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Abstract

Teams of quadrotors can be used for surveillance, mapping, and measurement tasks. A
current limitation is the high risk of collisions between members when flying within a
confined space. The MAVs need knowledge of their relative location in order to perform
evasive maneuvers. In new, unknown, and GPS-denied environments, this is something that
the MAVs must measure on-board.

Bluetooth is a low mass and low power technology readily available on even the smallest
MAVs. It can be used for inter-MAV communication during team tasks. When communi-
cating, Bluetooth antennas measure the power of the received signal. This is correlated with
the distance between the transmitter and the receiver. This thesis builds on this concepts
and proposes an on-board, Bluetooth enabled, relative localization scheme. On-board
states (velocity, height, and planar orientation) are communicated directly between drones
using a Bluetooth connection. This is fused with the range inferred from the signal
strength to obtain a 3D relative location estimate. A relative collision avoidance controller
is then proposed that is specifically designed to deal with the expected performance of
the localization scheme. The relative collision avoidance strategy is based on collision
cones, of which the size is tailored to encompass the expected localization errors. Eva-
sive maneuvers are selected using a clock-wise search in order to provide a reciprocal scenario.

The system was tested with a team of AR-Drones 2.0 flying in a 4m×4m arena. The enforced
task requested the AR-Drones to repeatedly fly from wall to wall whilst passing through the
center of the arena, hence making collisions highly likely. When using two AR-Drones and
off-board velocity/orientation estimates, the drones are able to fly around the arena and avoid
each other for the entire flight time as permitted by the battery. With three ARDrones under
the same conditions, the flight time to collision was approximately 3 minutes. With two
ARDrones flying with on-board velocity estimation, the time to collision was approximately
3 minutes due to the additional disturbances in velocity estimates. A simulation environment
has been set-up to test the merits of the collision avoidance scheme in different configurations
regarding MAV diameter and arena size. It is shown that improvements in RSSI sensor noise
and the use of smaller MAVs can significantly improve the outcome.
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On-board Bluetooth-based Relative Localization for Collision Avoidance
in Micro Air Vehicle teams

M. Coppola, K.N. McGuire, K.Y.W. Scheper, and G.C.H.E. de Croon1

Abstract— A current limitation of using Micro Air Vehicles
in teams is the high risk of collisions between members.
Knowledge of relative location is needed in order to perform
evasive maneuvers from such collisions. We propose an on-
board Bluetooth-based relative localization scheme. Bluetooth
is a light-weight and energy efficient communication technology
that is readily available on even the smallest Micro Air Vehicle
units. In this work, it is exploited for communication between
team members to exchange on-board states (velocity, height,
and orientation), and the strength of the communication signal
is used to infer relative range. The data is fused on-board by
each Micro Air Vehicle to obtain a relative estimate of the
location and motion of all other team members. Furthermore,
a collision avoidance controller is proposed based on collision
cones. It is designed to deal with the expected performance of
the localization scheme by adapting the collision cones during
flight and enforcing a clock-wise evasion maneuver. The system
was tested with a team of AR-Drones 2.0 flying in a 4m×4m
arena. The task requested the AR-Drones to repeatedly fly
from wall to wall whilst passing through the center of the
arena, hence making collisions highly likely. The system showed
promising results. When using two AR-Drones and off-board
velocity/orientation estimates, the drones are able to fly around
the arena and avoid each other for the entire flight time as
permitted by the battery. With three AR-Drones under the
same conditions, flight time to collision was 3 minutes. With two
AR-Drones flying with on-board velocity estimation, the time to
collision was approximately 3 minutes due to the disturbances
in velocity estimates. Simulation results show that significantly
better results can be expected with smaller units.

I. INTRODUCTION

Micro Air Vehicles (MAVs) applications include:
surveillance and mapping [1] [2], and visual and/or
chemical inspection of forest fires and disaster areas [3]
[4] [5] [6]. To push the boundaries of such applications,
state-of-the-art technology has led to miniaturized variants
such as the Lisa-S Ladybird [7] or the Pico-Quadrotor
[8]. These platforms benefit from: lower mass, increased
portability, less obtrusive/restricted navigation (valuable for
indoor environments), and safer use near humans. Allowing
several of these MAVs to operate in a homogeneous team
improves performance by reducing the task execution time
and adding redundancy, scalability, and versatility [9] [2].

When a team of homogeneous MAVs with decentralized
control performs an arbitrary task in a confined indoor
space (e.g. a room), there is a non-negligible risk of

1Micro Air Vehicle Laboratory, Department of Control and Simulation,
Faculty of Aerospace Engineering, TU Delft Robotics Institute, Delft
University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
g.c.h.e.decroon@tudelft.nl

inter-member collisions [10]. This is a failure condition
to be avoided to ensure mission success. Albeit a team
behavior can emerge without inter-member awareness [11],
collision avoidance requires on-board knowledge by each
MAV of the relative location of the other team members.
Additionally, knowledge of relative location can empower
more complex team behaviors such as leader-follower [8]
and formation-flying [12].

A method to provide all MAVs with relative localization
estimate is to rely on a global (shared) reference frame
in which each MAV can localize itself. The MAVs can
then communicate, compare their position co-ordinates,
and infer a relative estimate. In outdoor tasks, Global
Positioning System (GPS) receivers can be used to obtain
global position data that is then shared [13][14], but these
do not function indoors [15]. In order to achieve the same
effect without compromising the aforementioned efforts of
MAV miniaturization, several solutions propose planting
external sensors/beacons with known (relative) locations,
such as: motion tracking cameras [16], fixed wireless
transmitters/receivers [17], or fixed visual markers [18].
Although effective, these solutions defeat the purpose of
several exploratory tasks by relying on a pre-arranged
environment. The Simultaneous Localization and Mapping
(SLAM) strategy and its variants attempt to solve this by
defining a map on-board during flight [2]. However, when
map generation is not part of the specific mission, then this
is a resource intensive practice to be discouraged [19], or
even beyond the current capabilities of miniaturized MAVs
[7].

The use of direct MAV-to-MAV measurements overcomes
these disadvantages. Vision has received attention due to
its generally favorable end-results, but examples found in
literature simplify the detection task with the adoption of
mounted visual aids in the form of: (red) balls [20], tags [21],
or markers [22]. These studies benefit from the combination
of relatively high-resolution cameras, fast processing speeds,
and large markers if compared to more miniaturized drones.
However, test results in the exploratory phases of this study
have led to the conclusion that using vision without such
aids and at lower resolutions (128×96px, as seen on the
Lisa-S Ladybird [23] [24]) becomes highly problematic
and prone to false-positives/false-negatives. Furthermore,
performance is dependent on lighting conditions, which may
change. Other disadvantages of using vision are: the need
for a front-facing camera and flight along its axis, limited



field-of-view, and generally high processing requirements.
Infra-Red (IR) sensors have been proposed as an alternative
but these require multiple units to be arranged in a rigid
structure, leading to a high mass and power consumption
penalty [25].

The work in [26] attempts to overcome the issues above
by using on-board sound-based localization with a mounted
microphone array. The difference between arrival times at
the different receivers is used to infer the relative bearing. A
passive version of this attempted to locate propeller sounds
of nearby MAVs, yet this suffered from noise coming from
the MAV’s own engine. The issue was overcome by the
introduction of a chirp generator to send audio signals at
specific frequencies [27]. Nevertheless, the method still
suffers from noise induced by wind (which is unavoidable on
moving MAVs) and structural vibrations which compromise
the rigidity of the microphone array [28]. Furthermore, a
dedicated microphone array and chirp generator is needed.
For smaller MAVs, this can account for an increase in mass
of 10%-20% [28] [7] and it may limit the scalability of the
approach.

Bluetooth is a technology that is readily available at a
low mass, power, and cost penalty even on the smaller
MAV units [29] [23]. It may be used for inter-member
communication [10]. Bluetooth communication natively
measures a quantity known as Received Signal Strength
Indication (RSSI), which is a measure (in dB) of the
power in the received signal [30] [31]. This decreases with
distance and can be used as a measure for inter-MAV range.
This knowledge has already been exploited by attempting
collision avoidance using only relative range sensing [10].
However, the significant noise and disturbances experienced,
coupled with the use of range-only measurements, were
insufficient to guarantee safe flight of two or more MAVs
in a confined area.

This article introduces an on-board relative localization
method for MAVs based on Bluetooth communication, and
proposes a tailored relative avoidance strategy to be used.
The method relies on Bluetooth as a measure of relative
distance (via RSSI) and as a method for the exchange
of own state measurements in order for each MAV to
estimate the relative location of nearby team-members. The
advantages of this solution are: a) it provides a continuous
localization estimate at all relative bearings, such that the
drone is not forced to face any particular direction; b) it
has a low dependence on the lighting and sound conditions
of the environment; c) it has low energy consumption
requirements; d) it does not require the addition of any
dedicated sensors, so mass is unaffected. A reactive collision
avoidance strategy is proposed that relies on the localization
estimates and is designed to deal with the expected errors.
It is based on the concept of collision cones [32] [33].

The remainder of this article is organized as follows.
Section II introduces Bluetooth RSSI and how it is combined

with own/received state measurements in order to obtain
a relative localization estimate. Section III describes the
collision avoidance strategy implemented in the MAVs. Tests
have been performed in simulation and in the real-world
using Bluetooth equipped AR-Drones 2.0 to determine the
performance of the system with respect to collision avoid-
ance. The test environments and methodologies used are
defined in Section IV. The results are described in Section V
and further discussed in Section VI. Section VII provides
concluding remarks.

II. BLUETOOTH-BASED RELATIVE
LOCALIZATION

A. Framework Definition for Relative Localization

Consider two MAVs Ri and Rj with right-handed body-
fixed frames FBi and FBj , respectively. Under this frame-
work, the relative location of Rj with respect to Ri can be
defined as:

~Pji =
[
xji yji zji φji θji ψji

]
. (1)

~Pji is a vector of the quantities describing the 3-
Dimensional (3D) relative pose of Rj with respect to Ri. It
is expressed in FBi . xji, yji, and zji are the position of the
origin of Rj in FBi ; φji, θji, and ψji are the roll, pitch,
and yaw angles of FBj with respect to FBi .

Pitch and roll may be neglected by assuming that quadro-
tors maintain approximately planar orientations with respect
to the ground. Equation (1) may then be re-defined with polar
coordinates as:

~Pji =
[
ρji βji hji ψji

]
. (2)

ρji represents the range between the origins of FBi and
FBj , see Equation (3). βji is the horizontal planar bearing of
the origin of FBj with respect to FBi , see Equation (4). hji
is the height of Rj with respect to Ri, see Equation (5). ψji
is the orientation of Rj with respect to Ri, see Equation (6).
The framework is depicted in Figure 1.

Fig. 1: Top view of relative localization framework of MAV
Rj by MAV Ri. xB and yB are the axis of the body frame
FB , where xB is positive in the forwards direction. zB is
positive down-wards (into the page). The orientation of the
body frames is with respect to North.



ρji =
√
x2
ji + y2

ji + h2
ji (3)

βji = atan2(yji, xji) (4)

B. Relative Localization via Fusion of Range and Shared
States

Achieving a relative localization estimate requires measur-
ing or inferring the quantities in ~Pji. Thanks to inter-drone
communication, hji and ψji are trivially observable by an
MAV Ri by taking the difference between its own on-board
state and the received states from Rj :

hji = hj − hi, (5)
ψji = ψj − ψi. (6)

ψi and ψj are the rotations of FBi and FBj with respect
to a common reference axis. The common axis, as depicted
in Figure 1, is magnetic North. It is discernible by all MAVs
using a magnetometer [34] [35]. hj and hi are the height
of the origin of FBi and FBj with respect to a reference
height (e.g. Mean Sea Level (MSL), ground). This may be
measured on-board using, for instance, a pressure-sensor
[36] [37] [38], and/or a downward facing camera [39] [40]
if assuming that the ground is flat.

ρji is measured with RSSI measurements, which are
correlated with range as elaborated in Section II-C. When
hji, ψji, and ρji are measured, the relative bearing βji is
observable [41] [42].

We use a discrete-time Extended Kalman Filter (EKF)
in order to perform sensor fusion and observe βji. With
potential implementation on more minimalistic systems in
mind, the EKF is chosen due to its efficient processing and
memory requirements [43]. Let Equation (7) be the process
update equation between time step k and k + 1 of the EKF.




~pji
~̇pi
~̇pjRi
ψj
ψi
hj
hi



k+1

=




~pji +
(
~̇pjRi − ~̇pi

)
∆t

~̇pi
~̇pjRi
ψj
ψi
hj
hi



k

+ Q (7)

~pji =
[
xji yji

]T
holds Cartesian estimates of bearing

and range. ~̇pi =
[
ẋi ẏi

]T
is a vector of the velocity of Ri

in FBi (see Figure 1). ~̇pjRi is ~̇pj rotated from FBj to FBi .
∆t is a discrete time step between updates equal to the time
between k and k+1. Q is the process noise matrix, discussed
further in Section II-D. This update equation assumes that
all current velocities and headings remain constant. The

measurement equation of the EKF is given by Equation (8).



mρji

~̇pi
~̇pj
ψj
ψi
hj
hi



k+1

=




L(ρji)

~̇pi
R2D(ψji) · ~̇pjRi

ψj
ψi
hj
hi



k

+ R (8)

mρji is a measurable quantity that is correlated with
ρji. In this case mρji is the measured RSSI in dB during
communication, which is a function of the range ρji as
given by L(ρji), see Equation (9). R2D(·) is a 2D rotation
matrix. It makes use of the relative heading ψji to rotate
~̇pj from FBj to FBi . R is the relevant measurement noise
matrix, discussed further in Section II-D.

It is noted that this scheme suffers from a degenerate
motion known as rotation ambiguity [44]. When the path of
Rj perfectly matches the path by Ri in a straight line, range-
only measurements remain constant and are not informative
for bearing estimation. For randomly flying MAVs, the
probability of this event is negligible [44]. The same effect
takes place when both Ri and Rj are static. Motion by at
least one entity is required.

C. Signal Strength as a Range Measurement

In the EKF, the range measurement mρji is RSSI, which
is a function L(ρji) of the signal power loss over a distance
ρji. Power loss of a signal may be modeled according to the
Log-Distance (LD) model [45]:

L(ρji) = Pn − 10 · γl · log10 (ρji) . (9)

In Equation (9): Pn is the total power loss in dB at a
nominal distance of 1m, and γl is the space-loss parameter.
It dictates the decay of the signal’s power with distance. For
free-space: γl = 2.0. Experimentally, it has been found that
office buildings can feature 2 ≤ γl ≤ 6 [46]. A sensitivity
analysis of the model showed that an accurate identification
of γl has a low impact on the distance estimate at lower
distances (which is the scope of this article). The LD model
is generally assumed subject to a Zero-Mean Gaussian
Noise (ZMGN) [47] [48].

We analyzed the LD with a Bluetooth-enabled Ladybird
MAV [7] and a fixed omni-directional Bluetooth antenna
(W1049B by Pulse [49]). The Ladybird MAV was carried
in concentric circles at different distances around the
antenna. Its heading was kept constant so as to vary relative
bearing throughout the measurements. The results from
a representative data-sample are presented in Figure 2,
to which the LD model is fitted using a non-linear Least
Squares (LS) estimator as in Figure 2a. The standard
deviation of the error about the model was found to be
between 3dB and 6dB. This is in line with the findings
from [10] and [50].
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Fig. 2: Results of RSSI measurements during an experiment whereby a Bluetooth-enabled Ladybird MAV was carried in
circles around a fixed Bluetooth antenna. The heading of the Ladybird MAV was kept constant so as to explore the impact
of relative bearing on the model error.

Figure 2b shows the error of the LD model as a function
of the relative bearing. The presence of antenna lobes is
discerned. This knowledge suggests an extension of the LD
model with an additional gain term that is a function of
relative bearing [10], but this is rejected. Including a term
that is dependent on bearing means that a change in RSSI
can be ambiguously associated to a change in either bearing
or range. This negatively affects the convergence of the
EKF. Furthermore, the shape of the lobes was found to be
antenna-specific when tested with different MAVs, requiring
an inconvenient increase in calibration efforts if lobes were
to be included. Figure 2c shows that the error distribution
is also not perfectly Gaussian. The main reason for this
is deemed to be the presence of antenna lobes. A model
that includes them can be seen to feature a more Gaussian
distribution, although a positive skew is still present. Other
disturbances may be: the interference by the reflection of
the signal in the environment [45] [48], the presence of
other signals in the 2.4GHz spectrum [46] [51], other
objects that obstruct the signal [46].

D. Tuning of Noise Covariance Matrices

This section discusses the chosen tuning of the EKF
covariance matrices R and Q. The measurement noise matrix
R is a diagonal matrix with the form shown in Equation (10).

R =




σ2
m

σ2
v · I4×4

σ2
ψ · I2×2

σ2
h · I2×2


 . (10)

σm is the expected standard deviation of the noise on
mρji . σv is the expected standard deviation of the noise
on ~̇pi and ~̇pj . σψ is the expected standard deviation of
the magnetic orientation measurements. σh is the expected
standard deviation of the height measurements. In×n is an
n× n identity matrix such that the same standard deviation
transfers to the relevant variables.

Considering the noise analysis of the LD model discussed
in Section II-C, a foreseen disadvantage of using the
EKF is the assumption of Gaussian noise on the RSSI

measure. The effects are limited by adopting a high
standard deviation for the received RSSI, therefore σm
is tuned to 5dB. All other variables in R can be tuned
according to the expected noise from the on-board estimates.

The process noise matrix Q is the diagonal matrix pre-
sented in Equation (11). It needs to be tuned so as to define
the validity of the expected process [52].

Q =




σ2
Qp
· I2×2

σ2
Qv
· I4×4

σ2
Qψ
· I2×2

σ2
Qh
· I2×2


 .

(11)
σQp is the standard deviation of the process noise on the

relative position update. σQv , σQψ , and σQh are the process
noises for the expected updates in velocity, orientation, and
height respectively. The tuning is made such that a high-
level of trust is put on the relative position update, whereas
lower trust is put on the update of the other quantities.
This promotes convergence towards a bearing estimate and
helps to discard the high noise and disturbance in the RSSI
measurements. The values are tuned to the following: σQp =
0.1, while σQv = σQψ = σQh = 0.5.

E. Preliminary Relative Localization Results

We performed flights with a Ladybird MAV around
the fixed Bluetooth W1049B antenna in order to obtain
preliminary insights of the performance of the EKF during
flight. This information is used to design the collision
avoidance strategy proposed in Section III. An Optitrack
motion-capture system [53] was used to guide the MAV and
record ground-truth 3D position, velocity, and orientation.
Bluetooth RSSI data was recorded from the communication
between the Ladybird MAV and the antenna. All data
was recorded together at a rate of 5Hz; this is a current
limitation of the Bluetooth communication set-up discussed
in Section IV.

The data gathered was used to process the EKF off-board.
The recorded velocity and orientation data from Optitrack
was altered with Gaussian noise and used as measurements
for the EKF. This simulated the measurement of these
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(a) Estimated range (red, dashed) between
Ladybird MAV and Bluetooth antenna
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(b) Estimated (red, dashed) relative loca-
tion of the Ladybird MAV along the xB-
axis of the antenna compared to ground
truth (blue, solid).
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(c) Estimated (red, dashed) relative loca-
tion of the Ladybird MAV along the yB-
axis of the antenna compared to ground
truth (blue, solid).
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(d) Measured RSSI (green, dotted) at
different ranges and the LD model used
(black, dashed). The parameters of the LD
model are: Pn = −63 and γl = 2.0.
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(e) Magnitude of pose error over time.
Notice the convergence of the error in the
initial seconds.
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(f) Positive correlation between magni-
tude of pose error and distance below a
diagonal line. The errors seen above the
diagonal line are from the initial seconds
prior to convergence.

Fig. 3: Preliminary localization results based on circular flights of a Bluetooth equipped Lisa-S Ladybird MAV around a fixed
antenna. These results have been averaged over 50 iterations of artificial noise added to the velocity, height, and orientation
measurements.

values using on-board sensors. The standard deviation of
the noise given to velocity measurements is σv = 0.2m/s.
The standard deviation of the noise given to altitude
measurements is σh = 0.2m. The standard deviation of the
noise given to orientation measurements is σψ = 0.2rad.
These values were also included in the measurement noise
matrix R. In the LD model of the EKF: Pn = −63dB and
γl = 2.0, assuming free-space propagation.

Figure 3 shows the results of the relative localization
estimates achieved by the EKF. The antenna is Ri and it
is trying to localize the MAV (Rj). The top row shows
the output of the EKF against Ground-Truth (GT) data. An
immediate benefit observed is the significant reduction in
error for the observed range, see Figure 3a. Estimates for
xji and yji are shown in Figure 3b and Figure 3c. Let ~eji
be the error in pose between the estimated position ofRj and
the real position of Rj . ~eji is expressed in FBi . For a visual
representation, see Figure 4. |~eji|, the magnitude of ~eji, is
shown over time in Figure 3e. Of particular interest for the
subsequent development of a collision avoidance strategy is
the observed increase of this error with the distance, as seen
in Figure 3f. The increase is explained by the logarithmic
relationship between RSSI and distance. The diagonal (one-
to-one) line in Figure 3f indicates a maximum accepted
error magnitude. When |~eji| is above the line, then the
error encompasses the position of Ri itself, rendering it
insufficient to select an appropriate maneuver for collision
avoidance. In the results, this is only observed for data over
the first few seconds of flight, prior to the convergence of

the EKF.

III. COLLISION AVOIDANCE BEHAVIOR

Relative localization between MAVs enables a series
of team behaviors. The focus case-study in this paper is
collision avoidance when operating in a confined space.
This receives primary attention due to its severity as a
failure condition.

This section describes the devised planar collision avoid-
ance algorithm. It uses an altered version of the Velocity
Obstacle (VO) [54] frame-work that is adjusted to suit the er-
rors and short-comings of the relative localization algorithm.
Lateral avoidance is preferred over height separation as a
collision avoidance strategy in order to limit aerodynamic
disturbances between MAVs [55] [16].

A. General Avoidance Strategy

A Collision Cone (CC) is a set of all velocities of an agent
that are expected to lead to a collision with an obstacle [54].
Collision cones are so called because they are geometrically
cone-shaped. Consider once more MAVs Ri and Rj . We
can then define a set CCji that includes all velocities of Ri,
defined in FBi , which could lead to a collision with Rj . See
Figure 4 for a depiction. αCCji is the expansion angle of the
cone. It is expressed in radians and subject to 0 < αCCji <
π. The symmetry line of the cone is centered around the
estimated bearing to the obstacle Rj . The entire cone is then
translated by the estimated velocity of Rj (available directly



in FBi as ~̇pjRi). Equation (12) and Equation (13) summarize
how to determine CCji in FBi for a known αCCji , where
x and y are points on xBi and yBi , respectively.

CCji = {(x, y) ∈ R2;α ∈ R; |α| ≤ |αCCji |
2

: tan(α)x = y}
(12)

CCji ←
(
R(β̄ji) · CCji

)
⊕ ~̇pjRi (13)

α is an angle in radians. All data required in Equation (13)
is found in the output of the EKF proposed in Section II.
β̄ji is the estimated βji. ~̇pjRi is the estimated ~̇pjRi. When
exact values of βji and ~̇pjRi are available, αCCji is only
dependent on the radii of the two MAVs (modeled as
circular objects) [32]. Errors may be accounted for by
further increasing αCCji [20]. In the following, we propose
a method to establish the expansion angle tailored to the
errors of the Bluetooth relative localization scheme.

Fig. 4: Depiction of CCji that Ri holds with respect to Rj .
The dashed circle is the estimated location of Rj . ~eji is the
localization error.

In Figure 3f it is observed that the magnitude of the
localization error increases with the distance, extrapolated
to the following relationship:

E(|~eji|) =
1

κα
· ρ̄ji, (14)

where κα is a constant coefficient describing the quality of
the estimate. E(·) is the expected value. ρ̄ji is the estimated
range between Ri and Rj . Note that if κα < 1 then
E(|~eji|) > ρ̄ji, meaning that the potential bearing estimation
error is 2π and it does not provide useful information for
collision avoidance. If κα ≥ 1 then the estimate is sufficient
to select a collision escape trajectory (in Figure 3f we observe
that the worst case error is slightly below the diagonal line of
κα = 1). Based on this knowledge, we define the expansion
angle αCCji based on the implication of E(|~eji|) on the
bearing error, as in Equation (15).

αCCji = 2 · tan−1

(
ρ̄ji + ri + rj + εα

κα · ρ̄ji

)
(15)

ri and rj are the radii of the MAVs. In a homogeneous
team: ri = rj . The factor κα dictates the lower limit
asymptote of αCCji as ρ̄ji → ∞. Its impact may be
appreciated in Figure 5. The asymptote (αCCasymptote) is
determined using Equation (16).

αCCasymptote = lim
ρ̄ji→∞

αCCji = 2 · tan−1

(
1

κα

)
(16)

Based on the worst case scenario for relative localization
error, i.e. κα = 1, the asymptotic angle is π/2. εα is an
additional margin designed to adapt the behavior of the
MAVs depending on the (estimated) size of the confined
space in which they move. A method for the appropriate
selection of εα is discussed in more detail in Section III-B.
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Fig. 5: Effect of κα on αCC along distance ρji. The other
parameters are set to ri = rj = 0.1m and εα = 0.5. The
straight lines represent the relevant asymptotes.

In a team of m MAVs, each member Ri holds m − 1
collision cones that it can superimpose into a single set CCi:

CCi =
m−1⋃

j=1

CCji (17)

If, during flight, ~̇pi ∈ CCi, then a clock-wise search about
the zBi axis (starting with the current direction of flight)
is used to determine the desired velocity for escape from
a collision course. The clock-wise search aims to hold the
nominal desired magnitude for ~̇pi. If no solution is found,
then the search is repeated with incremented speed.

B. Preserving Behavior in Different Room Sizes

Equation (15) does not generalize well to environments of
different sizes when all its parameters (ri, rj , κα, εα) remain
constant. Too small values of κα and/or too large values of εα
can enlarge the collision cone too much and restrict freedom
of movement when operating in smaller rooms. This brings
two separate disadvantages, both in part culprits for eventual
collisions:

1) Oscillations/instability in MAV trajectories.
2) Convergence of the EKF suffers due to small noise-like

movements.
Appropriate scaling of the collision cone is achieved by

altering εα, which dictates the slope for the change in αCC
at smaller distances, see Figure 6.
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By re-arranging Equation (15), εα can be determined with
the following rule:

εα = κα · ρeq · tan
(αCCeq

2

)
− (ri + rj)− ρeq, (18)

This equation relies on the pair of parameters ρeq and
αCCeq . αCCeq is the desired angle of expansion at a distance
ρeq . For a given κα, εα can be adjusted with Equation (18)
to adapt the expansion of the cone when ρeq changes. Note
that αCCeq > αCCasympote . Equation (18) sets the limit:
εα > −(ri + rj).

The selection of ρeq and αCCeq is left to the designer
based on the expected circumstances. Due to the conservative
choice of κα, lower values of ρeq would be preferred to
enable mobility. In all tests in this article, ρeq is at a distance
that is half of the expected side length of the (square) arena.
αCCeq is kept at a 1.7rad. In a realistic adaptive task, under
the assumption that the MAVs are equipped with a wall-
sensor, then they could define ρeq on-board based on the
distance to the surrounding walls.

C. Correction Against Chattering and Motion Anticipation

The use of collision cones based on the EKF outputs
suffers from two issues, discussed below.
• Over-anticipation or trailing of position estimate. Lo-

calization estimates may include a bias for over-
anticipation or trailing with respect to the ground-truth
position. Over-anticipation is when the estimate is in
front of the actual position, as if leading it. Trailing
is when the estimate is behind the actual position, as
if following it. The error is stochastically dependent
on the noise realizations and disturbances present at
a given time step. For head-on and rear-end collision
avoidance, this is not an issue because the collision
cone remains approximately centered around the correct
relative bearing. For side collision avoidance (collisions
coming from oblique angles with respect to motion), the
rotation and shift of the collision cone make anticipation
unfavorable. It is responsible for a failure case where the
MAV escapes to the wrong side or fails to react. This
is visualized in Figure 7a and Figure 7b. Alternatively,
trailing errors have been observed to be less problematic

(a) Over-anticipation error
with obstacle from right. Ri

will wrongly escape towards
the right, against Rj .

(b) Over-anticipation error
with obstacle from left. Ri

might not adapt its motion.

(c) Trailing error with obsta-
cle from right. Ri will escape
towards bottom right.

(d) Trailing error with obsta-
cle from left. Ri will escape
towards right.

Fig. 7: Illustration of over-anticipation and trailing errors for
a collision from right (top) and left (bottom) at approximately
oblique collision angles. The gray collision cone is the one
based on the EKF output. The white collision cone is the
one based on the real position.

because the collision cones still tend to point and cover
the correct direction. See Figure 7c and Figure 7d,
where the collision cone still prompts a valid escape
maneuver.

• Chattering of the collision cones. Due to the noise
in the EKF outputs, the collision cones are subject to
chattering in both their orientation (due to noise in ~pji),
and in their translation (due to noise in ~̇pjRi).

The issues were tackled together by implementing a
Moving Average Filter (MAF) on the EKF output estimates
of ~pji and ~̇pjRi. The MAF inherently introduces a trailing
error in the position estimate that corrects over-anticipation
errors. The MAF also increases the smoothness of the escape
trajectory due to lower chattering of the collision cone. Note
that the MAF is only used to calculate the collision cones and
is applied in a separate process from the EKF. Combining
the two would promote divergence in the EKF’s output due
to an un-modeled non-linearity introduced in the system. It
should also be noted that the use of the MAF should be just
enough to decrease chattering and encourage a minor trailing
error. In general, it is applied over the last few time steps.

D. Connection with Velocity Obstacle Methods

One may note the resemblance of the proposed avoidance
strategy to the VO method. The difference is that VO selects
a new flight direction that minimizes the required change
in velocity [32] [33] as opposed to the clockwise search
suggested here. VO is notoriously prone to reciprocal dances



[56]. These are oscillations in the trajectory when entities
heading towards each-other repeatedly select the same es-
cape direction, leading to a left-right “dance”. Reciprocal
dances spawn when each entity (wrongly) assumes that the
other will not change its course and avoidance will not
be reciprocal. Several variants attempt to solve this issue
by making the opposite assumption, i.e. that both entities
will try to evade the collision. Examples include Reciprocal
Velocity Obstacle (RVO) [57], Hybrid Reciprocal Velocity
Obstacle (HRVO) [58] [59], and Optimal Reciprocal Colli-
sion Avoidance (ORCA) [60]. In this case, however, due to
the potential for large relative localization errors, the MAVs
are not made to assume that the others will participate in a
suitable and reciprocal escape maneuver. Reciprocal variants
of VO are thus discouraged and reliance on own estimates
and avoidance is preferred. The clockwise search encourages
a preference for right-sided maneuvers with respect to the
current flight direction, automatically resolving reciprocal
dances.

IV. TEST SET-UP

This section describes the tests that have been set up
to establish the performance of the combined system in a
realistic team flight. This has first been done in simulation
in order to establish the limitations, and later in the real-
world, with the different objective of establishing the reality
gap resulting from the use of real RSSI measurements and
real on-board velocity estimates for data exchange between
MAVs.

A. Description of Arbitrary Task for Performance Testing

A controller is designed to instantiate an arbitrary task and
applied homogeneously to all MAVs. The task is designed
such that the MAVs repeatedly seek to pass through the
center of the arena. This is made so as to provoke several
random potential collision scenarios and observe if/how
these scenarios are resolved.

Consider a team of m homogeneous MAVs. Each MAVRi
is controlled in velocity. Let ~̇picmd,k be the desired velocity
for Ri expressed in its body-frame FBi at a given time-
step k. Let dwalli be the distance between Ri and the arena
border that is closest to it, with dsafe being a safety distance
to the arena’s borders. Remember that each robot Ri features
m−1 EKF instances to keep track of the other members and
uses their outputs to determine its collision cone set CCi,
see Equation (17). At each-time step k, the EKF outputs are
updated and CCi is re-calculated. ~̇picmd,k is then chosen as
follows: ~̇picmd,k = ~̇picmd,k−1

unless conditions M1 and M2
take place.
M1: dwalli < dsafe and ḋwalli < 0. This means that Ri

is close to the arena border and approaching it. Then,
~̇picmd,k is rotated towards the center of the arena. See
Figure 8.

M2: ~̇pi ∈ CCi. This means that the current velocity of
Ri could lead to a collision with one or more team

Fig. 8: Depiction of MAV Ri subject to condition M1 at
a time step k. Ri is closer to the arena border than dsafe
allows, and moving towards it (see its velocity, ~̇pi). When
this happens, the commanded velocity (~̇picmd,k ) is towards
the center of the arena.

members. An escape velocity is sought according to the
strategy proposed in Section III.

Note that M1 supersedes M2 to ensure that the MAVs
remain within the confines of the arena. At all time-steps,
unless other-wise commanded by the collision avoidance
algorithm, |~̇picmd,k | = vnominal, where vnominal is a fixed
speed magnitude. The MAVs fly at the same height at all
times.

The controller described above is implemented as a
call-back function upon the reception of new data from
other MAVs. In the experiments this ran at approximately
5Hz due to the limitations of the real-world implementation
(see Section IV-D). Furthermore, the MAVs always maintain
the same heading with respect to North, purposely taking
advantage of the 6-Degrees of Freedom (DOF) dynamics
of quadrotors. In all experiments vnominal = 0.5m/s.
In all simulations dsafe = 0.25m. In all real-world tests,
for conservative/safety reasons, dsafe was increased to 0.5m.

Section IV-C and Section IV-D describe the
implementation of the above in the simulation environment
and the real-world, respectively. At this early research stage,
it will be noticed that both implementations equally rely
on an external position sensor in order to enforce M1.
In a realistic task, arena borders would be detected using
environment features such as walls (e.g. [61]) and the center
of the arena would represent an attraction way-point.

In all instances, the MAVs begin the task at different cor-
ners of the arena (this is approximate for the real-world tests).
The EKF is initialized such that the initial position estimate
is towards their initial flight direction (i.e. approximately the
center of the arena). All other states are initialized as null.
The covariance matrix of the EKF is initialized as an identity
matrix.

B. Testing Several Density Configurations

The performance of the task described in Section IV-A
is dependent on how crowded/dense the airspace is. This
has been investigated by altering both arena size and MAV
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Fig. 9: Matrix graph of all tested configuration pairs between
MAV diameter and side length of square arena. The config-
uration numbers as shown in the white circles are referenced
throughout the remainder of this article. Dm,c is the airspace
density for configuration c when featuring a team of m
MAVs.

diameter in twelve different configurations. The investigated
configurations and their respective densities are shown in
Figure 9. These will be referred to throughout the remainder
of this article by the numbers in the circles.

Density is calculated by modeling each MAV as a circle in
a square arena. Let Dm,c denote the density for configuration
c with m MAVs. It is calculated as in Equation (19).

Dm,c =
m · πr2

c

s2
(19)

rc is the radius of an arbitrary MAV at configuration c
(all MAVs in a configuration are homogeneous). sc is the
side length of the squared arena at configuration c. All tests
are performed with two MAVs (m = 2) and three MAVs
(m = 3).

C. Simulation Environment Set-Up

The simulation environment was built using the Robotics
Operating System (ROS) [62]. It adopts the Gazebo physics
engine [63] and the hector-quadrotor [64] simulation which
together provide a validated platform. 1 Multiple instances
of a quad-rotor may be launched in a simulation run. The
core functions (i.e. relative localization EKF and collision
avoidance controller) are developed for and within Paparazzi

1At the time of writing: ROS is freely available at www.ros.org;
Gazebo is freely available at www.gazebosim.org; Hector-quadrotor is
freely available at wiki.ros.org/hector_quadrotor.

Unmanned Air Vehicle (UAV) software [65] [66] 2. This
is so as to be readily portable to the real-world set-up
described in Section IV-D. A ROS module (a.k.a. “node”
[62]) for each MAV simulates the presence of a Bluetooth
RSSI sensor and subsequently enforces the controller
described in Section IV-A. The module runs at 5Hz to
match the communication speed between MAVs achieved
in the real-world (see Section IV-D).

The RSSI signal was simulated using the LD model
(Pn = −63dB, γl = 2.0) with added Gaussian noise as well
as horizontal lobes as a function of relative bearing. The
standard deviation of the added noise, with the exception
of the results discussed in Section VI-C, is 5dB. The lobes
were arbitrarily modeled using a third order Fourier series
with unitary weights, see Figure 10a. With Figure 10b,
we see that the achieved performance of the simulated
on-board relative localization scheme features similar error
magnitudes as observed in Figure 3e when a similar test is
repeated in simulation.

Each configuration from Figure 9, unless otherwise stated,
has been tested with 100 trials featuring a maximum trial
time of 500s. The simulations are interrupted whenever the
actual distance between any two MAVs is smaller than the
sum of their radii, indicating a collision. A screen-shot of a
simulation with 3 MAVs is shown in Figure 10c.

D. Real-World Environment Set-Up

We executed real-world experiments using AR-Drones
2.0 [67] running Paparazzi. The drones all flew at 1.5m
above the ground within a 4m× 4m arena. Figure 11 shows
a picture of an on-going experiment with 3 drones.

A BLED112 Bluetooth Smart USB Dongle was used to
provide the AR-Drones with Bluetooth 4.0 (Low-Energy)
capabilities [68]. All computations for relative localization
and collision avoidance are run on-board of the AR-Drones.
The LD model in the EKF filter was given: Pn = −67dB
and γl = 2.0. Pn was obtained by a brief hand-held
calibration measurement. The choice of γl was based on the
free-space assumption [46]. Communication between the
AR-Drones was direct via Bluetooth. The data was sent and
received by means of advertising messages scheduled using
a Self-Organized Time Division Multiple Access (STDMA)
algorithm [69]. Under the STDMA algorithm, each MAV’s
Bluetooth antenna alternates between advertising and
listening, achieving data exchange at a rate of ≈ 5Hz.
This enabled direct communication circumventing the
Master-Slave paradigm otherwise enforced by the Bluetooth
standard [30].

Two different real-world tests were performed. Test #1
explored the impact of using real RSSI measurements and
communication. Test #2 then explored the effect of using

2Paparazzi UAV is an open-source UAV/MAV auto-pilot software avail-
able at https://github.com/paparazzi/paparazzi.
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Fig. 10: Figures relating to the development of the Gazebo/ROS simulation environment.

on-board velocity estimates. The two tests are discussed in
more detail in the next two paragraphs.

Test #1 (Optitrack-based state estimation): The primary
objective of this test was to establish the performance of
the relative localization and collision avoidance algorithm
when using real RSSI measurements and Bluetooth
communication. On-board state estimation of velocity,
magnetic North orientation, and height was purposely
avoided in order to be able to ensure regulated noise and
isolate the impact of using real Bluetooth RSSI. Optitrack
[53] was used to provide the MAVs with estimates of their
own states via a Wi-Fi link. These were altered the same
Gaussian noises σv = 0.2m/s and σψ = 0.2rad upon
being entered into the EKF. Furthermore, Optitrack position
data was used to guide MAVs according to condition
M1 as proposed in Section IV-A. The enforced arena
size in all experiments was 4m × 4m. These experiments
are approximately analogous to Configuration 11 from
the simulated tests (AR-Drones 2.0 are slightly larger in
diameter than 0.5m). Experiments were performed with
both two AR-Drones and three AR-Drones. For flights
with two AR-Drones, the MAF averaged over the last 3
time-steps. For flights with three AR-Drones, the MAF
averaged with the last time-step.

Test #2 (On-board velocity estimation): These tests
were performed using two AR-Drones. The objective was to
determine the impact of using realistic velocity sensors on
the relative localization performance and its repercussions on
collision avoidance. Instead of relying on Optitrack, the AR-
Drones estimated their own velocity using on-board sensors
and the the Optical Flow module available within Paparazzi
3. The on-board estimates were then directly communicated
between the AR-Drones using Bluetooth. For safety reasons,
and to isolate the impact of the relative localization estimate
on collision avoidance, on-board velocity estimates were only
used as inputs for the EKF relative localization. The velocity
controller of the AR-Drones remained reliant on Optitrack.
This ensured controlled flight within the confines of the
arena. The drones kept a constant heading towards North

3See the module computer vision/opticflow for a more in-depth descrip-
tion

Fig. 11: Picture during a real-world experiment with 3 AR-
Drones 2.0 (one left, one middle, and one right) inside the
arena.

and the same height at all times. No noise was artificially
added to these measurements. All other parameters remained
as in Test #1.

V. RESULTS
A. Simulation Results

All configurations presented in Section IV-B have been
tested under the simulation environment described in
Section IV-C. The objective of the simulations is to study
the performance trends under different environments and
the limitations of the system. The parameter used to assess
the performance is the flight-time to collision, which is the
time that the MAVs managed to fly within the arena whilst
avoiding collisions. The mean flight-time to collision for
each configuration is shown in Figure 12. Remember that
simulations were stopped after 500s of flight in the event of
no collisions. For all configurations, flights with three MAVs
show a lower performance with respect to two MAVs. In
the simulations, the introduction of an additional MAV does
not affect the relative localization performance between
MAVs. Therefore, the performance drop is a result of the
team dynamics at play, namely: increased airspace density,
and decreased freedom of movement due to superposition
of collision cones. These two factors are analyzed in this
section.

When the arena side length remains constant and the
MAV diameter increases, a decrease in mean flight-time is
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Fig. 12: Mean flight-time to collision for all configurations
with active collision avoidance. The maximum simulation
time for each trial was 500s in the event of no collisions.
The mean flight times without collision avoidance, not seen
in this figure, range between 3.9s and 14.3s.
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Fig. 13: Flight parameters with respect to airspace density
based on simulation results.
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Fig. 14: Trajectories from two exemplary simulated flights of
500s extracted from configuration 10 showing the emergent
circular behavior with two MAVs (left) and three MAVs
(right). The starting positions are shown in green (note that
for the flight with three MAVs this was actually at the
corners, but the first few time-steps were not logged). The
final positions are shown in red.

systematically present. This is observed when comparing
within the configuration triads 4-7-11, 3-6-10, and 2-5-9,
and the pair 8-12. The result is analogous when MAVs of
the same diameter are used in arenas of different sizes,
as may be noticed by observing the configuration quartets

1-2-3-4, 5-6-7-8, and 9-10-11-12. This implies that a lower
density improved the probability of success, but this is
found to not strictly be the case. Figure 13a shows the flight
time to collision as a function of the airspace density. A
portion of configurations show low results in spite of the
low airspace density, and are outliers in the negative linear
trend. These correspond to configurations 1, 2, 5, and 9,
which feature smaller arena sizes. The conclusion is that
room size affects performance even when airspace density
remains constant. This is a limitation of the current status of
the system when operating in smaller room sizes. Its causes
are discussed in Section VI-B.

Figure 13b shows the impact of airspace density on area
coverage for all flights with two MAVs and three MAVs.
Area coverage is measured as follows. The arena is divided
in sections. A section is then considered covered if at least
one of the MAVs crosses it during a trial. Area coverage
is the ratio of covered sections to the total number of
sections. The calculation was performed using standardized
sections of 0.20m × 0.20m. Two patterns are discerned.
The first is the general trend that a higher airspace density
leads to a lower overall coverage. This is a combined effect
of a) lower flight times, providing less opportunity for
movement, and b) decreased freedom of movement due
to larger portions of the arena being covered by collision
cones. The second pattern is that flights with three MAVs
systematically achieve lower area coverage if compared to
flights with two MAVs at the same density. This is explained
by analyzing the flight trajectories in more detail, which
show an emergent circular behavior. This behavior may be
appreciated in Figure 14, showing two exemplary runs from
a simulation with two (Figure 14a) and three (Figure 14b)
MAVs from configuration 10. When more than one MAV
to avoid is present, the superposition of multiple collision
cones significantly discourages the pursuit of the desired
trajectory. The result is clock-wise motion along the sides
of the arena for all MAVs. Oscillations along the border are
observed as conditions M1 and M2 alternate.

B. Real-World Results with Optitrack-based State Estimation
(Test #1)

Four flights were performed with two AR-Drones in a
4m × 4m arena. The cumulative flight-time was 25.3min.
In this time, the MAVs only suffered from one collision,
which took place in the second flight after 5.6min. The
other flights lasted 6.1min, 7.6min, and 6.0min; they were
ended manually in order to preserve battery health in light
of low battery voltage.

Six flights were performed with three ARDrones for a
cumulative time of 15.3min. Five out of six flights ended
due to collisions. The flights ending with collisions reached
a mean flight time of 160s (2.7min) before ending with
collisions. The shortest flight was 33s, the longest flight
was 5.2min. The other flights lasted 1.9min, 2.6min, and
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(a) Overview of range estimate error dur-
ing all flights with two AR-Drones with
Optitrack-based state estimation (Test
#1). The RMSE is 0.86m.
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(b) Overview of range estimate errors dur-
ing all flights with three AR-Drones with
Optitrack-based state estimation (Test
#1). The RMSE is 1.14m.
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(c) Overview of range estimate errors
during all flights with two AR-Drones
with on-board velocity estimation (Test
#2). The RMSE is 1.18m.
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(d) Overview of bearing estimate er-
rors during all flights with two AR-
Drones with Optitrack-based state estima-
tion (Test #1). The RMSE is 0.57rad.
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(e) Overview of bearing estimate er-
rors during all flights with three AR-
Drones with Optitrack-based state estima-
tion (Test #1). The RMSE is 0.70rad.
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(f) Overview of bearing estimate errors
during all flights with two AR-Drones
with on-board velocity estimation (Test
#2). The RMSE is 0.77rad.

Fig. 16: Overview of all relative range (top) and relative bearing (bottom) errors. All plots on the left relate to flights with
two AR-Drones with Optitrack-based state estimation (Test #1). All plots in the middle relate to flights with three AR-Drones
with Optitrack-based state estimation (Test #1). All plots on the right relate to flights with two AR-Drones with on-board
velocity estimation (Test #2).
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(a) Localization error magni-
tude for all flights two AR-
Drones in Test #1.
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(b) Localization error magni-
tude for all flights three AR-
Drones in Test #1.

Fig. 15: Overview of magnitude of relative position estimate
error (|~eji| between all MAVs during all flights with two AR-
Drones (left) and three AR-Drones (right). All data shown
here equally relied on off-board self-state estimates (Test #1).

3.0min. The flight without a collision was manually ended
after 2.0min due to low battery voltage. Under these results
it may be said that a system with three MAVs can expect
a collision once every 184s (≈ 3min) of flight under the
proposed task.

Figure 15 shows the magnitude of the localization error
(|eji|) for all combinations and during all flights together
with two AR-Drones (Figure 15a) and three AR-Drones
(Figure 15b) in Test #1. For all flights with two AR-Drones,
92% of all estimates are below the expected line of κα = 1.

The minimum performance by an MAV over a flight is
84.8%, and the maximum is 97.6%. For all flights with three
AR-Drones, 84% of points are below the expected line.

Figure 16 shows the errors in bearing and range for all
relative estimates during all flights. For flights from Test
#1: the range error is shown in Figure 16a and Figure 16b,
and the bearing error is shown Figure 16d and Figure 16e.
The mean error with two MAVs features a Root Mean
Squared Error (RMSE) of 0.57rad for bearing estimates and
0.86m for range estimates. With three MAVs, the RMSE
rises to 0.70rad and 1.14m for bearing and range estimates,
respectively.

Of particular interest is the amount of times that the error
temporarily diverges towards ±π. In spite of the shorter
cumulative flight time, this error case is more frequent in the
flight with three MAVs. The error does not necessarily lead
to collisions in light of the homogeneous application of the
controller to all MAVs and the abstinence from assuming
reciprocity in the collision avoidance. Nevertheless, it does
introduce a temporary uncertainty in the system that is not
accounted for by the collision avoidance. Furthermore, the
convergence rate for bearing estimates over flights with
three AR-Drones is worse than with two AR-Drones. This
may be appreciated in Figure 17, which shows the first 30s
of Figure 16d and Figure 16e in more detail. Convergence
times for flights with three MAVs reach up to 30s prior to
settling (Figure 17b). By comparison, the convergence in
flights with two AR-Drones only (Figure 17a) is found to
be at most within 5− 10s.
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(a) Bearing error for all flights
with two AR-Drones in the first
30s.
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(b) Bearing error for all flights
with three AR-Drones in the
first 30s.

Fig. 17: Comparison of bearing estimate errors between all
performed flights with two AR-Drones (left) and three AR-
Drones (right) in the first 30 seconds of flight. All data shown
here equally relied on off-board self-state estimates.

C. Real-World Results with On-Board Velocity Estimation
(Test #2)

Five flights were performed with two AR-Drones for a
cumulative time of 16min. All flights ended in collisions.
The mean time to collision was 192.4s (3.2min). The
longest recorded flight time was 6.0min. The shortest
flight was 2.0min. The other flights were 2.4min, 2.4min,
and 3.1min. This is a significant drop in performance if
compared to the flights from Test #1 with two AR-Drones.
The reason is in the increased error in the relative range and
bearing estimates when compared to flights with two MAVs
using Optitrack velocity estimates, see Figure 16c and
Figure 16f. The RMSE of the relative range estimates was
1.18m, whereas the RMSE for relative bearing estimates
was 0.77rad.

The loss in relative localization accuracy is attributed to
the disturbances present in the on-board velocity estimates.
Figure 18 shows an exemplary estimate of the velocity along
the xBi axis by one AR-Drone during a flight. At different
intervals, it may be seen that the velocity was over or
under estimated for an extended period of time. Furthermore,
significant spikes can be seen at ≈ 55s and ≈ 125s. These
spikes were manually limited to a maximum magnitude of
2m/s, yet impose significant disturbance in the localization
estimate. Finally, the standard deviation of the error reaches
≈ 0.4m/s. This was not accounted for in the EKF, which
still assumed 0.2m/s.

VI. DISCUSSION

A. Performance of Relative Localization

The flights with 2 AR-Drones from Test #1 returned
low relative localization errors and successful collision
avoidance over a prolonged flight time of 25min with
only one collision. However, a noticeable loss in relative
localization performance was measured when introducing
a 3rd MAV. The effects were longer convergence times as
well as higher relative bearing/range errors that negatively
impacted the performance of the collision avoidance system
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Fig. 18: Velocity estimation (red, dashed) of an AR-Drone
along the xB axis against ground truth velocity (blue, solid).
Notice the small spikes between 30s and 40s and the larger
spikes at ≈ 55s and ≈ 125s. Furthermore, notice the
occasional over/under estimation in the regions between 70s
to 80s and 100s to 110s.

when compared to the simulation results. The trend is
assumed to get worse with team larger than 3. A similar
decrease in performance was also observed when using
on-board velocity estimates. This was due to a combination
of over-under estimation of velocity or occasional spikes in
the measurements.

The relative localization scheme uses an EKF. This may
be criticized for its reliance on a Gaussian noise driven
model, which fails to provide robustness against un-modeled
disturbances. Other methods such as robust [70] or adaptive
[71] variants of Kalman filters, or Particle Filters (PFs) [48],
could be be better suited to deal with the circumstances.
However, a naive change in filter can bring increased cost
in computational resources without necessarily guaranteeing
a higher quality output. This is because there are a number
of other limitations. One is that the logarithmic decrease
in RSSI is intrinsically insufficient to measure changes in
range at larger distances. Another limitation stems from
the proposed process update equation (see Equation (7)).
In order to provide a general scheme and abstain from
introducing more complexities in the system, it is based
on the null assumption that all velocities remain constant.
Improvements may come from including more complex
dynamic properties in the process equation, i.e. acceleration
and jerk.

To make the case that a change in filter is not necessarily
to be associated with an improved performance, we compare
the performance of the EKF to that of the Unscented Kalman
Filter (UKF). The UKF is correct to a higher order [72]
and does not need to be influenced by the assumption of
Gaussian noise [73]. Two implementations of the UKF are
used, one with distribution parameter of 2 (denoted UKF2)
and one with a distribution parameter of 0 (denoted UKF0).
UKF2 incorporates Gaussian noise, whereas UKF0 abstains
from an initial a-priori knowledge [73]. Figure 19 shows
the results for the same preliminary trial run previously
discussed in Section II-E. All filters were applied to the
same realization of artificial noise on the measurements and
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Fig. 19: Comparison of localization error (|eji|) with EKF
(red,dashed), Gaussian UKF (purple, dotted), and non-
Gaussian UKF with distribution parameter = 0 (black, dash-
dotted) against ground truth data (blue, solid). The results are
from one realization of artificial noise on the measurements
from the same data-set used in Figure 3.

featured the same initial conditions. It may be seen that the
performance is comparable. One reason is that the UKF’s
main strength (lack of linearization [74]) is in vain due to
the low non-linearity of the process/measurement equations
[75]. This may change if the process equation is altered as
previously suggested. Another reason is that there is still a
considerable impact from un-modeled disturbances in the
environment.

Further investigations are encouraged in order to define a
filter that can lower the expected worst-case error. This would
benefit the system as a whole. The collision cone parameter
κα could be reduced without introducing additional risk. This
discussion is continued in Section VI-B.

B. Performance of Collision Avoidance
In simulation, all configurations have also been tested

without active collision avoidance. In this case, the MAVs
are only subject to condition M1. The obtained mean
flight times range between 3.9s and 14.3s. A z-test with
95% confidence level [76] shows a statistically significant
improvement in flight time for all configurations.

Figure 13a shows that an increase in airspace density is
directly correlated with a decrease in performance. Smaller
rooms show poorer performance than larger rooms despite
similar density. The parameter εα, as explained in Sec-
tion III-B, implements room scaling within the collision
cones. However, performance cannot reach the same lev-
els unless the other relevant parameters (i.e. call-back rate
(5Hz), vnominal, dsafe, sensor noises) are also changed
accordingly. Two reasons for this are:
• The ratio of arena size to vnominal decreases in smaller

rooms. The rate of data exchange is 5Hz, and this limits
the decision rate of the collision avoidance controller.
With other control parameters remaining constant, the
relative distance traveled in smaller rooms is higher than
in larger spaces, prompting a more chaotic behavior.

• Maneuver selection. In smaller rooms, M1 has higher
chances of being called due to more frequent proximity
to the arena borders.

Collisions during real-world flights with three MAVs oc-
curred along the edges of the arena. This is also observed
in simulation. For configuration 11, 81% of the collided
simulated flights with three MAVs ended within 0.5m of
the arena borders. By comparison, only 35% of collided
flights with two MAVs ended within this space. An example
is shown in Figure 20 from a real flight, recounted by the
three events below.

1. One AR-Drone ends up “trapped” along the boundaries
and reluctant to make movements towards the center for
fear of collisions. In Figure 20a we see that the bottom
right AR-Drone (blue) turns towards the right.

2. Another MAV turns towards the same side. In Fig-
ure 20b, the central AR-Drone (red) avoids the black
AR-Drone (on left) and also goes to the right. Its current
estimate of the other trapped AR-Drone is temporarily
erratic beyond the anticipated bounds.

3. The second AR-Drone also becomes “trapped” along
the border. As in Figure 20c, the two oscillate along
the border until a collision occurs due to proximity.

This collision scenario does not occur with two MAVs
because of the larger freedom of movement and the more
accurate relative location estimate.

The failure mode described above may be tackled in
different ways. One option is to increase mobility by in-
creasing κα, prompting a lower asymptote for αCC . The
results in this article are based on a conservative choice
(κα = 1) so as to account for a worst case scenario, but
this could be alleviated in order to resolve these situations.
However, if not accompanied by an improvement in the
relative localization estimate, this could increase the risk of
collision. Alternatively, the linear relationship of the error
with distance from Equation (14) can be changed into a
piece-wise function in order to limit growth of the collision
cone beyond a certain distance. This would allow for a
higher error tolerance but only for objects beyond a certain
estimated range. For example: κα = 1 if ρji ≤ 3 and κα = 2
if ρji > 3. A third option would be to implement a selective
obstacle avoidance method that prioritizes between obstacles.

C. Impact of Noise on System Performance

The real-world tests with two AR-Drones using off-board
(Test #1) and on-board (Test #2) state estimation have shown
how the performance of the relative localization algorithm is
dependent on high-quality on-board estimates. The perfor-
mance dropped from one collision in a cumulative 25min of
flight to one every ≈ 3min. To continue the discussion from
the perspective of the RSSI measurements, this section in-
vestigates the extent to which an improvement in RSSI noise
can lead to improved performance. In simulation, two case-
studies are made. In the first case, the simulated RSSI noise
is reduced from 5dB to 3dB; lobes are still simulated. In the
second case, RSSI noise is kept at 5dB but sensor lobes (all
simulated disturbances) are removed. All EKF and collision
avoidance parameters remain unchanged. The configurations
analyzed are those with the lowest performance: 1, 2, 5, 6, 9,



(a) View #1. The blue AR-Drone (bottom
right) moves towards the right. The red
AR-Drone (middle) turns away from the
black MAV and also towards the right.

(b) View #2. The blue AR-Drone is
trapped in the bottom right corner. The
red AR-Drone continues towards the
right.

(c) View #3. The blue and red AR-Drones
are both trapped at the right edge of the
arena and begin alternately invoking M1
and M2 (see Section IV-A). This ends
with a collision.

Fig. 20: Chronological depiction (left to right) of a collision case in a real-world flight with 3 AR-Drones. Large circles
indicate the ground-truth position in the arena. The collision cones of the blue and the red MAVs are shown. The blue and
red diamonds indicate the current estimates by the blue and the red MAV, respectively.

1 2 5 6 9 10

Configuration

0

100

200

300

400

500

M
ea
n
F
li
gh

t
T
im

e
[s
]

5dB, no lobes 3dB Orig.

(a) Improvements in system per-
formance with two MAVs when
noise/disturbances are reduced.
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(b) Improvements in system
performance with three MAVs
when noise/disturbances are re-
duced.

Fig. 21: Improvements in system performance against origi-
nal results for lowest performing configurations (black, most
narrow) when noise is reduced from 5dB to 3dB (dark gray,
mid narrow) or when lobes are removed (dark gray, least
narrow). The left figure is for a system with two MAVs and
right figure is for a system with three MAVs.

10. The results are shown in Figure 21. It is systematically
observed that removing the antenna lobes improves the
performance. A lower noise also improves results, yet the
impact is (generally) lower than antenna lobes. The lower
error in relative position estimates successfully translates to
a more successful collision avoidance system. This shows
that performance could be improved further if operating in
cleaner environments or if using higher quality sensors.

VII. CONCLUSION

We have shown the validity of Bluetooth as a relative
localization sensor that can be used on-board of MAVs
operating in a team. For MAVs that are already equipped

with this technology, this enables swarm behavior without
the need of a dedicated sensors. Intra-swarm collisions, a
leading failure condition for MAVs flying in a limited space,
can be successfully addressed by this technology provided
that a collision avoidance system is used that properly
encapsulates the errors involved.

In real world tests, two ARDrones 2.0 flying in in a
4m × 4m space only collided once over a cumulative
flight-time of 25min. With three ARDrones 2.0, all else
being equal, time between collisions was ≈ 3min. The drop
was due to increased disturbance and airspace density. When
the AR-Drones were made to estimate their own velocity
on-board using optical flow, two AR-Drones collided
approximately every 3min as a result of the disturbances in
the on-board velocity estimate. Simulation trials have shown
that smaller MAVs in the same space would generally lead
to lower collision rates.

The combined relative localization/collision avoidance
system as presented and tested in this paper can be improved
in different ways. Aside from hardware improvements, more
investigations are advised in order to reliably reduce the error
of the current relative localization filter. If this is done, it can
translate into a higher freedom of movement for the MAVs
without introducing higher risk in the system. Otherwise,
the introduction of an additional strategy to deal with the
avoidance of multiple team members should also improve
performance when flying with 3 or more MAVs.
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[14] G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi,
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Appendix A

Literature Review on Quad-Rotor
Dynamics

Quad-rotors are highly non-linear, under-actuated systems operating in 6 Degrees of Freedom
(DOF) (Azzam & Wang, 2010). This section explores their dynamics and models that can
be used in order to represent them. Appendix A-1 defines the general parameters, namely:
frames of refences and intertia matrix. Appendix A-2 presents the assumptions used when
modeling the motion of MAVs. Models found in literature are introduced in Appendix A-3
(linear) and in Appendix A-4 (non-linear). Appendix A-5 provides some concluding remarks.

A-1 Frames of reference

It is important to define two frames of reference to be used in this analysis: the body frame
of reference FB, and the Earth-fixed (inertial) frame of reference FE . An illustration of the
angular relationships between the two frames is presented in Figure A-1. Both systems abide
to the North-East-Down (NED) convention. The rotation matrix from FE to FB, denoted
RBE, is given by Eq. A-1.

RBE(φ, θ, ψ) =



cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − sφcψ
−sθ cθsφ cθcφ


 (A-1)

Where φ is the roll angle, θ is the pitch angle, and ψ is the yaw angle. Note that, for
compactness, cx = cosx and sx = sinx. As Eq. A-1 is orthogonal (Phang, Cai, Chen, & Lee,
2012), the inverse transformation REB is given by its transpose, ∴ REB = RT

BE.

The inertial matrix for a rotor is J ∈ R3, and is defined as Eq. A-2 with respect to FB. This
matrix is to be simplified to a diagonal matrix thanks to an assumption elaborated in the
next section.
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Figure A-1: Angular relationship between Body Frame of Reference FB (denoted with lower
case b in the figure) and Earth-fixed inertial frame FE depicted on an aircraft (Mulder et al.,
2013).

J =



Jxx −Jxy −Jxz
−Jyz Jyy −Jyz
−Jzx −Jzy Jzz


 (A-2)

A-2 General assumptions

The general assumptions in each model discussed in the following sections of this chapter are:

A1. Constant mass. The MAV features a constant mass throughout its full flight time.
This assumption is valid as the MAVs are battery powered and do not rely on fuel.

A2. Aligned thrust vector. The thrust generated by the 4 on-board propellers are per-
fectly aligned with the zB axis.

A3. Rigidity. Following from assumption A2, the MAV is assumed to be a fully rigid
structure. Pounds, Mahony, and Corke (Pounds et al., 2006) has performed a modeling
of blade flapping, included within the Newton-Euler model, by observing their first
harmonic. The flapping introduces small lift force components into the xB and yB axis.
However, this level of detail is not deemed necessary within the context of this research.

A4. Symmetry. The mass distribution and structural configuration of the quad-rotor MAV
is perfectly symmetrical about the xB-zB and yB-zB planes. This gives Jxy = Jyx =
Jxz = Jzx = Jyz = Jzy = 0 (K. U. Lee, Yun, Chang, Park, & Choi, 2011), and Jxx = Jyy.

A5. Center of gravity at FB origin. The Center of Gravity (CG) coincides with the
origin of FB frame.
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A-3 Linear models

Despite quad-rotors being inherently non-linear systems, it is still possible to represent their
controlled system dynamics with linear systems to a certain degree of accuracy. This section
presents two options for doing so.

A-3-1 Linearized aerodynamic model

Gremillion and Humbert (Gremillion & Humbert, 2010) have developed a linear quad-rotor
model by determining a set of coefficients that attempt to linearize the dynamic interactions
of the system. This system (Eq. A-3) is based on the model of a helicopter, but has been
altered and adjusted to be suitable for the general case.




u̇
v̇
ẇ
ṗ
q̇
ṙ

φ̇

θ̇

ψ̇




=




Xu 0 0 0 0 0 0 Xθ 0
0 Yv 0 0 0 0 Yφ 0 0
0 0 Zw 0 0 0 0 0 0
0 0 0 Lp 0 0 Lφ 0 0
0 0 0 0 Mq 0 0 Mθ 0
0 0 0 0 0 Nr 0 0 0
0 0 0 φp 0 0 0 0 0
0 0 0 0 θq 0 0 0 0
0 0 0 0 0 ψr 0 0 0




︸ ︷︷ ︸
matrix A




u
v
w
p
q
r
φ
θ
ψ




+




0 0 0 0
0 0 0 0
0 0 0 Zr
Llat 0 0 0

0 Mlon 0 0
0 0 Nyaw 0
φlat 0 0 0
0 θlon 0 0
0 0 ψyaw 0




︸ ︷︷ ︸
matrix B




δlat
δlon
δyaw
δthr




(A-3)

All variables in matrix A are aerodynamic derivatives that model the linearized dynamics of
the model, which are to be experimentally estimated. All variables in matrix B are control
derivatives, also to be estimated. u, v, w are the velocities expressed in FB. p, q, and r are the
rotation rates around the FB axis. φ, θ, and ψ are the roll, pitch, and yaw angles respectively.
δlat, δlon, δyaw, and δthr are the input changes in the lateral position, longitudinal position,
yaw, and thrust. Refer to the original source for a more in-depth account of all variables in
the A and B matrices.

Advantages and disadvantages The use of this model, albeit advantaged by the linearity,
falls short on a number of terms. One disadvantage of using this approach in practice is that
it requires the estimation of a large number of control coefficients via system identification
methods. Gremillion and Humbert performed this identification by using Vicon data coupled
with NASA Langley’s System Identification Programs for Aircraft (SIDPAC), which deter-
mines a least-squares solution from a pool of potential candidate regressors. Therefore, albeit
the model is relatively simple, its practical usage requires thorough parameter estimation
based on several flight data from different maneuvers. A further disadvantage is that this
model is linearized about hover, and thus deemed more suitable for the linearized condition
in a near-hover state.
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A-3-2 Linearized kinematic model

A second option is to assume that all dynamics are controlled at lower levels, and thus to
only model the high-level system kinematics. Szabo (Szabo, 2015) has done this by modeling
the controlled quad-rotor as a second order linear system. The Micro Areal Vehicle (MAV)
specific parameters (damping coefficient ζ and oscillation frequency ωn) have been extracted
experimentally, and the state equation of the model is as given in Eq. A-4, where: h is the

height from the ground (h = −zE), pE =
[
xE , yE , zE

]T
is the position of the vehicle in FE ,

tc is the model time constant, Ψc is the heading of the quad-rotor, and hc is the commanded
height.




...
xE
ẍE
ẋE...
y E
ÿE
ẏE
ḣ




=




−2ζω −ω2 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −2ζω −ω2 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 −1/tc







ẍE
ẋE
xE
ÿE
ẏE
yE
h




+




ω2 0 0
0 0 0
0 0 0
0 ω2 0
0 0 0
0 0 0
0 0 1/tc







∣∣∣~̇pE
∣∣∣ · cos (Ψc)∣∣∣~̇pE
∣∣∣ · cos (Ψc)

hc




(A-4)

Advantages and disadvantages This model is capable of re-creating the motion of a con-
trolled element with the estimation of only two parameters. It is attractive due to its high
simplicity, and can serve as an effective method for simulation of certain maneuvers. However,
the model fails to account for the attitude of the unit, which can be a significant disadvantage,
as well as coupling between the different axis.

A-4 Non-linear Newton-Euler model

A common quad-rotor model used in literature is based on the Newton-Euler model for 6
DOF motion, which describes the forces and torques experienced by the body as a function
of the dynamics. The model is as presented in Eq. A-5 (Bouabdallah, Murrieri, & Siegwart,
2004) (Azzam & Wang, 2010), where: ~FB is the force experienced by the rotor in FB, ~τB is
the torque experienced by the rotor in FB, ~pB is the acceleration experienced by the rotor in
FB, ~ω is the angular velocity by the rotor in FB, J is the inertia matrix from Eq. A-2, I3×3
is a 3×3 identity matrix.

[
~FB
~τB

]
=

[
mI3×3 0

0 J

] [
~̈pB
~τB

]
+

[
~ω ×m~̇pB
~ω × J~ω

]
(A-5)

This format expresses the forces as a function of the dynamics in the body frame FB for any
body in 6 DOF. A quad-rotor, however, is an under-actuated body that can only produce a
thrust force along the zB axis (see assumption A2). It is then useful to apply the assumption
and reverse the expressions such that the motion is expressed in an inertial frame FE as
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function of the forces and torques produced by the four rotors, as in Eq. A-6 (D. Lee et al.,
2013),

m~̈pE = −FTREB~e3 +mg~e3

J~̇ω + S(ω̃)J~ω = ~τB

ṘEB = REBS(ω̃),

(A-6)

where: FT is the combined thrust force by all motors (Eq. A-8), g is the gravitational accel-

eration, e3 =
[
0, 0, 1

]T
, S(~ω) is a skew matrix of ~ω. The force due to gravity acts along

the zE axis.

The impact on the zB axis is given by

Fg,B = RBE




0
0
mg


 =



−mgsθ
mgcθsφ
mgcθcφ


 . (A-7)

The thrust generated by the four propellers, taking into account assumption A2, is equal to
the the cumulative thrust from each, and is perfectly aligned along the zB axis. The propellers
are labeled “front” for the propeller along the positive xB, “right” for the propeller along the
positive yB, “back” for the propeller along the negative xB. “left” for the propeller along the
negative yB, Alternatively, they can be numbered 1 to 4, respectively.

FT =
4∑

n=1

FTi = FTleft + FTright + FTfront + FTback (A-8)

The torque ~τB along the roll, pitch, and yaw axis, is then given by Eq. A-9, where: l is the
arm length from the center of gravity to the propellers (assumed symmetric as in assumption
A4), and ft is a yaw drag factor. Note that for leveled flight τright = τleft = −τfront = −τback.

~τB =



τφ
τθ
τψ


 =




l ·
(
FTleft − FTright

)

l ·
(
FTfront − FTback

)

ft · (τright + τleft + τfront + τback)


 (A-9)

Advantages and disadvantages The key advantage of this model is its higher fidelity. Unlike
the linear models expressed in Appendix A-3, this model focuses on describing the uncon-
trolled dynamics of the system based directly on its physical quantities. The downside of a
model of this type is that it requires a non-linear numerical method to make predictions on
future states, which can be computationally demanding. This is not predicted to be issue if
the model is used during development for testing purposes or to employ off-line optimization
schemes — in these scenarios the computation is not time-critical and can also be run on a
state-of-the-art computers. However, if a non-linear simulation needs to be run on on-board
(thus on a low-end chip) and in a time-critical environment, there may be complications.
This is dependent on several factors including but not limited to: the discretization of time
within the simulation, the desired fidelity/accuracy that needs to be reached, and the required
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update frequency of the control-scheme requiring the simulation. Furthermore, as the model
does not take into account the control of the quad-rotor, an accurate simulation would then
also require the inclusion of a model of the controller.

A-5 Conclusion and considerations for model implementation

This chapter presented three separate options for modeling the motion of a quad-rotor MAV.
Each model exhibits a set of advantages and disadvantages. The general trend that is observed
is that a more accurate model comes at the cost of increased implementation complexity
as well as increased computational costs. The advantages of higher accuracy become more
apparent for the analysis of short-term motion such as may be required during state-estimation
(Leishman, Macdonald, Beard, & McLain, 2014) (see Appendix B-1). Lower fidelity models
have been used to model the behavior of a system over longer time periods without requiring
an in-depth analysis of lower-level system parameters (Szabo, 2015). Low fidelity algorithms
provide a simple solution for the development and testing of algorithms for which it is not
necessary to obtain data that is entirely representative of the ground-truth motion. For
instance, the testing of a localization algorithms in simulation will not require high-fidelity
motion parameters in order to establish its merits within the given context, provided that
the localization algorithm is independent of the dynamics. During the analysis of obstacle
avoidance motion, however, one may argue that there is a need for a higher fidelity model.
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Appendix B

Literature Review on On-board
Measurement of Own State

Prior to the analysis of methods for sensing and localization of other swarm members, it is
useful to determine and discuss the capabilities of the on-board sensors that are used for self-
state estimation. This is with the aim of determining what states the MAVs could reliably
share with each-other during a localization task. MAVs feature 12 states (Beard, 2007) (Bry,
Bachrach, & Roy, 2012), namely:

• xE , yE , zE : the positions with respect to a fixed inertial frame of reference (f.o.r.) FE ;
• u, v, w: the velocities with respect to a North-East-Down body f.o.r. FB;
• φ, θ, ψ: the Euler angles defining the axis rotations between FE and FB;
• p, q, r: the rotations along xB, yB, and zB, respectively.

These 12 states need to be measured and/or estimated using on-board sensors and processing.
The relevant sensors expected to be on-board of the envisioned platform, as extracted from
(Remes et al., 2014), are: an Inertial Measurement Unit (IMU), a magnetometer, a pressure
sensor, Global Positioning System (GPS), and a mono/stereo camera.

The analysis that follows focuses on the capabilities and raw data that can be provided by each
sensor, as in Appendix B-1-Appendix B-5, and the current state of the art. Appendix B-6 then
uses the information to conclude with a summary of the relevant sensors that are considered
in this research, their utility, and their applications. It should be noted that the scope
of the thesis work is beyond the implementation of the methods described in this section.
Nevertheless, a study into the state-of-the-art is useful in order to aid with determining the
feasibility of the methods for relative localization and collision avoidance.

B-1 Inertial Measurement Unit (IMU)

The IMU as treated in this report consists of two sub-units: a 3-axis accelerometer and a
3-axis gyroscope.
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3-axis accelerometer The accelerometer measures the accelerations in the body frame of
reference FB.
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In Eq. B-1: ~βa indicates the bias and ~ηa ∈ N (0, ~σa) indicates zero-mean Gaussian noise with
standard deviation ~σa. The accelerometer also includes the effects of gravitational acceleration
g within its measurement.

3-axis gyroscope The gyroscope measures the rotations along the axis of the body-frame
FB, thus providing direct measurements for p, q, and r.
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In Eq. B-2: ~βg is the bias, and ~ηg ∈ N (0, ~σg) is a zero-mean Gaussian noise.

Extraction of position, velocity, and attitude Both the accelerometer and the gyroscope
can be assumed to have a constant (or slow varying) bias term, and the noise is zero-mean
Guassian, such that ηa ∈ N (0, σa) and ηg ∈ N (0, σg) (Beard, 2007) (Mahony, Kumar, &
Corke, 2012). Bias increase becomes significant when the outputs are integrated due to the
unpredictable accumulation errors in order to infer velocity, position, or attitude. This can
be corrected for by fusing IMU measurements with measurements from other sensors (such
as those from a magnetometer, GPS, or vision). However, a notable achievement for attitude
and velocity estimation using only IMU measurements is found in the work by Leishman et al.
(Leishman et al., 2014), building upon the same author’s work from (Macdonald, Leishman,
Beard, & McLain, 2014). The research concluded that accurate attitude and velocity esti-
mates in the xB and yB axis can be performed using IMU-only measurements if the raw data
is Kalman filtered using an accurate non-linear model. The model is similar to the Newton-
Euler model from Eq. A-5 to A-6, but with the added inclusion of a term modeling the drag
effects on planar velocity (otherwise generally considered negligible over other forces). Both
papers condemn the lack of physically accurate IMU based attitude and velocity estimates on
the fact that previous works have abstained from including drag forces within their model.
Albeit this choice is generally justified by its negligible size for multi-rotor MAVs, their re-
search shows notable improvements in the velocity and attitude estimates. This approach is
also shared by Abeywardena, Kodagoda, Dissanayake, and Munasinghe in (Abeywardena et
al., 2013).

B-2 Magnetometer

A magnetometer reads the total Earth magnetic field B in the body frame of reference FB, as
in Eq. B-3, where: ~BB and ~BE are the magnetic fields in the frames FB and FE respectively,
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RBE is the relevant rotation matrix from FE to FB (see Eq. A-1), ~βm is the disturbance
vector, and ~ηm ∈ N (0, σm) is the noise vector.

~BB = RBE ~BE + ~βm + ~ηm (B-3)

The yaw angle with respect to magnetic North can then be estimated with Eq. B-6, which is
corrected for roll φ and pitch θ using Eq. B-4 (No, Cho, & Kee, 2015).

~BE = REB(φ, θ, 0) ~BB (B-4)

ψ = arctan

(
BEy
BEx

)
+D (B-5)

(B-6)

Bx, By, andBz are illustrated in Figure B-1. D is the declination angle of the Earth’s magnetic
field (this is a fixed value depending on the geographic location, but can be neglected if the
yaw angle is used merely for comparative purposes).

Magnetometers usually feature low noise but are subject to magnetic disturbances. Partic-
ularly when used indoors, due to the magnetic anomalies that are bound to be present in
the environment, they can often be subject to low accuracy at higher-frequencies as seen in
(Sharp & Yu, 2014). The effect of such anomalies is depicted in Figure B-1 (Afzal, Renaudin,
& Lachapelle, 2011). Magnetometer behavior opposes the general trend that is observed
in gyroscopes, which instead feature “good short-term accuracy, but due to instrumentation
offsets, the integrated output will become progressively inaccurate over time” (Sharp & Yu,
2014). The implication is that magnetometers provide good information at low frequencies,
whereas data from the gyroscopes is useful in the higher frequencies. Therefore, one solu-
tion to the issue is to adopt a complementary filter as outlined by Pascoal, Kaminer, and
Oliveira (Pascoal et al., 2000), of which the state-space formulation is given in Eq. B-7. This
filter blends the yaw-rate measurements from a rate gyro (rm) with the yaw measured from
a magnetometer compass (ψm) to output an estimate ψ̂. k1 and k2 are the filter gains, and
rd represents the gyroscope bias in r that is rejected by the system.
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1 0
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(B-7)

B-3 Pressure sensors

The pressure sensor measures the static pressure force P , modeled by Eq. B-8, where ρ is the
density of the air and h is the altitude with respect to the ground (Beard, 2007). βp is the
bias and ηp is a zero-mean Gaussian noise, i.e. ηp ∈ N (0, σp).
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Figure B-1: Depiction of magnetometer error when estimating a magnetic field due to anomalies
in the environment (Afzal et al., 2011). Vectors Bx, By, and Bz represent the magnetic field
strength in a NED body frame FB , perturbed respectively by errors εBx, εBy, and εBz. The
result is a perturbation of the output to ψ′ as opposed to the true value ψ.

P (h)measured = ρgh+ βp + ηp (B-8)

βp is constant and can be neglected if the sensor is calibrated with respect to a point zE,C
(e.g. the ground), leading to:

P (∆zE) = P (h)measured − P (zE0) = ρg∆zE + ηp. (B-9)

Pressure sensors on quad-rotor MAVs can return significant noise at both high and at low
frequencies due to wind-gusts, potential air-pockets, and disturbance from the airflow during
flight. A common technique to solving the noise-issue is by performing averaging of the signal
in real-time (moving-average) (Sabatini & Genovese, 2013) (Shilov, 2014). In (Shilov, 2014),
featuring a Bosch BMP085 barometer on a small MAV, the height measurement reached an
accuracy of ±80cm.

B-4 Global Positioning System (GPS)

When available (i.e. outdoors), GPS is an invaluable resource for providing absolute position-
ing estimates. Furthermore, GPS is capable of providing velocity estimates (via differentiating
the position observations) as well as heading information. These can be useful as raw mea-
surements as well as to help estimate other states, such as in (Gebre-Egziabher & Elkaim,
2008), where Gebre-Egziabher and Elkaim develop an attitude determination algorithm by re-
lying on GPS to provide velocity estimates. However, this thesis aims to operate in an indoor
environment where GPS is unavailable. This sensor will hence not be considered further.
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B-5 Vision

A monocular (single) or stereo (dual) camera can be used for several purposes including:
navigation (Scaramuzza et al., 2014) (Kendoul, Nonami, Fantoni, & Lozano, 2009), state-
estimation (De Croon, De Wagter, Remes, & Ruijsink, 2012) (Kendoul, Nonami, et al., 2009),
and obstacle recognition (De Croon et al., 2013) (Corke, 2011). The constraints of this sensor
are both hardware-dependent (e.g. image size in pixels, image sharpness, frame-rate), and
software-dependent based on the characteristic of the vision processing algorithm. A digital
image can be represented as a grid of W ×H = N pixels. Where a point in the image is given
by a co-ordinate uim, vim, and by convention (uim, vim) = (0, 0) is the top left corner 1. The
image can be stored in gray-scale or color, albeit for the purposes of edge and point feature
detection color is not found to greatly increase the performance despite the high impact on
memory and processing load. A strong reliance on color can even be problematic if there is
a lighting change between pictures (Corke, 2011).

B-5-1 Feature detection and matching

Two basic primary features can be extracted from an image: line features and point features.
Line features are determined from peaks in an edge image. An edge image is a filtered
image where only edges (areas of significant shading change which can be detected by a
dedicated kernel 2 ) are visible. Lines can be represented by the pair (ρim, θim) with Eq. B-
10, where: θim is the clockwise angle with the horizontal, and ρim is the closest distance from
(uim, vim) = (0, 0) to the line (i.e. the length of the normal from the line to the diagonal of
the picture, assuming the picture is squared).

vim = −uim tan(θim) +
ρim

cos(θim)
(B-10)

Point features are recognizable by their high image gradient in multiple direction (indicating
intersecting lines) around a window. A point feature, or corner, needs to be sufficiently
different from nearby pixels in order to be consistently recognizable. Table B-1 provides a
few common corner strength detectors.

Point features may not fare well with scaling; the same feature will appear more prominent
and detailed as it gets closer and thus may not be recognized as being the same. Two popular
methods for feature recognition that are invariant to scaling, orientation, and lighting are
Scale-Invariant Feature Transform (SIFT) by Lowe (Lowe, 1999) and Speeded Up Robust
Feature (SURF) by Bay, Ess, Tuytelaars, and Van Gool (Bay et al., 2008). In both instances,
features are detected as the maxima that emerges over several Guassian kernel convolutions
on an image. SIFT looks at the differences within the sequence, whereas SURF looks at the
Hessian of the Gaussian within the sequence. The scale of the feature is based on the cumu-
lative standard deviation within the Guassian sequence where a maxima is still detectable.
The feature orientation is taken by extracting the dominant direction of the gradient.

1The rest of this report shall make use of this convention when relevant.
2A kernel is a matrix that is convolved with the original picture in order to alter it. A popular edge

detection kernel matrix is the Laplacian of Gaussian (LoG), also known as “mexican hat” due to the shape of
its function if plotted in 3D (Corke, 2011) (Lowe, 1987).
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B-5-2 Visual Odometry

Visual odometry refers to the use of vision to infer the odometry of a moving vehicle. This is
based on the extracted camera rotation and translation between two different camera views
of a set of matching features (underlining the need for good feature description).

Assume a point feature ~pim1 = (uim1 , vim1 , 1) (the third member is due to the use of homo-
geneous coordinates) in one figure and ~pim2 = (uim2 , vim2 , 1) in another. The relationship
between the two is given by the epipolar constraint (Eq. B-11), where F21 is the fundamental
matrix relating the two points. F21 is a function of the camera parameter matrix Kcam, the
rotation from camera 2 to camera 1 R21, and the translation from camera 2 to camera 1 ~t21.

~pTim2
F21~pim1 = 0 (B-11)

F21 = f(Kcam,R21, ~t21)

An alternative epipolar constraint is expressed using the essential matrix E21 as in Eq. B-12.
E21 does not have to be related to the camera parameters because ~xim is equal to the point
feature is ~pim but already adjusted to the focal length of the camera(s).

~xTim2
E21~xim1 = 0 (B-12)

E21 = f(R21, ~t21)

A popular method for model generation via feature pair matching is RANdom SAmpling and
Consensus (RANSAC). This method uses a set of randomly selected matching point features
to extract the relative pose of one camera view with respect to the other, and then follows
to test the model on all other matching pairs in order to establish its validity. The process is
iterated multiple times and the model with the highest overall mark is taken. The fundamental
matrix has 8 DOF and thus needs 8 matching pairs to produce a model (Corke, 2011) for
the camera rotation/translation between two figures (note that RANSAC needs more feature
pairs in order to then test the model’s accuracy). The essential matrix, which is independent
of camera based parameters, features 5 DOF (Corke, 2011) (Troiani, Martinelli, Laugier, &
Scaramuzza, 2013), and thus only needs 5 matching feature pairs. Under the assumption of
planar flight and with the aid of a gyroscope to provide the angular rates of motion, Troiani
et al. (Troiani et al., 2013) have managed to determine that 1 point is sufficient for motion
tracking using the essential matrix. Martinelli (Martinelli, 2011) provides a more general
solution for a body moving in 6DOF, but then needing to track a feature over 4 intervals.

If assuming that features are located on a plane, then it is possible to estimate its relative
model, described by H, using planar homography as in Eq. B-13.

~pim2 = H~pim1 (B-13)

Once again, RANSAC can be used to extract and test a model over all the features. Note
that only the predominant plane is found. Less dominant planes can be found subsequently
by removing the points that are already attributed to another plane.
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B-5-3 Attitude estimation

It is possible to estimate the attitude with respect to a plane by analyzing the features assumed
to be on a plane using planar homography (Corke, 2011) or by feature tracking with IMU
fusion (Martinelli, 2011). If flying outdoors, pitch and/or roll can also be estimated based on
the horizon line. De Croon, De Wagter, et al. (De Croon, De Wagter, et al., 2012) do this by
using a supervised learning algorithm (linear perceptrons) to establish the boundary between
sky and non-sky pixels, showing how the process can be further reduced by the use of passive
sub-sampling without significant losses. For absolute state estimation using only a visual
sensor, the algorithm needs certain knowledge on the expected properties of the environment
to look for (such as the existence and purpose of a horizon line, or the existance and purpose
of a floor/wall). In indoor environments, these properties are in nature more unpredictable
and difficult to define.

B-5-4 Optical Flow

An alternative to visual odometry is Optical Flow (OF). OF, unlike visual odometry, is not
concerned with the tracking of relative position or velocity as absolute real-world quantities,
but only with the relative flow of features along an image. Therefore, unlike the previously
described works, there is no reliance on the programmed knowledge of features of the envi-
ronment (such as object shapes, horizon lines, etc.). The core of the algorithm is bio-inspired
from flying insects (Kendoul, Nonami, et al., 2009) and has been proven sufficient for nav-
igation and more complex operations such as slope estimation in landing (De Croon et al.,
2013) or obstacle detection (De Croon, De Weerdt, De Wagter, Remes, & Ruijsink, 2012)
(the latter is explored in more detail in Appendix H). By fusing OF measurements with IMU
measurements, Kendoul, Nonami, et al. (Kendoul, Nonami, et al., 2009) (Kendoul, Fantoni,
& Nonami, 2009) have shown how OF can also be an effective tool for navigation. Both im-
plementations feature bottom-facing cameras that extract motion data, which is then filtered
with rotation measurements (using the gyroscope and accelerometer input from the IMU) in
order to extract an estimate of motion with respect to certain tracked targets. When filtering
the measurements together, the acceleration of the IMU can be related to the acceleration
of the tracked targets in order to extract height from the ground. This then makes it possi-
ble to extract real-world velocity and (relative) position. Note that camera parameters (i.e.
focal length) also need to be known. An implementation difference between the methods is
that (Kendoul, Nonami, et al., 2009) estimates height above ground using a Recursive Least
Squares (RLS) method, whereas (Kendoul, Fantoni, & Nonami, 2009) filters the data through
an Extended Kalman Filter (EKF). Another notable difference between the two implemen-
tations is that (Kendoul, Nonami, et al., 2009) uses feature tracking within a small window
of features starting from the center of the image, whereas (Kendoul, Fantoni, & Nonami,
2009) tracks optical flow using a block-matching algorithm. The implementation reach reli-
able results with maximum errors of ≈ 1m for altitude hold mode. The results in either case
are comparable to GPS for horizontal navigation and more accurate than GPS for vertical
navigation.
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B-6 Conclusion on obtainable odometry data

It has been determined that the on-board sensors can be capable of providing the states
described in the chapter introduction. The conclusions drawn from this chapter, with an eye
towards data sharing between MAVs for the purpose of localization and collision avoidance,
are listed below.

• An estimate for the velocity in the body frame can be achieved by using the on-board
IMU (with potential fusion of other measurements). Using IMU only reading (Leishman
et al., 2014) have reached Root Mean Squared Error (RMSE) of 0.67 m/s. This can be
further improved by inclusion of more sensors within a filter, and by combining an IMU
with the vision.
• Roll and pitch attitude estimation is possible using IMU, vision, or other sensors. This

information is also considered necessary for the sake of stable flight. Leishman et al.
have reached RMSE of 2.23◦ for pitch and roll (Leishman et al., 2014) using only an
IMU. Additionally, vision can help avoid potential issues related to drift.
• Height from the ground can be directly measured with the pressure sensor. However,

as each sensor is subject to a different bias, calibration with respect to the same point
for all MAVs needs to be performed if height data is to be shared between different
members of a swarm. This sensor is less precise, providing errors between 0.8m up to
1m.
• Magnetometers can provide a measurement of heading that can be common to multiple

MAVs. Issues arise due to disturbances, as two magnetometers may experience different
disturbance due to the environment. Even if disturbances are not filtered out correctly
as in Eq. B-7, it is possible to make the assumption that if the magnetometers are
sufficiently close to each-other, then they should be subject to similar disturbances and
thus their measurements should be comparable. Via complementing a gyroscope with
a magnetometer, albeit not for MAV flight, Sharp and Yu reached a zero-mean error
with a standard deviation of ≈ 2◦.
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Table B-1: Summary of three corner strength detectors (Corke, 2011). A is the structure tensor
matrix of a Guassian weight gradient map of the image. λ1 and λ2 are the eigenvalues of A.
tr(A) = λ1 + λ2. detA = λ1λ2. k is an arbitrary tuning factor.

Shi-Tomasi detector CST (uim, vim) = min(λ1, λ2)

Harris detector CH(uim, vim) = det A− ktr(A)2

Noble detector CN (uim, vim) = detA
tr(A)
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Appendix C

Literature Review on Signal-based
Methods for Relative Range/Bearing

Measurements

The first category of methods to obtain raw measurements of either relative range or relative
bearing between MAVs is that of signal-based methods. This encloses all methods that rely
on the transmission of a signal of any kind between the MAVs. These methods fall into the
three types below.

• Time-based, which are extract the range between two antennas from a time measurement
between two events (see Appendix C-1);
• Angle of Arrival (AOA), in which a receiver must infer the bearing of a transmitter (see

Appendix C-2);
• Received Signal Strength (RSS), in which the signal strength (which diminishes over dis-

tance) is used to infer the range between a transmitter and a receiver (see Appendix C-3).

C-1 Range and localization from time-based methods

The basic time-based method is Time of Arrival (TOA), which measures the time it takes for
a signal to travel from a transmitter to a receiver, from which the receiver can extract the
range (Vossiek, Wiebking, Gulden, Weighardt, & Hoffmann, 2003; Youssef, 2008). At short
distances, state-of-the-art methods rely on sound coupled with radio signals. The radio signal
acts as a trigger and is received almost instantaneously whereas the audio signal, traveling at
a lower speed, arrives with a certain delay (Spears et al., 2007) which is proportional to the
distance.

TOA has also been extended to the following methods in order to circumvent the need to
send an initial trigger signal:
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• Round-trip Time of Arrival (RTOA). In this method, a device measures the time it takes
for a signal to travel to a receiver and back in order to establish the range to it (Vossiek
et al., 2003). This eliminates the need to send an initial radio signal. For accuracy at
short distance, it is crucial that the initiating device also takes proper account of the
processing time of the other device.
• Time Difference of Arrival (TDOA). A transmitter emits a signal, which is then re-

ceived by at least three antennas in known locations (Youssef, 2008; Fischer, Dietrich,
& Winkler, 2004). The receiving antennas use the difference between their different
arrival times, from which trilateration can be performed to extract the location of the
transmitter.

Notable uses of time-based methods in robotics are found in (Spears et al., 2007) and (Perkins
et al., 2011), both using a speaker with a round reflector to allow the sound to propagate
omni-directionally. It is crucial that the signal travels as omni-directionally as possible such
that range can be measured accurately from all relative bearings (Spears et al., 2007). For
MAVs, however, this is difficult to achieve due to the need for a reflector that reflects the
signal omni-directionally in a 3D environment, and this inclusion may lead to a significant
mass and size penalty.

It should be noted that when used in small indoor environments, signals may be reflected from
any surfaces such as the ground, the walls, or the ceiling. When this happens, the receiver
will receive multiple instances of the same signal at different times, causing an ambiguity.
Other sounds in the environment may also be incorrectly interpreted (Perkins et al., 2011)
(other sources may also be signals from other MAVs).

Due to the basic practical issues regarding receiver/transmitter size and mass (which would
have to be added to the Lisa-S Ladybird MAV), and due to the implementation issues re-
garding confounding factors in indoor environments, time-based methods are not considered
further in this work.

C-2 Bearing detection from a signal’s angle of arrival

AOA is any method that relies on attempting to directly infer the relative bearing of a
transmitter with respect to a receiver. AOA requires directional antennas (Vossiek et al.,
2003), or a dedicated receiver that is capable of triangulating the position of the source
(Basiri, Schill, Floreano, & Lima, 2014) (Xu, Ma, & Law, 2015).

State-of-the-art methods for robots and MAVs rely on the use of an array of microphones.
The time delay between their individual reception of a sound signal allows for the estimation
of the bearing of the source. This system has been already implemented on ground robots
(Spears et al., 2007) and MAVs (Basiri, 2015; Basiri et al., 2014), achieving interesting results.

Audio-based microphone arrays like the one used by (Basiri et al., 2014) are sufficiently light
to fall within the design driver of size and weight minimization. However, their use has only
been proven at long range distances and in outdoors environments. Indoor performance has
only been tested with a static observer tracking engine sounds from speakers in a room, but
one may expect that an indoor environment may cause reflections that act as confounding
signals. Furthermore, a significant deterrent for localization accuracy is the noise emitted
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from the propellers of the MAV itself. This has also been admitted by (Basiri et al., 2014),
who was forced to temporarily turn-off engines during flight-tests in order to improve the
quality of an estimate. This may be a possibility for fixed-winged MAVs but it is not for a
quad-rotor.

These expected complications, combined with the need to include a microphone array and
a speaker to a system which would otherwise benefit from any possible mass-reduction, are
significant deterrents for angle-of-arrival based localization in indoor environments.

Speaker/microphone combinations are not the only option found in literature for AOA lo-
calization. Roberts, Stirling, Zufferey, and Floreano use a laser-scanner ball with several
emitters and receivers in order to determine the angle of the oncoming signal (Roberts et
al., 2012). Their custom-made sensor has a mass of 245.2 g, a diameter of 22 cm, and is
estimated to consume 10 W of power, which is needed to ensure a sufficient number of IR
sensors to span all horizontal and vertical bearings with a maximum error of 4.3◦. This mass
is more than 5 times higher than the whole Lisa-S Ladybird drone. A weight reduction in the
order of magnitude of 100 times would be needed before a similar sensor could be considered
acceptable.

C-3 Received Signal Strength

The power of electromagnetic waves decreases over distance, and it is then possible to calculate
the distance between a receiver and a transmitter based on the signal strength difference 1.
This can be done when two antennas are communicating using signals such as Wi-Fi or
Bluetooth, from which an indication of RSS can be extracted over a communication. Like
other signals, the measured strength will also be affected by reflection in the environment, but
as (unlike methods above, including AOA) it does not depend on time, the reflection cannot
cause a confound; it is interpreted as noise.

Communication between the MAVs is allowed according to the constraints of this project.
This is not an unlikely scenario in a swarm that must co-operate. It means that a signal,
not intended for localization, may already be traveling between the MAVs. Therefore, unlike
all other previous methods discussed, RSS does not require an additional sensor to be placed
on-board (Lisa-S Ladybird drones are already equipped with a Bluetooth module for ground
communication).

For localization tasks within a closed environment, there are two general methods to ex-
tract distance from RSS: finger-printing and model-based. Finger-printing relies on a pre-
established map (or finger-print) of the RSS distribution in an environment in order to infer
a location (provided multiple beacons are present to perform trilateration). Finger-printing
circumvents the need to model the effect of potential disturbances on the signal propagation
by merely including such disturbances in a map, assumed static. This approach is usually
used for indoor localization using static beacons (Dahlgren & Mahmood, 2014), but it has
also been used for swarm MAV flight. Benjamin, Erinc, and Carpin (Benjamin et al., 2015),
for instance, used GPS enabled drones to construct a Wi-Fi RSS map that can then be used
by several other drones that are not GPS enabled to fly around an inhabited area.

1A transmitter, in this context, may also be referred to as Access Point (AP).
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The requirements of this thesis explicitly deny the possibility of placing beacons in an envi-
ronment a-priori, as this would not allow the system to operate in an unknown environment.
This means that the beacons must be the MAVs themselves, but these are non-static and ren-
der finger-printing impractical and non-versatile. The viable alternative to finger-printing is
to rely on a model of the signal propagation around a source in order to estimate the distance
of a transmitter based on the received RSS, this is known as a model-based method.
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Literature Review on Relative
Localization Methods

D-1 Relative Localization Framework

A relative pose measurement is one that provides raw data related to one or more of the
following: relative position between robots, and relative attitude between robots. The
definition of the physical quantities to be measured requires a formal outlining of the relative
localization framework. This is based on the general ego-centric framework inspired by
Howard, Matarić, and Sukhatme (Howard et al., 2003), and it formalizes the parameters
needed to fully describe the pose between two robots.

Consider two MAVs Ri and Rj with body frames FBi and FBj , respectively. Under this
framework, the full relative pose of Rj with respect to Ri can be defined as

~Pji =
[
xji yji zji φji θji ψji

]
,

where xji, yji, and zji are the position of Rj in FBi . φji, θji, and ψji are the roll, pitch, and
yaw of FBj with respect to FBi .
The vector can also be expressed in spherical coordinates as

~Pjisph =
[
rji βji αji φji θji ψji

]
,

where: rji is the absolute range between the origins of FBi and FBj , βji is the horizontal
bearing of the origin of FBj with respect to FBi , and αji is the vertical bearing of the origin
of FBj with respect to FBi .
If φji and θji are dropped under the assumption that the quad-rotors maintain an attitude that
is approximately planar, then the framework may be simplified using cylindrical coordinates
as
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~Pjicld =
[
rji βji hji ψji

]
,

where hji is the relative height between the MAVs.

The framework allows to specify a relative pose estimate as one that has all following physical
quantities: a) relative range, b) relative horizontal/vertical bearing, c) relative height, and
d) relative orientation (yaw).

D-2 Fusion of on-board measurements with environment measure-
ments

The benefits of sensor fusion have already been partially explored in Appendix C, where it
described how a gyroscope and magnetometer data are fused to provide a better heading
estimate, or when vision is fused with the IMU to differentiate between optical flow due to
rotation or due to translation. When using Received Signal Strength Indication (RSSI) as a
measure for range, estimates may be poor and subject to unexpected bias and noise depending
on the environment, particularly at larger distances. Sensor fusion between relative ranging
and relative motion data has been shown to highly increase the estimates that can be provided
by these measurements.

Malyavej, Kumkeaw, and Aorpimai (Malyavej et al., 2013) combine IMU and Wireless Local
Area Network (WLAN) RSSI measurements using an EKF. With a simple system model
(kinematic state equations including only position and velocity) they were able to remove the
drift bias from IMU measurements of velocity and position, and ensure position estimates
within an error of 1 meter. The on-board IMU measurements were fused with RSS levels
from 4 static Wi-Fi APs with known relative positions. Albeit performed in a controlled
environment and with multiple static nodes, these kind of results put confidence on the po-
tential improvement of relative localization estimates when combined with on-board odometry
measurements.

Similar efforts and results are presented by Rodas, Escudero, Iglesia, et al. in (Rodas et
al., 2008), this time using Bluetooth as the Wireless Sensor Network (WSN) of choice. The
authors rely on inquiry based RSSI rather than connection based RSSI in order to avoid
establishing a paired connection between the devices, which further provides a relevant study
on the effect of receiving asynchronous responses. They show that inquiry-only results may be
sufficient for low range localization even with long inquiry periods. In simulation, they show
the effectiveness of IMU and RSSI fusion over the use of tri-lateration with RSSI, reaching
errors below the 1 meter mark in position. The errors only increase when the body accelerates,
since the model used by the Particle Filter (PF) does not account for acceleration of an object
and needs time to re-converge.

A similar set-up is employed by Subhan, Hasbullah, and Ashraf (Subhan et al., 2013). Their
algorithm also uses an EKF based on a kinematic model of an object moving with a fixed
velocity in order to smoothen out the Bluetooth RSSI data. Subhan et al. does not include
IMU measurements but merely uses the filter to fuse measurements from several beacons.
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Pathirana, Ekanayake, and Savkin (Pathirana et al., 2011) also uses a similar approach in
order to fuse beacon measurements without IMU.

Raju, Oliveira, and Agrawal (Raju et al., 2012) further observed the benefits of combining
RSSI readings with Link Quality Indicator (LQI) as a filter to improve the estimates.

D-2-1 Relative pose measurements and observability

When fusing measurements, un-measured parameters may become observable. This section
discusses the contribution that each direct measurement (distance, bearing, orientation, and
height) can provide to the observability of the other quantities.

Observability impact of range, bearing and orientation Martinelli and Siegwart (Martinelli
& Siegwart, 2005) provides theoretical ground for a discussion on observability perform a Lie
observability analysis. A team of two robots is studied in order to compare what bearing-only,
range-only, or orientation-only measurements can bring to the observability of the system. It
is determined that, fused with odometry measurements, bearing-only and range-only mea-
surements are sufficient to achieve a rank of 3 (i.e. full relative observability) if fused with the
odometry measurements. Orientation-only measurements feature a rank of 1 independently
of odometry, implying that no state except the relative orientation itself can be observed.
Bearing is deemed to provide more valuable information than range, as it is capable of reach-
ing a rank of 3 even when odometry information of both vehicles is not available. The work
in (Martinelli & Siegwart, 2005) is complemented by (Martinelli, Pont, & Siegwart, 2005),
which is an empirical study (performed in simulation) of the same concept. The superiority of
bearing-only measurements over range-only measurements is confirmed. This measurement
is capable of maintaining a near-zero error throughout the maneuvers (as opposed to range,
for which the location error is seen to diverge slowly). Finally, Sharma, Beard, Taylor, and
Quebe in (Sharma et al., 2012) extend the work by Martinelli and Siegwart by analyzing
the effect provided by a bearing-only measurement, fused with odometry, in a system of N
robots. It is shown that the rank of the global system, for which the state vector features 3N
states, is 3(N − 1). As expected, full rank of 3N is only achievable if static land-marks are
also measured.

Degenerate motions with range-only measurements Range measurements have been seen
to feature observability issues in two degenerate motions discussed below. For the discussion,
consider, for simplicity, the relative localization between two robots Ri and Rj .

• Flip ambiguity. This is an issue that emerges when both robots follow a perfectly
straight and mirroring trajectory. It is then impossible, using range-only measure-
ments, to establish on which side of Rj is with respect to Rj (Cornejo & Nagpal, 2015)
(Zhou, Roumeliotis, et al., 2008). This ambiguity can be resolved by measuring relative
orientation and velocity.
• Rotation ambiguity. When Rj perfectly matches the motion of Ri, relative bearing is

no longer observable via range-only measurements, as these are constant and provide
no useful information. This degenerate motion is unlikely for randomly moving entities
(Cornejo & Nagpal, 2015).
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Degenerate motions with bearing-only measurements Bearing measurements between two
robots allow observability of range only in the case that relative bearing changes over time,
which does not happen if two robots are moving along straight and parallel trajectories (with
no change in relative orientation either, if measured). It is then not possible to observe the
range by only measuring bearing (Mariottini et al., 2009). This issue can be referred to as
range ambiguity.

Propagation of uncertainty in multi-robot teams Localization can also feature beneficial
effects to the overall quality of the estimate as the number of members increases. In fact,
the uncertainty in the final estimate is inversely proportional to the number of agents and
proportional to the uncertainty of the own-state and relative pose measurements (Roumeliotis
& Rekleitis, 2004) (Sharma & Taylor, 2008). Furthermore, the rate of increase of uncertainty
over time does not depend on the uncertainty of the relative pose measurements, but only
on that of the uncertainty in the measurement of the own states (Roumeliotis & Rekleitis,
2004). Note that this conclusion is only valid when assuming the case that all robots have
access to all other’s odometry and pose estimates, and that all relative pose measurements
between robots feature the same uncertainty.

D-3 The initial state estimate

An EKF‘s stability is dependent on the initial state provided (Antonelli, Arrichiello, Chi-
averini, & Sukhatme, 2010). If it is insufficiently similar to the actual state, then this could
cause the EKF to diverge, which is undesired. It is therefore useful to look into methods
to estimate the initial state between the two vectors in order to mitigate the chances of this
failure mode. For a 2D multi-robot system, Zhou et al. (Zhou et al., 2008) has proven that 5
range measurements (coupled with odometry) are sufficient to provide an analytical solution
for the initial relative pose (relative range, bearing, orientation) between two robots (provided
that a degenerate motion as described in Appendix D-2-1 is not taking place). This work has
been extended to 6DOF robots operating in 3D in the works (Trawny, Zhou, & Roumeliotis,
2009) and (Zhou, Roumeliotis, et al., 2013), where an analysis for different combinations of
measurements of bearing and range over time is also included. It is mathematically shown
that no unique solution can exists; featuring at least 2 for a bearing-only measurements sce-
nario, and 40 for a range-only measurements scenario. This problem, which is left untreated
in (Zhou et al., 2013) and (Trawny et al., 2009), can be circumvented in this research by
allowing the two agents to communicate their attitude with respect to an inertial frame of
reference. In this case, both MAVs would have to communicate pitch, roll, and yaw angle to
each other.

D-4 Advanced filtering techniques

When models are incorrect and do not match the general trend observed in the measurements,
model-based filters can diverge as a result of trying to comply with a faulty/different model.
This is the general reason as to why process noise is generally included in filters: to account
for the inaccuracies that the model may have over the real system (Malyavej et al., 2013).
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A series of extensions have been found that can be added to a filter in order to improve its
performance and robustness.

D-4-1 Adaptive filters

To avoid divergence with an adaptive method, J. Sasiadek and Hartana (J. Sasiadek & Har-
tana, 2000) (J. Z. Sasiadek, 2002) suggest the use of weighted noise covariance, which auto-
matically gives higher importance to more recent measurements and releases the filter from
the effect of older data. This method, known as exponentially weighted EKF, is implemented
by updating the process noise covariance matrix R, the measurement noise covariance matrix
Q, and the update covariance matrix P as below, with the weighing parameter αw ≥ 1 (note
that αw = 1 for standard EKF).

Rk = Rα−2(k+1)
w (D-1)

Qk = Qα−2(k+1)
w

Pα−
k = P−kα

2k
w

As opposed to selecting an arbitrary αw, J. Sasiadek and Hartana include a two-input
single-output Mamdani fuzzy model to re-evaluate αw on every iteration. The two inputs
are the covariance of the residuals and the mean value of the residuals, and the output is αw.
By using a 3 level semantics of “Zero”, “Small”, and “Large” for both the inputs and the
outputs, the Mamdani fuzzy system can be created with only 9 rules represented in a 3 × 3
table. This augmented EKF is found to be more robust and create smoother estimates than
its regular counterpart, and is also more suitable for non-Guassian noise (J. Z. Sasiadek, 2002).

Assa and Janabi-Sharifi (Assa & Janabi-Sharifi, 2015) propose an Iterative Adaptive EKF
(IAEKF): a combination of an iterative scheme based on numerical iteration to improve
upon the linearization step of EKF, and a recursive adaptation step whereby the process
and measurement noise covariance matrices are updated at each step based on the observed
differences between the predicted state/original state and the predicted measurement/real
measurement over a past horizon of N steps. Albeit the IAEKF seems to come at the cost
of increased computation time (experimentally observed between 5 to up to 25 times slower,
primarily as a result of the iteration procedure), this algorithm benefits from being more
robust to erroneous estimates of the covariance noise matrices and initial state.

D-4-2 Reaching a Consensus

When dealing with a distributed system, a robot Ri could either determine the state using its
own relative measurements of robot Rj , or it could combine its own relative measurements
with the reciprocal measurements that robot Rj is making of Ri such that they can both
reach a final consensus state. Within a fusion filter, it is possible to use knowledge about
the inherent measurement uncertainty in order to optimize this decision. This is done in
the Kalman Consensus Filter (KCF) described by Olfati-Saber in (Olfati-Saber, 2009). The
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consensus compares the states achieved by the different entities via a consensus gain, similar
to a weighted average which is added to the estimate obtained by using the information form
of the Kalman Filter (KF), also known as information filter. The consensus gain is a function
of the update covariance matrix in a the KF.
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Path-planning can take two general forms (Fajen & Warren, 2003):

• global planning, in which an agent resolves a path based on global knowledge of an
environment and its evolution over time, and
• reactive planning, where the agent selects actions based only on the current situational

knowledge.

The context of obstacle avoidance in an unknown environment lends itself to a reactive plan-
ning algorithm, where the intent is to temporarily alter a previously planned trajectory in
order to avoid an obstacle. Once the obstacle is avoided, the MAV can return to focus fully on
its original goal. Reactive planning is suited to the bottom-up approach to swarm robotics,
where the behavior of the system emerges from the individual/independent behavior of all
MAVs (Crespi, Galstyan, & Lerman, 2008).

The avoidance reaction can be designed with respect to one or more objectives, such as: avoid-
ing the obstacle within a certain safety margin, minimizing the on-board acceleration efforts
during obstacle avoidance, minimizing the change with respect to the original path, minimiz-
ing the avoidance execution time (e.g. via an aggressive maneuver). Certain objectives can be
seen to be mutually exclusive. There is thus a need for an analysis to determine the desired
objectives, and an attempt to gain high-level insights is made by exploring literature related
to the human psychology behind obstacle avoidance in Appendix E-1. Appendix E-2 then
looks at the aerodynamic issues that may manifest themselves when multiple quad-rotors
fly close to each-other. Appendix E-3 explores state of the art practical implementations of
obstacle avoidance methods for MAVs and robots. Appendix E-4 explores methods dedicated
to directly deal with the uncertainty of a localization estimate.
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E-1 Human-driven objectives: the psychology behind obstacle
avoidance

Ecological psychology is a branch of psychology dedicated to the understanding of the inter-
actions between an agent and its environment. The underlying principle is that the agent
is presented with stimuli, which in turn create opportunities to act (or affordances), which
can be pursued or not by the agent. Affordances arise and fade as a function of time and of
the location of the agent with respect to the environment, and are continuously reassessed by
the agent (Araujo, Davids, & Hristovski, 2006). One can see that ecological psychology lends
itself to reactive schemes due to its dependence on their immediate surroundings.

E-1-1 Obstacle avoidance

Within the realm of ecological psychology, obstacle avoidance strategies emerge by combining
influences from two criteria (Hackney & Cinelli, 2013): 1) Geometric factors. These are
related to the observed geometry of the obstacle and own geometry. Examples of geometric
factors are: distance to the obstacle, bearing of the obstacle with respect to the egocentric
reference frame, and (relative) obstacle size. 2) Dynamic factors. These involve the relative
motion of the agent with respect to the obstacle. Examples include the (estimated) time to
impact with the obstacle and the estimated required change in pose/path to avoid it. Dynamic
factors may have repercussions on geometric factors, for example by affecting a safety distance
between the obstacle and the agent (Hackney & Cinelli, 2013). Schiff and Detwiler (Schiff
& Detwiler, 1979), for instance, determined that human subjects have a natural tendency to
under-estimate time to collision. This finding is in line with the inclusion of a safety distance
in order to account for errors in the estimation of the relative dynamics between the two
subjects. Hackney and Cinelli (Hackney & Cinelli, 2013) notes the difference in obstacle
avoidance strategies in children, young adults, and adults. Young adults are found to give
greater emphasis to geometric factors, possibly due to their greater (perceived) control over
the dynamic factors. This hints to the need for a system that is capable of balancing geometric
and dynamic factors depending on its dynamic properties/constraints.

Fajen and Warren (Fajen & Warren, 2003) put forward a 2D mathematical model for the
control laws of obstacle avoidance in humans. In line with ecological psychology, the model
describes the environment surrounding an agent as including repellers (obstacles to get away
from) and attractors (goal locations). The study postulates that the heading-rate (Ψ̇) can be
described as:

Ψ̇ = kg (Ψ−Ψg) + ko (Ψ−Ψo) e
−|Ψ−Ψo|. (E-1)

This controller ensures that a goal is always relevant unless the agent’s heading Ψ is equal to
the goal heading Ψg, whereas an obstacle becomes relevant if the agent is heading more in its
direction (where Ψo is the heading towards the obstacle). kg and ko are tunable gain param-
eters. To include the agent’s dynamic constraints, this model can be further extended into a
2nd order system with a damping term −bΨ̇, b being the damping coefficient. Furthermore,
the effect of goal distance dg, obstacle distance do, turning decay rate with goal distance c1,
acceleration scaling c2, obstacle scaling c3, and risk promptness c4 can been included. The
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model takes the final form below. It is found to be highly representative of the motion by the
human candidates (Fajen & Warren, 2003).

Ψ̈ = −bΨ̇− kg (Ψ−Ψg)
(
e−c1dg + c2

)
+ ko (Ψ−Ψo)

(
e−c3|Ψ−Ψo|

)(
e−c4dg

)
. (E-2)

E-1-2 Situation awareness

Attention and expectations may also have an impact on the obstacle avoidance decisions
if/when the agent must divert attention towards multiple obstacles simultaneously. In a
cluttered scenario (i.e. two or more obstacles), the agent should be able to keep track of more
entities. This is a situation that is also likely to occur in a team of MAVs. Ideally, the agent
would be able to observe all obstacles with equal accuracy and make an informed escape route
that optimizes a given cost function. However, when sensing capabilities are limited (e.g. not
omni-directional or featuring lower precision at larger distances), or when processing power
is limited, the agent can resolve to balancing high quality pose estimates of only a portion of
the obstacles while keeping lower quality pose estimates of other obstacles (Gugerty, 1997).

Situation awareness is defined as the current dynamic model of a given situation that an
agent holds. It can be divided into a two-level hierarchy: explicit and implicit. Explicit refers
to high quality information that is ready for use. Implicit refers to lower quality estimates
that can readily become explicit if needed. Implicit awareness often relies on internal context-
based models to keep performing short-term estimates in time-frames when measurements
are not available (Gugerty, 1997). This provides a background base for a potential bio-
inspired algorithm using multiple layers of cognition. Within the context at hand, this type
of breakdown is thought to be useful in the following scenarios:

• If using vision, due to the limited field of view, one could keep models of the movements
of MAVs based on the observed initial conditions. These are expected significantly
drift over time from reality but, provided sufficiently accurate initial conditions, can be
considered reliable in the short term in order to make choices even if the MAV is not
detectable in that time-instance. This concept may also be applied to Bluetooth in the
case that connectivity intervals are high.
• If computational constraints become an issue due to the need to track multiple entities

at once, then the computational efforts can be optimized for focus on the MAVs closer
to the agent.

E-2 Aerodynamic considerations for safe swarm operations

MAV teams performing an obstacle avoidance maneuver in 3D environments could have MAVs
fly side by side, one below/above the other, or any combination of the two. Depending on the
combination, the aerodynamic flow from one MAV can have an unexpected impact on that
of the other, which poses a set of constraints on the avoidance maneuver to be selected.

• Flying side-by-side Experimental efforts by Powers, Mellinger, Kushleyev, Koth-
mann, and Kumar, documented in (Powers et al., 2013), have shown that the aero-
dynamic influence for quad-rotor MAVs is not significant, and the disturbance on the
rotor’s path is negligible.
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• Flying one above the other Research by Michael, Mellinger, Lindsey, and Kumar in
(Michael et al., 2010) demonstrates that the effect of down-wash can be significant. In
such case, the top flying quad-rotor will cause a considerable disturbance to the bottom
one, which is undesirable. Furthermore, vertical movements could also cause one quad-
rotor to fly too close to the ground, which creates a ground effect and pushes the MAV
upwards, or fly too close to the ceiling, which creates a pulling effect towards the ceiling
(Powers et al., 2013). This implies that vertical maneuvers for collision avoidance are
undesirable to avoid unpredictable vertical interactions with both the other MAVs as
well as environment features.

Based on the two aforementioned points, it can be concluded that a horizontal maneuver,
when possible, is recommended over a vertical maneuver in order to avoid unexpected effects
(unless an appropriate controller is used that can aptly take these effects into account, but
this is beyond the scope of this research).

E-3 Obstacle avoidance in the context of robotics and MAV multi-
rotors

A popular method in robotics for obstacle avoidance when the relative position and velocity of
the robots is known is Velocity Obstacle (VO) (Fiorini & Shiller, 1998). The core idea is for a
robot to determine a set of all velocities that will lead to collisions, and then choose a velocity
outside of that set (usually the one that requires minimum change from the current). VO
has stemmed a number of variants (Reciprocal Velocity Obstacle (RVO), Hybrid Reciprocal
Velocity Obstacle (HRVO)(Snape, van den Berg, Guy, & Manocha, 2009) (Snape, van den
Berg, Guy, & Manocha, 2011), and Optimal Reciprocal Collision Avoidance (ORCA)(Van
Den Berg, Guy, Lin, & Manocha, 2011)), which are based on the same concept but further
alter the set of forbidden velocities in order to address certain issues such as reciprocity of
path smoothness. Another method considered is the Human-Like (HL). These algorithms
are deemed to be highly suited to cooperate with the localization scheme at hand because
they entirely only on relative pose and velocity. They shall be described and discussed in this
section.

In all descriptions below, consider the following case. There is a robot RA, positioned at a
point ~pA and traveling at speed ~vA, moving towards a robotRB at some point ~pB and traveling
at speed ~vB. The robots are represented as circles of radius rA and rB centered at ~pA and ~pB.
Furthermore, both wish to travel towards a final goal position, respectively ~pAgoal and ~pBgoal ,
from which preferred velocities ~vApref and ~vBpref are extracted. The preferred velocities are
the velocities that the robots would have if no obstacles were in the way towards its goal
position. The two robots are on a collision path, but in the descriptions below RA is taken
as the protagonist. The schemes are for 2D for robots moving on a plane.

Velocity Obstacle (VO) In this case, RA assumes that RB is just an obstacle that will
not change its velocity due to the collision — there is no sharing of responsibility and it is
entirely up to RA to perform an evasive maneuver. V OAB is defined as a set of all velocities
of RA that will lead to a collision with RB. The set V OAB is calculated based on the collision
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cone concept (Fiorini & Shiller, 1998). The collision cone CCAB is a cone extending from ~pA
towards ~pB, see left-most figure in Figure E-1. Then:

CCAB =
{
~vAB|λAB ∩ B̂ 6= ∅

}
(E-3)

V OAB = CCAB ⊕ ~vB (E-4)

where: ~vAB is the velocity of RA with respect to RB, λAB is a line extending from pA in the
direction of vAB, and B̂ is a disk of radius rA + rB centered around ~pB. Alternatively, as per
(Snape et al., 2011), the set can defined as

V OAB = {~v|∃t > 0 : (~v − ~vB)t ∈ D(~pB − ~pA, rA + rB)} , (E-5)

where: t is time, D(p, v) is a function for a disc centered at ~p of radius r, and ~v is an arbitrary
velocity.

The desired evasive velocity ~vAdes is then:

~vAdes = arg min
~v∈{~v≤~vAmax}∩V Oc

||~v − ~vApref || (E-6)

It can be easily imagined that if both robots RA and RB implement VO, then they will both
rely on the faulty assumption that the other robot is not going to react to the collision. This
will inevitably lead to oscillations (Snape et al., 2011).

Reciprocal Velocity Obstacle (RVO) To fix the oscillations induced by the faulty assump-
tions when multiple robots all act based on VO, both robots can make the alternate assump-
tion that the other robot will also perform an evasive action — responsibility is fully shared.
This uses the same implementation seen for VO, with the only difference that the set RV OAB
is used instead of V OAB (Guzzi, Giusti, Gambardella, Di Caro, et al., 2013). The set can be
determined as:

RV OAB = CCAB ⊕
(

1
2~vA + 1

2~vB
)

(E-7)

RVO solves the problem of reciprocity but leads to a phenomenon coined reciprocal dances,
which is an initial oscillations that takes place when both robots attempt to cross each-other
on the same side. 1

Hybrid Reciprocal Velocity Obstacle (HRVO) To solve the problem of reciprocal dances
and force the collision avoidance algorithm towards a smoother path, HRVO was introduced
in (Snape et al., 2011). As the name suggests, this is a hybrid scheme between VO and RVO.
A hybrid velocity set is made where the right side uses the RVO boundary and the left side
uses the VO boundary. If the velocity is beyond the geometric centerline of the set and into
the right side boundary, RVO will be used, otherwise VO will be the choice. When both
robots do this, it leads to an increased smooth trajectory and the reciprocal dance problem
is eliminated (Snape et al., 2009) (Snape et al., 2011).

1It is interesting to note that the concept of reciprocal dance is also observed in humans (Conroy, Bareiss,
Beall, & van den Berg, 2014).
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Optimal Reciprocal Collision Avoidance (ORCA) Here, set V OτAB is used instead of V OAB.
The sets are similar, but whereas the latter is unbounded in time, V OτAB is bounded by a
time-horizon τ :

V OτAB = {~v|∃t ∈ [0, τ ] : ~vt ∈ D(~pB − ~pA, rA + rB)} (E-8)

The required change in velocity u is taken at the boundary of the set (∂V OτAB).

~u = arg min
~v∈∂V OτAB

||~v − (~vA − ~vB)|| − (~vA − ~vB) (E-9)

Each robot is expected to make a change of 1
2~u. Note that in ORCA the desired velocity

is chosen by minimizing the change with respect to the current velocity, as opposed to the
preferred one (other options are possible but the above is the best practice as recommended by
the authors (Van Den Berg et al., 2011)). ORCA has been successfully tested on real MAVs
(Conroy et al., 2014) 2. Uncertainties and dynamic/kinematic constraints were circumvented
by increasing the radii of the MAVs, but reciprocal dances were still observed.

Human-Like (HL) The rationale behind the development of this approach was the achieve-
ment of a more human friendly/predictable for robot-obstacle avoidance between humans
(Guzzi, Giusti, Gambardella, & Di Caro, 2014). At the core of the HL algorithms there is
function fo(Ψ), which maps each heading direction Ψ 3 to the maximum distance that can
be traveled before a collision (Guzzi, Giusti, Gambardella, Theraulaz, et al., 2013). fo(Ψ) is
given an horizon H, such that fo(Ψ) ∈ [0, H] (Guzzi et al., 2014). ~co(Ψ) is then defined as
the point of collision if a given heading Ψ is pursued,

~co(Ψ) = fo(Ψ)~e(Ψ),

where ~e(Ψ) is a unit vector in direction Ψ. The desired heading Ψdes is calculated as

Ψdes = arg min
Ψ∈[0,2π]

d (s(Ψ), ~pgoal) , (E-10)

where s(Ψ) is a segment connecting ~pA to ~co(Ψ) at a given Ψ, and d(·, ·) is a function that
calculates the minimum distance between a segment and a point. Velocity is chosen as the
minimum between the preferred velocity and the velocity needed to reach fo(Ψdes within a
given time.

||~vAdes || = min

(
||~vAmax ||,

fo(Ψdes)

τ1

)
(E-11)

The final result is: ~vAdes = ||~vAdes ||~e(Ψdes). This change is implemented slowly within the

robot in order to smoothen the path in human-like fashion, i.e. d~v
dt = ~vdes−~v

τ2
. τ1 and τ2 are tun-

able time constants. Analysis of human motion suggest τ1 = τ2 = 0.5s (Guzzi, Giusti, Gam-
bardella, Theraulaz, et al., 2013). Given the findings of human obstacle avoidance described

2On a relevant note: this paper is the closest match at an attempt to fulfill the same aim as the M.Sc.
thesis at hand. Conroy et al. implemented a fully on-board relative localization using vision on two Parrot
ARDrones 2.0 (with tags), from which they infer relative bearing, distance, and speed. However, the algorithm
is only tested and seen to work when the two quad-rotors fly straight towards each-other with forward facing
cameras in a controlled environment. The focus of the paper was on the analysis and testing of ORCA in spite
of real-life uncertainties and dynamic constraints; it was not localization algorithm.

3Ψ is not to be confused with ψ, the yaw angle
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in Appendix E-1-1, it is unsurprising that this algorithm also focuses on the establishment
of a heading, as opposed to directly identifying a velocity as with the VO algorithms and its
variants. HL thus presents the advantage that the heading selection is decoupled from speed
selection (Guzzi et al., 2014). HL has also been found to be successful even when operating at
low rates. Performance is only affected, when the time-step between iterations is larger than
0.4s (Guzzi, Giusti, Gambardella, Theraulaz, et al., 2013). This is a very favorable feature
for low-speed processors.

Figure E-1: Representation of VO, RVO, HRVO, ORCA, and HL (Guzzi, Giusti, Gambardella,
Di Caro, et al., 2013).

Guzzi, Giusti, Gambardella, Di Caro, et al. (Guzzi, Giusti, Gambardella, Di Caro, et al., 2013)
have determined HL to outperform the other methods significantly. However, ORCA has
already been tested successfully on MAV quadrotors, and has shown that real-life holonomic
constraints as well as uncertainties can be simply included in the algorithm by increasing the
perceived radii rA and rB of the robots. Unfortunately, despite showing higher performance,
HL cannot be proven to always lead to successful collision avoidance. In fact, the authors note
that in large crowds collisions between humans are also seen. With a small team of agents,
this is not expected to be a problem (Guzzi, Giusti, Gambardella, Theraulaz, et al., 2013).

E-4 Dealing with localization uncertainty

All these algorithms require a precise knowledge of the robot’s own state and the obstacle’s
state in order to work (where state includes pose as well as the change in pose). However, it is
undeniable that the final localization estimates will suffer from non-negligible uncertainties.
Methods to deal with that are presented in this section.

The geometrical nature of VO-based methods easily lend themselves to dealing with local-
ization uncertainties thanks to the inclusion of an obstacle radii as an integral part of the
avoidance scheme. As seen in Figure E-2, the V OAB set can be expanded by the cumulative
standard deviation ω(·) of the localization measurements of both RA and RB, and then fur-
ther expanded by the uncertainty in the velocity ~vB. The authors suggest that the addition
of one standard deviation is sufficient (although this is arbitrary). This concept has been
successfully tested on real MAVs performing collision avoidance using ORCA and localizing
each-other via vision (Conroy et al., 2014).

Relative Localization for Collision Avoidance in Micro Air Vehicle teams M. Coppola



56 Literature Review on Collision Avoidance Methods

Figure E-2: Geometric expansion of VO according to relative localization and relative velocity
uncertainties (Snape et al., 2009).

Another alternative (inspired by human behavior) is that of a social margin (Guzzi, Giusti,
Gambardella, Theraulaz, et al., 2013) The updated radius is then defined as r′ = r +m(ds),
where m(ds) is a linear function dependent on the absolute distance ds between the robots.
m(ds) has a positive slope, meaning that the radius is higher at further distances and lower at
smaller distances. This brings about two (related) advantages: the likelihood of high-density
clusters is reduced, and the robots are more conservative even at larger distances.

The methods described above decrease the chance of collision in-spite of a measurement
uncertainty, but do not bind it. Collision Avoidance under Localization Uncertainty (CALU)
(Hennes, Claes, Meeussen, & Tuyls, 2012) is a method to do so based on the localization
uncertainty. The method is specifically devised for localization via a PF, such that the
percentage of enclosed particles can be directly related to the probability of collision according
to ORCA. This is a method for ensuring that the radius of the robot is always expanded by
an appropriate amount such that the probability of collision stays at some defined constant.
The method could be altered for use with an Kalman-type filter.
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Appendix F

Preliminary Study of RSSI based
Range Measurements between MAVs

The main challenge to be overcome when using RSSI as a distance estimator is the extrac-
tion of a sufficiently accurate estimate in spite of a noisy and disturbance-prone environment.
The on-board wireless communication system would likely operate in the 2.4GHz frequency
spectrum, known as the Industrial, Scientific and Medical (ISM) band. This band is interna-
tionally open for use in such applications, and is adopted by a series of popular communication
standards such as Bluetooth or Wi-Fi, meaning that a typical modern building can easily be-
come cluttered (Kushki, Plataniotis, & Venetsanopoulos, 2008). Moreover, the signal may
be subject to multi-path effects or it can be absorbed from nearby objects (even the human
body, for instance, can be a culprit of this) (Kushki et al., 2008) (Caron et al., 2008). Hauert,
Leven, Zufferey, and Floreano (Hauert et al., 2010) purposely use 802.11n Wi-Fi transmitting
at 5GHz instead of 2.4GHz so as to limit interference from the many devices that operate
in the latter. The accuracies are in the order of magnitude of a few meters (Dahlgren &
Mahmood, 2014). This improves at closer distances (Nguyen & Luo, 2013) as explained
mathematically by the logarithmic Log-Distance path model. For Bluetooth, at distances
larger than 5m, RSSI no longer changes and does not contribute to a range measurement.

This section introduces and explores the model used to correlate RSSI with distance. Ap-
pendix F-1 introduces the Log-Distance model, which will be central to the work in this
thesis. Appendix F-2 performs a sensitivity analysis on the model in order to understand the
importance of parameter estimation. Two methods for potentially augmenting the model by
means of ground-reflection and inclusion of antenna lobes are treated in Appendix F-3 and
Appendix F-4, respectively. The results of an experimental analysis of the model are shown
in Appendix F-5.

F-1 The Log Distance path model

The basic model for direct signal loss over an area is the Free Space Loss (FSL) model
(Rappaport et al., 1996), which assumes ideal conditions and omni-directional propagation.
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The power loss through this model, LFSL, is determined as in Eq. F-1, or as in Eq. F-2 if
in dB. Let Gt be the transmitter antenna gain, Gr be the receiver antenna gain, λsig be the
wavelength of the signal 1, and ds be the absolute range between the two antennas.

LFSL(ds) = Gt ·Gr ·
(
λsig
4πds

)2

(F-1)

LFSL(ds)[dB] = 20 log10

(
λsig
4π

)
+ 10 log10(Gt) + 10 log10(Gr)− 20 log10(ds) (F-2)

The Log-Distance Path model is based on the FSL model in Eq. F-2, but collapses all constant
terms (the first four terms of Eq. F-2) to one value representing the power-loss at a nominal
distance of 1m (Rappaport et al., 1996). The path loss using this model, denoted LLD, is
given by

LLD(ds) = Pn − 10 · γl · log10 (ds) , (F-3)

where Pn is the total power loss in dB at a nominal distance (1m). Additionally, the
coefficient γl is included. This is known as the space-loss parameter. For free-space γl = 2,
showing a resemblance to Eq. F-2. Experimentally, it has been found that office buildings
feature 2 ≤ γl ≤ 6 (Kushki et al., 2008). Table 3.2 in (Rappaport et al., 1996), Table 2 in
(Ren, Wang, Chen, & Li, 2011), or Table 9.4 n (Seybold, 2005) provide a set of generally
recommended values of γ for different environments. The Log-Distance Path model is
subject to a Zero-Mean Gaussian Noise (ZMGN) (Rappaport et al., 1996; Svečko, Malajner,
& Gleich, 2015)).

The use of the log-distance path model relies on the experimental identification of Pn and γl.
Pn is a property of the signal and the transmitting/receiving antennas. γl is a property of the
environment, but as seen in Appendix F-2 its value has a negligible difference on the related
distance at small ranges, making it versatile to operate in several environments. Furthermore,
the log-distance path model may be augmented by adding the effect of ground reflection or
the impact of antenna lobes (for antennas that are not perfectly omni-directional). This is
discussed in more depth in Sections F-3 and F-4, respectively.

F-2 Sensitivity Analysis of the Log-Distance Path Model to pa-
rameter identification

The use of the log-distance model requires the identification of two parameters, and it is thus
worth performing a sensitivity analysis to explore the impact of a parameter on the estimated
RSS, and subsequently on the estimated distance. This can help establish how sensitive the
identification model is to erroneous parameters or to a change in set-up/environment.

1Wavelength can be extracted from frequency thanks to the following relationship: λsig = c/fsig, where c
is the speed of light and fsig is the frequency of the signal. In this report, the speed of light is assumed to be
3 · 108 m/s.
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It is found that Pn is crucial at all distances, as it is directly proportional to the path-loss
LLD:

∂LLD
∂Pn

= 1.

This is shown in Figure F-1a.

The impact on the distance estimate for the inverted equation is

∂ds
∂Pn

= ln(10) · 1

10γl
· 10

Pn−L
10γl ,

showing that the impact is aggravated as the absolute difference between the actual power
loss and Pn increases. This effect is depicted in Figure F-1b.

The impact of a change of γl is less influential. This is seen by extracting its derivative with
LLD:

∂LLD
∂γl

= −10log10(ds). (F-4)

If ds = 1m, then a change in γl has no influence. At ds = 3m, a reasonable boundary
within the scope of this project, then ∆LLD/∆γl = 6.02dB. This is a less significant impact
compared to the one of Pn. The effects are plotted in Figure F-2a.

Finally, the impact of γl on the distance estimate when the log-distance model is inverted is
given by:

∂ds
∂γl

= −ln(10) · 10
Pn−L
10γl︸ ︷︷ ︸

Term #1

· Pn − L
10γ2

l︸ ︷︷ ︸
Term #2

. (F-5)

At smaller distances, where Pn − L >> 0 (∴ d << 1), the impact of a change in γl is
dominated by Term #2, which has minimal impact in terms of absolute numbers. At larger
distances, where Pn − L << 0 ∴ d >> 1, then the change is dominated by Term #1, which
grows exponentially and begins to become relevant. This is plotted in Figure F-2b.

Overall, it can be concluded that the estimate of Pn needs to have a good accuracy in order
to avoid systematic errors at all distances. For the distances expected within the scope of this
project (0m ≤ ds ≤ 3m), a proper identification of γl is less important and will have a smaller
impact. As Pn encloses terms related to antenna gain, this value is expected to be mostly
dependent on the set-up antennas used. γl, alternatively, is dependent on the environment.
This means that it should be possible to export the same set-up to a different environment
with minimal impact (at small distances).

F-3 Possible model augmentation for ground-reflection

The signal from an antenna will reflect on the surrounding elements of the environment,
and this reflection may cause multi-path interference with the original signal causing either
an increase (constructive interference) or a decrease (destructive interference) of the RSS. If
flying indoors in an unknown environment, the only predictable element that can be modeled
is the floor/ground.
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Figure F-1a: Sensitivity analysis of changing
Pn in log-distance model on the estimated power
loss at different distances. γl = 2.
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Figure F-2b: Sensitivity analysis of changing
Pn in log-distance model on the estimated dis-
tance at different power losses. Pn = −50.

The effects of multi-path due to the ground can be modeled using the two-ray ground reflection
model, or ground model Goldsmith (Goldsmith, 2005), Svečko et al. (Svečko et al., 2015), and
Seybold (Seybold, 2005). The ground model is based on the diagram in Figure F-3; the
equations presented in this chapter all make use of the symbols therein.

Figure F-3: Depiction of signal propagation over ground assuming perfect reflection. This is the
and basis for the two-ray ground reflection model (Seybold, 2005). The transmitter is seen on
the left and the receiver is seen on the right.

In Figure F-3, note that Φ1 = Φ2, and d is the planar distance between the antennas.

The phase difference ∆Θ can be calculated with Eq. F-6 (Seybold, 2005). Note that this uses
the key assumption that the ground is a perfectly smooth and reflecting surface from which
the signal is reflected with equal magnitude and opposite phase.

∆Θ = d

(√
1 +

(hr + ht)2

d2
−
√

1 +
(ht − hr)2

d2

)
2π

λsig
(F-6)
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Furthermore, the total distance s that the reflected signal will travel is (Seybold, 2005):

s = s1 + s2 = (ht + hr)

√
1 +

d2

(ht + hr)
2 (F-7)

The ground-reflection model at short distances is then given as in Eq. F-8, as a function of the
direct propagation distance ds and the reflected distance s (Baunach, Mühlberger, Appold,
Schröder, & Füller, 2009).

LFSL,ground(ds, s) = LFSL(ds) + LFSL(s) · cos(∆Θ) (F-8)

If expressed in dB in order to augment the Log-Distance Path model, then:

LLD,ground(ds, s) = LLD(ds) + 10log10

(
1 +

LFSL(s) · cos(∆Θ)

LFSL(d)

)
(F-9)

Although based on the same concept, this model differs from the models suggested by
Goldsmith Goldsmith or Seybold (Seybold, 2005), which may be more commonly seen in
literature. It is better suited to the propagation of a signal at short distances by not making
the assumption that ds >> ht, hr or that ds ≈ s.
Experimentally, this behavior is confirmed by (Nguyen & Luo, 2013), for which it was found
that multi-path (ground) effects are most dominant at distances larger than 2m and only
noticeable at heights closer to the ground. This is modeled mathematically in the model by
the fact that as ds → 0, then ds << s and the ratio of LFSL(s)/LFSL(d)→ 0.

Based on the model in Eq. F-8, the impact of ground reflection for a 2.4GHz (Bluetooth/Wi-
Fi) signal is shown in Figure F-4 for the cases where ht = hr = 1m, ht = hr = 2m, and
ht = hr = 3m was tested. The following two behaviors are identified:

• The effect is significant when both antennas are at 1m, but decreases significantly at
larger heights.
• The likely-hood of entering regions of full constructive and destructive interference in-

creases with height. This may be seen as an advantage (decreased time for which the
effect takes place if the MAV is moving), or a disadvantage (data will feature higher
frequency noise/disturbances ).

F-4 Possible model augmentation with antenna lobes

Although all models in previous examples assume omni-directional propagation in all direc-
tions, this is not necessarily the case for Bluetooth antennas, which may feature antenna lobes
(Nguyen & Luo, 2013). Antenna lobes are specific to each antenna (Nguyen & Luo, 2013), un-
less an assumption is made regarding the fact that each antenna made from a manufacturer
will feature the same lobe distribution. Experimentally, Nguyen and Luo found that RSS
readings are susceptible to sensor orientation giving a change of up to 10 dBm (Nguyen &
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Figure F-4: Difference between free space loss and ground reflection model applied to a Bluetooth
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of light is assumed as 3 · 108 m/s.

Luo, 2013). Lobes may be identified based on empirical data, this is done in Appendix F-5-3,
but it should be noted that the electronics on an MAV could alter the lobe shape further,
meaning that occasional re-calibration may be needed.

In the Log-Distance Path model, lobes may be included as an additional gain term that
models the deviation that the lobe causes from the average value Pn at a distance of 1m. The
lobe impact is included as a non-linear function G of horizontal bearing β and vertical bearing
α of the receiving antenna with respect to the transmitting antenna (denoted by subscript
rt).

Grlobe = G(βrt, αrt) (F-10)

F-5 Experimental Results using Bluetooth RSSI with the Ladybird
MAV

Lisa-S Ladybird drones already have Bluetooth connectivity, and therefore sample measure-
ments to test the effectiveness of Bluetooth RSSI as a distance estimation method at short
range have been performed, using an Optitrack system in order to also measure the ground-
truth position. All experiments featured a static near omni-directional Bluetooth antenna
(W1049B by Pulse) communicating with the Bluetooth antenna on a moving Ladybird MAV.

This section showcases representative results of the experiments that have been performed,
and studies the performance of the log-distance model in Eq. F-3 as a means to represent the
system. Future iterations of the model, outside of the scope of this report, will also include
the effects of antenna lobes and ground-path effects.

F-5-1 Description of experiments

The performed tests with relevant data used in this section are described below. They are
referred to by the day in which they have been performed (the experiments were performed
over a total of three days), and the log of the experiment. 2

2Some logs are not included here as they do not have information that is relevant for this report.

M. Coppola Relative Localization for Collision Avoidance in Micro Air Vehicle teams



F-5 Experimental Results using Bluetooth RSSI with the Ladybird MAV 63

• Day 1, Log 1 (β constant, hand-held) — The MAV was held such that the antenna
would be with constant bearing with respect to it, and concentric circles around the
antenna were walked at radii of ≈ 1m, 2m, and 3m.
• Day 1, Log 2 (β varying, hand-held) — The MAV was held at constant heading

such that the bearing of the antenna with respect to it would vary as it was moved in
and concentric circles around the antenna at radii of ≈ 1m, 2m, and 3m.
• Day 2, Log 2 (β varying, α constant, hand-held) — The MAV was held such that

the antenna would be with constant bearing with respect to it, and concentric circles
around the antenna were walked at radii of ≈ 1m, 2m, and 3m. At several steps during
the concentric circles, the MAV was rotated about its yB axis to change its pitch.
• Day 2, Log 3 (β varying, α varying, hand-held) — The MAV was held at constant

heading such that the bearing of the antenna with respect to it would vary as it was
moved in and concentric circles around the antenna at radii of ≈ 1m, 2m, and 3m. At
several steps during the concentric circles, the MAV was rotated about its yB axis to
change its pitch.
• Day 3, Log 1 (ht = hr ≈ 1m, in-flight) — The MAV was made to fly in 3 concentric

circles, at radii of 1 m, 1.75 m, and 2.5 m around an antenna. Both were approximately
at 1 m height from the ground. The heading was set to remain approximately constant
during the flight.
• Day 3, Log 2 (ht = hr ≈ 2m, in-flight) — The MAV was made to fly in 3 concentric

circles, at radii of 1 m, 1.75 m, and 2.5 m around an antenna. Both were approximately
at 2 m height from the ground. The heading was set to remain approximately constant
during the flight.
• Day 3, Log 3 (ht = hr ≈ 3m, in-flight) — The MAV was made to fly in 3 concentric

circles, at radii of 1 m, 1.75 m, and 2.5 m around an antenna. Both were approximately
at 3 m height from the ground. The heading was set to remain approximately constant
during the flight.

Furthermore, it is worth noting the following:

• All measurements taken on the same day were performed shortly after each-other. En-
vironmental factors and disturbances are assumed constant during any experiment per-
formed on the same day.
• Experiments on day 1 and day 2 were performed using the same antenna and the same

MAV. The experiments on day 3 were performed using another set. Using a different
antenna can be expected to bring about significant changes in Pn.

F-5-2 Fitting the log-distance model

In the log-distance model, it is necessary to identify the nominal parameter Pn and the space-
loss parameter γl that best match the given conditions. This has been done for all experiments
detailed in the previous subsection (Appendix F-5-1) using a non-linear identification methods
that aimed to minimize the difference between the model estimate and the measured values
(using command fmincon on Matlab).

Table F-1a shows the results of the parameter identification based on a randomly selected
10% of the data set. Table F-1b show the parameter estimation based on the full data set. It
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can be seen that the values between the two tables are close, showing that a low amount of
datapoints is sufficient to identify the model parameters. The largest differences are seen with
the experiments of Day 3, where γl features a significant variation between the two tables.
This is explained by the fact that a portion of the measurements (prior to take-off or after
landing) featured the MAV being placed on the ground, which can enhance the multi-path
or disturbances experienced. These contouring measurements have not been deleted from the
data-set. It may also be seen that the values estimated for the experiments of day 3 feature
a lower value of Pn. At this stage, the cause for this is unclear. It may be due to a different
antenna/MAV set or due to environmental disturbances during the flight experiment.

Table F-1a: Estimated parameters of
log-distance model (Eq. F-3) from all

performed experiments using randomly sampled
10% of data.

Pn[dB] γl[−]

Day1, Log 1 -50.797 1.889

Day1, Log 2 -52.382 2.334

Day2, Log 2 -55.870 1.821

Day2, Log 3 -57.058 1.907

Day3, Log 1 -64.222 1.256

Day3, Log 2 -62.865 2.331

Day3, Log 3 -62.445 2.625

Table F-1b: Estimated parameters of
log-distance model (Eq. F-3) from all

performed experiments using the full data sets.

Pn[dB] γl[−]

Day1, Log 1 -51.501 1.880

Day1, Log 2 -53.312 2.265

Day2, Log 2 -56.122 1.761

Day2, Log 3 -57.382 1.796

Day3, Log 1 -63.727 1.400

Day3, Log 2 -63.182 2.453

Day3, Log 3 -63.480 2.566

The estimated parameters (using 10% of the data set) can be entered on the model and used
to determine an estimate of power loss (equivalent to RSSI in this context), or of distance d
if Appendix F-1 is inverted. The results of this are shown in Figure F-5a to F-5b for ”Day 1,
Log 1”, Figure F-6a to F-6b for ”Day 2, Log 2”, and Figure F-7a to F-7b for ”Day 3, Log 1”.
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Figure F-5a: Raw RSSI measurements of ”Day
1, Log 1” against log-distance Power Loss esti-
mate with relevant parameters from Table F-1a
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Figure F-6a: Raw RSSI measurements of ”Day
2, Log 2” against log-distance Power Loss esti-
mate with relevant parameters from Table F-1a
and measured distance.
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Figure F-6b: Actual distance of ”Day 2, Log 2”
against inverted log-distance distance estimate
with relevant parameters from Table F-1a and
measured RSSI.
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Figure F-7a: Raw RSSI measurements of ”Day
3, Log 1” against log-distance Power Loss esti-
mate with relevant parameters from Table F-1a
and measured distance.
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Figure F-7b: Actual distance of ”Day 3, Log 1”
against inverted log-distance distance estimate
with relevant parameters from Table F-1a and
measured RSSI.

The error was calculated as the difference between the measurement and the estimate. Its
distribution is shown in Figure F-8a and Figure F-8b for the RSSI estimates and the distance
estimates, respectively. Whereas the error distribution in the RSSI estimate appears (almost)
normal, as expected based on (Rappaport et al., 1996), it can immediately be recognized
that the error features a Gamma/Log-normal/Nakagami type distribution when converted to
distance (this was also expected based on the findings by (Seybold, 2005) and (Svečko et al.,
2015)). The error distribution has a sharp peak and slower descent on the negative side. It is
also worth noting that the peak is generally higher for experiments where antenna lobes and
height effects play a less significant role (with the peak for Day 1, Log 1 being the highest).
The RMSE errors over the full data sets for all experiments are shown in Table F-2. RMSE
is best used for normal/Gaussian distributions. This may not be directly applicable to the
noise in the distance estimates, but it is worth mentioning as an indication for the quality of

Relative Localization for Collision Avoidance in Micro Air Vehicle teams M. Coppola



66 Preliminary Study of RSSI based Range Measurements between MAVs

the estimates, showing that the largest RMSE is ≈ 2.5m.

Table F-2: RMSE of model fits (from model with parameters extracted from 10% of data
points)

RMSE RSSI estimate [dB] RMSE distance estimate [m]

Day1, Log 1 3.139 1.277

Day1, Log 2 5.880 2.682

Day2, Log 2 3.510 1.418

Day2, Log 3 4.948 2.360

Day3, Log 1 3.204 2.443

Day3, Log 2 6.033 2.232

Day3, Log 3 4.969 1.395
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Figure F-8a: Error distribution between the
measured RSSI and the estimated RSSI (from
relevant parameters in Table F-1a from 10% of
data).
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Figure F-8b: Error distribution between the
real range (as from the Optitrack measurement)
against the estimated range based on the in-
verted Log-Distance model (with relevant pa-
rameters in Table F-1a from 10% of data).

F-5-3 Antenna lobe investigation

As noted in Appendix F-5-1, certain tests keep the bearing of the omni-directional antenna
with respect to the MAV antenna constant, whereas others did not. The impact of a lobe
distribution for the MAVs in question is explored in this section, where the log-distance model
is augmented with a term describing the non-linear lobe patterns, as follows:

LLD = Pn − 10 · γl · log10

(
ds
d0

)
+Grlobe +Np, (F-11)

This section aims to validate the claims found in (Nguyen & Luo, 2013) by establishing
whether there are systematic differences due to bearing and to assessing their impact. Note
that the lobes in this subsection identified using all data points within a measurement and
not only 10% as was done previously. This is because the focus is on identifying the shape of
the lobes with the highest accuracy possible. For lobes on the 2D plane, Grlobe = G(βtr). The
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function is expressed using 3rd degree splines, and the parameters of the splines are identified
simultaneously with Pn and γl. This implementation of the spline lobe identification was
based on the work by Szabo in (Szabo, 2015). For 3D lobes, where Grlobe = G(βtr, αtr), the
function is currently described as a crisp set (i.e. a look-up table). The impact of the lobe
is obtained by performing sectioned averaging in order to determine the average impact of a
lobe over sections of combinations of horizontal and vertical bearings. Eq. F-11 only contains
one term for the antenna lobes, albeit there would have to be two (one for each antenna). As
one of the antennas used in all experiments was omni-directional, this is ignored for now.

As a first step, experiments ”Day 1, Log 1” and ”Day 2, Log 2” were compared. In ”Day 1,
Log 1”, for which the raw results are shown in Figure F-9a to F-9c, the relative bearing of
the omni-directional antenna with respect to the drone was kept constant, and the bearing
of the MAV with respect to the omni directional antenna was changing as concentric circles
were made. A truly omni-directional antenna should not show any systematic changes in
RSSI due to bearing, and this was confirmed by the measurements in Figure F-9c, from
which no impact of bearing higher than 1dB can be extracted. In ”Day 1, Log 2”, with
the measurements shown in Figure F-10a to F-10c, it is possible to qualitatively notice a
systematic variation in RSSI as a result of relative bearing (systematically higher at ≈ 1
rad). The results of the parameter identification combined with the spline lobe estimation
are presented in Figure F-11d, from which it is possible to observe lobes featuring an impact
of up to −7dB on the omni-directional signal.

To analyze the 3D lobe distribution, the results of the hand-held test ”Day 2, Log 3” were
used. This is because this data set features the highest amount of combinations for relative
horizontal and vertical bearings between the antennas. The raw data of the measurements
is shown in Figure F-11a to F-11c, from which a specific pattern as a function of bearing
is clearly noticeable merely from the graphs. Based on the identification procedure, the
maximum observed impact of the lobes reaches ≈ −10dB. The mean impact is of −3dB.
These results are in line with the expectations in (Nguyen & Luo, 2013), which also expresses
10dB as a likely maximum level of impact of the lobes on Bluetooth antennas.

It is established that the antennas on the MAVs feature systematic lobe effects, and an
accurate modeling of these lobes may be helpful towards improving a distance estimate. Based
on the findings in the sensitivity analysis of the log-distance model, a lobe distribution will
have the same impact on the modeled RSSI as a change in Pn, i.e. directly proportional. As
the worst cases show effects up to 10dB, this is not to be neglected. Unfortunately, regardless
of the accuracy of the modeling, a naive implementation of this model in a localization scheme
can lead to a circular issue whereby the relative bearing needs to be established in order to
improve the measurement of the bearing, and vice-versa. If this type of modeling is explored
further for implementation, then it would be necessary to establish a method to pre-estimate
the relative bearing. A current (yet to develop) idea to do so is as follows. As noise in RSSI
was determined to be of near-Gaussian nature with zero mean, one could attribute a case
where the estimate is consistently offset to lobe. For instance, if there is a long period over
which the RSSI is consistently higher than the predicted value, then this can be taken as being
due to a lobe, which can condition the algorithm towards a certain bearing. The danger in
doing so is that this may be founded on a wrong assumption, as the consistent change over a
longer period may be due to other factors such as multi-path effects or other disturbances in
the environments. Alternatively, the methods of Zhou et al. (Zhou et al., 2013) and Zhou et
al. (Zhou et al., 2008) could be adopted in order to reach initial estimates for relative bearing
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Figure F-9a: Planar location in inertial refer-
ence frame FE with RSSI values recorded by
receiver in experiment ”Day 1, Log 1”.
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Figure F-9b: Range against RSSI levels of ex-
periment ”Day 1, Log 1”.
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Figure F-9c: Relative bearing against RSSI levels of
experiment ”Day 1, Log 1”.
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Figure F-9d: Results of parameter identi-
fication with horizontal lobe identification
for the omni-directional antenna using data
of experiment ”Day 1, Log 1”.

that can then be improved. These methods are discussed in more detail in Appendix D-3.

M. Coppola Relative Localization for Collision Avoidance in Micro Air Vehicle teams



F-5 Experimental Results using Bluetooth RSSI with the Ladybird MAV 69

-90
5

-80

-70

5

-60

R
S

S
I 
[d

B
]

-50

-40

z
E
 [m]

0

x
E
 [m]

0

-5 -5

Figure F-10a: Planar location in inertial ref-
erence frame FE with RSSI values recorded by
receiver in experiment ”Day 1, Log 2”.
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Figure F-10b: Range against RSSI levels of ex-
periment ”Day 1, Log 2”.
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Figure F-10c: Relative bearing against RSSI
levels of experiment ”Day 1, Log 2”.
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Figure F-10d: Results of parameter iden-
tification with horizontal lobe identification
for MAV antenna using data of experiment
”Day 1, Log 2”.
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Figure F-11a: Planar location in inertial ref-
erence frame FE with RSSI values recorded by
receiver in experiment ”Day 2, Log 3”.
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Figure F-11b: Range against RSSI levels of ex-
periment ”Day 2, Log 3”.
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Figure F-11c: Relative bearing against RSSI
levels of experiment ”Day 2, Log 3”.
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tification with full lobe identification for
MAV antenna using data of experiment
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Appendix G

Alternative Study of Vision as a
Measure for Relative Range/Bearing

Vision-based methods use a camera in order to infer properties about the environment. In
Appendix C it was seen that this is useful to estimate the state of the MAV with respect to
the environment. This section details the possibilities of using this sensor in order to detect
nearby MAVs. If the object is properly recognized, it is then possible to extract the relative
bearing. Range can also be extracted either by observing its size compared to a reference or
by the use of a stereo camera. Finally, by observing the objects one could even extract the
relative orientation/attitude, albeit this last point is unexplored.

G-1 Literature review

G-1-1 Direct detection of other MAVs using vision

To simplify the visualization tasks, there are several instances where extra visual cues are
added to the quad-rotors in order to simplify the job of identification. This generally takes
the form of one or more colored tags placed on the object. Iyer, Rayas, and Bennett (Iyer
et al., 2013), for instance, use rectangular orange tags attached to each side of a Parrot AR
drone v1.0 in order to make the drone more visible to the camera (and providing the simpler
task of detecting rectangular shapes). The separation and relative orientation between the
tags are used to also estimate the distance to the other drones. Using a similar strategy
but with a different execution, Chi Mak, Whitty, and Furukawa (Chi Mak et al., 2008) use
two cyan Light-Emitting Diodes(LEDs) oppositely placed on the end of the main rotor of a
helicopter MAV, combined with one red LED at the tail end. The effect, when the rotor is
spinning, is a cyan ellipse of which the size, inclination, and relative brightness can give an
indication of relative pose. This solution requires that no other cyan or red objects are visible
in the footage. Furthermore, to ensure an ellipse is fully captured, the camera is forced to
operate at a rate slightly lower than half of a rotor revolution. A filter is then needed over
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the main lens in order to avoid potential over-exposure from other light-sources. The system
is found to be accurate but not robust to changes in yaw (which may hide the red LED) or
range.

The aforementioned strategies are not deemed applicable to the given scenario if the focus is
restricted to swarm collision avoidance. (Iyer et al., 2013) and (Chi Mak et al., 2008) cannot
be used because LEDs and tags cannot be attached to the MAVs and the solution should aim
to be independent of auxiliary markers and visual cues which must be known a-priori in order
to work. If no simple visual cues are offered, then objects must be recognized and tracked
based on detectable features. Three popular methods for object recognition, also discussed
in more detail Appendix B-5, are introduced below.

• Template matching: A simple example is given in (Corke, 2011), used to “find Waldo”
in a cluttered picture. Despite low quality template, the algorithm is successful. Tem-
plate matches is not robust to changes in perspective.
• Line features: Through an edge image, line features can be detected which can be

matched to an internal edge model of an object for object recognition as in (Lowe,
1987).
• Point features: (Invariant) point features, memorized prior to flight, can be used to

recognize an object such as an obstacle (Lowe, 1999).

Alternatively, optical flow can be used for obstacle detection and recognition as discussed in
Appendix G-1-3.

G-1-2 Relative localization via shared environment data

Relative localization can also take place without the need for the members to directly detecting
each-other, but by sharing their cognition of environment features. The key concept here is
to allow a team of robots to detect and localize themselves with respect to one or more shared
object(s), after which they can infer their relative location.

Lima, Santos, Oliveira, Ahmad, and Santos (Lima et al., 2011), in the context of soccer-
playing robots, use range localization relative to a red ball in order to establish a distance to
it. Based on this, when a team-member is “lost” (does not know where it is in the field), it
can ask for assistance from the other robots, at which point the range of each robot to the
red ball is received. As all the other robots know their global position in the field, the lost
robot can re-determine its position in the global frame (fusing all data with a particle filter).

Saska (Saska, 2015) provides swarming capabilities to a swarm of quad-rotor MAVs using
only a monocular camera on each. Although the system does not require external sensors, it
does require for circular markers to be set in known locations. The markers feature two rings,
which are simple to locate and track, and are of known dimensions.

On a similar note, Kendall, Salvapantula, Stol, et al. (Kendall et al., 2014) rely on a round
colored targets in order to infer the location to an object. These targets are recognized by
using a blob-detector (using a template matching method), in order to extract a distance
estimate and control a quad-rotor.
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These research papers make use of the benefit of having pre-established, easily recognizable
target objects to identify in an environment. Furthermore, all implementation are active —
the robots seek the target object and it is thus supposed to be in its field of view, which may
otherwise not be the case and result in significant problems (this issue is discussed further
based on experimental results in Appendix G-2-5).

G-1-3 Obstacle detection using optical flow

Optical flow can also provide a basis for obstacle detection by observing the difference among
sections. When one MAV is flying in the camera view, the optical flow should show one
element (i.e. the MAV) moving differently from the rest of the environment (assumed static).
This motion implies the presence of an MAV. Alternatively, the use of textons in optical
flow has also shown success for obstacle recognition in landing (Ho, De Wagter, Remes, & de
Croon, 2015) and normal flight (De Croon, De Weerdt, et al., 2012). Ho et al. (Ho et al.,
2015) used a learning algorithm that allocates a texture to an optical flow parameter, which,
if inconsistent with the plane, is judged to be an obstacle and is later recognized as one.
Another example in this context is by De Croon, De Weerdt, et al. (De Croon, De Weerdt,
et al., 2012), where obstacle detection in normal flight with a forward facing camera was
performed by observing the change in texture of the image during flight in order to extract
the location of potential obstacle, based on the knowledge that texture changes differently
for background elements if compared to obstacles. This, however, was demonstrated for walls
and large obstacles, but its performance on small objects such as MAVs is not known.

G-1-4 Distance measurement using stereo-vision

A stereo camera provides two images with a known translation between the camera frames.
This makes it possible to infer 3D properties about the environment. A popular method used
for this is dense-stereo (Corke, 2011). Dense stereo operates by matching pixels from one
image to the ones of the other image and observing the shift, this is known as block-matching.
A variant of this method is semi-global matching (Hirschmüller, 2005), which also includes
neighboring blocks in the disparity estimation. As the transformations between the two figures
is already known, it is possible to extract distance. Combined with object recognition, this
can be a powerful tool to measure both range and bearing to an object.

Stereo vision in cluttered environment can lead to a number of issues (Corke, 2011). One error
mode is known as picket-fence failure, which happens when similar looking objects/features
are present several times at roughly equal distance in an image. It is then impossible to judge
when the pixels/features match between two images, since this seems to happen at several
instances. In the context of localization, this problem could arise if two or more MAVs were
to be observed at roughly equal distances and vertical bearing with respect to the observing
MAV, or if sufficiently similar features were observed due to a cluttered environment and/or
low image resolution. Another error that may arise is occlusion failure: when a point seen by
one camera cannot be seen from the other. This is likely not relevant in the context at hand.
A third issue known as broad-peak, which is found when the matching becomes impossible due
to a large general area with no distinctive feature, is also not likely relevant in this context,
and is mostly relevant when vision is used for navigation purposes.
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G-1-5 Conclusion on efficacy of vision-based methods from literature

The advantage of vision lies in its potential to provide range, bearing, and orientation of
an obstacle provided a sufficiently advanced algorithms is used with the right conditions
and hardware. The general efficacy, unfortunately, cannot be categorized because it is seen to
depend on the integrity, robustness and performance of the algorithm of choice. The identified
disadvantages/issues with vision-based localization and target-tracking are the following:

• Uni-directional view. When using winged MAVs this issue can be expected to be less
dominant, as the main direction of flight is always forward. With multi-rotors, however,
it may happen that the camera does not face the forward direction of motion, as the
multi-rotor is also capable of equally moving side-ways. It is very probably then that
other MAVs may be out of the field of view of the limited field of view of the camera.
• Obstructed vision. Vision sensors can be obstructed if measurements are not in line of

sight due the presence of other objects.
• Larger computational demands. This issue is relevant with respect to the design aims,

but negligible if one considers the expected increase in processor speeds in future years.

G-2 Experimental results using vision

Preliminary experiments have been performed to augment the literature findings in H and
determine the feasibility of using a mono and/or stereo camera for the purpose of relative
MAV detection. The results of the experiments are presented in this section. A portion of
the measurements, as in Appendix G-2-1 and Appendix G-2-2, have been performed using
the stereo-camera that is available on-board of the drones, thus providing realistic images
with the on-board resolution of 128×96 pixels. A second portion, treated in Appendix G-
2-3 and Appendix G-2-4, use camera measurements taken with a higher-quality monocular
camera. Both these sections then focus on stress-testing nominal vision algorithms for feature
recognition and optical flow by reducing the image size so as to understand at what point the
algorithms begin to become ineffective. The images in these sections have been taken with
the primary camera of a Samsung Galaxy S4 Mini (model name: I9190) phone at a native
recording resolution of 640×480 pixels. All algorithms are then tested also at 320×240,
160×120, and 128×96 pixels.

G-2-1 Stereo-Vision

In the stereo-vision test, the available on-board disparity map was tested in order to deter-
mine whether the MAV is detectable as a nearby object compared to the background. The
experiment was performed at distances of 50cm, 100cm, 150cm, 200cm, 250cm, and 300 cm
between the camera and the observed MAV, which was placed (roughly) such that it would
appear in the center of the image during all measurements. In all cases the camera and other
drone were static (the camera was fixed, and drone hanging from a string to simulate hover),
thus giving a best-case scenario with respect to oscillations and noise. It was found that the
current on-board stereo-camera’s disparity map is insufficient for the detection of a nearby
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Figure G-1a: Representative image of disparity
map at a distance of 0.5 meters from the MAV
using on-board camera of other MAV.

Figure G-1b: Representative 3D disparity map
at a distance of 1 meter from the MAV using
on-board camera of other MAV.

MAV even at a distance of 50cm, as can be observed in the representative frames shown in
Figure G-1a and Figure G-1b.

To validate these results, the native images from the left and right camera were extracted
for post-processing using a secondary disparity feature for distances of 50cm, 75cm, 100cm,
and 150cm. The MatLab Computer Vision System Toolbox 1 was used for this purpose using
the disparity function, which provides a dense disparity map between two images. Using
the BlockMatching method, similar to the one available on board of the Ladybird drone, the
drone was also not visible. However, it is found that the MAV is visible at distances of 50cm
up to 75cm with the Semi-Global method. Note that this is only when using a block size of
maximum 5 pixels. The MAV is not visible at any distance with higher block sizes. These
results for 50cm, 75cm, 100cm, and 150cm are shown in Appendix G-2-1 to Figure G-2d. In
the first instance, the MAV is recognizable as the dark red blob approximately in the center
of the picture, but fades away significantly as distance increases. Moreover, the picture’s low
quality means that other dark-red blobs are seen that may be incorrectly interpreted as being
an MAV.

G-2-2 Object recognition via feature matching using on-board camera

Using the images extracted only from the left camera as in Appendix G-2-1, object recognition
using feature detection and matching was also attempted as a way to recognize the MAV.
Representative images are shown in Figure G-3a and Figure G-3b.

Using the SURF feature detection and matching algorithm provided within the MatLab Com-
puter Vision System Toolbox, all image features were extracted from an image at 50cm and
matched to images at further distances. The results (only including features nearby the rotor,
for the sake of clarity) are shown in Figure G-4a to Figure G-4d. The features that are found
to match at further distances are not part of the rotor but actually part of the environment
behind it (false positives).

1More information available at http://mathworks.com/help/vision/index.html
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Figure G-2a: Representative image of dense
disparity map using Semi-Global block-matching
at a distance of 50cm from the MAV using on-
board camera of other MAV.
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Figure G-2b: Representative image of dense
disparity map using Semi-Global block-matching
at a distance of 75cm from the MAV using on-
board camera of other MAV.
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Figure G-2c: Representative image of dense
disparity map using Semi-Global block-matching
at a distance of 100cm from the MAV using on-
board camera of other MAV.

0

5

10

15

D
is

p
a

ri
ty

 [
-]

Figure G-2d: Representative image of dense
disparity map using Semi-Global block-matching
at a distance of 150cm from the MAV using on-
board camera of other MAV.

Figure G-3a: Representative image at a dis-
tance of 0.5 meter from the MAV using on-
board camera of another MAV. Image resolution
is 128x96 pixels.

Figure G-3b: Representative image at a dis-
tance of 1 meter from the MAV using on-board
camera of another MAV. Image resolution is
128x96 pixels.

G-2-3 Object recognition via feature matching (resolution stress-testing)

To test the impact of image resolution on the ability of object recognition, the experiments
from Appendix G-2-2 were performed using a higher resolution camera with a native resolution
of 640×480 pixels. The process of feature recognition at the native resolution, where one
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Figure G-4a: Feature detection using represen-
tative figure taken at distance of 50 cm (using
SURF)

Figure G-4b: Feature matching of drone-
related features from extracted as in Figure G-4a
to representative picture taken at 75 cm

Figure G-4c: Feature matching of drone-related
features from extracted as in Figure G-4a to rep-
resentative picture taken at 100 cm

Figure G-4d: Feature matching of drone-
related features from extracted as in Figure G-4a
to representative picture taken at 150 cm

correct feature was matched between distances of 50cm and 100cm. None were correctly
matched at further distances. These results are shown in Figure G-5a to G-5c. At lower
resolutions, 320×240, or even 128×96, since less features related to the MAV can be detected
in the first place, no features are successfully matched. The results are shown in Figure G-6a
to G-6c for 320×240 and in Figure G-7a to G-7c for 128×96.

G-2-4 Optical flow stress-testing

This section shows the analysis of sample videos in order to assess the ability of optical flow
to detect other MAVs. Native videos are taken at 640×480 pixels, and subsequently scaled to
resolutions of 320×240, 160×120, and 128×96 (where the lowest resolution is representative
of the resolution by the on-board camera). The optical flow implementation and object
recognition method used was Lukas-Kanade as provided within Simulink by the MatLab
Computer Vision System Toolbox. Objects were recognized as regions where pixels moved at
a velocity higher than the average velocity over the whole image.
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Figure G-5a: Feature detection
and matching for two images,
both taken at a distance of 50
cm, at 640×480 resolution.

Figure G-5b: Feature detection
and matching for two images,
one taken at a distance of 50 cm
and another taken at a distance
of 100 cm, at 640×480 resolu-
tion.

Figure G-5c: Feature detection
and matching for two images,
one taken at a distance of 50 cm
and another taken at a distance
of 150 cm, at 640×480 resolu-
tion.

Figure G-6a: Feature detection
and matching for two images,
both taken at a distance of 50
cm, at 320×240 resolution.

Figure G-6b: Feature detection
and matching for two images,
one taken at a distance of 50 cm
and another taken at a distance
of 100 cm, at 320×240 resolu-
tion.

Figure G-6c: Feature detection
and matching for two images,
one taken at a distance of 50 cm
and another taken at a distance
of 150 cm, at 320×240 resolu-
tion.

Figure G-7a: Feature detection
and matching for two images,
both taken at a distance of 50
cm, at 128×96 resolution.

Figure G-7b: Feature detection
and matching for two images,
one taken at a distance of 50
cm and another taken at a dis-
tance of 100 cm, at 128×96 res-
olution.

Figure G-7c: Feature detection
and matching for two images,
one taken at a distance of 50
cm and another taken at a dis-
tance of 150 cm, at 128×96 res-
olution.

Moving observer and static MAV

In the first case, a near-collision footage was recorded for the case of a static MAV and an
approaching observer. A representative snapshot of the results for native-resolution footage is
shown in Figure G-8a to G-8c. An object can be recognized at lower distances but consistent
flickering is observed as opposed to better defined areas such as the door. The same has been
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tried at a resolution of 160×120, where the MAV is no longer distinguishable at any point.
Representative results are shown in Figure G-9a to G-9c.

Figure G-8a: Image of optical
flow during oncoming collision
at native resolution with static
MAV obstacle and moving ob-
server.

Figure G-8b: Image recon-
struction from flow at optical
flow during oncoming collision
at native resolution with static
MAV obstacle and moving ob-
server.

Figure G-8c: Object identifi-
cation flow grouping during on-
coming collision at native reso-
lution with static MAV obsta-
cle and moving observer (ob-
jects enclosed by green boxes)

Figure G-9a: Image of opti-
cal flow during oncoming colli-
sion at 160×120 resolution with
static MAV obstacle and moving
observer.

Figure G-9b: Image recon-
struction from flow at opti-
cal flow during oncoming colli-
sion at 160×120 resolution with
static MAV obstacle and moving
observer.

Figure G-9c: Object identi-
fication flow grouping during
oncoming collision at 160×120
resolution with static MAV ob-
stacle and moving observer (ob-
jects enclosed by green boxes)

Moving MAV and static observer

For a moving MAV with static observer, one can expect the MAV to be easier to recognize
using the optical-flow/object recognition algorithm at hand, as there should be less observed
movement in the background. A representative snapshot of the results is shown in Figure G-
10a to G-10c. Although the MAV is recognized, the main issue to be noted are the large
amount of false positives due other objects in the cluttered environment which seem to be
moving due to camera oscillations (which are to be expected if the camera is attached to
a hovering drone). At lower resolutions, such as 160×120, the MAV is no longer reliably
recognizable as shown in Figure G-11a to G-11c.

Moving MAV and observer

A third set of footage was collected for a collision path with both a moving MAV and observer.
These results allowed tracking of the MAV at higher resolution, but the results worsened at
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Figure G-10a: Image of optical
flow during oncoming collision
at native resolution with static
observer and moving MAV.

Figure G-10b: Image recon-
struction from flow at optical
flow during oncoming collision
at native resolution with static
observer and moving MAV.

Figure G-10c: Object identifi-
cation flow grouping during on-
coming collision at native reso-
lution with static observer and
moving MAV (objects enclosed
by green boxes)

Figure G-11a: Image of opti-
cal flow during oncoming colli-
sion at 160×120 resolution with
static MAV obstacle and moving
observer.

Figure G-11b: Image recon-
struction from flow at opti-
cal flow during oncoming colli-
sion at 160×120 resolution with
static MAV obstacle and moving
observer.

Figure G-11c: Object iden-
tification flow grouping during
oncoming collision at 160×120
resolution with static MAV ob-
stacle and moving observer (ob-
jects enclosed by green boxes)

lower resolutions. For this case, an alternative approach was attempted where all pixels
moving at a slower rate than average were identified as the object. This is because two
moving observers at similar velocities results in the MAV appearing static within the frame.
This opposite algorithm, however, was also not suitable due to the oscillations of the camera
and did not work successfully.

G-2-5 The influence of field of view

Even excluding all problems related to the fail-safe detection of another MAV, the camera’s
limitations with respect to field of view can pose significant issues for collision avoidance
(Guzzi, Giusti, Gambardella, Theraulaz, et al., 2013). One example of a failure condition
is exemplified in Figure G-14a and Figure G-14b. These instances show a collision path
whereby the camera’s field of view is insufficient to detect the incoming MAV until a collision
is imminent. In this case, within the span of 5 frames (which, for a video recorded at 30fps,
means ≈ 0.16s), the MAV goes from entering the frame to a near-collision.
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Figure G-12a: Image of optical
flow during oncoming collision
at native resolution with static
observer and moving MAV.

Figure G-12b: Image recon-
struction from flow at optical
flow during oncoming collision
at native resolution with static
observer and moving MAV.

Figure G-12c: Object identifi-
cation flow grouping during on-
coming collision at native reso-
lution with static observer and
moving MAV (objects enclosed
by green boxes)

Figure G-13a: Image optical
flow during oncoming collision
at 160×120 resolution with both
moving MAV obstacle and mov-
ing observer at ≈ 90◦ collision
path

Figure G-13b: Image recon-
struction from flow at opti-
cal flow during oncoming colli-
sion at 160×120 resolution with
static MAV obstacle and moving
observer.

Figure G-13c: Object iden-
tification flow grouping during
oncoming collision at 160×120
resolution with static MAV ob-
stacle and moving observer (ob-
jects enclosed by green boxes)

Figure G-14a: Still from frame 18 of recorded
video (at 30fps). The MAV is judged recogniz-
able starting from this frame.

Figure G-14b: Still from frame 23 of recorded
video (at 30fps). The MAV is at its closest point
(near-collision).
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Appendix H

ROS Implementation Details

This section briefly explains additional details regarding the system implementation in the
ROS/Gazebo simulation environment. Figure H-1 shows a graph of the communication be-
tween the active nodes during a simulation with 2 MAVs. This is analogous to the situation
with 3 (or more) MAVs, in which case more namespaces are added (uav3, uav4, etc.). Cur-
rently, the simulation environment is set-up to be launched with up to 3 MAVs.

The node developed within this report is called “mav ctrl”, shown in uav1 and uav2 as
/uav1/mav ctrl 1 and /uav1/mav ctrl 2. This node handles the following:

• Simulation of Bluetooth antenna and sensor receivers.
• Code EKF and avoidance functions (built by including code directly from Paparazzi

UAS).
• Output of velocity commands to relevant simulated MAV.
• Logging of on-board data to a txt file for analysis.
• Check collision to other MAVs and kill the simulation if a collision occurs. A collision

is any time that the distance between the two drones is larger than twice their radii.

The node reads a set of parameters that may be set at run time:

• Collision avoidance active or not active. This is set by instructing parameter “avoid-
ance” 1 or 0 for active and not active, respectively.
• Diameter of the MAVs. The is parameter name “mavsize”.
• Arena Side Length. This is set by parameter “arenasize”.
• Name of the MAV. This is the ID of the MAV at runtime, it may be a string.
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Figure H-1: Graph of communication between ROS nodes for a simulation with 2 MAVs.
Gazebo, uav1, and uav2 are the active namespaces. Gazebo published ground truth data
(“uav1/ground truth/state”) to uav1 and uav2. The controller of this report is coded in the
nodes /uav1/mav ctrl 1 and /uav1/mav ctrl 2 for uav1 and uav2, respectively. These send
velocity commands back to the gazebo simulations.
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