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SUMMARY

The transition from a centralized to a decentralized energy infrastructure is one of the
most discussed features of the future energy system. With the fast growth of renewable
energy technologies, which can be integrated in the built environment and in contexts
like small production centers, the development of distributed energy generation and
storage systems closer to consumers is expected to play a significant role in driving the
change. Within this context, the role of Energy Communities is emerging and is at the
center of numerous studies. The Green Village in Delft is developing the 24/7 Energy
Lab project, focusing on providing reliable, affordable and clean energy to a small-scale
energy community by means of a system composed of solar panels for energy genera-
tion, batteries for electrical energy storage, and an hydrogen storage system consisting
of electrolyzers, fuel cells and hydrogen tanks for seasonal energy storage.

Previous research has highlighted how an off-grid configuration would result in inconve-
niently high costs for the community’s users, if compared to the average cost of energy in
The Netherlands. The aim of this thesis is to study the system in a grid-connected config-
uration, and in particular to find the optimal sizes of the components in order to achieve
the best trade off between three conflicting objectives : minimizing total costs, maximiz-
ing self- sufficiency and maximizing reliability. After modeling the system’s components
and their mutual interactions, the optimization was carried out on MATLAB using a vari-
ant of the NSGA-II algorithm, which provides a Pareto Set of equally optimal solutions
for the problem. The solutions were then ranked with a Technique for Order Preference
based on Similarity to the Ideal Solution (TOPSIS), to assist the decision-making process.

The simulations have determined that an installed capacity of 85.41 kWp (composed of
234 panels of 365 Wp each) results in the most effective choice for the solar energy gen-
eration, irrespective of the external conditions imposed. The optimal storage capacity,
however, results significantly more influenced by factors such as grid imports limita-
tions and price uncertainties. Under the conditions of limited imports from the grid,
an optimal capacity of 75 kWh in the form of batteries was found. In general, the study
confirms that the adoption of an hydrogen storage system is far from being convenient
on a small scale residential level, regardless of the pricing conditions. The research has
also posed an accent on the incremented costs incurred to reach full reliability of the sys-
tem with low values of dependence from the grid, due to the high costs of the necessary
storage equipment. Additionally, despite the best solutions found represent the opti-
mal compromises balancing the conflicting objectives, reasonable solutions in terms of
costs faced by the Community’s users are usually not among the first choices of the rank-
ing algorithm, mainly because they necessitate of at least 50% of the load to be supplied
through grid imports.
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1
INTRODUCTION

1.1. BACKGROUND AND MOTIVATION
The necessity to tackle climate change and to decrease (and eventually terminate) car-
bon emissions is one of the most debated themes in today’s society. It is also a crucial as-
pect of the 2030 Agenda for Sustainable Development adopted by all the United Nations
members, and The Netherlands among these, in 2015. In particular, this is highlighted by
two of the 17 Sustainable Development Goals, namely the necessities to "Ensure access to
affordable, reliable, sustainable and modern energy for all" (Goal 7) and "Make cities and
human settlements inclusive, safe, resilient and sustainable" (Goal 11). In order to pur-
sue the said goals, disruptive changes of the current energy infrastructure will be likely
to occur, not only in terms of organizational structure, but also for what concerns the
technologies used and the policies applied.

One of the most discussed features of the future infrastructure is the transition from a
centralized to a decentralized energy infrastructure. With the scaling up of renewable
energy technologies like photovoltaic (PV) generation, which can be integrated in the
built environment and in contexts like small production centers, the development of
distributed energy generation (and storage) systems closer to consumers is expected to
play a significant role in driving the change. Switching from a system mainly relying on
traditional, fossil-based energy generators to one exploiting renewables based assets like
PV and wind turbines also poses some significant challenges in the management of the
power grid. The current energy infrastructure is designed in such a way that demand
and supply are perfectly balanced in every instant, and the non-dispatchable nature of
renewable energy technologies requires adequate solutions to deal with periods of high
abundance of energy production (that can easily cause grid congestion) or scarcity of
supply.

Different frameworks have been developed in the last decades for the integration of such
distributed systems in the future power network. These have been often referred to with
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2 1. INTRODUCTION

the term "microgrid". According to the definition given by the National Renewable En-
ergy Laboratory (NREL) "A microgrid is a group of interconnected loads and distributed
energy resources that acts as a single controllable entity with respect to the grid. It can
connect and disconnect from the grid to operate in grid-connected or island mode" . In
the previously described context, microgrids can therefore act as a fundamental support
to the main grid, by providing their excess power when necessary, and by decreasing
their request from the main power grid when the latter faces congestion or scarcity of
production. In addition to providing this kind of support, these systems also have the
potential to benefit the loads to which they are directly connected, by supplying them
with clean, affordable and reliable energy and preventing them from undesirable situa-
tions like faults from the main grid or price spikes resulting from energy crises.

More recently, the definition of microgrid has been replaced by the concept of integrated
energy community, that comprises the previously mentioned microgrids’ characteris-
tics but also puts emphasis on the social and organizational aspects of the commu-
nity involved in forming this system, for example by looking at the customer engage-
ment. These communities are defined not only by their technical properties like the
utilized technologies and the pursued goals of self-sufficiency and energy security, but
also by the active involvement of the participants, who (especially in developed coun-
tries) "are being motivated by increased climate awareness and willingness to become
autonomous among pro-active communities" (Koirala et al., 2016). Since the definition
of Integrated Energy Community (IEC or just EC) is currently the most referred to in re-
cent literature, this is the term the system will be referred to throughout this project.

The efficient design of an EC needs several aspects to be taken into account, not only
under the technical but also under the economical and social point of view. First of all,
the choice of the system’s components shall be taken, and their sizing should be evalu-
ated by taking into account the load requirements and additional boundary conditions.
In particular, the conditions at which power flows are managed within the system, and
the ways it interacts with the external main grid are of capital importance and can have
a large influence on their optimal design.

The scope of this work is to study a real-life case of energy community, from the design
to the analysis of its performances. By focusing on all the aspects (mainly the technical
and economical analysis), this thesis project aims to represent a benchmark case study
for the effective development of this and similar systems.

1.2. PROBLEM STATEMENT
The design of a semi-independent energy community is a complex task involving several
different aspects to be taken into account. Apart from a technical overview of the project
involving the components, its connections and management, factors like social accep-
tance, environmental and economical effects in the integration of energy communities
should be covered to have an exhaustive overview of the project.

The Green Village is a dynamic center for experimentation, and previous studies on the
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Energy Community on which this work is focusing have already being conducted. In
particular, N. Li et al., 2023 have investigated the sizing of this system in an off-grid con-
figuration, providing all the necessary electricity by means of self-produced power. Es-
pecially because of the high investment costs related to the hydrogen storage system
(electrolyzers, tanks, fuel cells and surrounding equipment) the end-cost of the system
resulted to be high if compared to the average electricity cost per kWh in The Nether-
lands.

Also Betere Marcos, 2022 approached the sizing of the system in an off-grid mode. The
resulting costs were similarly high and not preferable for a local community that could
have access to a grid connection, if necessary. However, the conclusion of such work
also states that with a small reduction of the system’s self sufficiency (and hence, with a
grid connection) the system could enjoy significant economic benefit. This conclusion
mainly comes from the fact that, considering the variability of energy generation from
renewable sources, the system would end up being oversized if its scope is to provide 100
percent of the community’s needs.

In this research, the system will be studied in a grid-connected configuration. This means
that, in case of necessity, the Energy Community will be capable to both import energy in
times of need and export its excess energy to sell it for profit. The introduction of the grid
as an additional element of the system also poses questions on the interaction between
the Energy Community and the external environment. If, on one hand, it is predictable
that this would reduce the overall costs, importing energy from the grid represents a cost
that its not completely straightforward to foresee.

In fact, the evolution of the energy system as a whole also entails a change with respect
to the traditional ways of exchanging energy and electricity as a commodity. In order
to deal with the previously mentioned congestion problems, and to accurately match
the variable production from the renewables with the required loads, the future power
network will need to consistently rely on demand side management techniques. Among
these, Demand Response can be defined as the set of actions and incentives that influ-
ence the consumers’ energy demand, both directly and indirectly.

An effective means by which the load can be indirectly influenced is by applying varying
prices to the electricity purchased in different moments. By charging higher prices when
the system is already stressed and lower ones when there is an excess of power produced,
consumers which are aware of the instantaneous power price can choose to modify their
consumption and be economically rewarded for this. This kind of policies, typically re-
ferred to as Dynamic Pricing, are one of the most relevant emerging areas in the future
power industry (Sampson and Longe, 2021), and are likely to become widespread even
in countries that are actually not employing it, as the energy infrastructure continuously
evolves by incorporating a higher share of renewables and an increasing number of en-
abling technologies like smart electricity meters.

Differences in the adoption of distinct policies are expected to arise, with some that may
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prove to perform better under the economical point of view for energy communities
(that is, by adopting different pricing mechanisms the overall cost of the electricity for
the consumers is likely to vary). Because of this, an analysis is required to assess the re-
sponse of different systems to their adoption. For example, in the case of the adoption of
Dynamic Pricing schemes, as highlighted in Dutta and Mitra, 2017, "Market acceptance
of dynamic pricing can only be achieved if its benefits to each stakeholder can be proved.
This requires more and more well-planned pilot projects and a study of different aspects
involved in this field". Since energy communities will play an important role in future
energy systems, it would be necessary to evaluate the effects of these conditions on their
design as well.

As earlier introduced, one of the most relevant aspects of distributed energy systems, is
their capacity to operate independently from the main grid and when necessary even
sell their surplus production to the retail market (through the mediation of the network
operator). The regulations concerning the way these systems interact with each other,
and in particular the ones determining under which conditions smaller systems like en-
ergy communities can inject their own produced power to the main grid, can also have
a substantial impact on the systems’ design.

In The Netherlands, the current policy for prosumers feeding power into the grid is the so
called Net-metering (salderingsregeling in Dutch). According to this policy, power com-
panies are required to reward the consumers for the energy they inject into the grid by
deducting all said energy to the one they import. This means that prosumers receive a
compensation that is exactly equivalent to the price they would have had to pay to buy
that same energy they fed into the grid. The Net-metering policy has helped The Nether-
lands in boosting their domestic-scale share of installed PV, but it’s now being under
discussion by the Government itself. Several alternatives to this policy and their possi-
ble outcomes are being explored, as in Londo et al., 2020.

Policy intervention and regulations are very important aspects to be considered in the
design of grid-connected energy communities, but surely not the only ones. While ap-
proaching these problems, decisive technical considerations shall be addressed. Firstly,
a choice concerning the system’s technical components shall be made. Energy commu-
nities are usually composed by loads, energy generators and (optionally) storage sys-
tems. Zero-emissions microgrids are characterized by the only presence of renewable
energy sources as generators, like PV, wind turbines, hydrogen fuel cells, biomass gen-
erators or even small hydropower plants. As for the storage technology, several options
can be taken into account, and usually the most considered alternatives include electro-
chemical storage in the form of batteries and chemical storage in the form of hydrogen
molecules.

While the decision on the generation technology is usually location dependent (e.g. so-
lar energy production through PV modules is usually the preferred choice when space
limitation arise, due to their easily applicability in the built environment and low capital
costs involved), the choice regarding the energy storage technology is less straightfor-
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ward. Batteries are commonly the most common choice adopted in residential indepen-
dent energy systems and microgrids, as their technology is well known and has reached
levels of scale production. Their relatively low energy density, however, only makes them
suitable for short term energy storage, while hydrogen storage systems (coupled with
fuel cells acting as backup generators) can benefit a very high density and are therefore
mostly used for long-term energy storage purposes. In this research, focusing on the
case study of The Green Village in Delft and in particular on the 24/7 Energy Lab project,
the considered system architecture is composed of PV generation, batteries, fuel cells
and hydrogen storage system (HSS).

However, several factors might raise questions about the actual usefulness and effec-
tiveness of hydrogen storage systems in grid-connected energy communities. The high
capital costs of the hydrogen infrastructure can represent a detrimental aspect on its ap-
plication, especially in systems that can benefit from power inputs from the grid in times
when the prices are convenient. At the same time, the opportunity of exploiting medium
and long-term storage to gain profits from exporting power at the right time could rep-
resent a significant added value. Moreover, the use of an HSS can surely provide better
performances in terms of the system’s self sufficiency, and safeguard its reliability in oc-
currence of grid faults.

The aim of this thesis is to cover these uncertainties and considerations, by analyzing
a case study and transferring the most meaningful findings to a broader analysis. With
regards to the selected case study, the first research question addressed will be:

What is the best sizing configuration for a grid-connected energy community in The
Green Village under technical and economical aspects?

The mentioned price uncertainties also call for a second question, formulated as :

What is the influence of different electricity pricing conditions on the design and
sizing of a grid-connected energy communities?

And lastly, concerns about the high costs for hydrogen equipment lead to a broader in-
vestigation of its usefulness :

To what extent the adoption of a hydrogen system can benefit a grid-connected energy
community under different pricing conditions?



6 1. INTRODUCTION

1.3. CASE STUDY: THE GREEN VILLAGE

This project will partly act as a continuation of previous work conducted by Master stu-
dents and researchers together with The Green Village. The 24/7 Energy Lab is an ongo-
ing project that aims to provide reliable, affordable and clean Energy to the small-scale
community of The Green Village, composed of 8 houses occupied by 12 households. To
do so, the 24/7 Energy Lab involves the presence of solar panels for energy generation,
batteries for electrical energy storage, electrolyzers, fuel cells and hydrogen tanks for sea-
sonal energy storage in the form of hydrogen.

Figure 1.1: Aerial View of The Green Village, retrieved from Google Earth

Within the context of The Green Village, shown in 1.1, the system’s microgrid can be seen
as several individual components connected to a common AC bus. Components operat-
ing with direct current are coupled to the common grid through an inverter, while the re-
gional grid provides a bi-directional energy flow to the Community. Figure 1.2 schemat-
ically represents the system’s architecture.

The scope of this work will be to optimally design and size the system in a grid-connected
configuration and to analyze both technical and economical performances of the Energy
Community. The sizing will be based on real historical load data from the households
provided by The Green Village, using those as an input for the optimization algorithm.
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Figure 1.2: Graphic representation of the System Architecture

1.4. OUTLINE
The proposed approach to address the research questions is a scenario-based multi ob-
jective optimization, taking into account the different necessities of the Community, ex-
pressed as conflicting objectives. Before doing so, the available scientific literature on
this topic was studied and discussed in Chapter 2. Trough the literature study, the most
appropriate optimization method was selected, and a knowledge gap was identified so
that this research can add a degree of novelty to the scientific community. The system
needed then to be studied on a single component level. Therefore, modeling of all the
elements forming the Energy Community was performed in Chapter 3. This includes the
mathematical formulation of all the system’s technical components, their behaviors and
mutual interactions according to an energy management strategy. The processing of the
necessary input data (about the load, the environmental conditions, and the prices) is
addressed in chapter 4. Chapter 5 deals with the optimization itself, detailing variables,
objectives, constraints and its practical implementation. The results of the optimization
are shown and analyzed in Chapter 6, where several alternative scenarios are studied to
address the sensitivity of the model. Lastly, Chapter 7 concludes the thesis, presenting
final considerations, limitations of the project and reflections on future work.





2
LITERATURE REVIEW AND

BACKGROUND KNOWLEDGE

The scope of this chapter is to analyze the reviewed literature served as a background for
the research. This literature is comprised of journal papers, conference papers, articles,
books and other publications mainly retrieved with the help of the databases Scopus and
Google Scholar.

2.1. ENERGY SYSTEMS SIZING
Sizing is a critical aspect in the design of energy systems, influencing the final invest-
ment choices on the basis of the forecasted performances ad costs, and it is therefore a
broadly discussed problem in scientific literature. Because of the vastness of the vari-
ables involved and the possible considerations to which these studies can lead, the re-
search in this field is very heterogeneous. Generally, the use of optimization algorithms
is a widespread approach to this kind of problem.

A considerable amount of earlier studies focus on the design of off-grid systems that can
be more suitable in remote areas where a connection to the regional grid is too expensive
or impossible for site-specific reasons. Narayan et al., 2019 employed Multi-Objective
Genetic Algorithm to size off-grid solar home systems in a multi-tier framework. The au-
thors highlight that "climbing the electrification ladder" in off-grid systems comes with
large investment costs because of the over-sizing needed when no backup from the grid
or other sources are available.

When systems are located in urban areas with easy access to a network connection,
the interactions with the grid are also taken into account in the sizing process. Raja
and Detroja, 2018 used single objective Linear Programming to optimize the sizes of a
grid-connected PV-battery system that is also allowed to export power to the grid and
financially benefit from this in conditions of dynamic prices for the electricity. To ex-

9
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ploit this, the components result to be slightly oversized with respect to a base case with
no possibility to export the self-produced power. Also the system sized in Gharibi and
Askarzadeh, 2019 is able to export excess power to the main grid, but not capable of im-
porting any. It is sized through a novel Crow Search Algorithm, and the operation is also
taken into account in the multi-objective optimization with the introduction of a "grid-
factor" variable, determining how much of the excess would be stored or sold.

The architecture of the systems considered in the reviewed literature is vary varied.PV
panels are most of the times considered as the main power source in distributed en-
ergy systems, mainly because of the easy integration of this technology in small-scale
systems and the low investment costs. Attia et al., 2021 designed a PV-only system in a
grid-connected configuration with the use of the Augmented epsilon algorithm imple-
mented in the CPLEX software in order to maximize the reliability and minimize cost
and emissions (coming from the grid imports). However, several alternative or comple-
mentary generation options like wind turbines, biomass generators or diesel generators
are investigated in other works

Figure 2.1: Example of a PV–wind–diesel–hydrogen–battery off-grid system, Dufo-López and Bernal-Agustín,
2008

The presence of some kind of energy storage is of particular relevance in the case of
stand-alone systems, in order to avoid loss of load when the primary source of genera-
tion is not enough (e.g. at night, when the latter is only composed of PV). When grid-tied
configurations are considered, energy storage is employed to guarantee to the system a
certain degree of self sufficiency from the grid. Among all the possibilities for energy
storage, electrical energy storage (EES) in the form of batteries is by far the most stud-
ied and firstly considered in the design of distributed energy systems, with an extensive
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literature available in its support, especially when coupled with PV systems. A detailed
review on this kind of systems is presented in Y. Zhang et al., 2022. Because of their
relatively low energy density, however, batteries are more suitable for the so called short-
term storage (e.g. the daily or weekly storage) rather than long-term, or seasonal, one.
On the other hand, hydrogen has a very high energy density and the possibility to pro-
duce, store, and reuse it to generate electricity without pollutant emissions make it very
often considered as a secondary energy storage system, usually employed together with
batteries in the design of Microgrids.

Akhavan Shams and Ahmadi, 2021 employed the Genetic Algorithm to size a grid-connected
PV-wind turbine system in two different configurations, using a battery energy storage
system and hydrogen energy storage system (composed of electrolyzers, fuel cells and
H2 tanks) respectively. Even though the technical and economical performances of the
two configurations are presented, the possibility of employing both system jointly is not
taken into account. Paulitschke et al., 2015 in their study focused on the optimal sizing
of a PV system equipped with both batteries and hydrogen storage, through the use of
Multi Objective Particle Swarm Optimization (MOPSO). In this case, the fuel cells not
only act as a backup when all the batteries are completely exhausted, but also charge the
batteries when the state of charge reaches a predetermined low threshold level. hybrid
batteries and hydrogen storage systems connected to renewable generation sources are
optimized through the NSGA-II algorithm in B. Li and Roche, 2021. In this work, the siz-
ing of a remote generating station and a local energy community connected to it was car-
ried out together, with results showing the hydrogen system being of capital importance
especially in ensuring continuous supply from the decentralized generating station.

The high cost of hydrogen systems components, however, represents a significant obsta-
cle to their deployment, and often leads to sizing solutions in which they are very little
or not employed at all, even at the expenses of reliability and self-sufficiency of the sys-
tem. This is what happens in most of the optimal solutions evaluated in Dufo-López and
Bernal-Agustín, 2008. In this study, the optimization is carried out on two levels in order
to take into account the interdependence between the sizing and the operation strategy
of the system, composed of PV, wind generation, diesel generators, batteries and hydro-
gen system. After a first algorithm randomly generates a set of possible configurations,
a secondary runs to find the optimal dispatch strategy for each configuration. The so-
lutions are then stored and the algorithm updates the found value until a predefined
number of generations is reached. Among the optimal solutions found, most do not em-
ploy an hydrogen storage system, while the ones that do employ it prioritize the batteries
in the dispatch operation. Similarly, also Human et al., 2014 performed a two-level opti-
mization in order to optimize both the system’s configuration and operation at the same
time.

Generally speaking, the design of a hybrid renewable energy system (HRES) composed
of generation and storage unit is not a trivial task. Choosing the optimal capacity of the
system’s components can benefit technical, economical, and social objectives. When
single-optimization techniques are applied in the sizing, minimizing the system’s cost is
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usually the pursued goal by the optimizer. For example, Dash et al., 2018 sized a micro-
grid in a remote rural region of India under both grid-connected and off-grid configu-
rations. To do so, they used the HOMER-Pro software to minimize the final energy cost.
However, various other aspects can be considered when opting for a multi-objective op-
timization approach.

Shang et al., 2023 proposed a two stage optimization model to configure a grid-connected
system comprised of PV, wind turbines, gas turbine, electrolyzer and fuel cells. The
model considers electricity-price predictions and maximizes the net present benefit,
while minimizing annual carbon emissions and loss of energy conversion. Yaghi et al.,
2019 also consider emissions and cost as the optimization objectives for the sizing of
a grid-connected system composed of PV, wind turbines, batteries and backup diesel
generators. Together with cost, Baghaee et al., 2017 focus on the optimization of the
reliability of the off-grid system under study. In particular, the loss of load is economi-
cally quantified and also the lost energy (extra production that does not serve the load)
is minimized with the MOPSO algorithm. In their system sizing through NSGA-II, Wang
et al., 2020 also considered social acceptance factors based on the land use and visual
impact related to the installation of renewable power sources, in the context of a multi-
actor perspective to design energy communities.

2.1.1. OPTIMIZATION TECHNIQUES

As per the optimization techniques employed in the design and sizing of microgrids and
distributed energy communities, the literature presents plenty of different alternatives.
Single-objective optimizations are often dealt with Linear Programming algorithms, or
specifically designed software such as NREL’s HOMER PRO. As an example, Kusakana,
2019 only focus on the economic performances of a storage-only system under condi-
tions of varying prices for electricity using Linear Programming. This method is also
employed by Weckesser et al., 2021 to optimally size energy communities and analyze
their impact on the distribution grid. In this case, a comparison is presented between
multiple single objective optimizations and a multi-objective optimization considering
all goals at the same time.

Optimizing multiple objectives simultaneously adds complexity to the problem. Re-
cently, Artificial Intelligence (AI) based meta-heuristic algorithms have gained the inter-
est of researchers because of their reliability, fast convergence towards towards optimal
solutions and ease in their implementation. For these reasons, they have become the
most common method to solve complex issues like the ones encountered in the design
of energy systems.

A comprehensive review about the most relevant optimization approaches used to solve
problems of placing and sizing distributed generation from renewable sources is pre-
sented in Abdmouleh et al., 2017. The authors conclude that "it has been noticed that GA
and PSO are among the most promising optimization techniques to solve the DGs plan-
ning optimization problem". Ananth and Vineela, 2021 also have reviewed and com-
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pared different optimization methods applicable to the energy sector, and in particular
they indicate the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as the
most indicate to solve problems such as "Optimal Power Flow", “Multi-objective opti-
mizations functions solving” , “Large scale Unit commitment” and “Operational cost
minimization with highly non-linear terms”. New approaches have also been tested with
very promising results, like the Crow Search Algorithm (CSA) presented by Askarzadeh,
2016, which is a fast-converging method inspired by the movements of flock of birds.

2.1.2. MULTI-OBJECTIVE OPTIMIZATION

A multi-objective optimization problem is defined by the presence of multiple objective
functions to optimize. Most of the times these objectives are conflicting with each oth-
ers, making the problem lacking of a unique optimal solution. Without losing generality,
the optimization functions can all be considered to minimize (for objectives to be max-
imized, the same function with a negative sign can be minimized resulting in the same
goal).

Following the description given by Konak et al., 2006, if J is the number of objectives and
K is the number of variables, a minimization multi-objective problem can be defined
as the problem of finding a vector x* = {x1, x2, ...xK } such that it minimizes the given set
of objective functions Z = {z1(x), z2(x), ...z J (x)} inside a search space X limited by some
constraints and bounds on the K variables of the problem. Because of the conflicting
nature of the objective functions, optimizing all functions at the same time is almost al-
ways not possible. This means that solutions resulting in optimal values for one objective
may bring to unsatisfactory values for the others. Therefore, multi-objective optimiza-
tion problems often result in a set of equally optimal solution, based on the concept of
Pareto dominance.

Considering a minimization problem, a solution vector x is said to dominate the solu-
tion vector x’ if zk (x) ≤ zk (x’)∀k = 1...K and if zk (x) < zk (x’) for at least one objective k.
Similarly, the solution vector x is said to be non-dominated if no other solution vector in
the feasible search space X dominates it. The set of all feasible and non-dominated solu-
tions in the entire search space is referred to as Pareto Set, and their respective objective
functions’ values are called the Pareto Front. Figure 2.2 illustrates example Pareto Sets
from the consulted literature, where the trade-off between three objective is visible.

Because of the absence of a unique solution for the problem, it is a task of the decision-
maker to select the most appropriate from the Pareto Set. Alsayed et al., 2013 have com-
pared the use of three different decision-making techniques and their performances
when choosing between a three-objectives trade off : Weighted Sum Method (WSM),
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and preference
ranking organization method for enrichment evaluation (PROMETHEE II). Both WSM
and TOPSIS are based on the assignment of weights to the selected objectives and on
ranking the solutions on the basis of their performances with respect to the weighted
objectives. In addition to this, TOPSIS also compares the alternatives to two ideal solu-
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(a) Pareto Set, Wentao et al., 2018 (b) Pareto Set, Shang et al., 2023

Figure 2.2: Examples of Three-Dimensional Pareto Sets from the Literature

tions and assigns the final score by looking at the relative distance of each solution from
this ideal, as better detailed in 5.3.2. In a different way, PROMETHEE is based on com-
paring the solutions in couples, and sorting them according to a preference function.

Previous work have also opted for other selection methods, like Analytic Hierarchy Pro-
cess (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) and Cumu-
lative Prospect Theory. However, TOPSIS is by far the most applied in studies approach-
ing similar problems to the one researched in this work and the most robust according
to Alsayed et al., 2013. For this reason, it is implemented later in this work as well. This
is detailed in 5.3.

2.1.3. GENETIC ALGORITHM

The Genetic Algorithm is inspired by Charles Darwin’s evolutionary theory. Solution vec-
tors in the feasible search space are called chromosomes, and their components (the op-
timization variables) are called genes. The algorithm performs its search for the opti-
mal solution starting from an initial population of chromosomes, a set of randomly ini-
tialized vectors satisfying the bounds and constraints of the problem. According to the
performances of a single chromosome with respect to the objective functions, a fitness
value is assigned by the algorithm to every chromosome. The fittest elements are the
ones with a lower score (in a minimization problem) and which have more probability
to reproduce themselves. In fact, the GA is based on two main operators, called muta-
tion and crossover, performed at every step (generation) of the algorithm.

Crossover consists in the generation of an offspring vector from two parents that are part
of the initial population. By selecting the fittest chromosomes for the crossover opera-
tion, the algorithm makes sure that the best genes are passed to the offspring, so that
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after a number of iterations the offsprings get fitter and fitter. On the other hand, the
solution of the ith generation should not be completely dependent on the initial popu-
lation’s vectors, otherwise the algorithm would incur in the risk of converging towards
a local optimum of the problem without considering the whole search space. To avoid
such problem, the mutation operation is applied to the offsprings, consisting in random
variations applied at the gene level.

These two operations are determined by two parameters, called the Crossover Rate and
Mutation Rate. The crossover rate determines the likelihood that any given pair of solu-
tions will be selected for crossover, while the mutation rate determines the chance that
any solution will be selected for random mutation. At each step of the algorithm, new
feasible solution vectors are generated by means of the two operations, and a fitness
value is assigned to them on the basis of their performances with respect to the objec-
tives. Then, the initial population for the following step is updated with the fittest values
of the offspring population, and the algorithm continues until a stopping criterion is
met. The stopping criterion of the algorithm here employed is based on the spread of
the objective functions’ fitness, and explained below.

For the scope of this work, the MATLAB function gamultiobj, part of the Global Opti-
mization Toolbox, is employed. This function is based on a variant of the well known
Fast Non-dominated Sorting Genetic Algorithm (also called NSGA-II). An accurate de-
scription of its functioning is presented in the MathWorks documentation (The Math-
Works Inc., 2023), but also described here for completeness. The algorithm is presented
as a controlled elitist variant of the Genetic Algorithm. Elitist in the sense that it favours
the fittest elements for reproduction in the next iterations, and controlled because it also
favours solutions that help searching across the majority of the search space. In fact, af-
ter assigning a fitness value to the solutions of a certain population, these are ranked
on the basis of dominance. Solutions with rank 1 are not dominated by other solutions,
while solutions with rank 2 are dominated by rank 1 individuals, and so on.

To all the individuals in a certain population (remembering that each step of the algo-
rithm is associated with its own population) gamultiobj also assigns a Crowding distance
value, which is the sum of the distances in the objective functions space that a solution
has with respect to all other solutions of its same rank. Solutions with the same rank and
higher distance have more chances of being selected as parents for the following gener-
ation. In this way, the algorithm favours the search across the entire search space rather
than only focusing on areas which are "densely populated" by solutions.

Each iteration concludes with the calculation of the spread in the population. With σ

being the standard deviation of the crowding distance of all solutions, Q the number of
solutions, d their average distance the factor µ is computed. This is defined as "the sum
over the K objective function indices of the norm of the difference between the current
minimum-value Pareto point for that index and the minimum point for that index in
the previous iteration". Therefore, low values for µ correspond to small changes in the
objective functions’ values in the iterations, while low values for σ correspond to well
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distanced solutions in the objective functions space. The spread is then obtained as:

spr ead = µ+σ

µ+Qd
(2.1)

And it is a measure of the relative change of the objective functions’ values with respect to
the previous iteration, and the variety of the solutions considered. The stopping criterion
is met when the spread value is less than the average of recent iterations’ spreads, and
when the relative change in the value of the spread in the recent iterations is less then a
certain tolerance value. The number of these recent iterations considered is set as 100
by default in MATLAB, while the default tolerance value is 10−4 . For the purpose of
this application, these and other optimization parameters were modified, and their final
values are later detailed in Table 5.2. A flowchart of the algorithm is visualized in Figure
2.3 for clarity purposes.

Start

Inputs :
Size of the Population, n

Function Tolerance
Recent Iterations (For the Stopping Criterion)

Mutation Rate
Crossover Rate

i = 0

Initialize random population of n individuals, P0

Select parents, apply mutation and crossover

Compute the objective functions for the offspring population

Add the offspring to the current population

Calculate Rank and Crowding Distance
for each solution in the extended population

Update the population Pi+1 by retaining the n fittest solutions

Stopping Criterion met? End
No Yes

Figure 2.3: Flowchart of the Optimization Algorithm employed
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2.2. PRICING MECHANISMS

2.2.1. ELECTRICITY RETAIL TARIFFS
Extensive studies and reviews have recently focused on the evolution and analysis of
electricity pricing mechanisms and their future directions, especially because of the fast
development expected to happen in the energy infrastructure. Ryan et al., 2017 high-
lighted the necessity of adequate restructuring of electricity tariffs moving away from flat
volumetric mechanisms, in favour of others that can promote energy efficiency and grid
modifications. In their work, they analyze different retail tariffs and their effects on the
aspects of renewable generation, demand response, energy efficiency and system cost
recovery, also through the study of actual cases. According to the authors, most jurisdic-
tions currently charge a fixed volumetric tariff (sometimes increased by a fixed amount)
that does not take into account the amount of energy purchased and neither the time at
which it is consumed. Therefore, energy efficiency is not incentivized if the price is low,
because consumers could end up in purchasing more than it is socially acceptable. In
their review of alternative pricing schemes, Time-of-Use (TOU) Pricing, which implies a
distinction between peak and off-peak hours (or periods), is described as a blunter ver-
sion of Real Time Pricing (RTP), in which prices will change on hourly or shorter time-
frames according to the outcomes of electricity spot markets. This latter tariff’s main
drawback is that it may provide "too frequent and detailed price signals that consumers
may not be equipped to engage", and is considered here to be suboptimal even though
Nordic countries like Sweden have started implementing it.

Dutta and Mitra, 2017 focused on a review of different electricity pricing policies, with
a particular focus on dynamic pricing tariffs. In addition to the mentioned Time-of-Use
and Real-Time Pricing mechanisms, other tariffs are mentioned :

• Block Pricing, where consumers are charged at a flat rate per volume until a certain
threshold, then switch to a higher price per volume until the next threshold and so
on.

• Superpeak TOU and Critical Peak Pricing, variants of the Time-of-Use scheme with
a shorter window for peak hours that guarantees a stronger price signal

• Seasonal Tariffs, according to which electricity is charged at higher rates in high-
demand seasons and vice-versa

The paper also provides a comparison among the different policies introduced, and in
particular on how the RTP scheme performs very good in terms of economic efficiency
(because of the overall lowest bills payed by the consumers, and the ones that better re-
flect the actual value of the electricity purchased) and revenue stability for the utilities
providing such power. Because of its fluctuating nature and dependence on spot mar-
ket prices, however, this tariff is poorly performing with regards to bill stability, making
it more risky for vulnerable customers which are exposed to frequent fluctuations that
are difficult to predict. Besides stating that Real-Time-Pricing is the most complicated
dynamic pricing scheme to implement, according to Shan et al., 2016 it is also the most
direct and effective to stimulate mechanism to stimulate demand response. In particu-
lar, here the highlighted difficulty lies in the fast communication needed for the real-time
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energy prices.

Aware of the main drawback regarding the application of Dynamic Pricing, especially if
dictated by the spot market prices, Hammerstrom, 2022 proposes a method to harmo-
nize such prizes, thus decreasing their tendency towards extreme variations while still
preserving cost recovery for utilities and ensuring that clear price signals are launched
to favour demand-responsive behaviors.

2.2.2. GRID CONNECTION COSTS
Apart from the costs related to purchasing electricity, grid-connected energy communi-
ties have (and will have to, with their expected future development) face costs related to
their connection to the regional grid. For new projects, this is not an aspect of secondary
importance: according to the Dutch Transmission System Operator Tennet, 2023, con-
nection costs can range from 1.5 to 2.5 million € for the most frequently occurring con-
nections at low voltage levels. This aspect is of particular importance when the system
not only wants to import, but also wishes to inject energy in the grid they are connected
to.

In fact, in a recent report (ACER, 2023) the European Union Agency for the Cooperation
of Energy Regulators recommended that, when consumers can both inject and withdraw
energy from the grid, both uses should be considered when setting grid connection tar-
iffs, which is not always the case as per today. As an example, in the Belgian region of
Wallonia prosumers with a connected power up to 10 kVA are not charged injection fees
among their connection tariffs. Similar regulations could represent a future incentive in
investing in a smaller grid connection when planning distributed grid-connected energy
systems.

In a future power infrastructure with a high penetration of Distributed Energy Resources
(DER) and widespread bi-directional power flows with the grid network, it is more than
likely that pricing schemes for distribution services will evolve as well. Among several
options, Hledik and Lazar, 2016 have considered a demand charge based on the max-
imum instantaneous demand for electricity of the grid-connected users. In this way,
according to the report’s authors, fairness in cost recovery would be improved because
this scheme would better reflect the peak-demand driven nature of distribution capacity
investment. On the other hand, it is also mentioned that within the costs of distributed
energy resources like energy communities : "to the extent that a customer participating
in a demand response program can reduce its need for distribution capacity through a re-
duction in demand, the customer would simply avoid paying for a portion of the demand-
related distribution capacity cost". Once again, the perspective of reducing the need for
grid capacity could represent an economic benefit for consumers.
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2.3. KNOWLEDGE GAP
Despite the extensive literature in support about the problem of energy systems and
communities sizing, a knowledge gap was identified and it is within the scope of this
thesis to provide insights about it. Over the studied references, the most relevant to the
research questions approached in this work were sorted and analyzed, in particular the
ones focusing on small and medium scale systems sizing by means of optimization al-
gorithms. A table summarizing the highlights of these studies can be found in Appendix
A.

This literature study has uncovered how the architecture of the systems (that is, the
components of which they are composed) considered is extremely varied and location
dependent. The 24/7 Energy Lab project under development in The Green Village is
based on the usage of PV panels as a main source and the co-existence of batteries and
an hydrogen system for short and long-term storage. The usage of different genera-
tion sources like wind turbines or diesel generators and other storage options obviously
affects the studies’ outcome. In particular, the mutual interactions of the two storage
mediums here considered is often discarded in literature for residential systems appli-
cations, with most studies only considering one of the two options at the time.

An even more relevant influence on the process and the outcome of the sizing is given
by the presence of a connection to the grid. As mentioned, a significant amount of stud-
ies focused on remote off-grid applications, thus not taking into account the possibility
of interacting with the broader electricity network. This aspect has not only technical
but also economical relevant consequences, which are not trivial to investigate because
of the mentioned uncertainties about the future evolution of electricity and distribution
network pricing schemes.

To the best of the knowledge acquired from existing literature, no system design have
been carried out by combining these complexities, in particular taking into account at
the same time :

• A system architecture composed of PV panels, batteries, and a hydrogen storage-
backup system

• A Grid-connected system, interacting with the external network with bi-directional
energy flows

• Varying conditions for the electricity prices, comparing a flat pricing with Real
Time Pricing Tariffs (based on real spot market prices)

Lastly, it is worth to emphasize how this kind of work is extremely project-dependent,
and thus relying on case studies referring to different geographical locations, consump-
tion habits and needs in general can only be helpful to a certain extent. It is always
necessary to tailor the study to one specific application in order to have reliable results.
This work will specifically focus on the sizing of The Green Village Energy Community,
without discarding more generical conclusions that may arise.





3
SYSTEM SIMULATION

The study carried out in this work started with a characterization of the system, in order
to replicate its behavior and performances in a simulated environment. The scope of
this chapter is to describe the modeling process of the system’s components, and how
these interact with each other to ensure coherent energy flows.

3.1. COMPONENTS OF THE SYSTEM
This section aims to describe the functioning of the system’s different components. The
system’s architecture, already introduced in Figure 1.2, is reproposed below for clarity
purposes. Technical characteristics like their input and output capacities and limitations
will be presented together with operational and economic factors, providing a compre-
hensive overview of the elements of the system.

Figure 3.1: Graphic representation of the System Architecture
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Table 3.1: Technical Characteristics of the Selected PV Panels

Parameter Value Unit
Rated Power 365 Wp

Open Circuit Voltage 49 V
Maximum Power Point Voltage 40 V

Short Circuit Current 9.6 A
Maximum Power Point Current 9.2 A

3.1.1. PV PANELS

The Photovoltaic panels represent the main source of electricity in the Energy Commu-
nity under study. In this work, the panels selected are the Solo Lightweight 365 from the
manufacturer ©Solarge, of which the major characteristics are reported in Table 3.1.
According to the technical data sheet provided by the manufacturer, these panels have a
linear performance guarantee of 80 percent after 20 years of operation. In this work, 25
years of maximum operation have been considered, which was also selected as the total
project lifetime. The cost for each of these panels is 260e, and this cost is assumed to
scale linearly with the total number of panels purchased.

The hourly electrical energy production from the PV panels was obtained with a model
calculating the AC output based on meteorological data. In particular, the total irradia-
tion on different tilted planes was calculated for the possible orientations in The Green
Village, in order to find the optimal tilt for the modules, for each orientation.

The total irradiance on a tilted plane can be obtained with the sum of three different
terms. More precisely, it can be expressed as the sum of the direct irradiance, the diffused
irradiance and the albedo irradiance (Smets et al., 2016 ):

G =Gdi r +Gdi f f +Gal b (3.1)

The direct irradiance is dependent on the Direct Normal Irradiance (DNI), which varies
with the selected location and the position of the Sun. In fact, the Earth’s movements
throughout the year influence the component of the solar irradiance that directly hit the
plane of the module. The Angle of Incidence, AOI, is defined as the angle between the
normal surface to the tilted module and the incident direction of the sunlight, and it is
calculated as :

AOI = arccos(cos aM cos aS cos(AM − AS )+ sin aM sin aS ) (3.2)

Where aM and AM are the altitude and the azimuth of the module, respectively indicat-
ing the module’s tilt (aM = 90−θM , with θM being the tilt of the module) and orientation.
The factors aS and AS are the altitude and azimuth of the Sun at a given time. Because of
the time-variance of these last two values, it was first necessary to calculate the position
of the Sun at every hour of the day for the selected location through an external function.
Thus, for every hour, the direct irradiance on the module was obtained as per 3.3.
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Gdi r = DN I ·cos AOI (3.3)

Secondly, the modules receive a diffuse component of irradiance, due to the scattering
of solar light from the atmosphere. This component, Gdi f f , was computed with a func-
tion retrieved from the Sandia National Laboratories’ PVLIB Matlab Toolbox (Stein et al.,
2016), exploiting the model described by Reindl et al., 1990, and it’s mainly dependent
on the positions of the Sun and the modules, together with the DNI, DHI (Direct Hori-
zontal Irradiance) and GHI (Global Horizontal Irradiance) components of the irradiance
on the specific location.

The last term forming the incident irradiance is Gal b , indicating the light that is reflected
from the ground. It is dependent from the reflectance of the terrain (the albedo, α) and
the Sky View Factor, defined in 3.4:

SV F = 1+cosθM

2
(3.4)

Gal b =G H I ·α · (1−SV F ) (3.5)

Once the general irradiance components (mainly DHI,DNI and GHI) were obtained through
the ©Meteonorm software for the location of Delft, by knowing the hourly position of the
Sun and the orientation of the panels it was possible to obtain the total irradiance on the
tilted plane as per 3.1. In particular, the hourly irradiance was obtained with reference
to data from the year 2020, for the three main orientations possible in The Green Village.
These refer to the orientations of the buildings’ flat roofs, the building’s tilted roofs (2
different orientations) and the orientation of panels mounted on the ground, which are
aligned with the flat roofs.

The panels are assumed to be installed with a tilt of 15°, and with a row-to-row spacing
of 0.7 meters. Such configuration is not the optimal in terms of energy gain, for which a
higher tilt, e.g. 30° for the flat roofs mounted in a southerly direction, would have been
more effective. However, the choice of the configuration lies on considerations about
typical installation tilts in The Netherlands (de Vries et al., 2020), where the strong winds
in winter make low tilts more effective for the stability of the modules. Moreover, this
configuration is the same used in a report by Zhou et al., 2022, where the maximum po-
tential PV panels penetration in The Green Village was assessed. Such study was also
used in this work to set the maximum number of panels in every area as an upper bound
for the optimization.

The irradiance incident on the plane of the module is finally used to obtain the DC out-
put of the modules. Taking into account their rated power under Standard Test Condi-
tions irradiance ( 1000 W /m2), this can be estimated with :

PPV ,DC = PSTC · G

GSTC
(3.6)
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Table 3.2: Selected Batteries Technical Characteristics

Parameter Value Unit
Usable Energy 15.36 kWh

Max. Cont. Output Current 250 A
Peak Output Current 375 A

Nominal Voltage 51.2 V
Operating Voltage 40-57.6 V

Round Trip Efficiency 95 %
SoC Limits 15-90 %

Depth of Discharge 75 %
Cost 6000 €

Which is valid for one single module placed in that particular configuration. For each
orientation, such output is then multiplied by the number of modules to be placed with
a certain orientation as per the optimization’s results.

3.1.2. BATTERIES
The batteries selected for this work are the ones currently in use, on a smaller scale, at
The Green Village. These are the ©BYD Battery Box Premium, based on Lithium Iron
Phosphate (LFP) technology and coupled with external ©Victron Multiplus II Inverters.
As per the manufacturer’s technical Data sheet, these batteries have a 10 year warranty.
Again, for conservative reasons a life span of 8 years was considered for this application.

The maximum depth of discharge is not indicated, but some limitations on the max-
imum and minimum SoC still apply. In fact, in accordance to the state-of-the-art for
similar applications, the maximum Soc was selected to be 90 percent, while the mini-
mum was set to be 15 percent, achieving a maximum depth of discharge of 75 percent.
While the minimum SoC is fixed, the cycling of the battery depends on the threshold
State of Charge selected as an optimization variable, determining the switching from the
discharge of the batteries and the activation of the fuel cells in case of deficit.

The input and output power capacity of the battery is also dependent on the rate, hence
the velocity, at which these are charged or discharged. According to the manufacturer’s
indications, the total usable energy of 15.36 kWh was exploitable with a depth of dis-
charge of 100 percent, at a temperature of 25° and at a C-rate of 0.2C (with this C-rate,
the battery would be completely discharged in in a time frame of 0.2−1 = 5 hours). By
assuming that charging and discharging of the batteries would occur at the same rate
and that the batteries would operate at a fixed voltage of 48V, the input and output limit
power is imposed as 3.7 :

Power =V ol t ag e ·Cur r ent (3.7)

With a maximum energy of 11.25 kWh (75 percent depth of discharge), the battery com-
pletes a full discharge cycle in 5 hours with a current of 46.875 A. With this current, the
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charge/discharge power of a battery is taken as 2.25 kW, then multiplied by the total
number of batteries to obtain the total limit power.

The batteries are the first component activated in case of surplus production from the PV
panels, exceeding the load demand. In these cases, the batteries are charged. The rate
at which this occurs depends on both the state of the battery and the amount of surplus
produced. If the batteries can accommodate all the surplus, these will be charged with
the corresponding power, provided this is lower than the limit power. The energy stored
in the batteries is then updated:

Ebat (t ) = Ebat (t −1)+mi n
(
PPV ,DC ·ηi nv −L(t );Pbat ,max

) ·ηbat ·d t (3.8)

If the surplus is so big that it would exceed the batteries’ charging limits, then the maxi-
mum possible energy will be used for the charge :

Ebat (t ) = Ebat (t −1)+mi n
(
Ebat ,max −Ebat (t −1);Pbat ,max ·d t

) ·ηbat (3.9)

In the discharge mode, the behavior of the batteries is opposite to the one just described.
When they are prioritized over the fuel cells, they are the first component providing the
missing power from the PV. If the energy stored is enough to provide all the required load,
they are discharged at the necessary rate:

Ebat (t ) = Ebat (t −1)−mi n
(
L(t )−PPV ,DC ·ηi nv ;Pbat ,max

) ·1/ηbat ·d t (3.10)

Otherwise, they are discharged until their lowest limit, exploiting all the energy available
at the moment :

Ebat (t ) = Ebat (t −1)−mi n
(
Ebat (t −1)−Ebat ,mi n ;Pbat ,max ·d t

) ·1/ηbat (3.11)

The same holds for the cases in which discharging the batteries is evaluated as secondary
to the activation of the fuel cells to supply additional energy. The only difference, in this
case, is that the second term of equation 3.10 would take into account the energy already
provided by the hydrogen backup system.

Whatever the input or output in the batteries, the State of Charge is always updated as
per 3.12

SoC (t ) = Ebat (t )

Ebat ,max
(3.12)

3.1.3. ELECTROLYZERS
The electrolyzer selected for this application is from ©Enapter, model EL 4.0, based
on an Anion Exchange Membrane technology and working with AC current. The elec-
trolyzer is activated in cases of overproduction from the PV panels, either when the bat-
teries are fully charged, or when their charging limit power has been reached. Its techni-
cal features are summarized in Table 3.3.



26 3. SYSTEM SIMULATION

Table 3.3: Techincal Specifications of the Electrolyzer

Parameter Value Unit
Hydrogen Production Rate Up to 1.0785 kg/ 24h

Output Pressure Up to 35 bar
Hydrogen Output Purity 99.9 at 35 bar %

Operative power consumption 2.4 kW
Peak power consumption 3 kW

Heat Dissipation 0.6 kW
Water Consumption 420 mL/h

Cost 9000 €

According to the manufacturer, the expected lifetime of this electrolyzer is more than
35000 hours of operation, corresponding to around 4 years of continuous operation. In
this work, the lifetime for this component was considered to be an indicative 8 years,
with this choice being probably conservative as the electrolyzers will almost surely be
operative for less than half of the time during a whole year. Moreover, in order to ensure
a prolonged life, in the user manual it is indicated to limit the intermittent operation of
the electrolyzer, and operate it in a steady way as much as possible. In particular, no
more than 5 on/off cycles per day and 1 on/off cycle per hour shall be performed, and
these conditions are taken into account in the model.

Furthermore, the electrolyzer is subject to ramping limitations. The ramp-up time de-
pends on the electrolyte temperature, and it is lower with low temperatures. Enapter
indicates that " starting the device with an electrolyte temperature of e.g. 25 °C it will
take about 30 min to be fully operational and perform at its maximum efficiency at 55
°C". Because the time-resolution of the model in this work is hourly, it was considered
that in the first hour of operation of the electrolyzer would produce hydrogen at a max-
imum reduced rate of 80 percent of the nominal capacity. The electrolyzer also has a
defined operating range, and its minimum input power is equal to 60 percent the rated
power.

If the excess power at timestep t is higher than the minimum power inlet in the elec-
trolyzer, this is started according to 3.13

EEL(t ) = mi n
(
PPV ,DC (t ) ·ηi nv ·d t −L(t )−Echar (t );Pel ec,max ·d t

)
(3.13)

Where Echar (t ) is the energy employed to charge the batteries at time t, as described in
the previous section.

3.1.4. FUEL CELLS
Fuel cells are employed as a backup generator when the power provided by the PV pan-
els is not sufficient, and the batteries have low energy at their disposal or have already
reached their discharging limits. The Green Village is employing Polymer Electrolyte
Membrane (PEM) fuel cells from ©Nedstack, model FCS 7-XXL, which were also selected
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Figure 3.2: Beginning-of-life stack performance at reference conditions, ©Nedstack Fuel Cell Technology

in this research.

Through the Technical specifications provided by the manufacturer, it was not possible
to retrieve info about the ramping constraints of the fuel cells. It was therefore assumed
that within the first hour of operation, the fuel cells would only be able to provide half
of their nominal output. After the start up phase, PEM fuel cells can provide a flexible
power output ( Nikiforow et al., 2018 have achieved a ramp-up from 2 to 3.7 kW in less
than 1 second ), therefore no additional ramping constraints were considered in this
work. Since they generate electricity in direct current, the fuel cells are coupled with a
©Victron Multiplus II inverter.

Like the electrolyzer, the lifetime of the fuel cells is assumed to be 8 years. The operating
conditions of the stacks can vary, following the Voltage-Current curve in Figure 3.2. Other
technical specifics are shown in Table 3.4.

Table 3.4: Fuel Cells Technical Specifications

Parameter Value Unit
Rated Power 6.8 kW

Voltage Range 29-47 V
Current Range 0-230 A

Number of Cells 48 -
Maximum Hydrogen Consumption 77 Nl/min
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These components are activated to supply additional energy to the load in case of deficit.
Their output is not only limited by the fuel cells’ own characteristics, but also by the
availability of the hydrogen used as a fuel. Assuming that the fuel cells always operate at
the maximum hydrogen consumption rate indicated by the manufacturer, the fuel cell
would consume approximately 0.05 kg of hydrogen per kWh of electricity produced. This
value has been introduced in the model as the fuel cell specific consumption.

When the fuel cells are used as the last backup source, after depleting the batteries, they
provide as much energy as possible to fulfill the load requirements :

EFC (t ) = mi n
(
L(t )−PPV ,DC (t ) ·ηi nv ·d t −Edi sch(t );PFC ,max ·d t

) ·1/ηi nv (3.14)

Where, in 3.14, Edi sch is the amount of energy provided by the discharge of the batteries.
The operation of the fuel cells, as mentioned, may be limited by the availability of the
fuel. In these cases, the fuel cells exploit all the available hydrogen, even if this cannot
provide for all the remaining load :

EFC (t ) = mi n
(
(LOH(t −1)−LOHmi n) ·1/SCFC ;PFC ,max ·d t

) ·1/ηi nv (3.15)

Where LOH is the level of hydrogen present in the tanks, expressed in kg, and SCFC is
the hydrogen specific consumption of the fuel cells expressed in kg/kWh.

3.1.5. OTHER COMPONENTS
Apart from the main components just described, several additional pieces of equipment
are necessary for the system to be fully operational.

The PV panels produce electrical energy in the form of direct current, which has to be
switched to alternating lurrent through the use of an Inverter. The modeling of the in-
verter’s characteristics and working mechanism is out of the scope of this work, but for
the scope of this application it was selected to employ the ©Solaredge SE5K Inverter,
already available at The Green Village. According to the manufacturer’s indication, the
maximum power in Standard Test Conditions that this Inverter can support is 6.75 kW.
Therefore, by coupling it with the selected panels, it was assumed that a maximum of 18
panels can be coupled to each inverter. In order to have a precise estimate of the costs of
the inverter (considering the scale of the system) a study from TU Delft’s PVMD Group
for the INNOZOWA floating solar park was considered. The cost for the inverters can be
estimated with a polynomial fit of the kind :

f (x) = p1 · x +p2 (3.16)

Where x is the target kWp installation, and f (x) represents the inverse cost in W/€. For
the ©Solaredge inverters coupled with a power optimizer, p1 = 0.0753 and p2 = 1.939.

The hydrogen storage also requires ancillary equipment. Upon the hydrogen is pro-
duced with the electrolyzer, it needs to pass through a compression step to be stored
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in the tanks at a pressure of around 400 bars. The compressor selected for this applica-
tion is the Skid model from ©HyEt Hydrogen, a Dutch company that is partner of The
Green Village. Some technical features about the compressor are summarized in Table
3.5.

Table 3.5: Selected Compressor Technical Characteristics

Parameter Value Unit
Throughput 2 kg/day

Input pressure 3-200 barg
Output pressure 0-410 barg

Power consumption 0.7 kW
Price 300 €

Compressed hydrogen is then stored in appropriate tanks. The total capacity for the hy-
drogen storage, expressed in kg, is also one important factor influencing the behavior of
the whole system, and its maximum degree of self-sufficiency from the grid. For this rea-
son, the total storage capacity is one of the optimization variables of the problem. The
estimated cost for the hydrogen storage tanks is 200 €/kg (N. Li et al., 2023).

Also the fuel cells and the batteries need an inverter to be fully operational within the
system. The ©Victron Multiplus II was selected to be coupled with such components.

3.2. ENERGY MANAGEMENT
After detailing the behavior of each component of the system, it is necessary to integrate
them together in order to distribute the energy flows at every moment. The system de-
tailed in this work is governed by an energy management strategy, mainly dependent on
the instantaneous mismatch between load requirements and energy production from
the PV panels. The energy management strategy is integrated in the Optimization for-
mulation as described in 5.2.

The function describing the energy management is based on a hourly timesteps resolu-
tion. For every timestep t, it calculates the hourly difference between the PV production
and the load, Based on the Irradiance data and the number of PV panels. If the produc-
tion from the PV panels exceeds the load, the system is in Surplus status. Else, the status
is a Deficit, as shown in Figure 3.3.

In case of surplus from the PV, the battery is charged first. Then, the electrolyzer is acti-
vated if some spare energy is still available, and finally energy is exported to the grid in
case of excessive overproduction. Throughout the surplus mode, the capacity limits of
the energy storage must be always respected. For example, if one of the storage systems
cannot host all the energy left (i.e. the batteries or the tanks are already almost full), they
get first completely filled and then the excess energy is utilized for the following opera-
tion in the line. Figure 3.4 schematically shows the functioning of the Surplus mode.
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Load ,EPV

Edi f f = EPV −L

Edi f f > 0 ?Surplus Deficit
Yes No

Figure 3.3: First Evaluation of the Energy Management Strategy function

Before charging the batteries, the overall SoC is checked, as it is similarly done with the
level of hydrogen before powering the electrolyzers. It is also worth to notice that the
energy dispatch (both in Surplus and in Deficit mode) is always subject to the compo-
nents’ input and output power limitations. As it can be seen from the flowchart in Figure
3.4, the batteries are either charged to store the whole surplus (if the remaining capacity
allows to do so) or at maximum charging power. The same holds for the electrolyzers,
which are either activated at a power level capable of converting the whole remaining
surplus to hydrogen or at their nominal power rate. Power limitations also hold for the
energy that is exchanged with the grid. In Surplus mode, when the excess energy over-
takes the maximum exportable to the outer grid, part of the produced energy is dumped.

In case of deficit production form the PV, the system has two alternative behaviors. In
fact, the missing power can be either provided by the fuel cells or by the batteries. This
choice is determined by the instantaneous level of the batteries’ state of charge and by
the threshold level of the selected solution. The battery is prioritized when its SoC is high
enough (that is, when it is above the threshold): in these cases, the batteries are used as
the first backup source, and discharged to supply to load. When the remaining capacity
in the battery is not sufficient, or when the discharge power limit is reached without fully
providing the load, the fuel cells are switched on and employed to supply the remaining
energy. Should the combined inputs of all these sources be insufficient, the remaining
energy would be withdrawn from the grid.

Conversely, if the SoC of the batteries is below the threshold level during a Deficit situa-
tion, the "Fuel Cells First" strategy is adopted (Figure 3.5). The primary source of backup
for these cases would be the fuel cells, exploiting the hydrogen produced for long-term
storage purposes and to prevent the batteries to be completely depleted. In fact, the
batteries would only be employed if the fuel Cells are not able to fulfill the remaining
demand, because of either power or capacity limitations. Also in this case, the system
makes use of the grid as the last option to supply the load.
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When the deficit is so large that the selected equipment is not able to fulfill it entirely,
the other is activated. Power will be imported from the grid if the storage systems are de-
pleted. Also in the deficit cases, the operation is subject to limitations from the compo-
nents that make the priorities and switching among the components more complex. For
example, the fuel cells can be activated even if the SoC of the batteries has not reached its
lower limit, but they cannot provide enough energy because of output power limitations.

Like in the previous case, also in Deficit mode the connection to the grid presents some
capacity constraints. The loss of Power Supply is in fact a direct consequence of this lim-
itation, because after deploying the system’s storage the load cannot be met when the
energy imported from the grid reaches the maximum imposed value and not all the de-
mand is satisfied. In these cases, the difference between load and the energy inputs in
the system is accounted for as Unmet Load (UL), as can be seen also in the schematic of
Figure 3.6.

The behavior of the system in Deficit mode is influenced by the results of the optimiza-
tion itself. The higher the threshold SoC selected by the algorithm for a certain solution,
the more frequently the "Fuel Cells First" strategy will be employed, resulting in the need
for a larger number of fuel cells and electrolyzers in that particular solution.
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Figure 3.4: Energy Management in Surplus Mode
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Figure 3.5: Priority Choice in case of Deficit Energy
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Figure 3.6: Energy Dispatch in the "Battery First" Mode
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Figure 3.7: Energy Dispatch in the "Fuel Cells First" Mode





4
INPUT DATA

The scope of this chapter is to describe the input parameters of the model describing
the Community’s behavior and its optimization. The system’s simulations are based on
fixed input data, serving as a basis to obtain the results which are dependent on the final
values of the optimization variables. Such input data are the irradiance data, thanks to
which the energy produced from the PV panels is calculated, the load data representing
the Community’s electricity demand to be satisfied by the optimized system, and the
Price data for the electricity exchanges with the outer grid, impacting on the economics
of the community.

4.1. SOLAR IRRADIANCE
In section 3 the modeling of the PV energy production was described, and the irradiance
calculation on a tilted plane was shown. The final irradiance per square meter on the
tilted plane considered was obtained for a time period of one year as per equation 3.1.
Thanks to the ©Meteonorm software, the data for the DHI,DNI and GHI were retrieved
for the full year of 2019, and used to obtain total irradiance.

As previously mentioned, more than one orientation was taken into account. In a clock-
wise reference systems where North is at 0°, the flat roofs in The Green Village have an
orientation of approximately 153°(southerly-oriented), while the tilted roofs have orien-
tation of 75° (easterly-oriented) and 255°(westerly-oriented). Furthermore, the possibil-
ity to place some panels on the ground in some so-called ’free-spaces’ was considered,
and such panels are considered to have an orientation of 180°, exactly towards South.

Since no preference has been assigned for the placement of PV panels in an area over
another, the algorithm will most likely select the orientation with the highest potential
first, and fill them to their limit, before selecting to place in other areas. Figure ?? shows
the annual irradiance for reference year 2019 on a 15° tilted plane in the four investigated
orientations. Despite the similar peak values, it can be noted how the two orientations of

35
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Figure 4.1: Annual irradiance on a 15° tilted plane in the different orientations

the flat roofs (153°) and the ground-mounted panels (180°) have a higher performance,
particularly in the winter months. It is therefore no surprise that some solutions will only
employ panels with such orientation, discarding the last two.

4.2. LOAD DEMAND
Together with the irradiance data used to obtain the solar production, the very first in-
put to the model is the electrical energy demand of TGV’s Energy Community. In total,
the load from 8 houses was considered, each occupied by a maximum of 2 households.
Such data needed some pre-processing, mostly to uniform their resolution and fill some
minor gaps (up to 15 days).

In order to fill the gaps, a method intended to preserve both daily and seasonal vari-
ability was employed. Whenever a certain amount of data was missing, two or more
reference sets from the available data were selected, from the same seasonal period of
the missing ones (e.g. if a week in February was missing, the reference periods would be
a week in January and another week in February). From the reference sets, the average
consumption at each hour was extracted, and a normalized daily profile was obtained.
The normalized profile was then multiplied by a vector of random factors, so that the
scale of these consumption would be similar to that of the available data around those,
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but different each day.

Out of the 8 houses, 3 of them resulted in having non-consistent data because of large
gaps and faults in measurements. Since all the houses have similar characteristics (in
particular for what concerns the number of people occupying them) it was decided to
rely on the 5 houses for which the data was consistent, and add the missing parts of the
load by scaling up the 5-houses aggregate load by a factor 8/5.

Another issue to be solved consisted in the unification of such data, with respect to their
resolution and the total period considered. The single houses’ consumption were col-
lected in different periods over time, and with different metering appliances. While some
data was available with a per-minute resolution, other houses only had a 15-minutes or
hourly resolution. The final choice was to unify the demand dataset with a 1-hour reso-
lution, also used for the simulations nested in the optimization algorithm. Of course, a
shorter timestep would have allowed for higher precision, but on the other hand it would
have brought to inevitable uncertainties and inaccuracies for the fitting of longer reso-
lution data. Lastly, the most consistent period in terms of data availability was identified
in 1 year, from February 19, 2021 until February 19, 2022.

The reference houses are completely electrified, and therefore the heat demand was not
taken into account in this study. For privacy reasons the profile demands of the single
houses cannot be shown separately. However, the cumulative load is depicted in Figure
??. Seasonal patterns can be easily identified, by focusing on the differences of both
the peaks and medium consumption in the cold and warmer months. In particular, the
start of the month of March presents the very high peaks, with the consumption starting
to decrease in spring and reaching its lowest levels during the summer. Towards the
end of the month of October, consumption levels start to rise again (due to the usage of
electric heating) and later stabilize until the end of February, with the only exception of
the holiday period straddling the beginning of January.
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Figure 4.2: Total Electric Load
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4.3. ELECTRICITY PRICES
For the calculation of the cost minimization objective, the model makes use of an input
vector of hourly electricity prices, which changes throughout the scenarios analyzed.
The first reference analyzed for such prices is the ENTSO-E Transparency Platform, 2023,
from where it was possible to access The Netherlands’ spot market’s day-ahead prices for
the years 2021 and 2022, shown in Figure 4.3. Here, negative prices were neglected and
set to zero, since this occurrence is unlikely when the electricity is actually sold to end-
consumers.

Jan Mar May Jul Sep Nov Jan

2021   

Dutch Spot Market Electricity Prices per kWh, 2021

Jan Mar May Jul Sep Nov Jan

2022   

Dutch Spot Market Electricity Prices per Kwh, 2022

Figure 4.3: Day Ahead electricity prices in 2021 and 2022

Such data has the advantage of having a high resolution of 1 hour for every year, reflect-
ing the evolution of transaction in the spot market. The behavior of the spot market
prices is significant in showing the gradual increase in the mean price in 2021, followed
by the extreme oscillations occurred in 2022 due to the energy crisis after Russia’s in-
vasion of Ukraine. These prices, however, are not entirely representative of the prices
payed by the end consumers. In fact, taxes and levies are not considered and neither are
additional factors, like distribution and network costs.

To take into account these factors, another reference was considered. The CBS database
(Centraal Bureau voor de Statistiek, 2023) provides, among the other data, a breakdown
of quarterly an annually average electricity prices from the year 2007, divided into trans-
action, delivery and network prices and including taxes. Unlike the generic spot market
data, the prices retrieved from CBS are specific for the households class consuming less
than 5 MWh per year. Table 4.1 provides an overview of the average electricity price
breakdown over the last 10 years :

For the Base Case simulations, in which the tariffs are considered to be flat, the price
considered was the average household electricity price over the last 10 years, equating
to 0.33 €/kWh. The variable pricing case considered hourly-varying prices. For this case,
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Table 4.1: Average Household Electricity Price Breakdown for the years 2012-2022. Prices in €/kWh, source
Centraal Bureau voor de Statistiek, 2023

Year Transaction Delivery Network Total Price
2012 0.186 0.118 0.068 0.372
2013 0.19 0.118 0.072 0.38
2014 0.182 0.112 0.07 0.364
2015 0.192 0.126 0.066 0.384
2016 0.161 0.094 0.066 0.321
2017 0.156 0.091 0.065 0.312
2018 0.171 0.104 0.067 0.342
2019 0.205 0.136 0.069 0.41
2020 0.139 0.068 0.072 0.279
2021 0.134 0.057 0.076 0.267
2022 0.105 0.029 0.076 0.21

the input prices used refers to spot market prices in the year 2022. Despite not com-
pletely reflecting the price payed by the end consumers, this represents the best refer-
ence for a Real Time Pricing Scenario, the purpose of which is precisely to provide price
signals on the basis of the spot market behavior.





5
OPTIMIZATION

To solve a complicated problem like the one under study in this project, the use of com-
putational tools like Artificial Intelligence-based algorithm appears of particular rele-
vance and usefulness. The literature review has highlighted how meta-heuristic evolu-
tionary algorithms have been widely used to solve sizing and planning problems related
to the energy sector, and for this reason one of those was used in this project as well. In
particular, in this study a variant of the Multi-Objective Genetic Algorithm was imple-
mented through a MATLAB code. This section aims to provide a description of the op-
timization process, from the formulation of objectives, variables and constraints to the
actual implementation and the choice of the optimal solutions within the final Pareto
Set.

5.1. OPTIMIZATION PARAMETERS

5.1.1. OBJECTIVE FUNCTIONS
The scope of this section is to describe the formulation of the three objective functions
of the optimization problem. Because of their conflicting nature, optimal performances
with respect to one of the three comes at the expenses of at least one of the remain-
ing. The selection of these three objectives is based both on studies on similar systems
through the literature review, and on the specific needs of the Energy Community under
study for this project. After a consultation with the advisor from The Green Village, the
following objectives were selected :

1. Annualized Total Cost Minimization :

Economic benefit is one of the most important drivers for the development of en-
ergy communities. Ideally, the whole cost sustained by the participants should
be lower than the one they would incur in if they were to satisfy all the demand
from the main grid. Because of other advantages related to the Energy Commu-
nity, slightly higher costs might be acceptable, within certain limits. The Annual-
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ized Total Cost to minimized is thus defined, of which the single components will
be analyzed :

mi n ATC =Ccap +Cr ep +CO&M +Cg r i dI MP −Cg r i dE X P

The capital cost is the investment cost payed to purchase the necessary system’s
components and make the system operational. It is given by the sum of the cost for
a single component, Ck , times the number of components needed, Nk . Since the
initial investment is made to ensure a project over a certain lifetime, it is necessary
to take into account the time-value of money in this analysis and calculate the an-
nualized investment cost, i.e. the annual cost that, for the duration of the project’s
lifetime, has to be payed in order to recover the initial investment. Hence, the An-
nualized Capital Cost also depend on the Capital Recovery Factor, C RF .

Ccap =
K∑

k=1
Ck ·Nk ·C RF (5.1)

The replacement costs take into account the lifetime of the single components
with respect to the total project’s lifetime. Since the PV panels are the components
with the longer lifetime (25 years), the total lifetime of the project is considered to
be equal as the one of the panels, and hence they do not need any replacement
during the project’s lifespan. Equation 5.2 takes into account the necessity to sub-
stitute the batteries, electrolyzers and fuel cells at the end of their lifetime, which
is 12,12 and 8 years respectively. In the equation, r,k indicates the number of re-
placements of component k during the project’s lifetime, and lk is the lifetime of
component k (Baghaee et al., 2017).

Cr ep =
(

4∑
k=1

Ck ·
R∑

r,k

1

(1+ i )r,k·lk

)
C RF (5.2)

As mentioned, both previous equations are used to obtain annualized costs taking
into account the total project’s lifetime and the time-influence on money. To do
so, they both contain the Capital Recovery Factor :

C RF = i · (1+ i )l

(i +1)l −1
(5.3)

Where l is the total project lifetime and i is the annual real interest rate, depending
on the inflation rate and the nominal interest rate. In this project, the real interest
rate is 5 percent, which is an indicative value on the basis of the reviewed literature
on similar projects.

Under the assumption that Operation & Maintenance costs and the prices for elec-
tricity increase over time with the same rate as the general prices, there is no need
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to take into account the time-value of such costs, and therefore no need to con-
sider the CRF for these costs components. The annual O&M costs are assumed to
be equal to 20 percent of the investment costs, regardless the component. There-
fore, they can be formulated as follows:

CO&M =
K∑

k=1
0.2 ·Ck ·Nk (5.4)

Lastly, the total cost of importing power from the grid and the total profit gained
by selling power to the main grid are considered in the last two terms of equation
1:

Cg r i di mp =
T∑

t=1
Pi mp,t ·Ei mp,t (5.5)

Cg r i dexp =
T∑

t=1
Pexp,t ·Eexp,t (5.6)

Where Pi mp,t and Pexp,t are the prices for importing and exporting power during
the timestep t , expressed in e/kWh and Ei mp,t ,Eexp,t are the amounts of energy
imported and exported during the timestep t , in kWh.

2. Grid Dependence Minimization

The Energy Community is equipped with its own power production and storage
sources, and one of its major goals is to be as much independent as possible from
the main grid. By aiming at maximum self-sufficiency, the system would not only
make the most out of its self-produced energy, but can also relieve the grid under
stressful conditions. The Community’s main energy source is composed by the
solar panels, of which the excess energy is then stored either through the batteries
or in form of hydrogen, through the electrolyzer. Not all the energy produced by
the PV panels, however, is effectively exploited as an input to the system : when
the overproduction also exceeds the storage and hydrogen production capacity, it
is exported to the outer grid. On the other hand, when the system’s own produced
power is not enough to supply the load, the main grid acts as a backup source.
Hence in this context, maximizing the self-sufficiency means limiting the share
of input power supplied to the system by the grid with respect to the total input
energy in the system. The second objective is thus formalized as the minimization
of such ratio, referred to as grid dependence, GD :

mi nGD =
T∑

t=1

Ei mp,t

Ei mp,t +EPV ,t −Eexp,t

Where EPV ,t is the AC energy produced by the photovoltaic panels during the timestep
t , thus after the conversion and losses in the inverter.
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3. Loss of Power Supply Probability Minimization

Reliability is a capital aspect to be considered in the context of energy communi-
ties. The Loss of Power Supply Probability (LPSP) represents an indicator on the
energy security of the system throughout a certain period of time. The system’s
connection to the regional grid is not unlimited, but presents some capacity con-
straints. Therefore it may occur, in times with high energy demand and scarcity
of supply from the system’s own sources, that the power imported from the grid is
not enough to satisfy the load, resulting in unmet load from the system. LPSP rep-
resents the likelihood of this situation to occur over the chosen period (one year in
this case). By indicating with U Lt the unmet load during the timestep t and with
Lt the total load demand during the time t, the third objective can be formulated:

mi nLPSP =
T∑

t=1

U Lt

Lt

Because of the top priority of ensuring a reliable system, the algorithm is con-
strained through a penalty function in order to consider solutions that already
have a low LPSP. To do so, when a solution results in a Loss of Power Supply Proba-
bility higher than 5 percent, a penalty is assigned to the objective functions result-
ing in extremely high values for the two other objectives. Since the algorithm aims
to minimize the objectives, those solutions will be discarded and only the ones
with a LPSP lower than 5 percent will be present in the final Pareto Set. Ideally,
this value would be as close to zero as possible : as a reference, the grid operator
Tennet ensures a reliability of 99.99 % on The Netherlands’ power network. In this
study, higher failures are accepted within the optimal solutions, mainly because of
the facts that TGV can be considered as a testing facility, because of the research
character of this project and the absence of critical loads. It is necessary to be
aware, however, that even small LPSP values could lead to severe complications
especially in the presence of critical loads.

5.1.2. VARIABLES AND CONSTRAINTS
The main scope of the optimization is to find the optimal sizes of the components in
order to satisfy the requirements of the Energy Community, expressed in terms of con-
straints and described by the energy management strategy. To ensure an efficient op-
eration of the system, which is unequivocally related to the system components’ sizes,
a parameter governing the power flows is also optimized together with the capacities.
Each solution vectors is made of 9 components (variables): these are the numbers of PV
panels, batteries, fuel cells and electrolyzers to install, together with the total maximum
capacity for hydrogen storage (expressed in kg) and ,lastly, the threshold state of charge
level of the batteries.

The total number of PV panels is not expressed by a single variable, but by 4 different
ones. In order to have a detailed modeling of the PV-produced energy, different orien-
tations for the panels were taken into account, representing the actual three different
orientations of The Green Village’s rooftops plus the South direction. In fact, together



5.1. OPTIMIZATION PARAMETERS 45

with the rooftop installations, a certain amount of panels can be disposed on the ground
in some of the Village’s so called "free zones", open spaces free from buildings or other
equipment. In this work, it was supposed that the panels placed in such spaces would
be oriented in the optimal direction, which is South for the location of Delft.

Finally, the last optimization variable governs the system’s operation. In particular, it
gives an indication on the priority between discharging the batteries and starting the
fuel cells, in case of deficit power production from the PV to satisfy the load. In fact, in
this case, the battery is employed if the state of charge is already at a satisfactory level.
Otherwise, the load is served through the fuel cells. This threshold SoC level is the ninth
variable of the optimization problem. A high threshold entails a more frequent usage
of the fuel cells, with a consequent larger capacity required, also for the H2 storage. On
the other hand, a low threshold has an influence on the battery usage. They will have
deeper charge-discharge cycles, which negatively affect their total lifetime, but lower
investment costs associated to purchasing more batteries rather than larger H2 equip-
ment.

The variables are subject to lower and upper bounds, so to limit the search space and
only consider solutions that would be feasible for the actual system to be employed at
The Green Village. The number of panels are limited by the available areas on the dif-
ferently oriented rooftops and in the free zones. In particular, according to Zhou et al.,
2022, who conducted a study to find the maximum possible PV penetration in The Green
Village, the maximum number of Solarge Solo PV panels installable on the flat rooftops
is 121. As per the tilted rooftops, a maximum capacity of 17 panels in the DreamHouses’
westerly-oriented roofs and 25 on their easterly-oriented roofs were considered. For the
so called ’free zones’ where to allocate the grounded panels, a limit of 77 panels was con-
sidered, which excludes the potential of some areas considered in the cited report, but
which were identified as not feasible after consultation with TGV’s advisor. The maxi-
mum installed capacity is therefore achievable with 240 panels, and equals 87.6 kWp.

The number of batteries, fuel cells and electrolyzers are also subject to upper bounds. An
extreme of 32 batteries (4 for each house) was set as the limit for this component. Based
on the peak PV power production, another extreme case was used for setting the upper
bound for the number of electrolyzers : in case 90 kW of peak power would be used to
power some 2.4 kW electrolyzers, 38 of them would be necessary in order to exploit all
this peak production. Similarly, if the peak load would need to be satisfied by only using
the stored hydrogen, 5 fuel cells of the kind considered for this system would need to be
employed. Lastly, the maximum hydrogen Storage capacity was constrained to a 800 kg.
Table 5.1 summarizes the maximum sizes of the components imposed.

Additional constraints are imposed on the possible solutions. A non-linear constraint
indicates the mutual dependence of electrolyzers and fuel cells: if in a solution one of
these two components is not present, the other will also be considered absent (and the
capacity of the hydrogen storage tanks will be set at 0). Moreover, because of the previ-
ously mentioned capital importance regarding security of supply of the system, not all
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Table 5.1: Constraints on the Maximum Number of Components

Variable Upper Bound
153° Oriented Panels (Flat Roofs) 121

180° Oriented Panels (Ground) 77
255° Oriented Panels (Tilted Roofs - Westerly) 17

75° Oriented Panels (Tilted Roofs- Easterly) 25
Batteries 32

Electrolyzers 38
Fuel Cells 5

Hydrogen Capacity [kg] 800

levels of Loss of Power Supply Probability are allowed. In fact, solutions leading to a LPSP
higher than 5 percent are discarded and considered as non-feasible. This is done through
the introduction of a penalty in the evaluation of the objective functions’ values. When a
certain solution is associated to a LPSP higher than such value, all the objectives are au-
tomatically set as equal to 109. By doing so, since the algorithm’s aim is to minimize the
objectives, those solutions are automatically considered as unfit and not selected among
the feasible ones.

5.2. IMPLEMENTATION
The most relevant aspect of the optimization carried out in this work is the integration
between sizing and operation of the system. Because of the interdependence between
the power flows and the sizes of the generators and storage components, it was neces-
sary to make the algorithm "aware" of the system’s behavior and perform the sizing ac-
cordingly. This was done by building a MATLAB external function describing the energy
management within the community, and calling it inside the definition of the objective
functions of the optimization problem.

The external function Energymanagement.m accepts as inputs the hourly electrical load,
L, of the whole system and the optimization variables values, namely a matrix X com-
posed of S rows (with S being the population size at each step of the algorithm, hence
the number of solutions evaluated at each step) and 9 columns, representing the opti-
mization variables.

For every row vector of the X matrix, the function calculates the hourly difference be-
tween the PV production and the Load, Based on the Irradiance data and the number of
panels of the given solution. Then, a yearly simulation is performed, following the be-
havior described in 3.2

The function describing the energy management Strategy is nested inside the definition
of the objective functions of the problem. In this way, it is ensured that the iterative pro-
cess of search for the optimal solution is always dependent on the simulation results for
the solution vectors of the previous iteration.
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The algorithm starts with the generation of a population of random vectors, each rep-
resenting a feasible configuration of the system satisfying the constraints imposed : the
upper and lower bounds for each variable and the non-linear constraints. The Energy-
management function then evaluates the system’s behavior and performances, follow-
ing the logic earlier described. On the basis of such results, the values of the objective
functions for each solution is computed. It is worth noticing that two of the three objec-
tives (i.e. the Loss of Power Supply Probability and the Grid Dependence) can only be
computed after the simulation is run, and therefore are strictly dependent on the energy
dispatch determined by the Energymanagement function.

After simulating the system’s behavior and energy flows for a period of one full year and
computing the objective functions’ values, a fitness value is assigned to each feasible
solution and the solutions are ranked on the non-dominance criteria. The operations
of mutation and crossover are then applied and the population is updated as described
in 2.1.3. Figure 5.1 schematically shows the workflow of such implementation, with the
mutual interaction between optimization and operation.

Start

Initialize Random Population

Update Population

Evaluate the Solutions

Select Fittest Solutions

Stopping Criterion Met? End

OPTIMIZATION

Yes

No

Simulate Energy Flows for all Solutions

Compute Objective Functions Values

Simulation Load Profile

Irradiance Profiles

Electricity Prices

Input Data

Figure 5.1: Schematic of the Implementation Workflow

In order to ensure proper functioning and accurate results from the gamultiobj function
in MATLAB, some options have been modified. These options mainly influence the vast-
ness of the search space and the stopping of the algorithm, and are described in Table
5.2.

With these options, the algorithm is ensured enough iterations and accuracy to find a
well-defined Pareto Set of equally valid solutions within a vast search space. In particu-
lar, the size of the population has an influence on the number of solutions forming the
final Pareto Set. It is important to mention that a low value for the tolerance and high
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Table 5.2: Options used for the gamultiobj function

Option Value Description
Population Size 2000 Size of the population. At each iteration, this is the

number of vectors of which the population of chro-
mosomes is composed.

Function Tolerance 10−6 The algorithm stops when the geometric average of
the relative change in value of the spread over ’Max
Stall Generations’ is less than this value, and the fi-
nal spread is less than the mean spread over the past
’Max Stall Generations’

Max Stall Generations 100 The algorithm stops when the geometric average of
the relative change in value of the spread over this
number of generations is less ’Function Tolerance’,
and the final spread is less than the mean spread over
the past ’Max Stall Generations’

Max Generations 5000 Maximum number of iterations for the algorithm, at
which it ends its search.

values for the other options lead to an increased computational time and effort. The se-
lected values have been tested and gradually increased to favor precise results within a
reasonable time.

5.3. OPTIMAL SOLUTION SELECTION
Upon running the model with the specified options, a Pareto Set composed of 700 equally
optimal solutions is obtained by the optimization algorithm. As already introduced in
2.1.2, these solutions are said to be equally optimal based on the concept of Pareto dom-
inance, and in particular because not only the three objectives are not comparable, but
also because none of them has been identified as a priority with respect to the others.

In order to assist the multi-criteria decision-making process and selecting a suitable so-
lution among the hundreds found by the solver, different methods can be applied. In
this work, the TOPSIS (Technique for Order of Preference by Similarity to the Ideal Solu-
tion) algorithm is employed, thanks to which the decision can be restricted to very few
options. In this section, the optimization objectives (minimization of Annualized To-
tal Costs, Grid Dependence and Loss of Power Supply Probability) will be referred to as
criteria, in order to avoid confusion with another use of the term objective, shortly intro-
duced.

5.3.1. WEIGHTING THE CRITERIA

The method, taken from Alsayed et al., 2013, is firstly based on the definition of a weight
for each criteria, measuring its relevance with respect to the others. For each criteria,
the final weight is given by a subjective and an objective weight. The subjective weight is
based on the decision-maker(s) personal preference, and is based on the prioritization
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of the criteria. The criteria with the highest subjective priority is associated with a score
of 1, the second with a score of 2 and the third with a score of 3. After consultation with
an advisor from The Green Village, the priorities have been assigned as follow :

1. Minimization of Annualized Total Cost

2. Minimization of Grid Dependence

3. Minimization of Loss of Power Supply Probability (provided that this value is al-
ways below 5 percent)

In order to have a subjective weight in the range [0,1] , after assigning the preferences
the subjective weight for the j th criteria is determined as per equation 5.7, where n is
the number of criteria (3 in this case) and k is the subjective priority assigned to the
criteria:

w s
j =

1

n

n∑
k= j

1

k
(5.7)

This formula yields three fixed values for the objective weights. The cost objective has a
weight of 0.6111, the self sufficiency a weight of 0.2778 and the reliability objective has a
weight of 0.1111.

Objective weights are assigned to the criteria on the basis of their Entropy. The defini-
tion of entropy is based on information theory, and assigns a low weight to an attribute
if its values are similar across alternatives, because such attribute does not assist dif-
ferentiating alternatives Rao, 2013. Objective weights calculated in this way, unlike the
subjective, are not always equal but slightly differ for each different simulated scenario,
as they are dependent on the actual solutions found by the algorithm and their proxim-
ity in the solution space. In order to conduct a fair comparison between scenarios, the
objective weights of the Base Case were applied to all cases.

The assignment of such weights is dependent on two matrices obtained as result of the
optimization algorithm. The matrix X (of dimensions S x K) contains the S solutions
forming the Pareto Set, and the values of the K optimization variables for each solution.
The matrix Z (dimensions S x J) contains the values of the J objective functions (criteria)
for all the S solutions forming the Pareto Set.

To calculate the entropy of a criterion, the Performance index P is first calculated :

Ps j =
Zs j∑S

s=1 Zs j
(5.8)

Entropy is then defined as :

E j =−z
S∑

s=1
Ps j · ln(Ps j ) (5.9)
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Where :

z = 1/lnS (5.10)

The degree of divergence d j is then introduced. The more divergent is the performance
rating Ps j for the j th criteria, the higher its d j value, which will lead to a higher objective
weigth.

d j = 1−E j (5.11)

The objective weights are obtained as :

wo
j =

d j∑J
j=1 d j

(5.12)

And finally, the subjective and objective weights are combined through the multiplica-
tion synthesis combination weighting method (MSCWM), as per equation 5.13:

w j =
w s

j ·wo
j∑J

j=1 w s
j ·wo

j

(5.13)

The application of this method yields the weights of 0.5511, 0.3418 and 0.1071 for cost,
self sufficiency and reliability, respectively. Therefore, the priority introduced by the sub-
jective weights is still preserved, but the relative importance among them is slightly more
balanced.

5.3.2. APPLICATION OF THE TOPSIS ALGORITHM
After obtaining a final weight for each of the criteria, solutions can be evaluated and
ranked based on their relative performances and their proximity to ideal solutions with
the use of the TOPSIS algorithm. The first step of this step consists in making the differ-
ent criteria comparable with each other. To do so, all elements of the Z matrix need to be
normalized:

rs j =
Zs j(∑S

s=1 Z 2
s j

)1/2
(5.14)

The weighted normalized criteria matrix is obtained :

vs j = w j · ri j (5.15)

At this point, the best and worst ideal solutions are found. These are two fictitious so-
lutions: the best ideal is a solution that has the best score among the whole final Pareto
set for every criteria, and the worst ideal is the one containing the worst scores. The
main idea behind the TOPSIS algorithm is to find the solutions that are closest to the
best ideal, and farthest from the worst ideal. For a minimization problem like the one
treated in this study, the best ideal is :
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A+ = {v+
1 , v+

2 , v+
3 } = Mi nvi j | j ∈ J (5.16)

While the worst ideal is:

A− = {v−
1 , v−

2 , v−
3 } = M axvi j | j ∈ J (5.17)

Every solution is analyzed on the basis of its distance from these ideal solutions. In par-
ticular, on the positive distance from the best ideal and the negative from the worst. By
indicative with l+s the positive distance from the best ideal, and l−s the negative distance
from the worst ideal, these two lengths are defined as follows:

l+s =
√√√√ J∑

j=1
(vi j − A+

j )2 (5.18)

l−s =
√√√√ J∑

j=1
(vi j − A−

j )2 (5.19)

The very last step then consists in calculating the TOPSIS score for each solution forming
the Pareto Set. The TOPSIS score is equivalent to the relative closeness of each alternative
to the worst ideal, and the solution with the maximum score (that is, the farthest from
the worst and closest to the best ideal) is indicated as the best option.

T OPSI Sscor e =
l−s

(l−s + l+s )
(5.20)
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ANALYSIS OF THE RESULTS

After successfully running the optimization model, a Pareto set of 700 equally optimal
solution is found. Such solutions are then sorted and ranked with the TOPSIS algorithm
detailed in section 5.3. The aim of this chapter is to provide an analysis for the results of
the scenarios studied in this research, that shall lead to final conclusions and considera-
tions.

6.1. BASE CASE
The first simulation conducted concerns a Base Case Scenario. The Base Case features
the basic load, as introduced in 4.2, and fixed prices for the imports and exports of elec-
tricity from the outer grid. In particular, the price for the imports was set as the average
electricity retail price in The Netherlands in the last ten years (from 2012 to 2022), equal
to 0.33 €/kWh. The revenue gained from selling to the outer grid was set at 0.20 €/kWh,
60 percent of the price charged for imports, in accordance to one of the alternatives pro-
posed by Londo et al., 2020 of abolishing the producer part of the electricity tariffs ac-
counting for approximately one third of the price.

6.1.1. PARETO SET ANALYSIS
The shape of the Pareto Set clearly shows the relationship between the three objectives.
As expected, minimizing the system’s costs comes at the expenses of decreasing its self-
sufficiency and reliability. Figure 6.1 shows the distribution of the non-dominated solu-
tions in the objectives’ three dimensional space, while the scatter diagram in Figure 6.2
translates the solutions to a bi-dimensional plane, highlighting such correlation even
more. The self sufficiency of the system is clearly clashing with the costs optimization:
in fact, the most cost-effective solutions are the ones in which the Energy Community
almost solely relies on the grid imports. The reliability objective’s behavior also suggests
a similar trend with respect to the annualized total costs, with the Loss of Power Supply
Probability steeply decreasing with the annualized total cost, especially in the first part.

53
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Figure 6.1: 3-Dimensional representation of the Pareto Set, Base Case

Some considerations can also be drawn from the shape of the curve in Figure 6.2. Its
hyperbolic trend reaches a plateau when the ATC reach a value of around 100000 €. Even
before reaching this region,however, it can be noted that the steepness of the curve is
much lees accentuated with respect to the first part. Such behavior translates into the
fact that, above a certain cost, the marginal gain obtained by increasing the financial ex-
penses is not effectively balanced by an equal benefit in the other two objectives. It is
not surprising, therefore, that all the top-ranked solutions after applying the TOPSIS al-
gorithm can be identified in the steeper part of this curve (more precisely, in the region
before the 60,000€).

The curve also clearly shows what previous research about the Energy Community in
The Green Village has highlighted : the complete self-sufficiency of the system can only
be achieved with extremely high costs. The presence of a grid connection is therefore of
utmost importance when aiming at a reduction in the system’s cost. In particular, the
relatively small penetration potential of PV power and the high costs of storage capacity
are the two main factors influencing this result.

6.1.2. USE OF HYDROGEN STORAGE
With the Base Case pricing conditions, there is no particular incentive in storing energy
in a period to sell it when it is more profitable, and thus the need for storage is impact-
ing more on the self-sufficiency objective than on the cost-effectiveness. For this reason,
the first outstanding result is that, over the 700 ranked solutions, almost half of them (348
solutions) do not employ hydrogen equipment, resulting in the absence of electrolyzers
and fuel cells, with no need for hydrogen storage (of which the minimum capacity was
set to 50 kg for all the solutions, since some hydrogen storage is already present at TGV).
The high costs associated with the production and usage of hydrogen and the low costs
for importing energy from the grid when it is necessary make it inconvenient to rely on
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Figure 6.2: 2-Dimensional representation of the Pareto Set, Base Case

long-term storage in favour of using the grid as a backup.

Within the solutions that do employ hydrogen for seasonal storage, the best performing
is ranked 92 overall. Table 6.1 shows that the sizing of such solution is very similar to the
one achieved for the best-performing solution, with the integration of two electrolyzers
and one fuel cell. With exactly the same generation capacity installed, the hydrogen-
featuring solution compensates the additional costs with an increase in self sufficiency
and reliability, as shown in Table 6.2. The Cost of Electricity here introduced was ob-
tained by dividing the annualized total costs by the annual load.

Table 6.1: First solution overall vs. first H2-featuring solution: Sizing

Ranking PV Installed Capacity [kWp] N. Batteries N. Electrolyzers N. Fuel Cells
1 85.41 (234 Panels) 5 0 0

92 85.41 (234 Panels) 5 2 1

Table 6.2: First solution overall vs. First H2-featuring solution: Performances

Ranking Annualized Total Cost [€] Cost of Electricity [€/kWh] Grid Dependence [%] LPSP [%]
1 39,315 1.16 19.10 1.1

92 54,085 1.63 14.15 0.74

A distinctive feature of the Pareto Set noticeable in Figure 6.2 is the presence of a zone
in which the steepness of the curve changes, which can be identified by an area where
some points are slightly detached from the main curve (in the two-dimensional repre-
sentation) and from the presence of crests in the surface representing the solution space
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(in the three-dimensional representation). Such area represents the transition area from
PV-Battery only configurations to solutions including hydrogen storage.
Prior to this area, almost all solutions do not present hydrogen in any forms, while the
after that hydrogen storage is present in all solutions. The transition area is where the
two configurations alternate, resulting in a very similar overall performance, but differ-
entiated with respect to the single objectives. In particular, hydrogen-featuring solutions
perform better in terms of Self-Sufficiency, while Battery-only solutions are preferable in
terms of Cost.

6.1.3. ECONOMIC PERFORMANCES

The top rated solutions after the ranking are the most balanced in terms of how they per-
form with respect to the three objectives. However, as introduced in 5.3, a criterion was
selected to assist the decision-making process, which is based on the prioritization of
the cost minimization objective over the others. When focusing on such objective, some
considerations shall be made.

The less expensive solution found during the optimization is the one relying completely
on imports from the outer grid, with no capacity installed whatsoever. In this case, the
cost of electricity is of course 0.33 €/kWh, which is the cost of the imports. Such solution
is, on the other hand, the worst possible in terms of reliability and self-sufficiency, with
2.7 % of LPSP and 100 % of grid dependence. It is crucial to notice that, even if the LPSP
percentage seems to be low, it actually corresponds to almost 10 days of unmet load.

Excluding this and similar extremes, for example solutions featuring an extremely lim-
ited amount of panels and grid dependence values over the 80 %, it is worth to notice
the economic performances of some of the best solutions, over the 700 found. The top-
ranked solution, introduced earlier, features a cost of electricity of more than 1 €/kWh,
which is still considerably high if compared to the average electricity price in the recent
years. By analyzing other solutions, however, it can be noted that there are some more
convenient options under the financial point of view.

Table 6.3: Increasingly cost-efficient solutions : Performances

Ranking Cost of Electricity [€/kWh] Grid Dependence [%] LPSP [%]
1 1.16 19.10 1.10

93 0.85 28.22 1.35
307 0.70 37.82 1.47
387 0.60 45.87 1.62
493 0.48 60.15 1.86

Tables 6.3 and 6.4 show different solutions within the first hundreds of the ranking, in
ascending order of cost-efficiency. The Levelized Cost of Electricity (LCOE), calculated
by dividing the ATC by the annual total load, is displayed instead of the annualized to-
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Table 6.4: Increasingly cost-efficient solutions: Sizing

Ranking PV Installed Capacity [kWp] N. Batteries N. Electrolyzers N. Fuel Cells
1 85.41 (234 Panels) 5 0 0

93 71.9 (197 Panels) 2 0 0
307 51.1 (140 Panels) 2 0 0
387 45.26 (124 Panels) 1 0 0
493 35.04 (96 Panels) 0 0 0

tal costs to give a clearer idea about the actual energy costs payed by the Community
actors. Once again, the inverse correlation between the cost and the two other objec-
tives is clear: the lower the costs, the lower is the Self-sufficiency and the reliability of the
Community. In particular, the most cost effective solutions not only do not ever employ
any form of hydrogen storage, but also rely very little on short-term storage in the form
of batteries. This is probably relatable to the flat tariffs applied for exchanging electricity
with the grid: there is no incentive in storing large amount of energy for a following pe-
riod, if the prices for importing energy will stay the same over time.

Another important fact to notice is that , even for the most economically convenient so-
lutions, the LCOE is higher than the the average cost of electricity in The Netherlands,
at least if average values from recent years are to be considered. On the other hand, it
is also true that in this case no Government incentive or economies of scale effects (for
example, for the purchase and installment of PV panels) were considered. In a similar
way it is important noting that the electricity retail price here considered, despite being
an average of recent years, can always be subject to changes that could also be drastic,
as happened with the energy crisis of the year 2022.

Such uncertainties, together with the results of this optimization, can lead up to the con-
clusion that the most cost-effective solutions in this study could actually be applicable
for TGV’s Energy Community studied, under favourable conditions of pricing (especially
for the exports towards the grid) and with policies stimulating investment in renewable
energy equipment. Regarding the use of hydrogen storage, it still appears to be a non-
efficient choice, especially under the economic point of view.

6.1.4. SYSTEM’S BEHAVIOR

A short analysis of the behavior of the system can be conducted by analysing the most
promising solutions. As earlier introduced, the top-ranked solution does not feature any
long term storage in the form of hydrogen, employing 234 panels in total (85.41 kWp)
and 5 batteries to satisfy the load. Figure 6.3 shows the energy flows of a week in the
summer period :

This period is characterized by a low load demand, with high solar production. Because
of the small storage capacity, considerable amounts of energy are exported during peak
energy production hours, while small amounts are stored and used later to fulfill the load
during the hours with no sunlight.
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Figure 6.3: Base Case Best solution: Energy Flows during a Summer Week

Figure 6.4 displays the behavior of the system during a typical winter week, characterized
by a much higher load and a limited solar energy availability (with the exception of some
sharp peaks). The grid imports are much more frequent and consistent than in summer,
and sometimes they are not even enough to serve the load, since they are constrained
to a capacity of 10 kW. Despite this, the system still needs to export some energy to the
outer grid when the batteries are already charging at their maximum rate. Such behavior
clearly depicts the trade-off between cost and the other objectives. In this configuration
there is some energy that could be stored for later usage, but it was preferred to export it
to the grid because of the economic efficiency of this choice over further expanding the
storage capacity.

To provide insights on the hydrogen usage, another solution should be analyzed. Figure
6.5 shows the energy flows during the reference summer week for the best performing
solution in terms of self sufficiency, which installs the maximum available PV capacity
and couples it with 30 batteries, 17 electrolyzers and 2 fuel cells. This solution never im-
ports energy from the outer grid, even though this condition is reached at extremely high
costs.

During the summer period, an intense use of the electrolyzers is performed to store en-
ergy in the form of hydrogen, while the batteries are employed to serve the load in ab-
sence of generation from the PV, and charged until their limit during the day. The hydro-
gen produced and stored during the summer is then employed to power the fuel cells in
winter, as depicted in Figure 6.6.

During winter, the load is mainly supplied by the fuel cells, with a small contribution
from the batteries which are occasionally charged during the hours in which the solar
production spikes (for no more than 2 hours per day). The presence of seasonal storage
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Figure 6.4: Base Case best solution: energy flows during a winter week
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Figure 6.5: Base Case most self-sufficient solution: energy flows during a summer week

in the form of hydrogen not only reduces the energy imports from the outer grid, but also
the exports towards it. In fact, the system tends to exploit the long-term storage by prior-
itizing the load demand, only exporting the eventual excess. Because of the flat pricing
mechanism adopted in this scenario, moreover, the system has no economic incentive
in exporting during a particular time, and only exports when it is necessary. If compar-
ing Figure 6.3 and 6.5, the differences in exported power in periods of overproduction is
evident.
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Figure 6.6: Base Case most self-sufficient solution: energy flows during a winter week

6.2. INFINITE GRID
The Infinite Grid Scenario investigates the outcome of the optimization and the perfor-
mances of solutions in a case where the possible interactions of the system with the outer
grid are unlimited. Unlimited access to the grid can occur when the network connection
is oversized, which is currently the case at The Green Village where a larger transformer
is installed with respect to the capacity effectively needed. This could be, however, also a
case occurring in the future power network, where distributed energy communities are
likely to size their grid connection based on their peak consumption and with a safety
margin, in order to have no limitations when they need to import or export energy. The
main difference this scenario has with the one described in 6.1 is the removal of the ca-
pacity limit for interacting with the outer grid, previously set to 10 kW for both imports
and exports.

6.2.1. PARETO SET ANALYSIS

The most relevant consequence of removing the grid capacity constraint occurs with re-
spect to the Loss of Power Supply Probability. As detailed in 3.2, the load cannot be met
when all the energy sources present within the system plus the imports from the grid are
not enough to satisfy the demand. When the imports are not limited, however, the load
can always be met with the help of the outer grid, and thus the LPSP value is always 0.
This is the reason why Figure 6.7, displaying the Pareto Set for this Scenario, only fea-
tures a trade off between two objectives.

Once again, the shape of the Pareto curve anticipates the outcomes of the optimization.
Compared to the Base Case (6.2), the Pareto front shown in Figure 6.7 features a less
steep transition from the low (below 10,000 €) to the high (above 60,000 €) cost region,
resulting in higher values of grid dependence for solutions falling in the medium-price
range. Similarly to the Base Case, the most cost efficient way to supply backup power is
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Figure 6.7: Pareto Set, Infinite Grid Scenario

represented by the grid imports, especially when they are not constrained.

The absence of one objective is also reflected on the selection of the best trade off by the
TOPSIS algorithm. In fact, the top ranked solution for this scenario (Table 6.5) features a
different use of storage capacity with respect to the Base Case, with less batteries but the
introduction of hydrogen equipment.

Table 6.5: Infinite Grid Scenario, TOPSIS Best Solution : Sizing

Ranking PV Installed Capacity [kWp] N.Batteries N.Electrolyzers N. Fuel Cells
1 85.41 (234 Panels) 3 4 1

Table 6.6: Infinite Grid Scenario, TOPSIS Best Solution : Performances

Ranking Annualized Total Cost [€] Cost of Electricity [€/kWh] Grid Dependence [%] LPSP[%]
1 52,918 1.59 18.70 0

Under the economic perspective, this solution is not preferable over the best selected for
the Base Case, but it is comparable to the best hydrogen-featuring solution earlier intro-
duced. In fact, with the help of an infinite grid and a more balanced sizing of the storage
solutions, the system can now satisfy the total load demand at a slightly lower cost. The
fact that the top-ranked solution for this scenario features a large storage capacity de-
spite being capable of importing virtually infinite energy from the outer grid might seem
counter-intuitive. Such result is however a direct consequence of this condition, and is
determined by the multi-objective nature of the problem and the goal of the ranking al-
gorithm to find a balanced solution.
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As mentioned, because of the absence of grid capacity constraints, only solutions with a
maximum reliability are taken into account in the optimization. The load that was pre-
viously not met, however, is not fully covered by imports from the outer grid but rather
from more balanced sizing solutions. In fact, if this would have been the case, such solu-
tions would have resulted in a higher degree of grid dependence, and would have been
excluded from the top-ranked because of the imbalance in the objective function values,
mostly favoring the cost abatement goal. An important consequence of this condition
is that not only the top-ranked solutions, but most of the solutions within the Pareto Set
result to be more expensive with respect to the Base Case. This is detailed better in the
next Section.

6.2.2. ECONOMIC PERFORMANCES
Despite the differences in the top-ranked solutions, a broader analysis of the overall re-
sults confirms the trends already emerged with the Base Case. Also in this scenario, the
top ranked solution is achieved at a considerably high cost of electricity of 1.59 €/kWh.
To assess the efficiency of the Pareto set solutions, other solutions were investigated. Ta-
bles 6.7 and 6.8 show the sizing and performances of solutions within the Pareto set with
increasing degree of grid dependence.

Table 6.7: Infinite Grid Scenario, solutions with increasing Grid Dependence : Performances

Ranking Cost of Electricity [€/kWh] Grid Dependence [%]
605 0.88 40.07
635 0.65 50.15
656 0.52 61.53
673 0.45 72.59

Table 6.8: Infinite Grid Scenario, solutions with increasing Grid Dependence : Performances

Ranking PV Installed Capacity [kWp] N.Batteries N.Electrolyzers N. Fuel Cells
605 78.84 (216 Panels) 4 0 0
635 39.42 (108 Panels) 3 0 0
656 39.42 (108 Panels) 1 0 0
673 32.85 (90 Panels) 0 0 0

This analysis confirms that the Energy Community in The Green Village would not be
economically competitive with a low degree of grid dependence. At least half of the en-
ergy supplying the load demand would need to be satisfied from the outer grid in order
to achieve acceptable expenses, while most of the solutions found within the Pareto Set
feature much higher costs. This analysis also highlights the non-linearity in the relation-
ship between cost and self sufficiency: this is justified in particular by the high costs of
the hydrogen equipment, which is necessary to achieve a year-round high degree of in-
dependence. Because of this, the idea of a system relying mainly on its own resources
and capable of satisfying the Community’s electrical needs seems to be unfavourable at
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the moment.

It is worth to emphasize the already mentioned effect of the gird limit removal and the
consequent absence of the reliability objective on the solutions. By comparing the In-
finite Grid Scenario’s Pareto Set with the one relative to the Base Case, the influence of
the reliability objective on the optimization’s outcome becomes more evident. When ac-
cepting a lower security of supply (in this case, still below 1.6 %), monetary savings are
conspicuous. Table 6.9 provides an example comparison between two solutions with
similar grid dependence values, both around 30 % . The first solution belongs to the
Base Case Pareto Set, while the second to the Infinite Grid Scenario’s.

Table 6.9: Comparison of solutions with and without Grid Capacity Limit

Grid Capacity Limit PV Capacity N.Batteries N.Electrolyzers N. Fuel Cells Cost of Electricity
Yes 68.62 kWp 2 0 0 0.84 €/kWh
No 72.27 kWp 3 2 1 1.25 €/kWh

The additional costs necessary to make sure that the system achieves maximum reliabil-
ity are highlighted in Figure 6.8. The fitted curve represents how much the costs increase
in the Infinite Grid Scenario with respect to the Base Case. The cost difference is the
highest in the medium GD region, where the full reliability of the system is achieved
through the introduction of the hydrogen storage system.
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Figure 6.8: Cost increase of Infinite Grid Scenario Solutions with respect to the Base Case

6.3. REAL TIME PRICING
In order to assess the influence of different electricity pricing schemes on the robustness
of the sizing model, a Real Time Pricing Scenario was simulated. In this case, the electric-
ity prices reflect the spot market prices, providing immediate and frequent price signals
to the Energy Community consumers. The selling price for the exported electricity was
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once again set as 60 percent of the buying price, and the grid capacity limit was set as
equal to the Base Case.

The first and most relevant result is that, at least for what concerns the top solutions in-
dividuated by the TOPSIS algorithm, there is no significant change in the system’s sizing
when the RTP tariff is applied. In fact, with the exception of one more battery selected in
this case, the components’ configuration is the same, as shown in Table 6.10.

Table 6.10: Real Time Pricing Scenario, TOPSIS Best Solution : Sizing

Ranking PV installed Capacity [kWp] N.Batteries N.Electrolyzers N. Fuel Cells
1 85.41 (234 Panels) 4 0 0

The overall performances of such solutions are in line with the ones achieved by the Base
Case top solution, with the RTP solution resulting in a lower annualized total cost :

Table 6.11: Real Time Pricing Scenario, TOPSIS Best Solution : Performances

Ranking Annualized Total Cost [€] Cost of Electricity [€/kWh] Grid Dependence [%] LPSP[%]
1 36,422 1.09 20.34 1.16

The lower costs incurred in this solution can be mainly attributed to two factors. Firstly,
despite the high fluctuation in the prices occurring throughout the year and some high
peaks reached with this pricing scheme, the average price is slightly lower than the flat
tariff used in the Base Case. However, referring to the average of the hourly-varying price
is not an effective means to describe this result alone. Figure 6.9 shows that the system
manages to avoid imports in correspondence of prolonged periods of high prices, effec-
tively reducing the expenses for the imports through the external grid.
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Figure 6.9: Imported power and electricity prices, Real Time Pricing Scenario top solution
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Despite this opportunity, the use of a hydrogen storage system which could provide even
more flexibility in case of price spikes is still not considered to be favourable. Again, the
high investment costs represent an inconvenient barrier to overcome. This result how-
ever suggests that, especially in regimes of volatile prices, energy storage equipment in
general can represent a significant means to abate costs in the long run. In particu-
lar, this could occur in systems with an energy management strategy aware of the real
time prices, capable of adjusting the energy flows to minimize the imports’ expenses
and maximize the exports’ revenues.

At the same time, and looked from another perspective, the result can be interpreted as a
positive signal regarding the adoption of dynamic tariffs. In the perspective of an energy
network with a high penetration of distributed energy sources and communities, these
pricing policies not only can better reflect the actual cost of electricity treated as a com-
modity, but can also benefit both the grid management activities and the prosumers.

6.4. HYDROGEN COST DECREASE SCENARIO
The analysis conducted so far have highlighted how the high capital costs represent a
great barrier in the adoption of a hydrogen system for long term energy storage, despite
its proved usefulness in the increase of self-sufficiency and reliability. The use of hy-
drogen in the energy industry, and more generically the demand for hydrogen in key
application sectors, has been increasing in recent years (IEA, 2022) and is expected to
play a significant role in the pathway to the decarbonization of the energy sector. With
the projected investment expansion in hydrogen-related projects, economies of scale ef-
fects will likely lead to a drop in the investment costs for the necessary equipment, and
in particular of electrolyzers and fuel cells.

This scenario investigates the outcomes of the sizing in the case of, as expected, the in-
vestment costs of the hydrogen equipment will decrease as a result of fast development.
With respect to the Base Case, no other parameters were changed except for the said
costs. The magnitude of such development and the consequent drop in the costs is an
uncertain forecast. A report published by TNO (Detz and Weeda, 2022) has analyzed the
future development of investment costs trough the construction of learning curves, and
according to their most conservative estimation, the cost for PEM electrolyzers could
decrease to 1350 €/kW. The AEM technology used by Enapter in the electrolyzers here
considered, however, has even greater potential for scalability due to the absence of rare
materials. According to the manufacturer (Collins, 2022), a decrease in the costs of 83
percent can be expected in the next years thanks to the opening of a new automated and
large-scale production site, leading to a cost of 550 €/kW, which is used for the simula-
tion of this case.

As per the future evolution of fuel cells’ costs, a similar research on predictive studies
was carried out. An extensive analysis was conducted by Battelle, 2016, where estimates
on the costs were given on the basis of the degree of scale production of medium-sized
fuel cells by the year 2030. Cigolotti and Genovese, 2021 have considered this and other
studies in a more recent report part of IEA’s technology platform, hypothesizing a cost
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abatement from around 1,000 to 460 $/kW, depending on the future degree of penetra-
tion of the PEM technology on the market. For this scenario study, the most optimistic
of such estimates was considered, in order to assess the hydrogen storage potential in
a case of widespread development. Therefore, cost for a single electrolyzer was set to
1,320e, while the cost of each fuel cell was set to 3,100e.

6.4.1. PARETO SET ANALYSIS

Figure 6.10 shows the optimal solutions’ set for this case, displayed together with the
Base Case for reference. The two curves overlap on the left side of the graph, in the area
corresponding to low costs and high self sufficiency, where solutions are characterized
by the absence of hydrogen equipment in both cases. The drop in the investment prices
is the cause for the subsequent detachment of the lower curve, which is representing the
solutions for this scenario. In this case, a plateau is reached significantly before than in
the Base Case, as the lower costs make it easier to reach a saturation point with respect
to the storage capacity.
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Figure 6.10: Base Case and low Hydrogen Cost Scenario, Pareto Sets comparison

The different configuration of the Pareto Front obviously also affects the results of the
ranking algorithm applied. Because of the lower barrier on their application and their
undoubted usefulness, the use of electrolyzers and fuel cells is widespread among the
best solutions. In fact, only 88 over the 700 Pareto dominant solutions do not employ
a hydrogen storage. The PV installed capacity of the best solution is exactly the same
of the other cases, despite the optimal storage distribution changes. The recurrence of
this value for the generation capacity regardless of changes in the boundary conditions
indicates that the optimal trade-off was found between costs and production, in relation
to the satisfaction of The Green Village’s load. Tables 6.12 and 6.13 summarize the sizing
and performances of the best solution in this Scenario.
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Table 6.12: TOPSIS best solution : Sizing

Ranking PV installed Capacity [kWp] N.Batteries N.Electrolyzers N. Fuel Cells
1 85.41 (234 Panels) 3 13 1

The large number of electrolyzers with respect to the amount of fuel cells can be at-
tributed to two factors. First of all, the nominal input power of a single Electrolyzer (2.4
kW) is relatively small compared to the output rated power of 6.8 kW of the fuel cells.
Most importantly, however, this is a consequence of the significant energy conversion
losses that take place when producing hydrogen with the electrolyzer, making it neces-
sary to oversize the hydrogen production system in order to properly satisfy the subse-
quent backup generation.

Table 6.13: Low Hydrogen Equipment Cost Scenario, TOPSIS best solution : Performances

Ranking Annualized Total Cost [€] Cost of Electricity [€/kWh] Grid Dependence [%] LPSP[%]
1 42,294 1.27 6.71 0.21

Despite the price drops, the overall best solution still comes at an uneconomical price
for electricity of 1.27 €/kWh, clearly unacceptable at a residential level. It is worth notic-
ing, however, how the performances of this solution with respect to the second and third
objective clearly outperform the ones reached in other cases. The greater availability
of hydrogen clearly contributes to the abatement of the need for grid backups, and in-
creases the system’s reliability.

A more thorough analysis of all the solutions found suggests that, even if the most op-
timistic cost reduction forecasts for the hydrogen components come true in the next
years, most probably they would still not favor their usage in small scale residential ap-
plications like this. In fact, as can be also noted in Figure 6.10, the beneficial effect of the
components’ price drop becomes significant when already high cost levels are reached.
As a result, solutions with an acceptable cost of electricity (of maximum 0.4 €/kWh) do
not feature any form of hydrogen storage despite the lowered investment costs.

6.5. UNLIMITED PV PENETRATION
What the best trade-offs solutions of the previously studied scenarios have in common
is the final configuration of PV panels installed. This result can be attributed to several
factors: the load demand, the irradiance conditions considered and the physical con-
straints above all. The latter is of particular importance since the total installed capacity
is very close to the maximum installment capacity, which effectively translates into a cap
on the Community’s own energy production.

As it was noted, these trade-offs also come at a high cost, while solutions characterized
by low expenses are heavily relying on the outer grid. The limitation on the number of
panels, in fact, affects the outcomes of the sizing in many ways: for example, the high
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energy conversion losses in the hydrogen equipment usage require the PV system to be
oversized. When this is not possible (as in the Base Case), the adoption of this technol-
ogy is not incentivized. Because of the competitive price of solar generation, moreover,
configurations with a higher installed capacity could represent a mean to abate costs
by increasing the autonomy of the system from the grid, while using the connection to
maximize the reliability.

These considerations led to the formulation of a last scenario, investigating the optimal
sizing configurations for The Green Village’s community in a case with unlimited space
for the instalment of solar panels. The unlimited availability is of course an unrealistic
extreme, but it is intended to provide insights on the possible expansion of renewable
energy capacity and its effects.

6.5.1. PARETO SET ANALYSIS
The composition of the best solutions found for this scenario does not significantly dif-
ferentiate from the Base Case Scenario, with the exception of some noteworthy elements.
When comparing the Pareto Set for the Unlimited PV penetration case (Figure 6.11 ) with
the one displayed in 6.2, the similarity in shape and trend is evident.
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Figure 6.11: Pareto Set, Unlimited PV Penetration Scenario

The most noticeable difference is the forward displacement of the zone in which the
steepness of the curve changes, earlier introduced as the transition zone from where hy-
drogen is introduced in the system. Because of the absence of a limitation in the num-
ber of panels, the necessity of investing in hydrogen equipment is "postponed", with low
values of grid dependence (up to almost 10 percent) achievable just with a larger PV ca-
pacity and with the help of batteries storage.

A second significant result is found when analyzing the extreme solutions in terms of
cost. The most expensive solution found in this scenario entails a considerably lower
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cost with respect to the most expensive Base Case solution. It consists of 6 electrolyzers
and 2 fuel cells, achieving complete and autonomous power supply with the help of 19
batteries and 104 kWp of installed PV capacity. With the possibility of installing a larger
capacity of PV panels, the need for large capacities of the hydrogen system ceases be-
cause most of the storage can be dealt with the batteries, which are less expensive to
employ.

The same reasoning is applied throughout all solutions, also influencing the top-ranked
solution. In fact these result to be, on average, more economically convenient with re-
spect to the Base Case, as can be noticed from Table 6.15.

Table 6.14: Unlimited PV Penetration Scenario, TOPSIS Best Solution : Sizing

Ranking PV installed Capacity [kWp] N.Batteries N.Electrolyzers N. Fuel Cells
1 85.41 (234 Panels) 3 1 1

Table 6.15: Unlimited PV Penetration Scenario, TOPSIS Best Solution : Performances

Ranking Annualized Total Cost [€] Cost of Electricity [€/kWh] Grid Dependence [%] LPSP[%]
1 34,874 1.05 20.87 1.20

A direct consequence of removing the panels’ number limitation lies in their orienta-
tion: the easterly and westerly orientations, corresponding to some of the roofs in The
Green Village, are completely discarded by the top solutions, which only feature panels
mounted on the ground and on flat roofs,since these are the ones receiving the highest
irradiation. The same number of panels is, in the two cases, differently distributed. In
fact, when the limitations apply, the 75° orientation is the only one not fully exploited,
while the others are filled to their limit as per indicated in Table 5.1. Differently, when
no limitations are set, the optimal configuration would require most of the panels to be
installed towards south, with few installed on the flat roofs.
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As a result, the configurations considered in this scenario would lead to a higher amount
of electricity generated, and a need for less storage equipment to achieve similar perfor-
mances with respect to the Base Case. This is the main reason why not only the TOPSIS
best solution results more convenient, but also why under these conditions more cost-
efficient solutions can be found at parity of other parameters.

6.6. BEST SOLUTIONS OVERVIEW
In conclusion, Tables 6.16 and 6.17 show the sizing configurations and the performances
of the top-ranked solutions for each scenario.

Table 6.16: Overview of the Best Solutions for all Scenarios : Sizing

Scenario PV installed Capacity [kWp] N.Batteries N.Electrolyzers N. Fuel Cells
Base Case 85.41 (234 Panels) 5 0 0

Infinite Grid 85.41 (234 Panels) 3 4 1
Real Time Pricing 85.41 (234 Panels) 4 0 0

Hydrogen Cost Decrease 85.41 (234 Panels) 3 13 1
Unlimited PV Penetration 85.41 (234 Panels) 3 1 1

Table 6.17: Overview of the Best Solutions for all Scenarios : Performances

Scenario Annualized Total Cost [€] Cost of Electricity [€/kWh] Grid Dependence [%] LPSP[%]
Base case 39,315 1.16 19.10 1.1

Infinite Grid 52,918 1.59 18.70 0
Real Time Pricing 36,422 1.09 20.34 1.16

Hydrogen Cost Decrease 42,294 1.27 6.71 0.21
Unlimited PV Penetration 34,874 1.05 20.87 1.20



7
CONCLUSION

The final Chapter of this thesis is focusing on generalizing the main findings of the re-
search, detailing its limitations and suggesting future improvements for similar studies
to be carried out. First, Section 7.1 will summarize and discuss the results of the opti-
mization cases. Section 7.2 will provide answers to the research questions introduced at
the start of the thesis. Section 7.3 will aim attention at some key features limiting this
work, and lastly Section 7.4 will highlight possible areas towards which future studies
could focus, using this work as a reference or a benchmark.

7.1. DISCUSSION
The main scope of this work was to find the optimal sizes for the components of the
Energy Community in The Green Village, by taking into account different aspects and
priorities. The use of a multi objective optimization algorithm, together with a decision
making method and the formulation of scenarios has led to the individuation of optimal
alternatives, albeit each of those has their points of questions.

The configuration of photovoltaic generation capacity to be installed in the system ap-
pears to be one of the factors less dependent on the boundary conditions of the problem.
In all the studied cases, the best trade off solutions feature a total capacity of 85.41 kWp,
composed of 121 panels placed on flat roofs, 36 on tilted roofs and 77 on the ground,
exploiting almost all the available space for solar energy production. This distribution of
capacity resulted to be the most convenient in terms of cost-benefit balance, regardless
the storage solutions adopted to support the intermittent production. The simulation
of a scenario with unlimited potential for solar power penetration highlighted how the
overall costs can be further decreased by increasing the solar energy production.

The optimal storage capacity employed not only is the aspect most influenced by the
surrounding conditions, but also the one that alters the most the performances of the
Energy Community with respect to the three selected objectives : cost, reliability and
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self-sufficiency. In the Base Case, where the conditions are the closest to the reality, the
optimal configuration presents a storage capacity of slightly more than 75 kWh, only in
the form of electrical energy storage with batteries. In cases when an unlimited amount
of electricity can be withdrawn from the outer grid, the optimization suggests a more
diverse use of storage, in which a part of the electrical storage capacity is replaced by the
use of one fuel cell and 4 electrolyzers.

Such result gives reason to believe that, in small grid-connected applications like the
one here studied, the use of hydrogen storage is quite inefficient: the high capital costs
needed to invest in such equipment make the return of investment particularly small in
absence of economies of scale. Furthermore, the need for an oversized PV system to ef-
fectively make up for the energy lost in the conversion consists in an implicit additional
cost. Site-specific limitations and relatively low PV penetration potential limiting such
oversizing, therefore, also contribute in disfavoring hydrogen storage in favor of using
batteries for the short term storage, and relying on grid imports in case of necessity.

This is also confirmed by the analysis of a scenario in which the capital costs of the hy-
drogen components are set to decline, according to optimistic forecasts found in scien-
tific literature. Even with such premises, the benefits in terms of security of supply and
self-sufficiency brought by the adoption of such long term storage are not balanced by
the additional expenses, and the grid still represents the most favourable mean to sup-
ply electricity in times of scarcity. Generally, it can be concluded that this study confirms
the skepticism about the adoption of hydrogen storage, although without excluding its
potential application on a large scale, for example at the utility level.

Price uncertainties were additionally investigated through the study of two additional
scenarios. The simulation of a Real-Time Pricing Scenario, despite confirming the high
costs necessary to achieve high degrees of self sufficiency and reliability, has demon-
strated that the application of time-varying tariffs can efficiently reduce the prosumers’
expenses, as well as being beneficial for grid operators. In particular, smart price-aware
energy management strategies can represent a significant further advantage for the En-
ergy Community’s users.

The main challenge of this work was to obtain satisfactory solutions despite the clear
contradicting nature of the goals considered. While the clash between cost and self-
sufficiency was straightforward to predict, the influence of the reliability objective was
spotlighted by the analysis of the Infinite Grid Scenario. When the possibility of power
failures is completely overlooked, the additional costs to reach full reliability are consis-
tently high (to a varying degree, depending on how much such additional reliability is
provided by the system’s own production). On the other hand, accepting limited outages
(occurring less than 1.5 percent of the time) brings a considerable advantage in terms of
cost reduction.

Overall, the clashing nature of the objectives is reflected on the best trade offs found.
Despite the best solutions would achieve an optimal compromise considering all the
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necessities of the Community, this study has also shown how the overall costs (higher
than 1 €/kWh) would be significantly high if compared to residential energy prices. In
order for the costs to be competitive, the system would need to be sized in such a way
that at least half of the load would be supplied with imports from the external grid. These
solutions feature about half of the PV capacity with respect to the best trade offs, and a
maximum of 30 kWh of electrical storage capacity.

7.2. ANSWERING THE RESEARCH QUESTIONS
The thesis work has been conducted in order to give an answer to specific research ques-
tions formulated in 1.2, which will be here answered. The first question posed was :

What is the best sizing configuration for a grid-connected energy community in The
Green Village under technical and economical aspects?

To answer this question , it is worth to mention that the best solutions individuated could
be adopted in The Green Village as part of the pilot 27/7 Energy Lab project, in which
the costs are partly covered with research funding and not totally by the Community
Users. In this case, both the Base Case and the Infinite Grid Scenario sizing configura-
tions would be suitable, with the latter employing both short term storage in the form
of batteries and long term storage in the form of hydrogen. However, when translat-
ing such results to real small scale Energy Community cases, the presence of a reliable
grid-connection capable of supplying at least half of the load demand is of capital im-
portance to face reasonable costs, and the use of hydrogen storage is still far from being
convenient.

Secondly, the uncertainty about the future pricing schemes evolution was addressed
through the following question:

What is the influence of different electricity pricing conditions on the design and
sizing of a grid-connected energy communities?

This research has shown how the adoption of time-varying electricity tariffs is beneficial
for Energy Communities users who can exploit the possibility of selling energy to the
outer grid to gain profits. The optimal sizing configuration, however, is not significantly
affected with respect to when flat tariffs are applied. A decrease in the Energy Commu-
nity users’ charges can be achieved by employing smart energy management strategies,
aware of the current price of electricity. This benefit, however, is not significant enough
to justify the adoption of, for example, a larger storage capacity to further exploit the op-
portunity of windfall profits, at least in small scale applications like the one here studied.

The third research question, regarding the uncertainties about the use of the hydrogen
storage, was:

To what extent the adoption of a hydrogen system can benefit a grid-connected energy
community under different pricing conditions?
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This research has shown that the adoption of an hydrogen storage system is far from
being convenient on a small scale residential level, regardless the pricing conditions. In
both the flat and time-varying tariff scenarios, the best trade off solutions do not employ
any kind of hydrogen storage, because of the uneconomical capital costs involved and
the absence of economies of scale for such small investments. This result is confirmed
by the simulation of a case in which such costs significantly decrease, on the basis of
forecasts depending on the future growth of the hydrogen market. The analysis, however,
has also highlighted the importance of long term storage in achieving full self-sufficiency
and extremely high reliability, two conditions that are hardly ever met with the sole use
of short term storage in the form of batteries. While this result might less relevant when
dealing with grid-connected systems, it acquires more significance for research focused
on remote, off-grid configurations.

7.3. LIMITATIONS OF THE WORK
The results of this thesis have been obtained after a thorough application of good engi-
neering practices applied with a critical attitude. Nonetheless, it is important to empha-
size some limitations that might have influenced the final findings, to a certain extent.

As per the solar energy output modeling, shading effects were not taken into account.
As mentioned, the actual data relative to the incident irradiance in Delft were used to
obtain the estimate of the final output, but with the assumption of a clear horizon that is
not always respected for some of the areas in which the panels are assumed to be placed.
It is true, however, that most of TGV’s area does not have significant obstacles to the pen-
etration of sun rays, especially for the rooftops placed at the center of the village. Some
trees surrounding the environment could be cause of partial shading, just like the build-
ings themselves can represent an obstacle for the grounded panels.

Similarly, the simple modeling of the system’s components implemented does not ac-
count for aspects such as temperature influence (e.g. in the start up phases of the elec-
trolyzers/fuel cells) and other influencing factors. The energy flow modeling doesn’t in-
volve electrical parameters like the system’s frequency and voltage, but it was meant to
have an overview on the electrical energy exchanges throughout all the components.
The necessity to look at the system’s functioning from a broad perspective made it nec-
essary to simplify some specific aspects in order to be able to focus on the macroscopic
aspects of the sizing.

The case study itself, moreover, was of course influenced by the availability of the con-
sumption data. As mentioned in Section 4.2, a post-processing of such data was nec-
essary to deal with some gaps and inconsistencies. Most of it were solved also in con-
sultation with an advisor from The Green Village, but it is necessary to clarify that the
load demand used in this study is not completely representative of the real-life load in
the year considered. The limited availability also influenced the time span of the sim-
ulations, which is now currently of 1 year: clearly, a higher data availability and longer
simulations could have brought to more accurate results.
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Lastly, the optimization is surely depending on the available computing tools. The sim-
ulation parameters were tuned to obtain a satisfactory results in terms of balance be-
tween computational time and accuracy of the results, but clearly there is still room for
improvement. For example, the adoption of supercomputers and specifically tailored
optimization software could bring additional value to the research by expanding the so-
lution space and the vastness of the obtained results. Moreover, more powerful com-
puters would allow to shorten the time required to obtained the results of simulations,
allowing to gather more results and increasing the precision.

7.4. RECOMMENDATIONS FOR FUTURE RESEARCH
For future work, some considerations can be drawn on the basis of the findings of this
thesis. Based on the available data provided by The Green Village, this work has focused
on providing the electricity needs of the Community, assuming all houses to be fully
electrified (which is actually the case for the reference houses considered). Following
research may include the heating necessities of Energy Community by means of the in-
troduction of an heat grid: because of the residual heat generated by the fuel cells, this
technology could play a more relevant role in such cases.

The analysis of the Real Time Price Scenario has brought to light the possibilities for
cost abatement with the adoption of a smart energy management strategy. More spe-
cific works focusing on the comparison of these strategies could be carried out to find
the optimal energy dispatch method with respect to this application.

More diverse configurations can also be part of future research: the simulations of the
Unlimited PV Penetration Scenario showed how a larger availability for solar energy ca-
pacity can represent a good way to abate costs. Investigating alternative renewable gen-
eration sources like biomass generators or the use of small wind turbines can represent a
way to overcome the physical constraints of the location studied. Moreover, alternative
storage technologies should be considered to balance the need for storage with the high
costs involved.

Lastly, as mentioned in the previous section, future work could focus on improving this
and similar research by adopting more accurate models for the components used and
their interactions. As an example, considerations about the batteries’ cycling and its
influence on their lifetime can be taken into account, as well as a more detailed modeling
of the electrical characteristics of the energy flows.
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APPENDIX - LITERATURE REVIEW

SUMMARY

The following table summarizes the most relevant studies reviewed about the adoption
of Optimization Algorithm to size small and medium-scale Energy Systems.

Authors,
Year

System’s con-
figuration

Objective(s)
Optimization
Method

Alternatives
Selection
Method

Wang et al.,
2020

PV-WT-
Biomass-
storage,
off-grid

Minimize
Cost,Land
Use and Vi-
sual Impact

NSGA-II
TOPSIS
(multi-actor
criteria)

Attia et al.,
2021

PV only, grid-
connected

Minimize:
Total Costs;
Carbon
Emissions.
Maximize
Reliability

Augmented
epsilon

TOPSIS con-
straint 2
(AUGME-
CON 2)

Bista et al.,
2020

PV-BAT-DG-
Biomass, grid
connected

- HOMER PRO -

77
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Dash et al.,
2018

PV-Diesel-
WT-Batteries
(considered
alternatives,
configuration
oprimized
by HOMER),
both grid
connected
and off-grid

Cost HOMER PRO -

Akhavan
Shams and
Ahmadi, 2021

PV-WT-BAT,
grid con-
nected &
PV-WT-H2,
grid con-
nected

Annual Total
Cost (Emis-
sions are
taken into
account
as a cost
in the obj.
Function)
Different
degrees of
self suffi-
ciency are
imposed as a
constraint

GA -

Kusakana,
2019

Storage Only Cost
Linear Opti-
mization

-

Fan et al.,
2022

PV-H2-BAT
+ Heating
utilities, Grid
connected

Annual Car-
bon Emis-
sions; Annual
Total Costs;
Total Grid
Interaction

NSGA-II TOPSIS

Narayan et
al., 2019

PV-BAT,
off-grid

Minimize
Cost (costs
are mini-
mized by
maximizing
the battery
lifetime while
minimizing
their size),
LLP, Energy
dump

NSGA-II (ga-
multiobj in
MATLAB)

-
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Human et al.,
2014

PV-WT-Bat-
H2, off-grid

Maximize:
Efficiency
and Reliabil-
ity Minimize :
Total costs

SOGA and
MOGA

-

Alsayed et al.,
2013

PV-WT, grid
connected

Minimize
Emissions
and Costs.
Maximize
Social Accep-
tance (based
on land use)

Generation
of alterna-
tives based
on step-sized
variations
ranging from
100% PV to
100% WTs.

Various Multi
Criteria Deci-
sion Making
Approaches.

Dufo-López
and Bernal-
Agustín, 2008

PV-WT-
Bat-H2-
Diesel,off-
grid

Minimize :
Total Cost,
Unmet load,
Carbon
Emissions

Strength
Pareto Evo-
lutionary
Algorithm
(SPEA), for
the sizing and
a secondary
algorithm
for the con-
trol. The
secondary
algorithm
is a GA that
searches
for the best
control strat-
egy for each
combination
of compo-
nents in the
main algo-
rithm. This
GA is mono-
objective
(minimiza-
tion of the
costs)

-
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Kiptoo et al.,
2019

PV-WT-
Pumped Heat
storage, off
grid

Minimize To-
tal Cost and
Loss of Power
supply Prob-
ability

MOPSO -

Baghaee et
al., 2017

PV-WT-H2,
off-grid

Costs over
the 20 years
of operation,
Loss of Load
Expected
and Loss of
Energy

MOPSO
Fuzzy
method

Yu et al., 2021
PV-WT-BAT,
off-grid

Minimize
Cost, Loss
Load,
Dumped
Energy

NSGA-III -

Yaghi et al.,
2019

PV-WT-BAT-
Diesel Gen-
erator, grid
connected

Minimize
Cost and
Emissions

NSGA-II -

Wentao et al.,
2018

PV-WT-BAT-
Diesel Gen-
erator, grid
connected

Minimize
Cost, Emis-
sions, Loss of
Power Supply
Probability

MOPSO -

Jahangir et
al., 2016

PV-WT-BAT-
Diesel Gen-
erator, grid
connected

Minimize
Investment
Cost, Emis-
sions and
Power Loss

GA, three
objectives in-
side a single
obj. Function

-

C. Zhang et
al., 2022

PV-H2-BAT
+ Heating
utilities, Grid
connected

Minimize
Cost of
Energy
Maximize
ER(Demand/
Total Input
Energy);
Renewable
fraction

Sequential
Quadratic
Program-
ming

" Analytic Hi-
erarchy Pro-
cess (AHP)
and Criteria
Importance
Through In-
tercriteria
Correlation
(CRITIC)
mixed
weighting
method
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Shang et al.,
2023

PV-WT-H2-
GT, grid-
connected

Maximize
Net Present
Benefit. Min-
imize Carbon
emissions
and Loss
of Energy
Conversion

NSGA-II

Entropy
model and
Cumulative
Prospects

Raja and De-
troja, 2018

PV-BAT, grid
connected

Cost

Single Objec-
tive Linear
Program-
ming

-

N. Zhang et
al., 2021

PV-WT-BAT,
off-grid

Minimize
Cost, Loss of
Power Supply
Probability

MOPSO

Selection of
the solution
based on the
normalized
values of the
objective
functions for
each solution

Ghorbani
et al., 2018

PV-WT-BAT,
off-grid

Minimize
Cost, Loss of
Power Supply
Probability

Hybrid GA-
PSO

-

B. Li and
Roche, 2021

PV-Bat-H2,
connected to
a Generating
station with
same charac-
teristics

Minimize :
Total costs,
Exchanged
Energy.
Maximize:
Installed
Renewable
capacity

NSGA-II -

Paulitschke
et al., 2015

PV-Bat-H2,
off-grid

Minimize
Cost. Maxi-
mize : Secu-
rity of Supply,
Remaining
H2 at the end
of the year

PSO -

Gharibi and
Askarzadeh,
2019

PV-H2-
Diesel, grid
connected

Minimize
Cost, Loss of
Power Supply
Probability

Multi Ob-
jective Crow
Search Al-
gorithm
(MOCSA)

-
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B
APPENDIX B - RESULTS OF THE

OPTIMIZATION

In this Appendix, the results of the optimization algorithm are shown. Because of the
large amount of variables and results involved, it was not possible to display every single
result of the simulations. Therefore, 20 solutions per Scenario were selected, spanning
over the whole Pareto Set. These solutions are shown in ascending order according to
the result of the TOPSIS ranking method applied.
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