Wage	index	Abstract	L'),	

#													TimeSeriesOutcome('Wage	index	Abstract	I'),	

#													TimeSeriesOutcome('Wage	index	Routine	L'),	

#													TimeSeriesOutcome('Wage	index	Routine	I'),	

#													TimeSeriesOutcome('Wage	index	Manual	L'),	

#													TimeSeriesOutcome('Wage	index	Manual	I'),	

]	

	

policies	=	[	

Policy('Model_IV_D',	

																				

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_IV.vpm"),	

													Policy('Model_IV_D',	

																				

model_file=r"C:\Users\LocalAdmin\Documents\Koen\Final\Final_Models\Thesis_model_Final_IV_D.vpm")	

												]	

	

#	Model	simulation	

	

results	=	perform_experiments(vensimModel,	1000,	policies=	policies)	

#	Save	results	

	

results_name	=	'./EMA_NED_Uncertainty_G_	Results_Delay.tar.gz'	

save_results(results,	results_name)	
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XVII Substitution difference projections 

	

Figure	87	Unemployment	projections	!ℍ	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	

	

Figure	88	Unemployment	projections	#ℍ	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	
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Figure	89	Unemployment	projections	!$	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	

	

Figure	90	Unemployment	projections	#$	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	
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Figure	91	Unemployment	projections	!%	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	

	

Figure	92	Unemployment	projections	#%	for	uncertainties	G	with	and	without	time	difference	between	automatibility	and	substitution	
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XVIII Substitution difference analysis 
using PRIM 

Unemployment projection &ℍ upper quartile: 
def classifyHLQiii(data): 
    ooi = 'HL Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.0555] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyHLQiii, threshold=0.8) 
box_13 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 251 cases of interest 
[MainProcess/INFO] mean: 1.0, mass: 0.076, coverage: 0.30278884462151395, density: 1.0 re
stricted_dimensions: 15 
	

coverage     0.76494 
density     0.635762 
mass           0.302 
mean        0.635762 
res dim            5 
Name: 23, dtype: object 
 
                                                box 23                         
                                                   min       max     qp values 
Time difference automation and substitution   1.000615  1.734512  1.760703e-34 
Wage sacrifice ratio for employment           0.010489  0.446382  1.854510e-01 
Technological automation estimate Abstract I  0.109387  0.192952  2.668717e-01 
WAe reskill and upskill sensitivity           0.052462  0.999285  3.167792e-01 
Initial Labour share                          0.554158  0.704576  3.523170e	
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Figure	93	PRIM	analysis	!ℍ		difference	automatibility	and	substitution	
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Unemployment projection 'ℍ upper quartile: 
def classifyHIQiii(data): 
    ooi = 'HI Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.0582] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyHIQiii, threshold=0.8) 
box_14 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 250 cases of interest 
[MainProcess/INFO] mean: 1.0, mass: 0.086, coverage: 0.344, density: 1.0 
restricted_dimensions: 16 
 
coverage       0.808 
density     0.668874 
mass           0.302 
mean        0.668874 
res dim            3 
Name: 23, dtype: object 
 
                                                box 23                         
                                                   min       max     qp values 
Time difference automation and substitution   1.000615  1.629914  8.604036e-48 
Initial Labour share                          0.554158  0.704576  3.302435e-01 
Technological automation estimate Abstract I  0.109627  0.192952  3.434054e-01	
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Figure	94	PRIM	analysis	#ℍ		difference	automatibility	and	substitution	
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Unemployment projection &$ upper quartile: 
def classifyMLQiii(data): 
    ooi = 'ML Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.0252] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyMLQiii, threshold=0.8) 
box_15 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 250 cases of interest 
[MainProcess/INFO] mean: 1.0, mass: 0.114, coverage: 0.456, density: 1.0 restricted_dimen
sions: 11 
 
coverage        0.88 
density     0.856031 
mass           0.257 
mean        0.856031 
res dim            2 
Name: 26, dtype: object 
 
                                               box 26                         
                                                  min       max     qp values 
Time difference automation and substitution  1.000615  1.516424  9.364789e-91 
Wage sacrifice ratio for employment          0.039033  0.499736  2.402312e-01 
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Figure	95	PRIM	analysis	!$		difference	automatibility	and	substitution	
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Unemployment projection '$ upper quartile: 
def classifyMIQiii(data): 
    ooi = 'MI Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.0258] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyMIQiii, threshold=0.8) 
box_16 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 249 cases of interest 
[MainProcess/INFO] mean: 1.0, mass: 0.114, coverage: 0.4578313253012048, density: 1.0 res
tricted_dimensions: 11 
 
coverage    0.839357 
density     0.856557 
mass           0.244 
mean        0.856557 
res dim            3 
Name: 27, dtype: object 
 
                                               box 27                         
                                                  min       max     qp values 
Time difference automation and substitution  1.000615  1.518316  6.045846e-86 
ST Labour market awareness and sensitivity   0.000917  0.957313  1.956924e-01 
Wage sacrifice ratio for employment          0.037620  0.499736  2.789291e-01 
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Figure	96	PRIM	analysis	#$		difference	automatibility	and	substitution	
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Unemployment projection &% upper quartile: 
def classifyLLQiii(data): 
    ooi = 'LL Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.0238] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyLLQiii, threshold=0.8) 
box_17 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 250 cases of interest 
[MainProcess/INFO] mean: 1.0, mass: 0.121, coverage: 0.484, density: 1.0 restricted_dimen
sions: 7 
 
coverage       0.888 
density     0.819188 
mass           0.271 
mean        0.819188 
res dim            2 
Name: 25, dtype: object 
 
                                               box 25                         
                                                  min       max     qp values 
Time difference automation and substitution  1.000615  1.543996  1.410008e-83 
Sensitivity Unemployment reallocation        0.039109  0.999680  1.076388e-01	
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Figure	97	PRIM	analysis	!%		difference	automatibility	and	substitution	
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Unemployment projection '% upper quartile: 
def classifyLIQiii(data): 
    ooi = 'LI Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.0245] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyLIQiii, threshold=0.8) 
box_18 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 252 cases of interest 
[MainProcess/INFO] mean: 1.0, mass: 0.108, coverage: 0.42857142857142855, density: 1.0 re
stricted_dimensions: 11 
 
coverage    0.849206 
density     0.832685 
mass           0.257 
mean        0.832685 
res dim            2 
Name: 26, dtype: object 
 
                                               box 26                        
                                                  min      max     qp values 
Time difference automation and substitution  1.000615  1.54616  4.503108e-81 
Sensitivity Unemployment reallocation        0.085413  0.99968  3.146181e-02 
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Figure	98	PRIM	analysis	#%		difference	automatibility	and	substitution	
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XIX Policy identification using PRIM 
#	Load	data	from	prior	simulation	D	

results	=	load_results('./EMA_NED_Uncertainty_D_Results.tar.gz')	

experiments,	outcomes=	results	

	

Unemployment projection &ℍ above current unemployment rate: 
def classifyHLQiii(data): 
    ooi = 'HL Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.03] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyHLQiii, threshold=0.8) 
box_13 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 56 cases of interest 
[MainProcess/INFO] box does not meet threshold criteria, value is 0.6981132075471698, 
returning dump box 
	

Unemployment projection 'ℍ above current unemployment rate: 
def classifyHIQiii(data): 
    ooi = 'HI Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.031] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyHIQiii, threshold=0.8) 
box_14 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 49 cases of interest 
[MainProcess/INFO] box does not meet threshold criteria, value is 0.5882352941176471, 
returning dump box 
	

Unemployment projection &$ above current unemployment rate: 
def classifyMLQiii(data): 
    ooi = 'ML Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.04] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyMLQiii, threshold=0.8) 
box_15 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 95 cases of interest 
[MainProcess/INFO] mean: 0.8518518518518519, mass: 0.054, coverage: 0.4842105263157895, d
ensity: 0.8518518518518519 restricted_dimensions: 27.0 
 
coverage     0.600000 
density      0.471074 
mass         0.121000 
mean         0.471074 
res dim     19.000000 
Name: 40, dtype: float64 
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                                                        box 40              \ 
                                                           min         max    
Annual technological productivity growth Routine I    0.007632    0.009996    
Automation probability Routine I                      0.683871    0.939861    
Long term economic growth error margin                0.000046    0.045611    
Automation probability Abstract I                     0.355404    0.849482    
Annual technological productivity growth Manual L     0.006001    0.009678    
Prior Substituted Labour demand                       8.959936   10.060589    
Automation probability Routine L                      0.608982    0.939907    
Technological automation estimate Manual L            0.290718    0.325997    
Severe recession timing                               1.097678    2.801948    
TFP Wage allocation Abstract I                        0.100633    0.950687    
TFP Wage allocation Routine L                         0.152643    0.999727    
Annual technological productivity growth Abstra...    0.006189    0.009997    
Business cycle recession amplitude                    0.018881    0.026293    
TFP Wage allocation Manual I                          0.100637    0.953010    
Technological automation estimate Routine L           0.291463    0.325968    
Technological implementation period Routine I       216.002765  261.598700    
Initial Labour share                                  0.564019    0.713908    
Proportion of time in recession                       0.181135    0.209988    
Business cycle fluctuation amplitude                  0.001000    0.003194    
 
                                                                                         
        
                                                                              qp values   
Annual technological productivity growth Routine I               [3.8050142979486015e-05] 
Automation probability Routine I                                  [0.0018069208436560914] 
Long term economic growth error margin                              [0.15961805259070991] 
Automation probability Abstract I                                   [0.17828506742856626] 
Annual technological productivity growth Manual L                   [0.19021802605700544] 
Prior Substituted Labour demand                [0.21726847233185781, 0.34989446791197931] 
Automation probability Routine L                                    [0.23949258065277512] 
Technological automation estimate Manual L                          [0.23949258065277512] 
Severe recession timing                        [0.28850355120341353, 0.17735991841584384] 
TFP Wage allocation Abstract I                                      [0.29527888503483612] 
TFP Wage allocation Routine L                                       [0.29527888503483612] 
Annual technological productivity growth Abstra...                  [0.34339715484332167] 
Business cycle recession amplitude                                  [0.34339715484332167] 
TFP Wage allocation Manual I                                        [0.34339715484332167] 
Technological automation estimate Routine L                         [0.34339715484332167] 
Technological implementation period Routine I                       [0.34339715484332167] 
Initial Labour share                                                [0.37914563133256918] 
Proportion of time in recession                                     [0.40955403711056176] 
Business cycle fluctuation amplitude                                [0.43540311297147538] 
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Figure	99	PRIM	analysis	!$		above	current	levels	
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Unemployment projection '$ above current unemployment rate: 
def classifyMIQiii(data): 
    ooi = 'MI Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.044] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyMIQiii, threshold=0.8) 
box_16 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 87 cases of interest 
[MainProcess/INFO] mean: 0.8235294117647058, mass: 0.051, coverage: 0.4827586206896552, d
ensity: 0.8235294117647058 restricted_dimensions: 24.0 
 
coverage     0.643678 
density      0.462810 
mass         0.121000 
mean         0.462810 
res dim     20.000000 
Name: 40, dtype: float64 
 
                                                        box 40              \ 
                                                           min         max    
Automation probability Routine I                      0.781185    0.939861    
WAe reskill and upskill sensitivity                   0.000831    0.672794    
Technological implementation period Routine I       216.002765  257.958970    
Annual technological productivity growth Abstra...    0.006406    0.009997    
Long term economic growth error margin                0.000046    0.047560    
ST knowledge YA Unemployment delay                   12.005793   46.193910    
Wage sacrifice ratio for employment                   0.010194    0.481831    
Automation probability Abstract L                     0.270490    0.807617    
Automation probability Manual I                       0.714833    0.999792    
Busines cycle recession period                        8.000810    9.330986    
Innovation allocation sensivitity to business c...    0.000015    0.093256    
Prior Substituted Labour demand                       8.959936   10.099452    
Sensitivity Wage reallocation                         0.048791    0.998587    
Automation probability Abstract I                     0.302036    0.849482    
Technological automation estimate Routine I           0.290889    0.325986    
Proportion profit invested in innovation              0.075002    0.999886    
TFP Wage allocation Routine L                         0.100300    0.957658    
Technological automation estimate Manual L            0.290584    0.325997    
TFP Wage allocation Manual I                          0.100637    0.953010    
Business cycle fluctuation period                     2.034892    2.999754    
 
                                                                               
                                                                   qp values   
Automation probability Routine I                    [7.6262870573139893e-07]   
WAe reskill and upskill sensitivity                  [0.0057913569016311865]   
Technological implementation period Routine I          [0.25099088840741879]   
Annual technological productivity growth Abstra...      [0.2746151929361923]   
Long term economic growth error margin                 [0.29189634508307105]   
ST knowledge YA Unemployment delay                     [0.29189634508307105]   
Wage sacrifice ratio for employment                    [0.31834764966236129]   
Automation probability Abstract L                      [0.34616366712705604]   
Automation probability Manual I                        [0.34616366712705604]   
Busines cycle recession period                         [0.38259460853200095]   
Innovation allocation sensivitity to business c...     [0.38259460853200095]   
Prior Substituted Labour demand                        [0.40553868501845747]   
Sensitivity Wage reallocation                          [0.40553868501845747]   
Automation probability Abstract I                       [0.4435722266885947]   
Technological automation estimate Routine I             [0.4435722266885947]   
Proportion profit invested in innovation               [0.46906811942807586]   
TFP Wage allocation Routine L                          [0.46906811942807586]   
Technological automation estimate Manual L             [0.46906811942807586]   
TFP Wage allocation Manual I                           [0.50198276681699128]   
Business cycle fluctuation period                      [0.50781509150725501] 
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Figure	100	PRIM	analysis	#$		above	current	levels	
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Unemployment projection &% above current unemployment rate: 
def classifyLLQiii(data): 
    ooi = 'LL Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.057] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyLLQiii, threshold=0.8) 
box_17 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 8 cases of interest 
[MainProcess/INFO] box does not meet threshold criteria, value is 0.1568627450980392, 
returning dump box 
 

Unemployment projection '% above current unemployment rate: 
def classifyLIQiii(data): 
    ooi = 'LI Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.062] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyLIQiii, threshold=0.8) 
box_18 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 22 cases of interest 
[MainProcess/INFO] box does not meet threshold criteria, value is 0.43137254901960786, 
returning dump box 
	

Unemployment projection &% above 4.4%: 
def classifyMLQiii(data): 
    ooi = 'ML Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.04] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyMLQiii, threshold=0.8) 
box_15 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 71 cases of interest 
[MainProcess/INFO] box does not meet threshold criteria, value is 0.7647058823529411, 
returning dump box 

	

Unemployment projection '% above 4.4%: 
def classifyLIQiii(data): 
    ooi = 'LI Avg ft Unemployment rate' 
    outcome = np.mean(outcomes[ooi], axis=1) 
    classes = np.zeros(outcome.shape[0]) 
    classes[outcome>0.044] = 1 
    return classes 
 
prim_obj = prim.setup_prim(results, classifyLIQiii, threshold=0.8) 
box_18 = prim_obj.find_box() 
 
[MainProcess/INFO] 1000 points remaining, containing 126 cases of interest 
[MainProcess/INFO] mean: 0.8888888888888888, mass: 0.054, coverage: 0.38095238095238093, 
density: 0.8888888888888888 restricted_dimensions: 20.0 



TU Delft EPA  |  K Spaanderman   

	 249	

 
coverage     0.531746 
density      0.553719 
mass         0.121000 
mean         0.553719 
res dim     19.000000 
Name: 40, dtype: float64 
 
                                                        box 40              \ 
                                                           min         max    
Automation probability Routine I                      0.709061    0.939861    
Sensitivity Unemployment reallocation                 0.149963    0.999333    
Annual technological productivity growth Routine I    0.007060    0.009996    
Annual technological productivity growth Manual I     0.006754    0.009998    
Long term economic growth error margin                0.000046    0.044690    
Severe recession amplitude                            0.048909    0.061682    
Technological implementation period Routine I       216.002765  259.532197    
Annual technological productivity growth Routine L    0.006462    0.009996    
Busines cycle recession period                        8.000810    9.320788    
Automation probability Routine L                      0.624285    0.939907    
Prior Substituted Labour demand                       8.950159   10.099452    
Technological automation estimate Abstract I          0.001009    0.009679    
Time to first recession                               2.000247    4.813135    
Automation probability Abstract I                     0.307839    0.849482    
Automation probability Manual I                       0.716043    0.999792    
Business cycle fluctuation amplitude                  0.001136    0.003298    
Proportion profit invested in innovation              0.071908    0.999886    
Severe recession timing                               1.000202    2.847944    
Technological implementation period Routine L       216.012360  261.080522    
 
                                                                               
                                                                   qp values   
Automation probability Routine I                    [0.00030945735256699265]   
Sensitivity Unemployment reallocation                 [0.058973902827156054]   
Annual technological productivity growth Routine I    [0.062038942017225505]   
Annual technological productivity growth Manual I     [0.083047499063817601]   
Long term economic growth error margin                 [0.12071046217367233]   
Severe recession amplitude                              [0.1376266672011956]   
Technological implementation period Routine I           [0.1376266672011956]   
Annual technological productivity growth Routine L     [0.17769608074628518]   
Busines cycle recession period                         [0.22597566811403683]   
Automation probability Routine L                       [0.25122120744552068]   
Prior Substituted Labour demand                        [0.25330315876209308]   
Technological automation estimate Abstract I            [0.2800676982070277]   
Time to first recession                                [0.34370697565259112]   
Automation probability Abstract I                      [0.37827396196537283]   
Automation probability Manual I                        [0.37827396196537283]   
Business cycle fluctuation amplitude                    [0.3830439837037683]   
Proportion profit invested in innovation               [0.41444326758262595]   
Severe recession timing                                [0.41444326758262595]   
Technological implementation period Routine L          [0.45825700509347367] 
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Figure	101	PRIM	analysis	#$		unemployment	upper	quartile	
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XX Required Re- and up-skilling 

	

Figure	102	Re-skill	projections	#ℍ	labour	force	

	

Figure	103	Re-skill	projections	#$	labour	force	

	

Figure	104	Re-skill	projections	#%	labour	force	
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Figure	105	Up-skill	projections	!$	labour	force	

	

Figure	106	Up-skill	projections	#$	labour	force	

	

Figure	107	Up-skill	projections	!%	labour	force	
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Figure	108	Up-skill	projections	#%	labour	force	

	


