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Abstract. This paper deals with the implementation and performance analysis of a parallel 
Algebraic Multigrid Solver (pAMG) for a finite volume unstructured CFD code. The 
parallelization of the solver is based on the domain decomposition approach using the single 
program multiple data paradigm.  The Message passing interface Library (MPI) is used for 
communication of data. An ILU(0) iterative solver is used for smoothing the errors arising 
within each partition at the different grid levels, and a multi-level synchronization across the 
computational domain partitions is enforced in order  to improve the performance of the 
parallelized Multigrid solver.  Two synchronization strategies are evaluated: in the first the 
synchronization is applied across the multigrid levels during the restriction step in addition to 
the base level, while in the second the synchronization is enforced during the restriction and 
prolongation steps.  To increase robustness gathering of coefficients across partitions for the 
coarsest level is investigated. Tests on a number of grids from 100,00 to 800,000 elements for 
diffusion and advection problems have been conducted on up to 20 processors.  

 
 

 
1 INTRODUCTION 

Computational Fluid Dynamics (CFD) is an essential design tool in many industries 
(aerospace, automotive, chemical processing, power generation, etc …).  At its basic level, 
CFD involves (i) a discretization step that translates a set of highly non-linear partial 
differential equations representing conservation principles (conservation of momentum, mass, 
energy, etc) into a sparse system of linearized algebraic equations, (ii) a solution step to solve 
the system of algebraic equations iteratively, iterative solvers are usually used for solving the 
system of equations (inner loop) because of their lower computational requirements in 
memory and CPU time1; finally (iii) because of nonlinearities, these two steps need to be 
performed repeatedly (outer loop)2 ,3 until a final converged solution is reached. For transient 
problem the whole solution process is repeated as the solution marches in time (transient 
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loop). 
With the continuous increase in complexity and size of CFD problems, techniques to 

accelerate this solution procedure have been the focus of intense effort over the past two 
decades. Work on resolving the inter-equation coupling of momentum and pressure efficiently 
either in a segregated4,5 or coupled6,7 manner yielded more robust and more efficient 
algorithms [8]. Work on the acceleration of the inner loop has led to the development of 
geometric multigrid methods9,10,11, and later to algebraic multigrid methods (AMG)12 ,13.  The 
AMG extended the main idea of geometric multigrid to a purely algebraic setting, yielding 
robustness and algorithmic simplicity.  AMG can be used to build highly efficient and robust 
linear solver14,15,16,17,18 by combining iterative solvers efficient in damping high frequency 
errors with multi-level grids that transform low frequency errors of the fine grids to high-
frequency errors on coarser grids. This dual approach has been quite successful in tackling 
relatively large CFD simulations, but reaches its limits with large scale simulations for which 
the use of parallel processing becomes essential.  

Parallel computing has undergone a small revolution of its own over the last decade. The 
continuously improving floating-point performance of the last few generations of micro-
processors, and the availability of continuously cheaper high speed interconnection networks 
has meant that PC clusters (distributed memory) are increasingly being adopted as a cost 
effective alternative to classical parallel supercomputers (shared memory) for running large 
scale numerical simulations19.  

Parallel CFD codes can be written in several ways depending on the algorithmic 
implicitness/explicitness, the type of grid used (structured, unstructured, adaptive/non-
adaptive), and the degree of coupling that exists or is incorporated into the implemented 
physical models. Many paradigms can be used, however, when the aim of the parallelization 
is to use clusters of interconnected processors20, the Domain Decomposition approach is 
demonstrably the most effective.   

In Domain Decomposition, the parallelization is enforced by dividing (partitioning) the 
domain of interest into a number of sub-domains or partitions (usually one for each 
processor).  Each processor is then responsible for solving the computational problem within 
its sub-domain or partition. This is followed by a synchronization phase where neighboring 
sub-domains swap solution information to ensure consistency in the global solution of the 
original domain.  This is equivalent to performing an inter-domain coupling at the outer loop; 
however, it is not sufficient if high scalability and robustness in performance are to be 
achieved.  To overcome this shortfall, it is essential that an inter-domain coupling be 
performed also at the inner loop or linear solver level.  

In the context of parallel multigrid solvers, a number of strategies can be followed to 
perform suitable synchronizations. On one extreme, synchronization can be performed at the 
finest mesh only, with the multigrid solver mainly playing the role of its sequential 
counterpart over the sub-domain or partition. On the other extreme, synchronization can be 
performed at each multigrid level, with the multigrid solver playing an additional role of 
smoother across partitions but at the expense of additional communication cost between 
partitions. Other methods include synchronization during the restriction phase or in both the 
restriction/prolongation phases. It is also worth noting that the number of communication 
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messages on coarse meshes is often nearly the same as that on fine meshes, although message 
lengths are much shorter. However, since most parallel architectures have high 
communication latencies as compared to current processor speeds, these can end up 
dominating coarse grid computations.  

This paper reports on a number of techniques used in building a highly scalable and robust 
pAMG solver. Results from solving three test problems of various mesh sizes (100,000, 
300,000, 500,00, 750,000 and 1,000,000 elements) are presented.  The problems were 
selected to test the scalability and robustness of the pAMG solver. 

In the remainder of this article the Algebraic MultiGrid (AMG) Method is presented with 
some emphasis on the agglomeration or coarsening algorithm. The Domain Decomposition 
Method and inter-Domain synchronization strategies are then outlined in the context of the 
AMG. Finally, the different options implemented in pAMG are outlined and the algorithms 
used described. Results and conclusions drawn across a range of computational meshes and 
partitions are presented.. 

2 THE FINITE VOLUME METHOD 
The Finite Volume Method (FVM) is a numerical technique aimed at the solution of partial 

differential equations (PDEs), especially tuned to those arising in fluid, heat, and mass 
transfer problems. The general PDE governing the transport of a conserved passive scalar has 
the following form 
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where!  is the density,  t  is the time,  u  is the velocity field, !  is the diffusivity, and !  is 
the unknown scalar for which a solution is sought. Upon discretizing equation (1), our 
arbitrary control volume, an algebraic equation of the following form is obtained: 
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where the coefficients depend on the specific schemes used in the discretization process. 
The solution of these equations is the purpose of the linear iterative solver. 

3 MULTIGRID METHODS 
While the standard iterative techniques are quite efficient at solving small and medium 

sized meshes, their rate of convergence deteriorates for larger sized meshes.  Brandt21 studied 
the intricacies associated with solving a large set of equations and after decomposing the error 
in the approximate solution into Fourier components, he found that while many of the 
iterative solvers are efficient in eliminating high frequency or oscillatory components of the 
error, they are inefficient in reducing the remaining low frequency smooth components of the 
error. These solver are said to possess the smoothing property, and are said to act as 
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smoothers. 
Multigrid algorithm were originally introduced independently by Federenko22,23 

(Geometric Multigrid) and Poussin24 (Algebraic Multigrid) in the 60s, and later gained 
popularity with the work of Brandt21,25,26. They are considered as one of the most efficient 
techniques for the numerical solution of PDEs, at least for sequential computers. While 
standard iterative solvers (Jacobi, Gauss-Siedel, SOR, ILU) are efficient in removing high 
frequency errors, they are incompetent in removing the remaining low frequency or smooth 
errors27. Multigrid methods overcome the decay in the convergence rate by using a hierarchy 
of coarse grids in addition to the one on which the solution is sought. The fundamental idea is 
that by restricting the problem to a coarser grid, the lower frequency errors now appear more 
oscillatory.  Applying this restriction recursively, a grid is eventually reached that is coarse 
enough for the problem to be solved accurately. 

The application of MG to a given problem follows two stages.  In the first stage, the coarse 
grids and their connectivities are setup using an agglomeration or coarsening 
algorithm28,29,30,31,32.  In the second stage, a multigrid cycling procedure is used with a 
smoother to yield the solution at the finest grid.  Alternatively, the coarse grids can be 
generated independently of the fine grid.  

3.1 Element Agglomeration 
Three different approaches can be adopted for the Agglomeration or Coarsening algorithm.  

The first approach begins with a coarse mesh definition and generates finer grids by 
refinement33,34.  The main advantage of this approach is that the inter-grid operators become 
simple because of grid nesting.  Another advantage is the possibility of utilizing this setup in 
an adaptive procedure where the fine meshes are formed by adaptively refining the coarse 
meshes33,35.  The principal disadvantage however is the dependence of the fine grid 
distribution on the coarse levels.  The second approach uses non-nested grids either with a 
subset of fine grid points comprising the coarse meshes or with completely independent 
coarse and fine meshes36,37,38.  In this case the inter-grid information transfer operators 
become very expensive to construct.  Furthermore, for both of the above outlined approaches, 
generating coarse grids that truly represent complex geometries can be a difficult proposition. 
In the third approach, essential for the AMG, the coarse grids are generated through 
agglomeration of the fine grid control volumes39,40.  The agglomeration procedure can be 
based on a geometric relation between the elements of the grid or on a conditional relation 
between the mutual coefficients of elements.  In the current implementation we follow the 
latter approach.  

To generate the coarse grid sequence, an agglomeration algorithm is used to selectively 
fuse fine grid element to form the agglomerated or coarse grid elements.   This process is 
repeated until all fine grid elements are fused into coarse elements and so on. The 
agglomeration process is heuristic and a number of algorithms can be used.  In general fine 
grid elements are visited one by one.  For a given seed element, a maximum kmax-1 of its 
adjacent elements are fused is they satisfy the agglomeration criterion. If the number of fused 
elements is less than kmax-1, then the neighbors of the fused element are evaluated for fusing 
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until the kmax-1 elements have been fused to the seed element, giving rise to a coarse grid 
element.  If a seed element fails to form a coarse element it is queued to the less populated 
coarse element among its neighbors.   

In this work, the Directional Agglomeration Algorithm (DA) of Mavriplis41,42 is used. The 
agglomeration proceeds by fusing available fine grid elements according to the connectivity 
strength of the elements adjacent to the seed element, and the connectivity strength is 
governed by the geometric shape of the elements. Since the agglomeration is geometrical it is 
performed only once before the start of the run. 

3.3 Multigrid Cycles 
The Multigrid cycle refers to the way by which coarse grids are visited during the solution 

process. Two categories of cycling methods in multigrid can be defined: fixed and flexible 
cycles43. Initially only the W cycles was used. During restriction, the solver performs 2 
sweeps on fine levels and 5 sweeps on the coarsest level while during prolongation; the solver 
performs only 1 sweep on all visited levels.  When the coarsest level coefficients are 
assembled across partitions a direct solver is used. 

5. PARALLEL CFD 
Domain decomposition following the SPMD (Single Program Multiple Data)44 

programming model present a natural parallelization strategy for CFD codes. This approach, 
usually called coarse grain parallelization, is more suitable when using a cluster of personal 
computers for parallel computations45,46. In this approach the computational domain is 
decomposed into a set of sub-domains or partitions.  Each of these partitions are distributed 
along with the problem definition to the different processors where the same program is run in 
a sequential manner but working on a different part of the original data, while allowing for 
synchronization and data exchange across partitions as needed.  The process thus begins with 
the partitioning of the computational domain, followed by an iteration of discretization and 
solution phases on the respective processors, along with inter-partition synchronization.  
Finally the solution fields on the different partitions are sent to the main processor for 
reconstruction on the original mesh and saved for further manipulation.  The main steps are 
detailed below. 

5.1 Mesh Partitioning 
METIS47 was used for the partitioning of the computational mesh as it combines 

flexibility, good load balancing properties, in addition to minimizing communication across 
partitions by minimizing partition boundaries48. The output from METIS is a list of all 
elements with their assigned partition number. These elements form the basis of the 
computational mesh of the partitions and are denoted as core elements. Core elements at the 
boundary of a partition can have neighboring elements that are part of another partition. These 
neighboring elements are denoted by shadow elements.  A low shadow to core element count 
in each partition is essential to minimize inter-partition communication during the solution 
phase.  The shadow elements are added to the core partitions.  
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5.2 Partition Agglomeration Strategies 
If the agglomerated grids are not synchronized across partitions, the benefits of 

multigridding are lost with increasing partition number, as the solution will proceed from 
partition to partition in an explicit manner.  A better approach is to synchronize the multigrid 
levels across the partitions 

Two approaches can be followed for the parallelization of the multigrid coarsening scheme 
described previously, and these result in a degradation of performance with increased 
partitions, thus decreasing any potential for scalability.  

In the first approach, the coarsening takes place on the original mesh. The agglomerated 
grids are constructed then the fine grid is partitioned and the agglomerated elements are 
associated with the respective partitions and distributed to the different processors.  The 
problem in this approach occurs when elements are agglomerated across partitions; in this 
case special treatment is needed for these elements that can degrade the performance of the 
multigrid solver.  The agglomeration can be forced to occur on a partition basis but then, in 
this case, following the second approach becomes more appropriate.   

In the second approach, the agglomeration is performed on core elements and starts after 
the partitioning step, and is performed in parallel in the different partitions. This is repeated 
until the coarsest grid level is reached49. At each level, partitions exchange information at the 
interface regarding the agglomerated shadow and sender elements.  This information is 
determined from the agglomerated core elements. 

5.3 Multigrid Synchronization 
At each multigrid level the shadow elements are synchronized with their core elements. It 

is important to remember that if the benefits of synchronization do not offset its cost, then the 
performance of the pAMG will suffer. Two strategies were tested, in the first the 
synchronization is performed during the restriction step this is essential to ensure that the 
equations solved at each level represent the whole problem across the different partitions. The 
synhronization can also be performed during the prolongation step, this will ensure that some 
non-linearities are accounted for during the solution procedure.   

The solver on the coarsest grid can limit the ultimate speedup that can be achieved in a 
parallel computation for two related reasons.  First, the linear system at this level is generally 
small and the time required for communication may be higher that the time required to solve 
the system on a single processor.  Second, the coarsest grid may couple all pieces of the 
global problem, and thus an accurate solution at this level is important, as is the global 
communication of the right hand side.   

If the coarse grid is small enough, instead of solving in parallel, the coarsest grid problem 
may factored and solved on a single processor with the right hand side gathered and solution 
scattered to the other processors.  Another option would be to solve the coarsest grid problem 
on all processors. This redundant form of the calculation does not require communication to 
distribute the results50. 

As the number of processors is increased, the coarsest grid problem may become too large. 
In this case, it might become preferable to do a parallel computation.  However, 
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communication complexity can be reduced by solving with only a subset of the processors.  
Solving redundantly with a subset of the processors is again an option. 

 

 
(a) 

 
(b) 

Figure 1 (a) coefficients in partitions (b) gathered coefficients 
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6. TEST PROBLEMS 
In the first test, three diffusion problem illustrated in figure 2 were solved .  The diffusion 

coefficient ratio vary between 1, 10 and 100 for the three problems.  The importance of inter-
partition coupling increasing with the diffusion ratios, as such the first test is used to evaluate 
the performance of the coefficient assembly techniques.  The three problems were solved on 
grids with 100,000, 300,000, 500,00and 800,000 elements (control volumes). For each grid 
parallel runs on 2,4,6,8,10,12,14,16,18 and 20 partitions were performed on a cluster of ten 
G5 dual processor machines running at 2.0 GHz each with a memory of 512 MB per node, 
except for the master node with 2 GBytes.  

 

 
Figure 2: Test Problem 1 

The interconnection network is a 100-MBits Ethernet switch. The runs were made until the 
residual was reduced to a value of 10-6 where the residual is defined as   
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Options A and B were used in the solution in test 1.  The options are detailed in Table 1. 
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Option A Synch multigrid levels during restriction (2 iterations) and prolongation (1 
iteration) 

For coarsest levels assemble all coefficients on Master Node for inter-partition 
solution using direct solver 

Option B Synch multigrid levels during restriction (2 iterations) and prolongation (1 
iteration) 

For coarsest levels 5 iterations 

Option C Synch during restriction only 

For coarsest levels 5 iterations 

Table 1 : Options for inter-patition synchronization 

Finally results are compared using two basic comparative parameters, the computational 
time Speed-up. To gain more insight into the results for each of the grids used, we also 
compute the shadow-to-core ratio.  The shadow-to-core ratio for the used grids is shown in 
table 2.  The shadow-to-core ratio for a grid increases with the number of partitions as the 
number of core elements decreases and the inter-partition boundaries increase. It can be 
viewed as a measure of the inter-partition communication.  Generally it was found that the 
performance of the parallel solver starts to degrade when the shadow-to-core ration exceeded 
2.33%.   

 
 Number of Control Volumes 

Partitions 100,000 300,000 500,000 800,000 
1 0.00% 0.00% 0.00% 0.00% 
2 0.33% 0.39% 0.31% 0.26% 
4 1.34% 0.85% 0.70% 0.55% 
6 2.13% 1.63% 1.43% 0.99% 
8 2.33% 2.03% 1.78% 1.37% 

10 2.94% 2.66% 1.87% 1.56% 
12 3.24% 2.72% 2.25% 1.73% 
14 3.88% 3.08% 2.32% 1.88% 
16 4.21% 3.33% 2.57% 1.98% 
18 4.00% 3.40% 2.72% 2.25% 

20 4.36% 4.02% 2.78% 2.26% 

Table 2 : Shadow-to-Core ratio 

Options A and B were used in the first test Results for the speedup is shown is figure 3. 
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Figure 3: Speedup graphs for Problems 1a, 1b and 1c with options A and B 

Figure 3 shows the speedup obtained for the four meshes using up to 20 processors. For the 
100,000 and 300,000 element meshes the scalability degrades after 6-8 partitions, this is 
partly due to the large shadow-to-core ratio, The performance seems to improve as we move 
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from problem 1a to 1b to 1c with option A, this is due to the increased computational time 
needed to solve the problem sequentially as the diffusion ratio increases.  With option B we 
also see an improvement in the performance of the solver, except for the fours runs in 
Problem 1c for mesh 500,000 and partitions 14 16 18 and 20.  A look at table 4 explains this 
behaviour.  The table lists for each computational mesh and partition number the Multigrid 
Level (MGL) used across the partitions and the Coarse Grid Elements (CGE) which is the 
total number of core elements across all the partitions, this last number is related to the 
number of MGL reached for the respective meshes and partitions.  This number is computed 
based on the agglomeration algorithm,  For the 500,000 mesh and partitions 14,16, 18 and 20 
the total number of core elements at the coarsest level is around 40 since only 7 MGL are 
used, in contrast to the 800,000 computational mesh, where an extra multigrid level is used to 
lower the CGE number.  As the CGE number increases we expect a degradation of 
performance with option B. 

On the other hand since a direct solver is used in option A at the master node for the 
assembled coefficients, a large number of coarsest grid elements leads to a performance 
penalty.  This could be resolved by using an iterative solver for the assembled coefficients. 

 
 

 Computational meshes 

 100,000 300,000 500,000 800,000 

Partitions MGL CGE MGL CGE MGL CGE MGL CGE 

1 8 5 8 5 9 3 9 4 
2 8 4 8 5 9 3 9 4 
4 8 7 8 8 8 10 9 4 
6 8 9 8 6 8 11 8 14 
8 8 18 7 23 8 11 8 18 
10 7 26 7 21 8 11 8 16 
12 7 25 7 24 8 12 8 13 
14 7 26 7 24 7 41 8 16 
16 7 37 7 23 7 39 8 17 
18 7 24 7 23 7 39 8 19 

20 7 30 7 21 7 40 8 20 

Table 4 : Multigrid Levels and Number of Core Elements on Coarses Levels 

Figure  4 shows the graph of efficiency vs. shadow-to-core, it is clear that beyond a certain 
shadow-to-core ratio the performance of the parallel solver degrade. This is to be expected as 
the communication cost increases with the number of shadow elements. 

It can also be notes that for large meshes, there is a drop that occurs in performance for 
partition number of 2, this was found to be related to memory constraints on the slave nodes.  
For a two partition 800,000 mesh , each partition will have nearly 400,000 elements, this 
strains the memory of the slave nodes, leading to excessive use of virtual memory. 
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Figure 4: Efficiency vs. shadow-to-core ratio 

 
Using option C resulted in divergence in all of the problems of test 1. 
 
 
 

7. CONCLUSION 
In this paper we have presented the performance of a pAMG solver. The performance of 

the parallel solver was shown to scale linearly for relatively large meshes with a shadow-to-
core ratio above 2.33%, this was clearly shown using an efficiency vs. shadow-to-core graph.  
A technique for assembling the coarsest grid coefficients at the main node was shown to 
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improve the robustness of the code for cases involving sharp coefficient changes.  However 
the cost of the assembly is relatively high and should be decreased.  

 
The solver behaves extremely well for a range of processors. Future work will focus on 

optimizing the assembly process and solution process of coarsest grid level coefficients. 
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