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Abstract
Sea-level rise (SLR) can amplify the episodic erosion from storms and drive chronic
erosion on sandy shorelines, threatening many coastal communities. One of the major
uncertainties in SLR projections is the potential rapid disintegration of large fractions of
the Antarctic ice sheet (AIS). Quantifying this uncertainty is essential to support sound
risk management of coastal areas, although it is neglected in many erosion impact
assessments. Here, we use the island of Sint Maarten as a case study to evaluate the
impact of AIS uncertainty for future coastal recession. We estimate SLR-induced coastal
recession using a probabilistic framework and compare and contrast three cases of AIS
dynamics within the range of plausible futures. Results indicate that projections of coastal
recession are sensitive to local morphological factors and assumptions made on how AIS
dynamics are incorporated into SLR projections and that underestimating the potential
rapid mass loss from the AIS can lead to ill-informed coastal adaptation decisions.
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1 Introduction

Coastal zones accommodate millions of people worldwide and provide immense economic,
environmental and aesthetic value to society (McGranahan et al. 2007; Hallegatte et al. 2013).
At least 20% of the world’s sandy beaches are in a state of erosion (Luijendijk et al. 2018), and
sea-level rise (SLR) will inevitably exacerbate the retreat of shorelines (Stive 2004; FitzGerald
et al. 2008; Ranasinghe and Stive 2009; Hinkel et al. 2013; Anderson et al. 2015). Coastal
managers are responsible for safeguarding the resilience of coastal communities to coastline
erosion. The design and cost-efficiency of coastal defences (e.g. nourishments, setback lines)
hinge critically on the likelihood and magnitude of future SLR estimates along the coast.
Projections of future SLR, however, have large inherent uncertainties, in particular associated
with the potential rapid disintegration of the Antarctic ice sheet (AIS) from runaway feedbacks
such as marine ice sheet instability (MISI) (Joughin et al. 2014; Ritz et al. 2015) and marine ice
cliff instability (MICI) (Pollard et al. 2015; DeConto and Pollard 2016; Oppenheimer and
Alley 2016).

Sandy shorelines are dynamic systems (Stive et al. 2002; Ranasinghe 2016). During storms,
elevated water levels, together with extreme waves, initiate episodic retreat of the shoreline,
which subsequently recovers under fair weather conditions. Traditionally, to obtain predictions
of storm-driven beach erosion, a numerical model is forced with a design wave and surge
condition to determine the resulting design storm erosion (Carley and Cox 2003; Callaghan
et al. 2009). Storm parameters (storm surge, wave height, wave period, wave angle, storm
duration) are however stochastic in nature and covary with each other, making the aforemen-
tioned traditional approach sub-optimal (Callaghan et al. 2008, 2009; Corbella and Stretch
2012). SLR is expected to increase the frequency of extreme water levels (Tebaldi et al. 2012;
Buchanan et al. 2017) and will therefore contribute to an amplification of storm-induced
erosion (McInnes et al. 2016; Ranasinghe 2016).

On longer timescales (decades/century), SLR will result in coastline recession. The ‘Bruun
Rule’ is a commonly applied predictor of this process and estimates the re-orientation of the
active cross-shore profile landward and upward to maintain its equilibrium shape, thereby
moving sand from onshore to offshore (Bruun 1954). The ‘Bruun Rule’ is widely criticized
with respect to its accuracy but is still routinely applied by practitioners worldwide, mainly due
to its ease of use (Cooper and Pilkey 2004; Stive 2004; Ranasinghe and Stive 2009).
Ranasinghe et al. (2012) introduced an alternative approach to model SLR-induced recession.
This method deviates from the ‘Bruun Rule’ by coupling the morphodynamics of storm
erosion and longer-term recession using fundamental physical concepts. In addition, it has
the advantage of providing probabilistic estimates of coastline recession. This methodology
has now been applied in Australia (Ranasinghe et al. 2012), The Netherlands (Li et al. 2014b),
Spain (Toimil et al. 2017), Sri Lanka (Dastgheib et al. 2018, in review) and France (Le
Cozannet et al. 2019), and further extended to quantify coastal erosion risk (Jongejan et al.
2016; Dastgheib et al. 2018, in review).

Given the billions of dollars of coastal assets exposed, effectively managing the coastal
zone is essentially a risk-management issue (Cowell et al. 2006; Oppenheimer and Alley 2016;
Ranasinghe 2016). Probabilistic projections of storm erosion and long-term recession are
therefore a necessity to guide coastal managers in making risk-informed coastal zone man-
agement decisions. Management strategies should account for the uncertainty in SLR projec-
tions including potential rapid ice sheet dynamics. However, projections of AIS are
ambiguous, indicating that it is currently hard to agree on a single future probability
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distribution function (Kopp et al. 2017). To address this, high-end projections including recent
understanding of the potential rapid mass loss from of the AIS (Le Bars et al. 2017; Kopp et al.
2017) are compared to SLR projections provided by the Intergovernmental Panel on Climate
Change (IPCC). Evaluating different distribution functions provides valuable insight into tail
risks (i.e. events with low-probability but large consequences), which are important for risk-
averse coastal managers (Hinkel et al. 2015). However, to date, the evaluation of SLR-induced
erosion tail risk within a probabilistic framework is lacking in the literature and is hence the
main focus of this study.

Here, we evaluate how including different projections of AIS dynamics in SLR projections
might affect the design values of coastal recession (by 2100). We consider three plausible
future estimates (Section 2.2): one consistent with the AR5 report of the IPCC (AR5) (Church
et al. 2013), a skewed distribution function of AIS dynamics based on Levermann et al. (2014),
and a high-end scenario based on DeConto and Pollard (2016). Following the probabilistic
coastline recession (PCR) model introduced by Ranasinghe et al. (2012), here, we use a
probabilistic framework using synthetic storm sampling (SSS) (Section 2.3) and an analytical
erosion and shoreline prediction model (Section 2.4) to derive estimates of future storm
erosion and recession (Section 3.2). We advance prior PCR model applications by introducing
SLR uncertainty into the methodology (Section 4.1).

2 Methods

2.1 Study area

The island of Sint Maarten is used as a case study to demonstrate the method. It has a rocky
coastline with numerous embayed and pocket beaches. The tide is primarily diurnal with a
tidal range rarely exceeding 20 cm (micro-tidal) (Kjerfve 1981). The wave climate exhibits a
seasonality with mean significant wave height between 1.5 and 2.0 m. Storms are triggered by
locally generated waves, hurricane events during the North Atlantic hurricane season and swell
waves generated by intense mid-latitude storms during boreal winter (Jury 2018).

Two beaches on the island are considered: Dawn Beach (DB) and Orient Bay (OB), which
are embayed beaches that face the open ocean in the east (see Supplement Figure 1). The
beaches are both reflective, without a complex dune structure or offshore bars and have typical
grain-size diameters (D50) of 0.22–0.85 mm (Boon and Green 1988).

2.2 Regional sea-level rise projections

The starting point of the probabilistic projections is the method of GMSL rise as in AR5 of the
IPCC (Church et al. 2013) and extended by de Vries et al. (2014) and Le Bars et al. (2017).
Here, only the modifications are presented with full details in the Supplement. New IPCC
projections are now available from the Special Report on the Ocean and Cryosphere in a
Changing Climate (SROCC) report (Oppenheimer et al. 2019). These projections are similar to
AR5 except for the RCP8.5 scenario for which they are now around 10 cm higher because of a
re-evaluation of the AIS contribution.

A rise in GMSL can be attributed to changes in mass loss from the Greenland ice sheet
(GIS), AIS, glaciers and small ice caps (GIC) and land water (LW), and by thermal expansion
and salinity changes of the ocean (ocean steric). Both ice sheets are further subdivided into a
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component that represents dynamic mass loss (dynamic processes at the ice-ocean boundary)
and surface mass balance (mass changes due to accumulation and ablation). Regional SLR can
differ from GMSL rise due to the self-gravitational and rotational effects of mass loss from the
ice sheets and changes in regional ocean dynamics and the inverse barometer (IB) effect
(Slangen et al. 2014). Vertical ground motions are not included in the projections given
contrasting estimates derived from different methodologies (see Supplement).

Three modifications are made relative to Church et al. (2013), namely (1) substitution of the
AIS dynamics with two other estimates, (2) regional correlation between the ocean steric
component and global mean surface temperature (GMST), and including additional model
uncertainty in the projections.

(1) In AR5, the AIS dynamics contribution is included by means of a uniform, scenario-
independent, distribution function with median of 8 cm. This was based on Little et al. (2013),
who extrapolated observed growth rate of discharge in part of West Antarctica and further
quantified the uncertainty about future discharge from other drainage basins on the AIS. For
the second case, results from Levermann et al. (2014) are used. Linear response theory is used
to construct a probabilistic framework combining the results of five ice sheet numerical models
to project ice discharge for varying basal melt scenarios (melt underneath the ice shelves due to
an influx of warm ocean water). The use of linear response theory implies that self-amplifying
effects such as MICI and MISI are assumed not to be dominant. The result for both RCPs is a
skewed distribution function with the median close to the median value of Church et al.
(2013), but with increased probability of larger mass loss. The third case includes the
numerical model results of DeConto and Pollard (2016). Their projections of AIS contribution
to end-century GMSL are hitherto the highest reported values from a numerical model. The
numerical model has, apart from MISI feedback, the first parametrisation of hydrofracturing
due to surface melting and ice-cliff structural failure, leading to the MICI feedback (Pollard
et al. 2015). As in Le Bars et al. (2017), we use the most extreme case from DP16, which
assumes a SLR of 10 to 20 m during the Pliocene and applies a bias correction to the
temperature of the ocean forcing in the Amundsen Sea and Bellingshausen Sea. The
representation of the DP16 projections in Le Bars et al. (2017) is simplified: the uncertainty
is represented as a normal distribution instead of positively skewed (Kopp et al. 2017; Edwards
et al. 2019) and the temperature dependence for a given date is obtained from a linear
interpolation between the RCP4.5 and RCP8.5 scenarios from DP16.

(2) The ocean steric component, ocean dynamics, IB and GMST are taken from an
ensemble of global climate models: the Coupled Model Intercomparison Project Phase 5
(CMIP5). In AR5, the steric contribution to GMSL rise is assumed to be perfectly correlated
with GMST (ρ = 1.0). However, for Sint Maarten, a local correlation coefficient of 0.4 is found
from the CMIP5 models. The low local correlation can be well explained by the fact that steric
effects are not only forced by GMST, but also depend on ocean dynamical processes that are
model-dependent (Le Bars 2018). To account for the fact that the climate model range does not
accurately represent the entire range of likely futures (Annan and Hargreaves 2010), an
additional model uncertainty is introduced by rescaling the model-based 5th-95th percentile
range to the 17th-83rd percentile range. This is implemented by multiplying the standard
deviation of the normal distributions representing temperature and ocean thermal expansion by
a factor of 1.64, as done previously by Kopp et al. (2014) and Le Bars et al. (2017).

To construct regional SLR projections, the global projections of mass change are
scaled to the local scale using fingerprint values of Slangen et al. (2012) and Slangen
et al. (2014). In this region, the fingerprint for the AIS has a value 15 to 30% above
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the global average, whereas GIS, GIC and LW are close to the global average (∼ 90–
100%). Vertical land movement is excluded from the analysis given diverging local
trends observed using different methods (see Supplement). This now results in re-
gional SLR projections from 2006 to 2100 for the three cases of AIS dynamics and
two representative concentration pathways (RCP): RCP4.5 and RCP8.5. Henceforth,
we will abbreviate the different cases as IPCC, LEV14 and DP16.

2.3 Synthetic storm sampling

SSS allows sampling many plausible multivariate storm time series (Callaghan et al. 2008; Li
et al. 2014a; Wahl et al. 2016; Davies et al. 2017), which can be coupled to plausible SLR
trajectories. The use of SSS intrinsically assumes that the observations represent only one
realization of potentially observed storm parameters instead of the full envelop of realizations.
To derive the SSS, we first create a time series of storm parameters and extract storms from
this. These storms are used to fit a stochastic model, from which random storm parameters can
be sampled. Regional SLR trajectories can then be added to the storm surges to explore
possible futures.

We extract data from satellite-based products that have a global coverage, which makes the
approach generic and easily applicable in data-scarce environments.

2.3.1 Data retrieval

Storm parameters are here defined as a combination of wave and wind climate data
(significant wave height Hs, peak wave period Tp, wave direction Θ, wind speed u10) and
(storm) surge S. Time series of storm parameters are derived for a 25-year period (1993–
2017) with 6 h temporal resolution. Hs, T, Θ and u10 are taken from the ERA-Interim
reanalysis product (Dee et al. 2011). Data is extracted from an offshore location [18.125°
N, 62.875° W] (OB) and [18.0°N, 62.875°W] (DB), where water depth is considered
deep enough to assume linear (Airy) wave theory. A time series of S is constructed by
adding up the astronomical tide ηa (FES2014, Carrere et al. 2015), atmospheric wind and
pressure set-up ηsur (Mog2D-G, Carrère and Lyard 2003), extra wind set-up ηwis and
wave set-up ηwas (Dean and Dalrymple 2001). The resolution of the reanalysis products
is too coarse to resolve hurricanes in the region, thereby underestimating the erosion
during hurricane events. ηwas requires information on breaking wave height Hb and depth
hb. To translate offshore wave conditions to breaking wave height, the predictive formula
of Larson et al. (2010) is applied. This predictive formula essentially governs the wave
energy flux conservation combined with Snell’s law.

Storm events are extracted from the 25-year time series. Here, we define a storm as an
offshore wave height threshold that, if surpassed, will result in morphological change at
the beach. Wave height is used as an indicator given that wave impact results in the
mobilization of sediments at the beach with the resulting undertow and rip currents
moving the sediment offshore (van Rijn 2009). Moreover, ηwas dominates S, with
contributions never less than 75–80%. Setting the threshold is however difficult, since
we lack storm erosion data. To bridge this gap, satellite-derived shoreline (SDS) posi-
tions from mid-2012 to early 2017 are obtained from Luijendijk et al. (2018). SDS are
derived from satellite images that detect the shoreline using a shoreline detection
algorithm. For the Sint Maarten beaches, the recurrence interval of satellite
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measurements is between 1 and 16 days over this period. From this, periods of shoreline
erosion and accretion can be identified (Fig. 1b), which show a clear seasonal cycle. We
adopt an iterative approach of setting the wave height threshold, identifying storms and
comparing the times when storms are identified with the instances when the shoreline is
eroding. For both beaches, a threshold is set to 1.9 m that explains most instances when
the shoreline is eroding (or already eroded). For Orient Bay, this is indicated by the grey
lines in Fig. 1 together with the corresponding values of Hs and S.

Fig. 1 a Time series of Hs together with the storm threshold of 1.9 m (red line). b Satellite-derived shoreline
(SDS) positions of Orient Bay with linear interpolation between SDS measurements (triangles). The shoreline
position is relative to the position in March 2012. c Time series of S. The grey line in a–c indicate the onset of the
storm events as identified by the threshold
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2.3.2 Implementation synthetic storm time series

From the storms identified in the time series, we extract storm parameters: peak Hs, peak
S, the concordant Tp and Θ of the peak Hs, monthly storm frequency (Fs) and the
duration of the storm D above the threshold. To extract independent events, a 24-h time
interval time is set that has to be exceeded before a new storm is counted, following Li
et al. (2014b). Moreover, storms are split into summer storms (April–September) and
winter storms (November–March), to account for the seasonality that exists. Mathemat-
ical details and further details of the method are included in the Supplement.

To model interdependencies between storm parameters, we use copulas. A copula
can be defined as a joint distribution function on unit scale [0 1] (Sklar 1959), which
makes them very flexible, as they are independent of the underlying marginal distri-
bution function of the variables (de Waal and van Gelder 2005). A copula is fitted to
the interdependencies Hs - S, Hs - D and Hs - Tp for both seasons. We test both
elliptical (Gaussian and t) and Archimedean copulas (Frank, Gumbel, Clayton) and
perform a goodness-of-fit test based on Cramèr-von Mises M statistic (Genest et al.
2009). The t-copula is taken, which performs well and has the advantage that it can
be extended to multiple dimensions easily (characteristic of elliptical copulas). This
copula in combination with the marginal distribution function (MDF) per variable is
used to sample a four-dimensional set of the storm parameters (Hs, Tp, S, D) per
synthetic storm event. Θ is sampled independently from its empirical cumulative
distribution function (ECDF), while only considering wave angles within the range
of incident angles. For Fs, a Poisson distribution is fitted to the monthly rate of storm
occurrences (making yearly storm occurrence also Poisson distributed). From this, a
random sample can be drawn for every month, with storms assigned a timestamp
within a month (maintaining a 24-h inter-arrival time between storms).

To constrain the samples within a physically realistic extent, a few boundaries are set
(dashed line Fig. 2). Observations show a maximum steepness of s = 0.06 between wave
length (thus wave period) and a maximum duration of D = 350 h. Additionally, following
Wahl et al. (2016), the maximum wave period is fixed at 25 s, to avoid sampling waves that are
being classified as infragravity waves (Munk 1949). A trend analysis of (seasonal) storm
parameters, similar to Wahl and Plant (2015), is performed. Results suggest that the seasonal
cycle is slightly amplified (positive in winter, negative in summer) over the period 1993–2017.
In contrast, climate models predict a small decline in wave and surge conditions for the future
(Hemer et al. 2013; Vousdoukas et al. 2018). It is therefore chosen to assume stationary storm
conditions for the SSS.

Now, many long time series of future storm events can be sampled. This is exemplified in
Fig. 2 where 10,000 samples are generated and compared to the observations in blue (winter)
and red (summer) together with the MDF, clearly showing a seasonal difference in dependency
structure (hence different copulas). The rank correlations (ρr) of the observations (black)
resemble those of the seasonal copulas (red/blue).

SLR projections are constructed for the period 2006–2100, and so SSS are also made
for the same time period (95 years). SLR will gradually increase over the years and add
up to the S that is sampled by the copula (Sslr,yr = Syr + SLRyr). A SLR trajectory is
constructed by random sampling from the distribution function of SLR. For instance, a
50th percentile trajectory consists of the 50th percentile values per year. This SLR
trajectory can then be added to the S values sampled for the corresponding years.

Climatic Change (2020) 162:859–876 865



2.4 Storm erosion and shoreline position

Coastal morphological response to storm events and SLR is expressed by two parameters: the
short-term retreat distance due to individual storms (RD) and the long-term coastal recession
(CR).

To model RD, an analytical formula derived by Kriebel and Dean (1993) (henceforth
KD93) is used that is fed by the storm parameters of the SSS. The KD93 formulation has no
calibration parameter and is therefore applied using the recommended settings (see Supple-
ment). After a storm has eroded the beach, wave-driven transport and aeolian processes will
move sediment back to the beach and (partly) recover it before a new storm hits. With SLR,
however, the magnitude of storm erosion will gradually increase and the beach does not have
enough time to recover from extreme events (because extreme events are occurring more
frequently). This drives a net sediment loss over the years, hence long-term CR of the coast. To
forecast the shoreline position, the shoreline movements in between storm events also need to
be quantified. We follow an approach similar to Ranasinghe et al. (2012) using a linear
recovery rate, but deviate by introducing a simple state dependency (see Supplement). The
state dependency is introduced since it is known that the rate of shoreline change is, apart from
wave energy, determined by its antecedent position (Yates et al. 2009). We search for a
representative recovery rate of the system that, on average, stabilizes the coast under a 500-
year simulation time in the absence of SLR (storm forcing only). For Orient Bay, a

Fig. 2 a Scatterplot of observed variables Hs and S for both winter months (blue) and summer months (red). The
black dots show a 10,000 random sample using the copulas. In the boxes, the univariate marginal distribution
functions are shown in the box. Spearman rank correlation (ρr) of the seasonal observations (red and blue) is
compared to those obtained from the sampled copula (black). b Same as a but for Hs - D. c Same as a but forHs -
Tp. Black dashed line indicates the steepness limit set (s = 0.06). d Same as a but for Hs and Θ that is sampled
independently from the empirical cumulative distribution function (no correlation compared)
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representative recovery rate of 0.10 m day−1 is found, whereas for Dawn Beach, this recovery
rate is 0.165 m day−1. If SLR is now added in the simulations, the beach will gradually erode
over time and the CR for a given year can be determined.

To validate the variability of the shoreline, the standard deviation of the detrended ECDF of
SDS data and the 500-year model run (without SLR) are compared. The standard deviation is a
measure of the ‘beach mobility’ (Stive et al. 2002) and shows good agreement (Supplement).

2.5 Sampling and analysis

The above-described methodology can be repeated multiple times. This is done as follows: (1)
sample a SSS together with a SLR pathway for 2006–2100, (2) calculate retreat distances due
to storms and SLR, (3) forecast the shoreline behaviour using the recovery rate, (4) analyse the
erosion hazard over the 95-year period and (5) repeat 10,000 times to obtain probabilistic
estimates for all SLR cases.

For RD, a generalized Pareto distribution is fitted to the data and the return periods are
calculated over the 2006–2100 period. The average shoreline position in 2100 is used to obtain
CR estimates for 2100 compared to 2006.

3 Results

3.1 Regional sea-level rise

The results for IPCC, LEV14 and DP16 cases for 2100 compared to the 1986–2005 average
are shown in Fig. 3b, d. The median (95th percentile) value of DP16 is respectively 200 (266)
cm for RCP8.5 and 108 (184) cm for RCP4.5. The skewed distribution function of the LEV14
case has a median value (95th percentile value) of 81 (134) cm for RCP8.5 and 57 (95) cm for
RCP4.5. In contrast, the IPCC estimates reach 74 (111) cm and 54 (80) cm for the same
percentiles and climate scenarios. Until 2060, results do not notably differ. Relative to GMSL
rise, median SLR along the Sint Maarten coast will be 1.01–1.14 times larger.

3.2 Retreat distance and recession

Future return period of storm erosion over the years 2006–2100, including the 90% uncertainty
range, is provided in Fig. 4a–d. For comparison, the black line in Fig. 4a–d is the baseline case
without SLR. We define return periods as the average rate of occurrence of an event integrated
over a given time span, here from 2006 till 2100. For instance, the 1/50 year will thus happen
approximately twice over this period. For Orient Bay, the return period of a 1/100 year retreat
event is 1.67 (2.4) times higher for DP16 and around 1.4 (1.5) times higher for LEV14 and
IPCC compared to the baseline under RCP4.5 (RCP8.5).

Supplementary Figure 3a–d shows the correlation between the SLR value for a given year x
and the 1/100 year retreat distance over the years (thus from 2006 to year x). The SLR value
sampled determines the trajectory taken. In case of a low correlation, the SLR trajectory
sampled was apparently not a driving force for the 1/100 year erosion event (storm random-
ness dominates). Until 2060–2070, the correlation is still below 0.5 implying a moderate
dependency. Thus, the increased frequency of more extreme S will not alter the extreme value
statistics much. For Orient Bay, the correlations in 2100 are close to 0.8–0.9 meaning that SLR

Climatic Change (2020) 162:859–876 867



is steering the extreme RD over the storm randomness, whereas for Dawn Beach, this
influence is less pronounced. The difference between the two beaches can also be explained
physically. Dawn Beach has a steeper beach slope and foreshore slope. According to Kriebel
and Dean (1993), this yields a more reactive beach in terms of morphological response. This
makes it less sensitive to an increase in S and more sensitive to the other storm parameters
influencing RD.

Fig. 3 a Regional SLR projections from 2006 to 2100 for RCP4.5. Grey line indicates 3-year running average of
tidal gauge stations (PSMSL) and grey diamonds recent altimetry data (aviso.altimetry.fr) for the Caribbean. b
PDFs of 2100 regional SLR compared to 1986–2005 under RCP4.5. c, d Same as a, b but for RCP8.5

Fig. 4 a Return periods of retreat distance due to storm events over the period 2006–2100 for Orient Bay under
RCP4.5. Median value (solid line) together with the 90% uncertainty (shaded area). b Same as a but under
RCP8.5. c, d Same as a, b but for Orient Bay. e Comparison between return periods of retreat distance from
storm events under the IPCC scenario and the DP16 (red) and LEV14 (blue) scenario. The dashed black line
indicates perfect agreement (no difference). f–h Same as e but for different RCP and different beach

b
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Finally, CR for 2100 is summarized in Fig. 5. First of all, Dawn Beach (Fig. 5c, d) will
experience larger CR, in line with the larger retreat distances, influenced by the morphological
character of the beach. Median CR values (black circle) range from 6 to 22 m for Dawn Beach
and 5–16 m for Orient Bay. However, the 1% exceedance probability (thin line upper panel)
ranges from 13 to 45 m for Dawn Beach and 9–38 m for Orient Bay (Fig. 5a, b). The lower
value of the range corresponds to the IPCC case, whereas the upper range corresponds to the
DP16 case, a 3.2–4.2-factor difference.

4 Discussion

4.1 Implications for design of coastal defences

The sensitivity of future erosion estimates to the ambiguity of AIS dynamics has implications
for the design of coastal defences.

For the retreat distance due to storms, we consider the estimates of the IPCC sea-level
projections for every return period and search for the relative return period for the other two
cases (e.g. a 1/100 year event has a value of 30 m for IPCC. Thirty meters corresponds to a
1/x year return period for LEV14). The result of this is displayed in Fig. 4e–h. The dashed
black line indicates perfect alignment between the cases with larger deviation from this line
indicating a larger difference. For instance, consider a coastal manager designing a setback line
based on the 1/100 year erosion event using the median value of the IPCC projections. This
event may, however, only be a 1/70 (1/60) event for LEV14 (solid blue line) and a 1/12 (1/2)
event for DP16 (solid red line) for RCP4.5 (RCP8.5) at Orient Bay. Therefore, this threshold
will occur 1.4–1.67 times as frequently for LEV14 and 8.3–50 times as frequently for DP16
over the same time span, with potential large economic consequences (e.g. tourism, damage
coastal infrastructure). For Dawn Beach, this effect is slightly less with relative return periods
of 1/90 (1/80) for LEV14 and 1/35 (1/7) for DP16 given scenario RCP4.5 (RCP8.5). For larger
return periods and for higher percentiles (dashed blue and red line Fig. 4e–h), the relative
difference increases. Therefore, paradoxically, risk-averse coastal managers, implementing
additional safety into their design standards, may make a larger underestimation relative to
their risk preference.

A similar analysis can be done for coastal recession by comparing the 2100 estimates
relative to 2006 expressed in terms of exceedance probability (Fig. 5e–h). Again, larger
deviations from the linear line (dashed black line) indicate larger differences (but now above
this line). Here, also larger relative differences are found for the lower exceedance probabil-
ities. Now, consider a coastal manager that designs sand nourishments to counterbalance the
projected future erosion equal to a 1% exceedance probability for the median IPCC case. In
contrast, this same design value has a 3–4.5% exceedance probability for LEV14 and a 37–
72% exceedance probability under DP16. This may be unacceptable in terms of risk faced by
the coastal community or may alter the cost-efficiency and lifespan of the nourishment as

Fig. 5 a PDFs of 2100 recession values compared to 2006 for Orient Bay under RCP4.5. In the top panel, the
median is shown together with the 66%, 90%, and 98% uncertainty range. b Same as a but for RCP4.5. c, d
Same as a, b but for Dawn Beach. e Comparison between exceedance probabilities of recession values in 2100
compared to 2006 under the IPCC scenario and the DP16 (red) and LEV14 (blue) scenario. f–h Same as e but for
RCP 8.5 (f) and for Dawn Beach (g, h)

R
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additional sand is necessary. We compare the recession values of the IPCC case in 2100 with
the two other cases and search for the year where this value will be reached. This is done for a
few exceedance probabilities and shown in Supplementary Figure 3. For DP16, the same
exceedance probabilities for the IPCC case will be reached 20–25 years earlier, almost
independent on the exceedance probability adopted. For LEV14, on the contrary, there is a
dependency on the exceedance probability adopted, and the acceleration in terms of years is
between 2 and 15 years.

Therefore, taking the uncertainty of AIS dynamics into account is critical for the design of
coastal protection measures. Other approaches than comparing three cases exist to do this, such
as extra-probability theory (Le Cozannet et al. 2017) or expert elicitation (Bamber and
Aspinall 2013; Oppenheimer et al. 2016). It also becomes evident from the comparison
between the beaches and the correlation analysis that the morphological characteristics, and
uncertainties, maybe as important for the future erosion estimates as the SLR projections and
uncertainties, which agrees well with previous research Le Cozannet et al. (2019). This makes
it important to consider morphological heterogeneity in future work that looks at regional and
global scale analysis of erosion. New global datasets on morphological parameters can steer
this development (Athanasiou et al. 2019).

4.2 Application and extension to other beaches

Although our results are presented for two beaches, the method can be easily extrapo-
lated to other sandy beaches globally. However, some local characteristics may influence
the results and modelling decisions made. First, we only consider cross-shore morpho-
logical change which can be substantiated by the fact the satellite-derived shoreline data
does not show a clear trend in long-term shoreline change. Our approach could be
extended by considering all sources and sinks of the sediment budget (Dean and
Houston 2016), which might be a dominant driver at other beaches (Luijendijk et al.
2018). Second, we do not account for interannual and multidecadal variability in storm
parameters, which may dampen or amplify erosion risk at some places (Wahl and Plant
2015; Davies et al. 2017). Variability can often be linked to large-scale atmospheric
dynamics. In our area, for instance, we find a negative correlation between the monthly
Niño3.4 index and monthly Hs (ρ ∼ −0.35). Third, improvement can be made for the
inclusion of erosion induced by hurricanes, since hurricanes are not well captured using
the re-analysis data and can govern the design standards of mitigation measures. Recent
advances in forcing large-scale hydrodynamic models with observed or synthetic hurri-
canes (Marsooli et al. 2019; Bloemendaal et al. 2020) can help refine the occurrence of
extreme surges and hence erosion. Fourth, for the coastal impact model, the Kriebel and
Dean (1993) formulation is considered suitable for first-order estimates of beach erosion
and it is thought to be most suitable for the beaches under consideration. In contrast, for
beaches with more dune-like features, other analytical formulas may be more suitable
(e.g. Larson et al. 2004). When higher accuracy is required, a semi-empirical model
(Callaghan et al. 2013) can be considered. At last, we assume a linear recovery rate of
the beach, which are close to the linear recovery rates mentioned in the literature
(summarized in Phillips et al. 2017) and identified in the SDS. Dune/beach recovery,
however, is coupled to marine and aeolian processes (Cohn et al. 2018), which differ per
beach, making the recovery rate variable over space and time. Therefore, local erosion
measurements may improve the validation of modelling choices and variables.
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5 Conclusions

The aim of this study was to evaluate the influence of three formulations of AIS dynamics into
regional SLR projections on future coastal erosion that informs coastal defences. A probabi-
listic approach was adopted that combines regional SLR projections with synthetic storm time
series and analytical storm erosion and shoreline prediction model.

We find that SLR uncertainties have an important contribution to the twenty-first-century
estimates of storm erosion events and dominate the erosion response after 2070. Estimates of
future erosion hazard tend to be prone to the assumptions made on how to include the AIS
dynamics into SLR projections. We estimate that return periods of future design storm erosion
may differ up to a factor 50 under various AIS scenarios. In terms of longer-term recession,
estimates of exceedance probability (by 2100) differ by up to a factor 72 and a given recession
value may therefore be reached 2–25 years ahead of 2100. In general, larger return periods and
low-exceedance probabilities are relatively more sensitive to the various AIS dynamics
scenarios. Moreover, we find that heterogeneity in morphological factors, and sensitivity to
storm parameters (due to exposure), may be equally important as SLR uncertainties, and hence
should be a focus point to better understand the sensitivity of global coastlines to SLR.

From our analysis, we conclude that precluding AIS uncertainty from SLR projections that
feed into coastal impact assessments may lead to ill-informed adaptation decisions, alter the
cost-efficiency of coastal defences and lead to potentially intolerable risk.
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