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Abstract The Indian Regional Navigation Satellite System
(IRNSS) has recently (May 2016) reached its full opera-
tional capability. In this contribution, we provide the very
first L5 attitude determination analyses of the fully opera-
tional IRNSS as a standalone system and also in combination
with the fully operational GPS Block IIF along with the cor-
responding ambiguity resolution results. Our analyses are
carried out for both a linear array of two antennas and a planar
array of three antennas at Curtin University, Perth, Australia.
We study the noise characteristics (carrier-to-noise density,
measurement precision, time correlation), the integer ambi-
guity resolution performance (LAMBDA, MC-LAMBDA)
and the attitude determination performance (ambiguity float
and ambiguity fixed). A prerequisite for precise and fast
IRNSS attitude determination is the successful resolution of
the double-differenced integer carrier-phase ambiguities. In
this contribution, we will compare the performance of the
unconstrained and the multivariate-constrained LAMBDA
method. It is therefore also shown what improvements are
achieved when the known body geometry of the antenna
array is rigorously incorporated into the ambiguity objective
function.As our ambiguity-fixed outcomes showconsistency
between empirical and formal results,we also formally assess
the precise attitude determination performance for several
locations within the IRNSS service area.
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1 Introduction

Reaching the full operational capability recently (May 2016),
the IndianRegionalNavigationSatellite System (IRNSS) has
been provided with the operational name of NavIC (Naviga-
tion with Indian Constellation). This new addition to GNSSs
(Global Navigation Satellite Systems) has been developed
by the Indian Space Research Organization (ISRO) with
the objective of offering positioning, navigation and timing
(PNT) to the users in its service area. Based on Code Divi-
sionMultiple Access (CDMA), the IRNSS satellites transmit
navigation signals on L5 (1176.45MHz) with a binary phase
shift key (BPSK (1)) modulation for standard positioning
service (SPS) users, and with a binary offset carrier (BOC
(5,2)) modulation for restricted service (RS) users (ISRO
2014). The fully operational IRNSS constellation consists of
three geostationary orbit (GEO) satellites and four inclined
geosynchronous orbit (IGSO) satellites (see Table 1), with
the orbital period of one sidereal day (23h and 56 min).

Transmission of L5 frequency by IRNSSmakes it interop-
erable with three other GNSSs, i.e., GPS Block IIF, Galileo
and QZSS, which share this frequency. At different stages of
the IRNSS development, several studies have been published
on the basis of IRNSS real data. Thoelert et al. (2014) assess
the clock stability of satellite I1. Using the I1 and I2 obser-
vations, Kumari et al. (2015) test the accuracy of a precise
model for solar radiation pressure, while Montenbruck and
Steigenberger (2015) investigate the quality of the IRNSS
navigation messages. The data of I1, I2 and I3 are used by
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Table 1 Information on the
IRNSS/NavIC satellites (ISRO
2016)

Satellite Type Longitude Inclination Launch date

IRNSS-1A (I1) IGSO 55◦ E 29.0◦ July 2013

IRNSS-1B (I2) IGSO 55◦ E 31.0◦ April 2014

IRNSS-1C (I3) GEO 83◦ E – October 2014

IRNSS-1D (I4) IGSO 111.75◦ E 30.5◦ March 2015

IRNSS-1E (I5) IGSO 111.75◦ E 28.1◦ January 2016

IRNSS-1F (I6) GEO 32.5◦ E – March 2016

IRNSS-1G (I7) GEO 129.5◦ E – April 2016

Babu et al. (2015) for comparison of the orbit determination
methods and by Chandrasekhar et al. (2015) to validate the
orbit accuracy with modernized ephemeris parameters. The
first positioning results based on the data of I1, I2, I3 and
I4 over India are presented in Ganeshan et al. (2015) and
over Australia in Zaminpardaz et al. (2016b). In 2010, fol-
lowing the launch of the first GPS Block IIF satellite, GPS
started transmitting L5 signals as part of the GPS modern-
ization (GPS Directorate 2011). With the launch of the last
satellite of Block IIF on February 2016, it now has all its 12
satellites operational. There exist a few studiesmaking use of
the GPS L5 real data. An analysis of the GPS L5 stochastic
properties throughdifferentGNSSobservables combinations
is provided by de Bakker et al. (2012), and the GPS L5-
based precise point positioning (PPP) results are presented in
Tegedor and Øvstedal (2014). The DISBs (differential inter-
system biases) between GPS L5 and the same signal of the
other systems including IRNSS are characterized in Odijk
and Teunissen (2013) and Odijk et al. (2016).

In this contribution, we aim to investigate the L5-signal
instantaneous attitude determination capability using the
IRNSS as a standalone system and also in combination with
the GPS Block IIF. Since L5 signal is a quite new addition
to the GNSS signals, it is important to gain an understanding
of its performance from the viewpoint of different applica-
tions like attitude determination. The attitude of a platform
can be determined using multiple GNSS antennas which are
rigidly mounted on it (Cohen 1992; Lu 1995; Madsen and
Lightsey 2004; Psiaki 2006). Depending on the application
at hand, this platform can be a vessel, a land vehicle, an
aircraft or a space platform (Hodgart and Purivigraipong
2000; Li et al. 2004; Hide et al. 2007; Hauschild et al.
2008; Wang et al. 2009; Giorgi et al. 2010; Teunissen et al.
2011). Precise and fast GNSS-based attitude determination
can be realized through incorporation of the very precise
phase observations and hence requires the successful reso-
lution of the double-differenced (DD) integer carrier-phase
ambiguities. The Least-squares AMBiguity Decorrelation
Adjustment (LAMBDA) method developed by Teunissen
(1995, 1997, 1999) is the standard method used for solving
the unconstrained mixed-integer GNSS models, which also

results in the highest possible ambiguity resolution success
rate (percentage of correctly fixed solutions).

However, if the local antenna geometry in the body frame
is known, one can further improve the ambiguity resolution
performance. To realize this, the multivariate-constrained
(MC-)LAMBDAmethod has been developed (Park and Teu-
nissen 2003, 2009; Teunissen 2006; Buist 2007; Giorgi et al.
2008; Giorgi and Buist 2008; Giorgi et al. 2010; Teunis-
sen et al. 2011). This method incorporates the known local
antenna geometry in a rigorous manner into the ambiguity
objective function, leading to higher success rates as com-
pared to the standard LAMBDA. The attitude determination
performance of the L5 signal of IRNSS, GPS, Galileo and
QZSS was assessed by Nadarajah et al. (2015). Their assess-
ment was based on two IRNSS and seven GPS Block IIF
satellites. Our attitude evaluations in the current study, how-
ever, employ, for the first time, the fully operational IRNSS
and GPS Block IIF.

This contribution is organized as follows. In Sect. 2, the
unconstrained andmultivariate-constrained single-frequency
GNSS model of observations is formulated. The mea-
surement setup is explained in Sect. 3, while the noise
characteristics of the IRNSS and GPS L5 signal are pre-
sented in Sect. 4 through the carrier-to-noise density, the
estimated measurement precision and time correlation. Sec-
tion 5 compares the ambiguity resolution performance on
the basis of LAMBDA and MC-LAMBDA for both a linear
and a planar array of GNSS antennas at Curtin Univer-
sity, Perth, Australia. In Sect. 6, an empirical and formal
analysis of the instantaneous attitude determination perfor-
mance at Perth is provided for the mentioned arrays. We
then extend this study with formal analysis to the IRNSS ser-
vice area. Finally, a summary and conclusions are given in
Sect. 7.

2 GNSS model of observations

In this section, the dual-system (IRNSS + GPS) single-
frequencyGNSSmodel of observations for an array of anten-
nas is formulated from which the single-system (IRNSS)
model follows as a special case. We assume the array is
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of small scale such that the differential atmospheric delays
(troposphere and ionosphere) and orbital errors between the
antennas can be neglected. Due to the close proximity of
the antennas, the satellites elevations are considered to be
the same for all the antennas. We further assume that all
the receivers are of the same manufacturer (make, type and
firmware), thus allowing us to assume that the IRNSS-GPS
ISBs are zero (Odijk et al. 2012, 2016). Therefore, instead of
classical double differencing per constellation, inter-system
double differencing can be used, resulting in a higher level
of redundancy. In the sequel, we refer to the IRNSS-specific
parameters and the GPS-specific parameters using the sub-
scripts I and G , respectively.

2.1 Unconstrained model

Suppose that n antennas, firmly mounted on a platform, are
simultaneously tracking mI IRNSS plus mG GPS satellites
on L5 frequency with the wavelength of λ. With m = mI +
mG , themultivariate linearized single-epochDDGNSS array
model of observations then reads

E

[
(DT

m ⊗ DT
n )

[
φ

p

]]
=

[
DT
mG ⊗ In−1 λIm−1 ⊗ In−1

DT
mG ⊗ In−1 0

] [
vec(XT )

a

]

D

[
(DT

m ⊗ DT
n )

[
φ

p

]]
=

[
DT
mQφφDm ⊗ DT

n Dn 0

0 DT
mQppDm ⊗ DT

n Dn

]

(1)

where E[.] and D[.] denote the expectation and dispersion
operator and ⊗ and vec(.) denote Kronecker product and
vec-operator (Harville 1997; Magnus and Neudecker 1995),
respectively. The (m−1)×m matrix DT

m = [−em−1, Im−1]
is the differencing matrix forming the between-satellite sin-
gle differencing, while the (n − 1) × n matrix DT

n =
[−en−1, In−1] forms the between-receiver single differenc-
ing. e and I are, respectively, the vector of ones and the
identity matrix the dimension thereof is specified by their
subscripts. The combined vectors and matrices can be split
into system-specific parts as

φ =
[
φT
I , φT

G

]T
, p =

[
pTI , pTG

]T
,G =

[
GT

I ,GT
G

]T
Qφφ = blkdiag

(
σ 2

φI
W−1

I , σ 2
φG

W−1
G

)
Qpp = blkdiag

(
σ 2
pI W

−1
I , σ 2

pGW
−1
G

)

With ∗ = {I,G}, φ∗ and p∗ denote, respectively, the m∗n-
vectors of the undifferenced “observed-minus-computed”
phase and code observations of the following structure:
y∗ = {φ∗, p∗}, y∗ = [y1T∗ , y2

T∗ , . . . , ym
T∗ ]T , with ys∗ =

[ys∗1 , ys∗2 , . . . , ys∗n ]T andwith ys∗r being the phase/codeobser-
vation between antenna r and satellite s∗. The m∗ × 3

matrix G∗ = [−u1∗ , . . . ,−um∗ ]T includes the undiffer-
enced receiver-satellite unit direction vectors us

T∗ as its rows.
The unknown baseline components in NED (North–East–
Down) frame are included in the 3 × (n − 1) matrix X ,
and the unknown integer DD ambiguities, in cycle, in the
(m − 1)(n − 1)-vector a. The zenith-referenced standard
deviation of the undifferenced phase and code observables
are denoted as σφ∗ and σp∗ , respectively. The m∗ ×m∗ diag-
onal matrix W∗ = diag(w1∗ , . . . , wm∗) captures the satellite
elevation dependency of the GNSS observables. In this con-
tribution, the satellite elevation-dependent weight ws∗ takes
the form of the exponential weighting function as

ws∗ =
[
1 + 10 exp

(
−θ s∗

10

)]−2

(2)

where θ s∗ is the elevation of the satellite s∗ in degrees (Euler
and Goad 1991). To obtain the standalone IRNSS observa-
tional model from (1), it is enough to put mG = 0. Since,
in the case of a single epoch, the number of DD ambigui-
ties equals that of the DD phase observables, uncorrelated
with the DD code observables, the DD phase observables are
fully reserved for the ambiguities estimation. Therefore, the
single-epoch estimation of the baselines components does
not benefit from the high precision phase observables unless
the DD ambiguities are resolved to their integer values. Upon
fixing the DD ambiguities, the phase observations act as
the very precise code observations and improve the base-
line estimation and precision. In the following, we use the
system-specific indexes only when working with the dual-
system model of observations.

2.2 Multivariate-constrained model

In the model of observations given by (1), the known
antennas’ geometry in the body frame is disregarded. Such
information, if taken into account, can strengthen the GNSS
observational model considerably. The baseline coordinates
in the body frame B are linked to their counterparts in NED
frame X through the following transformation (Teunissen
2007)

X = R B; X, B ∈ R
3×(n−1), R ∈ O

3×3 (3)

where O3×3 denotes the set of 3 × 3 matrices of which the
column vectors form an orthonormal span. R is a rotation
matrix satisfying RT R = I3, det(R) = +1 (Kuipers 2002).
Substituting (3) in (1), the unknown parameters and their
corresponding design matrix change accordingly as

vec(XT ) → vec(RT ); DT
mG ⊗ In−1 → DT

mG ⊗ BT (4)
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Fig. 1 Transformation between North–East–Down frame and the body frame of a linear array (b1) and a planar array (v1, v2, v3)

In (3), since thematrix R is of full rank, thematrices X and
B are also of the same rank, namely rank(X) = rank(B) = q
which is the dimension of the space spanned by the baselines.
The baselines achieve their full span if q = min(3, n − 1)
(Teunissen 2012). If q < min(3, n − 1), the transpose of
the baseline matrix BT forming the design matrix DT

mG ⊗
BT would be rank deficient. In order to rule this case out,
we assume that the body frame axes are formed by the first
three baselines which are represented in the body frame as
(Teunissen 2007, 2012)

[b1, b2, b3] =
⎡
⎣ b11 b21 b31

0 b22 b32
0 0 b33

⎤
⎦ (5)

Therefore, (3) would be replaced by

X = Rq B; X ∈ R
3×(n−1), B ∈ R

q×(n−1), Rq ∈ O
3×q

(6)

In which RT
q Rq = Iq , and O

3×q denotes the set of 3 × q
matrices of which the q column vectors form an orthonormal
span. In the sequel, we will work with (6) instead of (3).

2.3 Ambiguity resolution and attitude determination

The aim of the attitude determination is to determine matrix
Rq in (6) from which (some of) the attitude parameters, i.e.,
heading (α), elevation (ε) and bank (β), can be extracted. As
an example, when q = 3, R3 can be parametrized as

R3 =
⎡
⎣ cαcε −sαcβ + cαsεsβ sαsβ + cαsεcβ

sαcε cαcβ + sαsεsβ −cαsβ + sαsεcβ

−sε cεsβ cεcβ

⎤
⎦ (7)

in which c{.} = cos{.} and s{.} = sin{.}. For q = 1, 2, Rq is
formed by the first column and the first two columns of R3,

respectively. Our analyses in this contribution are conducted
for a linear array of one baseline and a planar array of two
baselines. Figure 1 schematically shows how the body frame
and therefore the attitude angles are defined for these two
types of array. With the aid of this figure, (6) can be worked
out for the linear array as

x1 = ||b1||
⎡
⎣ cαcε

sαcε

−sε

⎤
⎦ (8)

and for the planar array as

[x1 x2] =
⎡
⎣ cαcε −sαcβ + cαsεsβ
sαcε cαcβ + sαsεsβ
−sε cεsβ

⎤
⎦ [ ||b1|| 〈b2, v1〉

0 〈b2, v2〉
]

(9)

where ||.|| and 〈., .〉 denote the Euclidean norm and inner
product, respectively.

Solving (1) in a least-squares sense considering the con-
straint in (6), the solutions for the integer ambiguity vector ǎ
and the orthonormalmatrix Řq are given byTeunissen (2007)

Řq(a) = argmin
Rq∈O3×q

∣∣∣∣∣∣vec(R̂q(a) − Rq)

∣∣∣∣∣∣2
Q

vec(R̂q (a))

ǎ = argmin
a∈Z(m−1)×(n−1)

(∣∣∣∣â − a
∣∣∣∣2
Qââ

+
∣∣∣∣∣∣vec(R̂q(a) − Řq(a))

∣∣∣∣∣∣2
Q

vec(R̂q (a))

)

Řq = Řq(ǎ)

(10)

where vec(R̂q(a)) = vec(R̂q) − Q
vec(R̂q )â Q

−1
ââ (â − a).

R̂q and â are the least-squares solutions disregarding the
orthonormality of the rotation matrix and integerness of
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the DD ambiguities, and Q
vec(R̂q )

, Qââ and Q
vec(R̂q )â are

their corresponding variance and covariance matrices. In
the sequel, depending on which constraints are taken into
account, we distinguish between the following scenarios

Rq ∈ R
3×q : unconstrained scenario;

Rq ∈ O
3×q : constrained scenario;

a ∈ R
(m−1)×(n−1): ambiguity-float scenario;

a ∈ Z
(m−1)×(n−1): ambiguity-fixed scenario.

The expression to be minimized in the second minimiza-
tion problem of (10) is the ambiguity objective function
which is nonstandard due to the presence of the second term.
This term would disappear provided the orthonormality of
the rotation matrix is disregarded. To solve the minimiza-
tion problem in (10), the MC-LAMBDA method has been
developed (Park and Teunissen 2003, 2009; Teunissen 2006,
2010; Buist 2007; Giorgi et al. 2008, 2010; Giorgi and Buist
2008; Teunissen et al. 2011), incorporating the orthonormal-
ity of the rotation matrix in a rigorous manner. This method
therefore leads to higher success rates w.r.t. the standard
LAMBDA which only takes into account the integerness of
theDD ambiguities. The performance of both LAMBDAand
MC-LAMBDA is investigated in Sect. 5.

As was mentioned, our evaluations in this study are con-
ducted for a linear array of one baseline and a planar array of
two baselines. For such a situation, matrix B would become
invertible, and (10) can alternatively be written as (Teunissen
2012)

X̌(a) = argmin
XT X = BT B
X ∈ R

3×(n−1)

∣∣∣∣∣∣vec (
X̂(a) − X

)∣∣∣∣∣∣2
Q

vec(X̂(a))

ǎ = argmin
a∈Z(m−1)×(n−1)

(∣∣∣∣â − a
∣∣∣∣2
Qââ

+
∣∣∣∣∣∣vec (

X̂(a) − X̌(a)
)∣∣∣∣∣∣2

Q
vec(X̂(a))

)

X̌ = X̌(ǎ)

(11)

For the single-baseline scenario, the constraint in the first
expression of (11) is a constraint on the baseline length, i.e.,
||x || = l. For such a situation, x̌(a) is the vector on the
sphere of radius l that has the smallest distance to x̂(a), where
distance is measured with respect to themetric defined by the
variance matrix Qx̂(a)x̂(a) (Teunissen 2010).

3 Measurement experiment

In this contribution, we investigate the L5-signal attitude
determination performance based on standalone IRNSS and
IRNSS+GPSBlock IIF, for both the linear and planar arrays.
The data are taken from three stations CUCC, CUBB and
CUT3 of short baselines at Curtin University, Perth, Aus-
tralia (Fig. 2a). Each station is equipped with a JAVAD
TRE_G3TH_8 receiver and connected to a TRM59800.00
SCIS antenna. The dataset contains the 1-s (1Hz) IRNSS
and GPS Block IIF L5 observations collected with a cutoff
elevation angle of 10◦ on DOY (Day Of Year) 167 of 2016.

(a) (b) (c)

CUT3CUBB
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Fig. 2 CurtinUniversity stations usedwith the corresponding skyplots.
a CUCC, CUBB and CUT3 are equipped with JAVAD TRE_G3TH_8
receivers, connected to TRM59800.00 SCIS antennas. The 24-h skyplot

of b IRNSS and c GPS Block IIF at Perth, Australia, on DOY 167 of
2016 with the cutoff elevation of 10◦
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Fig. 3 Time series of the number of visible satellites of IRNSS (I) and
IRNSS + GPS Block IIF (I + GIIF) at Perth, Australia, on DOY 167 of
2016 with the cutoff elevation of 10◦

Figure 2b, c illustrates the 24-h skyplot of IRNSS and GPS
Block IIF at Perth, respectively. Our analyses are conducted
on an epoch-by-epoch basis, and since the satellites geometry
has a low rate of change over time, our conclusions would be
valid even for lower sampling rates, like 30s. For both con-
stellations, the broadcast ephemeris is used. Figure 3 shows
the number of visible satellites for both the standalone IRNSS
and IRNSS + GPS Block IIF. Combining IRNSS with GPS
results in the number of visible satellites increasing from 5–6
to 6–11.

4 Noise characteristics

In this subsection, the noise characteristics of the L5 sig-
nal of IRNSS and GPS are assessed through the estimation
of measurement precision, the carrier-to-noise density and
time correlation. The zenith-referenced standard deviations
in (1), i.e., {σpI , σφI , σpG , σφG }, capture the precision of the
undifferenced phase and code observables and, if present,
any remainingmis-modeled effects likemultipath. Therefore
upon eliminating the unwanted impact of multipath on the
data, it is expected that these values experience improvement.
In this study, the impact of multipath is eliminated through
the method described in Zaminpardaz et al. (2016a). In order
to see the impact of multipath, we apply the least-squares
variance component estimation (LS-VCE) (Teunissen and
Amiri-Simkooei 2008) to the 1-s L5 data of IRNSS and
GPS collected on DOYs 175 and 176 of 2016 before and
after applying multipath corrections. The mentioned stan-
dard deviations were estimated and the corresponding results
are given in Table 2.

The code precision of the GPS L5 is significantly better
than that of the IRNSS L5. This is also in agreement with the
signature of the carrier-to-noise-density (C/N0) graphs of the
two systems in Fig. 4. As it can be seen, the GPS L5 signal
has larger values for C/N0 compared to the IRNSS L5. Upon
multipath reduction, both IRNSS and GPS code standard

Table 2 LS-VCEestimation of themultipath-corrected and the original
(within brackets) undifferenced phaseσφ and code σp zenith-referenced
standard deviations

Frequency σp (cm) σφ (mm)

IRNSS L5 19 (26) 1 (2)

GPS L5 7 (17) 1 (1)

10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

50

55

60

Elevation [deg]

C
\N

0 
[d

B
−H

z]

GPS L5

IRNSS L5

Fig. 4 Carrier-to-noise density (C/N0) for L5 signal of IRNSS and
GPS Block IIF tracked by a JAVAD TRE_G3TH_8 receiver, connected
to a TRM59800.00 SCIS antenna at Perth, Australia, on DOY 167 of
2016 with the cutoff elevation of 10◦

deviations improve significantly. The phase observables of
IRNSS L5 and GPS L5 are of comparable precisions and
almost insensitive to the multipath correction. In the sequel,
our analyses are based on both the original and themultipath-
corrected data.

Since 1-s data form the basis of our analyses, we assess the
presence of time correlation in our data. Here we investigate
the level of time correlation of the IRNSS and GPS L5 sig-
nals after and before applying multipath correction. Figure 5
(top) shows the graph of the time correlation among the orig-
inal IRNSS L5 and GPS L5 observations as function of their
time difference, while Fig. 5 (bottom) shows the same results
for the multipath-corrected data. These graphs are based on
applying the LS-VCEmethod (Amiri-Simkooei and Tiberius
2007) to 1h of 1-s short-baseline data of CUCC–CUBB. A
significant periodic time correlation among the original data
is recognizable for both the IRNSS and GPS observations.
Upon removing the multipath effect, however, the time cor-
relation decreases dramatically and the periodic signature
vanishes.
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Fig. 5 Time correlation of the L5 signal of IRNSS and GPS Block
IIF. Time series of the estimated time correlation among the 1-s short-
baseline observations of the IRNSS L5 (left) and GPS Block IIF L5
(right). Top original data; bottom multipath-corrected data. The red

dashed lines indicate the 95% formal confidence interval. The data
were collected with the cutoff elevation of 10◦ by the stations CUCC
and CUBB at Curtin University, Perth, Australia, on DOYs 175 and 176
of 2016

5 Ambiguity resolution performance

A prerequisite for precise and fast attitude determination
is the successful resolution of the DD ambiguities. In this
section, we will compare the performances of the standard
LAMBDA and theMC-LAMBDAmethod, for both the stan-
dalone IRNSS L5 and IRNSS + GPS Block IIF L5. It is
therefore also shown what improvements are achieved when
the known body geometry of the antenna array is rigorously
incorporated into the ambiguity objective function through
MC-LAMBDAmethod. We consider two types of array: lin-
ear array formed by CUCC–CUBB and planar array formed
by CUCC–CUBB–CUT3 (see Fig. 2). The body frame coor-
dinate matrix B for the planar array is given by

B =
[
6.15 6.78
0 4.22

]
m

5.1 Standalone IRNSS

Figure 6 shows the 24-h time series of the IRNSS L5 single-
epoch ambiguity-float and ambiguity-fixed solutions of the
attitude angles corresponding to the linear array of CUCC–
CUBB (a and b) and planar array of CUCC–CUBB–CUT3 (c
and d). The fixed solutions on the left are estimated through
LAMBDA, while those on the right are estimated through
MC-LAMBDA. These results are computed based on the

multipath-correctedGNSS data. In Table 3, however, we give
the corresponding ambiguity resolution success rates on the
basis of both the original and the multipath-corrected data.
From this table, through either LAMBDAorMC-LAMBDA,
multipath correction indeed improves the ambiguity resolu-
tion success rate for both the linear and planar array. This
enhancement is, however, negligible (0.1%) in case of using
the MC-LAMBDAmethod to resolve the planar array ambi-
guities. The advantage of MC-LAMBDA over LAMBDA is
quite clear from the results in Table 3 and Fig. 6. Switching
fromLAMBDA toMC-LAMBDA, the success rate increases
from 20.4 to 94.3% for the linear array and from 9.3 to 99.9%
for the planar array. Higher MC-LAMBDA success rates
would be achievable if we include the data of more than one
epoch. Since theMC-LAMBDAsuccess rate is already large,
only a few number of epochs are needed to achieve higher
success rates. This indicates that upon usingMC-LAMBDA,
standalone IRNSS can realize 24-h almost instantaneous pre-
cise attitude determination.

As the dimension of the array increases from one (lin-
ear) to two (planar), the LAMBDA success rate decreases
while that of MC-LAMBDA increases. This is also shown
in Fig. 6. The density of the red dots (wrongly fixed solu-
tions) increases from panel (a) to (c), while it decreases from
panel (b) to (d). In case of MC-LAMBDA which takes into
account the constraint XT X = BT B, themodel gets stronger
from linear array to planar array due to the inclusion of larger
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Fig. 6 Standalone IRNSS L5 instantaneous ambiguity resolution per-
formance. Time series of the single-epoch solutions for the attitude
angles based on the data collected on DOY 167 of 2016 at Perth
with the cutoff elevation of 10◦. Each panel shows three types of
solution: gray ambiguity-float solutions; red wrongly fixed solutions;

green correctly fixed solutions. The fixed solutions on the left are
estimated through LAMBDA, while those on the right are estimated
through MC-LAMBDA. a, b Correspond to the linear array formed by
CUCC–CUBB. c, d Correspond to the planar array formed by CUCC–
CUBB–CUT3

number of constraints which in turn leads to the ambiguity
resolution improvements. The LAMBDA success rate for the
single-frequency DD ambiguities corresponding to n anten-
nas and m satellites can be well approximated by Teunissen
(1998)

Ps ≈
[
2Φ

(
1

ADOP

)
− 1

](m−1)(n−1)

(12)

where Φ(x) = ∫ x
−∞

1√
2π

exp{− 1
2v

2}dv. ADOP (ambigu-
ity dilution of precision) is defined as the square root of
the determinant of the ambiguity variance matrix raised to

the power of one over the ambiguity dimension, and is the
geometric average of the conditional ambiguities standard
deviations (Teunissen 1997). For the observational model in
(1), it can be shown that the ADOP corresponding to n = 2
is only 1.07 times larger than the ADOP corresponding to
n = 3, which can be considered almost the same. More-
over, for a given value of ADOP, the success rate in (12)
decreases as n increases. Therefore, from the linear array
of two antennas to the planar array of three antennas, where
ADOP remains almost unchanged but n increases from2 to 3,
the LAMBDAsuccess rate is indeed expected to experience a
reduction.
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Table 3 Instantaneous L5
ambiguity resolution empirical
success rate (%) for attitude
observational model using the
multipath-corrected data and the
original data (within brackets)

Scenario IRNSS L5 IRNSS + GPS Block IIF L5

LAMBDA MC-LAMBDA LAMBDA MC-LAMBDA

Linear array 20.4 (15.2) 94.3 (89.8) 97.4 (95.1) 99.8 (99.8)

Planar array 9.3 (5.8) 99.9 (99.8) 97.1 (93.7) >99.9 (>99.9)

The results are given for the linear array of CUBB–CUCC and the planar array of CUBB–CUCC–CUT3 (see
Fig. 2)

Fig. 7 IRNSS + GPS Block IIF L5 instantaneous ambiguity resolu-
tion performance. Time series of the single-epoch solutions for the
attitude angles based on the data collected on DOY 167 of 2016 at
Perth with the cutoff elevation of 10◦. Each panel shows three types
of solution: gray ambiguity-float solutions; red wrongly fixed solu-

tions; green correctly fixed solutions. The fixed solutions on the left are
estimated through LAMBDA, while those on the right are estimated
through MC-LAMBDA. a, b Correspond to the linear array formed by
CUCC–CUBB. c, d Correspond to the planar array formed by CUCC–
CUBB–CUT3

5.2 IRNSS combined with GPS

Now we consider the dual-system scenario, i.e., IRNSS +
GPS Block IIF. Figure 7 shows the corresponding dual-

system counterparts of Fig. 6, for which the empirical
ambiguity resolution success rates are also given in Table 3.
According to this table, the impact of multipath correction on
the ambiguity resolution performance is not very consider-
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Fig. 8 a Time series of IRNSS + GPS Block IIF L5 instantaneous
heading solutions based on the data of CUCC–CUBB collected on
DOY 167 of 2016 at Perth with the cutoff elevation of 10◦. gray
ambiguity-float solution; green LAMBDA-based correctly fixed solu-
tion; red LAMBDA-based wrongly fixed solution. The blue dashed
lines indicate the 95% formal confidence interval. b The correspond-
ing time series of the single-epoch unconstrained ADOP (blue) and the
value of 0.12 cycle (red dashed line)

able, particularly in case ofMC-LAMBDA.As a result of the
integration of the IRNSS with GPS Block IIF, the number of
wrongly fixed solutions decreases dramatically particularly
using the standard LAMBDA method. It can be seen that
using MC-LAMBDA method, a success rate of 99.8% for
the linear array and higher than 99.9% for the planar array
can be attained.

In Figs. 6 and 7, the fluctuations in the ambiguity-float
solutions (gray dots) and the variability of the wrongly fixed
solutions (red dots) density can be explained through, respec-
tively, the (linearized) formal standard deviations and the
ADOP. Here, as an example, we explain the behavior of the
heading dual-system estimations based on the linear array.
The information depicted in Fig. 8a are those in the top panel
of Fig. 7a plus the 95% formal confidence interval based on
the linearized formal ambiguity-float heading standard devi-
ation (blue dashed lines). The signature of the blue lines is
in agreement with that of the ambiguity-float heading error
time series. Comparing the time series of the ambiguity-fixed
heading solutions with that of the ADOP (blue graph) shown
in Fig. 8b, the wrong ambiguity fixing occurs during the
periods of large ADOPs. The red dashed line in this figure
indicates the ADOP value of 0.12 cycle. As a rule of thumb,
an ADOP smaller than about 0.12 cycle corresponds to a

LAMBDA success rate of larger than 99.9% (Odijk and Teu-
nissen 2008).

6 Attitude determination performance

Having investigated the ambiguity resolution performance,
we now turn our focus onto the attitude determination perfor-
mance. In this section, we present our numerical evaluations
of the L5-signal attitude determination performance for stan-
dalone IRNSS and IRNSS integrated with GPSBlock IIF, for
the aforementioned linear and planar array.

6.1 Standalone IRNSS

We start our attitude determination analysis with the lin-
ear array of CUCC–CUBB. Figure 9 illustrates for this
array in a stepwise manner how the baseline solutions are
built up from unconstrained ambiguity-float scenario to the
constrained ambiguity-fixed scenario. The gray vector and
sphere shown in all the panels of this figure are the baseline
ground truth and the sphere with the radius of the baseline
(CUCC–CUBB) length l, respectively. Figure 9a shows the
single-epoch IRNSS L5 baseline solutions as blue dots for
the unconstrained ambiguity-float scenario. The dispersion in
the baseline solutions is governed by the code precision and
satellites geometry. The excursions in this three-dimensional
scatter plot are due to the significant change that the receiver-
satellite geometry undergoes during a 24-h period.

Shown in Fig. 9b are the single-epoch IRNSS L5 baseline
solutions for the constrained ambiguity-float scenario (gray
dots). As is shown, upon constraining the baseline length
||x || = l, the corresponding solutions can only vary on a
sphere with the radius of l. Incorporating the integerness
of the DD ambiguities, Fig. 9c illustrates the single-epoch
IRNSS L5 solutions for the constrained ambiguity-fixed sce-
nario (green dots: correctly fixed; red dots: wrongly fixed).
For this scenario, there are different clusters of the base-
line solutionswhich correspond to different estimated integer
values for the DD ambiguities. The green cluster associates
with the correct integer value comprising 94.3% of the fixed
solutions, while the red clusters correspond to thewrong inte-
ger values. To judge whether a DD ambiguity is correctly
fixed, its corresponding integer solution is compared with
the reference integer DD ambiguity computed based on the
multi-epoch solution of the baseline-known model.

Figure 10a shows the horizontal scatter plot of the
single-epoch IRNSS L5 baseline solutions, corrected for the
baseline ground truth, for all the scenarios depicted in Fig. 9.
Looking at the blue scatter plot, a Northwest elongation can
be recognized which is due to a specific receiver-satellite
geometry. In order to explain this, we make use of the con-
fidence ellipse concept as it is the formal representative
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Fig. 9 Single-epoch IRNSS L5 solutions of the CUCC–CUBB base-
line atCurtinUniversity onDOY167of 2016with the cutoff elevation of
10◦. a Unconstrained ambiguity-float scenario; b Constrained (||x || =
l) ambiguity-float scenario; c Constrained (||x || = l) ambiguity-fixed
scenario (with a zoom-in in the lower left). The gray vector and the

sphere shown in all the three panels denote, respectively, the baseline
ground truth and the sphere with the radius of the CUCC–CUBB base-
line length l. In panel c, green and red dots show the correctly fixed and
wrongly fixed solutions, respectively

of the empirical scatter plot. Denoting the unconstrained
ambiguity-float baseline solution as x̂ with mean and covari-
ancematrix of, respectively, x and Qx̂x̂ , its confidence ellipse
reads

(x̂ − x)T Q−1
x̂ x̂ (x̂ − x) = k2 (13)

in which the constant k2 is chosen such that a certain con-
fidence level, e.g., 95%, is reached. As the direction of
elongation is given by the direction of the eigenvector of Q−1

x̂ x̂
corresponding to its smallest eigenvalue, it follows with the
aid of (1) that this direction is given by

f = argmin
f̃

f̃ T Q−1
x̂ x̂ f̃

= argmin
f̃

m∑
s=1

ws
[
f̃ T

(
us − ū

)]2
(14)

with us being the unit direction vector from receiver to
satellite s and ū being the weighted average of the vectors
us (s = 1, . . . ,m). Note that here for simplicity, we drop the
index I from those IRNSS-specific parameters. Figure 10b
depicts the day-averaged skyplot position of the IRNSS satel-
lites as well as that of the weighted average at Perth on DOY
167 of 2016 with the cutoff elevation of 10◦. The differences
(us − ū) are mainly oriented along the West–East direc-
tion. However, they have a non-negligible projection onto
the North–South direction for satellites I1 and I2 such that
the direction f that minimizes the contribution of all (us − ū)

to (14) will mainly lie in an almost Northwesterly direction.
This explains the Northwesterly elongation of the blue hori-
zontal scatter plot in Fig. 10a.

The gray dots in Fig. 10a show the horizontal scatter plot
of the constrained ambiguity-float baseline solutions, while

the green and red dots show that of the constrained correctly
and wrongly fixed baseline solutions, respectively. A zoom-
in is also provided on the lower left of the figure to show
the correctly fixed results more clearly. As it can be seen,
the gray dots mainly take negative values along the North
direction revealing that the constrained ambiguity-float base-
line solutions are biased. This bias is due to the nonlinearity
involved in the model of observations, called nonlinearity
bias (Teunissen 1989). The nonlinearity of our model of
observations stems from the orthonormality constraint of the
rotation matrix Rq in (6). In “Appendix”, we have elaborated
more on this type of bias. The level of nonlinearity of the
observational model depends on the baseline length and the
GNSSdata precision. Themore precise theGNSSdata and/or
the longer the baseline, the less the impact of the constraint
nonlinearity. Consider, as an example, the ambiguity-fixed
scenario where the DD ambiguities are successfully fixed to
their integer values. Then it is the very precise phase obser-
vations which take the leading role in baseline estimation.
Therefore, the nonlinearity bias in the constrained correctly
fixed solutions is expected to be negligible. This is indeed
confirmed by the correctly fixed solutions scatter plot (green
dots) in Fig. 10a.

Table 4, for the linear and planar array, lists the IRNSS
L5 single-epoch empirical and formal standard deviations of
the attitude angles based on the multipath-corrected data. In
Sect. 5, it was shown that the instantaneous MC-LAMBDA
ambiguity resolution using the standalone IRNSS is feasible
with a notably high success rate. Therefore, Table 4 shows,
in addition to the ambiguity-float results, the corresponding
MC-LAMBDA ambiguity-fixed results as well. The empir-
ical values are obtained from the single-epoch least-squares
estimations of the attitude angles, whereas the formal values
are obtained from taking the average of all the single-epoch
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Fig. 10 a Single-epoch IRNSS L5 horizontal scatter plot of the
CUCC–CUBB baseline at Curtin University corrected for the corre-
sponding ground truth, on DOY 167 of 2016 with the cutoff elevation
of 10◦. Blue unconstrained ambiguity-float solutions; gray constrained
ambiguity-float solutions; red constrained wrongly fixed solutions;
green constrained correctly fixed solutions. A zoom-in is also depicted
in the lower left of the figure. b Day-averaged IRNSS skyplot at Perth
for DOY 167 of 2016 with the cutoff elevation of 10◦. The red square
indicates the skyplot position of vector ū (cf. 14)

formal least-squares standard deviations based on the lin-
earized observational model (w.r.t. the attitude angles). In
case of the planar array, in addition to heading and elevation,
bank is also estimable.

Comparing the empirical and the linearized formal results
of the ambiguity-float scenario, an inconsistency is recogniz-
able between themwhich can be attributed to the nonlinearity
of the observational model. More explanation is provided in
“Appendix”. Upon fixing the DD ambiguities, however, the
discrepancy between the empirical and the linearized formal
outcomes disappears. The attitude angles standard devia-

Table 4 Instantaneous IRNSS L5 attitude precision

Scenario Ambiguity float (◦) Ambiguity fixed (◦)

σα̂ σε̂ σ
β̂

σα̌ σε̌ σ
β̌

Linear array

emp 12.06 18.55 – 0.04 0.08 –

form 7.51 18.52 – 0.04 0.09 –

Planar array

emp 11.77 18.97 27.64 0.03 0.07 0.10

form 6.54 17.01 21.92 0.03 0.08 0.10

Empirical and linearized formal standard deviations of the attitude
angles in degrees for the linear array of CUBB–CUCC and the planar
array of CUBB–CUCC–CUT3 (see Fig. 2), based on the multipath-
corrected data collected on DOY 167 of 2016 with the cutoff elevation
of 10◦. The ambiguity-fixed solutions are obtained through applying
MC-LAMBDA. emp, empirical; form, formal. σα̂ /σα̌ , σε̂/σε̌ , σ

β̂
/σ

β̌
,

ambiguity-float/ambiguity-fixed standard deviation of heading, eleva-
tion and bank, respectively

tions increase from heading to elevation to bank. This can
be explained through the baselines orientation along with the
IRNSS satellites geometry. Here, as an example, we consider
the linear array of CUCC–CUBB with the baseline length
of l. Through the linear approximation of (1) w.r.t. the atti-
tude angles γ = [α ε]T , the heading–elevation covariance
matrix is given by

Qγ̂ γ̂ = σ 2
p

l2

(
m∑
s=1

ws
[
J T

(
us − ū

)] [
J T

(
us − ū

)]T)−1

(15)

with J being the Jacobian matrix of the following form

J = [Jα Jε] =
⎡
⎣−sαcε −cαsε

cαcε −sαsε
0 −cε

⎤
⎦ (16)

From (15) and (16), if J Tα (us−ū) is larger than J Tε (us−ū),
then the heading estimation would be more precise than
the elevation and vice versa. For the CUCC–CUBB base-
line with almost the South–North orientation, we have Jα ≈
[0, 1, 0]T (East direction) and Jε ≈ [0, 0, −1]T (Up direc-
tion). Since the GNSS satellites have a larger extension along
the horizontal plane than the vertical, heading is expected to
have better precision than elevation. Equation (15) in addi-
tion reveals that the longer the baseline, the more precise the
attitude angles estimation.

Note, in case of working with the original data (with-
outmultipath correction), the ambiguity-fixed attitude angles
standard deviations in Table 4 change as follows. The value
of σφI for the original phase data is larger than that of the
multipath-corrected phase data by a factor of 2 (see Table 2).
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Table 5 Instantaneous IRNSS + GPS Block IIF L5 attitude precision

Scenario Ambiguity-float (◦) Ambiguity-fixed (◦)

σα̂ σε̂ σ
β̂

σα̌ σε̌ σ
β̌

Linear array

emp 2.78 6.06 – 0.02 0.05 –

form 3.36 7.46 – 0.02 0.05 –

Planar array

emp 1.93 5.69 8.76 0.01 0.04 0.06

form 2.07 6.28 9.15 0.01 0.04 0.06

Empirical and linearized formal standard deviations of the attitude
angles in degrees for the linear array of CUBB–CUCC and the planar
array of CUBB–CUCC–CUT3 (see Fig. 2), based on the multipath-
corrected data collected on DOY 167 of 2016 with the cutoff elevation
of 10◦. The ambiguity-fixed solutions are obtained through applying
MC-LAMBDA. emp, empirical; form, formal. σα̂ /σα̌ , σε̂/σε̌ , σ

β̂
/σ

β̌
,

ambiguity-float/ambiguity-fixed standard deviation of heading, eleva-
tion and bank, respectively

However, the weight matrix corresponding to the multipath-
corrected data is 2 times larger than that of the original data
due to the addingmultipath corrections based on the previous
day data. Therefore, multiplying the ambiguity-fixed entries
of Table 4 by

√
2 gives their counterparts on the basis of the

original data.

6.2 IRNSS combined with GPS

Now we analyze the IRNSS L5 attitude determination capa-
bility when combined with GPS L5. Table 5 displays the
dual-system counterparts of the entries in Table 4. Upon
integrating IRNSS with GPS Block IIF, the attitude angles
precisions improve by 3–4 times in case of ambiguity-float
scenario and 1.5–2 times in case of ambiguity-fixed scenario.
This improvement is due to the increase in number of visi-
ble satellites and, in case of ambiguity-float scenario, to the
higher precision of the GPS L5 code observations w.r.t the
IRNSS.Aswas explained for the standalone IRNSS scenario,
following successful fixing of the ambiguities, the empirical
and the linearized formal results become consistentwith each
other.

6.3 Attitude determination over the IRNSS service area

So far, we have presented the single-epoch formal and empir-
ical analyses on the basis of the data collected at Perth. For
the ambiguity-fixed scenario, a good consistency was shown
between our empirical outcomes and their linearized formal
counterparts (see Tables 4, 5). This agreement implies that
the easy-to-compute (linearized) formal values can indeed
be used to predict the expected attitude determination per-
formance. Therefore, in this subsection, we perform a formal
analysis of the ambiguity-fixed attitude angles standard devi-

Fig. 11 IRNSS primary and secondary service area (image credit:
ISRO)

ations for a linear array of two antennas over the IRNSS
primary and secondary service area, i.e., locations within
(−30◦ < φ < 50◦, 30◦ < λ < 130◦). The extent of these
two service areas is depicted in Fig. 11.

Prior to our ambiguity-fixed analyses, it is important to
first investigate whether high instantaneous MC-LAMBDA
success rates are achievable for the locations inside the
IRNSS service area. To do so, we first compare the instanta-
neous LAMBDA formal success rate at these locations with
that at Perth. If for a location, instantaneous LAMBDA suc-
cess rate not lower than that at Perth can be achieved, then
it can be concluded that the instantaneous MC-LAMBDA
success rate at this location would also not be lower than its
counterpart at Perth, which is as high as 90% for a linear array
of two antennas (see Table 3). With this in mind, the stan-
dalone IRNSS ambiguity-fixed results are then given only for
the locationswith the larger instantaneousLAMBDAsuccess
rate than that at Perth.

Integration of the IRNSSwith theGPSBlock IIF results in
the instantaneous LAMBDA success rate becoming higher
than 70% for all the locations within (−30◦ < φ < 50◦,
30◦ < λ < 130◦). This means that these locations are
expected to have the instantaneous MC-LAMBDA success
rate higher than at least 70%. Therefore, the IRNSS + GPS
Block IIF ambiguity-fixed results are given for all these loca-
tions.

Our ambiguity-fixed evaluations in this section are based
on the variance matrix given in (15), albeit with σp being
replaced by σφ . The precision with which the attitude
angles can be estimated depends on the phase data pre-
cision [σφ], satellites geometry [us (receiver-satellite unit
direction vector),ws (satellite elevation-dependent weight)],
baseline length [l] and orientation [α (heading), ε (eleva-
tion)]. For our analyses, we consider the following setup:
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σφI = σφG = 2mm, baseline length l = 1m, baseline ori-
entations (α = 0◦, ε = 0◦), (α = 90◦, ε = 0◦) and
(α = 0◦, ε = 45◦). For such a setup, Figs. 12 and 13 provide
the color map of the day-averaged single-epoch ambiguity-
resolved L5-based heading and elevation standard deviations
on the basis of standalone IRNSS and IRNSS + GPS Block
IIF, respectively. For other values of phase data precision
and baseline length, the results of these figures will change
according to (15). The white areas in Fig. 12 denote those
locations excluded from our computations, due to having the
poorer instantaneous MC-LAMBDA success rate than that
of Perth. In order for the color maps to be readable, we use
the same color to show all the elevation standard deviations
not lower than 1.3◦, and also the same color to illustrate all
the heading standard deviations not lower than 0.9◦.

The results in Figs. 12 and 13 show that the heading and
elevation precision at a given location varies with chang-
ing baseline orientation. As was explained earlier, what
drives the heading and elevation precision is the satellites
extension along the vectors Jα and Jε in (16), respectively.
For the baseline orientations of (α = 0◦, ε = 0◦) and
(α = 90◦, ε = 0◦), vector Jε will always points toward Up

direction,while vector Jα points towardEast andSouth direc-
tion, respectively. Therefore, if the satellites have a larger
extension along West–East compared to South–North, the
heading corresponding to the baseline (α = 0◦, ε = 0◦)
will be more precise than that of (α = 90◦, ε = 0◦). For
example, for the location (φ = −30◦, λ = 115.5◦) which
is close to Perth, the standalone IRNSS heading associated
with the baseline orientation (α = 0◦, ε = 0◦) is about
1.4 times more precise than that of the baseline orientation
(α = 90◦, ε = 0◦). This is due to the fact that the IRNSS
satellites extension at this location is a bit larger inWest–East
direction compared to the South–North direction.

Integrating the IRNSSwith GPS Block IIF, both the head-
ing and elevation increase in precision. The improvement
in heading standard deviation is more significant for the
baseline orientation of (α = 90◦, ε = 0◦) compared to
(α = 0◦, ε = 0◦). This can be explained as follows.
The IRNSS satellites, for almost all the locations, have a
stronger extension along the West–East direction than the
South–North direction. As a result, the baseline orientation
(α = 0◦, ε = 0◦) has already a heading estimationwith high
precision which is not the case with the baseline orientation

α = 0◦, ε = 0◦ α = 90◦, ε = 0◦ α = 0◦, ε = 45◦
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Fig. 12 Color map of day-averaged single-epoch ambiguity-resolved
attitude angles standard deviation based on the standalone IRNSS L5,
onDOY167 of 2016with 10◦ cutoff elevation. The results are computed
assuming σφI = 2mm and baseline length l = 1m, for the baseline ori-
entations of, from left to right, (α = 0◦, ε = 0◦), (α = 90◦, ε = 0◦)

and (α = 0◦, ε = 45◦), respectively. top heading; bottom elevation.
The white areas denote those locations excluded from our computa-
tions, due to having the poorer instantaneous MC-LAMBDA success
rate than that of Perth
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Fig. 13 Color map of day-averaged single-epoch ambiguity-resolved
attitude angles standard deviation based on the IRNSS + GPS Block
IIF L5, on DOY 167 of 2016 with 10◦ cutoff elevation. The results are
computed assuming σφI = σφG = 2mm and baseline length l = 1m,

for the baseline orientations of, from left to right, (α = 0◦, ε = 0◦),
(α = 90◦, ε = 0◦) and (α = 0◦, ε = 45◦), respectively. top heading;
bottom elevation

(α = 90◦, ε = 0◦). Adding GPS Block IIF constellation to
IRNSS enhances the South–North satellites extension, thus
considerably improving heading precisions for the baseline
orientation (α = 90◦, ε = 0◦).

7 Conclusion

In this contribution, we presented the very first L5 attitude
determination analyses of the fully operational IRNSS as a
standalone system and also in combination with the fully
operational GPS Block IIF. The noise characteristics of the
L5 signal for both the IRNSS andGPSwere assessed through
the carrier-to-noise density, measurement precision and time
correlation. It was shown that the GPS data have a signifi-
cantly lower noise level than that of the IRNSS, particularly
in case of the code data. The time correlation of both the
constellations was shown to be negligible providing that the
multipath impact is corrected for, even if 1-s data are used.
Our analyses were conducted on an epoch-by-epoch basis,
using both the multipath-corrected and original 1-s data col-
lected by three stations at Curtin University, Perth, Australia.

A prerequisite for precise and fast attitude determination
is the successful resolution of the DD ambiguities. Employ-
ing real data, we compared the performance of standard
LAMBDAandMC-LAMBDAmethod for both a linear array
of two antennas and a planar array of three antennas with the
following body frames

Lineararray:B = 6.15 m

Planararray:B =
[
6.15 6.78
0 4.22

]
m

Based on the multipath-corrected data, when switching
from LAMBDA to MC-LAMBDA, the standalone IRNSS
instantaneous ambiguity resolution success rate was shown
to increase significantly from 20.4 to 94.3% for the linear
array and from 9.3 to 99.9% for the planar array. Upon
integrating IRNSS with GPS Block IIF, the instantaneous
MC-LAMBDA success rates of 99.8% and larger than 99.9%
were achieved for the mentioned linear and planar array,
respectively. For the original data, the mentioned success
rates are marginally smaller.
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Having investigated the ambiguity resolution perfor-
mance, we then assessed the attitude angles precision for
both the ambiguity-float and ambiguity-fixed scenarios. The
orthonormality constraint of the rotation matrix, involved in
the attitude observational model, is a nonlinear constraint
of which the impact on the constrained baseline and atti-
tude angles estimationwas explained. The larger the standard
deviation of the GNSS data and/or the shorter the baselines
length, the more considerable the impact of the constraint
nonlinearity, and the poorer the linear approximation will
be.

Our ambiguity-fixed results showed that for the linear
array oriented in South–North direction with the length of
around l = 6 m, heading and elevation are estimable with
the standard deviations of 0.04 and 0.09 degrees in case
of standalone IRNSS and 0.02 and 0.05 degrees in case of
IRNSS + GPS Block IIF. The higher precision of heading
compared to the elevation was explained through the base-
line orientation and satellites geometry. For the planar array,
the ambiguity-fixed standard deviations for heading, eleva-
tion and bank were 0.03, 0.08 and 0.10 degrees in case of
standalone IRNSS and 0.01, 0.04 and 0.06 degrees in case of
IRNSS + GPS Block IIF.

For the ambiguity-fixed scenario, a good consistency was
shown between our empirical outcomes and their linearized
formal counterparts, implying that the easy-to-compute (lin-
earized) formal values can indeed be used to predict the
expected attitude determination performance. Therefore, we
performed a formal analysis of the ambiguity-fixed attitude
angles standard deviations over the IRNSS primary and sec-
ondary service area. Such an analysis was provided for those
locations where the high instantaneous MC-LAMBDA suc-
cess rates are guaranteed.

Our evaluations were based on the following setup: phase
standard deviations σφI = σφG = 2mm, baseline length
l = 1m, baseline orientations (α = 0◦, ε = 0◦), (α =
90◦, ε = 0◦) and (α = 0◦, ε = 45◦). For such a setup,
we illustrated the L5-based heading and elevation standard
deviations on the basis of standalone IRNSS and IRNSS +
GPS Block IIF. For other values of phase data precision and
baseline length, these results will change according to (15). It
was shown that the heading and elevation precision at a given
location varieswith changing baseline orientation,whichwas
explained through the satellites geometry extension.

Switching from standalone IRNSS to IRNSS+GPSBlock
IIF, both the heading and elevation increase in precision. The
improvement in heading standard deviation was shown to be
more significant for the South–North-oriented baseline com-
pared to the West–East-oriented baseline. This is due to the
IRNSS satellites having a stronger extension along theWest–
East direction than the South–North direction for almost all
the locations within its service area. As a result, the South–
North-oriented baseline has already a heading estimation

with high precision which is not the case with the West–
East-oriented baseline. Adding GPS Block IIF to IRNSS
enhances the South–North satellites extension, thus consider-
ably improving heading precision for theWest–East-oriented
baseline.
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Appendix: Nonlinearity of the GNSS attitudemodel

The orthonormality constraint of the rotation matrix Rq

in (6) is a nonlinear constraint. Here, through simulation,
we explain the impact of this nonlinearity on the estima-
tion of the attitude angles. Considering the linear array of
CUCC–CUBB, we simulated two sets of 104 baseline solu-
tions, corresponding to the unconstrained ambiguity-float
and ambiguity-fixed scenarios. They were generated from
the normal distribution with the same mean (CUCC–CUBB
baseline ground truth b̄), but different variances. The vari-
ance matrix of the first set Q1 is equal to the average formal
variancematrix of the blue dots in Fig. 9a over the first 15,000
epochs, while the variance matrix of the second set is given
by Q2 = σφI

σpI
Q1.

As was previously mentioned, for the single-baseline sce-
nario, the orthonormality constraint of the rotation matrix is
equivalent to the length constraint on the baseline vector, i.e.,
||x || = l. It indicates that the baseline vector is constrained to
lie on a sphere with known radius of l. Imposing the baseline-
length constraint, we estimated the heading and elevation of
the CUCC–CUBB baseline based on the two sets of sim-
ulated data. Figure 14 shows the corresponding histograms
of the estimated attitude angles, corrected for the ground
truth, on the basis of the samples with the variance matrix
Q1 (a) and samples with the variance matrix Q2 (b). Given
the linearized formal standard deviations of the estimated
angles, we computed the corresponding zero-mean normal
PDF (probability density function) which are indicted by the
red curves in Fig. 14.

The histograms in Fig. 14a demonstrate an asymmetric
behavior. From these two histograms, it can be seen that the
empirical density of the errors of the estimated angles at
negative values is not the same as that at positive values,
implying that the estimated angles are biased. This bias is
called the nonlinearity bias which was already recognized,
in the baseline domain, in the gray scatter plots in Fig. 10.
Also, the deviation of these histograms from the red normal
curve indicates that looking at only the standard deviations
of the attitude angles is not enough to find out the complete
probabilistic behavior of their estimators. The histograms in
Fig. 14b, in contrast, show a very good consistency with
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Fig. 14 Histograms of the heading (left) and elevation (right) estima-
tion errors (blue) and their linearized formal counterparts (red). These
results are computed based on 104 normally distributed baseline sam-
ples with the mean value of the CUCC–CUBB baseline ground truth
and with two variance matrices Q1 (a) and Q2 = σφI

σpI
Q1 (b). Q1 is

equal to the average formal variance matrix of the blue dots in Fig. 9a
over the first 15,000 epochs

their corresponding normal PDF. This is due to the fact that
these estimations are based on the very precise samples with
the precision (Q2) at the level of phase precision, where the
nonlinearity of the attitude model can be neglected.

The signature of the attitude angles histograms is driven by
the variance matrix of the simulated samples, hence the size,
shape and orientation of their scatter plot. The asymmetric
signature in Fig. 14a can therefore be explained through the
specific orientation of the first set of simulated data scatter
plot. Figure 15a, b shows the scatter plot of the first set of
the simulated samples each of which is split into two clusters
(light/dark brown) based on two different criteria. Clusters
in panel (a), upon constraining the baseline length, result in
heading estimation errors either of negative (light brown)
or positive (dark brown) values, while clusters in panel (b)
are the counterparts of those in panel (a) for the elevation
estimation errors. It can be seen that the two clusters are

Fig. 15 Mapping the unconstrained ambiguity-float baseline solutions
to their baseline-length-constrained counterparts. The scatter plot of
104 normally distributed baseline samples with the mean value of the
CUCC–CUBB baseline ground truth and with the variance matrix of
Q1 (the average formal variance matrix of the blue dots in Fig. 9a
over the first 15,000 epochs). The gray vector and the sphere denote,
respectively, the baseline ground truth and the sphere with the radius
of the CUCC–CUBB baseline length l. The scatter plot is split into
two clusters. light brown/dark brown the points that upon constraining
the baseline length result in negative/positive {∗} estimation errors. {∗}:
heading (a); elevation (b)

not symmetric in any of the two panels. This explains the
asymmetric behavior of the histograms in Fig. 14a.

In Fig. 15a/b, the light brown and the dark brown clusters
are separated by a two-dimensional manifold being the locus
of the points which, upon constraining the baseline length,
result in the heading/elevation estimation errors equal to zero.
The intersection of these two manifolds then accommodates
the points which, upon constraining the baseline length, are
mapped to the baseline ground truth b̄. This intersection is
described by a straight line given by
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bo = (
I3 + k Qb̂b̂

)
b̄;

k ∈ R : ∣∣∣∣bo − b̄
∣∣∣∣2
Qb̂b̂

≤ ||bo − b||2Qb̂b̂
∀ b ∈ S

3(l)

(17)

where S
3(l) is the set of points on the circumference of a

three-dimensional zero-centered sphere with the radius of l.
Proof is as follows. Given the unconstrained ambiguity-float
baseline solution b̂, its baseline-length-constrained counter-
part is given by

ˆ̂b = argmin
||b|| = l
b ∈ R

3

∣∣∣∣∣∣b̂ − b
∣∣∣∣∣∣2
Qb̂b̂

(18)

which, from geometrical point of view, is the point where
the ellipsoid E

3 = {b ∈ R
3| ||b̂ − b||2Qb̂b̂

= constant} just
touches the sphereS3(l) (Teunissen 2010). This indicates that
the gradient vectors of the mentioned ellipsoid and sphere

will be parallel at point ˆ̂b. Therefore to find the locus of the

points bo ∈ R
3 for which ˆ̂b = b̄, the gradient vector of the

corresponding ellipsoid E
3 and sphere S3(l) at b̄ should be

set parallel to each other, i.e.,

Q−1
b̂b̂

(
bo − b̄

) = k b̄ (19)

where k is a scalar. Equation (19) can be worked out to

bo = (
I3 + k Qb̂b̂

)
b̄ (20)

With changing k, (20) describes a straight line which is paral-
lel to Qb̂b̂b̄ and passes through b̄. Note the values of k should

result in b̄ being the solution of (18) for b̂ = bo given by (20).
Therefore, k follows from

k ∈ R : ∣∣∣∣bo − b̄
∣∣∣∣2
Qb̂b̂

≤ ||bo − b||2Qb̂b̂
∀ b ∈ S

3(l)

(21)

��
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