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Abstract

In recent years, a family of approaches has emerged for supporting decision-
making on complex environmental problems characterised by deep uncer-
tainties and competing priorities. Many-Objective Robust Decision Making
(MORDM), Multi-scenario MORDM and. Many-Objective Robust Opti-
mization (MORO) differ with respect to the degree to which robustness is
considered during the search for promising candidate solutions. To assess
the efficacy of these three methods, we compare them using three different
policy formulations of the lake problem: inter-temporal, planned adaptive,
and direct policy search. The more robustness is considered in the search
phase, the more robust solutions are also after re-evaluation but also the
lower the performance in individual reference scenarios. Adaptive policy
formulations positively affect robustness, but do not reduce the price for ro-
bustness. Multi-scenario MORDM strikes a pragmatic balance between ro-
bustness considerations and optimality in individual scenarios, at reasonable
computational costs.
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software availability

All code used for this research can be found at https://github.com/

eebart/RobustDecisionSupportComparison. The underlying data, because
of its shear size, is available upon request from the corresponding author.

1. Introduction1

Decision-making and planning of complex environmental systems typ-2

ically involves various actors with competing preferences, different under-3

standings of the system, and diverging beliefs about the future. To support4

the decision making on such wicked-problems under deep uncertainty (Rittel5

and Webber, 1973, Kwakkel et al., 2016c), a variety of decision support ap-6

proaches, rooted in exploratory modeling (Bankes, 1993, Bankes et al., 2013),7

have emerged in recent years (Walker et al., 2013a, Kwakkel and Haasnoot,8

2019). Given that analysis of deeply uncertain problems cannot reliably de-9

pend on a single description of the system under consideration (Quinn et al.,10

2017a), exploratory modeling uses a series of potential explanations, in the11

form of computational experiments, to analyze a wicked problem and support12

the decision making process (Bankes, 2002).13

The various robust decision support methods seek a set of robust solutions14

that achieve satisfactory performance across multiple possible realization of15

the deep uncertainties (Herman et al., 2015, Bankes, 2002, Kwakkel et al.,16

2016b). Since many problems often have both deep uncertainties and well-17

characterized uncertainties, a given realization of the deep uncertainties can18

have a range of possible outcomes conditional on the exact stochastic real-19

ization. To address this, it is quite common to evaluate a given realization20

of the deep uncertainties for a number of different stochastic realizations of21

the well characterized uncertainties and take descriptive statistics over these22

different stochastic realizations as the performance in the given realization23

of the deep uncertainties. In this paper, a given realization of the various24

deep uncertainties is called a scenario. The word realization is reserved in the25

remainder for a stochastic realization of the well characterized uncertainties.26

Given the existence of various robust decision support methods, the ques-27

tion is when which method is most appropriate. In an attempt to develop28

an answer to this, there is an emerging body of literature comparing them29

(Hall et al., 2012, Kwakkel et al., 2016b, Matrosov et al., 2013, Roach et al.,30
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2015, 2016, Moallemi et al., 2019). This study adds to this literature by com-31

paring three different variations of Robust Decision Making (RDM), a foun-32

dational robust decision making method (Lempert et al., 2006, Groves and33

Lempert, 2007). These variants are Many Objective Robust Decision Mak-34

ing (MORDM) (Kasprzyk et al., 2013), Multi-Scenario MORDM (Watson35

and Kasprzyk, 2017), and Many Objective Robust Optimization (MORO)36

(Hamarat et al., 2014, Kwakkel et al., 2015, Trindade et al., 2017).37

RDM in essence is an iterative approach where candidate policy alterna-38

tives are stress tested over a large ensemble of plausible scenarios (Lempert,39

2002). Next, using Scenario Discovery (Bryant and Lempert, 2010, Kwakkel40

and Jaxa-Rozen, 2016) the conditions under which the candidate policies are41

failing to meet prespecified performance thresholds are identified. In light of42

these vulnerabilities, the candidate policies can be refined (Lempert et al.,43

2006, Groves and Lempert, 2007). RDM provides a structure for compar-44

ing previously identified policy alternatives and for discovering how various45

deeply uncertain factors affect each alternative’s performance. That infor-46

mation can then be used to refine the initially identified set of policy alter-47

natives to yield a more robust set of alternatives. This structure is iterative48

and interactive, allowing analysts and decision makers to work together to49

stress-test and refine potential policies. The fact that RDM requires a list50

of promising policy alternatives from the start can prove a difficult challenge51

when considering problems with multiple conflicting objectives (Kasprzyk52

et al., 2013). MORDM addresses this by searching for promising policy al-53

ternatives using many-objective evolutionary algorithms (MOEA) in a single54

reference scenario (Kasprzyk et al., 2013).55

Multi-Scenario MORDM addresses a recognized weaknesses in MORDM.56

Namely, that MORDM uses only a single reference scenario for the deeply57

uncertain factors when searching for promising policy alternatives (Watson58

and Kasprzyk, 2017). Doing so may yield policy alternatives that perform59

poorly in future states of the world that deviate from the baseline used during60

the search. Multi-scenario MORDM reduces this risk by repeating the search61

for several alternative future states of the world (Watson and Kasprzyk,62

2017). These alternative future states are selected to represent conditions63

that are challenging to address by solutions found for the reference scenario64

(Eker and Kwakkel, 2018).65

Around the same time that MORDM was put forward, an alternative ap-66

proach was also being pursued. We suggest to label this approach Many Ob-67

jective Robust Optimization (MORO). Where MORDM and multi-scenario68
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MORDM are optimizing for a single scenario, MORO considers a set of sce-69

narios and optimizes the robustness of strategies over this set of scenarios.70

Hamarat et al. (2014) used MORO to find appropriate signposts and triggers71

for an adaptive energy transition policy. Kwakkel et al. (2015) used MORO72

to identify the Pareto approximate set of robust policy pathways for climate73

adaptation. Trindade et al. (2017) explicitly positioned MORO within the74

MORDM framework, while searching for robust policy pathways for water75

resources management in the Research Triangle. In essence, MORO gen-76

eralizes the robustness approach suggested by Deb and Gupta (2006) who77

suggested optimizing the mean effective objective functions by averaging over78

a set of neighboring solutions. In MORO, this set of neighboring solutions is79

replaced with a set of scenarios, while it is recognized that robustness func-80

tions other than the mean can be used (McPhail et al., 2018, Kwakkel et al.,81

2016a).82

MORDM, multi-scenario MORDM, and MORO representing increasing83

considerations of robustness within the search phase (Eker and Kwakkel,84

2018). MORDM only considers robustness during the testing over a very85

large ensemble of scenarios. Multi-scenario MORDM increases the consid-86

eration of robustness in the search phase by performing search for multiple87

scenarios which are selected because they represent conditions under which88

solutions found for the first reference scenario performs poorly. MORO goes89

one step further by shifting from optimizing performance in a given scenario90

to optimizing robustness over a set of scenarios. The trade-off is that by91

increasing robustness considerations in the search phase, optimally in a ref-92

erence scenario might decline.93

We want to assess the efficacy of the three RDM methods in finding94

robust solutions as well as the consequences of this for the performance in95

baseline scenarios. For this, we use three policy formulations of the shallow96

lake problem (Carpenter et al., 2001), an established case for testing and97

bench-marking RDM methods. In the lake problem, the aim is to decide on98

the amount of pollution to put into a lake which maximizes utility, while99

minimizing the overall pollution in the lake and the chance that the lake100

is permanently shifted to a different state. The first policy formulation is101

an inter temporal formulation where one tries to find for each time step the102

appropriate amount of pollution to put into the lake. The second policy103

formulation is about finding a decision rule for making a decision for the104

coming ten years on how much pollution to put into the lake each year.105

The third policy formulation also searches for a decision rule, but one that106
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is used each year. These three formulations span a continuum from static,107

via planned adaptive, to a fully adaptive policy architecture (Kwakkel and108

Haasnoot, 2019).109

The remainder of this paper is structured accordingly. In Section 2, we110

provide a more detailed description of the three robust decision support meth-111

ods. Section 3 provides more background on the lake problem test case and112

details the three policy formulations that will be used for comparing the three113

robust decision support approaches. Section 4 provides the methodological114

details for how the comparison will be performed. Section 5 contains the115

results. In Section 6, we present the main conclusions.116

2. Model-based approaches for supporting decision making under117

deep uncertainty118

The search for an optimal solution is recognized as an impossible task119

when faced with deeply uncertain problems. Policy makers have instead120

looked to an alternate mechanism to analyze the goodness of potential solu-121

tions: robustness (Maier et al., 2016). A robust solution is one that performs122

well across a variety of possible future states of a system, due to both in-123

ternal and external changes (Herman et al., 2015, Walker et al., 2013a,b).124

By searching for robust policies one aims to find policies that are not overly125

sensitive to changes in uncertain parameter values. It is possible that the126

optimal policy belongs to the set of robust policies (which is known as a127

super-robust solution). However, it is much more common that robust poli-128

cies are not optimal under any individual state of the world (Sniedovich,129

2016). This is known as the price of robustness (Bertsimas and Sim, 2004).130

Robustness of a policy can be analyzed from multiple perspectives: resis-131

tance to change, avoidance of change, recovery from change, and adaptability132

in response to change (Durach et al., 2015, de Goede et al., 2013). Because of133

these various perspectives, there exists many established robustness metrics,134

each prioritizing a different perspective. Calculating any of these metrics135

generally involves the same three elements: a set of decision alternatives,136

several outcomes of interest or performance metrics, and the scenarios or137

possible future states of the world that will be considered (McPhail et al.,138

2018). Robustness metrics may determine performance as an absolute calcu-139

lation or relative to the performance of the other decision alternatives. Each140

metric also employs differing levels of risk aversion: include more extreme141

scenarios in calculations to have a higher level of risk aversion (Giuliani and142
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Castelletti, 2016). Finally, each metric has a different method of combining143

robustness calculations across scenarios for a specific policy option, including144

mean, standard deviation, skewness, or kurtosis (McPhail et al., 2018).145

The search for robust solutions requires assessment of different potential146

solutions over a large ensemble of scenarios. This set of potential futures147

cannot be represented by a small number of possibilities (given the large148

amount of uncertainty that is frequently influenced by multiple input vari-149

ables, it is generally impossible to codify a short list of possible futures for a150

problem), but has to instead be described using large ensembles of potential151

futures, with the number of scenarios stretching anywhere from a few hun-152

dred to several million. Lempert et al. (2006) proposed RDM as a method153

for supporting decision making under deep uncertainty. RDM is an iterative154

process of model and policy specification, computer aided experimentation155

that involves the generation and execution of a large ensemble of scenarios156

that span the defined uncertainty space, development of interactive visual-157

izations, and decision maker input and refinement based on the results of158

computational experimentation and generated visualization (Lempert et al.,159

2006). Figure 1a shows this approach.160

2.1. Many-Objective Robust Decision Making161

Building on RDM, Kasprzyk et al. (2013) propose Multi-Objective Ro-162

bust Decision Making (MORDM), which provides a structure for managing a163

wide spectrum of decision maker perspectives and conflicting objectives. Fig-164

ure 1b indicates how MORDM modifies step 2 of the RDM process. MORDM165

introduces a formal process to determine a rich set of policy alternatives with166

different trade-offs on the competing objectives in step 2 through the appli-167

cation of a many-objective evolutionary algorithm (MOEA).168

The MORDM method also codifies the process with which to help select169

a preferred solution from the set of solutions generated with the MOEA,170

through uncertainty analysis, scenario discovery, and interactive visualiza-171

tions (Kasprzyk et al., 2013). After model specification and a MOEA search172

for policy alternatives, the performance of the list of alternatives is re-173

evaluated or stress tested over a set of possible future states of the world.174

This set should capture the relevant deeply uncertain factors. This involves175

building a set of alternative scenarios by sampling across the set of deeply176

uncertainty parameters. Kasprzyk et al. (2013) recommends using Latin Hy-177

percube Sampling, which ensures that each member of the uncertainty set is178

represented evenly across the sampled set of scenarios (McKay et al., 1979).179
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Given the performance of each candidate solution in each scenario, the180

next step is to analyze this data. The focus is on assessing the robustness of181

the candidate solutions, and the determination of how the various deeply un-182

certain factors alone or in combination affect this robustness (Herman et al.,183

2015). The results of this analysis are communicated through interactive vi-184

sualizations that decision makers can leverage to examine the robustness of185

policy alternatives and to better understand the trade-offs that exist between186

the various objectives. Like RDM, MORDM is intrinsically iterative. If the187

trade-offs of the various decision alternatives or their robustness is deemed188

unacceptable, a next iteration starts. However, as MORDM leverages an189

MOEA to determine alternatives, any refinements occur at the model speci-190

fication level, where new insights can be used to adjust the uncertainty space,191

to change the set of decision levers, or modify the objectives.192

2.2. Multi-Scenario Many-Objective Robust Decision Making193

Multi-scenario MORDM (Watson and Kasprzyk, 2017) is a further re-194

finement of MORDM. The main contribution of MORDM was the use of a195

MOEA for finding a set of promising candidate solutions which together cap-196

ture the key trade-offs amongst competing objectives. However, this search197

uses a single reference scenario, and it is unlikely that solutions that are op-198

timal in a given scenario are also optimally robust. Multi-scenario MORDM199

(fig. 1c) addresses this by performing a search for candidate strategies for sev-200

eral different reference scenarios. The additional scenarios for which search201

is performed are selected from regions in the deep uncertainty space where202

candidate solutions found for the first reference scenario are failing to meet203

their objectives. So, one performs the four MORDM steps, and based on the204

insights from scenario discovery, additional scenarios are selected for which205

search is also performed. The goal of this is to build a more diverse set of206

policy alternatives which are Pareto optimal under different scenarios.207

The selection of scenarios after the first MORDM iteration is a critical208

step in multi-scenario MORDM (Eker and Kwakkel, 2018). Watson and209

Kasprzyk (2017) suggest picking scenarios based on the scenario discovery210

results. The number of scenarios to select is left to the analyst. Clearly, if211

the number of scenarios for which a search is conducted increases, the chance212

of finding solutions that are robust during the re-evaluation also increases.213

However, this comes at a substantial computational cost. To assist in bal-214

ancing comprehensiveness and computational cost, while making scenario215

selection transparent and reproducible, Eker and Kwakkel (2018) present an216
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approach for finding the most policy relevant and maximally diverse set of217

scenarios. Policy relevance is defined as scenarios that lead to poor outcomes218

and the diversity criterion is based on Carlsen et al. (2016).219

2.3. Many-Objective Robust Optimization220

While MORDM and multi-scenario MORDM were being developed, a221

variety of authors under different labels were investigating the role of Many222

Objective Robust Optimization for supporting planning and design under223

deep uncertainty (Hamarat et al., 2014, Kwakkel et al., 2015, 2016b, Trindade224

et al., 2017, Beh et al., 2017). We suggest to label this strand of literature225

as MORO and explicitly structure it using the RDM framework (see fig. 1d).226

The main idea uniting this literature is the observation that solutions found227

through optimization for a reference scenario can have very poor perfor-228

mance in other scenarios. In fact, given the price of robustness, it is unlikely229

that a solution optimal in any particular scenario is also very robust over a230

large number of scenarios. Since the overarching aim of supporting decision231

making under deep uncertainty is the identification of robust strategies that232

offer an acceptable performance across multiple competing objectives, why233

not include these robustness considerations already in the search phase for234

candidate solutions?235

In the search phase of MORO, typically, one uses a sampling approach236

to generate a test set of scenarios over which the robustness of candidate237

solutions is calculated. One thus approximates the robustness metric over238

the entire domain by calculating them using an ensemble of scenarios sampled239

from this domain. So, a candidate solution is evaluated for each scenario.240

Next, for each outcome of interest, an aggregation function is applied over241

the performance in each scenario to arrive at a single robustness score for242

each outcome of interest (Beyer and Sendhoff, 2007, McPhail et al., 2018).243

3. The Lake Problem244

In order to compare MORDM, multi-scenario MORDM, and MORO,245

there must be a usable problem that is representative for the class of prob-246

lems for which these methods have been suggested. Relevant characteristics247

include, a wicked problem subject to deep uncertainty, a threshold point of248

no return, where behavior of the system changes dramatically, and the con-249

sideration of multiple decision makers with multiple conflicting criteria. The250

shallow lake problem (Carpenter et al., 1999), a common reference problem251
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in policy analysis research, incorporates all of these characteristics. Over the252

last decade, the shallow lake problem has repeatedly been used in developing253

and testing methods for supporting decision making under deep uncertainty254

(Lempert and Collins, 2007, Quinn et al., 2017b, Singh et al., 2015, Ward255

et al., 2015, Kwakkel, 2017)256

The shallow lake problem is a stylized decision problem in which a town257

must decide the amount of pollution to release into a nearby shallow lake over258

time. This hypothetical problem involves two sources of pollution: anthro-259

pogenic pollution generated by the town through industrial and agricultural260

waste, and natural inflows that are uncontrollable and come from the envi-261

ronment. There is also a natural outflow process based on the capability of262

the lake to recycle resources that is capable of naturally reducing pollution263

over time in the lake (Hadka et al., 2015). Pollution levels are determined264

through eq. (1), where X represents the concentration of pollution in the265

lake, a is the anthropogenic pollution input for the time period, Y refers to266

the natural inflows of pollution which is described using a lognormal distri-267

bution, q refers to the rate at which pollution is recycled the lake’s sediment,268

and b refers to the loss of pollution from the lake through natural outflows.269

The exact specifications for each of the parameters are based on the lake270

model developed by Quinn et al. (2017b).271

Xt+1 = Xt + at + Yt +
Xq

t

1 +Xq
t

− bXt (1)

The behavior of the lake problem has a tipping point. If the critical272

threshold of pollution concentration is surpassed, the trend transitions to-273

ward eutrophic equilibrium, making it impossible to return to a healthier274

oligotrophic equilibrium without active human intervention reducing pollu-275

tion in the lake (Quinn et al., 2017b).276

3.1. Objectives277

In the typical setup of the shallow lake problem, there are four conflict-278

ing objectives: minimize the maximum pollution level, while maximizing the279

utility of the release policy to the town, the reliability of the policy, and policy280

inertia. The multi-objective form of this problem was introduced by Singh281

et al. (2015) and further developed by Ward et al. (2015), with the goal of282

introducing objectives that exemplify the conflicts that occur with a diverse283

group of decision makers and a problem characterized by both stochastic284

uncertainty (i.e., the stochastic natural inflow), and deep uncertainty. To285
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address the stochastic uncertainty, the model is run for N stochastic realiza-286

tions and descriptive statistics are taken over these replications.287

Maximum Pollution (minimize): Some decision makers such as envi-288

ronmental regulators are seeking to ensure that the maximum pollution level289

reached in the lake is kept as low as possible (Singh et al., 2015).290

fmax pollution = max
t∈{1,··· ,T}

1

N

N∑
n=1

Xt,n (2)

where Xt,n is the concentration of the pollution in year t for stochastic291

realisation n.292

Reliability (maximize): Reliability captures the desire of decision mak-293

ers to keep the lake below the critical pollution threshold. At the same time,294

in contrast with the maximum pollution objective, a policy that has high re-295

liability is also accepting of a small amount of pollution, as long as it remains296

below the critical threshold (Singh et al., 2015).The reliability of a policy is297

the average reliability for each time step over all realisations N , shown in298

eq. (3) (Ward et al., 2015).299

freliability =
1

N

N∑
n=1

(
1

T

∑
t∈T

θt,n

)
,where θt,n =

{
1 Xt,n < Pcrit

0 otherwise
(3)

Utility (maximize): To contrast with the objectives that relate the300

goals common among environmental regulators, utility represents the inter-301

ests of the town’s agriculture and industry, with the goal being to maximize302

the utility of a policy for those decision makers. Here, α is the utility gener-303

ated by one unit of antropogenic pollution, while δ is the discount rate. This304

objective naturally conflicts with the objective of minimizing the pollution305

level in the lake, providing a valuable dynamic for robust decision support306

analysis (Ward et al., 2015).307

futility =
1

N

N∑
n=1

(∑
t∈T

αat,nδ
t

)
(4)

Inertia (maximize): This objective captures the undesirability of large308

year-over-year changes to the anthropogenic inflow. The aim is to maximize309

the average inertia of a policy. Like utility, inertia of a policy and for an310
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experiment is first calculated for every time step involved. The mean of that311

vector of values is what is used to determine inertia-based robustness. Inertia312

for a single time step in an experiment is determined with eq. (5).313

fintertia =
1

N

N∑
n=1

(
1

T

∑
t∈T

φt,n

)
,where φt,n =

{
1 |at,n − at−1,n| < 0.01

0 otherwise
(5)

3.2. Deep Uncertainties314

There are five sources of uncertainty in the definition of the lake problem315

used for this study. Table 1 shows the uncertainty ranges and base values316

which have been selected based on the most commonly used settings in lit-317

erature (Carpenter et al., 1999, Eker and Kwakkel, 2018, Hadka et al., 2015,318

Quinn et al., 2017b, Ward et al., 2015).319

Table 1: Deeply uncertainty variables

Name Description Range Reference scenario

b
Pollution rate of removal
through natural outflows

[0.1, 0.45] 0.42

q
Pollution recycling
rate through natural
processes

[2.0, 4.5] 2.0

µ
Mean of natural pollution
inflows

[0.01, 0.05] 0.02

σ
Standard deviation of
natural inflows

[0.001, 0.005] 0.0017

δ Utility discount factor [0.93, 0.99] 0.98

3.3. Policy Formulations320

To ensure a thorough assessment of the relative merits of the three meth-321

ods, we consider three alternative formulations of the policy problem.322

Inter-temporal: Also known as open-loop control, this variation of the323

lake problem has been used in research several times and involves a series324
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of pre-determined static decisions made every time-step (Hadka et al., 2015,325

Quinn et al., 2017b, Singh et al., 2015, Ward et al., 2015). This option326

represents a strictly static approach to solving the lake problem.327

Direct Policy Search (DPS): Representing the other extreme in policy328

structure, direct policy search (DPS) (Giuliani et al., 2016), or closed-loop329

control. The DPS structure involves optimizing a set of parameters that330

form a state-aware pollution release rule. This control rule is used to update331

the level of pollution released at every time-step, giving this policy structure332

the ability to quickly respond to changes in system conditions. The DPS333

structure has also been used as a part of the lake problem in research before334

(Quinn et al., 2017b).335

Planned Adaptive DPS: Given that both the inter-temporal and DPS336

policy structures adapt the pollution release every time period, they do not337

necessarily represent real-world decision strategy, where it takes time to im-338

plement changes. Therefore, this research is proposing a third policy struc-339

ture that follows the same fundamental structure of the DPS policy, but only340

makes a decision every τ time steps about the level of pollution that is to be341

released at each time step, where τ is a number set by the decision makers or342

policy analysts . For this paper we use τ = 10 (DPS uses τ = 1). Note that343

Singh et al. (2015) do something similar but with the inter-temporal policy344

formulation and τ = 5 .345

4. Approach346

4.1. Many-Objective Evolutionary Algorithms347

Many-Objective Evolutionary Algorithms (MOEAs) aim at identifying348

the Pareto approximate set in a multi-objective space (Maier et al., 2019).349

For this paper we use a novel generational version of BORG (Hadka and350

Reed, 2013). In essence, we use the auto-adaptive operator selection, adap-351

tive population sizing, and restarts from BORG, but embed them into the352

ε-NSGAII algorithm (Kollat and Reed, 2007, 2006). The motivation for this353

generational version of BORG is twofold. First, steady-state algorithms like354

BORG might converge more slowly than generational algorithms such as ε-355

NSGAII (Vavak and Fogarty, 1996). Second, parallelization is possible for356

BORG (Hadka and Reed, 2014), but it requires some careful design consid-357

erations to align the parallelization with the available computing hardware358

and the nature of the optimization problem. In contrast, a generational al-359

gorithm is embarrassingly parallel and thus very easy to parallelize. The360
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main drawback of using a generational algorithm in parallel is the potential361

of wasted compute resources. Imagine having 100 candidate solutions, where362

evaluating each solution takes essentially the same run time. If you evaluate363

this on e.g. 24 cores, it requires 4 rounds of evaluations after which 96 can-364

didate solutions have been evaluated. While the last 4 solutions are being365

evaluated, the remaining 20 cores are idle. Depending on the computational366

cost of a single function evaluation, this can mean a substantial waste of367

compute hours. Given the very low run time of the lake problem, this is not368

a concern for this paper.369

To ensure a fair comparison across the different methods and for each370

policy formulation, we focused on controlling for convergence. Convergence371

is evaluated based on hypervolume and ε-progress (Reed et al., 2013, Ward372

et al., 2015). For both MORDM and multi-scenario MORDM, 500,000 func-373

tion evaluations are used. For MORO, 300,000 function evaluations are used.374

Based on several trails, and the analysis across seeds (see below), this num-375

ber of function evaluations was adequate to guarantee convergence. In future376

work, a more formal stopping condition such as the number of unsuccesful377

restarts might be used for more rigour.378

Because there is an element of randomness to the MOEA’s process, it is379

best practice to perform a seed analysis where the algorithm is run multiple380

times using a different seed for the random number generator. We assessed381

the variation of identified solutions across seeds, and used this to balance382

computational costs. For MORDM, we used 50 repetitions; for multi scenario383

MORDM 20; and for MORO 10. Results were merged across repetitions and384

filtered using a non-dominated sort.385

MORDM is applied using the reference scenario specified in table 1. For386

multi-scenario MORDM, we followed Eker and Kwakkel (2018) in selecting387

four additional reference scenarios given the results from MORDM and a388

re-evaluation over an ensemble of 500 scenarios. Since the way in which the389

solutions found through MORDM can fail to meet the desired performance390

thresholds differs across policy formulations, we identify different scenarios391

for each policy formulation. The values as used in this paper are given in392

table 2. For MORO, we determine robustness per outcome of interest using393

the domain criterion (see below, and table 3). To calculate this, we use394

a set of 50 scenarios sampled from the deep uncertainty space using Latin395

Hypercube sampling. The set is sampled once, prior to the optimization and396

stays the same throughout the optimization process. We kept this test set397

the same across the three policy formulations.398
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Table 2: Additional reference scenarios used in multi-scenario MORDM

Policy

formulation
scenario Parameters

b q µ σ δ

inter-

temporal

1 0.2760 3.0490 0.0039 0.0039 0.9310

2 0.1350 2.0255 0.0407 0.0030 0.9613

3 0.2704 2.4783 0.0169 0.0039 0.9631

4 0.1009 3.6789 0.0187 0.0037 0.9317

planned

adaptive

1 0.1690 3.9163 0.0280 0.0024 0.9570

2 0.2669 2.5997 0.0237 0.0016 0.9607

3 0.1182 2.1082 0.0474 0.0030 0.9356

4 0.1334 2.1351 0.0192 0.0029 0.9373

DPS

1 0.2683 3.5029 0.0430. 0.0027 0.9429

2 0.1009 3.6998 0.0453 0.0044 0.9481

3 0.2187 2.0506 0.0428 0.0025 0.9604

4 0.1620 3.8685 0.0388 0.0022 0.9328
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4.2. Robustness after re-evaluation under deep uncertainty399

McPhail et al. (2018) describe a range of options for determining ro-400

bustness of policies under conditions of deep uncertainty. To facilitate the401

comparison of results across methods in this study, a single robustness metric402

will be used: the domain criterion (Starr, 1963). The domain criterion pro-403

vides an effective and straightforward way to focus on policies that ensure404

minimum thresholds of performance are met when considering conflicting405

objectives. This metric is suitable wherever robustness is considered in any406

of the three robust decision making approaches. It is also implicitly used407

when applying Scenario Discovery. Domain criterion satisficing is defined as408

the fraction of all considered scenarios in which a threshold of performance409

is met. This results in a metric value between 0 and 1, where 0 indicates410

that no scenario produced an outcome that met the defined threshold given411

a specific candidate solution, and 1 indicates that the candidate solution412

meets the threshold in all scenarios. The threshold values and goal for each413

outcome can be found in table 3. In order to calculate the robustness met-414

rics, we re-evaluated all candidate solutions resulting from the search phase415

of each approach across the three policy formulations for the same set of416

10,000 scenarios, sampled using Latin Hypercube sampling given the ranges417

in table 1.418

Table 3: Robustness threshold values

Outcome Goal Threshold

Pollution Level Minimize Critical Pollution Level

Utility Maximize 0.75

Inertia Maximize 0.99

Reliability Maximize 0.8

The thresholds in table 3 are, were possible, based on previous research419

(Quinn et al., 2017b, Singh et al., 2015). However, no established threshold420

has been used for the pollution objective. We therefore choose to use the421

critical pollution level as defined by Quinn et al. (2017b) as threshold. This422

means that for each deeply uncertain scenario, we assess whether the average423

maximum pollution over the stochastic realizations stays below the critical424

pollution threshold. This is subtly different from the reliability objective as425
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used in an individual scenario, because this objective tracks in each stochatic426

realization if the threshold is actually crossed.427

5. Results428

5.1. Robustness after re-evaluation429

In discussing the results, we first focus on the results of the re-evaluation430

under deep uncertainty. We compare the solutions across methods and pol-431

icy formulations in terms of their robustness on each of the four objectives432

calculated using the domain criterion and thresholds specified in table 3. Fig-433

ure 2 shows the robustness on each objective for each method over the rank434

sorted solutions. Each row corresponds to a different policy formulation. If435

we look at the inter-temporal policy formulation, we see that by an large, the436

more robustness is being considered in the search phase, the better robust-437

ness remains during re-evaluation. That is, multi-scenario MORDM largely438

dominates MORDM, and similarly is being dominated by MORO. A similar439

picture emerges from the DPS formulation. The planned adaptive formula-440

tion, however is quite different. On the pollution and reliability objective,441

multi-scenario MORDM dominates MORO, while for the utility objective it442

is the inverse. The likely explanation is that the set of 50 scenarios used in443

the MORO setup biases the optimization towards being more aggressive in444

exploiting the lake (resulting in better utility) but at the expense of being445

more likely to destroy the lake as found during the re-evaluation. In contrast,446

since multi-scenario MORDM optimizes for individual scenarios, and these447

scenarios have been selected to represent primarily challenging conditions,448

the approach produces many more candidate solutions that are more cau-449

tious in exploiting the lake. The reason that this happens for the planned450

adaptive formulation is that since you can only update your release decision451

every 10 time steps, solutions are biased towards more conservative solutions.452

Figure 2 show the performance on the individual objectives, at the ex-453

pense of hiding information on trade-offs across the objectives. A parallel454

coordinate visualization of the results is shown in Figure 3 to provide insight455

into these robustness trade-offs. Again, the policy formulation is on the rows,456

with each column now being a method. If we look at the inter-temporal pol-457

icy formulation, we see roughly the same pattern across the three methods.458

The three methods produce solutions that after re-evaluation similarly span459

the robustness space. However, we can also see that by increasing the ro-460

bustness considerations during the search phase we are able to improve the461
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Figure 2: Rank sorted robustness scores using the domain criterion for the solutions found
for each policy formulation, grouped by method

robustness trade-offs that we find. For example, multi-scenario MORDM462

finds solutions that can sustain a much higher robustness performance on463

pollution and reliability with a similar poor performance on utility as found464

with normal MORDM. Similarly, multi-scenario MORDM can combine the465

best robustness performance on utility with the best performance on inertia,466

something normal MORDM was unable to find. MORO in turn improves on467

this compared to multi-scenario MORDM, with higher robustness scores on468

pollution, reliability and utility. Note however, that the basic trade-offs do469

not change drastically across the three methods. A similar pattern of increas-470

ing robustness can be seen for planned adaptive and DPS. Although here, in471

particular on the utility objective, multi-scenario MORDM produces a much472

broader range of robustness scores. This suggests two things: multi-scenario473

MORDM helps finding promising solutions by performing the search phase474

for multiple different scenarios, but also that there seems to be a dependency475

between the scenario under which solutions are found and how robust they476
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are when re-evaluated over a much larger set of scenarios.477

Table 4 shows the hypervolume for each method across the three problem478

formulations. The hypervolume is based on the robustness scores for each479

of the four objectives after re-evaluation. This table reinforces the previous480

results. Also in terms of hypervolume, multi-scenario MORDM produces481

slightly better results than MORO. Interestingly, this is true across problem482

formulations. An important caveats here is that the number of solutions for483

multi-scenario MORDM is much larger than the the number of solutions for484

MORO, which can partly explain the difference.485

Table 4: hypervolume in robustness space for each method across the three problem
formulations

inter-temporal planned adaptive DPS

MORDM 0.044 0.010 0.153

Multi-scenario MORDM 0.064 0.142 0.216

MORO 0.058 0.122 0.190

The results hitherto suggest that multi-scenario MORDM might be per-486

forming as good if not better than MORO. Is this really true? To assess this,487

we first merged all Pareto sets across methods for each policy formulation.488

Next, we performed a non dominated sort on this and counted the number489

of solutions from each method that are in the non dominated set. Table 5490

shows these results. In between brackets, we also give the total number of491

solutions from each method. Note again that multi-scenario MORDM has a492

much higher number of solutions, because it is based on the results of per-493

forming separate optimizations for 5 scenarios. Interestingly, all the solutions494

identified through MORO are always present also in the combined Pareto set.495

MORO thus has much stronger guarantees of finding solutions in the Pareto496

optimal set in robustness space after re-evaluation, as compared to MORDM497

and multi-scenario MORDM.498

Figure 4 visualizes the results of the combined Pareto set for each policy499

formulation, with colors denoting the different methods. If we focus on com-500

paring multi-scenario MORDM and MORO, it appears that the solutions501

identified by MORO might offer a better way of balancing across objectives.502

For example, for the inter-temporal formulation (fig. 4a) typically MORO503

solutions appear to be quite similar in their robustness on the pollution and504
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Table 5: Number of solutions in Pareto set when compared across methods per problem
formulation, the number in brackets is the size of the original Pareto set

inter-temporal planned adaptive DPS

MORDM 1 (90) 2 (48) 6 (110)

Multi-scenario
MORDM

25 (291) 26 (113) 58 (209)

MORO 7 (7) 6 (6) 22 (22)

reliability objective as solutions found through multi-scenario MORDM, but505

offer clearly better robustness on utility. Or vice versa. This pattern persists506

across the other two policy formulations (fig. 4b and fig. 4c). Again, MORO507

is able to almost match robustness on either utility, or pollution and reliabil-508

ity, with a substantial increase in robustness on the other objective(s). This509

suggests that not only are all solutions found through MORO retained in the510

Pareto set if we combine the results across the three methods, it also seems511

that the solutions found through MORO might be more interesting compro-512

mise solutions in terms of robustness for the given case analyzed here.513

5.2. The price of robustness514

In our analysis so far, we have focused on the robustness of solutions found515

through the three different methods across the different policy formulations.516

Robustness however often comes at the price of optimality in a given scenario.517

To assess this price of robustness, we compare the results found through the518

three methods for the reference scenario assumed by MORDM as shown in519

table 1 as well as the additional reference scenarios as used in multi-scenario520

MORDM as shown in table 2.521

Table 6 shows the hypervolume of the solutions found by each method522

for each policy formulation when evaluation in each of the five reference sce-523

narios. For this, each solution found by each method is re-evaluated for each524

of the five scenarios. Next, we identity the Pareto approximate set for each525

unique combination of method, policy formulation and scenario and calcu-526

late its hypervolume. To ensure comparisons, the hypervolume is normalized527

for each scenario per policy formulation. Scenario 0 is the baseline scenario,528

while the remainder are the additional scenarios as used in multi-scenario529

MORDM. For the reference scenario assumed by MORDM, MORDM al-530
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(a) inter-temporal policy formulation

(b) planned adaptive policy formulation

(c) direct policy search policy formulation

Figure 4: parallel coordinate plot of solutions after non-dominated sort on combined set
of archives per policy formulation 22



Table 6: hypervolume per reference scenario for each policy formulation

scenarios

0 1 2 3 4

static

MORDM 0.283 0.329 0.02 0.169 0.008

multi-scenario MORDM 0.268 0.284 0.021 0.237 0.068

MORO 0.053 0.454 0.016 0.061 0.053

0 1 2 3 4

planned

adaptive

MORDM 0.348 0.023 0.027 0.025 0.034

multi-scenario MORDM 0.303 0.194 0.235 0.039 0.065

MORO 0.25 0.009 0.007 0.01 0.01

0 1 2 3 4

dps

MORDM 0.361 0.271 0.055 0.042 0.086

multi-scenario MORDM 0.325 0.33 0.071 0.057 0.105

MORO 0.237 0.35 0.01 0.003 0.025

ways finds the Pareto approximate set with the highest hypervolume, closely531

followed by multi-scenario MORDM. For the other four scenarios, typically532

multi-scenario MORDM has the highest hypervolume. There are however a533

few exceptions. For example, in case of the static formulation for scenario534

1, both MORDM and MORO result in a higher hypervolume. Also, for the535

DPS formulation for scenario 1 and 2 MORO has a slightly higher hypervol-536

ume than multi-scenario MORDM. Remember that the reference scenarios537

are specific to the policy formulation. Outside these two exceptions, how-538

ever, MORO results in a substantially lower hypervolume, suggesting there539

is a substantial loss in performance in individual scenarios if one tries to be540

maximally robust.541

Table 7 shows the total number of solutions in the Pareto approximate542
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set for each method for each policy formulation, as well as the number of543

solutions that remain in the Pareto set when evaluated only in one of the544

reference scenarios. Specifically, we merge the performance of the solutions545

on a scenario by scenario basis for each policy formulation. Next, we perform546

a non-dominated sort on this combined set. Finally we count the number of547

solutions found by each method that are in the resulting Pareto approximate548

set. Similar to the observations for hypervolume, in general the method549

which explicitly optimized for a given scenario has the highest number of550

solutions that remain in the Pareto approximate set for that scenario when551

compared with the solutions found by the other methods. In addition, for552

the static policy formulation, only a few solutions found by MORDM are also553

in the Pareto approximate set of the other four scenarios. For the planned554

adaptive and DPS formulation, this pattern persists but not to the extreme555

seen for the static formulation. For MORO, there seems to be always at least556

one scenario in which many of the solutions identified are also in the Pareto557

set.558

So what do these results imply for the price of robustness. First, optimiz-559

ing for robustness comes in general at the expense of attainable hypervolume560

in any given reference scenario. The nature of the policy formulation, ranging561

from static to adaptive does not seem to strongly affect this. For each policy562

formulation, examples of scenarios were the price is low (or even negative)563

exists, but there are also scenarios were the price of robustness is quite high.564

Similarly, the number of solutions found through MORO that are also in565

the Pareto approximate set for any given scenario is typically quite small,566

although for each policy formulation scenarios that are an exception to this567

exist as well.568

5.3. Computational costs569

Next to the trade-off between robustness over a set of scenarios and opti-570

mality in a given scenario, another major concern is the computational cost571

associated with finding these solutions. As indicated by table 8, a MORO572

analysis has a significantly higher computational cost then either MORDM573

or multi-scenario MORDM. For the inter-temporal problem, the difference574

between multi-scenario MORM and MORO is a factor 6, while for the other575

two policy formulations it is a factor 10. The increased computational cost576

had a significant impact on the time it took to complete the analysis even for577

a highly-stylized and relatively low computational cost problem like the lake578

problem used in this analysis and can have an even more significant impact579
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Table 7: Number of solutions that remain in the Pareto set for each reference scenario for
each policy formulation

scenarios

0 1 2 3 4

static

MORDM 90 85 9 4 41 13

multi-scenario MORDM 200 44 46 50 90 103

MORO 7 2 6 2 2 3

0 1 2 3 4

planned

adaptive

MORDM 48 46 34 31 34 35

multi-scenario MORDM 77 52 61 58 43 51

MORO 6 3 2 1 6 4

0 1 2 3 4

dps

MORDM 110 109 73 83 30 75

multi-scenario MORDM 94 66 83 43 30 70

MORO 22 4 16 2 2 12
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when considering policy problems that require significantly more complex580

models with more sources of uncertainty than are present in the lake prob-581

lem.582

6. Conclusions583

In recent years various approaches have been put forward to aid multi-584

actor deliberation and decision-making on complex environmental problems585

characterized by deep uncertainty. One family of approaches relies on the it-586

erative stress testing of candidate solutions. In this paper we considered three587

variants within this family which differ with respect to how they identify the588

candidate solutions to be stress tested. MORDM uses many-objective opti-589

mization for a reference scenario. Multi-scenario MORDM extents this by590

performing the optimization several times for different scenarios. MORO in-591

stead optimizes for robustness directly, where robustness is established based592

on the performance of solutions in a small ensemble of scenarios.593

Table 8: Number of function evaluations for each the three methods for each policy for-
mulation for a single run of the MOEA. The total computation costs expressed in function
evaluations of the lake model is in the final row.

MORDM

Multi-

Scenario

MORDM

MORO

Inter-temporal 500,000 500,000 300,000

Planned Adaptive 100,000 100,000 100,000
NFE in

MOEA
DPS 100,000 100,000 100,000

Number of scenarios 1 1 50

Search repetitions 1 1+4 1

Inter-temporal 500,000 2,500,000 15,000,000

Planned Adaptive 100,000 500,000 5,000,000total NFE

DPS 100,000 500,000 5,000,000
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To assess the efficacy of MORDM, multi-scenario MORDM, and MORO,594

we applied them to three policy formulations of the shallow lake problem.595

These three formulations spanned the space from a static policy formulation,596

via a planned adaptive policy formulation, to a fully adaptive closed loop597

control policy formulation. We find that the more robustness is considered598

in the search phase of robust decision making, the higher the robustness599

attainment of the resulting solutions will be during re-evaluation. Vice versa,600

optimizing for robustness comes at the expense of optimality in any given601

scenario. There are however a few caveats.602

First, the more adaptive the policy formulation, the more robust solutions603

are even if found through MORDM. Multi-scenario MORDM, by optimiz-604

ing specifically for scenarios that represent conditions under which solutions605

found through normal MORDM perform poorly, is able to identify solutions606

which are substantially more robust also after re-evaluation. MORO has the607

strongest guarantees that its solutions are robust also after re-evaluation,608

irrespective of the policy formulation609

Second, when analysing the price of robustness, we see that MORO pays610

a high price. Only few solutions are in the Pareto set for a specific scenarios,611

and the hypervolume of the MORO solutions in a given scenario is often612

quite low as well. Interestingly, the policy formulation seems to not have a613

clear influence here.614

Third, a major challenge for both multi-scenario MORDM and MORO is615

the selection of the scenarios to use. Multi-scenario MORDM, by selecting616

scenarios from the region where the solutions found in the first search per-617

formed poorly, intrinsically biases subsequent results towards solutions that618

do well in this region. But there is no a-priori reason to assume that these619

resulting solutions might not be vulnerable in a different way. In the lake620

problem, the conditions under which any of the solutions, irrespective of the621

policy formulation and method, is vulnerable, is essentially the same. Yes,622

the volume of the space within which a given solution is vulnerable might623

be a bit larger or a bit smaller, but the dimensions which characterize this624

space stay the same. It is quite plausible that in many other infrastructure625

cases this does not hold: different adaptive strategies might be vulnerable to626

quite different conditions (see e.g., Hamarat et al., 2013).627

MORO is in principle less vulnerable to the selection of scenarios, since it628

relies on sampling scenarios from the complete deep uncertainty space rather629

than a specific subspace. However, for such a sample to be representative of630

the entire space, often many more samples are required compared to multi-631
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scenario MORDM. MORO thus in general will have substantially higher632

computational costs. Reducing this costs requires developing techniques to633

carefully select a small set of scenarios that enable an accurate estimation634

of the robustness found after re-evaluation. Giudici et al. (2020) offer a635

nice example of what such a scenario selection technique might entail. Since636

all solutions identified through MORO remained Pareto optimal after re-637

evaluation, using 50 scenarios during the robust optimization seems to be638

sufficient for lake problem as considered in this paper. There is no guarantee639

that this will hold in general. Research is needed into the selection scenarios640

which as a set contain the appropriately stressing conditions against which641

solutions have to be robust, while also capturing the scenarios under which642

one would like to have near optimal performance.643

In light of these caveats, we suggest that in general multi-scenario MORDM644

is the preferred method. It offers a balance between optimality in various ref-645

erence scenarios and robustness over a larger ensemble, while requiring only646

a relatively modest increase in computation costs as compared to MORDM.647

Only in case of a static policy formulation and a very clear emphasis on648

robustness, would MORO be the more appropriate method.649

In this paper we used the ubiquitous shallow lake problem, but with650

an additional intermediate policy formulation. Interestingly, this intermedi-651

ate policy formulation produces the more surprising results. Multi-scenario652

MORDM seems to work almost as well if not better than MORO for this653

case. This raises a more general concern. The inter-temporal and the DPS654

version of the lake problem are essentially control problems where at each655

step action can be taken. And although it can be useful to draw an analogy656

between optimal control and strategic planning (Herman et al., 2020), we657

suggest that real world decision making on infrastructure systems deviates658

from this in relevant ways highlighted in part by the planned adaptive pol-659

icy formulation used in this paper. There can be multiple years between a660

decision and its implementation due to construction time. Budget consider-661

ations and financial risks can further limit the ability to implement actions662

if and when desired. The comparative literature on robust decision making663

approaches would benefit from having benchmark problems that better re-664

flect the reality of infrastructure problems. The Waas case (Haasnoot et al.,665

2012, Kwakkel and Pruyt, 2015) and, with some adaptation, the Eldorado666

case (Smith et al., 2018) might potentially be used to further explore this.667
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