
Learning State Machines in Real-Time on a
Small Dedicated Hardware Device

Clinton Cao

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

LEARNING STATE MACHINES IN REAL-TIME
ON A SMALL DEDICATED HARDWARE

DEVICE

by

Clinton Cao

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on 23 November 2020 at 10:00.

Student number: 4349024
Project duration: October 1, 2019 – November 23, 2020
Thesis committee: Prof. dr. ir. R. L. Lagendijk, TU Delft, Chair of Committee

Dr. ir. S.E. Verwer, TU Delft, Supervisor
Dr. A. Panichella, TU Delft, Committee Member

This research was conducted together with APTA Technologies.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ABSTRACT

The Internet is a technology that was invented in the 1960s and was used only by a few users to do simple
communications between computers. Fast forward to 2020, the Internet has become a technology that is
being used by billions of users. It allows users to communicate with each other across the world and even
allows users to access data without geographic restrictions. The Internet has made the lives of many people
easier but it also comes with a price; many malicious users also want to have access to data. Therefore, it is
needed to secure our networks to make sure that no attackers can exfiltrate data from a network. One way to
do so is to use smart methods to detect anomalies in the network. Recently, a new method has been proposed
to learn state machines in real-time from network traffic data. The state machines are then used for anomaly
detection. This method was designed to be used on a larger system such as a desktop computer.

In this work, we investigated how we can use the newly proposed method to learn state machine in real-
time on a smaller device. Smaller devices are cheaper and more mobile than larger systems but these have
limited resource compared to the larger systems. Therefore, modifications would need to be made to the
method for it to run efficiently on a smaller device. In this work, we propose to use the concepts of Locality
Sensitive Hashing to improve the run-time of different parts of the method. We also attempted to reduce its
memory footprint. In this work, we show the modifications that we have made and evaluated our modifica-
tions with different experiments that used both artificial and real-world data. From our results, it shows that
we can use a smaller device to learn state machines in real-time and use these state machines for anomaly
detection. Though our modifications have provided an improvement on parts of the method, there are still
improvements that can be done.

i

PREFACE

Before you lies my thesis titled "Learning State Machines in Real-Time on a Small Dedicated Hardware Device".
This thesis was written for me to obtain my Master’s degree at Delft University of Technology. Looking back
at my whole journey of writing my thesis, it has taken a bit longer than I have expected. With the Netherlands
also being affected by the Covid-19 pandemic, I had to adapt to a new working routine just like any other
citizen of the country. Nonetheless, this journey was still a nice experience and I have learned much from it.
I can now say that I have made it and I am very proud of it. Of course, I could have not made it to the end of
this journey without the support and help of others. I would like to formally thank them here.

Firstly, I would like to thank my supervisor, Sicco, for his guidance throughout this whole journey. Thank
you for helping me when I was stuck and did not know how to proceed further. Also, thank you for the critical
feedback on my work and for motivating me to achieve the best that I can.

Secondly, I would like to thank my daily supervisor, Chris Hammerschmidt, for his guidance and for not
getting annoyed from all the questions that I had asked him throughout this whole journey. Thank you for the
brainstorm sessions, discussions, and feedback on my ideas. I would like to also take the opportunity here
to thank all the colleagues from APTA Technologies. The coffee breaks were always fun and it was also fun to
work with all of you.

Thirdly, I would like to thank Cas, Daniël, Felix, Jehan, Jorai, Maurits, Roy, Tim and Tristan for the fun
coffee and lunch breaks. Though the pandemic has limited the number of breaks that we could have had
with each other, it was always fun to have a chat with all of you during the breaks. Of course, the coffee and
lunch breaks would not be fun without our beloved Sandra. I would like to thank you for the coffee breaks
and also helping me with all the tasks that were related to the graduation process.

Finally, I would like to thank my friends and family for their support throughout my studies. Thank you
all for the fun and laughs that we have had with each other, these were much needed. Also, thank you all for
the mental support that you all have given me. This journey would not have been as fun as it was without
every single one of you.

Clinton Cao
Delft, November 2020

ii

CONTENTS

1 Introduction 1
1.1 Detecting Anomalies using Embedded Devices . 2
1.2 Problem Statement . 2

1.2.1 Motivation of using LSH . 2
1.3 Research Questions . 3
1.4 Contributions . 4
1.5 Thesis Outline . 4

2 Background 5
2.1 State Machines . 5

2.1.1 Using State Machines for Anomaly Detection . 5
2.2 Blue-Fringe Algorithm . 6

2.2.1 Adapted Version of the Blue-Fringe Algorithm . 7
2.3 The Streaming Paradigm . 7

2.3.1 Sampling Methods . 7
2.3.2 Other Existing Streaming Algorithms. 8
2.3.3 Existing Data Processing & Streaming Frameworks . 9

2.4 Locality Sensitive Hashing (LSH) . 10
2.4.1 LSH Hashing Methods . 11

2.5 Related Work . 14
2.5.1 Solution Not Utilising State Machines . 14
2.5.2 Solutions Utilising State Machines . 15

3 Methodology 17
3.1 Selecting the Hashing Method For Our LSH Approach . 17
3.2 Using LSH to Hash States . 18

3.2.1 State Representation for Hashing . 18
3.3 Evaluating the Hashing of States . 19

3.3.1 Assessing the Items in the Buckets . 19
3.3.2 Assessing the State Machines Learned Using LSH . 21
3.3.3 Run-time Analysis of the State Merging Process . 22

3.4 Using LSH to State Machines . 22
3.4.1 State Machine Representation for Hashing. 22

3.5 Evaluating the Hashing of States Machines . 26
3.5.1 Assessing the Usage of State Transition Tables . 27
3.5.2 Assessing the Usage of the Language. 28
3.5.3 Assessing the Usage of State Distribution Over the Buckets 28
3.5.4 Run-time Analysis of Finding a Most Similar State Machine 29
3.5.5 Run-time Analysis of Finding a Most Similar Fingerprint. 29
3.5.6 Assessing the Clustering of State Machines of Malware 31

3.6 Running the Method On A Raspberry Pi. 31
3.6.1 Learning State Machines from Malicious NetFlow Data 31
3.6.2 Assessing the Scalability of the Method on Raspberry Pi 31
3.6.3 Run-time Analysis of Finding a Most Similar Fingerprint on Raspberry Pi 31
3.6.4 Run-time Analysis Of State-Merging Process on Raspberry Pi 32

4 Clustering States 33
4.1 Experiments that Used Artificially Generated Data . 33

4.1.1 Clustering Artificially Generated Vectors Using LSH . 33
4.1.2 Run-time Analysis Of State-Merging Process - Part 1 . 35
4.1.3 Run-time Analysis Of State-merging Process - Part 2 . 37

iii

CONTENTS iv

4.2 Experiments that Used Real-world Data . 38
4.2.1 Comparison of the Generated State Machines . 38

4.3 Conclusion on the Hashing of States Using LSH. 39

5 Clustering State Machines 41
5.1 Experiments That Used Aritficially Generated Data . 41

5.1.1 Using State Transition Tables to Cluster State Machines 41
5.1.2 Using Language of State Machine to Cluster State Machines 42
5.1.3 Using the Distribution of the States Over the Buckets to Cluster State Machines 44
5.1.4 Run-time Analysis of Finding Similar State Machine . 45

5.2 Experiments That Used Real-world Data . 46
5.2.1 Run-time Analysis of Finding a Most Similar Fingerprint. 46
5.2.2 Clustering State Machines from Benign and Malicious NetFlow Data 47
5.2.3 Experiment Setup . 47
5.2.4 Analysis of the Results . 48

5.3 Conclusion on the Hashing of State Machines Using LSH . 48

6 Learning State Machines On Raspberry Pi 50
6.1 Experiments that Used Real-world Data . 50

6.1.1 Running New Method On An Embedded Device . 50
6.1.2 Assessing the Scalability of the Method on the Raspberry Pi 51
6.1.3 Run-time Analysis of Finding a Most Similar Fingerprint on Raspberry Pi 53

6.2 Experiments that Used Artificially Generated Data . 54
6.2.1 Run-time Analysis of State-Merging Process On The Raspberry Pi 54

6.3 Conclusion on Learning State Machines on the Raspberry Pi 55

7 Discussion 56
7.1 Limitations of our LSH approach to learn State Machines. 56
7.2 Limitation of our Evaluation . 57

8 Conclusions & Future Work 58
8.1 Future Work. 60

A More Clustering Results of States 62
A.1 Clustering Artificially Generated Vectors . 62
A.2 Comparison Results of State Machines . 64

B More Clustering Results of State Machines 66
B.1 Clustering Results Using the State Transition Table of the State Machines. 66
B.2 Clustering Results Using Language of the State Machines . 70
B.3 Clustering Results Using the Distribution of States Over the Buckets 74
B.4 Clustering State Machines From Benign and Malicious NetFlow Data 77

C More Results from the Raspbery Pi Experiments 78
C.1 Comparison Between State Machines that were Learned on the Raspberry Pi. 78
C.2 Assessing the Scalability of the Method on the Raspberry Pi 80

Bibliography 81

1
INTRODUCTION

The Internet, a technology that was invented in the 1960s to allow computers to do simple communication
with each other. Since then, the Internet has only been growing and it is being utilised by many users across
the world. According to Statista, there are over 4.33 billion active users of the Internet as of July 2019 [1].
With this many users online, one can expect that many machines are connected using the Internet and that
different types of data can be accessed at any time and anywhere. Take the cloud as an example, one can
upload their photos onto the cloud and then access them without any geographic restrictions (granted that
they have an internet connection). This eases the lives of many people as they do not have to be physically
there to access the data, they just need to be connected to the internet and they can retrieve the data that they
need. This does not only benefit the casual internet user but also corporations; employees of a company can
access company data via the internet when they are on a business trip or when they are working from home.

Having the possibility to access data at any time and anywhere also comes with a price; some malicious users
(attackers) also want to have access to the data and they can gain access to the data without any geographic
restrictions. There are many motives why an attacker would like to have access to the data. Different studies
have shown that the major motive of an attacker is financial gain [2–4].

There exist different types of methods that an attacker can use to get into the network to get access to the
data. One of these methods is to send out phishing emails to trick individuals to click on a link. Once an indi-
vidual has clicked on the link, they would be redirected to a site where they would need to sign in with their
credentials or download a piece of malicious software. The attacker can then either log the credential that the
individual has used or try to get into the network using the malicious software that was downloaded by the
individual. They can then try to exfiltrate data once they have successfully gained access to the network.

Thus it is essential to make sure that no attackers can gain unauthorised access to the network. Being able
to detect that an attacker is in the network, one can mitigate or even completely neutralise the damage that
they can cause. A widely used solution for this problem is to deploy an intrusion detection system (IDS) on
the network. An IDS is a system that is specifically configured to a given network and detect malicious or
abnormal activities (anomalies). Once an anomaly is detected, an alert will be sent to the network adminis-
trator(s) for further analysis. An IDS, therefore, acts as the first line of defence against attackers that are trying
to infiltrate the network.

Using an IDS does come with a price; some normal activities might be falsely flagged as an anomaly e.g.
benign network traffic data is flagged to be malicious. This is known as a false positive. False positives can
be costly as each alarm that is triggered by a false positive would require a network administrator for further
analysis to verify whether it is indeed a false positive. With the growth of network traffic, analysing false
positives becomes more troublesome as there is a wide variety of network traffic and much of it might be
falsely flagged as anomalies. With the growing number of false positives, network administrators would have
to put in more labour to analyse the false positives.

Additionally, not only does an IDS need to be able to detect that an attacker is in the network, but it should
also trigger the alerts on time. The longer an attacker stays in a network, the more time the attacker has to
find valuable data and exfiltrate the data from the network. Thus by triggering an alert as soon as an attacker
is detected in the network, one can reduce the damage that can be done by an attacker.

1

1.1. DETECTING ANOMALIES USING EMBEDDED DEVICES 2

Therefore when designing an IDS, one need to make sure that it does not produce too many false positives
and that it creates the alerts on time when it has detected that an attacker has infiltrated the network.

1.1. DETECTING ANOMALIES USING EMBEDDED DEVICES
While a lot of research has been done on anomaly detection [5–11], most of the solutions are designed to
work on larger systems such as a desktop computer. To deploy these solutions on an IDS, one would need
to already have such a machine, and if not, they would need to purchase one. This brings an increase in the
costs of deploying such an IDS. One way on how we could reduce the cost is to deploy an IDS on a smaller
embedded device. These devices are usually much cheaper and more portable than a desktop computer.

Smaller embedded devices do have their limitations; they have a limited amount of resources available to
be used. Simply deploying an IDS using the previously mentioned methods will not work out of the box on
a small embedded device. Research has been carried out to assess whether it is possible to detect anomalies
using an embedded device [12–24]. From these works, we see that different solutions have been proposed to
be used to detect anomalies on an embedded device.

From these works, one interesting method is to learn state machine and use them to detect anomalies [21–
25]. The state machines are learned from given input data and they are used to model the normal behaviour
of a given system. When the system has executed a behaviour that was not captured in the state machine, this
is an indication that the system is doing something unusual and this can be flagged as an anomaly. A formal
definition of a state machine is given in Section 2.1.

1.2. PROBLEM STATEMENT
From the works where state machines are learned to detect anomalies, the work that was done by Schouten
is particularly interesting to look at. Schouten proposed a highly effective method that can be used to learn
state machines in real-time from a stream of network traffic data and these state machines can be used to
detect anomalies on a network [25]. In comparison to the works mentioned in Section 1.1, this work uses a
different algorithm to learn and construct the state machines; principles of the Blue-Fringe algorithm is used
to learn the state machines [25]. This algorithm is further explained in Section 2.2.

This method, however, was designed to work on larger systems (e.g. desktops computers/laptops) and
as mentioned before, there are benefits for using an embedded device to detect anomalies. In this work, we
investigate how we can utilise this method to learn state machines in real-time on an embedded device. We
hypothesise that the current implementation of the method might work out of the box on an embedded de-
vice but it will run into performance issues due to limited memory and processing power of the embedded
device. Thus modifications would need to be made for it to work efficiently on an embedded device. Our
hypothesis is based on the frameworks that are used to implement the current solution and because it was
designed to work on a larger system that has more resource available. In this work, we specifically investi-
gated how we can use the concepts of Locality Sensitive Hashing (LSH) [26] to make modifications on the
method to improve its run-time. The concept of LSH is further explained in Section 2.4. Additionally, we
will also investigate how we can use the Misra-Gries Summary algorithm to reduce memory consumption. A
description of the algorithm is given in Section 2.3.2.

1.2.1. MOTIVATION OF USING LSH
In the current implementation of the method, the state-merging process would require us to go through all
the states to find the most similar state. A visual representation of this process can be seen in Figure 1.1. When
dealing with a large number of states, this would have an impact on the run-time of the learning process. To
reduce the number of states that we need to evaluate in this process, we use LSH to hash each state into
a bucket. The intuition behind this idea is that similar states would be hashed into the same bucket and
when looking for the most similar state for a merge, we only need to search for a most similar state within
a particular bucket. This approach can be seen as an approach to cluster similar states together and each
bucket represents a cluster. A visual representation of this process can be seen in Figure. 1.2.

Additionally, the Kullback-Leibler divergence (KL-Divergence) is used as a metric to compute the simi-
larity between two state machines. This metric measures how much one statistical distribution differs from
another [27]. By using the concepts of LSH to not just only hash states but also to hash state machines, it
provides us with a method to cluster similar state machines together. Thus we make an extension on the
current method to not only detect anomalies but also cluster state machines. The intuition behind this idea
is the same as the one for hashing states: similar state machines would be hashed into the same bucket and

1.3. RESEARCH QUESTIONS 3

each bucket represents a cluster. In the current implementation, to see whether there are state machines
that model the same behaviour (i.e. finding cluster of state machines), pair-wise comparisons would need
to be done between all the state machines. When the number of state machine grows very large, this would
impact the performance. With LSH, we only need one single pass over the state machines to find similar state
machines and there is no need to do any pair-wise comparisons.

Figure 1.1: Finding the most similar state (marked in green) for a given state (marked in yellow) using the original state-merging
method. In this example, we would have to iterate over 5 states before finding the most similar state.

Figure 1.2: Finding the most similar state (marked in green) for a given state (marked in yellow) using LSH. In this example, we have to
iterate over 1 state before finding the most similar state.

1.3. RESEARCH QUESTIONS
The objective of this research is to learn state machines in real-time from a stream of network traffic data
on an embedded device. To investigate whether this is possible, we use the concepts of LSH to make opti-
misation on the original method so that it can be run efficiently on a smaller embedded device. This let us
formulate the following research question (RQ):

RQ: How can we learn state machines in real-time from a stream of network traffic data on an
embedded device?

This research question is further broken down into the following subquestions (SQ):

1. What kind of modifications do we need to make to the original method that is proposed by
Schouten?

2. How can we cluster states using LSH?

3. How much do the state machines, that are learned using the LSH approach, differ from the
ones that are learned using the original method?

1.4. CONTRIBUTIONS 4

4. How can we cluster state machines using LSH?

5. How does LSH perform in comparison to KMeans Clustering?

6. How does the new version of the method, that utilises LSH, perform on a smaller embedded
device?

1.4. CONTRIBUTIONS
The answers to the questions that are listed in Section 1.3 would provide us with more insights on the follow-
ing points:

• Firstly, we show whether it is possible to apply the method that was proposed by Schouten [25] on an
embedded device, and thus also, to the best of our knowledge, be the first to show whether it is pos-
sible to learn state machines in real-time on an embedded device, using the Blue-Fringe algorithm.
Being able to do so, it would also show that there is no need for large expensive systems to learn state
machines from a stream of NetFlow data. Embedded devices are more mobile and cheaper when com-
pared to the larger systems.

• Secondly, to our best knowledge, this is the first work that utilises the concepts of LSH to cluster states/state
machines together. This work provides insights on how we have represented each state/state machines
and how we have used this representation for clustering.

• Finally, we provide empirical evaluations on how well LSH performs in the creation and clustering
of state machines. The clustering performance of LSH is compared to the clustering performance of
KMeans Clustering. This provides insights on how well LSH performs in comparison to a well-known
clustering algorithm.

1.5. THESIS OUTLINE
The rest of this thesis is structured as follows: Chapter 2 we provide necessary background information that
is needed to understand the concepts and terms that are explained in this thesis. Chapter 3 describes the
methodology of how we approached this research. Chapter 4 and Chapter 5 present the results of the exper-
iments where we clustered states and state machines using LSH, respectively. Chapter 6 presents the results
of the experiment that we have run on an embedded device. In Chapter 7, we discuss the limitations of our
work. Finally, in Chapter 8, we conclude our work and list some future work.

2
BACKGROUND

In this chapter, we provide a detailed description of the terms and concepts that are used in this thesis. These
terms and concepts are important for the understanding of the work that is done in this thesis. First, we
provide the formal definition of a state machine in Section 2.1. Then in Section 2.2, we describe the Blue-
Fringe algorithm. A description of the streaming paradigm is given in Section 2.3. Section 2.4 describes the
concept of Locality Sensitive Hashing. Finally, Section 2.5 provides some related work. The reader can feel
free to skip or skim through this chapter if they are already familiar with the concepts that are explained in
this chapter.

2.1. STATE MACHINES
A state machine (formally known as a finite-state automaton or a finite-state machine) is a mathematical
model that is used to describe a system and its behaviour. Formally, a state machine is defined as a 5-tuple
(Q, Σ, δ, q0, F) [28], where:

• Q is the finite set of states.

• Σ is a finite set of symbols that are used as input.

• δ is a function that describes how the machine will between states based on the given input.

• q0 is the start state of the machine, where q0 ∈Q

• F is a set of final states of the machine, where F ⊆Q.

An example of a state machine is given in Figure 2.1, where Q = {q0, q1, q2}, Σ= {0,1}, F = {q2} and δ is defined
as a transition table that is shown in Table 2.1. The state transition table provides an overview of all possible
transitions that can occur for a given state [28]. The state machine reads the input one character(symbol) at
a time (in this case it can be either a 0 or a 1) and based on the character that it has read, it switches to the
corresponding state.

For example for the string 0110, it switches from q0 to q1. Then it reads the second character and it stays
in q1. For the third character, it stays in q1 again. Finally, it reads the last character and it switches from q1

to q2. Because we ended at q2 after reading the entire input, we say that the state machine has accepted the
input string.

This input string belongs to a set of strings that are accepted by the state machine. We call this set the
language of the state machine. In this example, the language of the state machine is 01*0, where the * denotes
that there are zero or more consecutive ones in the string.

2.1.1. USING STATE MACHINES FOR ANOMALY DETECTION
Knowing the language of the state machine, we know what kind of strings will not be accepted by the state
machine. If a string that is not part of the language still causes the state machine to end up in one of the final
states, then we know that this is an abnormal behaviour of the state machine. This is a useful property that
can be utilised for anomaly detection. As shown in [7, 11, 23, 24], different types of input data can be used

5

2.2. BLUE-FRINGE ALGORITHM 6

Figure 2.1: An example of a state machine that accepts strings from the language of 01*0.

0 1
q0 q1 –
q1 q2 q1

q2 – –

Table 2.1: Transition function, represented as a transition table of example state machine that is shown in Figure 2.1.

to learn state machines. Thus we can use the input data to build the language of the state machine. A string
from the language represents the set of actions that are executed by a system. If the system has executed a set
of actions that are not modelled in the state machine, this implies that we have found a string that is not in the
language but it is still accepted by the state machine. This should be flagged as unusual behaviour (anomaly)
of the system.

However, there is a drawback in using state machines for anomaly detection. In 1989, Pitt and Warmuth
have proved that finding a state machine with the minimum amount of states and that is consistent with the
given training samples, is an NP-hard problem [29]. Therefore, when learning the state machines, we need
to be approximate the state machines. But approximating the state machines, it means that they are not
complete and might not capture all normal behaviours of a system. This consequently means that normal
behaviour might be flagged as malicious behaviour (false positive). The Blue-Fringe algorithm [30] was pro-
posed for the learning of state machines and it works well on randomly generated problems. The algorithm
is further explained in Section 2.2.

2.2. BLUE-FRINGE ALGORITHM
The Blue-Fringe algorithm starts by creating a prefix tree acceptor from the training data [30]. A prefix tree
acceptor (PTA) is a state machine that has the form of a tree. The prefixes in the training data are used to
create the smallest possible state machine [31]. A simple example of a PTA is shown in Figure 2.2. In this
example, the PTA accepts the string ac, ab, ca and cc and they are stored in the leaf nodes of the tree. The
prefixes of each string are stored in the ancestor nodes. Once the PTA has been created, the algorithm colours
the nodes of the tree [30]:

• the root node gets coloured red.

• the children of root node get coloured blue.

• all other remaining nodes are coloured white.

After colouring the nodes in the tree, the algorithm starts to merge states to form a smaller state machine.
The merging of the states is done with the help of the colours; a blue node is merged with a red node. A score
is given for the merge of a pair and it is used to evaluate the quality of the merge. The score of a merge is given
based on three criteria [30]. The merging of the states is an iterative process that consists of the following
actions:

1. Compare each blue node with all red nodes and compute the candidates for merging

2. Compute the score for the candidate and evaluate the merges

3. If no blue node can be merged with any red node, then promote a blue node to a red node and go to
step 1.

2.3. THE STREAMING PARADIGM 7

Figure 2.2: An example PTA that accepts the strings ac, ab, ca and cc.

4. If no blue node can be promoted, then merge the highest scoring candidate and update the colours of
the nodes. Then go back to step 1.

5. Output the final state machine.

2.2.1. ADAPTED VERSION OF THE BLUE-FRINGE ALGORITHM
Schouten has pointed out that the Blue-Fringe algorithm has a high memory footprint and high computation
complexity. This causes scalability issues you want to learn state machines from a stream of data [25]. Thus
an adapted version of the Blue-Fringe algorithm has been proposed by Schouten, namely the Streaming Blue-
Fringe algorithm. The proposed algorithm learns iteratively from the data stream but it does not learn the full
PTA as you would in the Blue-Fringe algorithm. Additionally, approximations are used to set a halting point
for the learning process [25].

2.3. THE STREAMING PARADIGM
There are two methods on how one can process data. The first method is to gather data and store the data in a
(giant) batch, and this will be used later for processing. Because it is gathered in a batch, the data is stationary
and will not change. Additionally, the first and last element of the batch is known. Because the data does not
change, it can be reused multiple times for data processing.

The second method for processing data is called stream processing. In contrary to the first method, the
data comes in a continuous stream and we do not know when we will reach the end of the stream. Thus it is
hard to know which element is the last element of the data stream. Due to the aforementioned properties, we
cannot store the entire stream on disk; we do not know how much space we need to store the entire stream
and adding more disk space would also increase the cost. Additionally, we have a limited amount of time to
process each element of the stream. If we do not process each element from the stream as quickly as possible,
the element might be lost and we might miss important information [26].

One way to solve these issues of stream processing is to sample elements from the stream to create a
summary or an approximation that best describe the whole stream. This summary or approximation can
then be used to answer a particular question(s) [26]. The drawback of this method is that the answers are not
exact and therefore we need to use algorithms that have high accuracy.

2.3.1. SAMPLING METHODS
As mentioned before, one needs to make sure that they sampled elements from the stream that best describe
the stream. Several methods exist for sampling elements from a stream. We will describe three existing meth-
ods.

2.3. THE STREAMING PARADIGM 8

RESERVOIR SAMPLING

With reservoir sampling, a sample of size k it selected from a stream with an unknown length n. Usually, the
first k element of the stream is selected and these are stored in a reservoir with size k. For each consecutive
element i > k of the stream, sample the element with probability k/i . If this element is sampled, then ran-
domly replace one of the previously sampled elements that are stored in the reservoir [32]. At the end of the
stream, the elements that are in the reservoir will be used as the sample that represents the stream.

MIN-WISE SAMPLING

In Min-Wise Sampling, each element in the stream gets a tag. Each tag is just a random number from the
interval of [0,1]. From the stream, only k elements with the smallest tag are kept [33, 34]. These k element
will be used as the sample that represents the stream.

CISCO SAMPLED NETFLOW

The solution that was designed by Schouten uses Netflow data to learn state machines, this means that a
different type of sampling method would need to be used. Cisco has developed a sampling method for this
kind of use case [35]. The method randomly selects one packet out of every n packets. The selected packets
are then aggregated and these are used for approximating the actual statistics of the NetFlow data [25].

2.3.2. OTHER EXISTING STREAMING ALGORITHMS
Besides the sampling methods, there are other existing streaming algorithms, that were developed to solve a
particular problem and we will describe three algorithms. These algorithms were designed to solve some of
the most known problems in stream processing. From these three algorithms, the last algorithm is used by
Schouten to count the sequences that have occurred in a particular state [25].

FLAJOLET-MARTIN ALGORITHM

One well-known in problem in stream processing is finding the number of distinct elements in the stream.
The Flajolet-Martin algorithm is an algorithm that can be used to estimate the number of distinct elements
in the stream with just a single pass over the stream [36]. The algorithm first hashes each element into a n
bit value string. The algorithm keeps track of a bit string that has the largest number of trailing zeroes in the
bit string. Take the bit string 1001000111100000 as an example. In this example, there are 5 trailing zeroes.
Let k denote the maximum number of trailing zeroes seen from the bit strings. At the end of the stream, the
number of distinct elements is estimated using the following formula: number o f di st i ct element s = 2k

MISRA-GRIES SUMMARY

Another well-known problem in stream processing is finding the most frequent elements from a stream with
an unknown size of n. The Misra-Gries Summary is an algorithm that was designed to solve this problem [37].
The algorithm uses associative arrays to store the k most frequent elements and their count. For each element
in the stream, the algorithm checks whether it has seen this element before. If the algorithm has seen this
element, then increment its count in the array that store the count of the element. If the algorithm has not
seen the element before and the array is not full, then store it in the array and set its count to 1. If the algorithm
has not seen the element before and the array is full, then decrement the count of every element in the array
and if the count of an element has reached to 0, then remove it from the array. At the end of the stream, the
algorithm returns the elements that have a frequency of more than n

k [37].

COUNT-MIN SKETCH

Count-Min Sketch is another well-known algorithm to efficiently estimate the frequency of the elements [38].
The algorithm uses a two-dimensional array to store the count of the elements. This two-dimensional array
can be seen as a matrix of size d × w . Initially, each cell in the matrix is set to zero. Additionally, there are
d hash functions, each belonging to a particular row. These hash functions are used to update the count
in the cells. Each hash function takes an element from the stream as the input and hashes this element to
a number that is between 0 and w . This number is the index at where an update will occur in the row. The
corresponding entry of the row is then incremented by one. An example visualisation of this operation can be
seen in Figure 2.3. To get the frequency estimation of an element, one can ask the algorithm to give the count
for that particular element; the element is hashed using the hash functions. The values of the corresponding
cells are then retrieved and the lowest count will be used as the frequency estimation for the element. Count-
min Sketch is an essential algorithm for the work of Schouten, as it is used to compute the most frequent
patterns from the NetFlow data [25].

2.3. THE STREAMING PARADIGM 9

Figure 2.3: The update operation of Count-Min Sketch.

2.3.3. EXISTING DATA PROCESSING & STREAMING FRAMEWORKS
One known problem with processing data today is the fact that data comes in a large volume. One would
need to use scalable solutions to process data. Several frameworks exist that can be used to process data. We
will mention a few of these frameworks.

APACHE HADOOP

Apache Hadoop is a well-known framework for processing a large volume of data across a cluster of comput-
ers using the MapReduce programming model [39]. The framework uses a storage system, that is known as
Hadoop Distributed File System (HDFS), for storing data and distributing data across the cluster of comput-
ers. Processing the data is done in two different phases: the Mapping Phase and the Reduce phase. During
the mapping phase, all data are split into blocks and they are prepared before they are sent to the cluster of
machines. When the splitting and preparations are done, the blocks are shuffled and they are distributed
over the cluster of machines. During the reduce phase, each machine in the cluster aggregates the blocks
and outputs the results. The results of each machine can then be aggregated again. The mapping and reduce
phases can be seen in Figure 2.4.

Figure 2.4: The Mapping phase and Reduce Phase of Hadoop [25].

APACHE FLINK

Another known data processing framework is Apache Flink. In contrast to Hadoop, Flink provides both sup-
port for stream processing and batch processing, whereas Hadoop only supports batch processing [40]. In
Flink, the input data is fed to the source nodes and the results come out of the sink node. In between the
source nodes and sink node, different operations can be performed on the data to get the desired results in
the sink node [25]. An example of this whole process is shown in Figure 2.5. Flink has a built-in fault tolerance

2.4. LOCALITY SENSITIVE HASHING (LSH) 10

mechanism, where a global state is maintained with multiple checkpoints. In case of a failure, the machines
in the cluster can switch back to the last checkpoint and continue with the job[25]. One important property
of Flink is that each element of the stream gets processed exactly once, even in the case of failures [25]. This
is important for the correctness of the results.

Figure 2.5: An example of Flink processing two streams of data [25].

The method that was designed by Schouten utilises Apache Flink for learning and creating the state ma-
chines [25]. Flink was chosen based on the following points [25]: firstly, Flink can a stream of data without
having to store it on disk. Secondly, the property of processing each element of the stream exactly once (even
in case of failures). Finally, Flink achieves a higher performance in comparison to other data processing
frameworks.

APACHE KAFKA

Apache Kafka is a framework that is developed for distributed stream processing [41]. It acts as a messaging
system, where it gathers the messages that are published by the publishers and it forwards them to the corre-
sponding topics. To get the messages that are published to a particular topic, one needs to subscribe to that
topic. In the method that was designed by Schouten, NetFlow data are sent to the Kafka and it redistributes
the data to the corresponding channel in which Flink is connected to [25]. Kafka was chosen due to the fact
it has low latency, it is fault-tolerant, easy to configure and Kafka can be deployed in self-controlled environ-
ments [25]. Using Kafka does have a drawback. As mentioned in [15], a Java Virtual Machine (JVM) is needed
to run Kafka as it is written in Java. As we are trying to apply Schouten’s method on embedded devices, the
devices must have enough memory to run a JVM. Additionally, it was reported that Kafka has a higher latency
in comparison to two other frameworks but it is consistent [15].

2.4. LOCALITY SENSITIVE HASHING (LSH)
Locality Sensitive Hashing is a technique that is used to hash similar items into the same bucket [26]. The
intuition behind this technique is that similar items are more likely to be hashed into the same bucket than
dissimilar items. Figure 2.6 provides an example of items being to hashed their corresponding buckets by
LSH. To hash the items, one or multiple hash function can be used to create the hash for the items. Unlike
cryptographic hash functions, the goal of the hash functions that are used for LSH is not to minimise the
number of collisions but rather to maximise the number of collisions. LSH is a technique that can also be
used to cluster items or do a nearest-neighbour search.

By using hash functions that maximises the number of collisions, it increases the probability that similar
items are more likely to be hashed to the same buckets. While this is the property that we want to have with
LSH, it also means that there is a probability that items are put into buckets in which they are not similar to
any of the other items within the same bucket. These are considered as false positives. Additionally, there
is a probability that similar items might get different hashes and be put into different buckets. These are
then considered as false negatives. An example illustration of a false positive and a false negative is show in
Figure 2.7 and Figure 2.8 respectively. In these two examples, we can consider the first two vectors (v1 and v2)
similar based on their Euclidean distance. Similar can be said for vectors v3 and v4. The hash for each vector
vi (where i = 1,2,3,4) is computed as follow: for each random vector, the dot product is computed between
the random vector and the vector vi . If the dot product is positive, then we get a 1 else we get a 0.

The number of buckets that are used in LSH also have an effect on how the number of collisions that can
occur. If the number of buckets is equal to the number of items or even larger, then the probability for a
collision is very low as each item can be hashed to its own bucket. If the number of buckets is too small, then

2.4. LOCALITY SENSITIVE HASHING (LSH) 11

many collisions might occur but this again could lead to the problem of getting many false positives. One way
to find the right number of buckets to use is to do an empirical evaluation and see which number of buckets
would give the lowest number of false positives.

Figure 2.6: An example of items being hashed to their corresponding buckets by LSH.

Figure 2.7: An example of a false positive in LSH. Vector v1 is similar to vector v2 and vector v3 is similar to vector v4. We expect that
vectors v1 and v2 should get a same hash, and vectors v3 and v4 should get the same hash. From the final hashing results, we see that

vectors v1, v2 and v3 got the same hash but vector v3 is not similar to v1 nor v2. Therefore vector v3 is a false positive.

2.4.1. LSH HASHING METHODS
There exist different hashing methods that can be used for LSH [26]. We provide a description of three existing
methods in the following paragraphs.

MINHASHING

MinHashing is a method that can be used to compute the similarity between two sets of elements/items.
There is a universal set that contains all the elements/item that can occur and there exist several subsets of

2.4. LOCALITY SENSITIVE HASHING (LSH) 12

Figure 2.8: An example of a false negative in LSH. Again here vector v1 is similar to vector v2, and vector v3 is similar to vector v4. We
expect to see that the vectors that are similar to each other should get the same hash. From the final hashing results, we see that vectors

v2 and v3 a different hash than the one that we expected them to get. Vectors v2 and v3 are false negatives.

this universal set. For this method, two different matrices would need to be constructed [26].
The first matrix (also known as the characteristic matrix) defines which elements exist within a particular

subset. Each row of this matrix represents an element from the universal set and each column represents a
subset. A 1 would be put in a cell of the characteristic matrix if the element exists in the corresponding subset.
A 0 would be put in a cell if the element does not exist in a particular subset. An example of a characteristic
matrix is shown in Figure 2.9.

Figure 2.9: An example characteristic table for MinHashing. In this example, there is a universal set U = {a,b,c,d} and three subsets,
namely S1 = {a,c},S2 = {d} and S3 = {b,c}.

The second matrix (also known as the signature matrix) is constructed as follow: First, n permutations is
computed on the rows of the characteristic matrix. Then the entries of each row of the signature matrix are
computed by following the order of a permutation and finding the first 1 that occurs in a particular column.
An example of this process is shown in Figure 2.10.

Figure 2.10: An example characteristic table for MinHashing. In this example, there is a universal set U = {a,b,c,d} and three subsets,
namely S1 = {a,c},S2 = {d} and S3 = {b,c}.

The signature matrix can then be further divided into b number of bands, where each band has its own hash
function that is used to hash the signatures into different buckets [26].

HAMMING DISTANCE

The Hamming distance can be used to compute how similar two elements are based on their binary repre-
sentation. To do so, one would need to have a hash function that maps each element from one space to the
binary space i.e. each element will be transformed into a binary vector [26]. With this binary representation,
one can compute the Hamming distance between elements. When the Hamming distance between two bi-
nary vectors is zero, then these two elements are the same. Let us do a simple example of computing the
Hamming distances between four items. First, we use a simple hash function that takes the decimal value

2.4. LOCALITY SENSITIVE HASHING (LSH) 13

of an item and compute its binary value. This is show in Figure 2.11. Then we compute the Hamming dis-
tances between the four items and the results are shown in Table 2.2. When we look at the hamming distances
between the four items, we see that X1 is similar to X2 and X3 is similar to X4.

Figure 2.11: Example of hamming distance: computing the binary representation of the items.

Binary Values 0000101 0000111 1101000 1101001
0000101 0 1 5 4
0000111 1 0 6 5
1101000 5 6 0 1
1101001 4 5 1 0

Table 2.2: Hamming distances between the four items.

RANDOM HYPERPLANES

Random Hyperplanes (also known as Random Projections) is a method in which the space where the ele-
ments are located, is separated into different regions by drawing hyperplanes through that space [26]. The
intuition behind this method is the similar items will be put into the same region and dissimilar items will be
put into different regions. A visual representation of this of a space that is separated by random hyperplanes
is shown in Figure 2.12

Figure 2.12: An example of a space that is separated into different regions by three different hyperplanes.

For an item to be put within a particular region of the space, we would need to compute the hash of the item.
Before the start of the computation, we define a list of vectors, denoted as Lvector s . These vectors contain
random numerical values that can be either negative or positive. This list of vectors can be seen as a matrix,
where each row represents one vector. The vectors are created only once and will not be changed. The hash
of an item is then computed as follow:

• The item is transformed into a vector vi tem that contains numerical values.

• The dot product is computed between vi tem and each random vector in the Lvector s .

2.5. RELATED WORK 14

• If the dot product between vi tem is negative, a 0 is returned. If the dot product is zero or higher, then a
1 is returned.

• The zeroes and ones (that were returned from the dot product computations) are then concatenated
to form one single bitstring, which is used to represent the hash of the item [26] and to determine in
which bucket the item will be put into.

An small example of the hashing process is shown in Figure 2.13. In this example
Lvector s = {{−1,1,−2,2}, {1,5,3,7}, {−1,−2,3,−8}, {0,5,−1,3}} and vi tem = {1,6,2,2}. Based on the dot product
values, we get the 1101 as the hash for the item.

Figure 2.13: A small example of the hashing process that is done in the Random Hyperplanes method.

2.5. RELATED WORK
When it comes to the design of an anomaly detection method, there is no best way to do it. As mentioned in
Chapter 1, two important points should be taken into account when designing an anomaly detection method:
the method should not produce a lot of false positives and an alert should be triggered as soon as an intrusion
has been detected. Several solutions have been proposed, each using a different method to detect anomalies.
We discuss a few of these solutions in this section.

2.5.1. SOLUTION NOT UTILISING STATE MACHINES

BREURKES ET AL.
Breurkes et al. have proposed a solution that detects anomalies by using two main methods: comparing the
distribution of log data and checking whether there is unusual behaviour in the Markov models that were
created for the processes [5]. The intuition behind these two methods is that the distributions of the log data
and Markov models of the processes should be similar when the system is behaving as it should be. When a
large difference is detected in the distributions or models, then this might be a signal that the system is doing
something unusual. This work differs from ours as no state machines are learned from the log data, Markov
models are learned instead.

KORTEBI ET AL

Kortebi et al. have proposed another solution to detect anomalies using what they call the "FlowMon Traffic
Monitoring" approach. In this approach, network packets are collected and then the statistics of the IP flows
are calculated. These statistics are used later for anomaly detection [6]. The solution is more efficient when
compared to methods that monitor traffic based on full packet capture. Additionally, the solution is also
compatible with encrypted traffic. It was shown through an experiment that the solution can be used on a
home network and that it could bring benefits to different actors: users of the home network and Internet
Service Provider (ISP). This work also differs from ours as no state machines are learned from the network
packets.

2.5. RELATED WORK 15

2.5.2. SOLUTIONS UTILISING STATE MACHINES

PELLEGRINO ET AL

Pellegrino et al. have proposed their solution, BASTA, which uses probabilistic real-time automata to create
fingerprints from network traffic streams of the host [8]. In this solution, the focus in on the timed events
because of time information is an important property that can be used to characterise network traffic. Two
strategies are used for finding the same infection on a host: error-based and fingerprint-based. In the error
based approach, a new host is compared with a known malicious host and it is checked how many symptoms
does a new host have in common with a malicious host. In the fingerprint approach, uses a known mali-
cious dataset to create fingerprints of the distinguishing malicious symptoms. It is then checked at a new
host whether they have these particular symptoms. From the experiments, it was found that the error-based
method works better on a dataset that does not have any noise and the fingerprint-based method works bet-
ter on a noisy dataset. Additionally, it was shown that BASTA has a high performance, even in experiments
with a difficult setting. Though this work does learn state machines from a stream of data, it does not use
Blue-Fringe algorithm to learn the state machine and the machines are not learned on an embedded device.

UMADEVI ET AL

Umadevi et al. have proposed a solution that utilises timed automata to detect vulnerabilities in Cyber Physi-
cal Systems (CPS) [11]. A CPS is a distributed system that consists of multiple processes. Each process reports
their state to the set of control devices. Based on the state of the processes, the control devices decide on the
action that needs to be executed. In this work, the authors have put their focus on the Secured water treat-
ment (SWaT) system. The system is divided into six stages and for each state, a Non-deterministic Timed
Automaton (NTA) is learned. These NTAs model the interactions between the different modules (within a
particular stage), the sensors and actuators. What is different in this research in comparison to other works,
is that automaton is not used to detect anomalies in the system but to detect possible vulnerabilities in a
system. It seems that this solution is more of a preventive solution than a reactive solution. This work differs
from ours as the method that was designed by Schouten is a reactive solution.

SCHOUTEN

As mentioned before, Schouten has proposed a new method that learns state machines in real-time from a
stream of network traffic data and these state machines are used to detect anomalies in a network [25]. This
method uses an adapted version of the Blue-Fringe algorithm to learn the smallest state machines. In con-
trast to the original Blue-Fringe algorithm, a full PTA is not learned before the merging occurs; sketches and
approximations are used to create a PTA and stop the learning process. The solution is implemented using
Apache Flink and Apache Kafka to process the stream of network traffic data and learn the corresponding
state machines. The work that is done by Schouten forms the basis for our work.

SOLUTIONS ON EMBEDDED DEVICES

EZEME ET AL

Ezeme et al. have proposed a solution that can detect anomalies on real-time embedded systems [14]. This
solution is designed to not just be used on the application layer but also other layers of the system. It uses
a model that creates a hierarchy in which temporal relationships is learned among events that occur in the
system. Additionally, the impact that each feature has on other features. With this information, the model can
then filter out irrelevant information. The model that is learned can then be used to detect anomalies that
occur within the system. The events can be gathered from the execution traces of the system. The solution
uses a semi-supervised learning method that is based on the closed world approach. Such learning method
can be used because you know exactly what the standard behaviour is of the system. Though it has been
shown that this solution has better performance in comparison to two other solutions, there is an assumption
that one would need to have a system with well-defined behaviour. It is questionable what is considered as
a system that has a well-defined behaviour. This work differs from ours as we do not create a hierarchy from
the NetFlow data. Also, no state machines are learned using this method.

SFORZIN ET AL

Sforzin et al. have investigated in their work whether it is possible to run an IDS on an embedded device [17].
The goal is not to detect intrusions or anomalies that occur on the device but rather on a network. Thus
the device monitors the network and checks whether an attacker has infiltrated the network. The authors
particularly selected the Raspberry Pi 2 Model B for their research and installed a well-known open-source

2.5. RELATED WORK 16

IDS, Snort [42]. The performance is evaluated based on four different metrics: average CPU usage, average
RAM usage, packet capture rate and the number of alerts generated by the Snort. Due to the wide variety
of network traffic, multiple trace files were used to represent different types of network traffic. Additionally,
Snort is run using different rulesets to observe the influence of the rulesets on the performance of the device.
From the results of the experiments, the performance does drop as the more rules are used and more packets
are replayed but the memory usage of the device never reached to 100%. This work does not learn any state
machines from the data but it does show that it is possible to run an IDS on a Raspberry Pi 2 Model B.

NYKVIST & LARSSON

This work is somewhat similar to the work that is done in this thesis. Nykvist and Larsson have proposed
an anomaly detection method that utilises pattern matching algorithms: Aho-Corasick algorithm [43] (AC-
algorithm) and Knuth-Morris-Pratt algorithm [44] (KMP-algorithm). Additionally, R-trees [45] are used to
filter on particular rules in a given ruleset. Initially, all the rules from a ruleset are parsed and put into an
R-tree. This makes searching for a particular rule quicker. Then state-machines are created for each of the
algorithms if there is a rule that has the "content" parameter. The state-machines are used for pattern match-
ing between packets. When a match has been found, an alert is triggered. The authors did a performance
analysis by running the two algorithms and Snort on two different devices: Raspberry Pi 3 Model B+ and WiFi
Pineapple [46]. From the results, they have found the following: First of all, the AC algorithm has a better
performance on large rulesets. Second of all, it was shown that the Wifi-Pineapple is not suitable to act as an
IDS due to the limited maximum throughput of the device. The device starts dropping packets once it has
reached the limit. Finally, when comparing the two algorithms to Snort the two algorithms performs better
than Snort in specific conditions. One thing should be noted from this work; though it is similar to the work
that is done in this thesis, this solution does not learn state machines from a stream of network traffic data.
The state-machine models are created based on the rules from a given ruleset. This sets our work apart from
the work that is done by Nykvist and Larsson.

3
METHODOLOGY

This chapter describes our approach on how we will utilise LSH for the learning of state machines and the
clustering of states/state-machines. We first describe in Section 3.1 the hashing method that we will select to
use in our LSH approach. Then we describe in Section 3.2 how we will utilise LSH to hash the states, that are
derived from the stream of network traffic data, into buckets that correspond to their hashes. These buckets
are then used for the state-merging process. In Section 3.3, we describe the approach on how we evaluate the
usage of LSH for the state-merging process. Section 3.4 describes how we will utilise LSH to hash the state
machines into buckets. Each of these buckets can be seen as a cluster of state machines and can be used for
finding similar state machines. In Section 3.5, we describe our approach on how we will evaluate the usage
of LSH for the clustering of state machines. Finally in Section 3.6, we describe how we will evaluate whether
it is possible to learn state machines in real-time on an embedded device.

3.1. SELECTING THE HASHING METHOD FOR OUR LSH APPROACH
Before we can start hashing the states/state machines into buckets, we need to select one hashing method
that we will use in our LSH approach. From the three different hashing methods that we have described in
Subsection 2.4.1, we have decided to use the random hyperplanes as the method for hashing of the states and
state machines. Our choice was made based on the following two reasons:

1. Using the MinHashing method requires us to store two different matrices and it also requires us to store
the n permutations on the rows of the characteristic matrix. Let us first analyse the space complexity of
the MinHashing method. Let e denote the number of elements in the universal set U and s denote the
number of subsets that can be created from the universal set U . The size of the characteristic matrix
is equal to e × s, which means that the space complexity of the characteristic matrix is O(e × s). The
n random permutations can be seen as a list of n vectors and each vector has the length that is equal
to e. Thus the space complexity of the n random permutations is O(n × e). The size of the signature
matrix is equal to n×s and thus the space complexity of the signature matrix is O(n×s). The total space
complexity of the MinHashing method is then O(e · s +e ·n +n · s).

For the Random Hyperplanes method, we only need to store a list of n vectors, where each vector has a
length of e. Thus the space complexity of the Random Hyperplanes method equals to O(e ×n). Essen-
tially, we will only need to store one single matrix for the Random Hyperplanes method. As we will be
learning state machines on an embedded device, there is less space available for us to use. We have to
reduce the space that is used by our method and therefore we have decided to not use the MinHashing
method as it uses more space than the Random Hyperplanes approach.

2. In comparison to MinHashing, there is no need to keep track of different matrices if we use the Ham-
ming Distance method. We only need one or multiple hash functions that can map each state/state
machine to a bitstring and then use these bitstrings to compute the similarity. Though we do not have
to keep track of different matrices using this method, we still would have to do the pair-wise com-
parisons of the bitstrings to find the two most similar states/state machines. Recall that the pair-wise
comparisons approach has the time complexity of O(n2). This pair-wise comparison of bitstrings is no
different than the original method for finding a state for a merge. Our goal for using LSH is to avoid the

17

3.2. USING LSH TO HASH STATES 18

pair-wise comparisons that need to be done to find a state for a merge. Thus we have decided to not
use the Hamming Distance method as the hashing method in our LSH approach.

3.2. USING LSH TO HASH STATES
As elaborated in Subsection 1.2.1 and illustrated on Figure 1.1, when looking for a most similar state for a
merge we would need to traverse through all states to find a most similar state. The pseudocode of this
process is shown in Algorithm 1. As this operation has a quadratic run-time, it will have an impact on the
performance when the number of states is very large. Our approach is to use LSH to hash similar states
into the same buckets. With this approach, there is no need to traverse through all states to find a most
similar state for a merge. The pseudocode for finding a most similar state for a merge using LSH is shown
in Algorithm 2. The intuition is that similar states would get the same hash and be put within the same
bucket. Figure 3.1 provides a high-level illustration on which part of the original method was modified to our
approach of using LSH to merge states.

Algorithm 1: Finding a most similar state (original method)

Input: A state s and a list L that contains all states besides s
mostSimilarState = null
mostSim = 0
for each state o in L do

similarity = computeSimilarity(s, o)
if similarity > mostSim then

mostSimilarState = o
mostSim = similarity

end
end
if mostSim > COSINE_SIMILARITY then

return mostSimilarState
end
return null

Algorithm 2: Finding a most similar state (LSH)

Input: A state s and the buckets B
mostSimilarState = null
mostSim = 0
bucket = getBucket(s, B)
for each state o in bucket do

similarity = computeSimilarity(s, o)
if similarity > mostSim then

mostSimilarState = o mostSim = similarity
end

end
if mostSim > COSINE_SIMILARITY then

return mostSimilarState
end
return null

3.2.1. STATE REPRESENTATION FOR HASHING
As mentioned in the description of Random Hyperplanes, we need a vector representation of the state to
be able to hash the state. The question is how we can transform a state into a vector that contains numerical
values. Our answer to this question lies in the current implementation of a state. Each state contains a Count-
Min sketch vector, which contains an approximate count of the sequences that have occurred in that state.
This vector is used to compare different states and check whether two states can be merged based on their
Count-Min sketch vector [25].

3.3. EVALUATING THE HASHING OF STATES 19

Figure 3.1: A high-Level illustration that shows which part of the original method was modified to the usage of LSH. In the
state-merging process of the original method, pair-wise comparisons are done to find the most similar state for a merge. In our

approach, LSH is used to hash the states into different buckets and these are used to find the most similar state for a merge.

In the current implementation, the Count-Min sketch vectors of the states are used to compute the cosine
similarity between states [25]. The state that has the highest similarity value will then be used for a merge.
As the Count-Min sketch vector of a state contains numerical values and they can be used to decide whether
two states should be merged, it seemed natural to also use the Count-Min sketch vectors as the vector repre-
sentation of a state. The Count-Min sketch vector of a state is then used to compute the bitstring(hash) of the
state.

3.3. EVALUATING THE HASHING OF STATES
To assess whether LSH works well for the clustering and eventually the merging of states, we have set up three
different experiments. A description of each experiment is given in the following subsections.

3.3.1. ASSESSING THE ITEMS IN THE BUCKETS
In this experiment, we want to evaluate how well the similar states are clustered together in the buckets. For
this experiment, we randomly generate vectors which will be used to represent the Count-Min sketch vectors
of the states. Thus in this experiment, no states from actual state machines will be used. We hash all of these
vectors using LSH into buckets and each bucket is used to represent a cluster of states. But how do we know
whether the state is clustered correctly? Our answer to this question is to compare the clustering results of
LSH to two other methods of clustering: KMeans Clustering and Random Clustering. In KMeans Clustering,
centroids are used in order to assign items to their cluster. Items are assigned to a cluster with the closest
centroid. In Random Clustering, each vector will be randomly assigned to a bucket and each bucket has an
equal probability of being chosen. In this experiment, we assume that KMeans clustering will do a better job
at clustering the vectors than our LSH method. The results of KMeans clustering thus serve as the baseline
of this experiment. The results of Random clustering are used to assess whether LSH is just as bad or worse
than random guessing.

VISUALLY COMPARING THE CLUSTERING RESULTS

To compare the clustering results between the three different clustering methods, we will visually compare
the clustering results. This can be done by computing the similarities between the vectors that we have gen-
erated. As the original method uses the cosine similarity to find a most similar state for a merge, we will also
use cosine similarity to compute the similarities between the vectors.

3.3. EVALUATING THE HASHING OF STATES 20

Knowing the similarities between the vectors, we can construct a similarity matrix. This matrix can be used
to produce a heatmap in which it can show the relations between the vectors. To see the clusters better in
the heatmap, we will sort the rows and columns based on the cluster-ID. Doing so, it allows us to group the
vectors that that are put into the same cluster together and we can visually assess whether vectors are put into
the wrong clusters. The procedure for creating the similarity matrix and eventually the heatmap is shown in
Algorithm 3

Algorithm 3: Computing the similarity matrix and creation of the heatmap

Input: A list L containing all vectors
similarity_matrix = create a matrix of size ‖L‖×‖L‖
// Compute the similarity between the vectors and store it in a matrix
for each vector v1 in L do

for each vector v2 in L do
if v1 = v2 then

similarity_matrix[v1][v1] = 0.0
else

similarity_matrix[v1][v2] = cosineSimilarity(v1, v2)
end

end
end
// Sort the matrix for the creation of the heatmap
sortRows(similarity_matrix)
sortColumns(similarity_matrix)
// Create the heatmap using the sorted matrix
createHeatMap(similarity_matrix)

METRICS TO ASSESS THE QUALITY OF THE CLUSTERS

Besides visually comparing the clustering results between the methods, we also want to assess and compare
the quality of the clusters between the methods; only looking at the heatmap does not tell us enough regard-
ing the quality of the clusters. To assess the quality of the clusters, we need metrics that can tell us about the
quality of the clusters that were formed by the methods. For this experiment, we have chosen two metrics
that we will use the assess the quality of the clusters. We describe each metric in the following paragraphs.

As we will cluster the vectors using multiple numbers of clusters and we do not know which is the best
label to give to each vector, we have chosen to use the Silhouette Coefficient score. This is a metric that is
used to assess whether the clusters are well defined and it should be used when the ground truth labels of the
clusters are not known. The score tells us how well each item fits within the cluster that it has been assigned to
and how different it is to the other items from the other clusters. The higher the score, the better the clusters
are defined. The highest score that can be achieved for this metric is 1 and the lowest -1. A score that is close
to 1 means that the clusters are well defined and score that is close to -1 means that the items are incorrectly
clustered. A score that is close to zero means that there are overlapping clusters [47]. Let i be an item from a
cluster c. The score s(i) is computed using the formula that is shown in equation 3.1, where a(i) and b(i) are
defined as follows [47]:

• a(i) is the average distance between an item i and all other items within the same cluster c.

• b(i) is the average distance between an item i and all other items that are from the closest neighbouring
cluster c ′, where c 6= c ′.

s(i) = b(i)−a(i)

max(a(i),b(i))
(3.1)

Additionally, we will also compute the average accuracy of each clustering method by checking whether the
closest neighbour of a given vector is also put within the same cluster as the given vector. We have chosen
to compute the accuracy in this manner as our goal for using LSH is to quickly find a most similar state for a

3.3. EVALUATING THE HASHING OF STATES 21

merge. This is essentially looking for the closest neighbour. The pseudocode for calculating the accuracy of
the clustering method is shown in Algorithm 4.

Algorithm 4: Computing the accuracy for a clustering method

Input: A list L containing all vectors
correct = 0
wrong = 0
for each vector v in L do

closestVector = getClosestVector(v)
cluster = getVectorCluster(v)
if cluster contains closestVector then

correct++
else

wrong++
end

end
return correct ÷ (correct + wrong)

3.3.2. ASSESSING THE STATE MACHINES LEARNED USING LSH
In this experiment, we want to evaluate the difference between the state machines that are learned using
the original method that was written by Schouten and the state machines that are learned using our LSH
method. Thus the state machines that are learned using Schouten’s method serves as the ground truth for
this experiment. To compare how much our state machines differ from the ground truth state machines, we
compute the difference between the state machines. To be able to compute the difference between the state
machines, we need metrics that can tell us how much a pair of state machines differ from each other. In
the following paragraph, we provide a description of the metrics that we have chosen to use to compute the
difference between the state machines.

METRICS TO ASSESS THE DIFFERENCE BETWEEN STATE MACHINES

We have chosen to use the Kullback-Leibler divergence (KL-Divergence) and Perplexity as the metrics to mea-
sure the difference between the state machines. KL-Divergence is a metric that measures how much one
model differs from another [25, 27]. The formula is shown in equation 3.2, where p is the true model, q is the
predicted model and A is the alphabet that is shared by both models. The KL-Divergence returns values from
[0,∞). The larger the value, the larger the difference between the two models. A value of zero means that the
two models are identical.

K L−Di ver g ence(p, q) = ∑
x∈A

p(x) · log2
p(x)

q(x)
(3.2)

Perplexity is a metric that measures how similar two models are to each other. The formula is shown in
equation 3.3, where again p is the true model and q is the predicted model and A is the alphabet that is
shared between the two models [25]. A lower perplexity value means a higher similarity between the two
models.

Per plexi t y(p, q) = 2−
∑

x∈A p(x)·log2q(x) (3.3)

For this experiment, we will only use the original method for comparison and do not consider other state
machine learning methods. The motivation behind this choice is that we have a very specific use case of
learning state machines in real-time on a small embedded device. We are interested in how well we can learn
state machines using LSH and compare it to the original method. The state machines that are learned using
LSH should be just as good the ones that are learned using the original method. By also doing a comparison
with other methods, it means that we would need to modify them such that they are compatible with the
current implementation of the system and this is out of the scope of this research. Additionally, learning a
small and consistent state machine from the given training data is an NP-Hard Problem [29]. This means that
each state-machine learning algorithm would learn a state machine with a different number of states and it
is then difficult to tell which state machine is the best.

3.4. USING LSH TO STATE MACHINES 22

3.3.3. RUN-TIME ANALYSIS OF THE STATE MERGING PROCESS
In this experiment, we want to evaluate whether we gain an improvement in the run-time of the state-merging
process by using LSH. After all, the goal of using LSH to cluster the states is to improve the run-time of the
state-merging process. We divide this experiment into two parts:

1. In the first part, we will use artificially generated vectors to represent the states that will be used for
merging. The state-merging process is run in isolation for both methods and we measure the time that
it takes to find a most similar state using each method. We then compare the run-time between the two
methods. This part of the experiment is to show on an abstract level the performance improvements
that we can gain using LSH.

2. The second part of this experiment is quite similar to the first part but instead of running the state-
merging process in isolation with artificially generated data, we will use the whole system that was
designed by Schouten together with artificially generated NetFlow data. We again measure and com-
pare the run-time between the two methods. This part of the experiment is to show whether we gain an
improvement on the run-time of the state-merging process by using our approach in the actual system
itself.

3.4. USING LSH TO STATE MACHINES
One interesting extension to the usage of LSH is to investigate whether we can use LSH to cluster state ma-
chines. The intuition behind the hashing of states can also be applied to the hashing of state machines;
similar state machines should be hashed into the same buckets. Each bucket then describes state machines
that have similar behaviour.

In the original implementation, clustering of state machines was not implemented. To find a similar state
machine, we would need to do a pair-wise comparison between all state machines. This process is the same
as when we are searching for a most similar state for a merge. The run-time of this process is quadratic
and its performance will be impacted as the number of state machines grow larger. By clustering the similar
state machines together using LSH, we can find a most similar state machine in a quicker manner. There is
no need for us to all the pair-wise comparisons between all the state machines to find a most similar state
machine. Figure 3.2 provides a high-level illustration on which part of the original method was modified to
our approach of using LSH to cluster similar state machines together.

Figure 3.2: A high-Level illustration that shows which part of the original method was modified to the usage of LSH. In our approach,
LSH is used to hash state machines to different buckets. The intuition is that the state machines that are hashed into the same bucket

have similar behaviour.

3.4.1. STATE MACHINE REPRESENTATION FOR HASHING
Just as with the hashing of the states, we need to transform a state machine into a vector that contains nu-
merical values. The question this time is: how can we transform a state machine into a vector that contains

3.4. USING LSH TO STATE MACHINES 23

numerical values? It turns out that there is no trivial answer to this question; there is no solution that does
not include a large overhead for it to work. We came up with three different methods to transform a state
machine into a vector that contains numerical values. We describe each method in the following paragraphs.

USING THE STATE TRANSITION TABLES OF THE STATE MACHINES

For the first method, we use the state transition tables of the state machines. A state transition table shows
in which state the state machine will end up, based on the given input and the current state that the state
machine is in [28]. A visual representation of the state transition table that we will be using for our approach
is shown in Table 3.1. As we are dealing with state machines where each transition has a probability for it
to occur and we need a vector that contains numerical values, we have added the probability column in the
state transition table. This column is used as the vector representation of the state machine.

Input Current State Next State Probability
I1 S1 Si Pa

· · · · · · · · · · · ·
In S1 S j Pz

I1 S2 S′
i P ′

a
· · · · · · · · · · · ·
In S2 S′

j P ′
z

· · · · · · · · · · · ·
I1 Sm S′′

i P ′′
a

· · · · · · · · · · · ·
In Sm S′′

j P ′′
z

Table 3.1: The state transition table that is used in our approach.

Notice that rows that are shown in Table 3.1 are sorted. The rows are first sorted by the state symbols and
then by the input symbols. The purpose of sorting the rows is to make sure that we have a generalised table
for all state machines so that the size of the table is the same for any arbitrary state machine. The sorting
also makes sure that the probability values are filled into the correct cells. This is important for capturing the
structure of a state machine. The probability values are filled into the table following the procedure that is
shown in Algorithm 5. Figure 3.3 provides an example of how the state transition table is constructed for a
state machine.

Algorithm 5: Constructing the vector representation of a state machine using the State Transition
Table method

Input: A state machine m, a sorted list S containing all possible state symbols and a sorted list I
containing the all possible input symbols

vectorRepresentation = new List()
for each symbol s in S do

if m contains s then
for each symbol i in I do

state = m.getState(s)
transitions = state.getOutTransitions()
if transitions contains i then

vectorRepresentation.add(state.getTransitionProbability(i))
else

vectorRepresentation.add(MIN_PROBABILITY) // add very small probability
end

end
else

for each symbol i in I do
vectorRepresentation.add(MIN_PROBABILITY)

end
end

end
return vectorRepresentation

3.4. USING LSH TO STATE MACHINES 24

Figure 3.3: Example showing how the state transition table is constructed for a state machine. In this example, the possible inputs are
only the numbers from 0 till 3.

The motivation for using this representation is based on the assumption that if two state machines have the
same transition on the same state for a given input, then a value that is higher than the minimum probability
is filled into the corresponding cell for both state machines. If this is not the case, then the minimum prob-
ability is filled in for the state machine that does not have the transition and a value that is higher than the
minimum probability is filled in for the other state machine.

If two state machines have a large difference in the values that are assigned to the same cells of the column,
then this would produce two different dot products and thus also produce two different hashes for the state
machines. This is a property that we want to capture as our goal of using LSH is to cluster similar state
machines together.

ADVANTAGE & DISADVANTAGE OF USING STATE TRANSITION TABLE METHOD

The advantage of using the state transition table method is that we are using the structure of a state machine
to create its vector representation. Thus we have a method that can map the structure of the state machine
to a single vector of numerical values. This method provides a way for us to cluster state machines based on
their structure.
The disadvantage of this method is that we need to have a generalised state transition table that contains all
possible state symbols and all possible input symbols. As it is not always true that all state machines have
the same states and transitions, this method can create very sparse vectors. These sparse vectors cause us to
use more space than needed to store information on the structure of a state machine. Space consumption
is important for us as our goal is to run our method on an embedded device that has less resource than a
desktop computer or laptop.

USING THE LANGUAGE OF THE STATE MACHINES

In the second method, we use the language of the state machine to create the vector representation of the
state machine. This is done by first generating a fixed set of strings from the language of a fixed set of state
machines. We opted for the generation of a set of string as it would represent the behaviour of a state machine
better than a single string. Each set will be run/simulated on each state machine and we record the average
probability of each set. Algorithm 6 shows the procedure for generating the vector representation of a state
machine from the fixed set of strings. The average probabilities are then used to construct the vector that
would represent the state machine. Figure 3.4 provides an example of how the vector representations are
created for multiple state machines using their language.

3.4. USING LSH TO STATE MACHINES 25

Algorithm 6: Constructing the vector representation of a state machine using its language

Input: A list L contains different sets of strings and a state machine m
vectorRepresentation = new List()
for each set s in L do

probabilities = new List()
for each string str in s do

probability = similateString(str, m)
probabilities.add(probability)

end
vectorRepresentation.add(mean(probabilities))

end
return vectorRepresentation

Figure 3.4: A high-level visualisation that shows the process of creating the vectors that are used to represent the state machines.

Unlike the first method, this method tries to capture the behaviour of a state machine by using its language
and not the structure of the state machine. The intuition behind this method is that if two state machines
have similar behaviour, then the probability for a string to occur in both state machines would be close to
each other. On the other hand, if two state machines have different behaviour, then the probability for a
string to occur in both state machine would be different; for one state machine, there is a high probability
for the string to occur and for the other, the probability would be close to zero. This property helps put state
machines in clusters.

ADVANTAGE & DISADVANTAGE OF USING THE LANGUAGE OF THE STATE MACHINE

The advantage of using the language of a state machine to create its vector representation is that we do not
have to generate large sparse vector. In this method, we do not have to generalise anything to make sure that
the method works for any arbitrary state machine. this solution uses less space to store the vector represen-
tation of a state machine.

The disadvantage of using this method is that we need state machines for which we can generate the fixed
sets of strings. These strings are needed to create the vector representation of the state machines. The strings
can be seen as fingerprints that will be used to match state machines. One thing that should be noticed from
this method is that if we would like to introduce fingerprints for matching, we need to generate more sets of
strings from state machines. This means that the sets of strings we have, the more space we will be using to
store the sets of strings.

3.5. EVALUATING THE HASHING OF STATES MACHINES 26

USING THE DISTRIBUTION OF THE STATES OVER THE BUCKETS

For the third method, we use the distribution of the states over the buckets to create the vector representation
of a state machine. This method arose from the hashing of the states for the state-merging process. As the
states of a state machine are hashed into different buckets, we can use the distributions of the states over the
buckets to represent a state machine. Under the assumption that similar state machines would have a similar
distribution of the states over the buckets, we can use the distribution to cluster state machines. Algorithm 7
shows the procedure on how the vector representation of a state machine is created using the distribution of
its states over the buckets. Figure 3.5 provides an example illustration on how the vector representation of a
state machine is created using the distribution of its states over the buckets.

Algorithm 7: Constructing the vector representation of a state machine using the the distribution of
its states over the buckets

Input: A list B containing the buckets sorted by their hash ID
vectorRepresentation = new List()
for each bucket b in B do

vectorRepresentation.add(bucket.getSize())
end
return vectorRepresentation

Figure 3.5: Example illustration that shows how the distribution of the states over the buckets is computed for a state machine.

ADVANTAGE & DISADVANTAGE OF USING THE DISTRIBUTION OF THE STATES OVER THE BUCKETS

The advantage of using this method is we do not have to construct any sparse vectors nor do we have to
generate and simulate strings on state machines to create their vector representation. As we have already
hashed the states of the state machines, we can use the buckets to create its vector representation. With this
method, we consume less space as we do not have to store sets of strings and we store vectors that are smaller
than the large sparse vectors from the first method.

The disadvantage of using this method is that the way how the states are put into their buckets are ar-
bitrary. Our LSH method only makes sure that similar states get hashed into the same bucket with a high
probability. LSH does not make sure that a state will always get the same hash because random vectors are
used for the computation of the dot product. This means that the distribution of the states over the buckets
is arbitrary for every state machine and may not show any relation regarding the similarity of state machines.
The locality-sensitive properties of the states may therefore not carry over to the state machines and this can
cause LSH to cluster the state machines incorrectly.

3.5. EVALUATING THE HASHING OF STATES MACHINES
To assess whether LSH works well for the clustering of state machines, we have set up four different experi-
ments. Just as with the hashing of states, we will compare the clustering results of LSH to the clustering results
of KMeans Clustering and Random Clustering. A description of each experiment is given in the following sub-
sections.

3.5. EVALUATING THE HASHING OF STATES MACHINES 27

3.5.1. ASSESSING THE USAGE OF STATE TRANSITION TABLES
In this experiment, we want to evaluate how well LSH can cluster state machines using the state transition
method. The state machines that we will be using for this experiment are the ones that were generated for the
PAutomaC Competition. The competition provides a comparison between the state-of-the-art techniques
for learning state machines, in which one can see which technique performs the best based on a particular
setting [48].

We selected five state machines that have the same alphabet and we manually made modifications on the
state machines to create ten variants for each state machine. These variants are used to evaluate how well
state machines are clustered using our method. The intuition is that the variants should be hashed into the
same bucket as their base state machine.

In our experiment, the vector representations of the state machines are created following the procedure
that is shown in Algorithm 5 and we will use LSH to hash all variants together with their base state machines
to buckets. The same state machines will also be clustered using KMeans Clustering and Random Clustering.
We will compare the clustering results between the methods using the same procedure and metrics that were
mentioned in Subsection 3.3.1; we will visually compare the clustering results using heatmaps and we will
assess the quality of the clusters using the Silhouette Coefficient score and the accuracy.

To generate the heatmaps in this experiment, we need to make some modifications to Algorithm 3; we will
be using state machines instead of vectors and we will be using the KL-Divergence metric to compute the sim-
ilarities between the state machines. We will be using the KL-Divergence metric to compute the similarities
as we are working with state machines and this metric tells us how different (or how similar) two pair of state
machines are. The cosine similarity is a better fit for computing the similarities between vectors but not for
computing similarities between state machines. The procedure for creating the heatmaps in this experiment
is shown in Algorithm 8. The whole clustering procedure of this experiment is shown in ALgorithm 9.

Algorithm 8: Computing the similarity matrix and creation of the heatmap

Input: A list M containing all state machines
similarity_matrix = create a matrix of size ‖M‖×‖M‖
// Compute the similarity between the state machines and store it in a matrix
for each model m1 in M do

for each model m2 in M do
if m1 = m2 then

similarity_matrix[m1][m1] = 0.0
else

similarity_matrix[m1][m2] = KL-Divergence(m1, m2)
end

end
end
// Sort the matrix for the creation of the heatmap
sortRows(similarity_matrix)
sortColumns(similarity_matrix)
// Create the heatmap using the sorted matrix
createHeatMap(similarity_matrix)

Algorithm 9: Clustering procedure of state machines using the state transition table.

Input: A list M containing all state machines
createVectorRepresentations(M) // ffollowing the procedure of Algorithm 5
for each model m in M do

clusterModel(m) // using LSH
end
// Create the similarity matrix and heatmap following the procedure of

Algorithm 8
createMatrixHeatmap(M)

Furthermore, we also have to modify our accuracy metric for us to use the metric in this experiment. Instead
of searching for a most similar vector, we are now searching for a most similar state machine. The modifica-

3.5. EVALUATING THE HASHING OF STATES MACHINES 28

tion on the algorithm can be seen in Algorithm 10.

Algorithm 10: Computing the accuracy for a clustering method (for clustering state machines)

Input: A list M containing all state machines
correct = 0
wrong = 0
for each model m in M do

closestModel = getClosestModel(m)
cluster = getModelCluster(v)
if cluster contains closestModel then

correct++
else

wrong++
end

end
return correct ÷ (correct + wrong)

3.5.2. ASSESSING THE USAGE OF THE LANGUAGE
This experiment is almost exactly as the experiment that is described in Subsection 3.5.1. The same state
machines will be used for clustering and the similarity matrix is constructed for each clustering method to
visually inspect how well the state machines are clustered together. The difference in this experiment is how
we construct the vector representation of a state machine. In this experiment, the vector representation of a
state machine is constructed following the procedure that is shown in Algorithm 6.

Algorithm 11: Clustering procedure of state machines using the language of the state machines.

Input: A list V containing all variants and a list B containing all base state machines
Let M =V ∪B
stringsSets = generateSetsOfStrings(B)
createVectorRepresentations(stringsSets, M) // following the procedure of Algorithm 6
for each model m in M do

clusterModel(m) // using LSH
end
// Create the similarity matrix and heatmap following the procedure of

Algorithm 8
createMatrixHeatmap(M)

The clustering procedure of this experiment is shown in Algorithm 11. As we want to cluster the variants
together with their base state machine, we will generate the sets of string using the base state machines. The
intuition behind this is that a variant is generated using its base state machine, which means that its language
is very similar the language of its base state machine and it would have a higher probability of getting hashed
into the same bucket as its base state machine.

The difference in this experiment is that we use the language of a state machine to create its vector rep-
resentation, which will be used for clustering. The same state machines and comparison methods that are
described in Subsection 3.5.1 will also be used for this experiment.

3.5.3. ASSESSING THE USAGE OF STATE DISTRIBUTION OVER THE BUCKETS
This experiment is similar to the experiments that are described in Subsection 3.5.1 and 3.5.2. It is similar in
the sense of how we construct the similarity for each clustering method and how we will compare the clus-
tering results between the clustering methods. The difference in this experiment lies in how we will construct
the vector representation of the state machines and which kind of state machines will be used for clustering.

3.5. EVALUATING THE HASHING OF STATES MACHINES 29

The clustering procedure of this experiment is shown in Algorithm 12.

Algorithm 12: Clustering procedure of state machines using the distribution of its states over the
buckets.

Input: A list M containing all state machines
createVectorRepresentations(M) // following the procedure of Algorithm 7
for each model m in M do

clusterModel(m) // using LSH
end
// Create the similarity matrix and heatmap following the procedure of

Algorithm 8
createMatrixHeatmap(M)

The vector representation of the state machines is generated following the procedure that is shown in ALgo-
rithm 7. The state machines that we will be using in this experiment will be different than the ones that are
used in the other two experiments. This is because we cannot manually create the variants in the same way
as we did for the other two experiments. For the other two experiments, we can make the modifications and
then read the variants from their files. In this case, the buckets distributions are computed when the training
data of the models are streamed through the whole system. It is difficult for us to create training data from
which we can guarantee that we can learn a specific variant. Therefore, we have decided to use a different set
of PAutomaC models for this experiment.

3.5.4. RUN-TIME ANALYSIS OF FINDING A MOST SIMILAR STATE MACHINE
In this experiment, we want to evaluate the run-time performance for finding a similar state machine (given
a particular state machine) using LSH. The reason for doing this experiment is because the clustering of state
machines is not implemented in the original implementation of the system. To find a similar state machine,
pair-wise comparisons would need to be done between all state machines. The goal of using LSH is to provide
a quicker manner to find, given a state machine, its most similar state machine. We want to evaluate in this
experiment whether using LSH would provide any speedup in finding a most similar state machine for a
particular state machine. The same PAutomaC state machines that are used in Subsection 3.5.1 will also be
used in this experiment. The state machines are clustered using LSH and then we will record the time it
took for us to find a similar state machine using LSH. We will also record the time that it takes us to find a
similar state machine using the pair-wise comparison approach. We then compare the time between both
approaches.

3.5.5. RUN-TIME ANALYSIS OF FINDING A MOST SIMILAR FINGERPRINT
Schouten had not designed the system to only learn state machines in real-time but also to detect anomalies
in the stream of network traffic data. The system can detect anomalies by computing the KL-Divergence
between each state machine that was learned from the stream of NetFlow data and each fingerprint that
was generated from a previous learning process. As we are trying to find the match between a fingerprint
and a state machine, we are essentially looking for a fingerprint that is most similar to the behaviour of a
state machine. When a match has been found, a flag can be raised that an anomaly has been detected. The

3.5. EVALUATING THE HASHING OF STATES MACHINES 30

procedure for finding a most similar fingerprint is shown in Algorithm 13.

Algorithm 13: Procedure for finding a most similar fingerprint.

Input: A list F containing all fingerprints and a state machine m
mostSim = ∞
mostSimilarFingerprint = null
for each fingeprint f in F do

simlarity = computeSimilarity(f , m)
if similarity < mostSim then

mostSim = similarity
mostSimilarFingeprint = f

end
end
// Check if the fingeprint exceeds the threshold for a match.
if mostSim > MATCH_THRESHOLD then

return mostSimilarFingeprint
end
return null

From the procedure that is shown in Algorithm 13, we would have to go through all fingerprints to find a most
similar fingerprint for a match. The run-time performance of this process will be impacted as the number of
fingerprints grow larger. The thought that the number of fingerprints would grow is not unrealistic; we want
to detect any kind of anomaly that might occur in the network traffic and to do so we would need to have
as many fingerprints as possible. This list of fingerprints also needs to be updated whenever a new kind of
malware has been found. Thus the list of fingerprints would keep growing over time. To resolve the issue that
the performance of this process will be impacted by the growing list of fingerprints, we can use LSH to cluster
the fingerprints. We can use the clusters of fingerprints to find a most similar fingerprint in a quicker manner
as we eliminate many of the comparisons that need to be done. The procedure for finding a most similar
fingerprint using LSH is shown in Algorithm 14.

Algorithm 14: Procedure for finding a most similar fingerprint using LSH.

Input: A state machine m and the buckets B containing the hashed fingerprints
mostSim = ∞
mostSimilarFingerprint = null
hash = computeHash(m) // hash is computed using LSH
bucket = getBucket(hash, B) // bucket containing fingerprints with same hash.
for each fingerprint f in bucket do

similarity = computeSimilarity(f , m)
if similarity < mostSim then

mostSim = similarity
mostSimilarFingeprint = f

end
end
// Check if the fingeprint exceeds the threshold for a match.
if mostSim > MATCH_THRESHOLD then

return mostSimilarFingeprint
end
return null

To assess whether we gain an improvement in the run-time for finding a most similar fingerprint using LSH,
we will record the time it takes to find a most similar fingerprint for a match. We will also record the time
it takes to find the most similar fingerprint using the original method. We will then compare the run-time
between both versions and see whether we gain an improvement using LSH.

For this experiment, we will learn 1000 fingerprints using NetFlow data that is published by the Strato-
sphere IPS project. To learn as many different fingerprints as we can, we have used NetFlow data of 22 differ-
ent malware. We then stream the NetFlow data of the selected malware and we record the time each method
took to find a most similar fingerprint.

3.6. RUNNING THE METHOD ON A RASPBERRY PI 31

3.5.6. ASSESSING THE CLUSTERING OF STATE MACHINES OF MALWARE
As we are using LSH to cluster similar state machines together, it is interesting for us to know how well LSH can
cluster state machines that are learned from benign and malicious network traffic data. Being able to create
the clusters of benign or malicious state machines (i.e. state machines that were learned using either benign
or malicious network traffic data), we provide a manner to separate the space between benign a malicious
network traffic data using LSH. The clusters can then be handy for detecting anomalies on a network.

For this experiment, we will use NetFlow data that is published by Stratosphere IPS project [49] to learn
state machines. We will use both benign and malicious data, and we will cluster the state machines using
LSH, KMeans Clustering and Random Clustering. In the real world, there are usually more benign network
traffic data than malicious network traffic data. Thus for this experiment, we will have many benign state
machines and only a few malicious state machines.

For each clustering method, we will compute its Silhouette Coefficient scores based on its clustering re-
sults. We will only compute the Silhouette Coefficient scores in this experiment as we want to know how well
the state machines (i.e the state machines learned from benign and malicious NetFlow data) between the
clusters are separated from each other.

3.6. RUNNING THE METHOD ON A RASPBERRY PI
The ultimate goal of this thesis is to investigate whether it is possible to learn state machines in real-time on
an embedded device. In this work, we will use a Raspberry Pi model 4 as the device on which we will evaluate
whether we can learn state machines in real-time from a stream of network traffic data. The Raspberry Pi
comes with 4 GB RAM and 32 GB storage, and the Raspberry Pi OS is installed on the device. To evaluate
whether we can learn state machines in real-time on the Raspberry Pi, we have set up three different exper-
iments. In these experiments, we will run both the original method that was designed by Schouten and our
method that utilises LSH. The following subsections describe the experiments.

3.6.1. LEARNING STATE MACHINES FROM MALICIOUS NETFLOW DATA
As our goal is to investigate whether it is possible to learn state machines in real-time on an embedded device,
we will export both the original method and our method that utilises LSH onto the Raspberry Pi. Each version
will be run on the Raspberry Pi and we will stream malicious NetFlow data through Apache Kafka. We will
be using captures of four different malware that are published on the Stratosphere IPS project, namely the
captures of Emotet, Dridex, Necurs and Trickbot.

For each version, we will manually check whether state machines are learned from the stream of malicious
NetFlow data. We will then compare the state machines that are learned using both versions by doing the
same comparison as in Subsection 3.3.2. This is to see whether the differences are larger when we learning
state machines on an embedded device.

3.6.2. ASSESSING THE SCALABILITY OF THE METHOD ON RASPBERRY PI
As we are running the method on a smaller device that has less resource than the usual desktop computers
or laptops, it is interesting to see how scalable the method is on a smaller device. We will therefore assess the
scalability of the method by computing the throughput of the method when it is running on the Raspberry
Pi. Knowing the throughput of the method, it provides us knowledge on how fast the method can process a
stream of NetFlow data on a Raspberry Pi. We will compute the throughput using the formula that is shown
in equation 3.4.

For this experiment, we will use three different datasets from the Stratosphere IPS project. Each dataset
has a different number of flows recorded in the file. We will stream each dataset 50 times through Apache
Kafka and record the time that the method took to process all flows of the dataset.

T hr oug hput = Tot al number o f f l ow s

T i me to pr ocess al l f low s
(3.4)

3.6.3. RUN-TIME ANALYSIS OF FINDING A MOST SIMILAR FINGERPRINT ON RASPBERRY PI
As we are running the newly modified version that utilises LSH on the Raspberry Pi and it has much less
resource than a larger device such as a desktop computer, it would interesting to see whether we also gain
an improvement on the run-time for finding a most similar fingerprint on the Raspberry Pi. After all, the
goal for using LSH is to provide an improvement on the run-time so that it can run more efficiently on a

3.6. RUNNING THE METHOD ON A RASPBERRY PI 32

smaller embedded device. Thus we will compare the run-time for finding a most similar fingerprint between
the original version and the version that utilises LSH. We are essentially running the same experiment that is
described in Subsection 3.5.5 on the Raspberry Pi.

3.6.4. RUN-TIME ANALYSIS OF STATE-MERGING PROCESS ON RASPBERRY PI
The goal of using LSH is to improve the run-time of the state-merging process so that the modified method
can run more efficiently on a smaller embedded device. Thus in this experiment, we want to evaluate whether
LSH provides any speedups in the state-merging process when it is run on the Raspberry Pi. We are essentially
running the same experiment that is described in Subsection 3.3.3 on the Raspberry Pi.

4
CLUSTERING STATES

In this chapter, we present the results of the experiments that were mentioned in Section 3.3. We have divided
the results into two different categories; experiments that used artificially generated data and experiments
that used real-world data. We first present the results of the experiments that used artificially generated data
in Section 4.1. Then we present the results of the experiments that used real-world data in Section 4.2. Finally
in Section 4.3, we present the conclusion on the hashing of states using LSH.

4.1. EXPERIMENTS THAT USED ARTIFICIALLY GENERATED DATA

4.1.1. CLUSTERING ARTIFICIALLY GENERATED VECTORS USING LSH
To evaluate how well LSH can cluster states together in the bucket, we generated 100 vectors and hashed
them using LSH into different buckets. Each vector is used to represent the Count-Min sketch vector of a
state. For the generation of the vectors, we have chosen four points that we used to sample values to put into
the vectors. For each point, we sampled values close to the point to generate 25 vectors. We have selected to
use four points to create clear clusters of the vectors. Doing so, allows us to easily see how well similar vectors
are clustered together by a particular clustering method.

EXPERIMENT SETUP

After we have generated the vectors to represent the states, we clustered the vectors using LSH, KMeans Clus-
tering and Random Clustering. For each method, we cluster the vectors ten times and the clustering results
are stored for further evaluation. As we have generated vectors using four different points, it seems natural to
cluster the vectors using four clusters. Thus for each clustering method, we have clustered the vectors using
four clusters. Additionally, we were interested in how well each clustering method would perform if we use a
higher number of clusters to cluster the vectors. By using a higher number of clusters to cluster the vectors, it
becomes more difficult for each clustering method to decide to which cluster a vector should be assigned to.
For this experiment, we used the implementation of KMeans Clustering that is provided by the Scikit-learn
libary [50]. After the vectors are clustered, we evaluated the clustering results of each method by doing the
following steps:

1. For each clustering method, cluster the vectors ten times and store the clustering results.

2. For each method, compute the Coefficient Score and the accuracy of each run.

ANALYSIS OF THE RESULTS

Figure 4.1 presents the silhouette coefficient scores and the accuracy of the clustering methods for clustering
the vectors using four clusters. The results for using a higher number of clusters can be found in Appendix A.
Figure 4.2a presents the heatmap that is generated from a similarity matrix, and the rows and columns are
not sorted. It should be noted that from this heatmap it is hard to see that there are four different clusters.
This is caused by the cosine similarity metric that we have used to construct the similarity matrix; the values
of cosine similarity are between zero and one, and this makes it difficult to see the difference in the clusters. If
we have generated the heatmap using the Euclidean distances between the vectors, then it would have been

33

4.1. EXPERIMENTS THAT USED ARTIFICIALLY GENERATED DATA 34

easier to see the clusters e.g. Figure 4.2b. Figure 4.3 presents the heatmaps that are generated from the sorted
similarity matrices.

From the heatmaps that are generated for each clustering method, we see that LSH and KMeans Cluster-
ing produced similar heatmaps and Random Clustering a completely different heatmap. From the heatmap
that is generated by Random clustering, we see that there are multiple black blocks dispersed over the whole
heatmap. This means that many similar vectors were put into different clusters, thus us also meaning that
there are vectors that are incorrectly clustered. This is reflected in the silhouette score and the accuracy that
Random Clustering has achieved in our experiment; its performance is significantly lower than the perfor-
mance of LSH and KMeans Clustering.

When we look at the heatmaps that were generated for LSH and KMeans Clustering, we can see that the
heatmap that was generated for LSH looks like a flipped image of the heatmap that is generated using the
unsorted similarity matrix. When we look at the one that was generated for KMeans Clustering, it is slightly
different than the one of LSH and is difficult to say which one is better. This shows that only comparing the
clustering results is not enough.

When we compare the Silhouette Coefficient scores between LSH and KMeans Clustering, we see that
both methods have achieved almost the same score. However, when we compare the accuracy between the
two methods, we see that KMeans Clustering has achieved slightly higher accuracy than LSH. This can be
explained by the fact that KMeans directly uses the distances between the vectors to assign each vector to
their corresponding clusters. LSH does directly use the distances between the vectors to assign each vector
to their corresponding clusters. LSH loses information that can be used to cluster the vectors better. This
is a trade-off that has to be made for using LSH; in KMeans Clustering, the centroids constantly need to be
recomputed to create a better centroid for a given cluster. With LSH, there is no need to do any recomputation
but it does mean that LSH would make more mistakes. Though LSH has a lower performance than KMeans
Clustering, we also see that LSH can achieve a quite high Silhouette Coefficient score and accuracy.

When using a higher number of cluster to cluster the vectors (see extra results in Appendix A), we see
that the performance of LSH drops significantly. This again can be explained by the fact that LSH does not
directly use the distances between the vectors to cluster the vectors. This shows that LSH is not good in clus-
tering items using a higher number of clusters than the actual number of clusters that exist in the underlying
distribution of the items.

(a) Silhouette Coefficient scores for clustering vectors using four clusters. (b) Accuracy for clustering vectors using four clusters.

Figure 4.1: Silhouette Coefficient scores and accuracy of each clustering method for clustering vectors using four clusters.

CONCLUSION OF THE EXPERIMENT

Based on the results of our experiment, we the performance of LSH lower than the KMeans Clustering but
it is much better than the performance of Random Clustering. The results match our expectation. Though
the performance of LSH is lower than KMeans Clustering, it still managed to achieve a quite high Silhouette
Coefficient score and accuracy. The lower performance of LSH can be explained by the fact that LSH does not
directly use the distances between the items to assign each item to their corresponding clusters. This means
that LSH loses information that can be used to cluster items better. This is a trade-off that has to be made for

4.1. EXPERIMENTS THAT USED ARTIFICIALLY GENERATED DATA 35

(a) Heatmap generated from the unsorted similarity matrix using the cosine
similarity between the vectors

(b) Heatmap generated from the unsorted similarity matrix using the
Euclidean distances between the vectors

Figure 4.2: Heatmaps generated from the unsorted similarity matrix.

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure 4.3: Clustering results of LSH, KMeans Clustering and Random Clustering. Four clusters were used for each method.

using LSH as it does not need to do any re-computations just like KMeans Clustering during the clustering
process.

4.1.2. RUN-TIME ANALYSIS OF STATE-MERGING PROCESS - PART 1
To evaluate whether LSH provides any speedup to the state-merging process, we compared the run-time
of the state-merging process between the version that uses LSH and the original version (pair-wise com-
parisons). In this part of the experiment, we ran the state-merging process in isolation i.e. the process is
not within the system that was implemented by Schouten. This experiment is to show on an abstract level
whether LSH provides any speedup in the state-merging process. We expect that LSH to provide a speedup
as we do not have to do all pair-wise comparisons to find a most similar state for a merge; we only need to
search within a particular bucket. The number of comparisons that we need to do is much lower.

4.1. EXPERIMENTS THAT USED ARTIFICIALLY GENERATED DATA 36

EXPERIMENT SETUP

For this part of the experiment, we generated multiple sets of vectors that are used to represent states. Each
set contains a different number of vectors and we recorded the run-time of the state-merging process by
doing the following steps:

1. For each set, hash each vector into buckets using LSH.

2. For each vector v in the set, find a most similar vector vs using the pair comparison method and record
the time that it took to find an answer.

3. For each vector v in the set, find a most similar vector vs using our LSH approach and record the time
it took to find an answer.

4. Repeat Step 2 and 3, 50 times each.

5. Average the times that were recorded in Step 2 and 3 over the number of runs, which in this case is 50.

ANALYSIS OF THE RESULTS

Figure 4.4 presents the average run-time of the state-merging process (ran in isolation) between the original
version that uses pair-wise comparisons and the newly modified version that uses LSH. We see from the
results that approach of using LSH has a lower average run-time than the original version that uses pair-wise
comparisons and the gap is even larger when we are dealing with a large number of states. This shows that
LSH provides a speedup in the run-time when the number of states grows larger. The results were expected
as for a large number of states, the pair-wise comparison approach would have to go through all the states to
find a most similar state but there is no need to do so when we use LSH. There is much less number of states
that we have to go through to find a most similar state.

Figure 4.4: Average run-time of the state-merging process that was run in isolation.

CONCLUSION OF EXPERIMENT

In this experiment, we have created multiple sets of vectors that are used to represent states and each set
contains a different number of vectors. We ran the state-merging process in isolation (i.e. outside the whole
system that was implemented by Schouten) together with the sets of vectors as input data. We recorded
and compared the run-time of the state-merging process between the original version that uses pair-wise
comparisons and the new version that uses LSH. The results show that LSH does provide a speedup to the
state-merging process as the number of states grows larger. This was expected as using LSH would mean that
we eliminate many pair-wise comparisons between states and thus also meaning that we have to go through
fewer states to find an answer.

4.1. EXPERIMENTS THAT USED ARTIFICIALLY GENERATED DATA 37

4.1.3. RUN-TIME ANALYSIS OF STATE-MERGING PROCESS - PART 2
As we have analysed the run-time of the state-merging process when it is run in isolation, it seems natural for
us to also analyse its run-time when it is run within the system; we have seen that LSH provides a speedup
to the state-merging process when it is run in isolation but will LSH also provide a speedup when the whole
process is run within the system? Thus in this part of the experiment, we wanted to evaluate whether LSH
provides a speedup in the state-merging process by recording its run-time when it is run within the system.
The run-time was recorded for both the original version and the version that uses LSH and the results were
compared to each other.

EXPERIMENT SETUP

In this part of the experiment, we wanted to analyse the run-time of the state-merging process within the sys-
tem that was implemented by Schouten. Due to this reason, we cannot use artificially generated vectors to
represent states. Instead, we need to stream NetFlow data through the system and record the run-time of the
state-merging process. For this experiment, we have used the NetFlow data of four different PAutomaC mod-
els and each model has a different number of states. The run-time of the state-merging process is recorded
as follow:

1. When a call is made to find a most similar state vs for a given state v , record the time that it took to find
an answer.

2. Repeat Step 1 ten times with the same NetFlow data.

3. Average the times that were recorded over the number of runs, which in this case is ten.

ANALYSIS OF THE RESULTS

Figure 4.5 presents the average run-time of the state-merging process of both versions. From the figure, we
see the difference in run-time between the two versions is quite small. LSH managed to have a slightly lower
run-time on two of the state machines that we have learned using the whole system.

An explanation for the small difference in run-time between the two versions is the fact that the sizes of
the state machines that we have used in the experiment are not large. The largest state machine that we could
learn was one that had 25 states. This maximum was already set within the current implementation of the
system. Changing this maximum would mean that we have to make several changes to the system for us to
learn larger state machines. We thought that it would cost quite some time to make these changes and it is
beyond the scope of this thesis. Thus we decided to not make any changes.

Compared to the results from Subsection 4.1.2, it seems like the version that uses LSH does not provide
a speedup in the run-time of the state-merging process when it is run within the whole system. The result
is expected as LSH would only provide a speedup when we are dealing with a large number of states. In this
case, the number of states is quite small and therefore it seems that LSH does not provide a speedup in the
state-merging process.

Figure 4.5: Average run-time of the state-merging process that was within the system that was designed by Schouten.

4.2. EXPERIMENTS THAT USED REAL-WORLD DATA 38

CONCLUSION OF EXPERIMENT

In this experiment, we analysed the run-time of the state-merging process when it is run within the whole
system itself. We recorded and compared the run-time of the state-merging process between the original
versions and the one that uses LSH. The little difference in the run-time between the two versions can be
explained by the sizes of state machines that we have used in the second part of our experiment. LSH provides
an improvement in the run-time when we are processing state machines with a large number of states. In our
experiment, the largest state machine that we can learn is one that has 25 states and therefore we do not see
an improvement in the run-time by using LSH.

4.2. EXPERIMENTS THAT USED REAL-WORLD DATA

4.2.1. COMPARISON OF THE GENERATED STATE MACHINES
From the conclusion of Section 4.1.1, we know that LSH does not cluster states as well as KMeans Clustering.
This would mean that there would be an approximation error when states are merged. As the original method
also learns state machines using approximations, using LSH would increase the approximation error and the
state machine might be different than the one that is learned using the original method. We do not want the
state machines (learned using the LSH) to be a lot different than the ones that are learned using the original
method as this would mean that wrong state machines will be learned from the NetFlow data. Consequently,
this would mean that a state machine that is learned from benign NetFlow data might be similar to a state
machine that is learned from malicious NetFlow data or vice versa. This would increase the number of false
positives/negatives. Thus the state machines that are learned using the original method will serve as ground
truth for this experiment. The state machines were learned using the NetFlow captures of Dridex, Emotet,
Necurs and TrickBot. The captures were downloaded from Stratosphere IPS Project [49].

EXPERIMENT SETUP

For each metric, we ran the experiment 50 times. The following steps describe how we compared the state
machines using the KL-Divergence metric:

1. For each method, learn the state machines from the same set of NetFlow data.

2. For each state machine that is learned using the original method, generate 1000 random strings and
compute their corresponding probabilities. Each string has a maximum length of 20.

3. Simulate the strings that were generated in Step 2 on the same state machines that are learned using
LSH and compute the probabilities.

4. For each pair of state machines (i.e the state machine that is learned using the LSH and the same state
machine that is learned using the original method), compute the KL-Divergence between the pair of
state machines using the probabilities that were computed in Steps 2 and 3.

5. For each state machine, average the results that were computed in Step 4 over the number of runs,
which in this case is 50.

The steps for the comparison using the Perplexity metric is almost the same as the ones of KL-Divergence
metric. There is one additional that is done in the comparison using the Perplexity metric: the average opti-
mal perplexity is computed for each baseline state machine. The optimal perplexity is computed by compar-
ing the true state machine with itself and it describes the lowest possible perplexity value that can be achieved
for the given state machine.

ANALYSIS OF THE RESULTS

Figure 4.6 presents the comparison results for the state machines that were learned from the Dridex dataset.
The remaining comparison results can be found in Appendix A.
Looking at the comparison results, we see that average KL-Divergence values of the state machine values
are close to zero. This means that the state machines that were learned using LSH are just ever so slightly
different than the ones from the original method. We also see that the difference is higher when we used a
larger number of buckets, however, the difference is still close to zero.

Additionally from the comparison results, we also see that the average perplexity values of the state ma-
chines are close to the optimal perplexity value. Thus this also shows that the state machines that were

4.3. CONCLUSION ON THE HASHING OF STATES USING LSH 39

(a) Average KL-Divergence for the state machines of Dridex. (b) Average Perplexity for the state machines of Dridex.

Figure 4.6: Boxplots showing the average KL-Divergence and average Perplexity for the state machines that were learned for Dridex. The
values are computed by comparing the state machines that were learned using LSH to the ones that were learned using the original

method.

learned using LSH are quite similar to the ones that were learned using the original method. We also see that
for Dridex, the difference between the average perplexity values and the optimal perplexity is larger when
compared to the other malware. This can be explained by the state machines that were learned; the size of
the state machines for Dridex are small (largest model has only three states) and this could cause it to be
difficult for LSH to cluster the states correctly. Thus we get a higher approximation error and therefore also a
higher perplexity value.

CONCLUSION OF EXPERIMENT

Based on the results, we say that the state machines that were learned using LSH are quite similar to the ones
that were learned using the original method. Our approach of using LSH increases the approximation error
for learning a state machine but the effect on the final state machine is low.

4.3. CONCLUSION ON THE HASHING OF STATES USING LSH
One of the goals of using LSH is to improve the run-time of the state merging process. The idea was to use
LSH to cluster states together so that we can find a similar state quicker for a merge. We have set up multiple
experiments where we evaluated how well cluster states together using LSH. Based on the results of our ex-
periments, LSH has a lower performance than KMeans clustering and this matches our expectations. Though
LSH has lower performance, it still achieved a quite high Silhouette Coefficient Score and accuracy.

An explanation of why our LSH does not perform as well as KMeans Clustering could be due to the way
how the clustering is done between these two methods. KMeans Clustering uses centroids to check to which
cluster a particular data point should be assigned to. The distance between each data point and each centroid
is computed in order to see which centroid is the closest to the data point. The data point will be assigned to
the same cluster in which the closest centroid belongs to.

LSH does not use centroids to assign data points to their corresponding clusters. In our particular imple-
mentation of LSH, we use random hyperplanes to divide the space in which the data points are located into
multiple regions. Each data point is put into a particular region that corresponds to the hash of the data point
and each region can be seen as a cluster of data points. As we do not compute the distance between the data
points in order to assign them to their corresponding clusters, we lose information between the data points
and this increase the chance for an error to be made. Furthermore, the hash functions are chosen in such
a way that they maximise collisions between the data points. This increases the probability that data points
that are far away from each other are put within the same cluster. This also increases the chance for an error
to occur.

Although LSH increases the chance for an approximation to occur, we have seen from the results of our
experiment that its effect on the final state machine is low. The state machines that we have learned using
LSH were very similar to the ones that were learned using the original method.

4.3. CONCLUSION ON THE HASHING OF STATES USING LSH 40

From the results of our experiment, we also saw that we did not gain an improvement in the run-time of
the state-merging process using LSH. This can be explained by the fact that we cannot learn a state machine
that has more than 25 states. We would only see an improvement in the state-merging process when we are
dealing with state machines that have a large number of states. Thus based on the results, our approach of
using LSH to cluster states does not provide a run-time improvement on the state-merging process.

5
CLUSTERING STATE MACHINES

In this chapter, we present the results of the experiments that are mentioned in Section 3.5. Just like in Chap-
ter 4, we have divided the experiments into two categories; experiments that used artificially generated data
and experiments that used real-world data. We first present the results of the experiments that used artifi-
cially generated data in Section 5.1. Then we present the results of the experiments that used real-world data
in Section 5.2. Finally in Section 5.3, we present the conclusion on the hashing of state machines using LSH.

5.1. EXPERIMENTS THAT USED ARITFICIALLY GENERATED DATA

5.1.1. USING STATE TRANSITION TABLES TO CLUSTER STATE MACHINES
One of the methods that we have used to represent a state machine as a vector of numerical values, was to
use the state transition table of the state machine. The last column of the state transition table will be used
as the vector representation of the state machine. Thus it is only needed to store the last column of the state
transition table in memory instead of the whole table. As mentioned in the description of this method, we
need to construct the generalised state transition table so that this method would work on any arbitrarily
sized state machine.

EXPERIMENT SETUP

Once we have constructed the generalised state transition table, we proceeded to hash the state machines.
As mentioned in Subsection 3.5.1, we selected five state machines from the PAutomaC competition and con-
structed ten variants for each of these state machines. For this experiment, the five state machines and their
variants are used for hashing and clustering. The state machines are clustered and evaluated as follow:

1. For each state machine, construct its vector representation following the procedure of Algorithm 5.

2. Cluster the state machines ten times following the procedure of Algorithm 9.

3. Redo step 2, but this time cluster the state machines using KMeans Clustering.

4. Redo Step 2, but this time cluster the state machines using Random Clustering.

5. For each method, compute the Silhouette Coefficient scores and accuracy of each run.

ANALYSIS OF RESULTS

Following the steps that we have mentioned in Subsection 3.5.1, we have constructed heatmap to visually
compare the results of LSH to the results of KMeans Clustering and Random clustering. The heatmaps can be
found in Appendix B. Furthermore, we have also computed the Silhouette Coefficient scores and accuracy of
the clustering methods for comparison between the methods. Figure 5.1 presents the Silhouette Coefficient
score and accuracy of the clustering for clustering the state machines using five clusters. More results on the
scores and accuracy of the clustering methods can be found in Appendix B.
When we visually compare the clustering results between the clustering methods, we see that can capture
some of the clusters well but it is still not as good as KMeans Clustering. When we look at the clusters that are
formed by Random Clustering, we see that the clusters are not captured at all.

41

5.1. EXPERIMENTS THAT USED ARITFICIALLY GENERATED DATA 42

(a) Silhouette Coefficient scores for clustering the state machines using five
clusters. (b) Accuracy for clustering the state machines using five clusters.

Figure 5.1: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using five clusters.

When we compare the scores and accuracy between the clustering methods, we see the performance of LSH
is lower than KMeans Clustering and this matches the results that we have seen from the heatmaps. The
same explanation that we have used to explain why the performance of LSH is lower than KMeans Clustering
also applies in this case; we do not directly use the distance between the items to assign the items to their
corresponding clusters. This means that we lose information when are clustering state machine using LSH.
Losing this information can cause LSH to make mistakes.

We also see that the performance of LSH also follows the same trend as with the clustering of states; if
we cluster the state machine s using a higher number of clusters than the actual number of existing clusters,
then the performance of LSH drops. Though there is a drop in the performance of LSH, the drop is not as
big as when we were clustering vectors using a higher number of clusters. This could mean that the way
how we have constructed the vector representations of the state machines work well for the clustering state
machines; the vectors representations of the state machines capture the similarity between state machines
than the vectors representation that we have used to capture the similarity between the states.

CONCLUSION OF THE EXPERIMENT

In this experiment, we clustered state machines using the state transition table representation. From the
results, we see that LSH has a lower performance compared to KMeans Clustering. This was expected based
on the results that we have seen in Subsection 4.1.1. The same explanation that we have used to explain
why the performance of LSH is lower than KMeans Clustering in Subsection 4.1.1 can also be used in this
case. Additionally, we have seen from the results that the performance of LSH drops when a higher number
of clusters were used to cluster the state machines but the drop is as big as when we clustering vectors. This
could mean that the way how we created the vector representations of the state machines works well for
the clustering of state machines; the vector representations of the state machines capture the similarity well
between the state machines.

5.1.2. USING LANGUAGE OF STATE MACHINE TO CLUSTER STATE MACHINES
Another method that we have used to represent a state machine as a vector of numerical values, was to use
the language of the state machine. The intuition behind this method is that each state machine accepts a
particular set of strings. These strings are part of the language of the state machine and they can be used to
help describe the behaviour of a state machine. When two state machines accept a completely different set
of strings, then the behaviour of these two state machines are completely different. This also means that the
language of these two state machines is also different. On the other hand, when two state machines have
similar behaviour, there is an overlap in the set of strings that both state machines accept. This means that
the language of both state machines is similar. Thus we can use the language of the state machines to create
its vector representation and use it for hashing.

5.1. EXPERIMENTS THAT USED ARITFICIALLY GENERATED DATA 43

EXPERIMENT SETUP

To evaluate whether this method works well for the clustering of state machines, we have set up an experi-
ment that is almost the same as the one for state transition table. The difference in this experiment lies in the
way how we constructed the vector representations for the state machines. The state machines are clustered
and evaluated as follow:

1. For each state machine, construct its vector representation following the procedure of Algorithm 6.

2. Cluster the state machines ten times following the procedure of Algorithm 11.

3. Redo step 2, but this time cluster the state machines using KMeans Clustering.

4. Redo Step 2, but this time cluster the state machines using Random Clustering.

5. For each method, compute the Silhouette Coefficient scores and accuracy of each run.

(a) Silhouette Coefficient scores for clustering the state machines using five
clusters. (b) Accuracy for clustering the state machines using five clusters.

Figure 5.2: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using five clusters.

ANALYSIS OF RESULTS

Figure 5.2 presents the Silhouette scores and accuracy of the clustering methods for clustering the state ma-
chines using five clusters. The scores and accuracy of the clustering methods for using a higher number of
clusters to cluster the state machines can be found in Appendix B. The heatmaps that were generated for this
experiment can also be found in the same appendix.

From the scores and accuracy of the methods, we again see that LSH has a lower performance than
KMeans Clustering. One thing that is interesting to see in this experiment, is that the scores and accuracy
of LSH are higher than the scores and accuracy that were achieved in the experiment where we used the
state transition table method to create the vector representations for the state machines. This shows that this
method (using the language of the state machines) captures the similarity between the state machines bet-
ter than the other method where we used the state transition table to capture the similarity. An explanation
of why this method works better than the state transition table method could be due to the fact that we are
not looking at the structure of the state machine but rather its behaviour. Two different state machines might
have the exact same structure but not the same behaviour. This means that LSH could put these two state ma-
chines into the same cluster even though they have completely different behaviour. Using the language of the
state machines, we disregard the structure of the state machines and we are directly looking at the behaviour
of the state machines. LSH can then create better clusters of state machines with similar behaviour.

Furthermore from the results, we also see that the performance of LSH drops when a higher number of
clusters are used to cluster the state machines. This follows the same trend that is also shown in the results of
Subsection 4.1.1 and 5.1.1.

5.1. EXPERIMENTS THAT USED ARITFICIALLY GENERATED DATA 44

CONCLUSION OF EXPERIMENT

In this experiment, we generated the vector representations of the state machines using their language and
we used these vector representations for clustering. The results show that this method has achieved higher
Silhouette Coefficient scores and accuracy than the state transition table method. This show that this method
captures the similarity between the state machines better than the state transition table method. An expla-
nation for this result could be due to the fact that the state transition table method could put state machines,
that have exactly the same structure, into the same bucket but these state machines could have different be-
haviour. This method (using the language of the state machines) disregards the structure of the state machine
and it looks directly at the behaviour of the state machines. LSH can then create better clusters of the state
machines with similar behaviour.

5.1.3. USING THE DISTRIBUTION OF THE STATES OVER THE BUCKETS TO CLUSTER STATE

MACHINES
The third method that we have used to represent a state machine as a vector of numerical values, was to use
the distribution of its states over the buckets. The assumption for this method is that similar state machines
would have similar distributions. Thus state machines with distribution of its states over the buckets would
be put into the same clusters.

EXPERIMENT SETUP

As mentioned in Subsection 3.5.3, a different set of PAutomaC state machines were used in this experiment
than the ones that were used into other two experiments. The reason why used a different set of state ma-
chines than the other two experiments was because we cannot manually create the variants just like in the
other two experiments. We need to stream the data through the whole system to learn the state machines
and it is difficult for us to create the right training data such that a specific variant is learnt from the data.
Besides the set of state machines and how the vector representation is created for the state machines, the rest
of the experiment is the same as for the other two methods. The state machines are clustered and evaluated
as follow:

1. Stream the data of the state machines as NetFlow data using Apache Kafka.

2. For each state machine that is learned from the data, construct its vector representation following the
procedure of Algorithm 7.

3. Cluster the state machines ten times following the procedure of Algorithm 12.

4. Redo step 2, but this time cluster the state machines using KMeans Clustering.

5. Redo Step 2, but this time cluster the state machines using Random Clustering.

6. For each method, compute the Silhouette Coefficient scores and accuracy of each run.

ANALYSIS OF THE RESULTS

Figure 5.3 presents Silhouette scores and accuracy of the clustering methods for clustering state machines
using four clusters. The scores and accuracy of the clustering methods for using a higher number of clusters to
cluster the state machines can be found in Appendix B. The heatmaps that were generated for this experiment
can also be found in the same appendix.

Just like with the other two methods, we see that the performance of LSH is lower than KMeans Cluster-
ing. Furthermore, we also see that the Silhouette Coefficient scores of LSH is almost similar to the scores of
Random Clustering and the accuracy of LSH is lower than the accuracy of Random Clustering. This shows
that this method does not work well for clustering state machines as the score is the same as random guessing
and it is less accurate than random guessing.

An explanation of why this method performs the worst is related to the disadvantage of using this method
for the creation of the vector representations; how LSH puts the states into the buckets is arbitrary. It is
arbitrary in the sense that LSH puts similar states with a high probability into the same bucket but which
bucket is used for putting the similar items together, that could be random. Therefore the distribution of the
states over the buckets for each state machine is random. The locality-sensitive properties hold for the states
within the buckets, but it is not carried over to the state machine. Thus the distribution of the states over the
buckets shows no relation on the similarity between the state machines and this causes LSH to cluster state
machines incorrectly using this method.

5.1. EXPERIMENTS THAT USED ARITFICIALLY GENERATED DATA 45

(a) Silhouette Coefficient scores for clustering the state machines using five
clusters. (b) Accuracy for clustering the state machines using five clusters.

Figure 5.3: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using five clusters.

CONCLUSION OF THE EXPERIMENT

In this experiment, we evaluated whether we can use the distribution of the states over the buckets to cluster
state machines. Based on the results, it seems that this approach is not a suitable approach for clustering state
machines as this method performed significantly worse than the other two methods. The bad performance
could be explained by the fact that the distribution of the states over the buckets is random for each state ma-
chine and therefore it shows no relation on the similarity between the state machines. The locality-sensitive
properties hold for the states but they do not carry over to the state machines.

5.1.4. RUN-TIME ANALYSIS OF FINDING SIMILAR STATE MACHINE
The clustering of state machines is not implemented in the original version of the system and thus to find
a most similar state machine, given a particular state machine, pair-wise comparisons would need to be
done between all the state machines. The similarity between a pair of state machines is computed by first
generating one thousand strings from one model and then the probabilities of the strings are computed for
both models. Afterwards, the Kullback-Leibler Divergence between the two state machines is computed with
the help of the probabilities. This process needs to be repeated for each pair of state machines.

The current process of finding a most similar state machine is a quadratic operation and the run-time of
this process will be impacted as the number of state machines grows larger. Our goal of using LSH is to be
able to cluster state machines and find a most similar state machine faster than the pair-wise comparison
approach.

EXPERIMENT SETUP

To evaluate whether our LSH approach is faster than the pair-wise comparison approach, we compared the
run-time of both methods. For this experiment, we chose to create the vector representations of the state
machines using the language of the state machines and we will use them for hashing. We chose to use this
method as this method also uses strings and it is the best performing method out of the three methods that
we have tried to use for the hashing of state machines. The state machines that were used in this experiment
are the same as the ones that were used in Subsection 5.1.1. The process for computing the run-time for both
methods is as follows:

1. From the list of state machines, select one state machine at random.

2. Find a most similar state machine for the state machine that is selected in Step 1, using the pair-wise
comparison approach and record the time it took to find an answer.

3. Find a most similar state machine using LSH and record the time it took to find an answer.

4. Repeat steps 1 till 3 fifty times and compute the average time it took to find an answer.

5.2. EXPERIMENTS THAT USED REAL-WORLD DATA 46

ANALYSIS OF THE RESULTS

The average run-time of both approaches is shown in Figure 5.4. From the results, it shows that LSH is faster
than the current pair-wise comparison approach by three orders of magnitude. Though we also generate
strings in our method, we generate much fewer strings compared to the pair-wise comparison approach;
one thousand strings need to be generated for each comparison that is done with the pair-wise comparison
approach, whereas for LSH, we use the strings that were generated from the base state machines and use
them as fingerprints for the other state machines. Additionally, similar state machines are put into the same
cluster by LSH. This eliminates many of the comparisons that need to be done between state machines. This
explains why LSH is faster than the pair-wise comparison approach.

Figure 5.4: Average run-time for finding a most similar state machine.

CONCLUSION OF THE EXPERIMENT

In this experiment, we recorded the time it took to find a most similar state machine using the pair-wise
comparison approach and using LSH. Based on the results, LSH is three orders of magnitude faster than the
pair-wise comparison approach. Though we also generate strings, we generate much fewer strings than the
pair-wise comparison approach. Using LSH, the strings are generated once and are used as fingerprints for
the other state machines. For the pair-wise comparison approach, one thousand strings are generated for
each comparison that needs to be done. Additionally, LSH eliminates many of the pair-wise comparisons
that need to be done between state machines. This is an explanation of why LSH is faster than the pair-wise
comparisons approach.

5.2. EXPERIMENTS THAT USED REAL-WORLD DATA

5.2.1. RUN-TIME ANALYSIS OF FINDING A MOST SIMILAR FINGERPRINT
To find a most similar fingerprint to match a state machine for anomaly detection, the current procedure
requires us to go through each fingerprint and compute the similarity between the state machine and the
fingerprint. As the list of fingerprint grows larger, the run-time of this process will be impacted. We can
resolve this issue by using LSH to cluster similar fingerprints together and use these cluster to find a most
similar fingerprint for a given state machine. We can find a most similar fingerprint for a state machine by first
hashing the state machine and then use this hash to search for the fingerprint in the cluster that corresponds
to the same hash. This way we can eliminate many of the comparisons between the fingerprints and the
state machine. To assess whether we gain an improvement in the run-time of this process, we compared the
run-time of the original version of the process to the one that uses LSH.

5.2. EXPERIMENTS THAT USED REAL-WORLD DATA 47

EXPERIMENT SETUP

For this experiment, we learned 1000 fingerprints from 22 different malware. The datasets that we have used
to learn the fingerprints come from the Stratosphere IPS project. For each version of the process, we recorded
its run-time as follow:

1. Stream the NetFlow data of one malware using Apache Kafka.

2. Record the time it took to find a most similar fingerprint.

3. Repeat Step 1 and 2 fifty times.

ANALYSIS OF THE RESULTS

Figure 5.5 presents the run-time of each version for finding a most similar fingerprint. From the figure, we can
see that the version that uses LSH is faster than the original version; it is faster by two orders of magnitude.
The speedup can be explained by the fact that by using LSH, we do not have to go through each fingerprint to
find a most similar fingerprint; by using LSH, we have eliminated many of the comparisons that need to be
done between fingerprints and a state machine.

Figure 5.5: Run-time for finding a most similar fingerprint.

CONCLUSION OF THE EXPERIMENT

In this experiment, we wanted to evaluate whether we can use LSH to gain an improvement in the run-time
of the process for finding a most similar fingerprint. Based on the results, LSH does provide an improvement
in the run-time. The run-time of the version that used LSH was faster than the original version; it was faster
by two orders of magnitude. Using LSH we managed to eliminate many of the comparisons that need to be
done between fingerprints and a state machine and thus improving the run-time.

5.2.2. CLUSTERING STATE MACHINES FROM BENIGN AND MALICIOUS NETFLOW DATA
One interesting use case for the clustering of state machines is to be able to cluster state machines that were
learned from benign and malicious NetFlow data i.e. state machines that are learned from benign NetFlow
data are clustered together and state machines that are learned from malicious NetFlow data are clustered
together. To evaluate how well we can cluster benign and malicious state machines using LSH, we learned
state machines from benign and malicious NetFlow data and cluster them using LSH.

5.2.3. EXPERIMENT SETUP
For this experiment, we have used four different datasets from the Stratosphere IPS project to learn the state
machines. Three of these datasets contains malicious NetFlow data and the last dataset contains benign

5.3. CONCLUSION ON THE HASHING OF STATE MACHINES USING LSH 48

NetFlow data. In the real world, there are usually more benign traffic data than malicious data. Therefore for
this experiment, we wanted to simulate network traffic that is as close as the real world network traffic data
as possible. Thus for this experiment, we have more state machines that were learned from benign NetFlow
data than machine machines that were learned from malicious NetFlow data. We have learned twenty state
machines from the benign NetFlow data and five state machines from malicious NetFlow data. The state
machines are clustered and evaluated as follow:

1. Cluster the state machines ten times using LSH.

2. Redo step 1, but this time cluster the state machines using Kmeans Clustering.

3. Redo step 1, but this time cluster the state machines using Random Clustering.

4. For each method, compute the Silhouette Coefficient Score of each run.

5.2.4. ANALYSIS OF THE RESULTS
Figure 5.6 presents the Silhouette Coefficient scores of the clustering methods. The scores of the clustering
methods for using a higher number of clusters to cluster the state machines can be found in Appendix B.
From the scores, we see that the performance follows the same trends as the other experiments where we
hashed states and state machines; the performance of LSH is lower than KMeans Clustering and the per-
formance of LSH drops as we use a higher number of clusters to cluster the state machines. Looking at the
scores for using only four clusters to cluster the models, we see that the performance comes close to the per-
formance of KMeans Clustering. Though LSH does not perform as well as KMeans Clustering, it can cluster
state machines that were learned from real-life data quite well.

Figure 5.6: Silhouette Coefficient Scores for clustering state machines from benign and malicious NetFlow data using four clusters.

CONCLUSION OF EXPERIMENT

In this experiment, we wanted to evaluate how well LSH can cluster state machines that were learned from
benign and malicious NetFlow data. Based on the results, we see that LSH follows the same trend as the
other experiments where we hashed states and state machines; the performance of LSH is lower than the
performance of KMeans Clustering and it drops when we use a higher number of clusters to cluster the state
machines. Though LSH has a lower performance compared to KMeans Clustering, it can cluster state ma-
chines that were learned from real-life data quite well.

5.3. CONCLUSION ON THE HASHING OF STATE MACHINES USING LSH
Another goal of using LSH in this work is to cluster similar state machines together. Being able to cluster
state machines together, we can find similar state machines in a much quicker manner. In the current imple-
mentation, the clustering of state machines is not implemented. To find a similar state machine, pair-wise
comparisons would need to be done between the state machines. The run-time of this process will be im-
pacted as the number of state machines grows larger.

5.3. CONCLUSION ON THE HASHING OF STATE MACHINES USING LSH 49

Furthermore, the system was designed to detect anomalies by matching fingerprints to state machines.
This process is essentially looking for a fingerprint that is most similar to the behaviour of a state machine.
To find a most similar fingerprint to match a state machine, the current process requires us to go through all
the fingerprints to find a most similar fingerprint. The run-time of this process will be impacted as the list
of fingerprint grows larger. We can resolve this issue by using LSH to cluster the fingerprints. We can then
hash a state machine and use its hash to look within a particular cluster for a most similar fingerprint. LSH
eliminates many of the comparisons that need to be done between the fingerprints and a state machine, thus
improving the run-time.

To be able to cluster the state machines using LSH, we needed to represent each state machine as a vector
of numerical values. We attempted to use three different methods to transform a state machine into a vector
that contains numerical values. From the three methods that we have attempted to use, the one with the best
performance was the one that uses the language of a state machine to create its vector representation.

From the results of the experiment, we saw that the LSH approach does not perform as well as KMeans
Clustering. The same explanation that is given in Section 4.3 can be used to explain why LSH does not per-
form just as well as KMeans Clustering; with LSH, we do not use the distances between the state machines
directly to assign state machines to their corresponding clusters. LSH would then lose information while
clustering the state machines and can make more mistakes. The results that we got from the experiments in
which we try to cluster state machines are therefore expected.

When we have used a higher number of clusters to cluster the state machines, we saw that the perfor-
mance of LSH does not drop as much it did when we were clustering states. This shows that our method
for creating the vector representation for a given state machine works well for clustering state machines; the
vector representation captures the similarity well between the state machines

Though our LSH approach does not perform as well as KMeans Clustering, we saw that our LSH approach
has achieved quite a high accuracy for clustering state machines. Thus based on the results of our experi-
ments, it seems that LSH can cluster state machine quite well. Furthermore, LSH provides a quicker manner
to find similar state machines and to find a most similar fingerprint to a match a state machine for anomaly
detection.

6
LEARNING STATE MACHINES ON

RASPBERRY PI

In this chapter, we present the results of the experiments that were described in Section 3.6. We will again di-
vide the experiments into two categories; experiments that used artificially generated data and experiments
that used real-world data. We first present the results of the experiments that used real-world data in Sec-
tion 6.1. Then we present the results of the experiments that used artificially generated data in Section 6.2.
Finally in Section 6.3, we present the conclusion on learning state machines in real-time on a Raspberry Pi.

6.1. EXPERIMENTS THAT USED REAL-WORLD DATA

6.1.1. RUNNING NEW METHOD ON AN EMBEDDED DEVICE
The goal of this thesis is to investigate whether we can learn state machines in real-time on an embedded
device. To evaluate whether this is possible, we exported both the original and the modified version of
the method onto a Raspberry Pi. We then streamed NetFlow data and checked whether state machines are
learned by the methods.

EXPERIMENT SETUP

For this experiment, we used a Raspberry Pi Model 4 with 4 GB of RAM and 32 GB of storage, and we have
installed Raspberry Pi OS on the device. The process of assessing whether state machines can be learned on
an embedded device is as follows:

1. Stream malicious NetFlow data using Apache Kafka. The NetFlow data are downloaded from the Strato-
sphere IPS project [49].

2. Manually check whether state machines were learned.

3. Check how much do the state machines, that were learned using LSH, differ from the ones that were
learned using the original method. The comparison of the state machines is the same as the one that
was done in Subsection 4.2.1

ANALYSIS OF THE RESULTS

After running both methods on the Raspberry Pi, we managed to learn state machines on the Raspberry
Pi using both methods. We managed to learn state machines from all four datasets that were used for this
experiment. Figure 6.1 shows the difference between the state machines that were learned using LSH and the
ones that were learned using the original method for the dataset of Dridex. The results of the other datasets
can be found in Appendix C.
Looking at the results and comparing them to the results of Subsection 4.2.1, we see that the KL-Divergence
between the state machines are slightly higher when they are learned on the Raspberry Pi. An explanation
for the higher difference could be due to randomness that is used in LSH which could have caused more
mistakes to be made when a state is being merged. The randomness of LSH makes it harder to guarantee that
the results are always the same.

50

6.1. EXPERIMENTS THAT USED REAL-WORLD DATA 51

(a) KL-Divergence between the state machines that were learned using LSH
and the ones that were learned using the original method.

(b) Perplexity between the state machines that were learned using LSH and
the ones that were learned using the original method.

Figure 6.1: KL-Divergence and perplexity between the state machines that were learned using LSH and the ones that were learned using
the original method. The state machines were learned from the dataset of Dridex.

Though the KL-Divergence between the state machines are higher when they are learned on the Raspberry
Pi, we see that the perplexity values of the state machines come close to the optimal perplexity values and the
values do not differ much from the values that we have seen in Subsection 4.2.1. The differences can again be
explained by the usage of randomness in LSH.

CONCLUSION OF THE EXPERIMENT

In this experiment, we wanted to evaluate whether it is possible to learn state machines in real-time on an
embedded device. We have chosen to use the Raspberry Pi Model 4 as the device for learning state machines
in real-time. To assess whether we can learn state machines, we have exported both versions of the method
and learned state machines using each method. We have compared the state machines between the two
methods in order to assess how much the state machines that were learned using LSH differ from the ones
that were learned using the original method. Based on the results, the KL-Divergence values between the
state machines were slightly when the state machines are learned on the Raspberry Pi. The slightly higher KL-
Divergence values can be explained by the randomness that is used in LSH; the randomness cannot guarantee
that the results are always the same. Though the KL-Divergence values are slightly higher, the perplexity
values come very close to the optimal perplexity values. Thus the results show that we can still learn state
machines that are close to the ones that were learned using the original method. The results also show that
we can learn state machines in real-time from a stream of network traffic data on a small embedded device.

6.1.2. ASSESSING THE SCALABILITY OF THE METHOD ON THE RASPBERRY PI
Being able to run the method on a Raspberry Pi raises a question on how scalable is the method when it is
run on a device that has less resource than a desktop computer or a laptop. Schouten initially designed the
method to be used on desktop computer or laptop, so it is questionable whether this method is scalable on
a Raspberry Pi. In this experiment, we assessed the scalability of the method by computing the throughput
of the method. This is done by streaming multiple datasets through Apache Kafka and recording how long
the method took to process all flows. As our goal for using LSH is to introduce optimisations on the original
method that was developed by Schouten, we only used the version that utilises LSH for this experiment.

EXPERIMENT SETUP

For this experiment, we have selected and used three different datasets from the Stratosphere IPS project
to compute the throughput of the method. Each dataset contains a different number of flows; the smallest
dataset contains 62194 flows, the second-largest dataset contains 149911 flows and the largest dataset con-
tains 324569 flows. The throughput is computed as follows:

1. Stream dataset fifty times using Apache Kafka.

2. For each run record the time the method took to process all the flows.

6.1. EXPERIMENTS THAT USED REAL-WORLD DATA 52

3. Compute the throughput of each run using the formula that is shown in equation 3.4.

ANALYSIS OF THE RESULTS

Figure 6.2 presents the processing time and throughput of the method on the smallest dataset. The results
of the other two datasets can be found in Appendix C. Looking at the figures, we see that there is some-
thing strange; the method has achieved a higher throughput on larger datasets than on the smaller one. The
method has achieved an average of 553 flows/sec on the smallest dataset, 1241 flows/sec on the second-
largest dataset and 2445 flows/sec on the largest dataset.

One possible explanation that could explain why the smallest dataset has achieved a much lower through-
put than the second-largest dataset might be due to the delay that is caused for streaming the NetFlow data
to the Raspberry Pi or the smallest dataset contains many more different connections between different pair
of hosts. A state machine is learned for each pair of hosts and having many different combinations of these
pair could mean that many more state machines need to be learned. This can affect the throughput of the
method. Furthermore, the smallest dataset contains NetFlow data that describes the Necurs malware, which
is a botnet. This matches our explanation as a device that is part of a botnet would need to send data to
multiple different hosts.

The reason why the method has achieved the highest throughput on the largest dataset is due to the
fact that the method initially has run out of heap space while processing the dataset. Our attempt for using
Misra-Gries Summary algorithm to filter out the less common flows was not sufficient to reduce the memory
consumption of the method on the Raspberry Pi. Our solution to this problem was to lower the size of the
sketch vectors that are stored in each state. The sketch vectors are very large and it consumes a lot of memory
as the number of states grows. By using smaller sketch vectors, the comparisons between the states are much
faster as there are fewer entries to compare. This makes it faster to process the flows and therefore we got a
higher throughput on the largest dataset. Though using a smaller sketch vector resolves the problem, it also
increases the approximation error that can be made on the final state machine. Schouten has shown in his
work that using a smaller sketch vector size results in a higher average KL-Divergence value when validating
the state machines that were learned [25]. This means that the quality of a state machine drops when a
smaller sketch vector is used. The result here shows that our attempt for using Misra-Gries Summary did not
improve the memory consumption of the method and that a better memory optimisation is needed.

From the results, we also see that the highest throughput that we have achieved on the Raspberry Pi is
much lower than the highest throughput that Schouten has achieved in his work on a desktop computer [25].
This was expected as the Raspberry Pi has much less resource compared to the setup that was used by
Schouten.

(a) Processing time of the method (b) Throughput of the method

Figure 6.2: The processing time and throughput of the method on the smallest dataset (62194 flows)

CONCLUSION OF EXPERIMENT

In this experiment, we wanted to assess the scalability of the method when it is run on a Raspberry Pi. From
the results it shows that we were able to achieve an average throughput of 2445 flows/sec but to achieve this
performance a trade-off has to be made; to be able to process more flows per second we would need to lower

6.1. EXPERIMENTS THAT USED REAL-WORLD DATA 53

the size of the sketch vector of the states. This reduces memory consumption but it also drops the quality
of the state machines that are learned using the method. It also shows that a better memory optimisation
method is needed. Furthermore, we see that the highest throughput that we have achieved on the Raspberry
Pi is much lower than the average highest throughput that Schouten has achieved on a desktop. This was
expected as a Raspberry Pi has much less resource than the desktop that Schouten has used in his experiment.

6.1.3. RUN-TIME ANALYSIS OF FINDING A MOST SIMILAR FINGERPRINT ON RASPBERRY PI
The goal of using LSH is to improve the run-time of the process for finding a most similar fingerprint. As the
Raspberry Pi has much less resource than a larger device such as a desktop computer, it can benefit from the
run-time improvement that is provided by LSH. In this experiment, we want to evaluate whether LSH also
provides the improvement that we have seen in Subsection 5.2.1 when the method is run on a Raspberry Pi.

EXPERIMENT SETUP

The setup of this experiment is the same as the one that is described in Subsection 5.2.1. The difference in
this experiment is that we ran both versions of the method on the Raspberry Pi to record the time for finding
a most similar fingerprint.

ANALYSIS OF THE RESULTS

Figure 6.3 presents the run-time for finding a most similar fingerprint on the Raspberry Pi. We can see from
the figure, that the version that uses LSH has a lower run-time compared to the original version. The ver-
sion that uses LSH is still two orders of magnitude faster than the original version. This shows that LSH still
provides an improvement on the run-time of the process even when it is run on the Raspberry Pi.

Furthermore, we also see that the run-time on the Raspberry Pi is higher than the run-time on a larger
device. This was expected as the Raspberry Pi has less resource compared to a larger device.

Figure 6.3: Run-time for finding a most similar fingerprint on the Raspberry Pi.

CONCLUSION OF THE EXPERIMENT

In this experiment, we wanted to evaluate whether LSH still provides an improvement on the run-time of the
process for finding a most similar fingerprint when the method is run on a Raspberry Pi. Based on the results,
we see that LSH still provides an improvement on the run-time when the method is run on the Raspberry
Pi. Furthermore, we also saw that the run-time on the Raspberry Pi is higher than the run-time on a larger
device. This was expected as the Raspberry Pi has less resource compared to a larger device.

6.2. EXPERIMENTS THAT USED ARTIFICIALLY GENERATED DATA 54

6.2. EXPERIMENTS THAT USED ARTIFICIALLY GENERATED DATA

6.2.1. RUN-TIME ANALYSIS OF STATE-MERGING PROCESS ON THE RASPBERRY PI
As the goal of using LSH is to introduce an optimisation on the original method so that we run learn state
machines more efficiently on an embedded device, we wanted to evaluate whether LSH provides any im-
provements in the run-time of the state-merging process when it is run on the Raspberry Pi.

EXPERIMENT SETUP

The setup of this experiment is the same as the second part of the experiment that is described in Sec-
tion 4.1.3. The difference in this experiment is that we ran both versions of the method on the Raspberry
Pi to record the run-time of the state-merging process.

ANALYSIS OF THE RESULTS

The average run-time of the state-merging process of both versions is shown in Figure 6.4. From the figure,
we can see that both versions of the method ran slower on the Raspberry Pi than when it was run on a laptop
(see Figure 4.5 for comparison). This was expected as the Raspberry Pi have less resource compared to the
laptop we have used for the other experiment. This shows why the optimisation is needed for us to learn state
machines efficiently on an embedded device.

From the figure, we also see that the run-time of both versions are quite close to each other, though our
LSH approach has a slightly lower average run-time for all runs. It was expected that the average run-time
between the two versions to come quite close to each other as this was also the case when both versions were
run on a laptop. As mentioned in Section 4.1.3, this can be explained by the sizes of the state machines that
we have used for the experiment.

Figure 6.4: Average run-time of the state-merging process run on a Raspberry Pi.

CONCLUSION OF THE EXPERIMENT

In this experiment, we evaluated the run-time of the state-merging process when the method is run on the
Raspberry Pi. From the results, we saw that the overall run-time of both versions is slower when it was run
on a Raspberry Pi than when it was run on a laptop. This shows that optimisations are indeed needed for
us to learn state machines efficiently on an embedded device. From the results, we also saw that the average
run-time of both versions are quite close to each other, though our LSH approach had a slightly lower average
run-time for all runs. LSH provides an improvement in the run-time when we are dealing with state machines
that have a large number of states. As we could not learn a state machine that has more than 25 states, we
cannot see an improvement in the run-time.

6.3. CONCLUSION ON LEARNING STATE MACHINES ON THE RASPBERRY PI 55

6.3. CONCLUSION ON LEARNING STATE MACHINES ON THE RASPBERRY PI
The ultimate goal of this thesis is to investigate whether it is possible to learn state machines in real-time on
an embedded device from a stream of network traffic data. We have used a Raspberry Pi 4 as the device on
which we ran our experiments. From the results of our experiments, it shows that it is possible to learn state
machines in real-time from a stream of network traffic data. The state machines that were learned using the
version that utilises LSH are still very similar to the ones that are learned using the original version.

Though we could learn state machines in real-time on the Raspberry Pi, the highest throughput that we
have achieved was much lower than the average highest throughput that Schouten has achieved on a desktop
computer. This was expected as the Raspberry Pi has much less resource than the desktop computer that
Schouten has used. Additionally, the throughput that have achieved on the Raspberry Pi was possible after
we have used a much smaller sketch vector for the states. This reduces the memory consumption but it also
reduces the quality of the state machines (as shown in the Schouten’s work). It is also shows that our attempt
for using the Misra-Gries Summary algorithm was not sufficient to reduce the memory consumption and that
a better memory optimisation method is needed.

Based on the results, we also saw our version that uses LSH had a lower run-time for the state-merging
process but it does not differ a lot from the run-time of the original version. This was expected as we have seen
the same results in Section 4.1.3. LSH provides an improvement in the run-time when we are processing state
machines that have a large number of states. In our experiment we were not able to learn state machines that
have more 25 states and therefore the run-time our version is the same as the original version. This shows
that our LSH method does not provide an improvement in the run-time of the state-merging process when
we are learning state machines on the Raspberry Pi.

Furthermore, we have also seen that LSH has a lower run-time for finding a most similar fingerprint than
the original version. This shows that LSH still provides an improvement on the run-time of the process when
it is run on the Raspberry Pi.

7
DISCUSSION

In this chapter, we provide a discussion on the shortcomings of our method and our evaluation. By discussing
the shortcomings, we can identify the improvements that can be done on our method.

7.1. LIMITATIONS OF OUR LSH APPROACH TO LEARN STATE MACHINES
One of the limitations of our LSH method is the way how we construct the hashes for the states and state
machines. For each state or state machine, we take its vector representation and compute the dot products
between its vector representation and the random vectors that are used to create the hyperplanes. If a dot
product is a positive value then it will get a 1, else it will get a 0. This method does not take the distances
between the dot products into account; all positive dot product values will get 1 and all negative dot product
values will get a 0. If the distance between two dot products is very large, our method of hashing will assign
a 1 to them both. Thus this could mean that two states or state machines that are possibly dissimilar to each
other will get the same value if their dot products are both positive or negative. This increases the chance that
two dissimilar items will be put into the same bucket.

Being able to take the distances of the dot products into account we might be able to decrease the chance
that two dissimilar items will be put into the same bucket. This might then improve the clustering perfor-
mance of LSH for states or state machines.

For us to take distances of dot products into account when hashing, we would need to define several splits
within the space of the dot product values. This is so that we can give dot products, that are very distant from
each other, different hash values. Dot products that are close to each other will get the same hash value. For us
to define these splits, we would first need to run experiments to evaluate which are the best thresholds to use
for the splits. Due to the time constraints of this project, we did not investigate whether this method would
improve the clustering performance of our LSH method. Furthermore, we use random vectors to define the
hyperplanes and compute the dot products. This means that the dot products change every time and thus
this makes it harder to define the splits within the space of the dot product values.

Another limitation of our LSH method is that our approach does not produce the same clustering results
every time. This is because we are using random vectors to define the hyperplanes and to compute the dot
product. This means that the dot product values are not the same every time and therefore the hashes are also
not the same every time. Thus the random vectors bring inconsistency in the clustering results of our LSH
method. Though the usage of random vectors brings inconsistency in our clustering results, the concepts of
LSH is to hash similar items with a high probability into the same bucket. In our case, we look at the cosine
distance between the vector representations of the states/state machines when we are computing the dot
products. If two states/state machines are similar, then the values of the random vectors should not affect
the results; if two vectors are similar, then they would point the same direction when we are computing the
cosine distance. If they are not similar, then these two vectors would point in a different direction when we
are computing the cosine distance.

One solution to resolve the inconsistency of the results is to use a seed for the generation of the random
vectors. This solution requires us to run experiments and evaluate which seed is the best one for us to use.
Due to the time constraints of this project, we did not investigate whether this solution would resolve the
inconsistency of the results.

56

7.2. LIMITATION OF OUR EVALUATION 57

7.2. LIMITATION OF OUR EVALUATION
One of the limitations of our evaluation is that we did not investigate what is the optimal value to use for the
number of random vectors. In our implementation of LSH, we can adapt the number of random vectors to use
for clustering. The number of random vectors also influences how many possible buckets could be used for
clustering. As we are using bitstrings as hashes for the states/state machines, the maximum number of buck-
ets that can be used is calculated as follow: maxi umum number o f bucket s = 2number o f r andom vector s .
Due to the time constraints of this project, we did not investigate which is the optimal number of random
vectors to use for clustering. Furthermore, the focus of our work was to investigate whether it is possible
for to cluster state/state machines using LSH and not to figure out which is the optimal number of random
vectors to use for LSH.

Another limitation of our evaluation is that we did not use the same PAutomaC state machines, that were used
in the other experiments, to evaluate whether we can cluster state machines using their buckets distributions.
The state machines that were used for clustering state machines based on their buckets distributions did not
have obvious clusters in the state machines itself. Unlike the other experiments, we did not use five base state
machines to create the variants. This made it difficult to conclude whether the approach was indeed not
suitable for clustering state machines. The reason why we opted to use other PAutomaC state machines, is
because for this experiment we cannot read the state machines directly from the file. We needed to stream the
training data of the state machines using Apache Kafka and then learn the state machines. For us to stream
the variants that we created for the other experiments, we would need to manually generate the training data
for the variants. We did not know how we can create the training data which would guarantee that a particular
variant state machine would be learned using the method. Furthermore, the hashing was done on the states.
The locality-sensitive properties hold for the states in the buckets but these do not carry to the state machine
itself.

In our experiments, we only compared our LSH method to the original method that was designed by Schouten
and to KMeans Clustering. We did not compare our solution to any other state-of-the-art clustering solutions.
The reason why we did not do any comparison with another state-of-the-art solution was due to the imple-
mentation of the whole pipeline. The whole pipeline was written to support the learning of state machines
in real-time from a stream of NetFlow data. To be able to do a comparison with state-of-the-art solutions, we
would need to investigate whether the solution is compatible with the implementation of the pipeline. Due
to the time constraints of this project, we opted not to compare our solution to a state-of-the-art solution.

The ultimate goal of this work was to investigate whether it is possible to learn state machines from in real-
time on an embedded device. In our evaluation, we have shown that it is possible but we did not run many
extensive experiments on the Raspberry Pi. This was due to the outbreak of Covid-19, which has caused a
delay in getting the device to run the experiments. Due to the delay that was caused by the pandemic, we
were not able to run more extensive experiments on the Raspberry Pi together with our LSH method.

8
CONCLUSIONS & FUTURE WORK

This chapter concludes the research that was done in this thesis by answering the research questions that are
listed in Section 1.3, using the results from Chapters 4, 5 and 6. We finalise this chapter by listing some future
work.

The goal of this work to investigate whether it is possible to learn state machines in real-time on a small
embedded device, using the method that was proposed in the work by Schouten. As the method is designed
to work on larger devices that have much more resource than a smaller embedded device, the method could
run into performance issues when it is run on a smaller embedded device. Thus we would need to make
some modifications to the original method to resolve the possible performance issues that the method might
encounter when it is run on an embedded device.

The main research question that we have formulated for this work was the following:

RQ: How can we learn state machines in real-time from a stream of network traffic data on an
embedded device?

We will first answer the subquestions that were formed from this main research question and then use the
answer of the subquestions to answer the main research question.

SQ1: WHAT KIND OF MODIFICATIONS DO WE NEED TO MAKE TO THE ORIGINAL METHOD THAT IS PROPOSED BY

SCHOUTEN?
As a smaller embedded device has limited resources compared to a desktop computer or a laptop, some
modifications would need to be made on the original method to resolve some of the possible performance
issues it might encounter when it is run on a smaller embedded device. In this work, we have made two
modifications to the original method.

The first modification was to use the concepts of LSH to improve the run-time of the state-merging pro-
cess. When states are being merged to learn the smallest state machine, pair-wise comparisons are done
between the states to find which pair of states can be merged together. This process has a quadratic run-time
and the run-time performance will be impacted as the number of states grows larger. In our approach, we
have used LSH to cluster similar states together. By clustering the states together, there is no need to do all
the pair-wise comparisons between the states, instead we now only need to search within a particular bucket
to find a most similar state for a merge. This approach allows us to improve the run-time of the state-merging
process as we have eliminated many of the comparisons that need to be done for a merge.

The second modification was to use the Misra-Gries Summary algorithm to reduce the memory footprint
of the method. In the implementation of the system, the NetFlow data from the stream is grouped based on
the IP-pair in the connection and the protocol that was used in the connection. A state machine is learned for
each group and it is stored in memory. The issue with this implementation is that many state machines are
learned and stored in memory if there is a large number of groups. This is problematic for a small embedded
device as it does not have a lot of resources. We have used the Misra-Gries Summary algorithm to keep track
of the top ten most frequent group of NetFlow data. The infrequent groups are dropped and would not be
processed. This way we reduce the number of state machines that will be learned and thus also reduce the
memory footprint of the method.

58

59

SQ2: HOW CAN WE CLUSTER STATES USING LSH?
To cluster states using LSH, we need to represent a state as a vector of numerical values. This vector is used
to create the hash for a state which will be used to put a state in the corresponding cluster. In the implemen-
tation of the system, each state stores a Count-Min sketch vector. This vector contains an approximate count
of the sequences that have occurred in that state and it is used in the state-merging process to check whether
it can be merged with another state. As this vector is used for merging and it contains numerical values, it
seemed natural for us to also use this vector for hashing. Thus we use the Count-Min sketch vector of a state
to create its hash and put it in the corresponding cluster.

SQ3: HOW MUCH DO THE STATE MACHINES, THAT ARE LEARNED USING THE LSH APPROACH, DIFFER FROM THE

ONES THAT ARE LEARNED USING THE ORIGINAL METHOD?
From the results of the experiment that is described in Section 4.2.1, the state machines that were learned
using our LSH approach are just ever so slightly different than the ones that are learned using the original
method. When we have increased the number of buckets, the difference also increased but the difference is
still close to zero. Our LSH approach increases the approximation error for learning state machines but the
results show that the effect on the final state machine is low.

SQ4: HOW CAN WE CLUSTER STATE MACHINES USING LSH?
Clustering machines using LSH was not a trivial task. The most difficult part of the process was to find a
vector representation of a state machine. In our approach, we have tried three different methods to create
the vector representation of a state machine:

1. Using the state-transition table representation of the state machine.

2. Using the language of the state machine.

3. Using the distribution of the states of a state machine over the buckets.

Just as with the clustering of the states, the vector representation of a state machine is used to create its hash
and to put it in the corresponding cluster. Based on the results that we have seen in Chapter 5, the best
method for creating the vector representation for a state machine was the second method as this method has
achieved the highest accuracy and the highest Silhouette Coefficient score.

SQ5: HOW DOES LSH PERFORM IN COMPARISON TO KMEANS CLUSTERING?
In our evaluation, we compared the clustering performance of LSH to the clustering performance of KMeans
Clustering. We used KMeans Clustering as the baseline for the clustering results as we expect KMeans Clus-
tering to have a better clustering performance than LSH. From the results of Chapters 4 and 5, we saw that
KMeans Clustering indeed had a better clustering performance than LSH. Though LSH had a lower perfor-
mance compared to KMeans Clustering, it had almost all cases much better performance than random guess-
ing. Only in one case, LSH was performing almost just as bad as random guessing. This was when we tried to
use the distribution of the state over the buckets to cluster state machines.

The lower performance of LSH can be explained by how the clustering is done for both methods. In
KMeans Clustering, the distance is computed between the data point to assign the data points to their cor-
responding clusters. LSH does not directly take the distances between the data points into account when
assigning the data points to their corresponding clusters. This means that some information is lost between
the data points and this increase the chance for an error to occur. Additionally, the hash functions of LSH
are chosen in such a way that maximises the collision between data points. By increasing the chance for a
collision, it also increases the chance that two data points that are far away from each other to be put into the
same cluster. Thus increasing the chance of collisions also increases the chance for an error to occur.

Though LSH had a lower performance in comparison to KMeans Clustering, it managed to achieve high
accuracy for the clustering of states/state machines. This shows that although LSH does not perform as well
as KMeans Clustering, LSH can still cluster states/state machines well.

SQ 6: HOW DOES THE NEW VERSION OF THE METHOD, THAT UTILISES LSH, PERFORM ON A SMALLER EMBEDDED

DEVICE?
From the results that are shown in Chapter 6, we saw that we were able to learn state machines in real-time
from a stream of NetFlow data. The highest throughput that we have achieved was on average 2445 flows/sec

8.1. FUTURE WORK 60

and we were able to achieve this result after using a much smaller sketch vector for the states. This lowers
the memory footprint of the method and the processing time of each flow but this does come with a price;
lowering the size of the sketch vectors that are used in the states also lowers the quality of the state machines
that will be learned. This effect is shown in the work that was done by Shouten. Thus to achieve a higher
throughput on the Raspberry Pi, a trade-off has to be made between how fast we can process each flow and
the quality of the state machines that will be learned.

Comparing the throughput that we have achieved on the Raspberry Pi to the throughput that Schouten
has achieved on a desktop computer, we see that the Schouten has managed to achieve a much higher av-
erage throughput. This was expected as the Raspberry Pi has much less resource compared to the desktop
computer that Schouten has used in his experiment.

One of the goals for LSH was to improve the run-time of the state-merging process by eliminating many
of the pair-wise comparisons that need to be done between all states to find a most similar state for a merge.
When compared the run-time of the state-merging process of the original version of the method to this new
version that uses LSH, we see that LSH did not provide any improvements in the run-time of the state-merging
process. This can be explained by the fact that we cannot learn state machines with more than 25 states. LSH
would only show a speedup if we are dealing with a large number of states. As we are dealing with a low
number of states, we do not see any improvement in the run-time.

Although we were not able to improve the run-time of the state-merging process using LSH, we were able
to use LSH to improve the run-time of the process for finding a most similar fingerprint to match a state
machine. From the results that we have seen in Chapter 6, LSH was two orders of magnitude faster than the
original method for finding a most similar fingerprint to match a state machine.

RQ: HOW CAN WE LEARN STATE MACHINES IN REAL-TIME FROM A STREAM OF NETWORK TRAFFIC DATA ON AN

EMBEDDED DEVICE?
To learn state machines in real-time from a stream of network traffic data on an embedded device, we used
the method that was proposed by Schouten. Since the method was designed to work on a larger device such as
a desktop computer or laptop, the method might run into performance issues when it is run on a smaller em-
bedded device that has much less resource. To resolve the possible performance issues that the method might
encounter while running on a smaller device, some modification would need to be made to the method. In
this work, we have made two modifications to the original method; we used the concepts of LSH to improve
the run-time of the state-merging process and we used the Misra-Gries Summary algorithm to reduce the
memory footprint of the method.

Based on the results of our evaluations, LSH did not provide much improvement in the run-time of the
state-merging process. This could be explained by the fact that we cannot learn state machines with more
than 25 states. LSH would only show an improvement in the run-time when we are dealing with a large
number of states.

Although we were not able to improve the run-time of the state-merging process using LSH, we were able
to use LSH to improve the run-time for finding a most similar fingerprint to match a state machine. LSH was
two orders of magnitude faster than the original method for finding a most similar fingerprint for a match.

When we look at the state machines that were learned using LSH, they are very similar to the state ma-
chines that were learned using the original method. This shows that although using LSH increases the ap-
proximation error, the effect on the final state machine is low.

In our attempt to run the method on the Raspberry Pi, the highest throughput that we managed to achieve
was on average 2445 flows/sec. We managed to achieve this result by using a lowering the size of the sketch
vectors that were used in the states and by using the Misra-Gries Summary Algorithm to process only the
most frequent flows. This lowered the memory footprint of the method and the processing time of each flow
but this solution comes with a price; lowering the sketch sizes of the states also lowers the quality of the state
machines that will be learned. Thus there is a trade-off to be made. This also shows that a better memory
optimisation method is needed.

8.1. FUTURE WORK

USING OTHER LSH METHODS
In this work, we only used the Random Hyperplanes approach to hash and cluster state/state machines. It
would be interesting to use other LSH methods to cluster state/state machines and compare their clustering
performance to the one that we have used in this work.

8.1. FUTURE WORK 61

USING OTHER METHODS TO HASH STATE MACHINES
In this work, we have used three different methods to construct the vector representation of a state machine
and use it to hash the state machine. There is an overhead in two of the methods that we have used in this
work; for one of the method we would have to construct the largest possible state transition table and for
the other method we would have to generate strings using the language of the base state machines. Space is
needed to store the tables and strings. It would be interesting to see whether there is a method with much
less overhead than the ones that we have used in this work. It would also be interesting to see how well it
performs in comparison to the methods that were used in this work.

COMPARISON TO MORE CLUSTERING ALGORITHMS
In this work, we have only used KMeans Clustering and Random Clustering as a comparison to our LSH
approach. There exist many more clustering algorithms and it would be interesting to see how our LSH ap-
proach compares to the other clustering algorithm. We suspect our LSH approach would not have a better
performance than the other clustering algorithm.

MORE EXTENSIVE EXPERIMENTS ON THE RASPBERRY PI 4
The outbreak of Covid-19 has delayed the process of running experiments on the Raspberry Pi. Due to time
constraints, we were not able to run more extensive experiments on the Raspberry Pi 4. Given more time, we
could have come up with more experiments to do better evaluations on the Raspberry Pi 4.

BETTER MEMORY OPTIMISATION METHOD
In this work, we have attempted to reduce the memory consumption while learning state machines from
a stream of NetFlow data. We have used Misra-Gries Summary algorithm to filter out the infrequent flows
and only processes the top ten most occurring flows. This was shown to be insufficient and we needed to
also reduce the size of the sketch vectors that are used by the states. This lowers the memory footprint of
the method but it also lowers the quality of the state machines that will be learned. Thus a better memory
optimisation is needed.

A
MORE CLUSTERING RESULTS OF STATES

A.1. CLUSTERING ARTIFICIALLY GENERATED VECTORS

(a) Silhouette Coefficient scores for clustering the vectors using six clusters. (b) Accuracy for clustering the vectors using six clusters.

Figure A.1: Silhouette Coefficient scores and accuracy of each clustering for clutering the vectors using six clusters.

(a) Silhouette Coefficient scores for clustering the vectors using eight clusters. (b) Accuracy for clustering the vectors using eight clusters.

Figure A.2: Silhouette Coefficient scores and accuracy of each clustering for clutering the vectors using eight clusters.

62

A.1. CLUSTERING ARTIFICIALLY GENERATED VECTORS 63

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure A.3: Clustering results of LSH, KMeans Clustering and Random Clustering. Six clusters were used for each method.

A.2. COMPARISON RESULTS OF STATE MACHINES 64

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure A.4: Clustering results of LSH, KMeans Clustering and Random Clustering. Eight clusters were used for each method.

A.2. COMPARISON RESULTS OF STATE MACHINES

(a) Average Kullback-Leibler divergence for the state
machines of Emotet.

(b) Average Kullback-Leibler divergence for the state
machines of Necurs.

(c) Average Kullback-Leibler divergence for the state
machines of TrickBot.

Figure A.5: Boxplots showing the average Kullback-Leibler divergence of the state machines that were learned for each malware plotted
in logarithmic scale.

A.2. COMPARISON RESULTS OF STATE MACHINES 65

(a) Average Perplexity for the state machines of
Emotet.

(b) Average Perplexity for the state machines of
Necurs.

(c) Average Perplexity for the state machines of
TrickBot.

Figure A.6: Boxplots showing the average Perplexity of the state machines that were learned for each malware plotted in logarithmic
scale.

B
MORE CLUSTERING RESULTS OF STATE

MACHINES

B.1. CLUSTERING RESULTS USING THE STATE TRANSITION TABLE OF THE STATE

MACHINES

(a) Silhouette Coefficient scores for clustering the state machines using seven
clusters. (b) Accuracy for clustering the state machines using seven clusters.

Figure B.1: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using seven clusters.

66

B.1. CLUSTERING RESULTS USING THE STATE TRANSITION TABLE OF THE STATE MACHINES 67

(a) Silhouette Coefficient scores for clustering the state machines using ten
clusters. (b) Accuracy for clustering the state machines using ten clusters.

Figure B.2: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using ten clusters.

Figure B.3: Heat map generated from the unsorted distance matrix.

B.1. CLUSTERING RESULTS USING THE STATE TRANSITION TABLE OF THE STATE MACHINES 68

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.4: Clustering results of LSH, KMeans Clustering and Random Clustering. Five clusters were used for each method.

B.1. CLUSTERING RESULTS USING THE STATE TRANSITION TABLE OF THE STATE MACHINES 69

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.5: Clustering results of LSH, KMeans Clustering and Random Clustering. Seven clusters were used for each method.

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.6: Clustering results of LSH, KMeans Clustering and Random Clustering. Ten clusters were used for each method.

B.2. CLUSTERING RESULTS USING LANGUAGE OF THE STATE MACHINES 70

B.2. CLUSTERING RESULTS USING LANGUAGE OF THE STATE MACHINES

(a) Silhouette Coefficient scores for clustering the state machines using seven
clusters. (b) Accuracy for clustering the state machines using seven clusters.

Figure B.7: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using seven clusters.

(a) Silhouette Coefficient scores for clustering the state machines using ten
clusters. (b) Accuracy for clustering the state machines using ten clusters.

Figure B.8: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using ten clusters.

B.2. CLUSTERING RESULTS USING LANGUAGE OF THE STATE MACHINES 71

Figure B.9: Heat map generated from the unsorted distance matrix.

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.10: Clustering results of LSH, KMeans Clustering and Random Clustering. Five clusters were used for each method.

B.2. CLUSTERING RESULTS USING LANGUAGE OF THE STATE MACHINES 72

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.11: Clustering results of LSH, KMeans Clustering and Random Clustering. Seven clusters were used for each method.

B.2. CLUSTERING RESULTS USING LANGUAGE OF THE STATE MACHINES 73

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.12: Clustering results of LSH, KMeans Clustering and Random Clustering. Ten clusters were used for each method.

B.3. CLUSTERING RESULTS USING THE DISTRIBUTION OF STATES OVER THE BUCKETS 74

B.3. CLUSTERING RESULTS USING THE DISTRIBUTION OF STATES OVER THE

BUCKETS

(a) Silhouette Coefficient scores for clustering the state machines using six
clusters. (b) Accuracy for clustering the state machines using six clusters.

Figure B.13: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using six clusters.

(a) Silhouette Coefficient scores for clustering the state machines using eight
clusters. (b) Accuracy for clustering the state machines using eight clusters.

Figure B.14: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using eight clusters.

B.3. CLUSTERING RESULTS USING THE DISTRIBUTION OF STATES OVER THE BUCKETS 75

Figure B.15: Heatmap generated from the unsorted distance matrix.

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.16: Clustering results of LSH, KMeans Clustering and Random Clustering. Four clusters were used for each method.

B.3. CLUSTERING RESULTS USING THE DISTRIBUTION OF STATES OVER THE BUCKETS 76

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.17: Clustering results of LSH, KMeans Clustering and Random Clustering. Six clusters were used for each method.

(a) Clustering results of LSH (b) Clustering results of KMeans Clustering

(c) Clustering results of Random Clustering

Figure B.18: Clustering results of LSH, KMeans Clustering and Random Clustering. Eight clusters were used for each method.

B.4. CLUSTERING STATE MACHINES FROM BENIGN AND MALICIOUS NETFLOW DATA 77

B.4. CLUSTERING STATE MACHINES FROM BENIGN AND MALICIOUS NET-
FLOW DATA

(a) Silhouette Coefficient scores for clustering the state machines using six
clusters. (b) Accuracy for clustering the state machines using eight clusters.

Figure B.19: Silhouette Coefficient scores and accuracy of each clustering method for clustering state machines using six and eight
clusters.

C
MORE RESULTS FROM THE RASPBERY PI

EXPERIMENTS

C.1. COMPARISON BETWEEN STATE MACHINES THAT WERE LEARNED ON THE

RASPBERRY PI

(a) KL-Divergence between the state machines that were learned using LSH
and the ones that were learned using the original method.

(b) Perplexity between the state machines that were learned using LSH and
the ones that were learned using the original method.

Figure C.1: KL-Divergence and perplexity between the state machines that were learned using LSH and the ones that were learned
using the original method. The state machines were learned from the dataset of Emotet.

78

C.1. COMPARISON BETWEEN STATE MACHINES THAT WERE LEARNED ON THE RASPBERRY PI 79

(a) KL-Divergence between the state machines that were learned using LSH
and the ones that were learned using the original method.

(b) Perplexity between the state machines that were learned using LSH and
the ones that were learned using the original method.

Figure C.2: KL-Divergence and perplexity between the state machines that were learned using LSH and the ones that were learned
using the original method. The state machines were learned from the dataset of Necurs.

(a) KL-Divergence between the state machines that were learned using LSH
and the ones that were learned using the original method.

(b) Perplexity between the state machines that were learned using LSH and
the ones that were learned using the original method.

Figure C.3: KL-Divergence and perplexity between the state machines that were learned using LSH and the ones that were learned
using the original method. The state machines were learned from the dataset of TrickBot.

C.2. ASSESSING THE SCALABILITY OF THE METHOD ON THE RASPBERRY PI 80

C.2. ASSESSING THE SCALABILITY OF THE METHOD ON THE RASPBERRY PI

(a) Processing time of the method (b) Throughput of the method

Figure C.4: The processing time and throughput of the method on the second-largest dataset (149911 flows)

(a) Processing time of the method (b) Throughput of the method

Figure C.5: The processing time and throughput of the method on the largest dataset (324569 flows)

BIBLIOGRAPHY

[1] • Global digital population 2019 | Statista, https://www.statista.com/statistics/617136/
digital-population-worldwide/, (visited on 2019-10-28).

[2] Verizon Communications, 2019 Data Breach Investigations Report, Tech. Rep. (2019).

[3] S. Back, J. LaPrade, L. Shehadeh, and M. Kim, Youth Hackers and Adult Hackers in South Korea: An
Application of Cybercriminal Profiling, (Institute of Electrical and Electronics Engineers (IEEE), 2019)
pp. 410–413.

[4] G. Pogrebna and M. Skilton, A Sneak Peek into the Motivation of a Cybercriminal, (2019), 10.1007/978-
3-030-13527-0_3.

[5] A. R. Breurkes, R. Jongerius, M. M. H. A. Kerkhof, and T. D. Westerborg, Bachelor End Project Real-time
anomaly detection in critical Rabobank processes, Tech. Rep.

[6] A. Kortebi, Z. Aouini, M. Juren, and J. Pazdera, Home Networks Traffic Monitoring Case Study: Anomaly
Detection, in 2016 Global Information Infrastructure and Networking Symposium, GIIS 2016 (Institute of
Electrical and Electronics Engineers Inc., 2017).

[7] Q. Lin, S. Verwer, S. Adepu, and A. Mathur, TABOR: A graphical model-based approach for anomaly
detection in industrial control systems, in ASIACCS 2018 - Proceedings of the 2018 ACM Asia Conference
on Computer and Communications Security (Association for Computing Machinery, Inc, 2018) pp. 525–
536.

[8] G. Pellegrino, Q. Lin, C. Hammerschmidt, and S. Verwer, Learning behavioral fingerprints from Netflows
using Timed Automata, in Proceedings of the IM 2017 - 2017 IFIP/IEEE International Symposium on In-
tegrated Network and Service Management (Institute of Electrical and Electronics Engineers Inc., 2017)
pp. 308–316.

[9] V. Chelak, E. Chelak, and S. Semenov, DEVELOPMENT OF ANOMALOUS COMPUTER BEHAVIOR DE-
TECTION METHOD BASED ON PROBABILISTIC AUTOMATON OPRACOWYWANIE METODY WYKRY-
WANIA ZACHOWANIA KOMPUTEROWEGO W ZAKRESIE AUTOMATYKI PROBABILISTYCZNEJ, (2019),
10.1002/9780470118474.ch5.

[10] G. Guo, Y. Xin, X. Yu, L. Liu, and H. Cao, A Fast IP Matching Algorithm Under Large Traffic, (2019) pp.
246–255.

[11] K. S. Umadevi, P. Balakrishnan, and G. Kousalya, Intrusion detection system using timed automata for
cyber physical systems, Journal of Intelligent & Fuzzy Systems 36, 4005 (2019).

[12] N. Mohamudally and M. Peermamode-Mohaboob, Building An Anomaly Detection Engine (ADE) for IoT
Smart Applications, in Procedia Computer Science, Vol. 134 (Elsevier B.V., 2018) pp. 10–17.

[13] Khaled Alrawashdeh, C. Purdy, C. Ali Minai, R. K. Bhatnagar, P. A. Wilsey, and B. Gonen, Toward a
Hardware-assisted Online Intrusion Detection System Based on Deep Learning Algorithms for Resource-
limited Embedded Systems, Tech. Rep. (2018).

[14] M. O. Ezeme, Q. H. Mahmoud, and A. Azim, Hierarchical attention-based anomaly detection model for
embedded operating systems, in Proceedings - 2018 IEEE 24th International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA 2018 (Institute of Electrical and Electronics
Engineers Inc., 2019) pp. 225–231.

[15] G. Gracioli, M. Dunne, and S. Fischmeister, A Comparison of Data Streaming Frameworks for Anomaly
Detection in Embedded Systems, Tech. Rep. (2018).

81

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
http://veriscommunity.net/veris{_}webapp{_}min.html
http://dx.doi.org/ 10.1007/978-3-030-13527-0_3
http://dx.doi.org/ 10.1007/978-3-030-13527-0_3
http://dx.doi.org/10.1109/GIIS.2016.7814852
http://dx.doi.org/ 10.1145/3196494.3196546
http://dx.doi.org/ 10.1145/3196494.3196546
http://dx.doi.org/ 10.23919/INM.2017.7987293
http://dx.doi.org/ 10.23919/INM.2017.7987293
http://dx.doi.org/10.1002/9780470118474.ch5
http://dx.doi.org/10.1002/9780470118474.ch5
http://dx.doi.org/10.3233/JIFS-169961
http://dx.doi.org/10.1016/j.procs.2018.07.138
http://dx.doi.org/10.1109/RTCSA.2018.00035
http://dx.doi.org/10.1109/RTCSA.2018.00035
https://www.researchgate.net/publication/325578593
https://www.researchgate.net/publication/325578593

BIBLIOGRAPHY 82

[16] A. K. Kyaw, Y. Chen, and J. Joseph, Pi-IDS: Evaluation of open-source intrusion detection systems on
Raspberry Pi 2, in 2015 2nd International Conference on Information Security and Cyber Forensics, InfoSec
2015 (Institute of Electrical and Electronics Engineers Inc., 2016) pp. 165–170.

[17] A. Sforzin, M. Conti, F. Gómez Mármol, and J.-M. Bohli, RPiDS: Raspberry Pi IDS A Fruitful Intrusion
Detection System for IoT, (2016), 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.114.

[18] S. Tripathi and R. Kumar, Raspberry Pi as an Intrusion Detection System, a Honeypot and a Packet Ana-
lyzer, (Institute of Electrical and Electronics Engineers (IEEE), 2019) pp. 80–85.

[19] A. A. Gendreau and M. Moorman, Survey of intrusion detection systems towards an end to end secure
internet of things, in Proceedings - 2016 IEEE 4th International Conference on Future Internet of Things
and Cloud, FiCloud 2016 (Institute of Electrical and Electronics Engineers Inc., 2016) pp. 84–90.

[20] F. Hugelshofer, P. Smith, D. Hutchison, and N. J. Race, OpenLIDS: A lightweight intrusion detection system
for wireless mesh networks, in Proceedings of the Annual International Conference on Mobile Computing
and Networking, MOBICOM (2009) pp. 309–320.

[21] S. Misra, K. I. Abraham, M. S. Obaidat, and P. V. Krishna, LAID: A learning automata-based scheme for
intrusion detection in wireless sensor networks, Security and Communication Networks 2, 105 (2009).

[22] Y. Fu, Z. Yan, J. Cao, O. Koné, and X. Cao, An Automata Based Intrusion Detection Method for Internet of
Things, Mobile Information Systems 2017 (2017), 10.1155/2017/1750637.

[23] C. Nykvist and M. Larsson, Lightweight Portable Intrusion Detection System for Auditing Applications-
Implementation and evaluation of a lightweight portable in-trusion detection system using Raspberry Pi
and Wi-Fi Pineapple, Tech. Rep. (2019).

[24] S. M. JAYAPRAKASH, BEHAVIOUR MODELLING AND ANOMALY DETECTION IN SMART-HOME IOT DE-
VICES, Tech. Rep. (2019).

[25] H. Schouten, Learning State Machines from data streams and an applica-tion in network-based threat
detection, Tech. Rep. (2018).

[26] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets (2010).

[27] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statist. 22, 79 (1951).

[28] Michael Sipser, Introduction to the Theory of Computation, Third Edition (2012).

[29] A. I. L. Pitt and M. K. Warmuth, The Minimum Consistent DFA Problem Cannot be Atxxoximated within
any Polynomial, Tech. Rep. (1989).

[30] K. J. Lang, B. A. Pearlmutter, and R. A. Price, Results of the abbadingo one DFA learning competition and a
new evidence-driven state merging algorithm, in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 1433 (Springer Verlag,
1998) pp. 1–12.

[31] W. Wieczorek, Studies in Computational Intelligence 673 Grammatical Inference Algorithms, Routines
and Applications (2017).

[32] J. S. Vitter, Random Sampling with a Reservoir, ACM Transactions on Mathematical Software (TOMS) 11,
37 (1985).

[33] Claudia Hauff, TI2736-B Big Data Processing, https://chauff.github.io/documents/bdp/
streaming1.pdf, (visited on 2019-11-19).

[34] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, Synopsis diffusion for robust aggregation in sensor
networks, in SenSys’04 - Proceedings of the Second International Conference on Embedded Networked
Sensor Systems (2004) pp. 250–262.

[35] B.-Y. Choi and S. Bhattacharyya, On the Accuracy and Overhead of Cisco Sampled NetFlow, Tech. Rep.
(2005).

http://dx.doi.org/ 10.1109/InfoSec.2015.7435523
http://dx.doi.org/ 10.1109/InfoSec.2015.7435523
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.114
http://dx.doi.org/10.1109/FiCloud.2016.20
http://dx.doi.org/10.1109/FiCloud.2016.20
http://dx.doi.org/ 10.1145/1614320.1614355
http://dx.doi.org/ 10.1145/1614320.1614355
http://dx.doi.org/10.1002/sec.74
http://dx.doi.org/10.1155/2017/1750637
www.liu.se
www.liu.se
www.liu.se
http://repository.tudelft.nl/
http://repository.tudelft.nl/
http://repository.tudelft.nl/
http://repository.tudelft.nl/
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1007/bfb0054059
http://dx.doi.org/10.1007/bfb0054059
http://www.springer.com/series/7092
http://www.springer.com/series/7092
http://dx.doi.org/10.1145/3147.3165
http://dx.doi.org/10.1145/3147.3165
https://chauff.github.io/documents/bdp/streaming1.pdf
https://chauff.github.io/documents/bdp/streaming1.pdf
http://dx.doi.org/ 10.1145/1340771.1340773
http://dx.doi.org/ 10.1145/1340771.1340773

BIBLIOGRAPHY 83

[36] P. Flajolet and G. Nigel Martin, Probabilistic counting algorithms for data base applications, Journal of
Computer and System Sciences 31, 182 (1985).

[37] J. Misra and D. Gries, Finding repeated elements, Science of Computer Programming 2, 143 (1982).

[38] G. Cormode, Count-Min Sketch, Tech. Rep. (2009).

[39] Apache Hadoop, https://hadoop.apache.org/, (visited on 2019-11-22).

[40] Apache Flink: Stateful Computations over Data Streams, https://flink.apache.org/, (visited on
2019-11-24).

[41] Apache Kafka, https://kafka.apache.org, (visited on 2019-11-24).

[42] Snort - Network Intrusion Detection & Prevention System, https://www.snort.org/, (visited on 2019-
11-26).

[43] A. V. Aho and M. J. Corasick, Efficient String Matching: An Aid to Bibliographic Search, Tech. Rep. (1975).

[44] D. E. Knuthf, J. H. Morris, and V. R. Pratt, SIAM J. COMPUT , Tech. Rep. 2 (1977).

[45] A. Guttman, R-trees: A dynamic index structure for spatial searching, in Proceedings of the ACM SIGMOD
International Conference on Management of Data (1984) pp. 47–57.

[46] WiFi Pineapple - Hak5, https://shop.hak5.org/products/wifi-pineapple, (visited on 2019-11-
27).

[47] P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Jour-
nal of Computational and Applied Mathematics 20, 53 (1987).

[48] S. Verwer, R. Eyraud, and C. De La Higuera, PAutomaC: A probabilistic automata and hidden Markov
models learning competition, Machine Learning 96, 129 (2014).

[49] Datasets Overview — Stratosphere IPS, https://www.stratosphereips.org/datasets-overview,
(visited on 2020-7-16).

[50] sklearn.cluster.KMeans — scikit-learn 0.23.1 documentation, https://scikit-learn.org/stable/
modules/generated/sklearn.cluster.KMeans.html, (visited on 2020-07-24).

http://dx.doi.org/ 10.1016/0022-0000(85)90041-8
http://dx.doi.org/ 10.1016/0022-0000(85)90041-8
http://dx.doi.org/10.1016/0167-6423(82)90012-0
https://hadoop.apache.org/
https://flink.apache.org/
https://kafka.apache.org
https://www.snort.org/
http://www.siam.org/journals/ojsa.php
http://dx.doi.org/ 10.1145/602259.602266
http://dx.doi.org/ 10.1145/602259.602266
https://shop.hak5.org/products/wifi-pineapple
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/ 10.1007/s10994-013-5409-9
https://www.stratosphereips.org/datasets-overview
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

	Introduction
	Detecting Anomalies using Embedded Devices
	Problem Statement
	Motivation of using LSH

	Research Questions
	Contributions
	Thesis Outline

	Background
	State Machines
	Using State Machines for Anomaly Detection

	Blue-Fringe Algorithm
	Adapted Version of the Blue-Fringe Algorithm

	The Streaming Paradigm
	Sampling Methods
	Other Existing Streaming Algorithms
	Existing Data Processing & Streaming Frameworks

	Locality Sensitive Hashing (LSH)
	LSH Hashing Methods

	Related Work
	Solution Not Utilising State Machines
	Solutions Utilising State Machines

	Methodology
	Selecting the Hashing Method For Our LSH Approach
	Using LSH to Hash States
	State Representation for Hashing

	Evaluating the Hashing of States
	Assessing the Items in the Buckets
	Assessing the State Machines Learned Using LSH
	Run-time Analysis of the State Merging Process

	Using LSH to State Machines
	State Machine Representation for Hashing

	Evaluating the Hashing of States Machines
	Assessing the Usage of State Transition Tables
	Assessing the Usage of the Language
	Assessing the Usage of State Distribution Over the Buckets
	Run-time Analysis of Finding a Most Similar State Machine
	Run-time Analysis of Finding a Most Similar Fingerprint
	Assessing the Clustering of State Machines of Malware

	Running the Method On A Raspberry Pi
	Learning State Machines from Malicious NetFlow Data
	Assessing the Scalability of the Method on Raspberry Pi
	Run-time Analysis of Finding a Most Similar Fingerprint on Raspberry Pi
	Run-time Analysis Of State-Merging Process on Raspberry Pi

	Clustering States
	Experiments that Used Artificially Generated Data
	Clustering Artificially Generated Vectors Using LSH
	Run-time Analysis Of State-Merging Process - Part 1
	Run-time Analysis Of State-merging Process - Part 2

	Experiments that Used Real-world Data
	Comparison of the Generated State Machines

	Conclusion on the Hashing of States Using LSH

	Clustering State Machines
	Experiments That Used Aritficially Generated Data
	Using State Transition Tables to Cluster State Machines
	Using Language of State Machine to Cluster State Machines
	Using the Distribution of the States Over the Buckets to Cluster State Machines
	Run-time Analysis of Finding Similar State Machine

	Experiments That Used Real-world Data
	Run-time Analysis of Finding a Most Similar Fingerprint
	Clustering State Machines from Benign and Malicious NetFlow Data
	Experiment Setup
	Analysis of the Results

	Conclusion on the Hashing of State Machines Using LSH

	Learning State Machines On Raspberry Pi
	Experiments that Used Real-world Data
	Running New Method On An Embedded Device
	Assessing the Scalability of the Method on the Raspberry Pi
	Run-time Analysis of Finding a Most Similar Fingerprint on Raspberry Pi

	Experiments that Used Artificially Generated Data
	Run-time Analysis of State-Merging Process On The Raspberry Pi

	Conclusion on Learning State Machines on the Raspberry Pi

	Discussion
	Limitations of our LSH approach to learn State Machines
	Limitation of our Evaluation

	Conclusions & Future Work
	Future Work

	More Clustering Results of States
	Clustering Artificially Generated Vectors
	Comparison Results of State Machines

	More Clustering Results of State Machines
	Clustering Results Using the State Transition Table of the State Machines
	Clustering Results Using Language of the State Machines
	Clustering Results Using the Distribution of States Over the Buckets
	Clustering State Machines From Benign and Malicious NetFlow Data

	More Results from the Raspbery Pi Experiments
	Comparison Between State Machines that were Learned on the Raspberry Pi
	Assessing the Scalability of the Method on the Raspberry Pi

	Bibliography

