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Abstract Robustness is being used increasingly for decision analysis in relation to deep uncertainty
and many metrics have been proposed for its quantification. Recent studies have shown that the appli-
cation of different robustness metrics can result in different rankings of decision alternatives, but there
has been little discussion of what potential causes for this might be. To shed some light on this issue, we
present a unifying framework for the calculation of robustness metrics, which assists with understanding
how robustness metrics work, when they should be used, and why they sometimes disagree. The frame-
work categorizes the suitability of metrics to a decision-maker based on (1) the decision-context (i.e., the
suitability of using absolute performance or regret), (2) the decision-maker’s preferred level of risk aver-
sion, and (3) the decision-maker’s preference toward maximizing performance, minimizing variance, or
some higher-order moment. This article also introduces a conceptual framework describing when rel-
ative robustness values of decision alternatives obtained using different metrics are likely to agree and
disagree. This is used as a measure of how “stable” the ranking of decision alternatives is when deter-
mined using different robustness metrics. The framework is tested on three case studies, including water
supply augmentation in Adelaide, Australia, the operation of a multipurpose regulated lake in Italy, and
flood protection for a hypothetical river based on a reach of the river Rhine in the Netherlands. The pro-
posed conceptual framework is confirmed by the case study results, providing insight into the reasons for
disagreements between rankings obtained using different robustness metrics.

1. Introduction

Uncertainty has long been considered an important facet of environmental decision-making. This uncer-
tainty arises from natural variability, as well as changes in system conditions over time (Maier et al., 2016). In
the past, the latter have generally been represented by a “best guess” or “expected” future (Lempert et al.,
2006). Consequently, much of the consideration of uncertainty was concerned with the impact of localized
uncertainty surrounding expected future conditions (Giuliani et al., 2016c; Morgan et al., 1990) and a realiza-
tion of the value of information for reducing this localized uncertainty (Howard, 1966; Howard & Matheson,
2005). The consideration of localized uncertainty is reflected in the wide-spread usage of performance met-
rics such as reliability, vulnerability, and resilience (Burn et al., 1991; Hashimoto et al., 1982a; Maier et al.,
2001; Zongxue et al., 1998). However, as a result of climatic, technological, economic and sociopolitical
changes, there has been a realization that it is no longer possible to determine a single best-guess of how
future conditions might change, especially when considering longer planning horizons (e.g., on the order
of 70–100 years) (Döll & Romero-Lankao, 2017; Grafton et al., 2016b; Guo et al., 2017; Maier et al., 2016).

In response, there has been increased focus on deep uncertainty, which is defined as the situation in which
parties to a decision do not know, or cannot agree on, how the system under consideration, or parts thereof,
work, how important the various outcomes of interest are, and/or what the relevant exogenous inputs to the
system are and how they might change in the future (Kwakkel et al., 2010; Lempert, 2003; Maier et al., 2016;
Walker et al., 2013). In such a situation, one can enumerate multiple plausible possibilities without being
able to rank them in terms of likelihood (Döll & Romero-Lankao, 2017; Kwakkel et al., 2010). This inability
can be due to a lack of knowledge or data about the mechanism or functional relationships being studied.
However, it can also arise because the various parties involved in the decision cannot come to an agreement.
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That is, under deep uncertainty, there is a variety of uncertain factors that jointly affect the consequences
of a decision. These uncertain factors define different possible states of the world in a deterministic and
set-based manner (Ben-Tal et al., 2009).

As pointed out by Maier et al. (2016), when dealing with deep uncertainty, system performance is gener-
ally measured using metrics that preference systems that perform well under a range of plausible condi-
tions, which fall under the umbrella of robustness. It should be noted that while robustness metrics have
been considered in different problem domains, such as water resources planning (Hashimoto et al., 1982b),
dynamic chemical reaction models (Samsatli et al., 1998), timetable scheduling (Canon & Jeannot, 2007),
and data center network service levels (Bilal et al., 2013) for some time, this has generally been in the con-
text of perturbations centered on expected conditions, or local uncertainty, rather than deep uncertainty. In
contrast, consideration of robustness metrics for quantifying system performance under deep uncertainty,
which is the focus of this article, has only occurred relatively recently.

A number of robustness metrics have been used to measure system performance under deep uncertainty,
such as:

• Expected value metrics (Wald, 1950), which indicate an expected level of performance across a range of
scenarios.

• Metrics of higher-order moments, such as variance and skew (e.g., Kwakkel et al., 2016b), which provide
information on how the expected level of performance varies across multiple scenarios.

• Regret-based metrics (Savage, 1951), where the regret of a decision alternative is defined as the
difference between the performance of the selected option for a particular plausible condition and the
performance of the best possible option for that condition.

• Satisficing metrics (Simon, 1956), which calculate the range of scenarios that have acceptable
performance relative to a threshold.

However, although these metrics all measure system performance over a set of future states of the world,
they do so in different ways, making it difficult to assess how robust the performance of a system actually
is. For example, these metrics reflect varying levels of risk aversion, and differences about what is meant by
robustness. Is robustness about ensuring insensitivity to future developments, reducing regret, or avoiding
very negative outcomes? This meta-problem of deciding how to decide (Schneller & Sphicas, 1983) raises
the following question: how robust is a robust solution?

Studies in environmental literature discussing this question have been receiving some attention in recent
years. Lempert and Collins (2007) compared optimal expected utility, the precautionary principle, and
robust decision making using a regret based measure of robustness. They found that the three approaches
generated similar results, although some approaches may be more appropriate for different audiences and
under different circumstances. Herman et al. (2015) compared two regret-based metrics and two satisficing
metrics, showing how the choice of metric could significantly affect the choice of decision alternative.
However, they found that the two regret-based metrics tended to agree with each other.

Drouet et al. (2015) contrasted maximin, subjective expected utility, and maxmin expected utility, while
Roach et al. (2016) compared two satisficing metrics (info-gap decision theory and Starr’s domain criterion).
Both studies found that the choice of metric can greatly influence the trade-offs for decision-makers. The
former highlighted the importance of understanding the preferences of the decision-maker, while the lat-
ter acknowledged the need for studies on more complex systems and the need to compare and combine
metrics. Giuliani and Castelletti (2016) compared the classic decision theoretic metrics maximin, maximax,
Hurwicz optimism-pessimism rule, minimax regret, and Laplace’s principle of insufficient reason, further
showing that it is very important to select a metric that is appropriate for the decision-maker’s preferences
to avoid underestimation of system performance. Kwakkel et al. (2016b) compared five robustness metrics
and highlighted the importance of using a combination of metrics to see not just the expected value of
performance, but also the dispersion of performance around the mean.

A common conclusion across this work is that different robustness metrics reflect different aspects of what
makes a choice robust. This not only makes it difficult to assess the absolute “robustness” of an alterna-
tive, but also makes it difficult to determine whether a particular alternative is more robust than another.
This leads to confusion for decision-makers, as they have no means of comparing the robustness values
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and rankings of different decision alternatives obtained using different robustness metrics in an objective
fashion.

To address this shortcoming, the objectives of this article are to (1) introduce a unified framework for the
calculation of a wide range of robustness metrics, enabling the robustness values obtained from different
metrics to be compared in an objective fashion, (2) introduce a taxonomy of robustness metrics and dis-
cuss how this can be used to assist with deciding which robustness metric is most appropriate, providing
guidance for decision makers as to which robustness metric should be used in their particular context, (3)
introduce a conceptual framework for conditions under which different robustness metrics result in differ-
ent decisions, or how stable (“robust”) the ranking of an alternative is when different robustness metrics
are used, providing further guidance to decision-makers, and (4) test the conceptual framework from (3)
on three case studies that provide a variety of decision contexts, objectives, scenario types and decision
alternatives. The selected case studies are: the water supply augmentation in the southern Adelaide region
in Australia (Paton et al., 2013), the operation of Lake Como in Italy for flood protection and water supply
purposes (Giuliani & Castelletti, 2016), and flood protection for a hypothetical river called the Waas, which
is based on a river reach of the Rhine delta in the Netherlands (Haasnoot et al., 2012).

The remainder of this article is organized as follows. In Section 2, the unified framework for the calculation
of robustness metrics is introduced and a variety of robustness metrics are categorized according to this
framework. A taxonomy based on these categories is provided in Section 3, as well as a summary of how
the robustness metrics are classified in accordance with this taxonomy, the way they consider future uncer-
tainties and the relative level of risk aversion they exhibit. In Section 4 an analysis of the conditions under
which robustness metrics agree or disagree with other robustness metrics is given, as well as a conceptual
framework categorizing the relative degree of agreement of the rankings of decision alternatives obtained
using different robustness metrics based on the properties of the metric and the performance of the sys-
tem under consideration. The three case studies are introduced in Section 5, as well as a summary of the
similarities and differences between them. The robustness of different decision alternatives for the three
case studies is calculated in Section 6 using a range of robustness metrics and the results are presented and
discussed in terms of the stability of the ranking of different decision alternatives when different robustness
metrics are used. Finally, conclusions are presented in Section 7.

2. How Are Robustness Metrics Calculated?

Even though there are many different robustness metrics, irrespective of which metric is used, their cal-
culation generally requires the specification of (1) the decision alternatives (e.g., policy options, designs,
solutions, management plans) for which robustness is to be calculated, (2) the outcome of interest (per-
formance metric) of the decision alternatives (e.g., cost, reliability), and (3) the plausible future conditions
(scenarios) over which the outcomes of interest/performance of the decision alternatives is to be evaluated.
These three components of robustness are illustrated in Figure 1.

Robustness is generally calculated for a given decision alternative, xi , across a given set of future scenar-
ios S= {s1, s2, … , sn} using a particular performance metric f (·). Consequently, the calculation of robust-
ness using a particular metric corresponds to the transformation of the performance of a set of decision
alternatives over different scenarios, f (xi , S)= {f (xi , s1), f (xi , s2), … , f (xi , sn)} to the robustness R(xi , S) of these
decision alternatives over this set of scenarios. Although different robustness metrics achieve this trans-
formation in different ways, a unifying framework for the calculation of different robustness metrics can
be introduced by representing the overall transformation of f (xi , S) into R(xi , S) by three separate trans-
formations: performance value transformation (T 1), scenario subset selection (T 2), and robustness metric
calculation (T 3), as shown in Figure 2. Details of these transformations for a range of commonly used robust-
ness metrics are given in Table 1 and their mathematical implementations are given in Supporting Informa-
tion S1.

The performance value transformation (T 1) converts the performance values f (xi , S) into the type of infor-
mation f

′
(xi , S) used in the calculation of the robustness metric R(xi , S). For some robustness metrics, the

absolute performance values (e.g., cost, reliability) are used, in which case T 1 corresponds to the identity
transform (i.e., the performance values are not changed). For other robustness metrics, the absolute system
performance values are transformed to values that either measure the regret that results from selecting
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Robustness value

R(xi , S)

Performance 
metric (e.g. 

cost, reliability)

f (xi , S)

Decision 
alternatives (e.g. 
Policy options, 

plans, solutions)

x1, x2, ..., xm

Plausible future 
conditions 
(Scenarios)

S = {s1, s2, ..., sn}

Perfoff rmance 
metric (e.g. 

cost, reliability)

f (xi , S)

p

x1, x2, ..., xmx { 1, s2, ..., sn}

Robustness metric 

Figure 1. Common components contributing to the calculation of robustness.

a particular decision alternative rather
than the one that performs best had
a particular future actually occurred
or indicate whether the selection of a
decision alternative results in satisfac-
tory system performance or not (i.e.,
whether required system constraints
have been satisfied or not).

The scenario subset selection trans-
formation (T 2) involves determining
which values of f

′
(xi , S) to use in the

robustness metric calculation (T 3) (i.e.,
f
′
(xi , S

′
)⊆ f

′
(xi , S)), which is akin to

selecting a subset of the available sce-
narios over which system performance
is to be assessed. This reflects a par-
ticular degree of risk aversion, where
consideration of more extreme scenar-
ios in the calculation of a robustness
metric corresponds to a higher degree
of risk aversion and vice versa. As can
be seen from Table 1, which scenar-
ios are considered in the robustness
calculation is highly variable between
different metrics.

The third transformation (T 3) involves the calculation of the actual robustness metric based on transformed
system performance values (T 1) for the selected scenarios (T 2), which corresponds to the transformation
of f

′
(xi , S

′
) to a single robustness value, R(xi , S). This equates to an identity transform in cases where only a

single scenario is selected in T 2, as there is only a single transformed performance value, which automat-
ically becomes the robustness value. However, in cases where there are transformed performance values
for multiple scenarios, these have to be transformed into a single value by means of calculating statistical
moments of these values, such as the mean, standard deviation, skewness or kurtosis.

3. When Should Different Robustness Metrics Be Used?

In this section, a taxonomy of different robustness metrics is given in accordance with the three transfor-
mations introduced in Section 2. A summary of the three transformations, as well as the relative level of risk
aversion, is provided in Section 3.4.

3.1. Transformation 1 (T1): Performance Value Transformation

A categorization of different robustness metrics in accordance with the performance value transformation
(T 1) is given in Table 2. As can be seen, the categorization is based on (1) whether calculation of a robust-
ness metric is based on the absolute performance of a particular decision alternative or the performance
of a decision alternative relative to that of another decision alternative or a benchmark; and (2) whether a
robustness metric provides an indication of actual system performance or whether system performance is
satisfactory compared with a pre-specified performance threshold.

Many of the classic decision analytic robustness metrics belong to the bottom-right hand quadrant of
Table 2, including the maximax and maximin criteria, Hurwicz’s optimism-pessimism rule and Laplace’s
principle of insufficient reason, as well as well more recently developed metrics such as the mean-variance
criterion, percentile based skewness and percentile-based peakedness. These metrics utilize informa-
tion about the absolute performance (e.g., cost, reliability) of a particular decision alternative in a
particular scenario. Consequently, values of f (xi , S

′
) consist of these performance values, and robust

decision alternatives are those that maximize system performance across the scenarios. The difference
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Decision 

alternative ,

Performance over

all scenarios,

,

Transformed 

performance values 

over all scenarios,

,

Transformed 

performance values 

over selected scenarios,

,

Robustness value,

,

T1: Performance 

value transformation

E.g.

None,

Regret,

Performance 

satisfactory or not

T2: Scenario subset 

selection

E.g.

Single value,

Subset of values,

All values

T3: Robustness 

metric calculation

E.g.

Sum/mean,

Variance,

Skew,

Kurtosis

ROBUSTNESS METRIC

Scenario 2,

2

Performance,

, 2

Scenario 1,

1

Scenario ,

Performance,

, 1

Performance,

,

…

…

Figure 2. Unifying framework of components and transformations in the calculation of commonly used robustness metrics.

between these metrics is which values of the distribution of performance values over the different sce-
narios f (xi , S) they use in the robustness calculation (i.e., scenario subset selection (T 2)) and how these
values are combined into a single value of R (i.e., robustness metric calculation (T 3)), as discussed in
Sections 3.2 and 3.3.

Metrics in the bottom-left quadrant of Table 2 are calculated in a similar manner to those in the bottom-right
quadrant, except that they use information about the performance of a decision alternative relative to that
of other decision alternatives or a benchmark, and therefore generally express robustness in the form of
regret or other measures of deviation. Consequently, the resulting values of f

′
(xi , S) consist of the differences

between the actual performance of a decision alternative (e.g., cost, reliability) and that of another decision
alternative or a benchmark. A robust decision alternative is the one that minimizes the maximum regret
across scenarios (e.g., Herman et al., 2015). Alternative metrics that are based on the relative performance of
decision alternatives use some type of baseline performance for a given scenario instead of the performance
of the best decision alternative (Herman et al., 2015; Kasprzyk et al., 2013; Kwakkel et al., 2016b; Lempert &
Collins, 2007; Popper et al., 2009).

Metrics in the top right quadrant of Table 2 measure robustness relative to a threshold or constraint
in order to determine whether a decision alternative performs satisfactorily under different scenarios,
and are commonly referred to as satisficing metrics. These metrics build on the work of Simon (1956),
who pointed out that decision makers often look for a decision that meets one or more requirements
(i.e., performance constraints) under a range of scenarios, rather than determining optimal system per-
formance. Therefore, values of f

′
(xi , S) consist of information on the scenarios for which the decision

alternatives under consideration meet a minimum performance threshold and the larger the number
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Table 1.
A Summary of the Three Transformations that are Used by Each Robustness Metric Considered in This Article

Metric Original reference

T1: Performance

value transformation

T2: Scenario

subset selection

T3: Robustness

metric calculation

Maximin Wald (1950) Identity Worst-case Identity

Maximax Wald (1950) Identity Best-case Identity

Hurwicz optimism-
pessimism rule

Hurwicz (1953) Identity Worst- and
best-cases

Weighted mean

Laplace’s principle of
insufficient reason

Laplace and
Simon (1951)

Identity All Mean

Minimax regret Savage (1951)
and Giuliani and
Castelletti (2016)

Regret from best
decision alternative

Worst-case Identity

90th percentile
minimax regret

Savage (1951) Regret from best
decision alternative

90th percentile Identity

Mean-variance Hamarat et al.
(2014)

Identity All Mean-variance

Undesirable
deviations

Kwakkel et al.
(2016b)

Regret from median
performance

Worst-half Sum

Percentile-based
skewness

Voudouris et al.
(2014) and
Kwakkel et al.
(2016b)a

Identity 10th, 50th, and
90th percentiles

Skew

Percentile-based
peakedness

Voudouris et al.
(2014) and
Kwakkel et al.
(2016b)a

Identity 10th, 25th, 75th
and 90th
percentiles

Kurtosis

Starr’s domain
criterion

Starr (1963) and
Schneller and
Sphicas (1983)

Satisfaction of
constraints

All Mean

aKwakkel et al. (2016b) adapted some metrics from Voudouris et al. (2014).

of these scenarios, the more robust a decision alternative. A well-known example of this is the domain
criterion, which focuses on the volume of the total space of plausible futures where a given performance
threshold is met; the larger this space, the more robust the decision alternative. Often, this is simplified to
looking at the fraction of scenarios where the performance threshold is met (e.g., Beh et al. 2015a; Herman
et al., 2015; Culley et al., 2016), as scenarios provide a discrete representation of the space of plausible
futures.

Satisficing metrics can also be based on the idea of a radius of stability, which has made a recent resurgence
under the label of info-gap decision theory (Ben-Haim, 2004; Herman et al., 2015). Here, one identifies the
uncertainty horizon over which a given decision alternative performs satisfactorily. The uncertainty horizon
𝛼 is the distance from a pre-specified reference scenario to the first scenario in which the pre-specified per-
formance threshold is no longer met (Hall et al., 2012; Korteling et al., 2012). However, as these metrics are
based on deviations from an expected future scenario, they only assess robustness locally and are therefore
not suited to dealing with deep uncertainty (Maier et al., 2016). These metrics also assume that the uncer-
tainty increases at the same rate for all uncertain factors when calculating the uncertainty horizon on a set
of axes. Consequently, they are shown in parentheses in Table 2 and will not be considered further in this
article.

Metrics in the top-left quadrant of Table 2 base robustness calculation on relative performance values and
indicate whether these values result in satisfactory system performance or not. Methods belonging to this
category are generally based on the concept of stability. However, in contrast to the stability-based meth-
ods in the top-right quadrant of Table 2, these methods assess stability of a decision alternative relative
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to that of another by identifying crossover points (Guillaume et al., 2016) at which the performance of one
decision alternative becomes preferable to that of another and identifying the regions of the scenario space
in which a given decision alternative is preferred over another. Methods belonging to this category include
the management option rank equivalence (MORE) (Ravalico et al., 2010) and Pareto optimal management
option rank equivalence (POMORE) (Ravalico et al., 2009) methods, as well as decision scaling (Brown et al.,
2012; Poff et al., 2015). However, as these methods do not quantify robustness explicitly, they are shown in
parentheses in Table 2 and will not be considered further in this article.

3.2. Transformation 2 (T2): Scenario Subset Selection

A categorization of different robustness metrics in accordance with the scenario subset selection transfor-
mation (T 2) is given in Table 3. As can be seen, the categorization is based on whether all or a subset of
the values of f

′
(xi , S) are used in the calculation of the robustness metric. If a subset of values is used, this

can consist of a single value or a number of values. As shown in Table 3, Laplace’s principle of insufficient
reason, the mean-variance metric and Starr’s domain criterion use the full set of scenarios S and thus S

′ = S.
In contrast, the maximin, maximax, minimax regret and 90th percentile minimax regret metrics only use
a single value from S to form S

′
. The metrics that use a number of selected scenarios S

′
in the calculation

of R include Hurwicz’s optimism-pessimism rule, undesirable deviations, percentile-based skewness and
percentile-based peakedness.

Which scenarios from S are selected has a significant influence on the relative level of inherent risk aver-
sion of a robustness metric, as shown in Figure 3. For example, the maximax metric has a very low inherent
level of risk aversion, as its calculation is only based on the best performance over all scenarios considered
(Table 3). In contrast, the maximin metric has a very high level of intrinsic risk aversion, as its calculation is
only based on the worst performance over all scenarios considered (Table 3), leading to a very conservative
solution (Bertsimas & Sim, 2004). Similarly, the minimax regret metric assumes that the selected decision
alternative will have the largest regret possible, as its calculation is based on the worst-case relative per-
formance (Table 3). The other metrics fit somewhere in-between these extremes of low and high levels of
intrinsic risk aversion, as shown in Figure 3 and explained below.

Calculation of the metrics in the middle of Figure 3 is based on S
′

that covers all regions of S, thereby
providing a balanced perspective, corresponding to neither a low or high level of intrinsic risk aversion.
Some of these metrics use all scenarios (S), such as Laplace’s principle of insufficient reason and the
mean-variance metric, whereas others are based on a subset of percentiles S

′
that sample the distribution

of S in a balanced way, such as percentile-based skewness, which uses the 10th, 50th and 90th percentiles,

Table 2.
Classification of Robustness Metrics Based on the Performance Value Transformation (T1)

Robustness calculation based

on relative performance values

Robustness calculation based on

absolute performance values

Indication of whether
system performance is
satisfactory or not

• (Management option rank equivalence
(MORE))

• (Pareto optimal MORE (POMORE)b)
• (Decision Scalingb)

• Starr’s domain criterion
• (Info Gap a)

Indication of actual
system performance

• Minimax regret
• 90th percentile minimax regret
• Undesirable deviations

• Maximin (minimax)
• Maximax
• Hurwicz’s optimism-pessimism rule
• Laplace’s principle of insufficient reason
• Mean-variance
• Percentile-based skewness
• Percentile-based peakedness

Note that brackets around a metric indicate that the metrics is considered unsuitable and is not considered in the
following analysis.
aRobustness calculated explicitly, but based on deviations from an expected scenario.
bRobustness not calculated explicitly.
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Table 3.
Classification of Robustness Metrics in Terms of Scenario Subset Selection (T2)

Scenarios from S used to form the subset S
′

Subset

Robustness metric Single Number All

Maximin Worst-case

Maximax Best-case

Hurwicz optimism-pessimism rule Best- and worst-case

Laplace’s principle of insufficient reason All

Minimax regret Worst-case

90th percentile minimax regret 90th percentile

Mean-variance All

Undesirable deviations All performance values
worse than the 50th
percentile

Percentile-based skewness 10th, 50th and 90th
percentiles

Percentile-based peakedness 10th, 25th, 75th and
90th percentiles

Starr’s domain criterion All

Figure 3. Classification of robustness metrics in terms of relative level of risk
aversion from a low level of risk aversion (green) to highly risk averse (blue).
*Hurwicz optimism-pessimism rule is a weighted average between the minimax
and maximax metrics, where the weighting is chosen by the decision-maker (see
Section 3.3). Hence this metric could be placed anywhere on the scale. **As Starr’s
domain criterion is based on a user-selected threshold, which scenarios are
considered in the robustness calculation is variable (see Table 2). Consequently,
this metric could be placed anywhere on the scale. It should be noted that the
relative level of risk aversion is subjective and is included for illustrative purposes
only.

and percentile-based peakedness,
which uses the 10th, 25th, 75th, and
90th percentiles (Table 3). Intuitively,
Hurwicz’s optimism-pessimism rule
should also belong to this category,
as it utilizes both the best and worst
values of f (xi , S). However, as these
values are weighted in the calculation
of R using user-defined values (see
Section 3.3), the resulting robustness
values can correspond to either low
to high levels of intrinsic risk aversion,
depending on the selected weight-
ings, as indicated in Figure 3. Similarly,
robustness values obtained using
Starr’s domain criterion could range
from low to high, depending on the
value of the user-selected minimum
performance threshold. For example,
if this threshold corresponds to a very
high level of performance, the resul-
tant robustness value will correspond
to a very high level of intrinsic risk
aversion and vice versa.

The undesirable deviations and 90th
percentile minimax metrics also use a subset S

′
, however, these scenarios do not cover all regions of this S

and are therefore less balanced. The undesirable deviations metric considers regret from the median for sce-
narios for which values of f (xi , S) are less than the median, resulting in robustness values that have a higher
level of intrinsic risk aversion than those obtained using metrics that used information from all regions of
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Table 4.
Robustness Metric Calculation (T3) Used to Transform the Sampled Performance Information into the Value of Robustness

Robustness metric calculation

Robustness metric None Sum Mean Weighted mean Variance Skew Kurtosis

Maximin
√

Maximax
√

Hurwicz optimism-pessimism rule
√

Laplace’s principle of insufficient reason
√

Minimax regret
√

90th percentile minimax regret
√

Mean-variance
√ √

Undesirable deviations
√

Percentile-based skewness
√

Percentile-based peakedness
√

Starr’s domain criterion

the distribution (Table 3). The 90th percentile minimax regret metric corresponds to an even greater level
of intrinsic risk aversion, as it is based on a single value that is close to the worst case (90th percentile—see
Table 3).

3.3. Transformation 3 (T3): Robustness Metric Calculation

A categorization of different robustness metrics in accordance with the final robustness metric calculation
(T 3) is given in Table 4. As can be seen, for some metrics, such as the maximin, maximax, minimax regret
and 90th percentile minimax regret metrics, f

′
(xi , S

′
) and R(xi , S) are identical (i.e., the robustness metric

calculation corresponds to the identity transformation). This is because for these metrics, S
′

consists of a
single scenario and there is no need to combine a number of values in order to arrive at a single value
of robustness. However, for the remaining metrics, for which S

′
contains at least two values, some sort of

transformation is required. Metrics that are based on the mean or sum of f
′
(xi , S

′
), such as Laplace’s principle

of insufficient reason, mean-variance and undesirable deviations, effectively assign an equal weighting to
different scenarios and then suggest that the best decision is the one with the best mean performance,
producing an expected value of performance. In contrast, in Hurwicz’s optimism-pessimism rule, the user
can select the relative weighting of the two scenarios (low and high levels of risk aversion) considered, as
mentioned in Section 3.2.

Alternatively, some metrics consider aspects of the variability of f
′
(xi , S

′
). For example, the mean-variance

metric attempts to balance the mean and variability of the performance of a decision alternative over dif-
ferent scenarios. However, a disadvantage of considering a combination of the mean and variance is that
the resultant metric is not always monotonically increasing (Ray et al., 2013). Moreover, when considering
variance, good and bad deviations from the mean are treated equally (Takriti & Ahmed, 2004). The undesir-
able deviations metric overcomes this limitation, while still providing a measure of variability. Other metrics
are focused on different attributes of f

′
(xi , S

′
), such as the skewness and kurtosis.

3.4. Summary of Categorization of Robustness Metrics

The complete categorization of the commonly used robustness metrics considered in this article in accor-
dance with the three transformations (performance value transformation (T 1) (Table 2), scenario subset
selection (T 2) (Table 3) and robustness metric calculation (T 3) (Table 4)), as well as the relative level of risk
aversion that is associated with T 2 (Figure 3), is given in Table 5. It is hoped that this can provide some guid-
ance to decision-makers in relation to which robustness metric is appropriate for their decision context.

In relation to the performance value transformation (T 1), which robustness metric is most appropriate
depends on whether the performance value in question relates to the satisfaction of a system constraint
or not, and is therefore a function of the properties of the system under consideration. For example, if the
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Relative 
performance for 

scenarios 

considered is 

consistent

Relative 
performance for 

scenarios 

considered is 

inconsistent

Performance value transformation (T1), 
scenario subset selection (T2)

and robustness metric calculation (T3) for two 

metrics are similar

Very high stability 

in ranking

Low to high stability 

in ranking

Low to high 
stability in ranking

Low stability in 

ranking

Performance value transformation (T1), 
scenario subset selection (T2)

and robustness metric calculation (T3) for two 

metrics are different

Figure 4. Conceptual representation of conditions affecting ranking stability. A high stability in ranking indicates that two metrics will
rank the decision alternatives the same, whereas a low stability indicates that two metrics will rank the decision alternatives differently.

system is concerned with supplying water to a city, there is generally a hard constraint in terms of supply
having to meet or exceeding demand, so that the city does not run out of water (Beh et al., 2017). The
system performs satisfactorily if this demand is met and that is the primary concern of the decision-maker.
Alternatively, there might be a fixed budget for stream restoration activities, which also provides a con-
straint. In this case, a solution alternative performs satisfactorily if its cost does not exceed the budget.
For the above examples, where performance values correspond to determining whether constraints have
been met or not, satisficing metrics, such as Starr’s domain criterion, are most appropriate.

In contrast, if the performance value in question relates to optimizing system performance, metrics that use
the identity or regret transforms would be most suitable. For example, for the water supply security case
mentioned above, the objective might be to identify the cheapest solution alternative that enables supply
to satisfy demand. However, there might also be concern in over-investment in expensive water supply
infrastructure that is not needed, in which case robustness metrics that apply a regret transformation might
be most appropriate, as this would enable the degree of over-investment to be minimized when applied
to the cost performance value. For the stream restoration example, however, decision-makers might simply
be interested in maximizing ecological response for the given budget. In this case, robustness metrics that
use the identity transform might be most appropriate when considering performance values related to
ecological response.

In relation to scenario subset selection (T 2), which robustness metric is most appropriate depends on a
combination of the likely impact of system failure and the degree of risk aversion of the decision-maker. In
general, if the consequences of system failure are more severe, the degree of risk-aversion adopted would
be higher, resulting in the selection of robustness metrics that consider scenarios that are likely to have a
more deleterious impact on system performance. For example, in the water supply security case, it is likely
that robustness metrics that consider more extreme scenarios would be considered, as a city running out
of water would most likely have severe consequences. In contrast, as the potential negative impacts for
the stream restoration example are arguably less severe, robustness metrics that use a wider range or less
severe scenarios might be considered. However, this also depends on the values and degree of risk aversion
of the decision maker.

As far as the robustness value calculation (T 3) goes, this is only applicable to metrics that consider more
than one scenario, as discussed previously, and relates to the way performance values over the different
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scenarios are summarized. For example, if there is interest in the average performance of the system under
consideration over the different scenarios selected in T 2, such as the average cost for the water supply secu-
rity example or the average ecological response for the stream restoration example, a robustness metric that
sums or calculates the mean of these values should be considered. However, decision-makers might also
be interested in (1) the variability of system performance (e.g., cost, ecological response) over the selected
scenarios, in which case robustness metrics based on variance should be used, (2) the degree to which the
relative performance of different decision alternatives is different under more extreme scenarios, in which
case robustness metrics based on skewness should be used, and/or (3) the degree of consistency in the per-
formance of different decision alternatives over the scenarios considered, in which case robustness metrics
based on kurtosis should be used.

4. When Do Robustness Metrics Disagree?

As mentioned previously, robustness metrics have been shown to disagree in certain cases (Giuliani &
Castelletti, 2016; Herman et al., 2015; Kwakkel et al., 2016b). As these metrics are used to make decisions
on outcomes, it is important to obtain greater insight into the conditions under which different robustness
metrics result in different decisions. It is important to note that the relative ranking of two decision alterna-
tives (x1 and x2), when assessed using two robustness metrics (Ra and Rb), will be the same, or stable, if the
following three conditions hold:

Ra

(
x1

)
> Ra

(
x2

)
and Rb

(
x1

)
> Rb

(
x2

)
, (1)

or Ra

(
x1

)
< Ra

(
x2

)
and Rb

(
x1

)
< Rb

(
x2

)
, (2)

or Ra

(
x1

)
= Ra

(
x2

)
and Rb

(
x1

)
= Rb

(
x2

)
(3)

The relative rankings will be different or “flipped” if the following two conditions hold:

Ra

(
x1

)
> Ra

(
x2

)
and Rb

(
x1

)
< Rb

(
x2

)
, (4)

or Ra

(
x1

)
< Ra

(
x2

)
and Rb

(
x1

)
> Rb

(
x2

)
. (5)

Consequently, relative differences in robustness values obtained when different robustness metrics are used
are a function of (1) the differences in the transformations (i.e., performance value transformation (T 1), sce-
nario subset selection (T 2), robustness metric calculation (T 3)) used in the calculation of Ra and Rb and (2)
differences in the relative performance of decision alternatives x1 and x2 over the different scenarios con-
sidered. In general, ranking stability is greater if there is greater similarity in the three transformations for
Ra and Rb and if there is greater consistency in the relative performance of x1 and x2 for the scenarios con-
sidered in the calculation of Ra and Rb, as shown in the conceptual representation in Figure 4. In fact, if the
relative performance of two decision alternatives is the same under all scenarios, the relative ranking of
these decision alternatives is stable, irrespective of which robustness metric is used.

4.1. Similar Transformations and Consistent Relative Performance

If the transformations used in the calculation of the robustness metrics are similar and the performance
of the two decision alternatives considered is consistent across the scenarios, one would expect ranking
stability to be very high (top-right quadrant, Figure 4). For example, when minimax regret and 90th per-
centile minimax regret correspond to Ra and Rb, there is a high degree of similarity in the performance value
transformation (T 1), scenario subset selection (T 2), and robustness metric calculation (T 3) (y-axis). For both
metrics, the performance values are transformed to regret, S

′
corresponds to a single scenario and there is

no need to combine any values as part of the robustness metric calculation (T 3), as there is only a single
value of regret (Table 5). Similarly, there is a high degree of consistency in the relative performance values
used for the calculation of Ra and Rb (x-axis), as minimax regret uses the worst-case scenario and 90th per-
centile minimax regret uses a scenario that almost corresponds to the worst case (Table 3). Consequently,
one would expect the ranking of decision alternatives to be very stable when these two metrics are used.
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4.2. Different Transformations and Inconsistent Relative Performance

Ranking stability is generally low if there are marked differences in the three transformations for Ra and Rb

and if there is greater inconsistency in the relative performance of x1 and x2 for the scenarios considered
in the calculation of Ra and Rb. Consequently, if both of these conditions are met, one would expect
ranking stability to be low (bottom-left quadrant, Figure 4). For example, when Ra and Rb correspond to
minimax regret and percentile based peakedness, there is a high degree of difference in performance value
transformation (T 1), scenario subset selection (T 2) and robustness metric calculation (T 3) (y-axis). For the
former, performance values are transformed to regret, S

′
consists of one scenario (worst-case scenario) and

there is no need to combine any values as part of the robustness metric calculation (T 3). For the latter, the
actual performance values are used, S

′
consists of four scenarios (10th, 25th, 75th, and 90th percentiles)

and the robustness metric calculation is the kurtosis of the four regret values (see Tables 3 and 5). Simi-
larly, there is a potentially high degree of inconsistency in the relative performance values used for the
calculation of Ra and Rb (x-axis), as minimax regret uses the worst-case scenario, whereas percentile-based
peakedness uses four scenarios spread evenly across the distribution of S (Table 3). Consequently, one
would expect the ranking of decision alternatives to be generally unstable when these two metrics
are used.

4.3. Different Transformations and Consistent Relative Performance

In cases where there are marked differences in the three transformations for Ra and Rb but consistency in the
relative performance of x1 and x2 over the scenarios considered in the calculation of Ra and Rb (bottom-right
quadrant, Figure 4), ranking stability can range from high to low. This is because the interactions between
various drivers of ranking stability are complex and difficult to predict a priori. For example, when maxi-
max and maximin correspond to Ra and Rb, there is a high degree of similarity in the three transformations
(y-axis). For both metrics, the actual performance values are used (T 1 is the identity transform), S

′
corre-

sponds to a single scenario and there is no need to combine any values as part of the robustness metric
calculation (T 3), as there is only a single value of performance (Table 5). However, there is a potentially low
degree of consistency in the relative performance values used in the robustness calculations (x-axis), as
the single performance values used in the calculations of these two robustness metrics come from differ-
ent ends of the distribution of performance values (i.e., one corresponds to the best-case and one to the
worst-case). Consequently, this case belongs to the top-left quadrant in Figure 4, where ranking stability
can vary from low to high, depending on the consistency in relative performance of x1 and x2 for the best-
and worst-case scenarios.

4.4. Similar Transformations and Inconsistent Relative Performance

In cases where the three transformations for Ra and Rb are similar but the relative performance of x1 and
x2 is inconsistent over the scenarios considered in the calculation of Ra and Rb (top-left quadrant, Figure 4),
ranking stability can also range from high to low due to the complex interactions between the different
drivers affecting ranking stability. For example, when Laplace’s principle of insufficient reason and percentile
based skewness correspond to Ra and Rb, there is a moderate degree of difference in the three transfor-
mations (y-axis). Both use actual performance values, but the former uses values from all scenarios and
averages them, whereas the latter uses the 10th, 50th, and 90th percentiles and calculates their skewness
(see Tables 3 and 5). However, as both use values from similar regions of the performance distribution, it is
likely that there is a high degree of consistency in the relative performance values used in the robustness
calculation (x-axis). Consequently, this case belongs to the bottom-right quadrant in Figure 4, where rank-
ing stability can vary from low to high, depending on the relative impact of using the average and skewness
of performance values for the robustness metric calculation (T 3).

5. Case Studies

Three case studies with different properties are used to test the conceptual model of ranking stability
introduced in Section 4, as shown in Table 6. As can be seen, the case studies represent water supply
systems and flood prevention systems, with decision variables including changes to existing infrastructure,
construction of new infrastructure, and changes to operational rules or policies. The number of scenarios
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Table 6.
Summary of the Characteristics of the Southern Adelaide, Lake Como and Waas Case Studies

Name Location

Decision variables,

components of xi

Selected

objectives and

performance

metrics, f (xi , S)

Number of

scenarios, n,

where

S= {s1, … , sn}

Number of decision

alternatives, m

where

X = {x1, … , xm}

Southern
Adelaide water
supply system

Adelaide, Australia Construction of new
water supply
infrastructure (e.g.,
desalination plants,
rainwater tanks,
stormwater harvesting)
and time of
implementation

Reliability (water
supply)

125 72

Lake Como Como,

Italy

Parameterization of
policies to determine
releases based on day of
year, current lake
storage and previous
day inflow.

Reliability (flood
prevention)

Reliability (water
supply)

28 19

Waas Rhine delta,

The Netherlands
(hypothetical
model based on
the real River
Waal)

Changes to existing
infrastructure for flood
reduction and flood
damage reduction, and
changes to operations
(e.g., limits to upstream
maximum discharge).

Flood damage

Casualties

3000 11

varies greatly in each case study (28–3000), as does the number of optimal decision alternatives considered
(11–72).

5.1. Southern Adelaide

This urban water supply augmentation case study models the southern region of the Adelaide water supply
system, as it existed in 2010 (Beh et al., 2014, 2015a, 2015b, 2017; Paton et al., 2013, 2014a, 2014b). Adelaide
has a population of approximately 1.3 million people and is the capital city of the state of South Australia.
Characterized by a Mediterranean climate and an annual rainfall of between 257 and 882 mm (average of
552 mm) over the period from 1889 to 2010 (Paton et al., 2013), Adelaide is one of the driest capital cities
in the world (Wittholz et al., 2008). The southern Adelaide system supplies approximately 50% of the water
mains consumption (168 GL in 2008) (Beh et al., 2014).

In 2010, the southern Adelaide system consisted of three reservoirs to supply water, as illustrated in Figure 5:
Myponga Reservoir collects water from local catchments; Mt. Bold Reservoir collects water both from local
catchments and water pumped from the River Murray via the Murray Bridge—Onkaparinga pipeline; Happy
Valley reservoir is a service reservoir storing water that has been transferred from the Mt. Bold Reservoir.
Water from the River Murray is limited to a maximum of 650 GL over a 5-year rolling period and it is assumed
that half of this water is available to the southern Adelaide system.

Due to projected increases in demand and a changing climate there is a need to augment the water supply
system (Paton et al., 2013). In particular, the River Murray will be greatly affected by climate change (Grafton
et al., 2016a). This article considers 125 scenarios corresponding to various combinations of representative
concentration pathways (RCPs) and global circulation models (GCMs) to project changes for future rainfall
for the Adelaide system.

There are a number of options for augmentation including the construction of desalination plants, stormwa-
ter harvesting schemes, and household rainwater tanks. A previous study (Beh et al., 2015b) generated 72
optimal decision alternatives for this case study using a multiobjective evolutionary algorithm, which will
be used in this article. Greenhouse gas emissions and cost were used as objectives, and the vulnerability
and reliability of each decision alternative was used to further analyze each optimal decision alternative.
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Figure 5. The southern Adelaide water supply system as it existed in 2010.

The reliability of the water supply was calculated over a range of future climate and demand scenarios.
Reliability was calculated in the following manner:

Reliability =
Ts

T
(6)

where T s is the number of years that supply meets demand and T is the total number of years in the plan-
ning horizon. A higher reliability implies that the supply meets demand in more years and hence a higher
reliability is more desirable than a lower reliability.

5.2. Lake Como

Lake Como is the third largest Italian lake with a total volume of 23.4 km3. The lake is fed by a 4552 km2

watershed (see Figure 6) characterized by a mixed snow-rain dominated hydrological regime with rela-
tively dry winters and summers, and higher flows in spring and autumn due to snow-melt and precipitation,
respectively. The lake releases are controlled since 1946 with the twofold purpose of flood protection along
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the lake shores, particularly in the city of Como, and water supply to the downstream users, including eight
run-of-the-river hydropower plants and a dense network of irrigation canals, which distribute the water to
four agricultural districts with a total surface of 1400 km2 mostly cultivated with maize (Giuliani et al., 2016a;
Guariso et al., 1985, 1986).

Figure 6. Map of the Lake Como system.

To satisfy the summer water demand
peak, the current regulation operates
the lake to store a large fraction of
the snowmelt in order to be, approxi-
mately, at full capacity between June
and July (Denaro et al., 2017). The pro-
jected anticipation of the snow melt
caused by increasing temperature,
coupled with the predicted decrease
of water availability in the summer
period, would require storing addi-
tional water and for longer periods,
ultimately increasing the flood risk.
The optimal flood protection would be
instead obtained by drawing down the
lake level as much as possible (Giuliani
& Castelletti, 2016).

Due to a changing climate and thus a
changing flood risk (Giuliani & Castel-
letti, 2016; McDowell et al., 2014) and
availability of water (Iglesias & Garrote,

2015), a climate ensemble of 28 scenarios was used for analysis by Giuliani and Castelletti (2016) and in
the following analysis. These scenarios are combinations of different RCPs, and Global, and Regional Cli-
mate Models. The resulting trajectories of temperature and precipitation are then statistically downscaled
by means of quantile mapping and used as inputs to a hydrological model to generate projections of the
Lake Como inflows over the time-period 2096–2100.

There are two primary conflicting operating strategies: maximizing water availability versus reducing
flood risk. Consistent with previous works (Castelletti et al., 2010; Culley et al., 2016; Giuliani et al., 2016d;
Giuliani & Castelletti, 2016), the trade-offs between these two strategies are modeled using the following
two objectives:

• Flooding: the storage reliability (to be maximized), defined as

st_rel = 1 −
nF

H
(7)

where nF is the number of days during which the lake level is higher than the flooding threshold of 1.24 m
and H is the evaluation horizon.

• Irrigation: the daily average volumetric reliability (to be maximized), defined as

vol_rel = 1
H

H∑

t=1

Yt

Dt

(8)

where Yt is the daily water supply and Dt the corresponding water demand.

A previous study (Giuliani & Castelletti, 2016) generated 19 Pareto optimal decision alternatives by optimiz-
ing the flooding and irrigation objectives over historical climate conditions via evolutionary multiobjective
direct policy search, a simulation-based optimization approach that combines direct policy search, non-
linear approximating networks, and multiobjective evolutionary algorithms (Giuliani et al., 2016b). These
optimal reservoir operation policies are used in the following analysis.
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Figure 7. The Waas case study area (left) is heavily schematized (right) into a three-dimensional image of the floodplain presenting the
land use and elevations (exaggerated vertically). The flow direction is from back to front (Haasnoot et al., 2012).

5.3. Waas

The Waas case study is a hypothetical case, based on a river reach in the Rhine delta of the Netherlands (the
river Waal). An Integrated Assessment Meta Model is used (Haasnoot et al., 2012), which is theory motivated
(Haasnoot et al., 2014) and has been derived from more detailed, validated models of the Waal area. The
river and floodplain are highly schematized, but have realistic characteristics (see Figure 7), with the river
being bound by embankments and the floodplain composed of five dike rings. In the southeast, a large
city is situated on higher ground, while smaller villages exist in the remaining area. Other forms of land use
include greenhouses, industry, conservation areas, and pastures. In the recent past, two large flood events
occurred in the Waal area, on which this hypothetical case study is based, resulting in considerable damage
to houses and agriculture (Haasnoot et al., 2009). In the future, changes in land use and climate, as well as
socioeconomic developments, may further increase the risk of damage, so action is needed.

There is a wide range of uncertainties that are considered, including climate change and its impact on river
discharge (see Haasnoot et al. (2012) for details) and land use change through seven transient land use
scenarios. Uncertainty with respect to the fragility of dikes and economic damage functions is taken into
account by putting a bandwidth of plus and minus 10% around the default values. Finally, some aspects
of policy uncertainty are included both through the uncertainty of the fragility function and by letting the
impact of the action vary (Kwakkel et al., 2015). These drivers of change are combined to form a total of
3000 scenarios.

Damage due to the flooding of dike rings is calculated from water depth and damage relations (De Bruijn,
2008; Haasnoot et al., 2009). Using these relations, the model calculates the flood impacts per hectare for
each land use to obtain the total damage for sectors such as agriculture, industry, and housing. Casualties
are assessed using water depth, land use, and flood alarms triggered by the probability of dike failure. These
performance measures form the three objectives that are considered in the original studies (Kwakkel et al.,
2015, 2016a): costs, loss of life, and economic damages. However, due to the fact that the costs were rarely
effected by the scenario, this objective was not included in this study. In previous studies, a many-objective
robust optimization approach was used to design robust adaptation pathways (Kwakkel et al., 2015, 2016a)
and 11 distinct adaptation pathways were identified. These optimal adaptation pathways are used in the
following analysis.

6. Results and Discussion

To assess if the rankings of decision alternatives are likely to be similar between two metrics for the different
case studies and objectives considered, the percentage of pairs of decision alternatives where the ranking
is stable is used. A stable pair of decision alternatives is one where one of these decision alternatives is
always ranked higher than another, regardless of the robustness metric used, as described in Section 4.
The ranking stability for each pair of metrics is displayed in Figure 8. A ranking stability of 100% indicates
that the metrics agreed on the rankings for every pair of decision alternatives, while 0% indicates that one
metric ranked the decision alternatives in reverse to the other metric. The robustness values for each case
study are included in Supporting Information S1. Figure 8 also provides basic information about the three
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transformations used in the calculation of each robustness metric in an effort to assess how well the results
agree with the conceptual model presented in Figure 4.

6.1. Impact of Transformations

Figure 8 indicates that the pairs of metrics with high stability (lower portion of the figure, shaded mostly
green), tend to share the same robustness metric calculation transformation (T 3). For example, in cases
where both metrics use the identity transformation, sums or averages of f

′
(xi , S) (all indicated by “M” in the T 3

columns), rankings are generally stable. In contrast, the metrics with low stability (upper portion of Figure 8,
shaded mostly red and yellow) tend to have different robustness metric calculation transformations. An
example is the percentile-based peakedness metric, being the only metric to use kurtosis. Every other metric
uses a different robustness metric calculation transformation and hence when percentile-based peaked-
ness is used as one of the two robustness metrics considered, rankings are generally unstable. This can be
explained by the fact that when different types of calculations from f

′
(xi , S) to R(xi , S) are used, different

attributes of the distribution of f
′
(xi , S) result in “similarity,” as discussed in Section 4. For example, as can be

seen in Figure 4, two metrics that use different robustness metric calculation transformations (T 3) will result
in low stability unless there are consistent differences between two decision alternatives over the different
scenarios.

In general, a pair of metrics with the same robustness metric calculation transformation (T 3) almost always
has high ranking stability, while a pair with a different T 3 almost always has low ranking stability. However,
Figure 8 indicates the same is not always true of the other two transformations (i.e., performance value
transformation (T 1) and scenario subset selection (T 2)), although in some cases, they can have an impact. For
example, the maximax and maximin metrics share the same robustness metric calculation transformation
(T 3). However, their ranking stability is markedly lower than that for other metrics that share the same T 3,
particularly for the Adelaide and Lake Como case studies. In this case, the primary cause of ranking stability
is associated with scenario subset selection (T 2). The selected scenarios S

′
for the maximin and maximax

criteria correspond to different extremes of the distribution of S and hence these two metrics show high
levels of disagreement. This puts the comparison of these two metrics in the middle or lower region of
Figure 4 and explains the large variance in the ranking stability of the maximin and maximax metrics in
Figure 8. This variance in ranking stability is particularly clear when there is not a large consistent difference
in performance between decision alternatives. The maximax metric is also different from most other metrics,
although to a lesser extent than the difference with the maximin metric, and it can be seen in Figure 8 that
this results in variable levels of agreement between the maximax metric and the other metrics in each case
study.

Similarly, the undesirable deviations metric uses the sum of f
′
(xi , S) and is hence categorized with many

other metrics when considering the robustness metric calculation transformation (T 3). Like the maximin
and maximax comparison, the undesirable deviations metric shows varying ranking stability depending
on the case study. The complex effects of the performance value transformation (T 1) explain this. Regret
of a decision alternative in each scenario is used by the undesirable deviations metric, compared to most
metrics, which use the actual performance values. This calculation of regret is also different from that of the
other regret metrics (minimax regret and 90th percentile minimax regret) because it is considering regret
relative to the median performance of that decision alternative, rather than regret relative to the absolute
best performance across all decision alternatives.

A relatively low level of agreement is seen when comparing the maximax and undesirable deviations
(Figure 8). Similar to the above discussion, this variability is due to the different sampling methods for the
scenario subset selection (T 2) and different performance value transformations (T 1). Maximax samples a
single value from the left-hand side of the distribution, whereas the undesirable deviations metric samples
the 50% of values from the right-hand side of the distribution. In addition, there is also a difference in the
initial performance value transformation (T 1), with the maximax metric using the raw performance values,
while the undesirable deviations metric uses the regret of a decision alternative relative to the median
performance.

6.2. Impact of Relative Performance

As can be seen in Figure 8, although there is generally a high degree of consistency in ranking stability
based on the similarity between the three transformations, this does not hold for certain combinations
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Adelaide

1 2 1 2 1 2 1 2 Supply Flooding Irrigation Flood damage Casualties

Maximax Percentile-based peakedness I I Si Su M K 11% 12% 42% 40% 56%

Laplace Percentile-based peakedness I I A Su M K 9% 45% 24% 40% 47%

Mean-variance Percentile-based peakedness I I A Su M+V K 8% 49% 23% 38% 47%

Maximin Percentile-based peakedness I I Si Su M K 8% 50% 23% 38% 47%

Minimax regret Percentile-based peakedness R I Si Su M K 11% 50% 23% 40% 51%

Hurwicz Percentile-based peakedness I I Su Su WM K 10% 50% 29% 40% 45%

90th percentile minimax regret Percentile-based peakedness R I Si Su M K 12% 50% 23% 42% 55%

Undesirable deviations Percentile-based peakedness I I Su Su M K 38% 51% 75% 53% 51%

Percentile-based skewness Percentile-based peakedness I I Su Su S K 16% 58% 54% 27% 36%

Maximax Percentile-based skewness I I Si Su M S 69% 18% 65% 80% 65%

Maximin Percentile-based skewness I I Si Su M S 38% 44% 50% 84% 75%

Hurwicz Percentile-based skewness I I Su Su WM S 71% 44% 60% 84% 76%

Mean-variance Percentile-based skewness I I A Su M+V S 73% 45% 50% 85% 75%

Laplace Percentile-based skewness I I A Su M S 73% 43% 51% 84% 75%

Minimax regret Percentile-based skewness R I Si Su M S 71% 44% 53% 84% 71%

90th percentile minimax regret Percentile-based skewness R I Si Su M S 71% 44% 53% 82% 67%

Undesirable deviations Percentile-based skewness R I Su Su M S 63% 45% 49% 71% 60%

Maximin Undesirable deviations I R Si Su M M 41% 98% 15% 85% 78%

Laplace Undesirable deviations I R A Su M M 67% 92% 11% 87% 78%

Mean-variance Undesirable deviations I R A Su M+V M 67% 96% 10% 85% 78%

Hurwicz Undesirable deviations I R Su Su WM M 61% 98% 18% 87% 76%

Minimax regret Undesirable deviations R R Si Su M M 63% 97% 6% 87% 89%

90th percentile minimax regret Undesirable deviations R R Si Su M M 64% 97% 9% 89% 85%

Maximax Undesirable deviations I R Si Su M M 60% 48% 22% 84% 60%

Maximax 90th percentile minimax regret I R Si Si M M 91% 49% 75% 95% 75%

Maximax Mean-variance I I Si A M M+V 88% 50% 72% 95% 82%

Maximax Minimax regret I R Si Si M M 92% 50% 78% 96% 71%

Maximax Laplace I I Si A M M 88% 53% 77% 96% 82%

Maximax Hurwicz I I Si Su M WM 98% 49% 84% 96% 84%

Maximin Maximax I I Si Si M M 49% 49% 68% 95% 82%

Maximin Minimax regret I R Si Si M M 46% 98% 90% 98% 89%

Maximin 90th percentile minimax regret I R Si Si M M 44% 98% 91% 96% 93%

Maximin Laplace I I Si A M M 41% 95% 90% 98% 100%

Maximin Mean-variance I I Si A M M+V 41% 98% 92% 98% 100%

Maximin Hurwicz I I Si Su M WM 51% 100% 84% 98% 98%

Hurwicz 90th percentile minimax regret I R Su Si WM M 93% 98% 88% 98% 91%

Hurwicz Minimax regret I R Su Si WM M 93% 98% 89% 100% 87%

Hurwicz Mean-variance I I Su A WM M+V 90% 98% 84% 98% 98%

Hurwicz Laplace I I Su A WM M 90% 95% 89% 100% 98%

Laplace Minimax regret I R A Si M M 95% 95% 94% 100% 89%

Laplace 90th percentile minimax regret I R A Si M M 96% 95% 94% 98% 93%

Minimax regret Mean-variance R I Si A M M+V 95% 99% 94% 98% 89%

90th percentile minimax regret Mean-variance R I Si A M M+V 96% 96% 96% 96% 93%

Minimax regret 90th percentile minimax regret R R Si Si M M 97% 97% 96% 98% 96%

Laplace Mean-variance I I A A M M+V 100% 96% 95% 98% 100%

T3Metrics
% of times that metrics agree on relative rankings

Lake Como Waas
T1 T2

Figure 8. Agreement in relative rankings when considering all pairwise combinations of metrics for all case studies. For performance
value transformation (T1): I= identity; R= regret; for scenario subset selection (T2): Si= single decision alternative; Su= subset of
decision alternatives; A= all decision alternatives; for robustness metric calculation (T3): M=none, sum or mean; WM=weighted mean;
V= variance; S= skew; K= kurtosis. The rows are ordered approximately from least stable combinations (red) to most stable (green),
although some rows have been moved to aid the illustration of concepts in the following discussion.

of robustness metrics and case studies/objectives. This is because ranking stability is not only affected by
the similarities in/differences between robustness metrics, but also the similarities/differences in the rela-
tive performance of two decision alternatives under the different scenarios considered (see Figure 4). For
example, as can be seen in Figure 8, ranking stability for the Adelaide case study is low when the maximin
metric is paired with other metrics that also used the same type of robustness metric calculation trans-
formation (T 3), while this is not the case for the other case studies. In this case, this is because many of the
decision alternatives have a reliability of 0% in the worst-case scenario, and due to the scenario subset selec-
tion (T 2), the maximin metric only considers this worst-case scenario and thus ranks many of the decision
alternatives as equal. Other metrics with different scenario subset selection methods use different scenar-
ios (which vary depending on the decision alternative) or use more scenarios and thus rank the decision
alternatives differently.

It is also worth noting the high level of disagreement obtained in the Lake Como case for the undesirable
deviations when considering the reliability of water supply for irrigation. This effect does not appear when
considering the reliability against flooding. This asymmetry can be explained by the fact that the IPCC pro-
jections in the alpine region consistently suggest a decrease of water availability in the summer period
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due to a change in the snow accumulation/melting dynamics. In fact, the impacts of global warming are
expected to reduce the precipitation that falls as snow in winter and, at the same time, to reduce snow melt.
The combined effect of this reduction of snow accumulation and reduction of the snow melt strongly chal-
lenges the possibility of filling up the lake to provide irrigation during the summer period. Yet, the temporal
distribution of such effects can be different due to the variability in the considered scenarios, ultimately
producing variable impacts on the performance of different operating policies, which implement differ-
ent hedging strategies over time. The variable and asymmetric distribution of the resulting performance
(toward degradation) is then captured by the metrics relying on a subset of values in the scenario subset
selection transformation (T 2) (i.e., undesirable deviations and the metrics relying on multiple percentiles),
while other metrics do not recognize this effect and produce inconsistent rankings.

7. Summary and Conclusions

Metrics that consider local uncertainty (i.e., reliability, vulnerability, and resilience) have long been consid-
ered in environmental decision-making. Due to deeply uncertain drivers of change including climate, tech-
nological and sociopolitical changes, decision-makers have begun to consider multiple scenarios (plausible
futures) and robustness metrics to quantify the performance of decision alternatives under deep uncer-
tainty. A large variety of robustness metrics has been considered in recent research with little discussion of
the implications of using each metric, and little understanding of the way the metrics are similar or differ-
ent. However, it has become clear that the choice of robustness metric can have a large effect, with metrics
sometimes showing disagreement with regard to which decision alternative is more robust.

This article presents a unifying framework for the calculation of robustness metrics derived from three
major transformations (performance value transformation (T 1), scenario subset selection (T 2) and robust-
ness metric calculation (T 3)) used to convert system performance values (e.g., reliability) into the final value
of robustness that can be used to rank decision alternatives. The performance value transformation (T 1)
converts the original performance values into the information that the decision-maker is interested in. The
second transformation (T 2) corresponds to the selection of which scenarios (and associated system per-
formance values) the metric will use. The final transformation (T 3) involves the conversion of transformed
performance values over the selected scenarios into a single value of robustness.

This article also presents a conceptual framework for assessing the stability of the ranking of different deci-
sion alternatives when different robustness metrics are used. The framework indicates that the greater the
similarity in the three transformations for robustness metrics, the more stable the ranking of decision alter-
natives that use these metrics is and vice versa. Ranking stability is also affected by the degree of consistency
of the relative performance of different decision alternatives across the scenarios, where ranking stability
is increased if one decision alternative always outperforms the other and vice versa. In order to test this
conceptual understanding of ranking stability when different robustness metrics are used, the stability of
any two metrics was determined for five objectives in three case studies, which confirmed the proposed
conceptual model. The robustness metric calculation (T 3) was found to be the most influential of the three
transformations in determining ranking stability, however, the other two transformations also contributed.

In conclusion, robustness metrics can be split into three transformations, which provides a unifying frame-
work for the calculation of robustness. This framework helps decision-makers understand when different
robustness metrics should be used by considering (1) the information the decision context relates to most
(e.g., absolute performance, regret, or the satisfaction of constraints) (performance value transformation
(T 1)), (2) the preference of a decision-maker toward a high or low level of risk aversion for the case study
under consideration through scenario subset selection (T 2), and (3) the decision-maker’s preference toward
maximizing average performance, minimizing variance, or some other higher-order moment, as described
by the robustness metric calculation (T 3). These three transformations and the properties of the case studies
are useful in describing why rankings of decision alternatives obtained using different robustness metrics
sometimes disagree.
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