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Abstract 
Dynamic shading systems represent the majority of realised adaptive façades. It seems that geometrically complex kinetic solutions 
have increased in recent years, mainly due to the use of parametric design tools and digital production. In most shading systems, how-
ever, geometry rarely plays a guiding role in the design. The kinetic mechanisms are confined to linear or planar geometries. Geometry 
plays an important role in biological organisms, because it is the decisive factor for efficiency and growth. Their growth patterns could 
provide new insights for dynamic shading designs. For this, spatial morphology criteria for shading systems were identified to obtain 
criteria directly related to geometry. These were supplemented by criteria on kinetic mechanisms. Then, biological analogies that 
correlate geometrical structures with adaptability were sought. Using biomimetic methods, particularly from functional morphology, 
principles in growth patterns were analysed and compared to shading systems. It revealed that the restriction to space, location, and 
material-inherent properties does not affect the solution diversity, but follows an evolutionary objective: Plants, for example, use inge-
nious geometrical structures to allow adaptation, mainly over lifetime but also dynamically. Whether these principles can be applied to 
the design of dynamic shading systems is then discussed. The aim of the paper is to provide impulses for further studies on adaptive 
shading systems that focus on the innovative use of space with greater flexibility in motion. The overall premise of the paper is to 
demonstrate the applicability of biomimetic methods for architectural engineering. 
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1 INTRODUCTION

Dynamic shading systems are of particular interest in the framework of energy efficiency strategies 

in buildings, because the cooling energy demand raises continuously. The research study ‘Cost 

Efficient Solar Shading Solutions in High Performance Buildings’ mentions that “dynamic solar 

shading leads to mean cooling energy savings of more than 36% when averaged across all glazing 

types and climate conditions in Europe”; and it could increase to 65-70% for South-West orientated 

facades in central Europe (Hutchins, 2015). Thus, dynamic shading systems seem to be one of the 

key measures for drastically decreasing the cooling energy consumption of buildings in Europe. 

However, recent evaluations show that implemented measures with regard to shadings do not show 

the desired effect (Hutchins, 2015; Werner, 2016). Since there are few studies on the causes, one can 

only speculate. One obstacle to effectively operating dynamic shading systems may be the conflict 

of shading versus visual comfort (view out, use of daylight). This affects the energy consumption of 

artificial lighting during shading periods. The conflict might be solved by the — currently somewhat 

neglected — design of shading systems. Conventional products show mainly linear and planar 

geometries with limited adaptive morphology. Since there are few alternatives that are economically 

feasible and promise a certain robustness, the potential of the geometry of shading surfaces 

is yet to be explored.

A closer look at the geometrical characteristics of dynamic shading systems raises questions, two 

of which are discussed in this paper: What role do geometrical patterns play in current shading 

systems? And, how do spatial morphology criteria and geometrical forms influence the flexibility of 

adaptation? Ensuring the best possible functionality and adaptability by using geometrical growth 

patterns is an essential requirement of biological evolution. The systematic search for analogies in 

nature could show potentials, particularly for the second question, and enable a design shift away 

from the neglected geometry to innovative shading geometries. The aim of the paper is to present 

geometrical patterns of conventional shading systems and draw a link to biological role models that 

deal with surface optimisation strategies through geometry. The goal is also to illuminate the role of 

geometrical forms for energy efficiency in this context and to stimulate further studies as to whether 

spatial designability influences functionality.

The paper begins in Section 2 with a description of the applied methodology to identify various 

geometrical and functional mechanisms and continues in Section 3 with the categorisation of 

parameters of shading systems that are linked to spatial morphology, in order to deal with the first 

question. Section 4 deals with the potentials linked to geometrical forms and functions in nature 

in order to demonstrate the link between geometry and performance optimisation. It also briefly 

discusses some principles of the identified geometrical peculiarities in order to determine a possible 

transfer to dynamic shading systems, which addresses the second question. In the conclusion, a 

hypothesis is put forward in relation to a re-design strategy for dynamic shading systems based on 

geometrical patterns, which might overcome the conflict between performance and visual quality.
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2 METHODOLOGY

The use of biomimetic methods to identify biological potentials for advanced building design is a 

trend that has been increasing for several years. Within the field of adaptive façades, optimisation 

investigations on daylight and shading components by applying biomimetic principles are a central 

topic. Studies on shape morphing solar shadings by Fiorito et al. (2016) and Pesenti, Masera, Fiorito, 

& Sauchelli (2015) can be cited as exemplary. While many activities focus on the development of new 

material composites (Lienhard et al., 2011) or design recommendations in a ‘biomimetic’ manner 

(Menges, 2012; Al-Obaidi, Ismail, Hussein, & Abdul, 2017), very few studies are targeted at employing 

biomimetic methods for re-designing or upgrading existing material and system solutions. This 

work aims to contribute to this objective by presenting some biomimetic principles for the re-design 

of geometrical forms for effective dynamic shading systems. 

As an initial step towards understanding the role of geometry in the adaptive functionality of shading 

systems, spatial morphology criteria and kinetic patterns of conventional shading systems were 

developed. These were then assigned to different shading types in order to classify geometrical 

and motion-related parameters. In the next step, biological role models, showing geometrical and 

functional dependencies for the given context, were searched by applying the biomimetic analogy 

method. To understand the relations between patterns/shape, functions, and behaviour of the role 

models, a combination of methods from functional morphology, the ‘structure-form-(behaviour)-

function’ model (Sartori, Pal, & Chakrabarti, 2010), and underlying physical laws are applied. It is 

assumed that patterns and forms in nature follow the laws of physics and thus can be (roughly) 

explained with mathematical formulae (Cohen, Reich, & Greenberg, 2014). Some conclusions about 

these relations were drawn in this work. While it is already a complex process to understand and 

abstract biological ‘structure-behaviour-function’ relationships, some go even one step further 

towards identifying generic design patterns (Cohen et al., 2014). This intention is also a motivator for 

this work, which, so far, is only presented as a hypothesis in this paper.

3 SPATIAL MORPHOLOGY OF SHADING SYSTEMS

Dynamic shading systems represent the majority of adaptive façade systems according to case 

studies in the COST “Adaptive Façade Network” (COST TU1403, 2018) (Loonen, Trcka, Costola, & 

Hensen, 2013) (Aelenei, Aelenei, & Vieira, 2016). In addition to the many functions that a dynamic 

shading system must fulfil with regard to aesthetic, visual, thermal, or structural requirements, its 

adaptability is the most critical task – more so than with any other façade component. In the design 

phase, however, shading systems are primarily regarded as an intangible factor for overheating or 

solar gains evaluation. In energetic building performance evaluations, they are considered as a static 

value or a range of static values representing worst, best, and standard cases. Their optical properties 

(transparency, reflectance, emissivity), their influence on daylight quality (daylight transmittance, 

glare protection, visual quality), and their control strategies are taken into account by global data. 

The role and performance impact of the specific geometry of an element, as well as its related 

kinetic patterns, is not considered. Few studies have been found during the literature survey for 

this work that focus on specific physical characteristics related to the (static) geometry of shading 

elements in order to enable better energy performance (Fiorito et al., 2016) (Cohen et al., 2014) 

(Pesenti et al., 2015).
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 3.1 PARAMETERS FOR SPATIAL MORPHOLOGY 

Whenever kinetic movements of façade components occur, certain geometrical and mechanical 

parameters are taken into account to allow a change of state. Scale, size, and positioning of individual 

components, as well as the spatial extension and modularity of the system, are some of these 

parameters that have to be considered when designing adaptive (kinetic) shading systems. Some 

respective criteria were identified from the analysis of the case studies in COST “Adaptive Façade 

Network” (COST TU1403, 2018) and further developed for a first draft of spatial and kinetic criteria 

of adaptive facades (Gosztonyi, 2015). They are summarised as “spatial morphology criteria” (Fig. 

1). One such criterion is the ‘physical impact’, which describes the geometrical appearance of the 

system, such as planar, linear, or polygonal patterns of the surface, and their changing appearance 

in the several adaptation states. This also describes the kinetic motion along defined axes (one- 

or multi-axial). The second criteria, ‘repetitive structures’, describes the geometrical form itself 

and the modularity of the elements. While most elements are usually standardised (e.g. strip fins, 

planar textiles), there is no standard solution for freeform and curved elements. Parametric design 

considerably supports the development of freeform geometries in order to achieve higher motion 

flexibility (and performative optimisation) (Barozzi, Lienhard, Zanelli, & Monticelli, 2016). The third 

criteria, ‘spatial versality’, is linked to the adaptation mechanisms and its space requirements. 

Being mounted on guiding rails, hinges, or brackets, shading elements cause a spatial intrusion 

into the third dimension by folding, wrapping, rolling, and shifting, among others. The mechanisms 

define the kinetic morphology of the system and determine the coverage pattern of the façade 

surface. This criteria also describes the space that is needed for the motion, which is critical for the 

choice of the solution.

FIG. 1 Spatial morphology parameters for shading systems: (A) ‘Physical Impact’ deals with the visual kinetic patterns of the 
shading system in various adaptation states, (B) ‘Repetitive structure’ with the geometrical properties (size, scale, form of 
the element), and (C) ‘Spatial Versality’ with the mechanisms and need of space for motion. These parameters describe the 
geometrical design of the system (Images retrieved from Thermocollect, pinterest.com).
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 3.2 CATEGORISATION OF SHADING SYSTEMS

To make the geometrical characteristics of conventional shading systems visible, they are 

categorised according to their assembly types, orientation and motion, material properties, position 

relative to the façade, and the already mentioned spatial morphology criteria, as shown in Table 1. 

These parameters are considered to have a direct link to geometrical constraints, although there 

are other criteria that might indirectly influence the geometry (e.g. comfort requirements, climatic 

situation, economic constraints).

TYPES FAÇADE 
ORIENTATION 
PREFERENCES

POSITION 
PREFERENCE

MATERIAL MOTION “SPATIAL MORPHOLOGY CRITERIA”

Physical 
impact

Spatial 
 versality

Repetitive 
structure

Overhangs, fins, 
shelfs

 

South exterior all fixed static; planar, 
laminar 
appearance

horizontal 
expansion; 
space need is 
high

one unit

Brise-soleil, 
Louvres

 

East, west exterior all fixed (with 
moveable or 
fixed slats)

semi-static; 
laminar 
appearance

horizontal; 
space need 
is medium to 
high

one element 
(repetitive)

Awnings all exterior textile, 
aluminum, 
plastic

fixed, 
moveable

framed, 
homogenous, 
planar 
appearance

horizontal, 
sloped; 
space need 
is medium to 
high 

one unit

Roller, shutters

 

all exterior steel, 
aluminum, 
plastics, glass

moveable laminar, 
planar 
appearance

horizontal, 
vertical; 
space need 
is medium to 
high

one element 
(repetitive)

Venetian blinds

 

all exterior, 
interstitial, 
interior

aluminum, 
metal, wood, 
glass, plastic, 
textile

moveable laminar 
appearance

horizontal, 
vertical; 
space need is 
minimal

one element 
(repetitive)

Blinds, screens

 

all exterior, 
interstitial, 
interior

aluminum, 
metal, wood, 
plastic, textile

 moveable planar, 
circular, 
polygonal 
appearance

vertical; 
space need is 
minimal

one element 
(repetitive)

Drapes, cur-
tains, blackout 
screens

 

all interior 
(seldom 
exterior)

textiles, 
plastic

moveable Planar 
appearance

vertical; no 
space is need

one unit

TABLE 1 Categorization of conventional shading systems: Identified parameters that provide spatial information or influence on geometry
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The constructive characteristics of shading systems are further classified by structural frame types 

(if not self-supporting), suspension systems (guide rails, hinges, brackets), and kinetic actuators 

(hydraulic, electric). Positioning relative to the building skin can be either external, internal, or 

interstitial, whereas the choice defines the spatial expansion bandwidth and performance efficiency. 

Besides being the best choice for thermal protection, external shading devices provide the most 

complex geometries and also higher structural and durability requirements, due to the exposure 

to climatic conditions and aesthetic visibility. Interstitial systems are less demanding in terms of 

spatial and structural requirements, but cause complicated maintenance requirements when they 

are moveable. For example, in closed-cavity façades, there is no maintenance option after being 

installed. Thus, the whole element must be exchanged in case of malfunction.

 3.3 KINETIC PATTERNS

Folding, rolling, shifting, etc. are kinetic movements that require certain geometrical arrangements. 

Shading systems mainly use laminar (fold, flap) or planar (roll, shift) geometries to allow one- or two-

dimensional motion. This approach limits the flexibility of shade vs. non-shade areas, and increases 

the conflict between shading and visual quality tasks. Either one or the other will not perform well, 

because the surface is shaded either too much or too little in relation to actual needs. Polygonal 

shapes, on the other hand, allow higher flexibility to cover precisely defined areas and allow the use 

of planar structures to enable a multi-directional motion (Fig. 2).

FIG. 2 Geometrical forms and motion types: Planar geometries (A) and laminar geometries (B) move generally in one or two 
dimensions, using a one- or two-axial mechanism. Three-axial mechanisms need more flexible forms, resulting in polygonal 
geometries (C) or, at least, rectangular geometries (D) allowing free motion towards three-axial mechanism. (Images retrieved from 
flickr.com, pinterest.com, Wikipedia.com).

This observation suggests that geometrical forms of shading systems seem to be directly related to 

motion-related criteria. The more flexible the form, the more flexible is the adaptation mechanism, 

and respectively, the motion pattern, and vice versa. The identified criteria of this observation are 

summarised in Table 2.
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KINETIC MOTION TYPE GEOMETRICAL FORM 
COVERAGE OF SPACE

DIRECTION OF MOTION ADAPTATION SYSTEM KINETIC MECHANISMS

Fold  
(e.g. blinds)

planar, laminar form
polygonal form

linear, grid coverage

2-dimensional
3-dimensional

guiding rails (in various 
positions), hinges, racks, 
racks with hydraulic 
actuator (into z-axis)

Roll 
(e.g awnings)

planar form

planar coverage

1-dimensional
3-dimensional

brackets, cords, reel

Shift (e.g. 
screens)

planar, laminar form
polygonal form

planar, grid coverage

1-dimensional guiding rails

Wrap or lift
(e.g. curtains)

planar (flexible) form

planar coverage

1- to 2-dimensional Guiding rails, cords, reel

Flap
(e.g. rotating 
screens)

planar, laminar form
polygonal form

linear, grid coverage

2-dimensional Hinges or brackets, fixed 
in rails (rotation point)

TABLE 2 Kinetic motions of shading systems: Selection of most applied motion types and their related criteria for adaptability and geometry

 3.4 MOTION INTO THIRD DIMENSION

As mentioned, the complexity of the kinetic mechanisms increases with the complexity of the 

geometry of the components. The kinetic façade of the Al-Bahr Tower in Abu Dhabi (Attia, 2015) is a 

representative example of a complex, multi-directional folding mechanism. Inspired by the design 

of the Arabic mashrabiya, the architect developed origami-like shading “umbrellas” that fold radially 

via a linear actuator into the third dimension (like the opening of a blossom). Planar PTFE triangle 

units are steered by hydraulic actuators that “progressively open and close once per day in response 

to a pre-programmed sequence” (CTBUH, 2018). There are a few examples that use e.g. planar 

forms, such as the shifting panels of Tessellate™ by the initiative ‘Adaptive Building Initiative’ of the 

A. Zahner Company, or the lenses of the Arab World Institute in Paris by Jean Nouvel, to generate 

hexagonal geometries and patterns. Very few examples allow motion into the third dimension 

using rectangular geometries, such as e.g. the Wind veil façade project in Gateway Village by Ned 
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Kahn. Finally, newer solutions liberate themselves from geometrical and kinetic mechanisms 

and create a motion into the third dimension through their material-inherent properties, such as 

e.g. the biomimetic "materialsystem HygroScope" designed by Achim Menges and Steffen Reichert or 

the use of shape-memory alloys (SMAs). All of these examples (also shown in Fig. 3) have a more or 

less deep impact on the spatial morphology.

FIG. 3 Grid patterns and kinetic motion in complex systems: (A) hydraulic umbrella shades of Al Bahr Tower fold three-
dimensional, (B) the Tesselate ™ concept shifts decorative metal sheets into changing grid patterns, (C) the Institut du Monde 
Arabe uses a complex photo lenses-like system, (D) the Wind veil façade of Ned Kahn allows wind to play with freely moving 
metal sheets, and (E) the adaptive biomimetic wood veneer HygroScope from Achim Menges and Steffen Reichert is able to bend 
automatically according to air humidity change. (Images retrieved from flickr.com, pinterest.com, Wikipedia.com).

It might also be of interest to mention that some complex shading geometries are derived from local 

climatic conditions and related socio-cultural relations: Grid-like, repetitive patterns, such as the 

mashrabiya in the Islamic culture, are more frequent in regions with higher demands on privacy and 

higher solar radiation (subtropical, tropical, arid climate) than in cooler climatic zones. Grid-based 

forms also leave a constant shading pattern due to their frame structure - if it is not fully removeable. 

The adaptation degree is limited to the element within the grid. This will not be addressed in more 

detail in this paper. However, it is interesting that these patterns are based on geometrical formulae 

described by mathematical rules. These are seen as “universal law” in nature (cf. Stankov, 2018). 

4 GROWTH GEOMETRIES IN NATURE

According to the works by Thompson (1945), “On Growth and Form”, and to more recent publications 

from Ball (2009), morphological and physiological adaptation has its causality in mathematical 

problem-solution. It is widely accepted that growth and form developing processes in nature use the 

laws of physics, whether inanimate or animate bodies. Nature deals with geometrical optimisation 

to allow growth at any time and any direction. Thus, applying mathematical analysis helps to 

understand patterns in nature (cp. Turing RD model) (Kondo & Miura, 2010) and might also support 

the understanding of adaptation mechanisms. It shall be noted that morphological processes in 

biology are strongly connected to chemical agents and triggers, and influences are difficult to 

describe solely with mathematical formulae (Morrison, 1987; Ball, 2009).

The basic geometrical form (starting from the molecular level) in biological morphologies is a grid-

based shape, based on circular or polygonal units. Together with the basic form, certain growth 

patterns, such as spiral and sequential growth, allow the biological system to develop and adapt its 

form. Thus, to understand the adaptation mechanisms of biological organisms, the understanding 

of their basic geometrical form is necessary. In this section, examples of biological - seemingly 

static - growth patterns are presented to discuss their growth principles. Although these patterns 

are not directly associated with kinetic motion, they provide insights into the optimisation of 

surface geometries for (possible) multi-dimensional adaptability - the goal of kinetic systems. 
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The second part of this section then presents some kinetic mechanisms in nature and their possible 

relation to geometrical forms. It should be noted that geometrical forms, growth patterns, and 

kinetic mechanisms are not necessarily combined in one organism, but may be combined later in 

a technical solution.

 4.1 UNIVERSAL LAW IN NATURE

Two general questions guide the search for biological role models in the context described above: Do 

geometrical forms play a role in adaptations of biological organisms? And, if so, how do geometrical 

forms support adaptability? 

Shape is crucial for survival and adaptation to local conditions. A good example of this is the eco-

geographical rules; these rules state that related species have developed different characteristics 

depending on the geographical region in order to adapt evolutionarily to the respective climatic 

conditions. This can affect the body volume (Bergmann’s rule) or the relative size of the extremities 

(Allen’s rule). Carl Bergmann suggested that the surface area to body volume ratio of animals 

correlates directly with the temperature of the region. Mammals and birds in cold regions are usually 

larger than in warm regions to efficiently maintain or to release body heat (Encyclopaedia Britannica, 

2017). Large bodies have a smaller area to volume ratio. The Allen’s rule, as a corollary rule to the 

Bergmann’s rule, states that warm-blooded animals in colder regions have shorter protruding 

body parts relative to their body size than those in warmer regions for the same thermo-regulating 

reason (Encylopedia.com, 2018). Furthermore, animals living in regions of higher humidity have 

darker pigmentation than those living in drier regions, which is stated by the Gloger rule (Allaby, 

2018). These rules are found in any evolutionary adapted animal, as well as in plants. Although these 

examples are not dynamic in the sense of the paper, it can be assumed that certain geometrical 

forms and evolutionary growth patterns also support dynamic adjustments. In the search for these 

principles, especially in plants (which are unable to move and need to adapt to various local changes 

and impacts), it has become apparent that particularly geometrical patterns of surfaces facilitate 

dynamic adaptation. Thus, the analogy search is divided into the investigation of basic geometrical 

forms (basic growth patterns) and dynamic adaptation mechanisms (kinetic mechanisms).

 4.2 BASIC GROWTH PATTERNS IN NATURE

Surface structures and their subsystems are decisively responsible for the control of environmental 

impact. Their biological patterns, applying geometrical principles such as the Golden Ratio, 

platonic bodies, and sequential growth, allow differentiated and adaptable morphologies. Figures 

of pentagonal symmetry and with a high repetitive pattern, in particular, are closely linked to 

growth. For example, the geometrical arrangements of seeds, branches, leaves or petals using 

the Golden Ratio allow not only optimisation of the surface area to the solar exposure, as shown 

in the sunflowers (Fig. 4, A), but also enable kinetic (folding) mechanisms, as shown by the 

fern leaf (Fig. 4, D).

The Golden Ratio defines herein the geometrical basis for the ability to change, which is enabled 

by growth patterns such as the Fibonacci sequence. The mathematical connection between the 

Golden Ratio and the Fibonacci sequence is shown in the Golden Spiral, a proportional growth of φ 

in a rectangular pentagon (see (C) in Fig. 4), which appears in the static structure of the sunflower 

blossom and also in the dynamic rolling function of the fern leaf. At first glance, the sunflower does 
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not appear to be a suitable role model for the investigation, since the surface of the sunflower is 

static and oriented towards maximum solar radiation harvesting in a confined space - an opposite 

intention to the goal of shading systems. The basic geometrical form, however, allows spatial 

expansion; the individual seeds of the flower could be multiplied into three-dimensionality within 

the condensed area due to their polygonal structure. This polygonal surface also corresponds well 

to the promising examples of complex kinetic shading systems. The aim could be to enlarge the 

shading surface without consuming more façade surface area – voronoi, tessellation, tangram 

geometries, and origami patterns could serve as a possible mathematical transfer path. In addition, 

these geometries allow multi-directional motion, as the fern leaf shows (Fig. 4, D). Shading systems 

would have more flexibility for individual shading of the surface if this approach were used instead 

of the conventional one.

FIG. 4 Biological role models to demonstrate geometrical forms for the optimisation of surfaces and for growth patterns (Images 
retrieved from www.greatmathsteachingideas.com, pinterest.com, Wikipedia.com).

 4.3 KINETIC MECHANISMS IN NATURE

The screening of the biological database of the BioSkin project (Gosztonyi, Gruber, Judex, Brychta, & 

Richter, 2013) revealed that dynamic adaptation and geometrical form optimisation are not always 

to be found in one role model. For example, adaptive biological organisms that cannot move change 

their properties ‘passively’ through inherent structure-material characteristics. These can respond 

dynamically to environmental changes by changing their properties or effects to the environment, 

e.g. by structural colours, photonic crystals. One example of this kind of adaptation is the Dynastes 

beetle (see left in Fig. 5). Other ‘active’ adaptations are achieved by kinetic mechanism activated 

through physiological or biophysical processes, such as e.g. folding or curling processes initiated by 

the Turgor pressure, as applied in the Mimosa Pudica (see right in Fig. 5). Kinetic mechanisms are not 

necessarily related to geometry but influence its morphology. Folding or rolling mechanisms seem 

to be the most commonly applied adaptation mechanism for shading systems. This also applies 

for biological role models – insofar as they have been investigated in this work. However, a refined 

approach must be applied by using detailed abstractions of the search questions and by combining 

role model functions.
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FIG. 5 Adaptation mechanisms in nature: Dynastes beetle (left) presents a static adaptation by photonic crystals that change its 
colour according to a changing humidity level. The Mimosa Pudica (right) adapts fast if contact occurs due to the Turgor pressure, 
an osmotic flow of water through cells (Images retrieved from Wikipedia. Sketches: S. Gosztonyi, & S. Richter).

5 CONCLUSION

To answer question one, regarding the role of geometrical patterns in shading systems. 

Geometrical patterns do not play a major role in conventional shading systems; it seems that 

the goal of covering the façade area with simple or maximum area-covering forms is of utmost 

importance. More complex geometrical forms, such as circular or polygonal geometries, are found 

in vernacular shading systems and have become more popular today due to the digitalisation in 

design and production. It is assumed that a further development of the polygonal geometries for 

shading systems could lead to a better interaction between visual comfort and shading function, 

because the shaded area can be more specifically defined. A follow-up study to this assumption is 

currently in development.

The second question, about the influence of spatial morphology criteria and geometrical form on the 

flexibility of adaptation, has not yet been fully answered. Some technical solutions have been studied 

and it has been proven that more complex geometrical forms are more closely related to a higher 

flexibility of kinetic motion. In polygonal forms, the kinetic mechanism allows any movement into 

the third dimension, but simple kinetic mechanisms, such as folding and rolling mechanisms, also 

allow this expansion. The investigation of biological role models and their adaptation mechanisms 

supports the hypothesis that polygonal surface geometries (whether at micro or macro level) are 

the basis for flexible dynamic motions. These geometries enable the multidirectional ‘growth’ of 

a system. A possible transfer link between biological principles and a technical solution could be 

the application of mathematical models, such as the voronoi, tessellation, tangram geometries, and 

origami patterns. The adaptation patterns in nature have so far only been touched upon and will be a 

core topic for further studies in order to search for further answers to the second question.

 5.1 NEXT STEPS

The purpose of future studies is to continue the above-mentioned investigations and to develop 

prototypes using certain mathematical models in order to create multi-directional kinetic shading 

systems that do not use more space but shade more flexibly. Furthermore, the assumption will 

examined that the visual quality and shading efficiency improve equally if the shaded area of a 

façade is defined by a grid.
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