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Abstract

Planning agents have demonstrated superhuman performance in deterministic environments, such as
chess and Go, by combining end-to-end reinforcement learning with powerful tree-based search algorithms.
To extend such agents to stochastic or partially observable domains, Stochastic MuZero leveraged a
framework that models environment uncertainty by splitting transitions into agent actions and learned
stochastic outcomes. In this paper, we propose a novel architecture, FlowZero, which builds on this
idea but replaces the discrete latent modeling of environment stochasticity with Conditional Normalizing
Flows (CNF). This allows the model to learn a rich, continuous probability distribution over possible
future states conditioned on the afterstate. The key advantage of this approach is its ability to perform
exact log-likelihood evaluation, offering more precise density estimation than the evidence lower bound
(ELBO) used in Stochastic MuZero. We aim to verify the proposed CNF’s capacity to overfit data
and generalize to similar and larger data, and our novel agent FlowZero’s capacity to perform in
a stochastic environment.

1 Introduction

In the pursuit of better performance in complex tasks, planning has long been a focus in the domain of
artificial intelligence. Algorithms that leverage tree-based methods have shown great promise in various
environments such as card games [15], board games [22], and continuous control tasks [12].

The development of planning-based reinforcement learning agents that can operate at superhuman levels
has become a major milestone in the field. These agents are particularly effective in domains that require
long-term reasoning, precise planning, and strategic foresight, such as classic board games and complex
control tasks. A central theme in the success of these agents has been their ability to combine powerful
search algorithms with deep learning in an end-to-end framework.

Early approaches largely focused on model-free reinforcement learning due to the difficulties of model-
based methods. Specifically, model-based agents struggled to simultaneously learn accurate transition dynam-
ics and value functions. This disconnect limited their performance in high-dimensional or visually complex
environments. However, the introduction of AlphaZero [23] marked a turning point. By leveraging a per-
fect simulator of the environment, AlphaZero combined deep neural networks with Monte Carlo Tree Search
(MCTS) [14] to evaluate the value of states and propose action policies. This approach eliminated the need
for explicit reward signals during search and demonstrated unmatched performance in games like chess, shogi,
and Go.

Despite its success, AlphaZero’s dependence on a known and accurate simulator limited its applicability
to environments where such simulators are available. To address this, MuZero [2] proposed a more general
framework that learns a model of the environment implicitly, without requiring access to the true dynamics.
By learning a latent dynamics function from observations transformed into a rich latent space, MuZero
was able to predict the policy, value, and reward necessary for planning with no previous knowledge of the
environment. This extended the applicability of planning-based agents to more general settings, including
visually rich domains such as Atari games.

However, MuZero assumes a deterministic environment model, which restricts its utility in many real-
world applications where the environment is inherently stochastic or only partially observable. For example,
in noisy physical environments, the same action may lead to different outcomes depending on hidden or
random factors. Recognizing this limitation, Stochastic MuZero [2] introduced a framework that augments
the MuZero architecture to handle stochastic transitions. By modeling the transition as a two-step process,
first applying the agent’s chosen action, then applying a learned stochastic outcome, the agent can plan over
both decision and chance events. This stochasticity is modeled using a discrete latent representation trained
via a Vector Quantized Variational AutoEncoder (VQ-VAE) [27], allowing the agent to predict a distribution
over discrete possible environment outcomes.



While Stochastic MuZero is an important step forward, its reliance on discrete latent codes and approx-
imate likelihood training (via evidence lower bounds) introduces limitations in modeling expressiveness and
evaluation accuracy. In this paper, we propose an alternative approach that addresses these limitations by
incorporating Conditional Normalizing Flows into the MuZero framework. Our method, FlowZero, retains
the two-step planning structure of Stochastic MuZero but replaces the discrete latent stochastic model with
a flow-based generative model capable of learning complex, continuous distributions over next states, con-
ditioned on the afterstate. Conditional Normalizing Flows (CNF) provide exact log-likelihood evaluation,
enabling more precise and expressive density modeling of environmental stochasticity. Under an offline super-
vised setting, we proved that the CNF is capable of quickly overfitting various datasets, precisely
generalizing to data similar to its training, and decently generalizing to vastly different data.
There is still work to be done to achieve the desired performance in the online MuZero-style setting
of FlowZero.

2 Background

Autoregressive Models have proven to be an effective option for solving the issue of modeling highly
expressive probability distributions in various domains like image [26] and speech [25] generation. They
factorize the joint distribution of the target into conditional probabilities that create a direct dependency
between the dimensions of a sample. This is done using the chain rule for probabilities, as shown in equation 1
where x; represents a subset of dimensions of the target distribution. Although they are remarkably accurate,
allowing exact likelihood maximization, they lack in sampling time, since one needs to sample each dimension
subset sequentially.

p(e) = [ pla | 2 1)

Diffusion Models learn to denoise samples that represent pure noise into realistic samples of the target
distribution. They do this by learning how to gradually reduce a regular sample into noise during training,
and then reversing this process starting from noise for sampling. The formula for a noising (diffusion) step is
shown in equation 2. Similarly to autoregressive models, diffusion models suffer from slow sampling, since the
denoising process requires many steps for high resolution outputs. They have shown excellent performance
in image [20], text-to-image [16], and video [17] synthesis.
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MuZero [21] is a planning agent that learns a model of the game it is playing. Similarly to its predecessor
AlphaZero [23], MuZero uses a powerful tree-based search planning algorithm that allows for precise and
sophisticated look-ahead in games that require it, such as chess and go. They combine this powerful planning
algorithm with an end-to-end reinforcement learning paradigm that trains the components of the model to
accurately predict the value of the current state, the policy (probability distribution of being the best move
over the set of valid next moves), and the estimated immediate reward of applying a certain move. These
values that are necessary for the tree search to be accurate. MuZero revolutionized the algorithm by adding a
new learned model that takes environment observations and transforms them into a rich latent representation.
This way, the agent doesn’t need knowledge of the environment dynamics (i.e. rules of the game), making
it effective in any deterministic environment without access to a perfect simulator. Unfortunately, this
versatility only applies to deterministic environments, since the planning step assumes each state-action pair
will always lead to the same future state.



Stochastic MuZero [2] is a direct upgrade to base MuZero, aiming to bring stochastic planning into
the agent’s capabilities. The authors introduce a novel planning architecture that makes use of afterstates,
splitting a 'move’ into applying a user action e and applying environment stochasticity afterward, using
another jointly trained model. Leveraging a variant of the Vector Quantized Variational AutoEncoder, they
train a model that can effectively predict the probability of any one of m discrete possible stochastic effects
happening at any timestep without supervision. They use these discrete codes in the same way as user
actions, passing them to the same type of dynamics network to predict the future state.

VQ-VAE [27] is a variant of the VAE architecture that quantises the latent representations of inputs
before they are passed to the decoder. After training both the encoder and decoder, a powerful autoregressive
model effectively learns the probability distribution of the quantised embeddings of inputs, representing the
prior of the model. Using ancestor sampling, they query the trained prior and feed the result to the decoder,
forming an effective generative model. Stochastic MuZero uses this architecture to quantise environment
representations into discrete stochastic events in the environment.

Normalizing Flows [18] provide a general mechanism for defining expressive and highly complex prob-
ability distributions. Through a sufficiently complex chain (or a flow) of transformations, any point on
a particular target distribution can be mapped to a very simple same-dimensional distribution, usually a
multivariate standard Gaussian. This technique becomes very strong when enforcing the restriction that
all transformations are bijective. If this rule is satisfied, trivially sampling from the latent distribution and
applying the inverse of the flow will output a highly accurate sample from the target distribution. Another
benefit of using NF for probability modeling is exact log-likelihood evaluation. Since there is a one-to-one
mapping between the target and latent distributions, the likelihood can be precisely computed using the
change of variable formula, as shown in equations 3 and 4. px(x) represents the likelihood that the current
sample x is part of the distribution we are trying to model. f(.) is the flow and thus p,(f(x)) is the likelihood
of the output of the flow to be part of the prior gaussian distribution. Finally, 86’;(575) is the jacobian of the
flow. This term describes the partial derivative of all dimensions of the result with respect to all dimensions
of the input. It represents the 'warping’ of the distribution space and thus adding it helps us compute the real
likelihood of our sample to our modeled distribution. The model does not have to be trained on likelihood
estimations, but on maximising the likelihood directly. With careful choice for these transformations, the
change of variable formula can be very easily computed. It requires taking the logarithm of the determinant
of the jacobian of the transformations with respect to the input. If this determinant can be made triangular,
this operation is simply a sum of the logarithm of the diagonal terms.
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RealNVP [7] propose a very crafty solution to how to build a tractable and efficient normalizing flow
for density estimation. Their idea for modeling transformations is as follows: you split input z into x; and
Z9, leave one side (i.e. x1) unchanged while plugging it into a deep residual network that generates a scale s
and a shift ¢ that is applied to x2. Then we concatenate the unchanged x;, and the y, = s* x5 +t. Since the
half that generates the scale and shift remains unchanged, it can be plugged back into the network in order
to do a reverse pass of the network (i.e. latent variable to target distribution). Since the network does not
need to be invertible with respect to the scale and shift factors, we can make these networks as complex as
we want, ensuring a good density approximation. The negative log-likelihood is easily tractable under this
paradigm because the log determinant of the jacobian for each of these layers (which summed up give the
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second term of the right side of equation 4) is equivalent to the sum of the elements of the scale vector s, as
shown in equation 5 (which assumes the previous conditions i.e. z7 stays unchanged and is passed to the s
and t networks).
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Conditional RealNVP The authors of [29] suggest a natural extension to the Normalizing Flows con-
cept, namely the capacity to learn a complex conditional probability. They hypothesized that concatenating
the input to the scale and shift networks with the conditional element during training and sampling would
effectively train the network to not only properly transform a latent variable into a realistic sample of the
original distribution, but that it would also be accurately conditioned on the required element. The trans-
formed change of variable formula is described in equation 6. This proved accurate as the performance found
in the field of super-sampling was competitive with other modern solutions.
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3 Related Work

In the field of reinforcement learning (RL), the Markov Decision Process (MDP) [19] is the format usually used
to describe the agent’s interactions with the environment, containing a set of world states and transitions
from one to another, alongside with the rewards of these transitions. Probabilistic Ensembles with
Trajectory Sampling [5] is an algorithm that seeks to to bridge the gap between the strength of model-
based reinforcement learning methods and the efficiency of model-free alternatives in MDPs with inherently
stochastic transitions. It trains a multitude of deterministic dynamics models, and then samples multiple
trajectories through them to make planning robust to uncertainty. It combines this with Model Predictive
Control (MPC) [4] to plan over the learned model instead of learned policies (distributions over possible
future actions). At each timestep, the model plans a sequence of actions, runs it through the ensemble of
dynamics networks to calculate expected return and chooses the action to play accordingly.

Another model based RL agent that targets uncertain transitions within MDPs is Dreamer [9]. They
managed to obtain high performance and efficiency in visual control tasks by formulating them as partially
observable MDPs (POMDP), making every transition in their world model inherently stochastic. Dreamer
operates on a similar conceptual plane as MuZero [21], the primary distinction coming down to the mechanism
of choosing an action. While MuZero uses MCTS to decide the policy at the current timestep, Dreamer
contains an action modeling component that directly predicts the next action given any latent state. This
action model is then used to imagine trajectories which are then used to directly train the action model.
Similarly to MuZero, Dreamer uses real life outcomes stored in a replay buffer to train the world dynamics
model that is used in the imagined rollouts.

PlaNet [10] introduces a novel architecture for solving POMDPs which does not rely on explicit policy
and value predictions. Similarly to other MBRL agents, PlaNet uses its real world experience to update the
world model, using the concept of belief states. They are pairs of a deterministic state, preserving information
from the trajectory that lead to it, and a stochastic state, modeling the local transition uncertainty. Thus,
combining this pair of states encodes a distribution over possible future states based on history. It then
samples this distribution to obtain imaginary trajectories and evaluate candidate action sequences via the



Cross-Entropy Method (CEM) [3] instead of MCTS to predict rewards. Unlike Dreamer and MuZero, which
seek to learn an explicit policy, PlaNet uses MPC [4], similarly to PETS [5].

4 FlowZero

FlowZero combines a learned stochastic transition model of the environment dynamics with a variant of
Monte Carlo Tree Search (MCTS). First, we describe the new model and subsequently how it is combined
with MCTS planning.

4.1 Modeling Stochasticity

As mentioned earlier, our approach seeks to attempt more precise modeling of the environment uncertainty,
but we build directly on the architecture of the Stochastic MuZero paper [2]. The principal idea lies in
the differentiation of decision points and chance points in the tree nodes of the planning stage [6]. In the
former, the agent is tasked with learning optimal player moves, while the latter focuses on estimating the real
probability distribution of the uncertain environment events. This modified version of the MuZero MCTS
builds on the concept of afterstates, introduced by [24]. Splitting a standard transition into a deterministic
step and a stochastic step effectively allows the agent to focus on accurately modeling both aspects of
the environment. The core difference in our approaches lies in how we model the stochastic transition, as
follows: The Stochastic MuZero paper [2] assumes these stochastic events to be a fixed set of learned discrete
possibilities. Then, they use an afterstate dynamics network identical as the one used in decision states to
predict the event’s impact on the environment. Thus, they boil down the modeling of stochasticity to learning
those discrete chance codes.

FlowZero, on the other hand, seeks to learn the future state S;11 ~ P(si41 | 2,as:), where z is a simple
distribution of the same dimension as the afterstate, namely a multivariate gaussian conditioned on the
afterstate, as described in equation 7. The pu(.) and o(.) functions are not the mean and variance of the
afterstate, but learned neural networks. This transformation is learned by taking the realized future state,
putting it through the representation function, and running it through a Conditional Normalizing Flow using
the afterstate to realistically map it to a latent standard gaussian. Thus, the prediction network should
converge such that sampling a latent gaussian and passing it backwards through the flow using an afterstate
as a condition, it would map back to a probabilistically accurate future state.

p(z | ) = N (z; u(x), 0% (x)) (7)

4.2 Complete model

For the model description, the subscript value ; represents the timestep of the real life observation that a
rollout starts from, and the superscript value * represents the depth in the rollout itself. The differentiation is
useful because the rollout happens with no knowledge of the outside world (i.e. only in the agent’s latent state
space). For example, latent state s7 corresponds to the real life observation o;12. The FlowZero architecture
contains 5 functions: a representation function h that generates a rich latent state s from the observation
0<—¢, a dynamics function ¢ which produces the latent afterstate asf from the latent state s¥ and the action
ai+k, an afterstate dynamics function g that produce the future latent state sf“ and the immediate reward
rﬁl from the current afterstate asf , a prediction function f which given a latent state s,’f predicts the value

vF and policy p¥, and an afterstate prediction function v that generates the afterstate value QF. The model



equations are shown in equation 8. For any readers interested in cross-checking this description with the
original Stochastic Muzero paper [2], keep in mind that we name the afterstate->future state network the
afterstate dynamics, while they name it simply the dynamics.

Representation s) = h(o<—¢)

Dynamics asy = $(s¥, ary)
Afterstate Dynamics sy rF T = g(ash) (8)

Prediction p,’f,vf = f(Sf)

Afterstate Prediction QF = (as¥)

During inference, given an initial observation o.—; and a sequence of actions as.;1k, we can generate
trajectories from the above model by recurrently unrolling it and by transforming trivially sampled gaussian
latents into future states such that stochasticity is accounted for.

4.3 Training

The fundamental end-to-end training style of MuZero is slightly changed in the implementation of FlowZero.
Given a trajectory of length J with observations o<—;..y s, actions a;..y s, value targets z;..4 s, policy targets
Tet47, rewards ugy1.44 7, and represented future states s;yy1.44 541, the model is unrolled for J steps as shown
in figure 1 and trained to optimize the sum of losses shown in equation 9: the standard MuZero loss and the
tailored loss of the CNF network wholly described in equation 12 later on.

Ltotal _ LMuZero +LCNF (9)

The MuZero loss is the same as described in the paper [21]. The negative log-likelihood (NLL) loss is the
negated log-likelihood that we compute using the change of variable formula (see equation 3 and 4; 6 for
the conditional version). In this case, x is the future state that we are passing to the CNF network, and ¢
is the afterstate that conditions the flow. Equation 10 shows the NLL loss for the model. This is only one
component of the real CNF loss, as described in equation 12 under section 5.1.1.

J—-1

LNLL = Z 'I’L”(St+k+1, a8t+k) (10)
7=0

5 Experimental Setup and Results

Here we describe our experiments aimed to answer the four research questions proposed in the introduction of
this paper. Can the CNF overfit the data, generalize well both to similar and larger data, and does
the FlowZero agent work? Everything besides the CNF implementation is identical to their counterparts
in the Stochastic MuZero paper [2].

5.1 Experimental Setup

In this section we will describe in detail the environment used, the implementation of the previously proposed
CNF, and the data collected.
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Figure 1: FlowZero. (A) Monte Carlo Tree Search used in FlowZero, which is identical to the approach
used by Stochastic Muzero [2], where diamond nodes represent chance nodes and circular nodes represent
decision nodes. During the selection phase edges are selected by applying the pUCT formula in the case of
decision nodes, and by sampling the CNF network in the case of chance nodes (B) Training of the FlowZero
model. In this example, given the trajectory of length J = 2 with observations o<—.t+2, actions as:.¢t+2,
value targets z¢:¢+2, policy targets mi.1+2, rewards u¢+1:¢+3, the model is unrolled for 2 steps. During the
unroll, the representation network h receives the observation o«—yx as input and generates the estimated
future latent state siyx+1, which is then fed into the negative log-likelihood loss function alongside with
the afterstate as;+r. The CNF is trained towards minimizing this loss. The policy, value and reward
outputs of the model are trained towards targets mi, zi+r and usix respectively.

5.1.1 CNF Implementation

For both experiments we use a single-scale variant of the architecture proposed in [7] since the environment
is quite simple and would not benefit from that level of complexity. We use 4 coupling layers with alter-
nating checkerboard masks. The s(.),#(.), u(.),o(.) functions are implemented using ResNets [11] of only
one ResBlock with standard Batch Normalization [13] and ReLu activations [8]. To condition the s(.) and
t(.) networks on the afterstate, we concatenate the input latent (either the future state for inference or the
sampled z for sampling) with the afterstate and pass it to a common ResNet. Each function has a separate
zero-initialized convolutional head, followed by a Batch Normalization layer. Since the shift factor can be
negative, no activation is used. For the scale, the head also contains an activation and a tanh() layer for
stability. Following the suggestions of [7], the s(.) and ¢(.) networks have learnable zero-initialized scale
factors for stability. To incentivize the network to find the shortest path to the correct mapping (i.e. small
volume distortion), an L2 regularization is applied to the scale factor of the s(.) function, with a coefficient
of 5% 107°. Another crucial aspect of the implementation is including Batch Normalization on the output of
the coupling layers themselves. In this regard, the authors suggest using Batch Normalization with tracking
averages of the mean and variance. Since this is yet another transformation of the Flow, we need to account
for it in the computation of the log determinant of the Jacobian, which is fairly simple since the determinant



is yet again triangular. Equation 11 shows what it boils down to. This leads us to the final Loss function,
described in equation 12.

log (H \/02;—-1-e> = —% Zlog(a2 +e) (11)

1
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5.1.2 Environment

Both experiments are run using the single-player stochastic game 2048. We chose it because of its simple
observations (as seen in figure 2), since effectively learning around the stochasticity is relatively quick com-
pared to complex games, allowing relatively shallow sub-networks while still achieving good performance.
The game consists of a 4x4 grid whose tiles are initialized with either 0, 2, or 4, where a move up, down, left,
or right moves all of the tiles in the specified direction as far as they can go. Whenever two tiles of the same
denomination collide, they merge into a tile with double their value. After each move, a tile of value 2 or 4
appears randomly in one of the free squares on the grid, which confers the game its stochastic nature. The
objective of the game is to create a tile of value 2048, although this is not a theoretical limit of the game.
A legal move must lead to at least one tile moving or at least two tiles combining. Losing the game implies
running out of legal moves before achieving the 2048 tile.

Figure 2: A game state in 2048

5.1.3 Data

The data used for the following experiments constitutes of 102400 data points. Each data point is an afterstate
as? (reached in the first unroll step) and the latent representation of the corresponding future state h(o;11),



where h is the representation function used. We collected this data using a well trained Stochastic MuZero
[2] model to obtain realistic samples of sequential afterstate-future state pairs.

It is important to point out that there are two different modes of the CNF that should be tested. For the
forward pass, we want to test how well the model maps the latent representation h(o;1+1) to our gaussian
prior N (z; u(as?), 0%(as?)), using the afterstate as? as a condition of the transformations as well as the prior.
We will do this using the log-likelihood computation formula for the gaussian prior as shown in equation 13,
where z is the output of the network. For this metric it is paramount to discuss the expected value. For
a gaussian prior, the log-likelihood of the mean of that gaussian is —0.9189, if the variance is 1. The prior
space of our distribution is 1024 dimensions because the latent representation of observations in the model
has shape 64x4x4. Since all of those dimensions are independent from one another, mapping to the mean of
the prior gives a log-likelihood of 1024 x —0.9189 = —940.953. Correctly mapping to the whole distribution
and not collapsing on the mean would give a log-likelihood of 1024 x —1.4189 = —1452.9536.

(— nas0)? _ log(2ro(as)))
402(as?) 2

For the backward pass, we want to test how well the model samples our prior and generates a future
state which seeks to approximate the real future state h(o¢y1), conditional on the afterstate as). We measure
this accuracy using a Mean Squared Error (MSE) loss between the prediction and the real future state, as
shown in equation 14, where s} is the prediction and N is the number of dimensions. We compare it to the
MSE loss achieved by the Stochastic MuZero [2] agent we used for collecting this data, computed at collection
time.

log(pz(2)) = — (13)

sk hlown))? (14)
N



5.2 Experimental Results
The following contains four experiments tailored to the primary aims of this paper, ordered in ascending

difficulty.

5.2.1 Can the CNF overfit the data?

First of all, we seek to overfit the CNF to our data. For this reason, we tried overfitting on progressively
more of the dataset, starting from 1%, going to 10%, and eventually 100% of the database. The results can
be found in figure 3.
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Figure 3: Overfitting. Each column represents the results obtained on a progressively larger
data set

From these graphs we can conclude a few things. First of all, the performance is decidedly uniform across
the different dimensions of overfit data, suggesting there is no limitation in this regard. Secondly, the log-
likelihood measure of the forward pass seems to almost perfectly achieve the performance described earlier
(i.e. the value of the mean value being passed). This decidedly shows that the CNF is mapping all of the
future states to the mean of the prior distribution, such that it maximizes the log-likelihood. Unfortunately,
this is incorrect, since it amounts to posterior collapse. During the development of this paper, we were unable
to fix this issue. This heavily hinders the model’s capacity to generate high quality samples, since in the
backward pass, the sampled prior obviously does not only return the mean, as if it had 0 variance. Although
this is the case, we find a very small reconstruction loss, barely double that of the baseline. This points to
the rich modeling capability of the network since, despite all future states getting mapped on the same mean
value, the generated samples are still decently close to a realistic future state. This is surely only due to the
powerful modeling capacity of the conditional coupling layers.
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5.2.2 Can the CNF generalize to similar data?

A natural next step in testing the capacity of the CNF is to overfit it to some percentage of the data, and
validate it on the rest. Similarly to the previous experiment, we do this in 3 ratios: 80-20, 50-50, and 20-80.
The results are presented in figure 4.

Reconstruction losses for 80% training data Reconstruction losses for 50% training data Reconstruction losses for 20% training data
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Figure 4: Generalization on similar data. Each column represents the results obtained on
a progressively smaller training-to-validation set ratio

As expected, the same posterior collapse issue can be seen in this experiment as well, across all levels of
testing. We can see a similar quality of reconstructions ar around two times worse than the baseline across
the board, meaning that even though we have the problem of mapping everything to the mean, the flow still
manages to output a decent quality sample approximating the future state. It is particularly revealing that
for all three tests, the reconstruction loss curve looks practically identical, supporting the idea that the CNF
generalizes very well to data similar to the one it used for training.

5.2.3 Can the CNF generalize to larger data?

A final test of the generalization power of the CNF constitutes on vastly different training and validation
sets. For this purpose, we ordered the data with respect to the corresponding observation o;; size (i.e. the
mean value of the tiles of the board). We then train on the first X% of this data and validate on the last
X% of the data. As X decreases, the difference in the value of the observations widens, and thus becomes
harder for the CNF to succesfully generate realistic samples on the meaningfully larger validation set. Once
more, we executed this experiment on 3 values of X, namely 50, 12.5, and 3.125. The results can be found in
figure 5. For clarity, Table 1 presents the difference in mean tile values as described above for the 3 different
tests.

Although the posterior collapse is of course still present, we can see in these graphs that even though there
is a significant drop-off in the quality of both reconstructions and mapping to the prior, even in the extreme
case of X = 3.125, this difference remains sensible. It must also be noted that since there is less variance in
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Table 1: Mean tile value in training and validation sets

X percentage Training Validation

Reconstruction losses for 50.0% extremes Reconstruction losses for 12.5% extremes Reconstruction losses for 3.125% extremes
. WM
0.013 MW 0.014 0.014
0.012
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= b4 =
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Figure 5: Generalization on different data. Each column represents the results obtained
on progressively more extreme training and validation sets. The former tends towards very
new games and the later tends towards very late games.

the data overfit during the training step (only the lower valued boards), the training reconstruction loss is
lower than the previous experiments, which is to be expected. From these observations we can conclude that
the CNF is capable of generalizing to vastly different afterstates with decent performance. This suggests that
it would be well fit to realistically generate future states conditional on afterstates, which is its objective in
the FlowZero network (the Afterstate Dynamics Network).

5.2.4 Does the FlowZero agent work?

Unfortunately, testing the FlowZero agent itself has proven unsuccessful. At best, the agent made effectively
random moves, since the return it achieved never increased, even after 250k environment steps. For reference,
the Stochastic MuZero agent achieved five times better results than the random baseline in the same timespan.
Since the rather large failure of the CNF component to map the future states to the whole prior distribution,
and not just its mean, has not been fixed during this project, we believe it is inadequate to conclude that there
is any conceptual block that would disallow a CNF to successfully model the required stochastic transitions.
It is rather more likely that the posterior collapse introduces a hard cap on the expressiveness of the network’s
predictions which leads to the loss of crucial details for the prediction of value, reward, and policy that is
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paramount to the MuZero strategy of learning. Thus, it is our strong suggestion for future work to tackle
this issue and check the performance of the CNF in the FlowZero architecture as a whole.

6 Conclusions and Future Work

In this paper, we proposed an alternative to [2]’s solution to the problem of enabling MuZero to work
in stochastic environments through the novel architecture of FlowZero. Our agent replaces the Afterstate
Dynamics Network of Stochastic MuZero with a Conditional Normalizing Flow that seeks to model future
states as a distribution conditional on the current afterstate that seeks to directly maximize log-likelihood
instead of maximizing a lower bound. This led the model to disregard the realistic mapping to a prior
distribution and thus collapsed to the mean. A strong suggestion for the future is to introduce a loss term
that incentivizes accurate variance modeling as well as modal. This is the principal limitation of this work,
since we believe it is the largest contributor to our failure to obtain results in the context of the whole model.
However, we proved the CNF’s capacity to overfit realistic data, generalize to similar data as its training, and
decently generalize to vastly different data. Another major limitation is the testing of a singular -relatively
small observation- environment. If we were to run our generalization experiments on a Backgammon-based
dataset for instance, we would certainly require a more complex CNF to obtain low reconstruction losses.

7 Responsible Research

Our work introduces a novel alternative to stochastic MuZero [2] for planning in environments with high
uncertainty. While this model may benefit applications such as robotics and games, it also carries potential
risks.

Enhanced decision-making under uncertainty could be misused in surveillance [1] or military AT applica-
tions [28] where safety and ethical boundaries are less regulated.

Reproducibility is a significant consideration in such work, to facilitate easy verification and responsible
reuse. The code developed under this project is available on demand. Perfect reproduction of our results
is impossible, since the core of the agent works around stochasticity, randomly sampling from a gaussian
distribution at every single step. Additionally, there are differences in hardware architecture and approxima-
tions in float calculations, but the overarching trend highlighted by our experiments is undoubtedly verifiable
independently. A list of hyperparameters is not necessary since all of the implementation details can be found
in section 5.1.1.

During the work described in this paper we made use of the Large Language Model (LLM) ChatGPT. In
the beginning, it sped up research by suggesting useful starting points in wider domains (density estimation,
stochastic MBRL agents). During the development of the agent itself, the model was prompted for specific
methods of the PyTorch framework given some circumstance, replacing the cumbersome browsing of the
classic documentation when needing some specific functionality.
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