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‘almost nothing important that ever happens to you happens because you engineer it.
Destiny has no beeper; destiny always leans trenchcoated out of an alley with some sort of
'psst’ that you usually can’t even hear because you're in such a rush to or from something
important you've tried to engineer.”

David Foster Wallace (Infinite Jest)
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SUMMARY

Backward stochastic differential equations (BSDE) are a fundamental tool in the math-
ematical modelling of financial problems. Through the famous nonlinear extensions to
the Feynman-Kac formula, they do not merely provide a stochastic representation of the
solution to large classes of partial differential equations such as pricing- or Hamilton-
Jacobi-Bellman equations, but also include sensitivities, corresponding to derivatives of
the solution, which are crucial in many financial mathematical applications. Hence-
forth, they simultaneously represent option pricing and hedging problems, and form a
natural framework for the numerical treatment of stochastic optimal control.

The main challenge in the numerical approximation of such equations is the com-
putation of conditional expectations over potentially high-dimensional spaces. In classi-
cal settings, where the dimensionality of the underlying randomness is moderate, many
approaches have been proposed in the literature. However, for high-dimensional prob-
lems, one has to resort to Monte Carlo methods. In recent years, a new class of regression
Monte Carlo methods has arisen in the literature, so called deep BSDE methods, which
practically approximate the solution of BSDEs in a neural network regression Monte
Carlo framework, after forming a suitable loss function motivated either by stochastic
optimal control or the martingale representation theorem. These classes of methods
can roughly be divided into two main categories. Forward methods, where the solution
of the associated backward SDE is simultaneously optimized in a global optimization,
minimizing a loss function stemming from a stochastic target problem reformulation.
Alternatively, backward methods have been investigated, where the numerical resolu-
tion of the equation is decomposed into smaller sub-optimizations corresponding to
a discrete set of points in a suitable time discretization. These methods enabled the
numerical treatment of longstanding open challenges, such as the pricing and delta-
hedging of multi-asset financial options up to d = 100 risk factors and beyond.

The goal of this thesis is to analyze such modern machine learning based numerical
methods, and apply them in the financial mathematical context. We propose numer-
ical extensions of these methods in high-dimensional frameworks, analyze their con-
vergence properties in discrete time, and investigate their robustness and accuracy in
practical applications such as hedging and stochastic optimal control. Our main contri-
butions in each chapter can be summarized as follows.

In chapter 2 a novel discretization, the One Step Malliavin (OSM) scheme, is pre-
sented for decoupled forward-backward stochastic differential equations with differen-
tiable coefficients, simultaneously solving the BSDE and its Malliavin sensitivity prob-
lem. The control process is estimated by the corresponding linear BSDE driving the tra-
jectories of the Malliavin derivatives of the solution pair, which implies the need to pro-
vide accurate second derivatives, I estimates. The approximation is based on a merged
formulation given by the Feynman-Kac formulae and the Malliavin chain rule. In or-
der to allow for an efficient numerical solution of the arising semi-discrete conditional

ix
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expectations in possibly high-dimensions, it is fundamental that the chosen approach
admits to differentiable estimates. Two fully-implementable schemes are considered:
the BCOS method as a reference in the one-dimensional framework and neural network
Monte Carlo regressions in case of high-dimensional problems, similarly to the recently
emerging class of deep BSDE methods. An error analysis is carried out to show I.? con-
vergence of order 1/2, under standard Lipschitz assumptions and additive noise in the
forward diffusion. Numerical experiments are provided for a range of different semi-
linear equations up to 50 dimensions, demonstrating that the proposed scheme yields a
significant improvement in the control estimations.

Extending the OSM scheme to reflected BSDEs, chapter 3 presents a deep BSDE ap-
proach for the pricing and delta-gamma hedging of high-dimensional Bermudan op-
tions, with applications in portfolio risk management. Large portfolios of a mixture
of multi-asset European and Bermudan derivatives are cast into the framework of dis-
cretely reflected BSDEs. This system is discretized by the One Step Malliavin scheme,
and solved in a deep BSDE formulation, involving aI" process, corresponding to second-
order sensitivities of the associated option prices. The resulting option Deltas and Gam-
mas are used to discretely rebalance the corresponding replicating strategies. Numerical
experiments are presented on both high-dimensional basket options and large portfolios
consisting of multiple options with varying early exercise rights, moneyness and volatil-
ity. These examples demonstrate the robustness and accuracy of the method up to 100
risk factors. The resulting hedging strategies significantly outperform benchmark meth-
ods both in the case of standard delta- and delta-gamma hedging.

In the last two chapters, we turn our attention to stochastic optimal control prob-
lems. First, in chapter 4, we are concerned with high-dimensional coupled forward-
backward stochastic differential equations (FBSDE) approximated by the deep BSDE
method of Han et al. (2018). It was shown by Han and Long (2020) that the errors induced
by the deep BSDE method admit an a posteriori estimate depending on the loss function,
whenever the backward equation only couples into the forward diffusion through the Y
process. We generalize this result to drift coefficients that may also depend on Z, and
give sufficient conditions for convergence under standard assumptions. The resulting
conditions are directly verifiable for any equation. Consequently, unlike in earlier the-
ory, our convergence analysis enables the treatment of FBSDEs stemming from stochas-
tic optimal control problems. In particular, we provide a theoretical justification for the
non-convergence of the deep BSDE method observed in recent literature, and present
direct guidelines for when convergence can be guaranteed in practice. Our theoretical
findings are supported by several numerical experiments in high-dimensional settings.

Chapter 5 presents a higher-order numerical method for scalar valued, coupled FB-
SDEs. Unlike most classical references, the forward component is not only discretized
by an Euler-Maruyama approximation but also by higher-order Taylor schemes. This in-
cludes the famous Milstein scheme, providing an improved strong convergence rate of
order 1; and the simplified order 2.0 weak Taylor scheme exhibiting weak convergence
rate of order 2. In order to have a fully-implementable scheme in case of these higher-
order Taylor approximations, which involve the derivatives of the decoupling fields, we
use a Fourier cosine expansion method, the COS method, built on the known conditional
characteristic function of each transition, to approximate the conditional expectations
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arising from the backward component. Even though higher-order numerical approxi-
mations for the backward equation are deeply studied in the literature, to the best of our
understanding, the present numerical scheme is the first which achieves strong conver-
gence of order 1 for the whole coupled system, including the forward equation, which
is often the main interest in applications such as stochastic control. Numerical exper-
iments demonstrate the proclaimed higher-order convergence, both in case of strong
and weak convergence rates, for various equations ranging from decoupled to the fully-
coupled settings.

The findings of this thesis contribute to the frontiers of the numerical approxima-
tion of high-dimensional BSDEs in several different aspects of mathematical finance.
From the numerical analysis point of view, the derivation and convergence of the One
Step Malliavin scheme provides a novel discrete time approximation scheme including
second-order option Greeks. Consequently, the convergence of its deep BSDE formula-
tion, enables the delta-gamma hedging of large basket options with early-exercise fea-
tures. The generalized convergence of the forward deep BSDE method proves sufficient
conditions under which an a posteriori convergence bound can be guaranteed. Conse-
quently, our results allow for the coupling of the control process in the forward diffusion,
and therefore, enable the deep BSDE treatment of stochastic optimal control problems
stemming from the dynamic programming principle in case of drift control. Finally, in a
more classical framework, we generalize the COS method to more general second-order
Taylor discretizations of the underlying forward diffusion. Doing so, we obtain numer-
ical methods which have higher-order convergence rates both in the weak- and strong
senses than reference approaches.






SAMENVATTING

Achterwaartse stochastische differentiaalvergelijkingen (BSDE) vormen een fundamen-
teel instrument in de wiskundige modellering van financiéle vraagstukken. Door niet-
lineaire uitbreidingen van de Feynman-Kac-formule bieden zij niet alleen een stochas-
tische representatie voor oplossingen van grote klassen van partiéle differentiaalverge-
lijkingen zoals prijsbepalings- of Hamilton-Jacobi-Bellman-vergelijkingen, maar omvat-
ten zij ook afgeleiden die cruciaal zijn in veel financiéle wiskundige toepassingen. Hier-
door vertegenwoordigen zij zowel optieprijsbepalings- als hedgingproblemen en bieden
zij een kader voor de numerieke behandeling van stochastische optimale controle.

De voornaamste uitdaging bij de numerieke benadering van dergelijke vergelijkin-
gen is de berekening van conditionele verwachtingen in mogelijk hoog-dimensionale
ruimtes. In klassieke settings, waar de dimensie van de onderliggende stochastiek be-
perkt is, zijn er veel methoden bekend in de literatuur. Echter, voor hoog-dimensionale
problemen moet men terugvallen op Monte Carlo-methoden. In recente jaren is er ech-
ter een nieuwe klasse van regressie-Monte Carlo-methoden in de literatuur verschenen,
de zogenaamde deep BSDE-methoden, die de oplossing van BSDE'’s benaderen in een
neuraal netwerk-regressiekader met Monte Carlo simulatie, na het opstellen van een ge-
schikte verliesfunctie die gemotiveerd is door stochastische optimale regeltechniek of de
martingaalrepresentatiestelling. Deze methoden kunnen grofweg in twee hoofdcatego-
rieén worden onderverdeeld. Voorwaartse methoden, waarbij de oplossing van de bijbe-
horende achterwaartse SDE gelijktijdig wordt geoptimaliseerd in een globale optimalisa-
tie, door minimalisatie van een verliesfunctie die voortkomt uit een stochastische doel-
probleemherformulering. Anderzijds zijn achterwaartse methoden voorgesteld, waar-
bij de numerieke oplossing van de vergelijking wordt opgesplitst in suboptimalisaties
die overeenkomen met een discrete verzameling punten in een geschikte tijdsdiscreti-
satie. Deze methoden hebben de numerieke behandeling mogelijk gemaakt van lang-
durig openstaande uitdagingen, zoals de prijsbepaling en delta-hedging van multi-asset
financiéle opties tot d = 100 risicofactoren en meer.

Het doel van dit proefschrift is om dergelijke moderne machine learning-gebaseerde
numerieke methoden te analyseren en toe te passen binnen de financiéle wiskunde.
We stellen numerieke uitbreidingen van deze methoden voor in hoog-dimensionale ka-
ders, analyseren hun convergentie-eigenschappen in discrete tijd en onderzoeken hun
robuustheid en nauwkeurigheid in praktische toepassingen zoals hedging en stochas-
tische optimale regeltechniek toepassingen. Onze belangrijkste bijdragen in elk hoofd-
stuk kunnen als volgt worden samengevat.

In hoofdstuk 2 wordt een nieuwe discretisatie, het One Step Malliavin-schema
(OSM), gepresenteerd voor ontkoppelde voorwaarts-achterwaartse stochastische dif-
ferentiaalvergelijkingen met differentieerbare coéfficiénten, waarbij de BSDE en het
Malliavin-afgeleide probleem gelijktijdig worden opgelost. Het controleproces wordt
geschat door de overeenkomstige lineaire BSDE die de trajecten genereert van de

xiii
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Malliavin-afgeleiden van het oplossingspaar, wat impliceert dat nauwkeurige I'-
schattingen nodig zijn. De benadering is gebaseerd op een formulering gegeven door de
Feynman-Kac-formules en de Malliavin-ketenregel. Om een efficiénte numerieke oplos-
sing mogelijk te maken van de resulterende semi-discrete conditionele verwachtingen in
hoge dimensies, is het fundamenteel dat de gekozen methode differentieerbare schattin-
gen toelaat. Twee implementeerbare schema’s worden beschouwd: de BCOS-methode
als referentie in de ééndimensionale context en neurale netwerk Monte Carlo-regressies
voor hoog-dimensionale problemen, vergelijkbaar met de recent opkomende klasse van
deep BSDE-methoden. Een foutenanalyse wordt uitgevoerd om IL?-convergentie van
orde 1/2 aan te tonen, onder standaard Lipschitz-voorwaarden en additieve ruis in de
voorwaartse diffusie. Numerieke experimenten worden gepresenteerd voor verschil-
lende semi-lineaire vergelijkingen tot 50 dimensies, waaruit blijkt dat het voorgestelde
schema een significante verbetering biedt.

Door het OSM-schema uit te breiden naar gereflecteerde BSDE’s, wordt in hoofd-
stuk 3 een deep BSDE-benadering gepresenteerd voor de prijsbepaling en delta-gamma-
hedging van hoog-dimensionale Bermuda opties, met toepassingen in portefeuille-
risicobeheer. Grote portefeuilles van een mix van multi-asset Europese en Bermuda de-
rivaten worden in het kader van discreet gereflecteerde BSDE’s gegoten. Dit systeem
wordt gediscretiseerd met het One Step Malliavin-schema, waarbij een I'-proces betrok-
ken is, dat overeenkomt met de tweede-orde afgeleiden van de bijbehorende optieprij-
zen. Het gediscretiseerde systeem wordt efficiént opgelost met een neurale netwerk-
regressie Monte Carlo-methode voor een groot aantal onderliggende activa. De resulte-
rende optie-Deltas en -Gammas worden gebruikt om de bijbehorende replicatiestrate-
gieén discreet te herbalanceren. Numerieke experimenten worden gepresenteerd voor
zowel hoog-dimensionale opties als grote portefeuilles met meerdere opties met varié-
rende uitoefenrechten, moneyness en volatiliteit. Deze voorbeelden demonstreren de
robuustheid en nauwkeurigheid van de methode tot 100 risicofactoren. De resulterende
hedgingstrategieén presteren aanzienlijk beter dan benchmarkmethoden in zowel stan-
daard delta- als delta-gamma-hedging.

In de laatste twee hoofdstukken richten we ons op hoog-dimensionale stochas-
tische optimale controleproblemen. Eerst behandelen we in hoofdstuk 4 hoog-
dimensionale gekoppelde voorwaarts-achterwaartse stochastische differentiaalverge-
lijkingen (FBSDE) die worden benaderd door de deep BSDE-methode van Han et al.
(2018). Han en Long (2020) toonden aan dat de fouten geinduceerd door de deep BSDE-
methode een a posteriori afschatting toelaten, afhankelijk van de verliesfunctie, wan-
neer de achterwaartse vergelijking alleen in de voorwaartse diffusie koppelt via het Y
proces. Wij generaliseren dit resultaat naar driftcoéfficiénten die ook athankelijk kun-
nen zijn van Z, en geven voldoende voorwaarden voor convergentie onder standaard
aannames. De resulterende voorwaarden zijn direct verifieerbaar voor elke vergelijking.
Onze theoretische bevindingen worden ondersteund door meerdere numerieke experi-
menten in hoog-dimensionale settings.

Hoofdstuk 5 presenteert een hogere-orde numerieke methode voor scalaire, gekop-
pelde FBSDE’s. In tegenstelling tot de meeste klassieke benaderingen wordt de voor-
waartse component niet alleen gediscretiseerd met een Euler-Maruyama-approximate
maar ook met hogere-orde Taylor-schema’s. Deze omvatten het beroemde Milstein-
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schema, dat een verbeterde sterke convergentiesnelheid van orde 1 biedt, en het ver-
eenvoudigde orde 2.0 zwakke Taylor-schema dat een zwakke convergentie van orde 2
vertoont. Numerieke experimenten demonstreren de hogere-orde convergentie, zowel
voor sterke als zwakke convergentiesnelheden, voor verschillende vergelijkingen varié-
rend van ontkoppelde tot volledig gekoppelde problemen.

De bevindingen van dit proefschrift dragen bij aan de vooruitgang van de nume-
rieke benadering van hoog-dimensionale BSDE’s op verschillende gebieden binnen
de financiéle wiskunde. Vanuit het perspectief van numerieke analyse biedt de af-
leiding en convergentie van het One Step Malliavin-schema een nieuw discrete-tijd-
approximatieschema dat tweede-orde optie-Greeks omvat. Daardoor maakt de conver-
gentie van de deep BSDE-formulering de delta-gamma-hedging van hoog-dimensionale
opties met vroegtijdige uitoefeningskenmerken mogelijk. De gegeneraliseerde conver-
gentie van de voorwaartse deep BSDE-methode geeft ons voldoende voorwaarden waar-
onder een a posteriori convergentiegrens kan worden gegarandeerd. Bijgevolg stellen
onze resultaten de koppeling van het controleproces in de voorwaartse diffusie moge-
lijk, en daardoor de deep BSDE-behandeling van stochastische optimale controlepro-
blemen die voortkomen uit het dynamische programmeringsprincipe bij driftcontrole.
Ten slotte, in een meer klassiek kader, generaliseren we de COS-methode naar meer
algemene tweede-orde Taylor-discretisaties van de onderliggende voorwaartse diffusie.
Door dit te doen verkrijgen we numerieke methoden met een hogere-orde convergen-
tiesnelheid, zowel in de zwakke als in de sterke zin, dan referentiebenaderingen.






INTRODUCTION

Spring maar in de lampen
want de vioer begint te dampen'

DJ Maurice & Snollebollekes (De vloer is lava)

Lump into the lights
because the floor is starting to steam

DJ Maurice & Snollebollekes (The floor is lava)
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https://www.youtube.com/watch?v=dENdzDyFOHY




This dissertation is concerned with the numerical approximation of backward
stochastic differential equations (BSDE). Such equations in their standard form can be
written as follows

T T
Y, = f+f f, Yt;Zt)dt_f ZdWy, (L.
t t

where ¢ is a random variable, f a random field admitting certain integrability condi-
tions, and W;, ¢t = 0 is a d-dimensional Brownian motion defined over an appropriate
probability space. These equations were discovered in the seminal papers of Bismut in
[20, 19] in the linear case, and thoroughly studied and extended by a series of works of
Etienne Pardoux, Shige Peng and their co-authors in the 1990s, we mention [127, 126,
129, 128, 131, 130] among others. Throughout the last several decades, BSDEs enjoyed
great attention from several areas of the mathematics community. From the stochas-
tic analysis perspective, much work has gone into proving sufficient well-posedness of
the equations in various settings [103, 125, 124, 123, 7, 100, 97, 52, 80], regularity and
density estimates [167, 96, 95, 78, 109, 108, 1] or Malliavin differentiability [46, 110, 57,
79]. From the numerical analysis point of view, the main challenge in the numerical
approximation of equations as (1.1) comes down to efficient and accurate approxima-
tions of conditional expectations over potentially high-dimensional domains. Recently,
the equations gained a renowned attention due to advancements in the numerical ap-
proximation of high-dimensional regression problems, which is the core subject of this
work.

The connection between BSDEs and conditional expectations is already apparent
from the theoretical perspective. In a similar way as stochastic differential equations
(SDE) provide a non-linear extension to Itd integrals, BSDEs are a non-linear extension
to the martingale representation theorem, see e.g. [89]. To this end, let us consider an
Zr measurable, L? integrable random variable ¢. According to the martingale represen-
tation theorem, we have that under sufficient conditions this random variable admits
the following predictable representation

T
¢=Eg+ [ zaw,
0
and uniqueness of the martingale integrand, and thus the representation, can be en-
sured by imposing specific integrability conditions [42]. Defining Y; := E[{|.%;] as the

Doob martingale of the aforementioned random variable, one immediately has by stan-
dard properties of the stochastic integral and conditional expectations

¢
Y: =E[¢] +f ZsdWs.
0
Combining the last two expressions results in the zero driver BSDE with f =0
T
Y: = f—f Z:dWs.
t

Equation (1.1) can be thought of as a non-linear generalization of this relation, due to
the additional integral term.
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W — Y —=— e ¢ == = terminal condition

Figure 1.1: BSDE illustration, equation from [144, ex. 1]. On the left Y, on the right Z. Realizations of the Brow-
nian motion in dotted red of the horizontal plane. Realizations of the solution pair in solid blue and dashed
green, respectively. Realizations of the terminal condition marked by black dots. The Markovian mappings,
mapping the diffusion process in (1.3) to ¢,Y, Z are marked by, dashed blue, and the surfaces in blue and
green, respectively.

Unlike in the case of standard, forward SDEs, the solution of (1.1) is a pair of stochas-
tic processes {(Y;, Z)}o<s<T, such that the equation is satisfied almost surely. The control
process, Z, ensures that the corresponding solution pair is adapted with respect to the
corresponding filtration, subtracting the right amount of randomness. An illustration of
the stochastic processes involved in (1.1) is given in figure 1.1. The terms involved in
(1.1) are generally referred to as ¢ being the (random) terminal condition, f as the driver
or generator.

1.1. SOURCES OF RANDOMNESS, DIFFERENT TYPES OF BSDES

Equation (1.1) is incomplete on its own, in that it does not specify the source of random-
ness determining the coefficients ¢, f. In the BSDE literature, there are several variants of
(1.1), depending on this. In this thesis, we consider two special cases: so called decoupled
and coupled systems of forward-backward stochastic differential equations (FBSDE). In

these cases, the backward equation can be written in terms of deterministic mappings g
and f

T T
Y = g(X7) +[ f(S, X5, Y, Zs)ds_f Z;dW, (1.2)
t t

where both the terminal condition and the driver depend on an extra stochastic process
X, which — in case of FBSDEs — solves a forward SDE itself

t t
X: =X +f uis, Xs, Ys,Zs)ds+f o(s, X5, Y, Zg)dWs. (1.3)
0 0
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In case the deterministic coefficients in (1.3) do not depend on the arguments Y, Z, the
SDE can be solved independently of (1.2), hence the equations are decoupled. On the
contrary, when p and o take Y, Z as arguments, (1.3)-(1.1) form a coupled system of
equations, whose solution is a triplet of stochastic processes {(X;, Yy, Zy)}o<;<T, satis-
fying certain integrability assumptions. In this dissertation, both cases are considered.
In chapters 2 and 3, we consider decoupled FBSDE systems, i.e. restrict our analysis to
the special case of (1.6) determining the randomness in (1.2). On the contrary, we loosen
this assumption in chapters 4 and 5, which are concerned with the coupled setting, i.e.
the solution pair of the backward equation enters the random dynamics in (1.3).

On reflected BSDEs. Additionally, chapter 3 relies on the concept of reflected back-
ward stochastic differential equations. Heuristically speaking, these equations general-
ize (1.1) by ensuring that the Y part of the solution always stays above an auxiliary lower
boundary process. In mathematical formalism, this leads to the following set of equa-
tions

T T
Y=+ f (s, Vs, Zo)ds - f ZdW,+ K7~ Ky,
t t (1.4)

T
Y[ZL[, f [Y[—L[]dK,;=0.
0

In the above, the lower boundary process is denoted L, and the last term is the so called
Skorohod condition [161]. The additional terms compared to (1.1) establish that the pro-
cess Y stays above the lower boundary process L, and that K is the minimum force term
that can achieve this condition. The solution of (1.4) is a triplet of stochastic processes
{(Yy, Zy, K)Yo<r<T, such that (1.4) is satisfied almost surely, and the processes admit nat-
ural integrability and continuity conditions. For a recent account on the well-posedness
of such reflected equations, we refer to [137] and the references therein.

1.2. CONNECTIONS WITH PDES

From the numerical perspective, a key motivation behind the study of BSDEs lies in their
innate connections with second-order partial differential equations (PDE), generalizing
the Feynman-Kac formula to non-linear settings. The Feynman-Kac formula establishes
an - in some sense — equivalence relation between the solution of a second-order linear
parabolic PDE and an It6 process. In fact, the solution of the following linear PDE

6tu(t,x)+1/2tr{0(t,x)ch(t,x)Hessu(t,x)}
+ul (6, 0)Vult,x) +rt, x)ult,x) + f(£,x)=0,  (5,x)€[0,T)xRY, (1.5
u(l,x)=g(x), xeR?

can be represented by the diffusion process

t t
X; =X +f u(s, Xs)ds+f o(s, Xs)dWs, (1.6)
0 0
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Figure 1.2: Feynman-Kac formula (1.7) illustration. The linear PDE (1.5) corresponds to a vanilla, European call

option under the Black-Scholes model, admitting an analytical solution to (1.5) in closed form. Monte Carlo
approximations of u(t, x = 100) by (1.7). On the left, small Monte Carlo sample (M = 25); on the right, large MC
sample (M = 220).

subject to some %, measurable initial condition, due to the Feynman-Kac formula, see
e.g. [121, 148],

T T s
u(t,x) =E |eft X995 g(x7) + f efi T XIAT £ X )dsIX; = x| (1.7)
t

Herein, the conditional expectation is taken under the probability measure under which
{Wi}o<; is a Brownian motion. The main implication of this formula is that one, by form-
ing an appropriate diffusion process such as (1.6), and taking expectations of its solution
as in (1.7), can solve linear PDEs of the form (1.5). The representation opens up tons of
different probabilistic ways for the numerical treatment of (1.5), especially in case the
spatial dimensions of the domain is high (large d), when classical numerical PDE meth-
ods are intractable due to the curse of dimensionality. An illustration of a Monte Carlo
type approximation enabled by the Feynman-Kac formula is given in figure 1.2.

One of the main motivations behind the study of BSDEs is given by non-linear exten-
sions of the Feynman-Kac relations above. Given the following semi-linear extension of
(1.5)

0:u(t,x)+1/2tr{o (¢, x)o ! (¢, x)Hessu(t, x)}
+ul (6, x)Vult,x) + f(t,x,u,Vuo) =0,
wl,x) =gx), xeRY,

(t,x) €0, T] xRY, (1.8)

one can define a BSDE, where the randomness is given by deterministic mappings of
the solution of a forward SDE as in (1.6), and the corresponding Markov BSDE can be
written in the form of (1.2). Then, under mild assumptions —see [161] and the references
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therein -, the solution of (1.8) preserves a relation similar to (1.7), called the nonlinear
Feynman-Kac formulae

Yi=u(t,Xy), Zi=Viult,X)o(t,Xy), (1.9)

satisfied almost surely. The main implication of (1.9) is that allows for a stochastic rep-
resentation of a large class of second-order partial differential equations. In particular,
from a numerical analysis perspective, the nonlinear Feynman-Kac expressions open
up the possibility for the numerical solution of nonlinear PDEs in a Monte Carlo fash-
ion. Such numerical algorithms are especially relevant in high-dimensional applica-
tions, where the domain over which the PDE is formulated lies in a high-dimensional
vector space.

Generalizations of (1.9) hold true even beyond the semi-linear case. In case of quasi-
linear equations, allowing non-linear dependence on the solution and its gradients in
the coefficient term of the second-derivative in (1.8), the associated diffusion and back-
ward equation form a coupled FBSDE system, as in (1.3)-(1.2). We refer to theorem 4.3.1
in chapter 4 for full details. Moreover, similar stochastic representations can be given
for free-boundary PDEs, established by reflected BSDEs as in (1.4) —see e.g. [46, 44, 45].
Although it falls out of the scope of this dissertation, we remark that expressions similar
to (1.9) can be established even in the case of fully nonlinear second-order PDEs, see e.g.
[33, 150, 138, 135, 136, 14].

In this thesis, we will consider each of the aforementioned extensions — apart from
the fully nonlinear equations. Chapter 2 is concerned with the semi-linear (1.8) high-
dimensional setting. In chapter 3 this is extended to the case of free boundaries. Finally,
chapters 4 and 5 are written in the quasi-linear framework. In the former, we are con-
cerned with equations over high-dimensional domains, whereas in the latter we con-
sider higher-order convergence for equations over the real line.

1.3. APPLICATIONS IN MATHEMATICAL FINANCE

Applications, where nonlinear PDEs are solved numerically over high-dimensional do-
mains naturally arise in mathematical finance. For instance, in the context of pricing
basket options issued on many underlyings, depending on a large number of risk fac-
tors. Alternatively, another important application is optimal asset allocation, portfolio
optimization, where an investor has to make optimal decisions allocating her wealth in
a large number of different assets, with the objective of either maximizing some utility
function, or minimizing an arbitrary cost functional. In what follows we give a soft intro-
duction to each of these subjects, as they form the core applications of the results in this
thesis.

1.3.1. OPTION PRICING AND HEDGING

One of the main challenges in mathematical finance is to price derivative contracts is-
sued on underlyings whose prices evolve according to a random phenomenon. A finan-
cial option gives its holder the right or obligation to purchase or sell a given instrument
at a pre-specified point in the future. Usually, the underlying instruments are modeled
by forward stochastic differential equations of some form, the pricing of such a contract
depends on a certain functional of the modeled asset prices.
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Figure 1.3: Discrete replication illustration. Delta- vs delta-gamma hedging of a European, vanilla, Black-
Scholes call option for several rebalancing frequencies N. Figure from [116], see fig. 3.1 in chapter 3.

From the hedging perspective, one’s goal is to protect oneself from random move-
ments in the underlying’s stochastic dynamics. In order to achieve this, an investor can
construct a delta hedging replicating portfolio consisting of the following positions

* short position in a derivative contract to be hedged;
* long positions on the underlyings assets the derivative contract was issued on;
 deposit in a bank account.

Given these positions, the value of the investor’s hedging portfolio, P, evolves according
to the following SDE

m . .
dP; = -dv(t, X)) + ) a;dS;+dB,, (1.10)
i=1

subject to the usual self-financing condition Py = 0. The variance minimizing first-order
conditions lead to

a; = arginf Var[dP;] = V,v(t, X;), (1.1

(al,...a™eRrm

offsetting all first-order sensitivities of the replicating portfolio’s value. A direct appli-
cation of It6’s formula shows that in the continuously rebalanced case, the condition
above provides a perfect replication of the option, i.e. P; =0 for all ¢ € [0, T] almost
surely. However, this is no longer the case if the hedging weights are only updated over
a discrete set of points in time, and the investor is exposed to risk through the random
movements in the underlyings. These risks are even more profound for highly volatile
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underlyings, whose first-order derivatives, Deltas change rapidly. In order to mitigate
this risk in the discrete time framework, one could offset higher order sensitivities of
the replicating portfolio’s value, and construct a so called delta-gamma hedging port-
folio, which accounts for changes in the second-derivative, Gamma, as well. Nonethe-
less, as the underlyings have constant zero Gammas, one needs to augment the replicat-
ing portfolio in (1.10) with associated gamma hedging instruments, whose Gammas are
non-vanishing. To this end, consider K many financial securities, whose prices depend
on the same underlying risk factors as above. Subsequently, the associated delta-gamma
hedging portfolio’s value evolves as follows

m . K
dPl =-dv,+ Y aldsi+ Y pFduf(t, x,) +dB,, 1.12)
i=1 k=1

where u* denotes the price of the corresponding gamma hedging instrument, and ﬁ’;
the hedging weight with which the corresponding hedging instrument is held. It can be
shown - see e.g. [64] and also chapter 3 below — that the variance minimizing first- and
second-order conditions, simultaneously offsetting both the replicating portfolio’s (1.12)
first- and second-order derivatives with respect to the underlying risk factors result in the
following linear system of equations

K
Y prot.uk e, x) =05 v(t, X0, lies,  (1.13a)
k=1

) K
al=0;v(t,X) - Y. prouf(r, Xy, l<i<m (1.13b)
k=1

solved by the optimal hedging weights a’;, ﬁ’f . An illustration of the comparison between
discretely rebalanced delta- (1.10) and delta-gamma (1.12) portfolios is given in figure
1.3.

In light of the Feynman-Kac relations in (1.7), it is natural to consider the problem
outlined above in the framework of FBSDEs. Indeed, given an SDE such as (1.6) mod-
elling the risk factors, an associated BSDE in (1.2) does not merely include the prices
of option contracts issued on these underlyings, but also first-order sensitivities needed
to compute the optimal Delta hedging weights on the right-hand side of (1.11). Hence,
solving a BSDE is, in a sense, equivalent to delta replication in (1.10). Nonetheless, the
formulae in (1.7) only include first-order Greeks of the associated option, and are thus
insufficient in the context of delta-gamma hedging with moderated discrete time repli-
cation errorsin (1.12). In order to be able to compute the right-hand sides in (1.13b), one
needs an additional stochastic representation including second-order derivatives of the
corresponding option prices, representing second-order Greeks, Gammas.

One of the main contributions of this thesis, is to establish that in the discrete time
framework. To do so, we build on a theoretical representation formula for the Z process,
originally from Pardoux and Peng [126], and later extended to the non Markovian case by
El Karoui et al. in [46]. In fact, under suitable assumptions, it turns out that the solution
pair in (1.1) is differentiable in the Malliavin sense— see [119]. Moreover, these Malliavin
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derivatives {(D; Yy, Ds Z)}o<s, r<T Satisfy a linear BSDE themselves
T
DYy =Dg& +f Dsf(ry Y, Zy) +ayf(3» Ys, Z5)Ds Yy +0zf(r; Y, Z)DsZpdr (1.14)
t

—ftT(DSZerWr)T, 0<s<t<T,
DsY;=0, D;Z;=0, O<r<s<T.
In particular, the control process Z in (1.1) admits
Z;=DYy, (1.15)

almost surely, for each ¢ € [0, T]. In light of (1.15) and the Malliavin chain rule - see
lemma 2.2.1 in chapter 2 —, a simultaneous solution to the BSDEs (1.1) and (1.14), would
then extend the Feynman-Kac formulae, providing not just associated option prices (Y),
Deltas (Z) but also Gammas through {D;Z;}o<;<7 for the whole time horizon. Subse-
quently, these solutions can be plugged into the first- and second-order conditions of
delta-gamma hedging given by (1.13), and options’ delta-gamma replication is simulta-
neously solved.

The missing ingredients in this solution is that, unlike in the sole case of (1.1), one
first needs to discretize the system of equations (1.1)-(1.14), prove the convergence of
the corresponding discretizations, and choose an appropriate machinery which approx-
imates the resulting conditional expectations in a potentially high-dimensional frame-
work. Indeed, we remark that for a large number of risk factors in (1.6), (1.14) is a vector-
valued BSDE, and {D;Z}o<s<7 is a matrix-valued process with d x d elements, resulting
in d x d many conditional expectations to be computed in a numerical setting. Finally,
the resulting discrete time approximations need to be plugged into the delta-gamma
hedging conditions in (1.13) in order to replicate the option price in a discrete time
framework.

We carry out this program throughout chapters 2 and 3 of this thesis in the Marko-
vian framework. Chapter 2 introduces a new discretization called the One Step Malliavin
scheme, which simultaneously solves the pair of BSDEs (1.1)-(1.14). The convergence of
this scheme is proved in theorem 2.4.1, showing optimal convergence rates under stan-
dard assumptions. Subsequently, a fully-implementable machine learning regression
based approach is proposed in order to approximate the conditional expectations aris-
ing in the One Step Malliavin scheme - see also section 1.4.2. The convergence of this
method is proved in theorem 2.5.2. Building upon these results, chapter 3 resolves the
discretely rebalanced delta-gamma hedging problem outlined in (1.12) in the portfolio
context, including (discretely) reflected BSDEs (1.4) corresponding to options with early
exercise features.

1.3.2. STOCHASTIC OPTIMAL CONTROL: PORTFOLIO OPTIMIZATION
Chapters 4 and 5 are concerned with coupled FBSDEs of the form (1.3)-(1.2). A funda-
mental motivation for the study of such systems of equations is given by their inherent
connections with stochastic control problems. In what follows, we give a brief introduc-
tion to these classes of problems, with a focus on financial mathematics.
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A classical illustration of stochastic optimal control theory is the optimal portfolio
allocation model of Merton [111, 112]. This model is concerned with an agent, whose
aim is to distribute her wealth between a risky asset S and a risk free bond with rate r, and
decide her consumption in a way that maximizes her utility over a finite time horizon T.
At each point in time ¢, the agent faces two decisions: how much of her total wealth she
spends on immediate consumption c;, and what proportion «; of the leftover wealth
she keeps in the risky asset. These two decisions are described by the control process
{u; = (as, c)lo<r=T- When the risky asset’s price is described by a geometric Brownian
motion

dSt = [J«Stdt+ U'Stth,

the wealth process of the agent satisfies the following controlled SDE
t t
X} = xo +f (r+asu-n)Xx¥- csds+f aso X dWs,
0 0

depending on the choices of the control parameters. The set of admissible controls is a
pair of stochastic processes {u; := (&, ¢;)}o<:<7 Which takes values in R x R, describing
portfolio allocation policies and consumption over the finite investment horizon T, such
that fOT la 2 +]|cs|?dt < oo almost surely. This condition is imposed in order to ensure the
well-posedness of the controlled diffusion.

The agent’s objective is to choose her control parameters in a way that maximizes
her expected discounted utility at a future point in time. In particular, given two utility
functions, U, : Ry — R, Uy, : R — R, which describe the agent’s preferences in consump-
tion and terminal wealth, respectively, the goal is to carry out the following stochastic
optimization problem

max E
u=(a,c)

T
e"TUw(X;fo e " Us(cydt
0

It turns out, when the agent’s consumption and wealth preferences are described by util-
ity functions exhibiting the constant relative risk aversion (CRRA) property, see e.g. [132],
the problem above admits a closed-form solution

*_
a; =

where y corresponds to the risk aversion coefficient, and the deterministic function b()
solves an ODE [112]. The main conclusions of the Merton model is that a CRRA utility
maximizing agent needs to keep a constant ratio, the Merton fraction, of her wealth in
risky assets, independently of the current wealth, only depending on the risk premium
1 —r, volatility o and her own risk aversion parameter y. For extensions on other types
of utility functions, we refer to [101] and the references therein.

The Merton model is a very special case of more general stochastic optimal control
problems, where the goal is to optimize an objective functional subject to some random
phenomenon that is described by a controlled stochastic differential equation. One, in
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general, is interested in the solution of the following problem

t -
J(0, xp) := inf E g(X¥)+f f(t,X#,u;)dtLg} R (1.16a)
ueuU 0
t t
X[“:x0+f ,L't(s,X;‘,us)ds+f a(s, X, us)dWs. (1.16b)
0 0

Unlike in the case of the famous Merton fraction, such problems do not generally admit
closed-form analytical expressions for the solution of the optimal control

u* = arginf J (0, xo).
uesd
From the numerical analysis perspective, there are two main classes of algorithms that
tackle the approximation of the problem described in (1.16). One, is based on Bellman’s
dynamic programming principle, which gives rise to a Hamilton-Jacobi-Bellman equa-
tion, a fully nonlinear PDE, solved by the value function

-0 v(t,x) - in&f{[suu(t,x)—f(t,x, u)] =0, (t,x) €0, T)xR?, (1.17)
Uue.
v(T, x) = gx), xeRY,

where the infinitesimal generator associated with the diffusion (1.16b) is given by
u T Lo T
L=V (6 x, u)v+ > tr{a (t,x,w)d" (¢, x, u)Hess,v}.

The terminal boundary condition associated with the HJB equation coincides with that
of the terminal part of the objective functional in (1.16a). Subsequently, a numerical
PDE solver can be applied to directly solve (1.17), and therefore resolve the associated
stochastic optimal control problem in (1.16) by means of the value function - see e.g.
[21, 82] and the references therein.

The main challenges, again, are hidden in the dimensionality of the associated, con-
trolled forward diffusion X* in (1.16b). In applications where X“ takes values in R? - like
a Merton type portfolio allocation with many risky assets — such classical PDE solvers
become inapplicable due to their exponentially increasing computational complexity. A
phenomenon often referred to as the curse of dimensionality. Alternatively, motivated
by the nonlinear Feynman-Kac relations (1.7) establishing a connection between PDEs
like (1.17), one can derive a coupled FBSDE system associated with the stochastic opti-
mal control problem (1.16). There are two distinct ways to derive this associated coupled
FBSDE system. First, when the control in the diffusion process in (1.16b) is such that &
does not take u as an argument, the corresponding control problem is called drift con-
trol. In that case, one can show — see e.g. [132, 156] — that the HJB equation in (1.17)
turns into a semi-linear equation, similar to (1.8). Consequently, the value function and
its gradient admit a stochastic representation provided by a BSDE as in (1.2), with the
special property that the corresponding drift i, diffusion & and driver f only depend on
(t,x,z) and not on y. On the contrary, in case ¢ also takes u as an argument, one is faced
with a diffusion control problem, where the associated HJB equation is fully nonlinear.
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In that case, one can rely on the stochastic maximum principle (SMP) - see e.g. [156] -,
which gives rise to a vector-valued, fully-coupled coupled FBSDE system as in (1.3)-(1.2).

In both cases, given a robust and accurate approximation method that numerically
resolves an associated BSDE, the stochastic optimal control problem can be solved by an
equivalent coupled FBSDE system. In this thesis, we contribute in two ways to the litera-
ture of the numerical methods built on these types of stochastic representations. First, in
chapter 4 we are concerned with the numerical solution of coupled FBSDE systems with
a high-dimensional controlled diffusion process. Using the deep BSDE method origi-
nally proposed by [43, 68] — see also section 3.4 below —, we extend the convergence re-
sult of Han and Long [69] to the case of general drift coefficients p in (1.3), i.e. drift terms
which can depend on the Z process. We derive an a posteriori error bound, which en-
sures the convergence of the method up to the convergence of the terminal loss function.
Moreover, in chapter 5, we investigate an alternative to PDE methods directly applied on
the HJB equation (1.17) in the low-dimensional setting, i.e. for scalar valued controlled
diffusions in (1.16b). The COS method - see also section 1.4.3 below — applied in chap-
ter 5 provides a higher-order temporal discretization of the associated FBSDE system, in
the fully-coupled framework. We show that the resulting approximations admit higher-
order convergence rates than related reference methods, in the step size of a discrete
time partition, both in the sense of strong and weak convergence rates.

1.4. MODERN NUMERICAL METHODS

Solving equations of the type (1.1) usually requires numerical methods approximating
the solution pair (Y, Z) given an appropriate sampling mechanism dealing with the ran-
dom data (¢, f). Such numerical methods consist of an appropriate time discretization
which is a sequence of backward, recursively nested conditional expectations going from
terminal time T to t = 0. Thereafter, these conditional expectations are approximated
numerically, by a suitable approach. In what follows, we discuss further details of such
numerical methods.

1.4.1. TIME DISCRETIZATION

A naive idea to tackle (1.1) in a numerical framework would be to simulate the random
data (¢, f), and perform backward Euler stepping from ¢ = T to ¢ = 0, similar to the nu-
merical approximation of ordinary differential equations, with terminal conditions. The
reason why this is not suitable in the context of BSDEs is due to the violation of adaptivity
conditions imposed on the solution pair (Y;, Z;). In order to provide adaptive, discrete
time resolution of the stochastic processes in (1.1), one needs compute conditional ex-
pectations instead. In fact, taking conditional expectations of (1.1) and the same equa-
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tion multiplied by a Brownian increment (W; — W) with ¢ = s gives the following

Ys=E

t
Yt+f f(rr Yr;Zr)drltO}:s];
s

t
0=E[(W; - W) Y| Fs] = EI(W; — Wy) Y| Fs] + E (Wt_Ws)[ fn Yy, Z)dr|Fs
N

)

¢
-k [f Zpdr|Fs
N

due to Itd’s isometry. Discretizing the continuous integral in the above, and iterating over
a discrete time partition 7(N) :=={t,: to =0, iy =T, ty-1 < thy < ty1forn=1,...,N-1}
yields the following abstract time discretization, approximating the solution pair at each
point in the discrete time grid

Y =¢, (1.18)

1
Zp = ———FE[(Wy,,, — W)Y 1Fs],

=
" In+1—In

Y’Z = (the1— ) f (tn, Y;;’Zgz) +E [YtZH |gs] ’

for n = N—1,...,0. The conditional expectations ensure that the resulting sequence of
discrete time approximations {(Y’;,Z;fl )in=0,.,n are adapted with respect the to filtra-
tion. On the other hand, they induce a major computational challenge in terms of the
numerical approximations needed to estimate the right-hand sides of (1.18).

Over the past several decades, many numerical methods have been considered to
approximate conditional expectations of the form above, in the context of FBSDEs.
Nonetheless, whenever the randomness in the data (¢, f) is determined by some high-
dimensional stochastic process, all these methods suffer from the curse of dimension-
ality, since their corresponding computational complexities scale exponentially in the
number of spatial dimensions. In what follows, we discuss a recently emerging class
of numerical methods that are aimed to tackle this computational drawback for high-
dimensional problems.

1.4.2. DEEP BSDE: MODERN REGRESSION MONTE CARLO
In this thesis, we primarily consider two different classes of algorithms for the numerical
approximation of the conditional expectations appearing in (1.18). In high-dimensional
frameworks, we use so called deep BSDE methods, which, as explained below, can
be thought of as generalized Monte Carlo regression approaches with neural network
parametrizations. In what follows, we give a brief introduction to the main variants of
this method used throghout the thesis. Additionally, for low-dimensional forward dif-
fusions, we also consider applications of the COS method, which is a Fourier cosine ex-
pansion method approximating conditional expectations by appropriate Fourier trans-
forms, given a characteristic function available in closed for. The introduction of the
latter we postpone to section 1.4.3, and in what follows we focus on the deep BSDE type
algorithms.

A straightforward, brute force way to compute conditional expectations such as the
ones in (1.18), would be to perform inner Monte Carlo sampling at each state of the state
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process. However, such an approach is computationally very expensive, even more so in
the high-dimensional framework. Alternatively, a classical methodology to tackle the
approximation of the associated conditional expectation is least-squares Monte Carlo
(LSMC) regression. This method was first proposed by Longstaff and Schwartz in [98]
in the context of American option pricing, and has since been extensively studied in the
framework of discrete time approximations of BSDEs — without the sake of complete-
ness, we mention [24, 63, 62]. The LSMC method is built on the fundamental property of
Markovianity. Namely, given a BSDE (1.2) that has the Markov property, both the Y and
Z processes turn out to be deterministic mappings of the underlying state process X,
and Y; = u(t, X;) and Z; = v(t, X;) for some deterministic mappings of time and space
u:0,TI xR - R7, v:[0,T] xR? — R7*? _see e.g. [46] and (1.7). In particular, the
deterministic mapping u(z, ) solves the following minimization problems

T
u(t,)) € arginf [E[Ig(XT)+f f(s,Xs,Ys, Z)ds — h(Xp) 2|,  (1.19)
t

h:R4 —R49, measurable

and similarly in case of v. Consequently, the solutions of the corresponding conditional
expectations are reduced to an L? projection for each %, at every time t. Equation (1.19)
is, of course, not directly implementable. Indeed, a standard LSMC programme would
typically consist of the following approximations that enable to compute the associated
conditional expectations:

* time discretization replacing the continuous integrals in (1.19) by an appropriate
discrete sum, as e.g. in (1.18);

° parametrization truncating the infinite dimensional space of all measurable map-
pings into a finite subspace of basis functions {¢x(t, ")} k=0,.,x-1;

* Monte Carlo approximations replace the true expectation E by the empirical mean
of a discrete sample of M independent realizations of the data (¢, f);

¢ backward recursion from T to t = 0.

Combining these approximations, one can derive a least-squares regression problem as-
sociated with the minimization in (1.19), which yields a closed-form expression for the
approximated solution

K-1
u(t,) = Y ardr(t,), (1.20)
k=0

where the regression weights solve the standard OLS formula @ = (@,...,dx-1) =
(@"®)"'®Y¥, with ® and W corresponding to the regression matrix and labels, respec-
tively.

In terms of the numerical approximation of high-dimensional BSDEs, the main chal-
lenge in the approach outlined above is to find an appropriate parametrization of finite
basis functions with sufficient representation power, such that high-dimensional non-
linear phenomena can accurately be modeled in a finite Monte Carlo sample. In recent
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years, a new class of methods has been proposed by the scientific computing and nu-
merical analysis communities which tackle this challenge by means of neural networks.
Doing so, one generalizes standard OLS regressions to nonlinear parametrizations with
higher expressive power. This comes with the price to pay that one loses the analytical
expression giving the true minimizers @ of the regression problem. Instead, one typically
needs to form an L? loss function associated with the projection problem in (1.19). This
loss function is subsequently minimized by an iterative method, such as stochastic gra-
dient descent. The methods which follow these ideas are often referred to as deep BSDE
methods. In what follows, after a general introduction to deep learning, we explain the
main ideas behind such modern regression Monte Carlo methods.

NEURAL NETWORKS

Neural networks can be thought of as nonlinear generalizations to the parametrizations
of linear combinations of some basis functions. In order to achieve nonlinearity, one
takes an affine combination as in (1.20), and passes it through some nonlinear activa-
tion function a. These two operations together form a hidden layer of a neural network.
Taking a sequence of such compositions, deep neural networks can be formulated as a
hierarchical sequence of hidden layers

W(x10) := dout 0 Ar+1(¢10r41)0ac Ap(l0)oao---0ao A1 (-|01) o x.

Out of the standard activation functions, in this thesis we use rectified linear units (relu)
and the hyperbolic tangent. The parameters in the affine combinations Al 1=1,...L
are called weights and biases, and finding optimal values such that the corresponding
parametrization best describes some phenomenon — such as the L? projection in (1.19)
-, constitutes the training of the neural network. Finding the optimal parameter space
is often done in an iterative optimization method that aims to minimize a loss function
via stochastic gradient descent (SGD). For more details, we refer to [65].

The claim that deep neural networks are suitable function approximators in high-
dimensional frameworks is often justified by their universal approximation property.
Informally, this characteristic, established by universal approximation theorems (UAT),
ensures that large classes of functions can be approximated by (deep) neural networks
with arbitrary accuracy. We refer to theorem 2.5.1 in chapter 2 for a precise statement of
the UAT due to Hornik et al. [71]. We remark that finding minimal conditions for UAT
type characteristics is a subject of active research, for an overview see [134].

FORWARD DEEP BSDE METHOD.

The first deep BSDE method was proposed in the groundbreaking papers of [43, 68].
Their idea can roughly be summarized as follows. In case of a decoupled, Markovian
FBSDE such as the system (1.6)-(1.2), one can derive the following auxiliary BSDE whose
solution pair coincides with that of (1.2) by merging the Feynman-Kac relations in (1.7)
with (1.2)

T
u(t, Xy) = g(X7) +f f(s, X5, u(s, Xs), Viu(s, X5)o (s, Xs))ds
t

T
—f Veu(s, Xg)o(s, Xg)dWs, 0<t<T.
t
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Figure 1.4: Forward deep BSDE method illustration. SDE (1.3), BSDE (1.2) and loss function (1.25) minimiza-
tion in red, blue and yellow, respectively. Figure taken from [118, fig. 4.2].

In the above, {X;}¢<;<7 is the solution of (1.6). In particular, the equation above can be
rewritten into the following forward SDE controlled by some deterministic mapping u of
the state process

t
Y} =u(0, Xo) +[ fs, X5, Y, Vyu(s, X)o(s, X)) ds (1.21)
0
t
_f vxu(s)XS)U(stS)dWSy
0

for each 0 = ¢t < T. When the control mapping « is given by the true solution of the asso-
ciated nonlinear PDE as in (1.8), the solution of (1.21) coincides with that of (1.2). Even
though, in general, one does not know the solution u, the observation above motivates
to cast this problem into the framework of stochastic optimal control (1.16). To this end,
treating the random variable u(0, Xp) and stochastic process Vyu(t, X;)o (¢, X;) as control
parameters, one can formally define the following stochastic optimal control problem as
in (1.16)

inf E[lg(Xr)-YZP], (1.22a)
Ul=(<ﬂv()

t t
v :(p+f0 fis, Xs, Ysa,(s)ds—fo {dWs. (1.22b)

By well-posedness of (1.2), and thus (1.21), (Yy,{Z:}o<:<7) is @a minimizer of the objective
functionalin (1.22a). Consequently, the solution of the stochastic target problemin (1.22)
-seee.g. [153] —, also solves the BSDE (1.2), and by uniqueness of the latter, this solution
is also unique.
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The continuous time equation (1.22b) can be approximated in a discrete time frame-
work in two steps. First, if the continuous dynamics of the forward SDE described by
(1.6) is not analytically resolvable, one replaces X in (1.22) with appropriate discrete time
approximations X" such as an Euler-Maruyama scheme [90]. For alternative SDE dis-
cretizations we refer to chapter 5. Subsequently, the continuous time integrals in (1.21)
are discretized by a forward Euler-Maruyama scheme performed over a discrete time
partition n(N) :={t, : 1o =0,t,-1 < ty < tyy1,n =1,...,N—1,ty = T}. This yields the
following discrete time approximations for (1.22b)

yor _
o (1.23)
Y[Zjﬁ = Yt::,n+f(tn)XZl)YtZ‘n!(tn)(tn+l_tn)+(tn(wtn+1 _th)) nZO,...,N_l. )

Finally, by virtue of the Feynman-Kac formulae in (1.7), one can replace the stochastic
control variables in (1.23) by the deterministic mappings of the state process in (1.6) us-
ing the relations ¢ = u(0, Xo) and {;, = V u(ty, X;,)0(ty, X;,). To make the model fully-
implementable, these unknown deterministic mappings are parameterized by neural
networks (p(-IH(J)/ ) and {(-|6%), depending on some parameter sets Gg and 6%, respectively,
for each point in the discrete time partition ¢,,n=0,..., N — 1. Given the collection of all
neural networks involved, one subsequently has a parametric model depending on the
collection of parameters (Hf)/ ,0¢,...,0%_,) and the corresponding discrete time approxi-
mations of the controlled diffusion process in (1.22b) by

YT (07) = p(X[10]),
@t:ﬁ (gn) = @;ﬁ’n(en—l) - f(tn; XZE,@I’:'”(G)H_I),((XZE |02))(tn+1 - tn) (1.24)
+((X;;|9§)(th -Wy), n=0,...,N-1,

with ©,, := (Qy,Hg,...,GZ_l,H,ZZ) forn=0,...N-land®_; = 0(};. The complete parameter
set of the model is therefore ® := ®y_;. In order to find an optimal parameter set, one
can impose the natural discrete time version of the L2 loss functional in (1.22a), which

leads to the following loss function
ZL(0):=E 122" (©)-g(X])I?|. (1.25)

A suitable discrete time parametric model, approximating the continuous time solutions
of (1.22), minimizes this loss function, leading to optimal parameters O¢ arginfgy £(0).
Up to the convergence of the discrete time approximations X” and Y7 in (1.23), the
optimal discrete time approximations %, (8,,-1) and {(X7 |67) then approximate the
solution pair (Y;,, Z;,) of the BSDE (1.2) for each point in the discrete time partition.
The key idea behind the forward deep BSDE is to replace the direct approximation
of the conditional expectations in (1.18) by a discretized version of the stochastic target
problem in (1.22). Thereafter, by passing batches of realizations of the Brownian mo-
tion, one can train the corresponding machine learning model by a suitable iterative
optimization method - such as stochastic gradient descent — in order to minimize the
loss function (1.25). These numerical approximations can be efficiently carried out in
high-dimensional settings, i.e. when X is an R? valued stochastic process for a large
d. The method has been extended in many different directions, e.g. 2BSDEs relating to
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Figure 1.5: Backward deep BSDE method illustration. SDE (1.3), BSDE (1.2) and loss function (1.25) minimiza-
tion in red, blue and yellow, respectively. Figure taken from [118, fig. 4.3].

fully nonlinear PDEs [11, 10], coupled FBSDE systems [69], FBSDEs with jumps [3, 5],
mean-field equations [143, 67], operator valued equations [120], and using several dif-
ferent approaches for the parametrizations of the stochastic target problem — see [141,
84, 86, 157, 158, 4, 151, 94, 51, 155, 29]. For a survey, we refer to [34], and in the context
of financial mathematical applications we highlight [91, 93, 61, 26].

BACKWARD DEEP BSDE METHODS

A different, backward approach first appeared in the literature in the paper of Huré et al.
in [77]. Here, instead of one simultaneously trained forward optimization, the discrete
time approximations of Y and Z are decomposed into N many separate optimization
problems, locally in time. Each sub-optimization problem minimizes an associated L?
loss function, that is related to the L? projection in (1.19). In particular, by the merged
formulation of the Feynman-Kac relations and the BSDE, (1.21) leads to the following
equation between two adjacent time steps f, < t,+] in a discrete time partition 7 (V)

tn+1
u(ty, Xy,) = ultys1, X, ) + f(s, Xs, uls, Xs), Viu(s, Xs))ds

tn

Int1
_f Viu(s, Xs)o (s, X;)dWs.
In

A suitable discretization - see (1.23) —, followed by parametrizations (p(-IG%) :R4 - Rand
C(16%) : RY — RY of the unknown deterministic mappings u(s,-) and Vu(t,,)o(t,,-),
respectively, similar to (1.24), subsequently leads to the following parametric approxi-
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mations

) = QX103 = [ (tn, X7, @(XT 100, { (X 107) (41 — 1) (1.26)
+{(XT 102 (Wy,,, — Wy,)
= F(tn, X7, @(XT 100),{ (XT102), tner, Wi, — W),

u(tn+l; tn+1

foreachn=0,..., N-1.

As the deterministic mapping corresponding to the terminal condition of the BSDE
(1.2) is known by u(ty, ng) = g(XgV), as with the backward iteration in (1.18), we set the
approximations at £ = T to %7 := g(X7 ). Then, one can gather sufficient approxima-
tions of the parameters 67, ~v-10%_ 1, such that (1.26) holds in an appropriate L? sense. In
order to do so, [77] proposed the following loss function, measuring the mean-squared
distance between the left- and right-hand sides of (1.26) forn = N -1

2,063,065 =E[|%] |~ p(X7107) (1.27)

In+1
+ f(tn, XT (X7 107),{ (XT 102)) (Ena1 — tn)
~C(XT105) (Wey, = Wy, )]

A suitable minimizer (6° N 1, 1) € arginfgy 0 Ln-1067, Hz) then approximates the re-
lation (1.26), and thus settlng PR Zh,) = (eXT ) {(X7,_,10%_,)) approx-
imates the solution pair (Yyy_,, Zs, ) = (u(tn-1, Xey_ ), qu(tN 1, Xty_,)) of the BSDE
(1.2). The scheme is subsequently made fully implementable in a backward recursion
n=N-1,...,0, where a separate SGD optimization is carried out at each point n, de-
pending on the previously collected discrete time approximations %" . In fact, as
shown by [77, thm. 4.1, steps 3-4] and also in steps 1-2 in theorem 2.5.2 of chapter 2,
given a rich enough space of parametric functions the minimizer of the loss function
(1.27) provides simultaneous approximations of the conditional expectations in (1.18)
for each n =0,..., N —1. An illustration of the backward dynamic programming deep
BSDE method outlined above is given in figure 1.5. Without the sake of completeness,
we mention related extensions [58, 133, 28].

COMPARISON OF DEEP BSDE METHODS

The main differences between the forward and backward type methods can be summa-
rized as follows. In case of the approach of [43, 68], the loss function is imposed on all
model parameters simultaneously, meaning that the corresponding stochastic gradient
descent optimization approximates the discrete time approximations of all time steps
globally. On the other hand, the backward formulation decomposes the approximation
over the time interval [0, T] into N separate optimization problems, each having its own
loss function and corresponding to approximations only at the given time step. This al-
lows for simpler gradient descent steps, smoother loss functions, and more manageable
memory constraints.

In terms of theoretical convergence guarantees, Han and Long in [69] showed that
the forward deep BSDE method admits an a posteriori error bound, depending on the
value of the discretized loss functional in (1.25). Their result holds in the even more gen-
eral case of coupled FBSDEs corresponding to (1.3), where p and o are allowed to take Y
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as an argument. This result was extended in [87] to the case of non Lipschitz coefficients
and in [143] in the framework of mean-field equations. Huré et al. [77] show a somewhat
stronger a prioriresult for the convergence of the backward deep BSDE method. In fact,
their analysis ensures that the sequence of optimizations corresponding to (1.27) yields
discrete time approximations preserving the optimal L? convergence rate of order 1/2 of
the backward Euler scheme in (1.18), with an additional regression bias term associated
with the representation error of the chosen function bases, i.e. expressivity of the neural
networks included in the model. Up to a universal approximation type argument, this
gives a convergence guarantee of the backward deep BSDE method, at least in the case
of converging SGD approximations.

In this thesis, we provide contributions to the literature of both methods. The deep
BSDE method approximating the One Step Malliavin scheme in chapter 2 is inspired by
the deep backward dynamic programming type method of Huré et al. [77]. On the other
hand, chapter 4 is concerned with the convergence of the forward deep BSDE method
for coupled FBSDEs, as in [68]. Therein, we extend the a posteriori convergence result of
Han and Long [69] to more generally coupled FBSDEs.

1.4.3. COS METHOD FOR BSDESs

The second class of numerical methods for the approximation of conditional expec-
tations, that we analyze in this thesis is built of Fourier cosine expansions. The COS
method [48] is a Fourier method designed to approximate Markovian conditional expec-
tations of the form in (1.18). It is built on the key insight that even in case the density
function corresponding to the solution of (1.6) is not available, its Fourier transform,
the characteristic function, often is — at least in case of affine diffusion models. Subse-
quently, a Markovian conditional expectation of the form

y(t,x)=[E[v(s,Xs)|Xt=x]=va(s,E)ps|t(£|x)df, s=1t,

can be approximated by the following sequence of approximations. First, truncating the
infinite domain to a finite interval [a, b] < R leads to

b
i, = f v(1,&) p(E| D) de.
a

Replacing the conditional density function with Fourier cosine expansion p({|x) =
!

y ]fjo P (slt) cos(kn (& — a)/ (b— a)), and truncating the infinite series to a finite, K num-

ber of terms results in the subsequent approximation

Kr b {—a b-a K/
yo(t,x) =) Pr(slt) | v(s,€) COS(kn—)dg‘E —— > PrlsI)Vi(s),
k=0 a b-a 2 =

where 74 (s), k = 0,..., are the Fourier cosine expansion coefficients of the determinis-
tic mapping v(s,-). Thereafter, one exploits the relation between the density expansion
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coefficients and the Fourier transform of its density to write

2 P {-a
Pr(slt) = m/ﬂ P(flx)cos(knm)dé

. b .
Re{e—zknul(b—a)f elknx/(b_a)p(ﬂx)df}.
a

b—a

In the final approximation of the COS method, the last term above is replaced by the
characteristic function ¢ (u|x) of X;|X; = x, leading to the COS formula

K kn
y3(t,x) =Y Vi(s) Re{¢>( Ix) e~ kmal ”"“)}. (1.28)
k=0 b-a

The COS formula in (1.28) has been applied to many problems related to financial math-
ematics, such as option pricing [49, 48, 50, 159], stochastic control [147] or valuation of
electricity storage contracts [22]. Most relevantly to the subject of this thesis, the method
has been applied to the numerical solution of scalar valued FBSDE system, first in [144]
for the case of decoupled FBSDEs with constant drift and diffusion coefficients in (1.6),
later extended to more general SDE coefficients in [145], higher dimensional diffusion
processes in [139] and finally coupled equations in [76].

This thesis has two contributions to the COS literature. In section 2.5.1 of chapter 2,
we propose a COS method for the solution of the One Step Malliavin scheme in the one-
dimensional framework. Finally, chapter 5 proposes a higher-order numerical method
for fully-coupled FBSDEs (1.3)-(1.2) built on COS approximations.

1.5. CONTRIBUTIONS AND OVERVIEW

The dissertation is structured in a way that each chapter reads as a standalone piece.
Therefore, we may repeat some common notation in each chapter separately. The dis-
sertation is structured as follows.

In chapter 2, we present the One Step Malliavin scheme (OSM), a novel discretization
that simultaneously solves Markovian BSDEs (1.1) and the BSDE of the solution pair’s
Malliavin derivatives (1.14). The scheme includes I' estimates, making it suitable to the
application of delta-gamma hedging. The OSM scheme is made fully-implementable
by two different approaches: BCOS method in the one-dimensional framework, and a
backward deep BSDE method [77] as in (1.27) for high-dimensional equations. In the-
orem 2.4.1, we show the convergence of the discrete time approximations with optimal
order 1/2 rate, under standard assumptions. Theorem 2.5.2 establishes the convergence
of the associated deep BSDE approximations, up to a universal approximation type ar-
gument. Numerical experiments showcase the accuracy of the method for several semi-
linear equations up to 50 dimensions.

Chapter 3 applies the OSM scheme in the context of delta-gamma hedging in (1.13).
We extend the OSM scheme to discretely reflected BSDEs, and use that for the pricing
and delta-gamma hedging of portfolios of high-dimensional Bermudan options. The
resulting option Deltas and Gammas are used to discretely rebalance the correspond-
ing replicating strategies. Numerical experiments are presented on options with varying
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early exercise rights, moneyness and volatility. These examples demonstrate the robust-
ness and accuracy of the method up to 100 risk factors.

In chapter 4, we are concerned with high-dimensional coupled FBSDE systems ap-
proximated by the forward deep BSDE method in (1.22). We extend that a posteriori con-
vergence guarantee of Han and Long [69] to drift coefficients in (1.3), which may take Z
as an argument. Theorem 4.3.3 establishes sufficient conditions for an a posteriori con-
vergence guarantee. As a result, in contrast to earlier theories, our convergence analysis
facilitates the treatment of FBSDEs arising from stochastic optimal control problems as
in (1.16). Our theoretical insights are further validated through multiple numerical ex-
periments in high-dimensional settings.

Chapter 5 presents a higher-order numerical method for scalar valued, coupled
forward-backward stochastic differential equations. This method is built on COS ap-
proximations (1.28). In contrast to classical reference methods, the forward diffusion is
discretized by general second-order Taylor schemes, including Milstein and simplified
2.0 weak Taylor approximations, implying higher order strong and weak convergence
rates, respectively. Numerical experiments confirm the stated higher-order convergence
for both strong and weak convergence rates across various equations, ranging from de-
coupled to fully coupled settings.

Finally, we summarize the findings of this thesis in chapter 6 and point out several
open research directions worth to discover.







THE ONE STEP MALLIAVIN
SCHEME: NEW DISCRETIZATION OF
BSDES IMPLEMENTED WITH DEEP

LEARNING REGRESSIONS

Es egy pdr iiveg sort6l majd mindenki elfelejti,
hogy az lett amit igy pont nem akart itt senki.
Es nézi az ordog és hdtrébb nézi az Isten,

és végiil a szemiik elétt tancol majd minden.'

Kispadl és a Borz (Disznok tdnca)

This chapter is based on the article [114]: B. Negyesi, K. Andersson, and C. W. Oosterlee. “The One Step Malli-
avin scheme: new discretization of BSDEs implemented with deep learning regressions”. In: IMA Journal of
Numerical Analysis 44.6 (2024), pp. 3595-3647. DOI: 10.1093/imanum/drad092.

1 And a few bottles of beer will make everyone forget
that it has ended being something no one wanted.
And there watches the devil and God watches from behind,
and in the end everything will dance in front of their eyes.

Kispdl és a Borz (Dance of the pigs)


https://www.youtube.com/watch?v=ZO4V_7aA0aI
https://doi.org/10.1093/imanum/drad092
https://www.youtube.com/watch?v=ZO4V_7aA0aI
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2.1. INTRODUCTION

In this chapter, we are concerned with the numerical solution of a system of forward-
backward stochastic differential equations (FBSDE) where the randomness in the back-
ward equation (BSDE) is driven by a forward stochastic differential equation (SDE).
These systems are written in the general form

¢ ¢
X = X +f ,u(s,Xs)ds+f o (s, X;)dWs, (2.1a)
0 0
T T T
Vg0t + [ f05. X ¥ Z0ds— [ (zawy)', (2.1b)
¢ t

where {W;}o<;<7 is a d-dimensional Brownian motion and p : [0, T] x R4*! — R%*1,
o:[0,T] x Rdxl - ]Rdxd, g: Rdxl - qul and f: [0, T] x Rdxl x qul x qud _ qul
are all deterministic mappings of time and space, with some fixed T > 0. Adhering
to the stochastic control terminology, we often refer to Z as the control process. We
shall work under the standard well-posedness assumptions of Pardoux and Peng [126],
which require Lipschitz continuity of the corresponding coefficients in order to ensure
the existence of a unique solution pair {(Y;, Z;)}o<:<7 adapted to the augmented nat-
ural filtration. The main motivation to study FBSDE systems lies in their connection
with parabolic, second-order partial differential equations (PDE), generalizing the well-
known Feynman-Kac relations to non-linear settings. Indeed, considering the semi-
linear, parabolic terminal problem

0sult,x) + %TI‘{O’O’T(I, x)Hess u(t, )} + Vu(t, X)ut, x) + f(t,x,u,Vyiu(t,x)o(t,x)) =0

u(T, x) = g(x),
2.2)

the Markov solution to (2.1) coincides with the solution of (2.2) in an almost sure sense,
provided by the non-linear Feynman-Kac relations

Yf: u(t)Xl’)r Z[:vxu(t,X[)U(t,X[). (2-3)

Consequently, the BSDE formulation provides a stochastic representation to the simul-
taneous solution of a parabolic problem and its gradient, which is an advantageous fea-
ture for several applications in stochastic control and finance, where sensitivities play a
fundamental role. These relations can be extended to viscosity solutions in case (2.2)
does not admit to a classical solution — see [126]. Moreover, it is known - see [126,
46, 73, 110] — that under suitable regularity assumptions the solution pair of the back-
ward equation is differentiable in the Malliavin sense [119], and the Malliavin derivatives
{(DsYy, DsZ)}o<s, r<T satisfy a linear BSDE themselves, where the Z process admits to a
continuous modification provided by Z; = D, Y;.

From a numerical standpoint, the main challenge in solving BSDEs stems from the
approximation of conditional expectations. Indeed, a discretization of the backward
equation in (2.1b) yields a sequence of recursively nested conditional expectations at
each point in the discretized time window. Over the years, several methods have been
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proposed to tackle the solution of the FBSDE system using: PDE methods in [102]; for-
ward Picard iterations in [13]; quantization techniques in [9]; chaos expansion formulas
in [25]; Fourier cosine expansions in [144, 145] and regression Monte Carlo approaches
in [63, 24, 16]. These methods have shown great results in low-dimensional settings,
however, the majority of them suffers from the curse of dimensionality, meaning that
their computational complexity scales exponentially in the number of dimensions. Al-
though, regression Monte Carlo methods have been successfully proven to overcome
this burden, they are difficult to apply beyond d = 10 dimensions due to the necessity
of a finite regression basis. The primary challenge in the numerical solution of BSDEs is
related to the approximation of the Z process. In particular, the standard backward Eu-
ler discretization results in a conditional expectation estimate of Z which scales inverse
proportionally with the step size of the time discretization — see [24]. This phenomenon
poses a significant amount of difficulty in least-squares Monte Carlo frameworks, as the
corresponding regression targets have diverging conditional variances in the continuous
limit.

Recently, the field has received renewed attention due to the pioneering paper of
Han et al. [68], in which they reformulate the backward discretization in a forward fash-
ion, parametrize the control process of the solution by deep neural networks and train
the resulting sequence of networks in a global optimization given by the terminal con-
dition of (2.1b). Their method has enjoyed various modifications and extensions, see,
e.g., [63, 11]. In particular, Huré et al. in [77] proposed an alternative where the opti-
mization of the sequence of neural networks is done in a backward recursive manner,
similarly to classical regression Monte Carlo approaches. We refer to the class of these
deep learning based formulations as Deep BSDE methods, which have shown remark-
able empirical results in solving high-dimensional problems. Note, however, that the
approach of [68] solely captures the deterministic mapping connecting the forward dif-
fusion in (2.1) to the solution pair of the BSDE at ¢ = 0. Even though the extension of
[77] gives such approximations at future time steps, the accuracy of both methods de-
grades significantly in the Z part of the solution. The total approximation errors of such
Deep BSDE methods have been investigated in [69, 77, 58]. The results in [69] provide
a posteriori estimate driven by the error in the terminal condition, whereas the analyses
in [77, 58] show that due to the universal approximation theorem (UAT) of deep neural
networks, the total approximation error of neural network parametrizations is consistent
with the discretization in terms of regression biases.

The main motivation behind the present chapter roots in the observations above. In
order to provide more accurate solutions for the Z process, we exploit the aforemen-
tioned relation between the Malliavin derivative of Y and the control process by solving
the linear BSDE driving the trajectories of DY. Hence, we are faced with the solution of
one scalar-valued BSDE and one d-dimensional BSDE at each point in time. This raises
the need for a new discrete scheme, which we call the One Step Malliavin (OSM) scheme.
The discretization of the linear BSDE of the Malliavin derivatives is based on a merged
formulation of the Feynman-Kac formulae in theorem 2.3 and the chain rule formula
of Malliavin calculus [119]. As we shall see, the resulting discrete time approximation
of the Z process possesses the same order of conditional variance as the ones of the Y
process, making the scheme significantly more attractive in a regression Monte Carlo
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framework compared to classical Euler discretizations. On the other hand, our formula-
tion carries an extra layer of difficulty, in that we are forced to approximate the "the Z of
the Z, i.e. T processes" [62, Pg.1184] in the Malliavin BSDE which are, in light of theorem
2.3, related to the Hessian matrix of the solution of the corresponding parabolic prob-
lem (2.2). In this regard, our setting shares similarities with second-order backward SDEs
(2BSDE:;) [33] and fully non-linear problems [47]. We analyze the discrete time approx-
imation errors and show that under certain assumptions the new scheme has the same
L2 convergence rate of order 1/2 as the backward Euler scheme of BSDEs [24].

Two fully-implementable approaches are investigated to solve the resulting dis-
cretization. First, we provide an extension to the BSDE-COS (BCOS) method [144] and
approximate solutions to one-dimensional problems by Fourier cosine expansions. Ulti-
mately, the presence of I estimates induces d> many additional conditional expectations
to be approximated at each point in time, which makes the OSM scheme less tractable
for classical Monte Carlo parametrizations when d is large. Thereafter, inspired by the
encouraging results of Deep BSDE methods in case of high-dimensional equations, we
propose a neural network least-squares Monte Carlo approach similar to the one of [77],
where the Y, Z and I processes are parametrized by fully-connected, feedforward deep
neural networks. Subsequently, parameters of these networks are optimized in a recur-
sive fashion, backwards over time, where at each time step two distinct gradient descent
optimizations are performed, minimizing losses corresponding to the aforementioned
discretization. Motivated by the UAT property of neural networks in Sobolev spaces,
similarly to [77], we consider two variants of the latter approach: one in which the I'
process is parametrized by a matrix-valued deep neural network; and one in which the
I" process is approximated as the Jacobian of the parametrization of the Z process, in-
spired by theorem 2.3. The total approximation error is investigated similarly to [58, 77]
and shown to be consistent with the discretization under the assumption of perfectly
converging gradient descent iterations. We demonstrate the accuracy and robustness
of our problem formulation with numerical experiments. In particular, using BCOS as a
benchmark method for one-dimensional problems, we empirically assess the regression
errors induced by gradient descent. We provide examples up to d = 50 dimensions.

The rest of the chapter is organized as follows. In section 2.2 we provide the necessary
theoretical foundations, followed by section 2.3 where the new discrete scheme is formu-
lated. In section 2.4 a discrete time approximation error analysis is given, bounding the
total discretization error of the proposed scheme. Section 2.5 is concerned with the im-
plementation of the discretization scheme, giving two fully-implementable approaches
for the arising conditional expectations. First, the BCOS method [144] is extended in
case of one-dimensional problems, then a Deep BSDE [68, 77] approach is formulated
for high-dimensional equations. A complete regression error analysis is provided, build-
ing on the universal approximation properties of neural networks. Our analysis is con-
cluded by numerical experiments presented in 2.6, which confirm the theoretical results
and showcase great accuracy over a wide range of different problems.
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2.2. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND

MALLIAVIN CALCULUS

In the following section we introduce the notions of BSDEs and Malliavin calculus used
throughout the chapter.

2.2.1. PRELIMINARIES

Letus fix0 < T <ooand d,q,n, k € IN*. We are concerned with a filtered probability
space (Q,%,P,{F}o<:i<1), where & = Fr and {F}p<;<7 is the natural filtration gener-
ated by a d-dimensional Brownian motion {W;}p<;<1 augmented by IP-null sets of Q.
In what follows, all equalities concerning %;-measurable random variables are meant
in the IP-a.s. sense and all expectations — unless otherwise stated — are meant under IP.
Throughout the whole chapter we rely on the following notations

° |x|:= Tr{xTx} for the Frobenius norm of any x € R9%4. In case of scalar and vector
inputs this coincides with the standard Euclidean norm. Additionally, we put {x | ¥)
for the Euclidean inner product of x, y € RA.

+ $”(R7*4) for the space of continuous and progressively measurable stochastic
processes Y : Q x [0, T] — R7*¢ such that E [supy<,<7 Y] < co.

« HP(R9*?) for the space of progressively measurable stochastic processes Z : Q) x

/2
[0, T] — R9*? such that E [(fOT 1Zidi)” ] <co.

. ]L;t (R9*4) for the space of Z;-measurable random variables ¢ : Q — R9*¢ such
that E [|¢]] < oo.

o L2([0, T);RY) for the Hilbert space of deterministic functions & : [0, T] — R? such
that [ |k(#)[’dt < co. Additionally, we denote its inner product by (h|g),2 =

J (ho]g®)dt.

° Vif = (g—xfl,...,%) for the gradient of a scalar-valued, multivariate function

(t,x,y,2) — f(t,x,7,2) with respect to x € R?, defined as a row vector, and anal-
ogously for Vy, f,V, f. Similarly, we denote the Jacobian matrix of a vector-valued
function v : R4 — RY by V. € R7*%. For notational convenience, we set the
Jacobian matrix of row and column vector-valued functions in the same fashion.

. CLf(IRd;IRq),C”g (R%;RY) for the set of k-times continuously differentiable func-

tions ¢ : R4 — RY such that all partial derivatives up to order k are bounded or
have polynomial growth, respectively.

e E,[®]=E [@Igtn] for conditional expectations with respect to the natural filtra-
tion, given a time partition 0 = fo < f; < --- < fy = T. We occasionally use the no-
tation E}, [@] := E [®|X;, = x| when the filtration is generated by a Markov process
X.

* 154,044 for R7*% matrices full of ones and zeros, respectively.
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By slight abuse of notation we put $”(R) := $7 (RM*1), HP (R%) := HP (R™9), 15:=1, 4
and 0, :=01,4.

We recall the most important notions of Malliavin differentiability and refer to [119]
for a more detailed account on the subject. Consider the space of random processes
W(h) := fOT h(t)dW, with h € L?([0, T];R'*%). Let us now define the subspace % < ]LZgT of
smooth, scalar-valued random variables which are of the form ® = (W (hy),..., W(h;))
with some ¢ € C;?(R";R). The Malliavin derivative of ® is then defined as the R4-
valued stochastic process D;® := Z;’:I 0;p(W(hy),..., W(h,))h;(s). The derivative oper-
ator can be extended to the closure of % with respect to the norm

T pl21\1/p
D7 + ( f |Ds<1>|2ds) ) ,
0

see [119, Prop.1.2.1]. We denote this closure as the space of Malliavin differentiable, IR-
valued random variables by DYP(R). For the space of vector-valued ® = (Py,...,04)
Malliavin differentiable random variables, we put ® € D'”(R%) when ®; € D"?(R) for
each i =1,...,q. The Malliavin derivative D;® € R7*¢ is then the matrix-valued stochas-
tic process whose i’'th row is Ds®;. The final result which extends the chain rule of ele-
mentary calculus to the Malliavin differentiation operator is fundamental for the present
chapter, essentially enabling the formulation of the upcoming discrete scheme.

®llpLy :=|E

Lemma 2.2.1 (Malliavin chain rule lemma)
Lety e Cllj(Rd;Rq) and fix p = 1. Consider F € DYP(RA). Then w(F) e DVYP(RY), further-
more foreach0<s<T

Dgy(F) =V y(F)DE

The lemma can be relaxed to the case where v is only Lipschitz continuous — see
[119, Prop.1.2.4].

2.2.2. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
We first provide the necessary theoretical foundations for the well-posedness of the un-
derlying FBSDE system in (2.1) guaranteeing the existence of a unique solution triple.
Given the stronger assumptions later required for their Malliavin differentiability, we re-
strict the presentation to standard Lipschitz assumptions. For a more general exposure
we refer to [31] and the references therein.

It is well-known - see, e.g., [89] — that the SDE in (2.1a) admits to a unique strong so-
lution {X,}o<;<7 € $7 (R9*!) whenever x, € ]L;’o (R*1) and p, o are Lipschitz continuous
in the spatial variable, i.e.

|u(t, x1) — p(t, X2) | +10° (£, x1) = 0/(£, X2)| < Ly o1 X1 — X

forall t € [0,T], x1,x2 € R4*! with some L, » > 0. Additionally, the solution {X;}o<;<7
satisfies the following estimates for all p = 1

[E[ sup |X,|P
0<i<T

<Cp  E[IX;—XIP] <Cplt—sIP"?, (2.4)
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with constant C, only depending on p, T, d. In case of the Arithmetic Brownian Motion
(ABM) with constant p and o, (2.1a) admits to the unique solution X; = xo+ ut+ocW;. In
particular, the Malliavin chain rule formula in lemma 2.2.1 implies that D X; = 1<;0.

The well-posedness of the backward equation in (2.1b) is guaranteed - see, e.g., [46] —
by the Lipschitz continuity of the driver, on top of the polynomial growth of the terminal
condition

|f(t)xryl)zl)_f(t)xryZyZZ)i SLf,g (lJ/I _y2| +|Zl _ZZI))
|f(t,x,y,2)| +|gx)| < Lf g (1+1xIP),

forany t € [0, T], y1,y2 € RY, 21,2, € R9*¢, with some Ly,¢ > 0 and p = 2. These con-
ditions, combined with the ones for the SDEs above, imply the existence of a unique
solution pair Y € $P(RY), Z € HP (RI*4) satisfying (2.1b). Let us now fix g = 1 and re-
strict the further analysis to scalar-valued backward equations. Thereafter, under the
aforementioned conditions, the FBSDE system in (2.1) admits to a unique solution triple
(X, Yo, Z)Yose<t € SP (R x SP(R) x HP (R'*9).

2.2.3. MALLIAVIN DIFFERENTIABLE FBSDE SYSTEMS

This chapter is focused on a special class of FBSDE systems such that the solution triple
{(Xy, Ys, Z)}o<r<T is differentiable in the Malliavin sense. The Malliavin differentiability
of the forward equation is guaranteed by the following theorem due to Nualart in [119,
Thm.2.2.1].

Lemma 2.2.2 (Malliavin differentiability of SDEs, [119])

Letxo € L, (RN, pe €l ([0, T xRPE R, 0 € (10, T x RO G R ) and (1,0,
o(t,0) be uniformly bounded for all0 < t < T. Put {X;}o</<T for the unique solution of
(2.1a). Then forall t € [0, T], X; € DV (R%*') and there exists a continuous modification
of its Malliavin derivative {DsX }o<s,;<T € 5" (R¥*4) which satisfies the linear SDE

t t
DX, :ﬂsst{g(s,xs)"‘f Vx,u(r’Xr)Derdr"'f vxa(r;Xr)DerdWr-}y (2.5)
s s

whereV yo denotes a R4*4%4 _palued tensor with (Vxolijk = Ok [ol;ij. Furthermore, there
exists a constant Cp, only depending on p, T, d, such that

sup |DsX;|P
tels, T)

sup E <Cp, E[IDsX;—DsXIP] < Cplr—tIP'?, Vrt=s. (2.6)

s€[0,T]

The main implication of the proposition above is that under relatively mild assump-
tions on the bounded continuous differentiability of the coefficients in (2.1a), the Malli-
avin derivative of the solution satisfies a linear SDE, where the random coefficients de-
pend on the solution of the SDE itself. Intriguingly, a similar assertion can be made about
the solution pair of the backward equation in (2.1b), which - on top of establishing their
Malliavin differentiability — also creates a connection between the Malliavin derivative
DY and the control process. This is stated by the following theorem originally from Par-
doux and Peng in [126], which we state under the loosened conditions of El Karoui et al.
[46, Prop.5.9].
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Theorem 2.2.1 (Malliavin differentiability of BSDEs, [46])

Let the coefficients of (2.1a) satisfy the conditions of lemma 2.2.2 and assume [ €
CyMUL(0, 7] x R, R, R4 R), g € CLRPGR). Fix p = 2. Put {(Yr, Z)bose<r for
the unique solution pair of (2.1b). Then for all t € [0,T] Y; € D'?(R), Z; € DV2(R'*9)
and there exist modifications of their Malliavin derivatives {D;Y}o<s,i<T € SP(RI*D),
{DsZi}o<,s,t<T € HP (R4*%) which satisfy the following linear BSDE

DsY: =Vig(Xr)Ds Xt

T
+f Vi f(r, Xy, Yy, Ze)Ds Xy + Vy f (1, Xy, Yy, Z;) Ds Yy
t
+V.f(rX;, Y, Z)Ds Z,dr 2.7)

T
—f ((DsznTdw,)", 0=s=t=T,
t
DSYtzodr DsZt=0d'd, 0<t<s<T.

Furthermore, there exists a continuous modification of the control process such that Z; =
D:Y; almost surely forall0<t<T.

We emphasize the linearity of (2.7) and remark that the corresponding random co-
efficients of the linear equation depend on the solution of (2.1). Henceforth, in light of
lemma 2.2.2 and theorem 2.2.1, we define {Ds X;}o<s, ;<1 and {Ds Y}o<s,t<1, {DsZt}o<s,t<T
as the versions of the corresponding Malliavin derivatives satisfying (2.5) and (2.7), re-
spectively. For the rest of the chapter, in order to ease the presentation, we intro-
duce the notations X; := (X;,Y;, Z;), DX, = (DsX;,DsY;, DsZ;) and fP(1,X;,DsX;) =
Vi f(6,X)DsX: +V, f(£,X)DsY; +V, f(£,X;)Ds Z, forall0< s, < T.

Path regularity and Hoélder continuity. For {X;}o</<T € %P (R*1) we have that the
solution of the forward SDE is a continuous R%*!-valued random process which is
bounded in the supremum norm. Similar statements can be made about its Malliavin
derivative {D;X}o<s,r<7. In particular, the Holder regularity estimates in (2.4) and (2.6)
ensure that the corresponding processes are not just continuous but also have a modifi-
cation admitting to @-Ho6lder continuous trajectories of order a € (0,1/2) provided by the
Kolmogorov-Chentsov theorem - see, e.g., [89]. Since the 1/2-Hélder regularity of (Y, Z)
plays a crucial role in the convergence analysis of the discrete scheme —see theorem 2.4.1
in particular —, we elaborate on the conditions under which the continuous parts of the
solutions to (2.1b) and (2.7) admit to similar estimates. Indeed, one can show that if the
solutions (Y, Z) € $P (R) x HP (R4*1) of (2.1b) satisfy the condition supy<,<7E [| Z;|P] < 00
then there exists a constant C), such that

see [73, Corollary 2.7]. In particular, the Y process admits to an a-Holder continuous
modification of order a € (0,1/2 —1/p). Under the conditions of theorem 2.2.1, this is
naturally guaranteed, and for p = 2 it implies the mean-squared continuity of the Y pro-
cess. Moreover, the Z process admits to a continuous modification solving (2.7), which
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guarantees Z € $”(R'*¢) and, in particular, boundedness in the supremum norm. Un-
der stronger assumptions one can also establish a similar path regularity result of the
control process. Imkeller and Dos Reis in [78, Thm.5.5] show that with additional condi-
tions, essentially requiring second-order bounded differentiability of the corresponding
coefficients y, 0, f and g, the following also holds for all p = 2

E[1Z:— ZsIP] < Cplt —sIP"2. (2.8)

Hu et al. prove a similar result in [73, Thm.2.6] under slightly different assumptions in
the general non Markovian framework. We omit the explicit presentation of the neces-
sary conditions for (2.8) to hold, nevertheless emphasize that assumption 2.4.1 of the
convergence analysis in sec. 2.4 ensures the path regularity of the Z process and in par-
ticular implies mean-squared continuous trajectories.

2.3. THE DISCRETE SCHEME

In the following section the proposed discretization scheme is introduced. The objective
of the discretization is to simultaneously solve the pair of FBSDE systems given by (2.1)
and the FBSDE system of its Malliavin derivatives provided by lemma 2.2.2 and theo-
rem 2.2.1. Therefore, we are concerned with the solution to the following pair of FBSDE
systems

t t
Xt:x0+f ,u(r,X,)dr+f o(r, X, )dWw,, (2.9a)
0 0
T T
v=gon+ [ foxadr- [ zaw, (2.9b)
t t
t t
DXy =15<; a(s,Xs)+f Vx,u(r,X,)DSX,dr+f chr(r,Xr)DerdWr], (2.9¢)
N N

T T
DsY;=Ts<; ng(XT)DsXT+f fD(r,Xr,Der)dr—f ((DSZr)TdWr)T].(Z.Qd)
t t

The solution is a pair of triples of stochastic processes {(Xy, Y;, Z)lo<s<r and
{(Ds Xy, DsYy, Ds Z)}o<s, =T such that (2.9) holds P almost surely. Consider a discrete
time partition aNi={ty,..., tn}with0 =ty < t; <--- < ty = T and set AW,, := Wi — W,
Aty = tye1—ty, || '= maXg<p<N-1 tn+1 — - We denote the discrete time approximations
by X} = (X, Y], ZT) and D, X}, := (D, X, D, Y}, D, Z7) foreachO < n,m< N.

The forward component in (2.9a) is approximated by the classical Euler-Maruyama
scheme, i.e.,

XJ=x0, XJ.q=X1+ulty, XA, +0(ty, X)AW], (2.10)
foreach n=0,..., N —1. Itis well-known - see, e.g., [90] — that under standard Lipschitz
assumptions on the drift and diffusion coefficients, these estimates admit to
‘2

1
limsup —E || X;, - Xj[*] <o @.11)

inl—o |7l
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Classically, the backward component in (2.9b) is approximated in two steps. In order
to meet the necessary adaptivity requirements of the solution pair (Y, Z), one takes ap-
propriate conditional expectations of (2.9b) and the same equation multiplied with the
Brownian increment AW,!. Using standard properties of stochastic integrals, It6’s isom-
etry and a theta-discretization of the remaining time integrals with parameters 9,9, >0
subsequently give - see, e.g., [144]

YU=8XX), Zy=Vi8XN)o(tn,XN),

1-9 1
Zy=-— 2E, |27, ] + Ao INZAR M (2.12a)
Z Z
+ [En [AWn f(tn+1;xn+1)]y

z

Y7 = Aty f(tn, X, Y, Z)) +En [V | + Aty = 0))E, [ f(tn+1,X],1)] . (2.12D)

In case 9y = 0, = 1, this scheme is called the standard Euler scheme for BSDEs.

2.3.1. THE OSM SCHEME

The novelty of the hereby proposed discretization is that on top of solving (2.9b), we also
solve the linear BSDE in (2.9d) driving the Malliavin derivatives of the solution pair. Ex-
ploiting the relation between DY and Z established by theorem 2.2.1, we set the control
estimates according to the discrete time approximations of the Malliavin BSDE. As in the
case of the forward component itself, the Malliavin derivative in (2.9c) is approximated
by an Euler-Maruyama discretization, giving estimates

]lm:na(tn;Xg)» OSmSnSN,
DpXp, = DﬂXZz—l + Vx“(tm—lrX,Z,I)anzlflAtm—l (2.13)
+ V0 (tm-1,X0,_)Dn X0 AWy, 0sn<m=<N.

Unlike in the case of X7, the convergence of these approximations is not straightfor-
ward due to the fact that the initial condition D, X} = o(¢,, X]}) already depends on the
discrete approximation X' provided by (2.10). Nonetheless, as we shall soon see, our
discretization of the linear BSDE in (2.9d) only relies on the approximations D, X7, for
eachn=0,..., N—1. This is a significant relaxation of the convergence criterion, as it can
be shown that under relatively mild assumptions on the coefficients in (2.9a), DnXZ ‘1
defined by (2.13) inherits the convergence rate of (2.11) — see appendix 2.A for details.
The discretization of the backward component in (2.9d) is done as follows. For any

n=0,...N-1
tn+l D tn+l T T
DtnYtnzD,nY[nH+f f (r,X,,D,nX,)dr—f (Dy, Z)" dW;) ", (2.14)
In In

subject to the terminal condition. Multiplying this equation with AW, from the left, It6’s
isometry implies

th+1 In+1
[En[ Dthrdr] =E, [AWn (Dtn Yi., +f fD(r,Xr,Dtan)dr)],
" o (2.15)

DY, =E, [Dtn Y., + P, X, Dy, X, )dr

In
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In order to avoid implicitness on Y, we approximate the continuous time integrals with
the left- and right rectangle rules, respectively, and obtain discrete time approximations

1
DnZZ=A—[En[AWn(DnY+1+Atnf (tn+1, X, DeX0, )] (2.16)
DpY) =En[Dp Y]y + Aty fP (1011, X5, 1, DX, )]

At this point, to make the scheme viable, one relies on estimates D, Y}, D,Z" on top
of the Euler-Maruyama approximations of DX given by (2.13). This is done by a merged
formulation of the Feynman-Kac formulae in (2.3) and the Malliavin chain rule in lemma
2.2.1. Indeed, given the Markov nature of the FBSDE system, the solutions of (2.9b) can
be written as Y; = y(t, X;), Z; = z(t, X;) for some sufficiently smooth deterministic func-
tions y: [0, T] x R4 - R, z: [0, T] x R*1 — R1*4. Moreover, the Malliavin chain rule
implies that

Dy, Y, =V y(r, X;) Dy, Xy, Dy, Zy =Vyz(r, Xy) Dy, Xy =1 y(1r, Xp) Dy, X,

for some deterministic functions y : [0, T] x R4!1 - R and z: [0, T] x R4*1 — R4,
where we defined y : [0, T] x R4*1 — R9*4 a5 the Jacobian matrix of z(r, X;), and
similarly I'; := y(t, X;). Furthermore, due to the Feynman-Kac relations we also have
z(r, Xr) = Vxy(r,X;)o(r, X;) and therefore

D. Y, =z(r, X; )07 (r, Xy) Dy, Xy, Dy, Zy =y(r, X;) Dy, X (2.17)

Motivated by these relations, we approximate the discretized Malliavin derivatives in
(2.16) according to

D YE = Z80 Yty X2)Dp XY, DuZr:=T%D,X%, 0<nm<N. (2.18)

Henceforth, the discrete approximations of the Y process driven by (2.9b) are given in
an identical fashion to (2.12b) with 9y, € [0,1] as a free parameter of the discretization.
Moreover, in order to be able to control the I.? projection error of D, Z7 with discrete
Gronwall estimates — see Step 1 of theorem 2.4.1 in particular -, we make the V, f part of
fP implicit in D, Z7, and introduce the notation D,, . (D X o DnYT,DnZ7).

Subject to the terminal conditions in (2.9b) and (2.9d), on top of the Malliavin chain rule
estimates in (2.18), this leads to the following discrete scheme, which we shall call the

One Step Malliavin (OSM) scheme
Yy =8(XR), Zy=VigXPoltn,Xy), TF=I[Ve(Viga)l(tn, Xy,

1
[ro(ty, X)) =DpZ = X —Ep [AW, (Dn Yy + Atn P (041, X, DX0 L )], (2.192)
n

ZF =En[Dp Y]y + At fP (1041, X7 1, DuX0 0 )], (2.19b)
Y7 =0, Aty f(tn, X3, Y, Z)) +En [ Y + A= 9)A Ly f(1r41, X5, 1)] . (2.19¢)

The scheme is made fully implementable by an appropriate parametrization to approx-
imate the arising conditional expectations.
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Remark 2.3.1 (Comparison of discretizations)

There are two key differences between the standard Euler discretization in (2.12) and the
OSM scheme in (2.19). First, unlike in the former, the OSM scheme’s solution is a triple
of discrete random processes, including an additional layer of T estimates. Moreover,
it can be seen that the estimate in (2.19b) exhibits a better conditional variance than
that of (2.12a). In case of the standard Euler discretization, the Z process is approxi-
mated through It6’s isometry and the corresponding discrete time approximations include
a 1/At, factor — second term in (2.12a) — which leads to a quadratically exploding con-
ditional variance of the resulting estimates. Several variance reduction techniques have
been proposed to mitigate this problem — we mention [62, 2]. On the other hand, within
the OSM scheme, the Z process is approximated by the continuous solution of the Malli-
avin BSDE in (2.9d) and therefore it carries the same conditional variance behavior as the
Y estimate. In case of a fully-implementable regression Monte Carlo setting, this explains
why the OSM scheme may provide more accurate control approximations.

Alternative formulations. Equation (2.19) is not the first approach to the BSDE prob-
lem building on theorem 2.2.1. Turkedjiev in [154] proposed a discrete time approxima-
tion scheme, where the Z process is estimated by an integration by parts formula stem-
ming from Malliavin calculus and discovered in [105, Thm.3.1]. Hu et al. in [73] proposed
an explicit scheme in the case of non Markovian BSDEs, where the control process is es-
timated using a representation formula implied by the linearity of the Malliavin BSDE
(2.9d) —see [46, Prop.5.5]. Briand and Labart in [25] offer a different approach to BSDEs,
where building on chaos expansion formulas, the Z process is taken as the Malliavin
derivative of Y given by theorem 2.2.1. The difference between these formulations and
(2.19) is mostly twofold. The OSM scheme is concerned with solving the entire pair of
FBSDE systems (2.9) and not just the backward component in (2.9b). This means that
unlike in [154, 25, 73], discrete time approximations give I" estimates as well. Addition-
ally, one important difference in the OSM scheme compared to the approaches [154, 73]
is that the conditional expectations in (2.19) project &#;, ,, -measurable random variables
onto &;,, whereas in the case of those works the arguments of the conditional expec-
tations are & r-measurable. An important implication of this difference is that — unlike
[154, 73] -, in order to simulate the arguments of the arising conditional expectations
in (2.19), one does not rely on discrete time approximations of the Malliavin derivatives
D, X7, over the whole time window (n < m < N) but only in between adjacent time steps
D, X7 .. This is an advantage from the convergence analysis perspective whenever one
does not have analytical access to the trajectories of {DsX;}o<s <. In fact, ensuring the
convergence of the Euler-Maruyama scheme for the Malliavin derivative in (2.13) for
any n < m < N is known to be non-trivial, see [73, Remark 5.1]. On the other hand, as
shown in appendix 2.A, under suitable regularity assumptions, D, X7, | converges in the
IL2-sense with a rate of 1/2, which renders the convergence of the discrete time approxi-
mations of the OSM scheme possible.
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2.4. DISCRETIZATION ERROR ANALYSIS

Having introduced the discrete scheme simultaneously solving the FBSDE system itself
and the FBSDE system of its solutions’ Malliavin derivatives, we investigate the errors
induced by the discretization of the continuous processes in (2.19). It is known — see [24]
— that the 2 discretization errors of the backward Euler scheme in (2.12) admit to

2
max E|[|Y,, - V7| +E

N-1 In+1 2
> |z, — Z|"dr
n=0"1n

sc([E

|gxr) - g X | +eZmh + 1), (2.20)

where eZ(|n1|) = F

ENS Jpt |2 - Zi Py | with ZB*Y = VAGE, | [ Z.dr| ac-
cording to [160]. The purpose of the following section is to show a similar result for the
proposed OSM scheme and prove that it is consistent in the IL?-sense, i.e. the discrete
time approximations errors converge to zero as the mesh size of the time partition ||
vanishes. In particular, we shall see that under standard Lipschitz assumptions on the
driver f of the BSDE (2.9b) and the driver f D of the linear Malliavin BSDE (2.9d), and
additive noise in the forward diffusion, the convergence is of order @ (|7r|'/?).

Assumption 2.4.1
The following assumptions are in place.

(A*?) SDE

(A’f %) the forward equation has constant drift and diffusion coefficients (Arith-
metic Brownian motion);

(A’Zw) the forward SDE has a uniformly elliptic diffusion coefficient, i.e. for any
{ € RY4 there exists a > 0 such that{oa (T > BI{I* %;

(A/§) BSDE
(A{ €) ge Ci“" (R) with some a > 0, furthermore g is also bounded;
AL®) feCl**R);

(Ag’g) [ and its partial derivatives V. f,Vyf,V.f are all 1/2-Holder continuous
in time.

The conditions above are not minimal - see also sec. 2.4.2. Nevertheless, for the sake
of the present analysis they are sufficient. In particular, since bounded continuous dif-
ferentiability implies Lipschitz continuity due to the mean-value theorem, by theorem
2.2.1 we have that under assumption 2.4.1 the FBSDE (2.9a)—(2.9b) is Malliavin differ-
entiable, and the Malliavin derivatives of its solutions satisfy the FBSDE (2.9¢)—(2.9d).
Additionally, due to [40, Thm. 2.1], we can also exploit the following useful result from
the theory of parabolic PDEs.

2We remark that this condition is equivalent to A = ool being a positive definite matrix.
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Lemma 2.4.1 ([40])
Under assumption 2.4.1 the parabolic PDE in (2.2) admits to a unique solution u €
CH*(R).

b

Thereafter, provided by lemma 2.4.1, one can use the merged formulation of the
Malliavin chain rule lemma 2.2.1 and the non-linear Feynman-Kac relations given by
(2.17), in order to get the explicit formulas for the solutions of (2.9d) depending only on
time and the state variable. We remark that in our setting o € R%*4 | the existence of the
inverse is guaranteed by the uniform ellipticity condition set on o in assumption 2.4.1. In
case the Brownian motion and the forward diffusion have different dimensions, similar
statements can be made about right inverses — see [154]. Another important implication
of the estimate above is that assumption 2.4.1, through lemma 2.4.1, also implies that the
driver of the Malliavin BSDE fP is Lipschitz continuous in its spatial arguments within
the bounded domain. Indeed, the mean-value theorem for f € Cg,z,z,z (R) implies that
f and all its first-order derivatives in (x, y, z) are Lipschitz continuous, consequently for
any uniformly bounded argument (DX, DY, D Z) the following holds

| £ (%0 = Ft2,%0)| < Ly (100 = 21" 4 131 = %l + [ 1 = y2| + 121 = 221),
&1l ] 1C1 < Lyn:

|FP (%1, &) - P12, %0,82)| = LfD(lh — "+ 1 = X2l + |y1 = y2 | + 121 - 22

&1 =&l + |m—m2| +101 —(2|),
(2.21)

with x; = (x;, ¥4, 2i), & = (E5,mi,¢i), i=1,2; forall t; € [0, T], x; e RYY, y; € R, z5,m; €
R'*4 and ¢ (i€ R%*4 where Lf,LfD > 0. Here we also used the assumption of Holder

continuity established by (Ai/; ),

Given the usual time partition, it is clear that the discrete approximations (2.19) are
deterministic functions of X7 and thereupon we put Y} =: y"(t,, X}) = yM(X}), Z] =
Z8(ty, XJ) = 25 (X)), T =9"(ty, X]) = yL(X]). In light of (2.18), we use the approxi-
mations

D,Y"

n+l

=ZT 0 (tya1, X5, DD XY, ,,  DnZF =T2D,XL. (2.22)

We introduce the short-hand notations AX} := X, - X}, AY) =Y, - Y], AZ} = Z;, —
ZF, ADp X", =Dy Xy, —~Dp X", |, AD, Y7, =Dy Yy, — D, Y7, and AI7:=T, —TT.
Under the conditions of assumption 2.4.1, provided by lemma 2.2.2 and theorem 2.2.1,
we have that the processes (X, Y, Z, DX, DY) are all mean-squared continuous in time,

i.e. there exists a general constant C such that for all s, #,7 € [0, T']

E[IX: - X, ?] <Clt—rl, E[IY;-Y,’]<Clt-rl, E[IZ~-Z]<Clt-r],

2 2 (2.23)
E[IDsY;— DY, || <Clt—rl, E[IDsX;—DsX/|I"]<Clt—r|, Vrt=zs.

Finally, we use

Dz, = E
A n

In

In+1
f Dy, Zrdr] (2.24)
In
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for the IL?-projection of the corresponding Malliavin derivative with respect to the &,
o -algebra, with which we can define the I.?(R4*9)-regularity of D Z as follows

N-1 Tn+l
ePZ(nl) = Y E U
tn

n=0

——n+l

2
D, Z,-DZ, | dr

. (2.25)

Under the condition of constant diffusion coefficients in assumption 2.4.1, we have that
D;,Z, = Dy, Z, =T'yo for any t,, t;; < r. Thereafter, exploiting the fact that due to as-
sumption 2.4.1 the terminal condition of the Malliavin BSDE (2.9d) is also Lipschitz con-
tinuous, one can apply [160, Thm.3.1] and get

1
limsup — &% (|71]) < co. (2.26)
ln—0 17l

2.4.1. DISCRETE-TIME APPROXIMATION ERROR
The main goal of this section is to give an upper bound for the discrete time approxima-
tion errors defined by

&™(1nl):= max E[|av[* +E
0=snsN

712
+ max E [[aZ]]

N-1 rtp 2
Y[l -rnofar
n=0"1n
<Cln|. (2.27)
This is established by the following theorem.

Theorem 2.4.1 (Consistency of the OSM scheme)
Under assumption 2.4.1, the scheme defined by (2.19) for any 9, € [0,1] has I2-
convergence of order 1/2, i.e.

1
limsup —&”(|7]) < co. (2.28)
Izl—o |7l

Proof. Throughout the proof C denotes a constant independent of the time partition,
whose value may vary from line to line. We proceed in steps and prove estimates for
each component of the discretization error.

Step 1. Estimate for DZ. First, we establish an estimate for the corresponding discretiza-

tion error of the DZ-component with respect to the IL?-projection ﬁzﬁ. Let us fix
n=0,...,N—1. Comparing (2.15) with (2.24), we find

At,DZ' =E, [AW,D,, Y., ] +En

tn+1 D
AW,,] f (r,Xr,Dtan)dr].
tn
Combining this with the definition of the discrete scheme ((2.19a)) gives

At,(DZM - D,z
=k [AWn (ADn Y;f+1 —En [ADn Y,fﬂ])]

In+1

+E,

’

AWy ( fD(err;Dtan) - fD(thrl;X],TH,lanX;TH_l_n)dr)

In
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using the tower property of conditional expectations. In Frobenius norm, the condi-
tional I.?(R%) Cauchy-Schwarz inequality subsequently implies

Arnﬁ -D,ZF

< (dAtn)l/z(

Vi -Ea 8D, P])

+(dAty)? ([En

(&

by the independence of Brownian increments. Hence, due to the L2([0, T]; R%) Cauchy-
Schwarz inequality, we gather

+1
fD(r,Xr,Dtan) _fD(tn+1rX7rI;+1’anerl+l,n)dr

In

1
At,|DZ)" =D, Z"

< @) E,

1/2
|ADn n+1 IEn [ADHY:H] iz])

+d"?At, ([En

Tn+1 172
f |2 XDy, Xp) = P (tne1, X7 1, DX )] dr]) :

n

Using the inequality a,b € R : (a+ b)?> < 2(a® + b*) we collect the following IL?(R¥*%)
upper bound

2
At E (DZ"+1 —DpZ"

<2d(E[|AD, Y,

E|[E, (A0, 1) (2.29)

+2dAt,E

1 D D T T 2
ﬁ |f X, Dy, X)) - f (tn+1;xn+1»ann+1,n)| dr|.

According to (2.21), the uniform boundedness of D, X, implies that f? is Lipschitz con-
tinuous in all its spatial arguments and 1/2-Hélder continuous in time, with a universal
constant L £D- This, combined with the mean-squared continuities of the X, Y, Z,D;, X
and Dy, Y in (2.23), implies

|
Vial’| -

+14deDAtn{CAt 200, (E[[aXE,, [

AtyE

‘DZ”H —DpZ"

de([E

Ex[aD YA )) (2.30)

)

+[E[|A +1|]+[E[|A +1|

)

+20, (E[|AD, X, P +E [|aD, Y

In+1 - 2
ft |Dy, Z — DuZ] | dr] }

+E
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where we again used (a+b)? < 2(a?+b?) for a, b € R. By the definition ofﬁzJrl in (2.24),
the last term can be split as follows

In+1 2 In+1
f |D¢, Z, — Dy 2| dr] U
tn In

——n+l

E D Z,-DZ. ‘dr] 2.31)

+ AtyE ‘DZ”H _ppzr|
Plugging this back in (2.30) yields
Aty E “ﬁﬁ“ —DpZ" 2] de([E [|ADnY,’f Y,fﬂ]lz])
+ 14dL§DAtn{CAt,"; +2A1,E [|AXT |

+2Atn( “A 7

HE“A al

)

+201, (E [\ADan+1| +E [|AD,, Nk

ftnﬂ
In

+ALE “DZ"+1 —D,Z"

)

—Fn+l

+E D, Z,-DZ,

dr]
1t
For sufficiently small time steps satisfying 14d L%, At,, < 1/2, we can therefore gather the

]

<4d{E [|aD, vy, [*] -E

estimate

AtyE “ﬁﬁ“ —D,Z"

|E, [AD, YT, ]| ]} 2.32)

+28dI>2

fDAtn{CAt +206E | [AX [

202, (E[|av;]

| +eflazr P)

+201, (E [|AD,,X§;+1| +E [|ADn Y7 )P

)" o}

Step 2. Estimate for Z. With the above result in hand, we give an estimate for the control
process. Under assumption 2.4.1, provided by theorem 2.2.1, we identify the control
process Z by its continuous modification given by DY and establish pointwise estimates.
Indeed, from (2.15) and the definition of the discrete scheme in (2.19b), it follows

)

——n+1|2

+E D, Z,-DZ,

AZ} =E, [AD,Y},] (2.33)

In+1

+Ey, XD, X) = P (w1, X5 DX, )dr |

In
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Applying the Young-inequality of the form (a+ b)? < (1+ pAt,)a® + (1 + oA )b2 with any
p > 0; using the Jensen- and L2([0, T); R%) Cauchy-Schwarz 1nequa11t1es glves

[E[|AZ” < (1+pAty)E

[En (8D Y]] 234)

tns
+;(1+pAtn)[E f |FP X, D, X0) = [P (i1, X1, DX )| dr]

n

Exploiting the Lipschitz- and Hélder continuity of £ in (2.21) and using the mean-
squared continuities of X, Y, Z,D;, X and D;, Y in (2.23), we subsequently gather

E|laz;f?

< (1+ pALE [[E, [AD, Y, ][] (2.35)

7L";D

(1+pAtn){CAt

+202, (E[ A,

+E[JavE,
+E[|ADnYn+1| ])

In+1 2
ft |Dt, Z, — Du Z] | dr] }

Splitting the last term according to (2.31), substituting the upper bound (2.32) and
choosing p* := 28dL§CD then yields

+[E[|A n+1|

)

+202, (E[|AD,XT,, [

+E

E|laz;f?

< (1+p"AnE [[AD, Y7, ] (2.36)

1+ p*At,
4P 2

5 {CAt,%

L +28dL2DAt,,)Atn(

|ax; | +E v,

+E[[az,, )

2, M)Aty (E [[AD, X, [P] +E [|aD, Y,

1+28dI2, Aty 1 prtwnr
i f }
In

fD
2
for any sufficiently small Az, < 1. At this point, we can make use of the fact that due
to (A‘lm) in assumption 2.4.1 X} = oW;, = X;, and D, X, = 0 = D, X;,,,, which in

n+1

particular implies X;, — X} =0,D;, Xy, — D, X, =0and

+(1+28dI2

)

+ D; Z,-DZ, | dr

n+1|

AD,Y]

n+l —

=AZF,,, Dy, Zi,-DnZF = AT, (2.37)
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in light of (2.22). Plugging these estimates back in (2.36) subsequently gives
Lvim

+Cz{Atﬁ+Atn

E|lazgf?

s (1+CAL)E

(2.38)

f ‘Dt %,-DZ," | dr”.

Step 3. Estimate for Y. Given f’s Lipschitz continuity in (x, y,z) and 1/2-Hélder con-
tinuity in ¢ by (2.21), the mean-squared continuities of X,Y and Z in (2.23); through
subsequent applications of the Young-, Jensen- and Cauchy-Schwarz inequalities anal-
ogously to the previous steps, we derive the following inequality from the dynamics of Y
in (2.9b) and the discrete scheme in (2.19c¢)

|AY, | ]HE

E[[av7?] < 0+ pac,E

8L% )
+7(1+,3Atn){CAt +29 Mn( [|A

NG (2.39)

2| +e[laziP))

+2(1-9,)%A1, (E [|A 7P

+[E“A ol

It

Step 4. Combined estimate for Y and Z. Combining the estimates in (2.38) and (2.39)
gives

with any 5> 0.

) 16L§(1 + P95,

5 Atn) (E[lav?

+E[[az;?])

<1+ Gyt (E]|aYE [

+E[[azg,, )

In+1l
+C{Atfl+[E / Dy, Zy - ”“| dr ]}
tn
. 1617 (1+6) 2 . . .
with C, = f+ —F (1-9y)* +C;. Then, for any given § > 0 and sufficiently small time
o 1617 (1+5)&, .
step admitting to Tmn < 1, we derive
E|[avP] +E[|azz ] < a+can) (€] |avy, [P| +E[[azz, ]
2 In+1 ——n+1|2
+Cq AL, +E D, zZ,-DZ, dr|¢.
n
Thereupon, the discrete Gronwall lemma implies that
max E||AY][*] + max E[[az] [
0=n=N
< C{[E |lgxn) - gxi ] (2.40)

E[[V.g(Xnotin, Xp) - Vg (X2 )o (tn, X3 []

+eP%(\m)) + |n|},
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where we also used the definition in (2.25). The proclaimed estimate for the (Y, Z) part
then follows from the observation that under assumption 2.4.1 the terminal conditions
of both the BSDE in (2.9b) and the Malliavin BSDE in (2.9d) are analytically observed;
and the fact that, according to (2.26), ePZ(|7)) is also @ (|7)).

Step 5. Final estimate forI'. It remains to show the consistency of the I" estimate. From
(2.29) and (2.31), we get

In+1 2
[EU |Dy, Zr — Dn ZJ;| dr]
In

j‘tn+l
In

In+l 2
+2dAt,E [f |2 Xe, D, X)) = P (1, X, DXL dr] :
tn

- 2
<E Dy Z,—-DZy [ dr

+2a{E|[aD, v, [

-l (30, 17,

Summation from n=0,..., N — 1 thus gives

N-1 Tn+1
[E[ >
n=

J, D, Z, —DnZ,ﬂzdr]

N-1 pigs
<E Zf Dy, z,-DZ" dr +2dE | [ADN- V]
n=0J1n
N-1 2 2
+2d Y {E[|aD,1 V7P| ~E[[Ea [AD Y ]|}
n=1

In+1
f IfD(r,xr,DtnX»—fD(tn+1,XZ+pDnXZ+1,n)Izdr],

In

N-1
+2d Y AtE
n=0

where we changed the summation index for the first part of the third term. Using the
relations in (2.37) implied by assumption 2.4.1, we can upper bound the summation
term by the estimate (2.34)

N-1 rtp P
[E[ > |Ds, Zr — Dy Z| dr]
=01

N-=1 pty+ 4112 9
<E| Y Dy, 7 ~DZ," [ dr| +2dE [|ADy1 V]|
n=01n
N-1 9
+2dp Y. Aty [[E, [AD, Y]
n=1
N-1 In+l 2
+2d Y. (1/p+2At,)E f |20 Xe, D3, X) = FP (i, X, DX ) P,
n=0 In




2. THE ONE STEP MALLIAVIN SCHEME: NEW DISCRETIZATION OF BSDES IMPLEMENTED
46 WITH DEEP LEARNING REGRESSIONS

for any p > 0. Similar steps as in (2.35) subsequently give

N-1 ptpyr 2
th |Di, Z, - Dy Z7|"dr

ln+1 n+1

Dy, Z, - ‘ dr

Z

In

+2d[E[|ADN Ned ]

N_
+2dp Z AtyE [l[En [ADy Y] |2]

+14L2 dZ(l/Q+2Atn){CAt +2A5,E |[AXE, [P +2Atn[E[|A vrL [
+2A8,E [ [AZ7 )P | + 20 6,E ||AD, X7, |
+2A8,E ||AD, YT, [P

+E

In+1 12
ft |Dy, Zr — DuZ; | dr] }

By choosing p* = 56L%,d, we have that for any sufficiently small || satisfying

fD
28L2 pdlml<1/4
th+1 2
|D:, Z, - Dy 27 |"dr
Nzl rtnn ——n+1|2 2
<2F Z Dy, 2 -DZ," | dr| +4dE [|ADy 1 V|

+4dp* Z Atn[E[|[E [AD, Y, ]| ]

N-1
+y (1/2+56L2de,,){cm,% +201,F
n=0

+205E [[AY, [

|AxTA [

+ 201, (E [|AZ

+E[[ADu X7 | +E [[aDa v P

Once again applying the relations in (2.37), Jensen’s inequality, the convergence of the
IL2-regularity of DZ in (2.26) and the estimate (2.40) proven in the previous step, now
shows the proclaimed convergence of the I" estimates.

This concludes the proof.
O

The final result in (2.28) expresses that the I.? convergence rate of the discrete time
approximations induced by (2.19) is of order ¢ (|7z/Y'2) under the conditions imposed in
assumption 2.4.1. Comparing the convergence bound of theorem 2.4.1 to that of the
classical backward Euler discretization in (2.20), three observations need to be made.
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First, in contrast to the backward Euler discretization, the OSM scheme admits to a
bound where the Z process is controlled by the maximum error over the discrete time
steps — see (2.27). This is due to the fact that under the OSM formulation, theorem 2.2.1
guarantees a continuous version of the control process bounded in the supremum norm,
and thus allows for pointwise estimates. Additionally, we see that even though the hereby
proposed discretization solves a larger problem by incorporating I" estimates, it exhibits
the same, optimal rate of convergence well-known for the classical backward Euler dis-
cretization of BSDEs in (2.20). At last, unlike in the aforementioned case, our final es-
timate does not include the strong discretization errors of the terminal conditions of
the BSDEs (2.9b) and (2.9d). This is merely due to the fact that under assumption 2.4.1
we assumed constant diffusion coefficients, which led to the corresponding terms can-
celing in (2.40). Similarly, we exploited that under our conditions the Malliavin BSDE’s
terminal condition is Lipschitz continuous, leading to an @(|7|'/?) convergence of the
IL2-regularity of DZ according to (2.26). In case of irregular terminal conditions and
non-analytical forward diffusions, it is expected that the corresponding terms would also
contribute to the final estimate.

2.4.2. ASSUMPTIONS REVISITED

In order to conclude the discussion on the discrete time approximation errors, we elab-
orate on the conditions set in assumption 2.4.1. Key aspects of their relevance are high-
lighted and potential ways to generalize the results are pointed out in order to encourage
further research.

Not surprisingly, compared to classical discretizations excluding the Malliavin com-
ponents, necessarily stricter conditions need to be posed in order to ensure Malliavin
differentiability of the original FBSDE system in (2.9a) — (2.9b). The differentiability re-
quirements on the coefficients f and g in (A!")~(A! %) are inherently linked to the Malli-
avin differentiability of the FBSDE in (2.9). However, the Malliavin differentiability of the
solution pair holds under significantly milder assumptions. We refer to [110] for a recent
account on the subject, where it is shown that first-order continuous differentiability,
with not necessarily bounded V. g, V, f is sufficient.

The reason why we nonetheless decided to restrict the assumptions to second-order
bounded differentiability is mostly related to lemma 2.4.1 and the Lipschitz continuity
of fP in (2.21). Although the Lipschitz continuity of V, f, V,f,V.f are all guaranteed
by the Cg,z,z,z assumption, the same cannot be said about the Malliavin derivative ar-
guments DX, of f°. More precisely, in order to have Lipschitz continuity in all spatial
arguments, one — on top of the boundedness of the partial derivatives of f — also needs
to have the uniform boundedness of all the Malliavin derivatives (DX, DY, DZ). Due to
the Malliavin chain rule estimates in (2.17), under the assumption of constant diffusion
coefficients in (A}"”), the uniform boundedness of the Malliavin derivatives is implied by
the twice bounded differentiability of the solution of the parabolic problem in (2.2). This
is guaranteed by lemma 2.4.1, requiring the conditions in (A']/ @ )—(Ai‘g ) to be satisfied.
In case the uniform boundedness of (DY, DZ) is not readily available, one can truncate
the corresponding arguments of f? similarly to [31], and discretize the truncated Malli-
avin problem accordingly. Thereafter, the total discrete time approximation error can be
decomposed into a truncation and discretization component, which guarantee conver-
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gence for an appropriately chosen, adaptive truncation range.

Throughout the analysis, we also often relied on the assumption that the underly-
ing forward diffusion admits to constant drift and diffusion coefficients due to (A"”). In
particular, this assumption allowed us to neglect the contribution of error terms such
as E “th —XZ|2 and E [’DtnthH _DﬂX;zl+1|2 - see, e.g., (2.37). However, it is well-
known that the strong convergence of Euler-Maruyama approximations is of order 1/2
—see (2.11) -, carrying the same order of convergence as the rest of the terms in our
estimates. The convergence of the Malliavin derivative D, X7, with respect to an Euler-
Maruyama discretization in (2.13) is more troublesome. In fact, as highlighted by related
works in the literature — see [73, Remark 5.1] -, it is difficult to guarantee the convergence
of DsX™ over the whole time horizon. It is important to highlight that the OSM scheme
in (2.19) does not require approximations of the corresponding Malliavin derivative over
the whole time window but only in between adjacent time steps D, X, . This is a major
relieve in terms of convergence as one can easily show that within this one time stepping
(OSM) scheme, D, X7 | inherits the convergence properties of the forward diffusion un-

der mild assumptions — see appendix 2.A.

The main difficulty with respect to general forward diffusions is related to the Malli-
avin chain rule approximations given by (2.17). In fact, when D, X} | # Dy, Xy,,, one
needs to deal with product terms such as

Dy, Yt = Dn¥yjoy = [ Zoy 07 tnets X)) = Z51 07 (et X110) | Doy Xy (241)

+ 2710 (tn1, X)) [Di, Xy = Dn X, ]

These pose a significant amount of difficulty when one — unlike in the case of (A‘lw)
— does not have the uniform boundedness of 0~! and {D;X;}¢<sr<7. Additionally, in
order to ensure the boundedness of the discrete estimates Z;f +1» & certain truncation
procedure would be required, further complicating the analysis. Therefore, we decided
to restrict the assumptions to constant diffusion coefficients and to leave the general

case for future research.

Remark 2.4.1 (Non-constant drift and Girsanov’s theorem)

We remark that the assumption of a constant drift coefficient is mostly a matter conve-
nience. Indeed, with a straightforward change of measure argument via the Girsanov the-
orem, one can merge the corresponding non-constant drift contribution onto the driver of
the BSDE and - as long as the drift itself satisfies the continuously bounded differentiable
assumptions posed on Vy f — the same analysis holds.

2.5. FULLY IMPLEMENTABLE SCHEMES WITH DIFFERENTIABLE
FUNCTION APPROXIMATORS AND NEURAL NETWORKS

Having established a convergence result for the discrete time approximation’s error in-
duced by (2.19), we now turn to fully-implementable schemes where the appearing con-
ditional expectations are numerically approximated by a certain machinery. In other
words, we are concerned with the following modification of the discrete scheme in (2.19)
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Yi=gX%), Z%=V.gXQotn,Xx), Th=[Ve(Vigal(tn,X),

fZa(tn,XZ)anZ’szLtn[E (Dn Ty + Aty P (1, X DX )| (2.420)
T — (),
ZT =En [Dn ¥ + Atn fP (101, X1, DpX0 L )], (2.42b)
7% — 27T,
YT =0y Aty f(tn, XTI, Y7, Z5) (2.42¢)
+En [V + (=0 Al f (01, X7, )]
YT — (YD),
withthenotationsf(” '—(}A(ZH,IA/:H,Z;’H) DanHn (Dn n+1,DnYr’l’+l,DnZ”)and
D"Xn+1n T (D Xn+l’D"Yn+1’D erzl)’ where D"Yn+1 = n+10 (t"+1’ I)D Xn+l

and D, Z" := T%D, X7 - similarly as in (2.18). The final approximations are denoted

by (Y7, ZT,T7) and & denotes a machinery which, given approximations at future time

steps, estimates the true conditional expectations (17,’[ , Zﬁ , lv“’,’l). It is worth to notice that

(2.42b) is explicit, whereas (2.42a) and (2.42¢) are both implicit when 9, > 0. Due to

the Markov feature of the corresponding problem, we can write all estlmates as deter-

mlnlstlc functions of the state process YT = JU(XT), ZF = Z5(XT), [T = ¥7(XT) and
= J(XT), ZF = Z%(XT), % = y7(XT) at each time instance.

In the hterature there exist several techniques to numerically approximate condi-
tional expectations, see, e.g., [9, 25, 24]. In what follows, we investigate two specific
approaches in the context of the OSM scheme. We first give an extension to the BCOS
method [144] which shall later be used as a benchmark method for one-dimensional
problems. Our main approximation tool is based on a least-squares Monte Carlo for-
mulation similar to those of the Deep BSDE methods [68, 77], where the functions
parametrizing the solution triple are fully-connected, feedforward neural networks. Due
to the universal approximation properties of neural networks in Sobolev spaces, this
will allow us to distinguish between two variants. In the first one, the I' process is
parametrized by a matrix-valued neural network whose parameters are optimized in
a stochastic gradient descent iteration. In the second, this parametrization is circum-
vented and, in light of (2.3), the I' estimates are directly calculated as the Jacobian of
the Z process. However, such directly linked estimates induce an additional source of
error, which shall be addressed in theorem 2.5.2, where we give an error bound for the
complete approximation error of the fully-implementable OSM scheme, given the cu-
mulative regression errors of neural network regressions, similarly to the ones proven in
[69, 77].

2.5.1. THE BCOS METHOD

We recall the most fundamental notions of the BCOS method [144]. In order to keep
the presentation concise, for the sake of this section we restrict ourselves to the one-
dimensional case. BCOS is an extension of the COS method [48] to the setting of FB-
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SDE systems, whose main idea is to recover the probability densities of certain random
variables given that their characteristic function is available. The key idea of the BCOS
method can be summarized as follows. In general, for a Markov problem, conditional
expectations are of the form

1(x) :=E[v(tns1, X}, )X = x] :va(tnﬂ,p)p(plx)dp,

where p(p|x) is the conditional transition density function from state (¢,x) to state
(tn+1, p)- Assuming that the integrand above decays in the infinite limit, one can truncate
the integration range to a sufficiently wide finite domain [a, b]. Thereafter, the Fourier
cosine expansion of the deterministic mapping v(t,+1,-) : [a, b] — R reads as®

oo, p-a
V(tps1,0) = kzzo Vie(tns1) COS(kﬂm),

where the series coefficients are given by 7 (f,+1) = ﬁ fv(tml,p) cos(kn%)dp.

Plugging these estimates back in the conditional expectation, with an additional trun-
cation of the Fourier expansion to a finite number of K coefficients, gives the approxi-
mation [48]

K-1
I(x) = T(x) = ) Vic(tns1) Re{@ (k| x)}, (2.43)
k=0

where ®(k|x) := (p(%lx)e”‘”ﬁ and ¢(u|x) is the conditional characteristic function
of the Markov transition. In case the underlying Markov process is an Euler-Maruyama
approximation of the solution to a forward SDE, the conditional characteristic function
is given by ¢ (u|x) = exp(i up(ty, X)At, — %uzaz(tn, x)Atn). Using an integration by parts
argument—see [144, Appendix A.1] and appendix 2.B —similar results can be constructed
for conditional expectations of the forms

J(x) =Ej [v(tne1, X), )AW,] (2.44)
~ Kl kn
2T = Atp0 (1, ¥) Y = 7T (tns1) IO (KL},
k=0 V4
K(x) = Ej; [v(tns1, X)p,1) (AW,)?] (2.45)
K-1
~ K(x) = Aty ) Vic(tns1) Re{®(k|x)}
k=0

~ s 2 K-1 k 2
At (1n, %) Y o=z Velns1) Re(®@(kl)}.
k=0 -

Built on these approximations, the BCOS method goes as follows. One first needs to
recover the coefficients of the terminal conditions either analytically or via Discrete Co-
sine Transforms (DCT). These coefficients are plugged into conditional expectations of

. K-1 — . . s 1s
3V\/fe adhere to the standard notation where Z' k=0 Ak =aol2+ ZIk(: 11 ay, i.e. the first element is multiplied by
1/2.
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the form (2.43), (2.44) and (2.45), providing estimates for the solutions at #y_;. In order
to make the scheme fully-implementable, one also relies on a machinery which recovers
these coefficients while going to time step n, from time step n+1 in a backward recursive
algorithm. This step can either be done by Fast Fourier Transforms (FFT) [144] when the
coefficients of the SDE are constant, or with DCT when they are not [145]. When one is
faced with an implicit conditional expectation (9, > 0) Picard iterations are performed,
which — under Lipschitz assumptions and sufficiently small time steps — converge expo-
nentially fast to the unique fixed point solution.

In particular, the BCOS approximations for (2.42) read as follows — for a more detailed
derivation, see appendix 2.C

Fu@) =g, Z{x) =0+8x)a(T,x), ¥} x)=0x(0xg0) (T, x),

Kﬁl/ — X—a
Yr(0)o(ty,x) = Z @Zk(tn+1)cos(kn—),
k=0 b-a

K-1
28(x) = 0 (fn, X) (1 + Oxpiltn, ©)ALR) Y. Wic(£n41) Re{® (k| x)}
k=0
K-1 k7t
-0 (tn,x)axa(tn,x)Ath —Wk(tn+1)lm{<l>(k|x)}

K-1
+ Aty V()0 (tn, %) Y. FE(tne1) Ref®(klx)},
k=0

Lo x—a
Vn(x) = ];)@/k(tn)cos (knm),
where we defined
R (K1) = T (K1) + U= 99 Aty f (1, Xy, Vit K1) 2 (X11)), (2.47)
Wl (XT )= (L4 0y f (b1, X 1)) 28 (X D)0 (a1, X)) + A0 f (80, XT 1)

for the explicit parts of the discrete approximations (2.42c) and (2.42b), respectively. The
coefficients

2 b p-a
Wk(tVH—I) = EL wzﬂ(p) COS(’CT[E)dp,
R p—a
gyfk(tn_H) = mfa hn+1(p) COS(kﬂm)dp,

b _
Fi(the) = ﬁfa 0.f (tn+1,0) cos(kn%)dp
are approximated by their DCT counterparts 77/;(1‘%1),J/L’?k(tnﬂ),,/?\,f(tnﬂ),
respectively. DZ(tns1) is recovered with DCT on the approximations
EX (A6 ' AW, wT  (XE, )Dp X", |1 (1—ES [AW,0. f (1n41,X",1)]).  Thereafter, the
BCOS formulas in (2.43), (2.44) and (2.45), together with the Euler-Maruyama estimates
(2.13), imply the estimates for I and Z. The Z estimates are plugged into the approxima-
tion of the Y process in (2.42¢). The coefficients ¥, (t,,) are recovered from the estimates
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YR = 9y Aty f (L, x, 5~ V7 (), 25 (x)) +EX [T, ] after a sufficient number of P Picard
iterations are taken. This completes the BCOS algorithm for the OSM scheme.

For a detailed account on the contributions of the corresponding truncation and ap-
proximation errors of the BCOS method, we refer to [144, 145, 48] and the references
therein. Although the method can be extended to higher-dimensional diffusion pro-
cesses, it suffers from the curse of dimensionality through the inevitable spatial dis-
cretization required in the Fourier frequency domain.

2.5.2. NEURAL NETWORKS

In recent years, neural networks have shown excellent empirical results when deployed
in a regression Monte Carlo framework for BSDEs [68, 77, 53]. In what follows, we are
concerned with the class of feedforward, fully-connected deep neural networks, partic-
ularly in the context of approximating high-dimensional conditional expectations. This
family of functions ¥(-|©) : R4*! — R9*¢ can be described as a hierarchical sequence of
compositions

W (x0) := dogut© Ar+1(10r+1)0ac Ap(-l0r)oaoc---0ao A (-|01) o x.

The affine transformations A;,I = 1,..., L are called hidden layers and are of the form
A;(yl0; = (Wll,l,bl)) = Wllly+ b;, with Wll—l € RS1*Si-1 being a matrix of weights and
b; € RS*1, S;_1,S; € N the biases. Furthermore, a : R — R describes a non-linear ac-
tivation function, which is applied element-wise on the output of each affine transfor-
mation. The size S; denotes how many neurons are contained in the given layer. The
output layer is defined by Ap+1 (10141 = (WLLH,bLH)) = WLL+1y+ br+1 with WLLJrl €
R7*4*SL by ., € R9*4. The complete parameter space of such an architecture is there-
fore given by © := (61,...,041) € RI*AX(SL+ D+, S xSi+S;, Widely common choices
for the non-linearity include: Rectified Linear Units (ReLU), sigmoid and the hyperbolic
tangent activations. The optimal parameter space ©* is usually approximated by first
formulating a loss function which measures an abstract distance from the desired be-
havior, and then iteratively minimizing this loss through a stochastic gradient descent
(SGD) type algorithm. For more details, we refer to [65].

The use of deep learning is often motivated by the so-called Universal Approxima-
tion Theorems (UAT) which establish that neural networks can approximate a wide class
of functions with arbitrary accuracy. The first version of the UAT property was proven
by Cybenko in [37]. However, as in the applications of this chapter derivative approxi-
mations play an important role, we present the following extension of Hornik et al. [72],
which extends the UAT property to Sobolev spaces. In what follows, we use the com-
mon notations for WP (U) = {f € LP(U) : || f ||y = =k Sy |D* f|P AWV < oo} for
Sobolev spaces, where @ denotes a multi-index, D is the differentiation operator in the
weak sense and A is the Lebesgue measure. In particular, we use H k(U )= whk:2 (U). Then
the UAT in Sobolev spaces can be stated as follows — for a proof see [72, Corollary 3.6].

Theorem 2.5.1 (Universal Approximation Theorem in Sobolev Spaces, [72])

Let a: R — R be an ¢-finite activation function, i.e. a € Cl(R) and f]R \D[a| < o0o. Let
U < R4 be a compact subset. Denote the class of single hidden layer neural networks
by 2(a) = {y : R — R : y(x|® = (W, b1, W2, by)) = W2a(Wyx + by) + by, W, €
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RS9, by e RS, w2 e R1*9*S1, b, € R19,S; € N} . Then Z(a) is dense in W™P(U)
foreach0<m </, ie. foranye>0 and f € W™P(U) there exists aw € X(a) such that
lw = fllywmp <e.

In particular, we have that for any ¢ = 1-finite activation a, f € H' (U) and e > 0, there
exists ay € X(a) such that

fU lw - fdA +fU |V.w—Df|*dA<e.

The main implication of the UAT property is that given a compact domain on R? and
an appropriate activation function, one can approximate any Sobolev function by shal-
low neural networks” with arbitrary accuracy. It is worth to highlight that in the context
of a regression Monte Carlo application, this does not establish an implementable re-
gression bias due to the lack of bounds on the width of the hidden layer. We remark that
the above version is not a state of the art result and refer to [134] for a classical survey on
the subject.

Layer Normalization. Normalization is a standard tool to enhance the convergence of
stochastic gradient descent like algorithms [65]. In standard examples [68], this is usu-
ally done by a so-called batch normalization technique. However, as we shall see, in
our setting batch normalization is computationally intensive as it ruins batch indepen-
dence and implies quadratic dependence of the Jacobian tensor on the chosen batch
size. Hence, we instead deploy layer normalization [8], where normalization takes place
across the output activations of a given hidden layer. Therefore, the final network archi-
tecture considered in section 2.6 is described by the sequence of compositions

Y (x]0) = a® o AL (10 Yo ao AL(-|0%) o icao---0io AN (-|0Y) ox,  (2.48)

with 72(:|8;) and 0 = (®,p1,...,Br-1), where ; denotes the /'th normalization layer’s
parameters — see [8].

2.5.3. A DEEP BSDE APPROACH

In what follows, we formulate a Deep BSDE approach similar to [77], which scales well in
high-dimensional settings and tackles the fully-implementable scheme (2.42) in a neu-
ral network least-squares Monte Carlo framework. The main difference between our
approach and that of [77] is that, unlike in the discretization problem (2.12), we solve the
d-dimensional linear BSDE of the Malliavin derivatives in (2.9d) — on top of the scalar
BSDE (2.9b). We separate the solutions of these two BSDEs and perform two distinct
neural network regressions at each time step. We distinguish between two approaches.
The first involves an additional layer of parametrization in which the matrix-valued I
process is approximated by an R%*“-valued neural network. In the second, we take ad-
vantage of neural networks being dense function approximators in Sobolev spaces pro-
vided by theorem 2.5.1, circumvent parametrizing the I" process and instead obtain it as
the direct derivative of the Z process via automatic differentiation — in a way very sim-
ilar to the second scheme (DBDP2) of [77]. In doing so, we require a so-called Jacobian
training where the loss is dependent of the derivative of the neural network involved.

41t is clear that the above statement generalizes to deep neural networks containing multiple hidden layers.
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In order to motivate the merged problem formulation, notice that by assumption
2.4.1 on the coefficients of the BSDE, the arguments of the conditional expectations in
(2.42) are all Ez-integrable random variables. Consequently, (2.42b), combined with the
martingale representation theorem, implies the existence of a unique random process
D, Z, such that

N R - - In+1 - T
DY+ Aty fP (tne1, X0, DuXE, ) ) = 2] +f (DnZ)TdW,) . (2.49)
In

Itd’s isometry implies that the ]Lz—projection of D, Z, coincides with DnZ,’f in (2.42a)

- 1 tn+1
T
DnZn = E[En
n

DnZ,dr] ) (2.50)
tn

Thereupon, Z,’f + ((DnZ;{ )TAW,,)T is not just the best I.2-projection of the left-hand side
of (2.49) but also of the arguments of the conditional expectations on the right-hand
side of (2.42a). Hence, it simultaneously solves the discretization problems (2.42a) and
(2.42b).

Motivated by these observations, the Deep BSDE approach then goes as follows
~ the complete algorithm is collected in algorithm 1. We set Y7 = g(X%), Z7 =
Vg(X\)o (T, X}) and f’]v = Vx(Vxgo)(T, X3). Thereafter, each time step’s Y, Z and T
are parametrized by three independent fully-connected feedforward neural networks
@(16Y) : RY1 S R, w(10%) : R¥! — R4 and y(-|07) : R*! — R4*4 of the type (2.48).
The parameter sets (0%,07) and 67 are trained in two separate regressions. First, in light
of (2.49), we define the loss function of the regression problem corresponding to (2.42a)—
(2.42b) by

L7 (0%,07) = E||(1+ A1,V f (b1, X DD Ty 2.51)
+ Atnvxf(tn+lrxz+1)Dan

n+1

—W(XJ107) + AtV f (tne1, Xy, DX (X7 1070 (20, XJ)

2
—((x(xiﬂm)a(tn,X;’))TAWH)T) |

where we approximate D,Z} by x(X:16Y)D,X], according to the Malliavin chain
rule. We gather an approximation of the minimal parameter set (82*,01") €
argmin gz gy, £, (0%,607) after minimizing an empirically observed version of the loss
function through a stochastic gradient descent optimization, resulting in approxima-
tions 52 and 8! - see alg. 1. The final approximations are given by VARS w(X,’;I@Z) and
I7 = y(X710)).

Similarly to the second scheme in [77], an alternative formulation can be given which
avoids parametrizing the I" process, and instead approximates it as the direct derivative
of the Z process provided by the Malliavin chain rule lemma 2.2.1. Eventually, this im-
plies the direct connection y (X} 167) = V,y (X} |0%), with which the corresponding loss
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function becomes

L5707 = E[|(1+ ALYy f (11, K )PV, (2.52)

+Atnvxf(tn+l;xg+1)DnXZ+1
~W(XF10%) + AtV o f (b1, X7 )V (X7 10%)0 (£, X7)
]
where we exploited the relation between the I and Z processes, provided by the Malli-
avin chain rule, and set D, ZF =V x%”(X "D, X~. The SGD approximation of the optimal
parameter space 02" € argming: & $z' (%) is denoted by 9 and the final approxima-
tions are of the form Z” w(X”IBZ) and F” = qu/(X”IGZ

Subsequently, these approximations are plugged into the regression problem of

(2.42c). This step, apart from the additional theta-discretization, is identical to that of
[77] and the loss function reads as

— (Ve (X109 o (£, XINT AW, T

LyOY) =E||VE, + Q=9 Aty f(tne1,X], ) (2.53)

—@(XT107) + 0y Aty f (tn, XL, @(XT10%), ZT) = ZEAW,|*

The stochastic gradient descent approximation of the optimal parameter space 8},
argmmgyx (07) is denoted by 67 and the final approximation is given by V7 :=
(p(X”IQy ). At last, motivated by the continuity of the processes {(Y;, Z;)}o<t<7 in the
Malliavin framework, we initialize the parameters of the next time step’s parametriza-
tions according to

0°=0%, 0"=0, 6Y=0). (2.54)

Such a transfer learning trick guarantees a good initialization of the SGD iterations for
Y,f " Z,’l’ " F” _,» simplifying the learning problem and reducing the number of iteration
steps requlred for convergence. For an empirical assessment on the efficiency of this

transfer learning trick, we refer to [32, Sec.5.3].

Dimensionality, linearity and vector-Jacobian products. The main reason why no
numerical scheme has been proposed to solve the Malliavin BSDE in (2.9d) is related
to dimensionality. Since the I' process is an R%*“-valued process, its computational
complexity in a least-squares Monte Carlo method has a quadratic dependence on the
number of dimensions d. Indeed, a least-squares Monte Carlo approach for the BSDE
(2.1b) essentially comes down to the approximation of d + 1-many conditional expecta-
tions. If, in addition, one would also like to solve the Malliavin BSDE (2.9d) this leads
to d? additional conditional expectations to be approximated, induced by the T process.
This observation justifies the use of deep neural network parametrizations which en-
able good scalability in high-dimensions. Moreover, notice that the training of the loss
function (2.52) through an SGD optimization requires differentiating the loss with re-
spect to the parameters 6% in each step. With the loss already depending on the Jacobian
of the mapping vy (:|6%), this in particular implies that in each SGD step one needs to
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calculate the Hessian of a vector-valued mapping y with respect to the parameters 6~.
Consequently, for high-dimensional problems the training of (2.52) becomes excessively
intensive from a computational point of view. Nonetheless, what makes the Deep BSDE
approach corresponding to (2.52) efficiently implementable is the linearity of the Malli-
avin BSDE (2.9d). In fact, due to linearity, one can circumvent explicitly calculating the
Jacobian matrix of Z as it suffices to calculate the vector-Jacobian product

Ve f (1, X DV (X7107) = Vi (u|w(XJ167)),  vi=V fline1, X, ),

which boils down to computing a gradient instead. This mitigates the computational
costs of minimizing the automatic differentiated loss function in (2.52) in an SGD itera-
tion.

2.5.4. REGRESSION ERROR ANALYSIS

In order to conclude the discussion on fully-implementable schemes for (2.42), we ex-
tend the discretization error results established by theorem 2.4.1, so that it incorporates
the approximation errors of the arising conditional expectations. Even though we focus
on the Deep BSDE approach, our arguments naturally extend to the BCOS estimates. We
consider shallow neural networks, with S;-many hidden neurons and a hyperbolic tan-
gent activation. While distinguishing between the parametrized and automatic differen-
tiated I variants — see (2.51) and (2.52), respectively —, we rely on the following subclass
of shallow neural networks introduced in theorem 2.5.1

d S
Tz (tanh) = {y (x10%(S1) € T(tanh); Zl Zl |IWESDIL ] + W (S| = Y(Sn},
i=1j=
for some dominating sequence Y : N, — R. Then, due to the boundedness of the
hyperbolic tangent function and its first two derivatives, the following upper bounds are
in place for any v (-|6%) € ZCi (tanh)

sup |y(x109)]| =Y (S), sup |V, (x109)] = Y2(Sy),
dx1 dx1
xeR! xeR! (2.55)
sup |Hess y(xI60%)|<Y3(S1).
xeR4x1

In light of theorem 2.5.1, the hyperbolic tangent function is ¢ = 1-finite. Subsequently
the family of shallow networks of the form (2.48) is dense in H!(U) for any compact
subset U c R%*1,

The final approximations are denoted by Y7 = yL(XE) = (X716}, @l’ =Zh (X)) =
W(XF107) and I7 := 77.(XT) =: y(XZ|6)). We introduce the notations AY = Y, — Y7,
AZF =7, - ZF, AT =T, —T%, and AV := Y, — Y}, AZF = Z, — 2%, ATZ =T, —T%,
In light of the UAT property in theorem 2.5.1, we define the regression biases

V.o
€, = infE
n 0y

|72 xm - pxaion ],

€ = nfE || 206 -y (X} 169)[?

€)= infE || (75 060 — x (X710M) o (1, X7

(2.56)

€2V = ienzf[E |22 (XT) = w(XZ109)|* + Aty | (V2 ZE(XT) = Vo (XE109) 0 (£, XD |?




2.5. FULLY IMPLEMENTABLE SCHEMES WITH DIFFERENTIABLE FUNCTION
APPROXIMATORS AND NEURAL NETWORKS 57

The goal is to establish an upper bound for the total approximation error defined by

+E

)

E™ (7)) = m};clx[E “A?,ﬂz

Sm12
+maxE | [AZ;]

N-1 ptpyr 12
5 (" - raPar
n=0J1n

depending on not just the discretization but also the regression errors arising from the
approximations of the conditional expectations in (2.42).

Theorem 2.5.2

Let the conditions of assumption 2.4.1 be in place. Assume the time partition satisfies
NAt, = c foreach0 < n < N -1, with some constant c. Then, for sufficiently small |r|, the
total approximation error of the OSM scheme defined by the loss function (2.51) admits to

R N-1 N-1
E™(In)) = C(|n|+N Y den+eit+ Y. e%). (2.57)

n=0 n=0

Furthermore, in case the I’ process is taken as the direct derivative of the Z process, as in
(2.52), the total error can be bounded by

N-1
E"(nh=C (|n| +N Y ey, +e5V4 + (2.58)

n=0

YO(S))
N )

where C is a constant independent of the time partition '

Proof. Throughout the proof C denotes a constant independent of the time partition,
whose value may vary from line to line. We only highlight arguments which significantly
differ from the ones of theorem 2.4.1.

Step 1. Regression errors induced by the loss functions. Using (2.49), the relation (2.50)
and the total law of probability, the loss function in (2.51) can be rewritten as follows

£;7(6%,0)

~ . ~ 2
— & || 25107 + AV f b1, K ) (X (X2167) - ) 01 X ]
- 2 In+1 - - 12
+AL,E |(rg—x(xg|m))a(tn,xg) +[Ef DuZy - DpZ" dr]
In
_ - (2.59)
F 200 |V, f (b, K ) (0XE10T) = T ) (0, XD

In+l -
Xf (Dan—X(XZIHY)U(tn,Xﬁ))TdWr]
In

— ~ ~_ |2
= Z776%0")+E DuZy—DpZF| dr| +1507).

ftn+l
In

The inequality (a+ b)? < (1+p1At,)a® + (1+1/(p1Aty,))b?, on top of the bounded differ-
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entiability of f provided by assumption 2.4.1, implies

ZET07,07) < (1+01At,)E [ Zh - y(X7107)

2
] (2.60)

+

L2
M4y oiAL) +1
p1

At,E “(f’,g —x(XZIGY))U(tn,XZ) ’

By the inequality (a + b)? = (1 — p2Aty)a® + (1 — 1/(p2At,)) b, the following also holds

LEY(0%,07) = (1— 02 AL)E || ZF — (X707

2
] (2.61)

|
The Cauchy-Schwarz inequality, (2.50) and the e-Young inequality ab < a?/(2¢€) + eb?/2,

with € = 4L% P yield

|(F7 - xexz1om) o, X

L2
1+ X opat,—1) |ALE
02

2

[T,6N)] < (174 +4L% Aty ALyE [|(f§ - X(Xmm)) o (tn, XT) (2.62)

In+1 2
f dr] .
In

Implied by (2.59), minimizing £;7 (0% 0") is equivalent to minimizing Z;" :=
§,f‘y(02,97’) +11(07). Assuming that (5;,071) is a perfect approximation — see remark
2.5.1 - of the minimal parameter space (BZ’*,GZ’*) € argminy: gy .56,7’7(02,07), we have
L2VO,0)) < L2 (0%,07) for any (6%,07). Combined with (2.60), (2.61), the triangle
inequality and (2.62), this implies

|

+412 DnZ,—DpZ7

2 PALE

~ ~_ |2
4 7T
Zn _Zn

+ (3/4—L2

2 02— 313 Aty) AtoE

]

)(f;ﬁ-fg)a(tn,x,’f)

(I—QzAtn)[E[

< 1+ 01 ALE || ZF —w(XT167)

L2 g 2
+ Qif(1+plAtn)+5/4+4L2VfAtn Atn[E“(FZ—)((X;TWV))U(I”,XZ)
1
9 In+1 . V;-[z
+8vaAtn[E ft" D,Z,-D,Z, dr],
(2.63)

for any (6%,07), p1,02 > 0. In particular, choosing g := 8L2vf,

Aty such that 3L :At, <1/8 and 03 Aty < 1/2, we derive

for any sufficiently small

2 2

E||ZF-2"

+ALE ((fg ~ %) e, X

(2.64)

DnZy —DpZ"

th+1 2
< C(€f, + Atne)) +16L5 Aty E U dr],
In
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recalling the definitions in (2.56). Through analogous steps to [77, Thm. 4.1, step 3-4], a
similar estimate can be established for the loss function (2.53), ultimately giving

E

2
—p(XT |9y)| =Cel. (2.65)

- )2 ]
e ]sclenyf[E

Step 2. 1L%-regularity of D,, Z,. In what follows, we will need an estimate controlling the

so-called IL?-regularity of the stochastic integrand D, Z;, corresponding to the last term
in (2.64). This term admits to the following bound

tn+1 — - 12 In+1 -
[ Dan—DnZ,’f’ dr] <3E U |D,,Zr—Dthr|2dr] (2.66)
tn

ftn+l
In

-~ _12
)DZ”+1 —D,Z"

——=n+l

+3E D, 7, -DZ,

o]

+3At,E =:3(R; + Ry + R3).

The second term of the right-hand side corresponds to the IL?-regularity of DZ given by
(2.25). For the first term, notice that by Itd’s isometry, (2.49) and (2.14), we have

=E ||[AZT —AD,Y, +1+f FP a1, X0, DX, ) = P X,, Dy, X )dr P

(2.42b) implies an identity similar to (2.33). Then, by the law of total probability, the
L%([0, T];R%) Cauchy-Schwarz and Jensen inequalities, it follows that

Ry < 2E [|AD, V7, [* - [En [AD, 77, ] 2.67)

n+l
+4At,E [/
In

Notice that the second term above implicitly depends on Rs. Similarly to step 1 in theo-
rem 2.4.1 —see (2.30) in particular —, we also gather the following estimate

fD(In+1,)A(Z+1,Dn)V($+Ln) - fD(err;Dtan)

2
dr].

~_ 12
Rs = AtyE “DZ"+1 —Dp T

<4d(E[|aD, Y2, | -E

|E, [AD, 77, ]| ]) (2.68)
+28dL2DAtn{CAt +206,E | [AX], ]
+20, (E[|AT7,

)

+E[|AD, 77,

o}

+[E[|AZZ+1|2

+202, (E[|aD, X7, [

ftn+l
In

)

——n+l

+E D, Z,-DZ,
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for any sufficiently small time step satisfying 14dL§pDAtn < 1/2. Plugging the combined
estimate resulting from (2.67) and (2.68) into (2.66), subsequently gives

In+1
(]
tn

DpZ,—Dp 27"

2
dr]

<3@+8d) (E[[AD, 77,

~

[ [aD, 77 F) (2.69)

+841%,(1 +2d) A1, {CALE + 201, [|ij;+1 P

-E

+20, (E[[AV7, ] +E |22, %))

+2AL,E [|AD, X, [P

+2A4,E ||AD, V7, [P

}

PR 2
D, Z-DZy [ ar

’

tn+1
+CE [[
tn

establishing an upper bound for the IL2-regularity of D,, Z,.

Step 3. Approximation error bound in the parametrized case. The total approximation
errors can be decomposed into discretization and regression errors as follows

—_ ~ 12 — ~_ |2
Atan“DZZ”—DnZ,’f <284k |[DZ," - D7 ] (2.70)
~ ~_ 12
+2A1,F )Dnz,’f—DnZ,’l’ ]
S |2 S |? sn_ onl?
(1-BAL)E||AZ]|"| <E ‘AZ,L + El||Zr-ZF |, 2.71)
B:Aty,
~ ~_ |2 ~ —~_|2
(1-ByALE [|AYT[*] <E ‘AY,;’ + IE[ Y-V ]
ByAty
for any ., By > 0. Combined with (2.64), (2.71) leads to the following estimate
Sr12
(1-BAt)E ||AZ]]
- 12 C 16L th+1 - o 12
<E )AZ,’} + (€% +Atnel) + —LE U DnZy - DuZ7| dr|,
,BzAtn ﬁz tn
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for any 8, > 0. Similar arguments as in step 2 in theorem 2.4.1 subsequently give

(1- BALE ||AZ7|

=1+ pAt,)E

|[En [ADﬂ n+1] |2]

7L§D

(1+9Atn){CAt

+2Atn( “A +1| +|A +1| +|A +1|

)

)

+2At, ([E [|ADnXZ+1| + |AD,, 17r7+1|

—n+1|2

+ALE “DnZ” DZ!

In+1
+E [ [
tn

2
C 16L tn+l
+ (e;+Atne2)+—VfrEU
:BzAtn ﬁz In

for any p > 0. Plugging in the estimates established by (2.68) and (2.69), choosing p* =

56dL%,, and f; =96(2+8d)L ., we derive

- 2
Dy, % -DZ," | dr] }

~ ~_ |2
DnZ,-D,ZF| dr|,

(- BEALE | [AZ7[*] < 1+ C.ARE [|AD, VE, 2.72)

)

|AX +1| +]AY, +1| +[AZ +1|

)

+CZ{CAt,21+2Atn(

+20, (E[|AD, X, [P+ |AD, T2,

ftn+1
In

€%+ Atyel, }
BzAty

By analogous computations for Y, similar arguments as in theorem 2.4.1 imply

)

5(1+CAtn)( [|A 7 ]+[E[|A zr

j‘tnﬂ
In
y

Y
€, +€5 +Atnen}
Aty ’

+E

Dthr n+1‘ dr ]

(- p*ae) (E[|a77?] +E[[aZz?

) 2.73)
—n+1 d]

+C{At§+[E D Z,~DZ,

with some f* > 0, depending on both 7, . Thereafter, for any sufficiently small time
step admitting to f*At, < 1, an application of the discrete Gronwall lemma implies the
total approximation error of Y and Z in (2.57).
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The I' estimate then follows in a similar manner to step 5 in theorem 2.4.1 using
(2.70), (2.68), (2.64), (2.72); and observing that (1 + CAt,)/(1 - B*At,) — 1is O(|n|) given
B*At, < 1. This completes the total approximation error of (2.57).

Step 4. Derivative representation error of Z and T'. In order to prove (2.58), we need to
establish an error estimate bounding the difference between the spatial derivative of
(2.42b) and the target of (2.42a). Notice that under the conditions of assumption 2.4.1
and (2.55), the arguments of the conditional expectations are all Ci in x. Then, formal
differentiation of (2.42b) with the Leibniz rule and the integration-by-parts formula in
(2.80) applied on (2.42a), gives

(VaZn (X0 = V(X)) 0 = Atal(TR(X3) = Vr (X)) 01 En [V Ve f (1011, X5 D] 0

+ At [Vof (tna1, X2, ) Vi (XD 0.

By the bounded differentiability conditions in (Ag"g ), we have that

E||(V.z o - o) o <282212, 1o PE |(7R06 - Faxp) o

+20 1,15 lo|'E

v 7nxnl].

Splitting the first term according to 7% (X7) — Y% (XT) = 75 (XT) = VA, Z2H(XT) + V20 (XT) —
YE(XT), using the direct estimate ¥ (X7) = V,Z7 (X7T) implied by (2.52), and recalling the
bounds in (2.55), subsequently yields

E[(V-Z5 X0 - Vo) o] < (B [|(vazhoxm - v.azi) o P + o),

for small enough time steps admitting to 4A t%L%Z f|a|2 < 1. Combining this estimate
z,Vz

with the upper bound (2.63), recalling the definition of €;;** in (2.56), we gather

~ ~_ 12 2
E||ZF-ZF| | + At,E (2.74)

|(F7 - V.2 o, X

~ -« 12
< C(ex"= + YOS + 1613 AnyE DnZy - Du 27| dr

ffn+1
tn '

for small enough time steps At,; < 1 and diverging Y (S;). The total approximation error
estimate in (2.58) then follows in a similar manner, combining (2.74) with (2.65), (2.73)
and the discrete Gronwall lemma, as in the previous step.

This completes the proof.

O

Theorem 2.5.2 establishes the convergence of the Deep BSDE approach to (2.42),
given the UAT property of neural networks provided by theorem 2.5.1. The first terms
in both (2.57) and (2.58) correspond to the discrete time approximation errors in theo-
rem 2.4.1. The second terms correspond to the approximations of the neural network
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regression Monte Carlo approach. Provided by theorem 2.5.1, the corresponding regres-
sion biases defined by (2.56) can be made arbitrarily small with the choice of shallow
neural networks already. In exchange to avoid the parametrization in the automatic dif-
ferentiation approach in (2.52), one needs to restrict the parametrization to the case of
chz] (tanh) neural networks and subsequently deal with an additional error term in (2.58),
which depends on the increasing sequence Y (S;), controlling the magnitude of the pa-
rameters. If this dominating sequence is such that Y8(S;)/N — 0 while S;, N — oo this
ensures the existence of neural networks ¢(-10%),y(-|0%) € Zci (tanh) such that the total
approximation error converges. We shall, however, notice that the claim above guaran-
tees nothing more, and in fact does not guarantee the convergence of the final approxi-
mations including regression errors, which we highlight in the remark below.

Remark 2.5.1 (Limitations of theorem 2.5.2)
In the proof of theorem 2.5.2 we neglected the presence of three additional error terms.
These are the following.

1. First, the definitions in (2.56) only express the regression biases due to the choice
of a finite number of parameters. The actual regression errors also incorporate
the approximation error of the optimal parameter space 52 and induce a term
E “(p(XZIB%'*) - (p(XZIé%)ﬂ, which stems from the fact that unlike in a linear re-
gression method - see, e.g., [16] —, one does not have a closed-form expression for the
true minimizers (02*,01'"), 0" but can only gather an approximation of them with
a stochastic gradient descent (SGD) optimization. The present understanding of this
term is poor, mainly due to the non-convexity of the corresponding target function
— see [83] and the references therein. Currently, there exists no theoretical guaran-
tee which would ensure the convergence of SGD iterations in the FBSDE context.
Furthermore, the second term at the right-hand side of (2.57) (respectively, (2.58))
implies that, in order to preserve the convergence of the total approximation error
E™(|7t]), one needse;,+€% (e%+62’vz) to be at leastG(N~?) foreachn =0,...,N—1. In
case of the regression biases defined by (2.56), this can be achieved by the UAT prop-
erty in theorem 2.5.1. Establishing a similar theoretical guarantee for the regres-
sion errors stemming from SGD approximations is currently not possible due to the
aforementioned reasons. Nonetheless, in figure 2.3, we provide empirical evidence
which suggests that this condition may indeed be satisfied in practice, encouraging
further research in this direction.

2. The second term arises due to the fact that in practice one can only calculate an em-
pirical version of the expectations in £}, £;7, f,f'vz . This induces a Monte Carlo
simulation error of finitely many samples. However, as we shall see in the upcom-
ing numerical section, thanks to the soft memory limitation of a single SGD step,
one can pass so many realizations of the underlying Brownian motion throughout
the optimization cycle that the magnitude of the corresponding error term becomes
negligible compared to other sources of error.

3. Thefinal observation that needs to be highlighted is the compactness assumption on
the domain in theorem 2.5.1. This error term can be dealt with in a similar fashion
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to [77, Remark 4.2], where a localization argument is constructed in such a way that
— under suitable truncation ranges — convergence is ensured.

2.6. NUMERICAL EXPERIMENTS

In order to show the accuracy and robustness of the proposed scheme, we present results
of numerical experiments on three different types of problems. We distinguish between
the two Deep BSDE approaches for the OSM scheme, based on whether the I" process is
parametrized with an R4*4.valued neural network — see (2.51) -, or it is obtained as the
direct Jacobian of the parametrization of the Z process via automatic differentiation — as
in (2.52). We label these variants by (P) and (D), respectively. As a reference method, we
compare the results of the OSM scheme to the first scheme (DBDP1) of Huré et al. [77],
which corresponds to the Euler discretization of (2.12) when 9, = 9, = 1. In accordance
with their findings, we found the parametrized version (DBDP1) more robust than the
automatic differentiated one (DBDP2) in high-dimensional settings.

Each BSDE is discretized with N equidistant time intervals, giving A, = T/N for all
n=0,...,N—1. For the implicit 9, parameter of the discretization in (2.19), we choose
values 9y € {0,1/2,1}. In all upcoming examples we use fully-connected, feedforward
neural networks of L = 2 hidden layers with S; = 100 + d neurons in each layer. In line
with theorem 2.5.2, a hyperbolic tangent activation is deployed, yielding continuously
differentiable parametrizations. Layer normalization [8] is applied in between the hid-
den layers. For the stochastic gradient descent iterations, we use the Adam optimizer
with the adaptive learning rate strategy of [32] — see 77(i) in algorithm 1. The optimiza-
tion is done as follows: in each backward recursion we allow I = 2!% SGD iterations for
the N—1'th time step. Thereafter, we make use of the transfer learning initialization given
by (2.54), and reduce the number of iterations to I = 2!! for all preceding time steps. In
each iteration step, the optimization receives a new, independent sample of the under-
lying forward diffusion with B = 219 sample paths, meaning that in total the iteration
processes 225 and 22! many realizations of the Brownian motion at time step n = N —1
and n < N — 1, respectively. In order to speed up normalization, neural network train-
ings were carried out with single floating point precision. For the implementation of the
BCOS method, we choose K = 2° Fourier coefficients, P = 5 Picard iterations and trun-
cate the infinite integrals to a finite interval of [a, b] = [xo + %, — Ly/Kg,Xo+XK ut L/xq],
where x;, = 1(0, x0) T, k5 = 0(0, x0) T. As in [145], we fix L = 10.

The OSM method has been implemented in TensorFlow 2. In order to exploit static
graph efficiency, all core methods are decorated with tf.function decorators. The li-
brary used in this chapter will be publicly accessible under github. All experiments be-
low were run on a DELL Alienware Aurora R10 machine, equipped with an AMD Ryzen
9 3950X CPU (16 cores, 64Mb cache, 4.7GHz) and an Nvidia GeForce RTX 3090 GPU
(24Gb). In order to assess the inherent stochasticity of both the regression Monte Carlo
method and the SGD iterations, we run each experiment 5 times and report on the mean
and standard deviations of the resulting independent approximations. IL?-errors are es-
timated over an independent sample of size M = 2!° produced by the same machinery
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as the one used for the simulations. Hence, the final error estimates are calculated as

P 1 M “T s 1 M
EllaTif| = 57 X 1aTioml E[IaZif| =5 X [aZiumf
m= m=

PN 1 ¥
E[[afsf)| = - Z_1|Ar’,§(m)|2

where AY]} (m) corresponds to the m'th path of test sample, and similarly for other error
measures.

2.6.1. EXAMPLE 1: REACTION-DIFFUSION WITH DIMINISHING CONTROL
The first, reaction-diffusion type equation is taken from [62, Example 2]. Such equations
are common in financial applications. The coefficients of the BSDE (2.1) are as follows

H=0g, o=1Ig,
o(t,AX) ) A? o(T,Ax)  (2.75)
tx,y2)=———— |Ady-v)-1-—d|, D =y+—
fexra = seanr M0 2 & = (T Ax)

where w(t, x) = exp(t + Z?zl x;). These parameters satisfy assumption 2.4.1. The driver
is independent of Z and f” does not depend on the Y process. Consequently, the so-
lutions of (2.9b) and (2.9d) can be separated into two disjoint problems. The analytical
solutions are given by

w(t,Ax) w(t,Ax)

rouin ‘AT a A

:AZw(t,/lx)(l—w(t,/lx))
(1+w(t,Ax))3

XIZWI, y(t,x):

y(t, x) dd-
We choose T =0.5, y =0.6,A4 =1 and fix xp = 14. We consider d € {1,10} with 9, € {0, 1}.
In figure 2.1, the convergence of the two fully-implementable schemes is assessed.
Figure 2.1a depicts the convergence for d = 1. The BCOS estimates, drawn with lines,
show the same order of convergence as in theorem 2.4.1, confirming the theoretical find-
ings of the discretization error analysis. The Deep BSDE approximations, depicted with
scattered error bars, exhibit higher error figures, showcasing the presence of an addi-
tional regression component. Nevertheless, the complete approximation error of the
corresponding regression estimates admit to the same order of convergence as in theo-
rem 2.5.2. The I' approximations corresponding to the parametrized (P) and automatic
differentiated (D) cases, demonstrate the difference between the bounds in (2.57) and
(2.58). Indeed, we observe an extra error stemming from the bounded differentiability
component of the neural networks — see (2.55). The convergence of the regression ap-
proximations flattens out for the finest time partition NV = 100 - see the regression error
of Y in particular — at a level of ~ @(1077), indicating the presence of a regression bias
induced by the restriction on a finite number of parameters. In figure 2.1b, the same
dynamics are depicted for d = 10, where we observe the same order of convergence,
in accordance with theorem 2.5.2. Note that the regression estimates of the Z process
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Table 2.1: Example 1 in (2.75), d = 10, N = 100. Summary of Deep BSDE estimates. Mean-squared errors are
calculated over an independent sample of M = 210 realizations of the underlying Brownian motion. Means and
standard deviations (in parentheses) obtained over 5 independent runs of the algorithm. Best estimates within
one standard deviation highlighted in gray. T' estimates from Huré et al. in [77] are obtained via automatic
differentiation.

OSM(9, =0) OSM@y, =1) Huré et al. (2020)

(P) (D) (P) (D)
IAX:/O”III Yol 3e—4(3e—-4) 3e—4(2e—-4) 6e—4(2e—4) 2e—4(2e—4) 1.1e-3 (4e—4)
IAgglllZg\ 7e—3(3e-3) 8e—3(2e-3) 9e—-3(2e-3) 9e—3 (5e—3) 9e-3(2e-3)
|ATI 1.2e-2(3e-3) 8e—3(3e-3) 9e—-3(le-3) 8e—3(2e—3) 9.9e+2 (8e+1)
max,, ]AE[|A17,’L’|2] 2.4e-5(5e—6) 2.4e—5(7e—6) 2.7e-5(8e—6) 2.1e—5(4e-6) 2.9e—5 (6e—6)
maxp ]AE[IAZ,’{\Z] 1.3e—4(2e-5) 9e—-5(le—>5) 1.1e—4 (2e-5) 1.0e—4 (3e-5) 7.4e—4(9e-5)
ZQ’:‘(} Atn]AE[IAlA"’,EIZ] 8e—4(2e—4) 5.0e—4 (7e—5) 8e—4(2e—4) 5e—4(le—4) 5.0e+3 (8e+2)
runtime (s) 1.20e+3(le+1) 1.44e+3(2e+1) 1.19e+3(le+1) 1.43e+3(5e+1) 5.7e+2(3e+1)

converge until, and including, the finest time partition N = 100 in case of the OSM dis-
cretization. On the other hand, with the approach of Huré et al. [77] the decay stops
at N = 50, indicating the impact of diverging conditional variances, as anticipated in
remark 2.3.1. Table 2.1 contains the means and standard deviations of a collection of
error measures with respect to 5 independent runs of the same regression Monte Carlo
method. It can be seen that — regardless of the value of 9, — the OSM scheme yields an
order of magnitude improvement in the approximation of the Z process, while show-
ing identical error figures in the Y process. Errors under the automatic differentiated
case (D) with (2.52) are slightly better than in the parametrized approach (P). The I ap-
proximations show comparable accuracies. The total runtime of the OSM regressions is
approximately double of that of [77], which is intuitively explained by the fact that (2.42)
solves two BSDEs at each point in time. Execution times under the automatic differen-
tiated variant are slightly higher than in the parameterized case, confirming the extra
computational complexity of Jacobian training in (2.52). The neural network regression
Monte Carlo method yields sharp, robust estimates with small standard deviations over
independent runs of the algorithm, in particular corresponding the Z process.

2.6.2. EXAMPLE 2: HAMILTON-JACOBI-BELLMAN WITH LQG CONTROL

The Hamilton-Jacobi-Bellman (HJB) equation is a non-linear PDE derived from Bell-
man’s dynamic programming principle, whose solution is the value function of a corre-
sponding stochastic control problem. In what follows, we consider the linear-quadratic-
Gaussian (LQG) control, which describes a linear system driven by additive noise [68].
The FBSDE system (2.1), associated with the HJB equation has the following coefficients

p=04  o0=V2I; ftxy2)=1z% gx)=xTAx+vix+c, (2.76)

where A € R%*4,y e R%*!,¢c € R. Unlike in [68], the hereby considered terminal con-
dition is a quadratic mapping of space. This choice is made so that we have access to
semi-analytical, pathwise reference solutions {(Y;, Z;,I'{)}o<t<7. Indeed, considering the
associated parabolic problem (2.2), it is straightforward to show that the solution is given
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(a) BCOS and Deep BSDE, d = 1. From left to right: maximum mean-squared approximation errors of Y and Z; average
mean-squared approximation error of I'. Lines correspond to BCOS estimates, scattered error bars to the means and standard
deviations of 5 independent neural network regressions.
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(b) Deep BSDE, d = 10. From left to right: maximum mean-squared approximation errors of Y and Z; average mean-squared
approximation error of I. Means and standard deviations are calculated over 5 independent runs of the algorithm.

Figure 2.1: Example 1 in (2.75). Convergence of approximation errors. Mean-squared errors are calculated
over an independent sample of M = 210 realizations of the underlying Brownian motion.

by

X;=oW;, y(t,x)=x"P(Ox+QT (Hx+R(D),
z(t,x) =0 ([P +PT ()] x+Q(1), y(t,x)=a[P(®)+PT ()],

where the purely time dependent functions P : [0, T] — ]Rdx‘i,Q 1[0, T] — R¥*1 R :
[0, T] — R satisfy the following set of Riccati type ordinary differential equations (ODE)

P - [P0+ P (0] =0, Q)-2[P(1)+PT (1] Q1) =0,
RO +T{P+PT (0} -1QWI* =0, (77
P(T)=A, QM =v, R(T)=c
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with P = dP/dt, Q = dQ/dt and R = dR/dt. The reference solution is then obtained
by integrating (2.77) over a refined time grid of Nopg = 10* intervals.” We take A =
I;,v=04,c=0, T=0.5and fix xop = 1;. An interesting feature of the FBSDE system
defined by (2.76) is that the driver is independent of Y meaning that the Malliavin BSDE
in (2.9d) can be solved separately from the backward equation. Consequently, the dis-
crete time approximations of Z and I'in (2.19) do not depend on 9. Moreover, the driver
is quadratically growing in Z, in particular, it is only Lipschitz continuous over compact
domains. Nevertheless, we include this problem to show promising results beyond as-
sumption 2.4.1. We pick 9, = 1/2 and investigate the solution in d € {1,50}.

In figure 2.2 the regression errors of the Deep BSDE approach are assessed in d = 1.
The true regression targets in (2.42) are benchmarked according to BCOS. In fact, at
time step n, the corresponding cosine expansion coefficients are recovered by means of
DCT, given neural network approximations ?jf RY 2,’1’ HfZ +1- These coefficients are sub-
sequently plugged in (2.46) to gather BCOS estimates. For large enough Fourier domains
and sufficiently many Picard iterations, the COS error becomes negligible compared to
the discretization component and the resulting estimates approximate the true regres-
sion labels lv/,f , Z,’{ ,IV“Z Hence, they can then be used to assess the regression errors in-
duced by the Monte Carlo method. Figure 2.2a depicts these regression errors over time
for N = 100. As it can be seen, the model of Huré et al. [77] and the OSM scheme result
in similar regression error components for the Y process. However, the regression errors
of the Z process are three orders of magnitude worse in case of the reference method
[77], and in fact, dominate the total approximation error at n = N — 1. In contrast, the
OSM estimates — middle plot of figure 2.2a — exhibit the same order of regression error
as for the Y process. This demonstrates the advantageous conditional variance behav-
ior of the corresponding OSM estimates, as pointed out in remark 2.3.1. The regression
errors of the I' process show comparable figures. The cumulative regression errors, cor-
responding to the second term in theorem 2.5.2, are collected in figure 2.3b. In case of
the model in [77], the cumulative regression error of the Z process blows up as the mesh
size || = T/N decreases. On the contrary, the cumulative regression errors in all pro-
cesses (Y, Z,T) are at a constant level of @ (107°) for the OSM scheme. In light of remark
2.5.1, thisindicates that the chosen, finite network architecture incorporates a regression
bias which cannot be further reduced. In our experiments, we found that it is difficult
to decrease this component by changing the number of hidden layers L or neurons per
hidden layer S;. Assessing this phenomenon requires a better understanding of both
narrow UAT estimates and the convergence of SGD iterations.

In figure 2.3 the d = 50 dimensional case is depicted. In order to have dimension
independent scales, relative mean-squared errors are reported. Figure 2.3a collects the
relative approximation error over the discretized time window when N = 100. Compared
to [77], the OSM estimates yield a significant improvement in each part of the solution
triple. In particular, the approximation errors of the Z process are three orders of magni-
tude better with both the parametrized (P) and automatic differentiated (D) approaches.
In case of the I' process, two observations can be made. First, the corresponding curve
demonstrates that naive automatic differentiation of the Z approximations in [77] does
not provide reliable I's. Moreover, it can be seen that the parametrized version (P) of the

5This is done using scipy.integrate.odeint.
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Deep BSDE approach given by (2.51) provides an order of magnitude better average I
errors. The convergence of the total approximation errors is depicted in figure 2.3b. The
neural network regression estimates converge for both the parametrized (P) and the au-
tomatic differentiated (D) loss functions until N = 50, when the regression bias becomes
apparent. Additionally, the convergence of the I approximations is significantly better
in the parametrized case, suggesting that for such a quadratically scaling driver the last
term of (2.58) is a driving error component.

In table 2.2 means and standard deviations of a collection of error measures are gath-
ered, with respect to 5 independent runs of the same regression Monte Carlo method,
for both d =1 and d = 50. The numbers are in line with the observations above. In
particular, we highlight that the error terms corresponding to the Z and I" approxima-
tions are four orders of magnitude better than in case of the reference method [77]. The
parametrized version (P) of the Deep BSDE shows consistently better convergence. The
total runtime of the neural network regression Monte Carlo approach is moderately in-
creased between d = 1 and d = 50. In fact, the average execution time of a single SGD
step for the parametrized (P) case in (2.51) increases from 2.8e—3(4e—4) to 3.3e—3(4e—4)
seconds in between d =1 and d = 50. The same numbers for the automatic differen-
tiated formulation (D) in (2.52) are 3.8(4e—4) and 4.4e—3(5e—4) seconds. These figures
demonstrate the aforementioned methods’ scalability for high-dimensional FBSDE sys-
tems. Finally, we point out that the OSM estimates are robust over independent runs of
the algorithm as showcased by the small standard deviations in table 2.2.

2.6.3. EXAMPLE 3: SPACE-DEPENDENT DIFFUSION COEFFICIENTS

Our final example is taken from [113, 145] and it is meant to demonstrate that the condi-
tions in assumption 2.4.1 can be substantially relaxed. The FBSDE system (2.1) is defined
by the following coefficients

(o (1+x%) " )_1+xl~xj
Hith _(2+xlg)3’ 7ijth® C2+xix; U
1 T d x; (1+x2)
t) » Vo = T <
fxy.2) A(r+r)eXp( A(t+r)) Zl @+ 123
i (1+x2)2 2 i x (2.78)
+
- (2+x2)2 Mt+r) i1
. 1+y2+exp( f(%?))i ZiX; () = ex (_ xTx )
1+2y? o e+xh?’ §O=P (AT
The analytical solutions are given by
T
(t,x)=e ( xTx) (t,%) 1+x§2€xp(_ﬁ”i))x (t,) = 0;2: (1, %)
’ =exp|— ) Zjll, =- j» i\l =0;jzil\t, .
y P\m e+ o / 2+x5  Mt+7) oY I

We use T =10,1=10,7 =1, d =1 and fix xo = 1. Notice that p and o are both Ci. In
conjecture with appendix 2.A, this implies that the Euler-Maruyama schemes in (2.10)




2. THE ONE STEP MALLIAVIN SCHEME: NEW DISCRETIZATION OF BSDES IMPLEMENTED
WITH DEEP LEARNING REGRESSIONS

70

Table 2.2: Example 2 in (2.76). Summary of Deep BSDE estimates. Mean-squared errors are calculated over an
independent sample of M = 210 realizations of the underlying Brownian motion. Means and standard devia-
tions (in parentheses) obtained over 5 independent runs of the algorithm. Best estimates within one standard
deviation highlighted in gray. I' estimates from Huré et al. in [77] are obtained via automatic differentiation.

(a) d=1,N =100.

OSM(9), = 1/2)

Huré et al. (2020)

(P) (D)
AV Yol l.le-3(5e—4)  2e-3(le-3) 1.5e—3 (3e—4)
IAZ 111 Z| 1.3e-4(9e-5)  8e—5(9e—5) le-3(le-3)
|ATZ|/|Tl 1.0e—4(5e—5) 2e—4(le—4) 1.05(7e-2)
max, B[|A V7% 8e—6(2e—6) 8e—6(3e—6) l.1e-4(le-5)
max;, B(|AZ7 %] 8e—7(3e—7) l.4e—6(6e-7)  6.4e—3(3e—4)
YN LAt EIATT?]  8e~7(4e~7) 2.8e—6(9e—7)  5.5e—3(7e—4)

runtime (s)

1.18e+3 (4e+1)

1.41e+3 (3e+1)

5.7e+2 (4e+1)

(b) d =50,N =100.

OSM(9), = 1/2)

Huré et al. (2020)

(P) (D)
AV 1Yol 8e—4 (5e—4) le-3(le-3) 1.7e—1(8e-2)
IAZ] 111 Z] 5.0e-3(5e-4) l4e-2(3e-3) 2.8e—1(7e-2)
|ATZ|/|Tl 3.1e-2(2e-3)  4.9e-2(7e-3)  3.5(le-1)
max, E[|AY7?] 2.7(le-1) 2.5(3e—1) 7e+1 (4e+1)
max, E(|AZ7|?] 3.4e-2(le-3) 3.le-2(3e-3)  2.8e+2(le+l)
YN UALENATT?]  4.1e-4(6e-5) 3.3e-3(2e-4)  2.9(2e-1)

runtime (s)

1.36e+3(1le+1)

1.62e+3 (4e+1)

6.16e+2 (le+1)
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(a) Regression errors over time, d =1, N = 100. From left to right: mean-squared regression errors of the Y, Z and I" approxi-
mations over the discrete time window.
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(b) Convergence of cumulative regression errors, d = 1. From left to right: cumulative regression errors of the Y, Z and I'
approximations over the number of time steps N.

Figure 2.2: Example 2 in (2.76). Neural network regression errors in d = 1. The true regression targets of
(2.42) are identified by BCOS estimates. Mean-squared errors are calculated over an independent sample of
M = 210 realizations of the underlying Brownian motion. Means and standard deviations are obtained over 5
independent runs of the algorithm.

and (2.13) have an I.? convergence rate of order 1/2. Additionally, by Itd’s formula, the
unique solution of the SDE is given by the closed form expression [113]

Xy = A(xg + arctan(xg) + Wy), (2.79)

where A : R — R is defined implicitly A(r) + arctan(r) := r for any r € R, and applied
element-wise. It is straightforward to check that A € C}J(]R; R), in particular A'(r) =

% implying that A is a bijective. In light of the Malliavin chain rule formula in

lemma 2.2.1, we then also have

1+ A?%(x +arctan(x) + W)
2+ A2(x +arctan(x) + W)

Dth =

S<t-

We assess the convergence of the Euler-Maruyama estimates in (2.10)-(2.13) by solving
the non-linear equation in (2.79) for each realization of the Brownian motion.® The re-

6This is done by scipy.optimize.root’s df-sane algorithm which deploys the method in [92].
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(a) Relative approximation errors over time, d =50, N = 100. From left to right: relative mean-squared approximation errors of
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(b) Convergence of relative approximation errors, d = 50. From left to right: maximum relative mean-squared error of the Y,
Z approximations; average relative mean-squared error of the I' approximations.

Figure 2.3: Example 2 in (2.76). d = 50. Relative approximation errors. Mean-squared errors are calculated
over an independent sample of M = 210 realizations of the underlying Brownian motion. Means and standard
deviations are obtained over 5 independent runs of the algorithm. I' estimates from Huré et al. in [77] are
obtained via automatic differentiation.

sults of the numerical simulations in d = 1 are given in figure 2.4 for the parametrized
Deep BSDE case and 9, = 0,1/2,1. We see that, in line with ilppfndAix 2.A, Dy X7, | in-
herits the convergence rate of XJ;. The convergence rates of (Y}, Z7,I'7) are of the same
order as in theorem 2.5.2. The BCOS estimates and the Deep BSDE approach exhibit co-
inciding error figures until a magnitude of @(107°) is reached, when the regression bias
becomes apparent. Similar convergence behavior is observed in high-dimensions. The
results suggest that the convergence of the OSM scheme can be extended to the non-

additive noise case.

2.7. CONCLUSION

In this chapter we introduced the One Step Malliavin (OSM) scheme, a new discretiza-
tion for Malliavin differentiable FBSDE systems where the control process is estimated
by solving the linear BSDE driving the Malliavin derivatives of the solution pair. The
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Figure 2.4: Example 3 in (2.78). Convergence of approximation errors for d = 1. From left to right, top to
bottom: maximum mean-squared errors of Euler-Maruyama approximations of X and DX; maximum mean-
squared approximation errors of Y and Z; average mean-squared approximation error of I'. Lines correspond
to BCOS estimates, scattered error bars to the means and standard deviations of 5 independent neural network
regressions. The mean errors are obtained over an independent sample of M = 219 trajectories of the underly-
ing Brownian motion.

main contributions can be summarized as follows. The discretization in (2.19) includes
I estimates, linked to the Hessian matrix of the associated parabolic problem. In theo-
rem 2.4.1 we have shown that under standard Lipschitz assumptions and additive noise
in the forward diffusion, the aforementioned discrete time approximations admit to an
IL.? convergence of order 1/2. We gave two fully-implementable schemes. In case of
one-dimensional problems, we extended the BCOS method [144], and gathered approx-
imations via Fourier cosine expansions in (2.46). For high-dimensional equations, sim-
ilarly to recent Deep BSDE methods [68, 77], we formulated a neural network regres-
sion Monte Carlo approach, where the corresponding processes of the solution triple
are parametrized by fully-connected, feedforward neural networks. We carried out a
complete regression error analysis in theorem 2.5.2 and showed that the neural network
parametrizations are consistent with the discretization, in terms of regression biases
controlled by the universal approximation property. We supported our theoretical find-
ings by numerical experiments and demonstrated the accuracy and robustness of the
proposed approaches for a range of high-dimensional problems. Using BCOS estimates
as benchmarks for one-dimensional equations, we empirically assessed the regression
errors induced by stochastic gradient descent. Our findings with the Deep BSDE ap-
proach showcase accurate approximations for each process in (2.42), and in particular
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exhibit significantly improved approximations of the Z process for heavily control de-
pendent equations.

2.A. CONVERGENCE OF D”X”

n+1
We show the convergence of D, X, | estimates of the Euler-Maruyama discretization
(2.13) under the assumptions

A7) o is uniformly bounded;

A" pe Cg’l R>LR), 0 € Cg'l (R4*1;R¥*4), In particular both of them are Lipschitz
continuous in x.

From the estimation (2.13) and the linear SDE of the Malliavin derivative in (2.9c) — using
the inequality (a+ b+ c)? < 3(a®+ b*>+¢?), on top of the L?([0, T}; R¥*%) Cauchy-Schwarz
inequality and It6’s isometry —, it follows

E [|Dtnth+1 D Xn+l|

<3E [|U(tn,X,n) _g(tn,x,’f)|2]

+3A1,E

In+1
f |qu(r,Xr)Dt,,Xr—qu(tn,X,’f)G(tn,X,’f)|2dr]
In

In+1
+3E U V.0 (r, X,) Dy, Xy — vxo(tn,xg)a(tn,xg)Fdr] .
In

Bounded continuous differentiability in assumption (7\;" "), in particular, implies Lips-
chitz continuity. Furthermore, by the uniform boundedness of the diffusion coefficient
and the mean-squared continuity of D, X in (2.6), we gather

B[Py, Xiyy = Du X 2] <312E (|, - X2 | + CAy,

for any At, < 1. Then, due to the discretization error of the Euler- Maruyama estimates

given by (2.11), we conclude limsup,;_¢ I71IE |D¢, X1, — DnXT <oo.

mal’

2.B. INTEGRATION BY PARTS FORMULAS

For the formula in (2.44) we refer to [144, A.1]. In order to prove (2.45),let v: [0, T] xR —
R and consider

1
B [0(ten, X (AW, )AWE] = Uter, X7, V2B dy |,

gl
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with the Euler-Maruyama approximations X;l’ 1 AWy) = X+ u(ty, X) Aty + 0 (tn, X) AW,
For a sufficiently smooth v, integration by parts implies

1 5 -1l 2
E | S f Y K e
1 —v212At,) | T
= | Bt [Vl X e 80|

12
+Atnf V(tns1, Xy (V))e 20" dv
R

1 2
+Atn0(tn;X)f axl}(tn+1,XZ+1('v))ve_2AtnV dv
R

For a v with sufficient radial decay, we therefore conclude that
Ej [v(tns1, X DAWE | = AtgESy [0(tn41, X[, )] + At50° (0, OE [05,0(tns1, X1y 1)),

by the estimate in (2.44).
Thereupon, given a cosine expansion approximation v(f;4+1,p) =

K-1 —
Z'k:()?/k(tnﬂ)cos(kn%), the corrcle(slionding spatial derivative approximations
K=

are given by 0xv(tni1,0) = o —7/k(tn+1)%sin(kn%), 02, v(ths1,0) =
_ 2

,Ik<:01 _Vk(tn+1)(%) cos(knf=2). Then (2.44)-(2.45) follow from the expressions

Ey sin(kn%) = Im{® (k|x)}, E cos(knx’l’;_laa) = Re{® (k|x)}, where ®(k|x) is

defined as in section 2.5.1.

Multi-dimensional extensions. In case the underlying forward process is an R*!-
dimensional Brownian motion, the following extension can be given. Let v : [0, T] x
R4! — R be a scalar-valued. Then reasoning similar to [144, A.1] shows that
En [(AW) i1 v(tnr1, X, )] = 240, Aty [0k v(tne1, XT, )] (0 (60, X)) ;- In matrix nota-
tion

([En [AWn V(tn+1yX,]1T+1)])T =AtE, [vxl/(tn+1;x,71[+1)] U(tn;XZ)-

Alternatively, for a vector-valued mapping v : [0, T] x R¥*! — R4, similar argu-
ments give the following, component-wise formula E, [(AWn) i (W(thr],XnJrl))l j] =

Y4 Aty

Ok (w(th,X,’fH))lj] (0(tn, X])) ;- In matrix notation
([En [AWnW(tn+1y XZ+1)])T = A1k, [VxW(tn+1;XZ+1)] o(tn, X)), (2.80)
where Vv is the Jacobian matrix of y.

2.C. BCOS ESTIMATES

Let us fix d = 1. The BCOS approximations of the OSM scheme in (2.46) can be derived
as follows. Using the definition in (2.47) and the Euler-Maruyama estimates in (2.13), the
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I' estimates in (2.42a) can be written according to
>~ - 1 -
DnZ;lT = YZ(X)U'(tn; X) = Ea(tn; X) (1 + At 05 pi(ty, x)) [E;Cl [AWVL wZ+1 (XZ_H)]
n

1 -
+ A—tna(tn,x)axa(tn,x)[Efl [AWZw?, X, )]

+EF [AW,0, f (141, X0, D] VR(X) 0 (£, X).

A cosine expansion approximation for w7, ()A(Z s)ando.f (tn+1,)A(Z +1) can be obtained

..........

spectively. Consequently, plugging these approximations combined with the integration
by parts formulas in (2.44)—(2.45), in the estimate above yields

K-1
~ kmn —~

PG (L, X) = — 02 (1, X)L+ fit, )AL Y T ﬂaWk(tn+1)Im{¢>(k|x)}
k=0 ¥

K-1
+0(tn, X)0x0 (tn, ) Y We(tn+1) Ref®@(k|x)}
k=0
K—ll k 2/\
— Aty 03 (1, X050 (L, X)) (m) Wi (th+1) Re{®(k|x)}
k=0 -

K-1
~ kn ~
— TR OA L0 (10, 0) Y 57k ) IM{@ ().
k=0 Y

The approximation D,Z} = T7o(t,, X) subsequently follows. The coefficients
{DZ i (th+1)} k=0, k-1 are calculated by DCT and subsequently plugged into the approx-

imations of the Z process, which follows analogously using the formulas in (2.43)—(2.44).
The approximation of the Y process in (2.42c) is identical to [144] and therefore omitted.
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Algorithm 1 One-Step Malliavin Algorithm (OSM)

Require: 7n(N), 9y €[0,1] > discretization parameters
Require: BeIN",JeN,n:IN—-R > training parameters
return {(17,7 , 2,71’ , fﬁ)}nzo ,,,,, N > discrete time approximations over 7
L YT — g(XT), ZT — Vi g(XT)o (tn, X7), I, — V (Vi go) (i, XX) > collect terminal
condition
2 @(10Y) : R S R, (1607 : RN - R4, y(-167) : R*! - R4*4 > neural network
parametrizations

3: forn=N-1,...,0do

4 if n=N-1then

5 0% gy.©) > initialize parameter sets, according to [59]
6: else

7 >0 — Gfl D 670 0% ‘1 > transfer learning initialization
8 end if

Solve (2.42b)—-(2.42a).
9: fori=0,...,]-1do

10: X7 (b)}oSmsN}gzl > Euler-Maruyama simulations by (2.10)
11: {DnX7 | (b)}llj:1 > Euler-Maruyama approximations by (2.13)
12: calculate empirical loss of (2.51) or (2.52)

. ) 18 - ~
ZET (9o, gr)) = = bZ |1+ A1,V f (1, X2 (D) Dy Y, (D)
=1

+ Aty Vo f (b1, X0, (D) Dy XE, | () - w(XE (b)6%D)
+ Aty Vo f (b1, X0 (D) Y (X (D) D) (£, XT)
— (XTI DIOT D)o (£, XT (D)) T AW, (D) T ?

13: O>U+D, gri+Dy (92D gr-D) _n(i)V gz or) LEO>D,07D) > SGD update
14: end for

15 62 —0>D, g —grD > collect optimal parameter estimations
16 Z8() —w(l02), TR — x(18])) > collect approximations Z7%,T7.

Solve (2.42c).
17: fori=0,...,]-1do
18: {{an(b)}oimsz\;}gz1 > Euler-Maruyama simulations by (2.10)
19: calculate empirical loss of (2.53)

. . 1 & - ;
207 = 3 Y AYT () + (=9 Aty f(tn41, X1 (B) — (X[ (D) [0V
b=1

+ 0y Aty f (tn, X1 (D), (X (D)167D), ZT (b)) — Z]T () AW, (b) |2

20: gyi+D — g1 _n(i)Vy LY (6%D) > stochastic gradient descent step
21: end for

2. 0 —gyD > collect optimal parameter estimations
23: VR — (p(-l@%) > collect approximations Y;¥

24: end for
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3.1. INTRODUCTION

In this chapter we are concerned with the challenging hedging problem of large port-
folios of high-dimensional options with early-exercise features. Consider an investor
who is in possession of a portfolio consisting of /] many options whose values depend
on a set of common risk factors {X;}9<;<7 which can be decomposed into a set of trade-
able underlying assets {S; = (S%,...,S;")}ogg and some other non-tradeable compo-
nent {v; = (v}, .. .,v’f"")}ogg, and they together form an It6 process X; := (S, V) solv-
ing the following stochastic differential equation (SDE)

t t
Xr=Xo +f u(s, Xs)ds+f o (s, Xs)dWs, (3.1)
0 0

where p: [0, T] x RY — IRZd, o:10,T] x R4 — IRdXd, and {W;}o<t<T a d-dimensional Brow-
nian motion in an appropriate probability space.

Fixing some time horizon 0 < T < oo, let RJ < [0, T] denote the set of early exercise
opportunities for each j =1,..., J. We are concerned with the Markovian framework, i.e.
options whose prices are deterministic mappings of the underlying risk factors at each
point in time, and we put v/ : [0, T] x R — R, j = 1,...,] for each of these functions.
The investor’s objective is to insure her positions against random movements in the un-
derlyings and she achieves this through a hedging strategy. In particular, she constructs
a delta hedging replicating portfolio consisting of a short position in all options; long
position in all underlyings and a deposit in a bank account

J , m. . . -
dPl=-Y dv/(t,X)+ ) ai(dSi+qiSidp +dB,, Py =0, (3.2)
j=1 i=1

where we allow each underlying S ; to pay off dividends continuously with a rate qg at
time . It is well-known that the variance-minimizing first-order conditions 0P»/4S’ = 0
result in the optimal hedging weights

_ j
ai=) — (X)), i=1,...,m. (3.3)

In particular, (3.2) and (3.3) together with It6’s lemma imply that given a machinery
which yields simultaneous option prices and deltas, the investor can perfectly offset her
exposure in the underlyings, at least in the continuous, complete market setting.

The discussion above motivates to cast our problem into the framework of (decou-
pled) forward-backward stochastic differential equations (FBSDE). In fact, it is classically
known, see e.g. [126, 161], that in absence of early exercise rights R =10, T}, the jthop-
tion is intimately related to the following standard (Markovian) BSDE

‘ ) T o T .
Y/ =g/ (XT)+f f/ (s,Xs,YS],Zs])ds—f zlaws, (3.4)
t t
where g/ : R? — R denotes the payoff and f/ : [0,T] x R x R x R'*¢ — R the driver.
Namely, non-linear extensions to the Feynman-Kac relations establish the relations

Y/ =0, X)), Z] =V, X001, Xy), 3.5)




3. ADEEP BSDE APPROACH FOR THE SIMULTANEOUS PRICING AND DELTA-GAMMA
82 HEDGING OF LARGE PORTFOLIOS OF HIGH-DIMENSIONAL BERMUDAN OPTIONS

in an almost sure sense. Comparing (3.3) with (3.5), one can conclude that solving the
BSDE associated to the option is, in a sense, equivalent with the task of (delta-)hedging.
Similar relations hold in case of early-exercise rights RIN{0, T} # @, see section 3.2 below.
Over the last three decades a vast literature has been developed dealing with the numer-
ical resolution of different types of BSDEs, see e.g. [24, 13, 25, 102, 63] and the references
therein.

However, whenever the aforementioned portfolio (3.2) is high-dimensional, i.e. d or
J is large, one either has to deal with a high-dimensional BSDE (3.4), or a large number
of equations simultaneously, potentially both. This makes classical numerical methods
intractable in the context of this work, as they all suffer from the curse of dimensional-
ity. In recent years, initiated by the pioneering paper [68], a rapidly growing research line
has been developed by the numerical analysis community, where BSDEs of the type (3.4)
are approximated in regression Monte Carlo frameworks using deep neural networks to
parameterize the (Markovian) solution pair of (3.4). Without the sake of completeness
we mention [77, 58, 12, 28, 32]. These methods have shown remarkable empirical re-
sults tackling the numerical solution of (3.4), and by now some results are also known
about their convergence properties up to universal approximation type, see [58, 69, 114].
Moreover, they have successfully been applied in the context of hedging single options,
see [32, 12, 60].

However, all these aforementioned methods solely focus on solving the hedging
problem explained by (3.2). Nonetheless, whenever rebalancing is only done over a finite
set of dates in time, delta hedging does not achieve a perfect replication and due to the
discrete time approximations, the corresponding portfolio entails risk. In particular, ina
volatile economic climate, corresponding to large volatilities in the diffusion component
of (3.1), the deltas on the right hand side of (3.3) change rapidly and the correspond-
ing discrete replication error of (3.2) also grows accordingly. In order to mitigate the
effect of fluctuating deltas, one can impose additional second-order constraints on top
of (3.3), which effectively set the second order sensitivities, Gammas, of the accordingly
constructed replicating portfolio to zero, in terms of the underlying risk factors. Doing
so, one encounters two additional challenges. First, as assets themselves have vanishing
gammas, in order to be able to formulate the corresponding second order conditions,
one needs to augment the replicating portfolio with gamma hedging instruments, whose
prices and Greeks are available at all points in time. Second, the resulting second or-
der conditions involve appropriate second order sensitivities of the underlying options
that are meant to be hedged. This implies additional modelling error, as in order to ef-
fectively carry out the gamma hedging strategy, the investor does not merely have to
efficiently model the underlying options’ prices and deltas, but also their gammas, even
in the high-dimensional setting, consisting of many risk factors. For details, we refer to
section 3.3 below.

The main objective of the present chapter is to develop a deep BSDE methodology
which efficiently tackles the aforementioned challenges in the high-dimensional port-
folio framework. In fact, motivated by the ideas in [114], one can derive an additional
vector-valued, linear BSDE related to (3.4), whose solution pair involves a matrix-valued
process corresponding to second-order sensitivities of the underlying option. Conse-
quently, solving this additional BSDE together with (3.4) naturally extends the Feynman-
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Kac relations in (3.5), and results in a triple of stochastic processes, which coincide with
option prices, deltas and gammas, respectively. Given robust and efficient numerical ap-
proximations of this stochastic triple, one can mitigate the additional modelling errors
arising in delta-gamma hedging, and assess the accumulating discrete replication errors
in the sole delta-hedging framework.

Our main contributions are as follows. We propose a deep BSDE methodology for
the portfolio hedging problem outlined above. Therefore, as a side result, we first extend
the application of deep BSDE methods to the context of delta-hedging large portfolios,
instead of only single options as in [32, 12, 60], in the complete Bermudan setting. This is
done by casting the method of [77] into the vector-valued BSDE framework, and thus si-
multaneously solving all J options’ pricing and delta-hedging problems. Thereafter, and
most importantly, in order to reduce the discrete replication error of the delta-hedging
portfolio, we propose a Gamma hedging strategy, which on top of the first-order con-
ditions in (3.3), also aims to offset second-order terms in the portfolio’s value by im-
posing second-order conditions, depending on second-order sensitivities, i.e. Gammas
of the option’s value. Such hedging strategies result in less frequent rebalancing and
more accurate replication. However, by doing so, the investor exposes herself to ad-
ditional model risk, as the Gammas must accurately be approximated in the numeri-
cal setting. In order to address this, we use recent results on the One Step Malliavin
scheme from chapter 2, first proposed in [114] for standard BSDEs and later extended to
discretely reflected equations, and provide a robust and accurate, fully-implementable
deep BSDE method for the simultaneous delta-gamma-hedging of large portfolios. We
demonstrate that this novel approach may provide a significant improvement to stan-
dard delta-hedging strategies in the discrete time framework, whenever the underlyings’
deltas are highly volatile, resulting in less frequent rebalancing, and sharper Profit-and-
Loss (PnL) distributions.

The chapter is organized as follows. Section 3.2 gives a short summary of the neces-
sary theoretical basis by establishing the connections between Bermudan options and
discretely reflected FBSDEs. In section 3.3, we present the delta-gamma hedging strate-
gies and their corresponding first- and second-order conditions. Thereafter, we apply
the discretizations in [114] in the vector-valued portfolio framework, and explain how
the resulting approximations are applicable in a portfolio hedging context. In section
3.4 we explain how the previous works from [77, 114] extend to vector-valued equations
and can be used to approximate the collection of BSDEs corresponding to problem (3.2)
in a Deep BSDE approach. Finally, we demonstrate the accuracy and robustness of these
strategies by numerical experiments performed on high-dimensional portfolios in sec-
tion 3.5.

3.2. BERMUDAN OPTIONS AS DISCRETELY REFLECTED FBSDES
We fix 0 < T < oo and let J, j,d, m, k € N.. Throughout the chapter we are working on
a filtered probability space (Q, %, P, {Z} cj0, 7)) With & = 1, where F is the natural fil-
tration generated by a d-dimensional Brownian motion {W;} o, 7], augmented by the
usual P-null sets. In what follows, all equalities concerning &; measureable random
variables are meant in the [’ almost sure sense, and all expectations are taken under P,
unless otherwise stated. As usual, we put |x| == tr{xTx}, for any x € R/*4 and remark




3. ADEEP BSDE APPROACH FOR THE SIMULTANEOUS PRICING AND DELTA-GAMMA
84 HEDGING OF LARGE PORTFOLIOS OF HIGH-DIMENSIONAL BERMUDAN OPTIONS

that this coincides with the Euclidean norm in case of scalars and vectors. We define
HP (R/*9) to be the space of R/*? valued, progressively measurable stochastic processes
such Z e HP®/*4): E[(f; 1Z,12d1)P'?] < co. Similarly, S ®R/*%) c HP (R/*4), for which in
addition Y € SP(R/*%) is also continuous and admits to Elsup ¢(o, 7} |Y¢|P] < oo. In what
follows, for any multivariate f : [0, T] x R4 — R/ function we set V +f to be the Jacobian
matrix taking values in R/*4 In particular, for a scalar valued function v : [0, T] x RY - R,
we use 0; v to denote the i’th partial derivative in space, and 0? ;v for the corresponding
element in the Hessian matrix. Given a time partition /" :={0=f) < ) <--- <ty =T} we
setE,[] :=E[-|%,].

With the above notation at hand, we can formulate discretely reflected BSDEs.
Heuristically speaking, a reflected BSDE is a generalization of (3.4) such that the so-
lution is also forced to stay above a (Markovian) lower boundary process. The forcing
is referred to as reflection. Discretely reflected BSDEs are special cases of reflected BS-
DEs, see e.g. [44, 161], where reflection can only occur over a finite set of points in time
RI = {rl.], i=0,.. .,Rflré =0, rl{?j = T}. The solution to a discretely reflected BSDE indexed

by j is a pair of stochastic processes (Y7, Z/) € $?(R) x H?(R"*%/) such that

Y, =Y =g/ (Xp),

B S
Si_vi [T i ivae [T i
V=Y + | fls X, ¥, Z)ds zlaw,, telo, T, (3.6)
Ty t t
Y =V 41, ol o (X0 - V1= (2, X, T
t - t teRI\{0,T} l](X[)>Y/ t t Ayl AL e )y

whereﬁi =supir e Rl < t},?i =infire %/ :r> r}and gf, 1/ :R% — R are determinis-
tic mappings corresponding to the terminal condition and (Markovian) lower boundary
process, respectively. Equation (3.6) together with (3.1) forms a discretely reflected FB-
SDE system which, under appropriate assumptions, admits a unique solution triple, see
e.g. [44]. Reflected BSDEs are inherently related to second-order, semi-linear parabolic,
free-boundary PDEs. In fact, under suitable assumptions, they retain a Feynman-Kac
type relation similar to (3.5) in the standard case, see [44]. From the financial mathemat-
ics perspective, the main relevance of such equations is that they are a natural model for
optimal stopping problems, such as Bermudan options, where 2/ corresponds to the set
of early-exercise dates, g/ = I/ to the instantaneous payoff, l7t] , Yt] ,Zt] to the continua-
tion value, option price and option delta at time ¢, respectively. Notice that (3.6) includes
the standard, Markovian BSDE framework associated with European options by letting
%) = {0, T}. Furthermore, from the numerical point of view, a suitable discretization of
(3.6) is an approximation of American options in the asymptotic R/ — co. Hence, in what
follows we refer to all of the options in (3.2) as solutions to a discretely reflected FBSDE.

Similar to (3.1), we define g == (g';...;8) iR =R/, f:=(fY...; ) : 10, TI x R4 x R/ x
R4 — R Y, = (V). Y)), Vo= (Y)5...; ¥/ and Z, = (Z};...; Z]) by the row-wise con-
catenated solutions of (3.6) for each j = 1,..., J. Therefore, (Y, Z) € S?(R/) x H? (R/*?) sat-
isfy a collection of discretely reflected BSDEs. Itis important to notice that even though in
this formulation we cast the problem of J options into the framework of vector-valued,
discretely reflected BSDEs, this indeed is of mere formal convenience, and the corre-
sponding system is only a collection not a system, i.e. the solution pair (Y, Z?) does
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not enter the dynamics of (Y7, Z/) for i # j. This is of fundamental importance, since
the well-posedness of multi-dimensional reflected BSDEs remains to be a challenging
open problem due to the lack of comparison principles in the vector-valued setting, see
[161] and the references therein. Nevertheless, in the context of our work, there is no
cross-dependence between equations of the type (3.6), and the resulting collections can
safely be treated without the aforementioned theoretical obstacles. Henceforth the sys-
tem of discretely reflected BSDEs simultaneously representing all options in (3.2) reads
as follows

Yr=Yr= " X0),....8 (X1)),

1 —J
~ Ty ~ Ty =
ytz(ygl;...;ygjn(f fl(s,Xs,Ysl,Zsl)dS;--.;f Fs,X5, 7], Z))ds)
t

t t71 5 t (37)
Ty 1 Tt 7 j=j
—(ft ZSdWS;...;f[ stws), telr], 7)),
Yei= R} (6, Xp, Vs ) (6, X0, V) = (8, X, 7).

The standard Euler discretization of (3.6) is done in two steps. First, in case no ana-
lytical solution is available, one needs to approximate the forward diffusion in (3.1) via
suitable discrete time approximations, e.g. an Euler-Maruyama scheme such as below

XJ =x0, Xpo=Xp+pltn, X))Aty+0(ty, X;))AW,, for n=0,...,N-1. (3.8)

Thereafter, one gathers discrete time approximations to (3.6) through a backward recur-
sion of conditional expectations, over a discrete time partition0 =ty < f; <--- <ty =T,
starting fromn=N-1,...,0

Y =V =gl (XD), Z)T =1ALELY]T AW,

‘ , N AR . o (3.9)
V" = At f (0, X Y0 2+ ElY R YT = R (0, X0 V),
where Aty =ty — ty, AW, = Wy,,, — W;,. Given an appropriate machinery which ap-
proximates the conditional expectations above, one subsequently gathers numerical ap-
proximations of the solution pair of (3.6). As for the corresponding discrete time approx-
imations errors, and the convergence of the Euler scheme (3.9) we refer to [106, 24] and
the references therein.
Given the discrete time approximations in (3.9) for each option in the portfolio
j =1,...,J], one can gather discrete time approximations for the delta-hedging portfo-
lio described by (3.2). In fact, combining the Feynman-Kac relations (3.5) with the first-
order conditions in (3.3), yields the following discrete time approximations for the vector
of delta-hedging weights

J ,
ah =Yz o  (tn, X]). (3.10)
j=1

Plugging (3.10) into (3.2) gives a discretely rebalanced approximation of the self-
financing replicating portfolio. In the above, and for the rest of the chapter, we assume a
constant risk-free rate of r.
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3.3. DELTA-GAMMA-HEDGING THROUGH ONE STEP MALLI-

AVIN SCHEMES

In order to improve the replication accuracy for a fixed number of rebalancing dates,
one needs to offset higher order sensitivities of the associated portfolio. In the following
section we extend the delta-hedging strategy of (3.2) to the case where the second-order
terms are also offset, involving second-order Greeks, Gammas, of each option. First, we
formulate the general delta-gamma-hedging strategies, thereafter we present a method
to deal with the additional model error induced by the presence of Gammas. The latter is
done by building on the discrete time approximation schemes presented in [114], where
on top of (3.6) an additional, linear BSDE is solved at each point in time, corresponding
to the Malliavin derivatives of the solution pair in (3.6), involving a stochastic version of
the Gamma process, similarly to (3.5) — see also chapter 2.

3.3.1. DELTA-GAMMA HEDGING

In a discrete time setting, an investor cannot perfectly hedge her exposure in the under-
lyings solely by offsetting the first order terms in (3.2). However, assets themselves have
vanishing Gammas making them unsuitable for the purpose of Gamma hedging. This
motivates to expand the hedging portfolio with a set of Gamma-hedging instruments is-
sued on the same underlyings, whose Gammas are not equal to zero. Henceforth, the
augmented delta-gamma-hedging portfolio consists of the additional long positions in
k =1,...,K gamma-hedging instruments with weights /3';: +,6’tC uk(t, X;), where K is a
constant to be fixed, and u*(t, X;) denotes the price of the kth gamma-hedging instru-
ment at time ¢. Note that each gamma-hedging instrument is allowed (but not required)
to depend on all risk factors in the portfolio. The value of the portfolio described above
evolves according to the SDE below

S mo K
dPf ==Y dv/(t, X))+ Y aldSi+qiside+ Y prdu*(t, x)+dB,, P§=03.11)
j=1 i=1 k=1

The first- and second-order conditions require OPtr/OSi(t, X;) =0and GZP{/(GSi(?Si) =0
for a pair of 1 < i,/ < m, implying that the optimal hedging weights solve the following
linear system (3.3)

K I
Y Br?2 uf (i, x) =Y 6% vt X)), iles, (3.12a)
k=1 j=1
R K
ap=Y 0;v (1, X)) - Y proiute, Xy, l<i<d. (3.12b)
j=1 k=1

Note that (3.12a) is a |.#| x K sized linear system whose solution, at each point in time, is
a vector in RX. While optimizing her hedging weights according to the contraints estab-
lished by (3.12), the investor has two degrees of freedom:

* the index set .# in (3.12a), with which she can decide which elements in the corre-
sponding I" matrices she would like to offset;
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Figure 3.1: Comparison between delta- and delta-gamma hedging, given the number of discrete rebalancing
dates N. Portfolio consisting of a single European vanilla call with maturity T = 1, strike K = 100, and r = 0,
o =0.25. European vanilla put used as Gamma hedging instrument with maturity 2T, and the same strike.

* the number (and type) of gamma-hedging instruments K.

Given these choices the resulting linear system in (3.12a) may be under- or over-
determined. The choice of .# allows for the freedom to offset gammas and cross-gammas
of particularly volatile assets only that may have more severe effects on the options val-
ues v/ in the portfolio.

Risk measures. Due to the finite number of rebalancing dates the resulting portfolio is
not riskless in neither (3.2) nor (3.11). In order to assess the quality of a hedging strat-
egy, one can assess the distribution of the relative Profit-and-Loss (PnL) which is an &;
measurable random variable defined by

efrtP[A

2ivi0,X0)

e*f[}){

PnlL2 = 5
27, v7(0,X0)

PnLl := forallos¢<T. (3.13)

In particular, some of the most common risk measures include Value-at-Risk (VaR), Ex-
pected Shortfall (ES) and semivariance, which are defined below

VaR, (PnL) :=inf{x:P[PnL< x] > a}, ESy(PnL):=E[PnL|PnL <VaR,],
SVar_ (PnL) := E[(PnL - [E[PnL])ZIPnL < E[PnL]].

As an illustration of the accuracy of delta-gamma compared to delta hedging in the
discrete time rebalancing framework, figure 3.1 depicts the distribution of the PnL at
maturity corresponding to strategies (3.2) and (3.11), when the corresponding portfo-
lio consists of a single, European vanilla call. In fig. 3.1 the distribution of the PnL is
collected for several equidistant rebalancing dates. As can be seen, by including second-
order sensitivities, one gains roughly an order of magnitude accuracy in the variance of
the PnL distribution.
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3.3.2. ONE STEP MALLIAVIN SCHEMES

As illustrated by figure 3.1, equation (3.11) brings an improvement to standard delta
hedging in the discrete time framework by offsetting second-order terms in the series
expansion of the corresponding portfolio value. However, unlike in the case of a vanilla
Black-Scholes option, this comes with an additional modelling challenge. In exchange
for the additional discrete replication accuracy, (3.12) exposes an investor to additional
model risk, namely, accurate approximations of the options’ Gammas, which is neces-
sary in order to be able to compute the gamma-hedging weights ﬁ’t‘ according to the
second-order constraints — see right-hand side of (3.12a). Discretely reflected BSDEs and
the Feynman-Kac relations (3.5) only provide access to the Deltas and not to Gamma. In
order to address this gap in the FBSDE context, we exploit ideas presented in [114] and
use the One Step Malliavin scheme to collect the necessary approximations of second-
order Greeks.

In particular, it turns out that under sufficient conditions, see [23, Proposition 5.1]
that the Z part of the solution pair of the (discretely) reflected BSDE (3.6) can be repre-
sented as the solution to a linear, vector-valued BSDE, corresponding to the Malliavin
derivatives {(D; Yy, D¢ Zy)}o<r<r<T

Zy=D.Y) =D,Y] + Lieano,11L 5 x> 7]
=i

[ o ; ~ ; ~i
i f]' [vxf(sy X5, Ys]; Z!)Dth + Vyf(S, Xs) Ys]’Zs])DtYs]
T ) . .
+V.f(s, X, Y{,ZhD, Z]]ds (3.14)

—J
r . . .
_f]_t (D.z])Tdw,, tel0, T uelr)7),
r;

Z! =DV + 1,041 DV (X)-D,Y]| =Rt X, Y], D, V).

1(xp)>7! [
Most importantly, the representation in (3.14) does not only provide a way to compute
the Deltas in form of a linear BSDE, but through the D Z process and the Malliavin chain
rule, the solution of (3.14) also includes second-order derivatives of the j’th option price,
i.e. Gammas. In light of the Malliavin chain rule - see e.g. [119] — the DZ process coin-
cides with the formal derivative of the Z process, and one has

D Z,o7 M (t, X)) =y(t, X)) = Vaz(t, Xy), (3.15)

where Z; = z(¢, X;) is the Markovian mapping of the Z process given by the Feynman-
Kac formula (3.5). Subsequently, this leads to the following expression recovering the
Hessian matrix of the value function

Hess v/ (¢, X;) = (0 (t, X)) T (y (¢, X;) = Vol (1, X)Vo (1, X))). (3.16)

The One Step Malliavin (OSM) scheme is a discretization which simultaneously solves
the pair of BSDEs (3.6) and (3.14). Henceforth, it involves a sequence of discrete time
approximations, which - in case of appropriate approximations of the resulting nested,
backward recursion of conditional expectations — gives approximations for the stochas-
tic counterparts of options’ prices, Deltas and also Gammas, i.e. all components needed
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in the discrete time rebalancing of the delta-gamma hedging portfolio in (3.11). In par-
ticular, given the simultaneous discrete time solution of (3.6) and (3.14) one can imme-
diately solve the corresponding gamma hedging constraints in (3.12).

In order to be able to formulate the corresponding deep BSDE approximations, we
briefly outline the time discretization of the OSM scheme. The forward diffusion is ap-
proximated according to an Euler-Maruyama scheme as in (3.8). Thereafter, the Malli-
avin derivative of the forward diffusion is again approximated by an Euler-Maruyama
scheme leading to the following discrete time approximations

DnXZ = U(tn,Xg)y

/4 T 74 4 d k /4 74 k 3.17)
Dy X", = Dp XX+ Aty Vapilty, XD X2 + Y. Via* (t,, XD D, XIAWE,
k=1

where o* is the kth column of the diffusion matrix, and AW,’lC is the kth element of the
Brownian increment vector — see e.g. [154]. Then a backward recursive sequence of con-
ditional expectations can be formulated for the discrete approximations of the backward
equations (3.6), (3.14) as follows

Tt S i B B
Y =Y =gl (XY, Zy"=Z" =Vg(X)o(T, X},
1
Aty
Zy" = DY) =E[Dy YT+ At fP2 (1041, X057, DX, L,
V)" = 0y Aty fI (tn, X2, V7, Z07)
+EnlY)] + (L= 0) Aty fI (tpe1, X7, YN, Z0T ),

Z)" =R, XI, V)T, Da V™), VT = R (10, X2, V),

E[AW, (Dn Y™ + Aty fP (101, X07,, D, X0T. )]

n+l n+1’ n+l,n

T30 (g, XT) =D, 20" =

(3.18)

with the following approximation motivated by the Malliavin chain rule and the
Feynman-Kac formula

DY =7 07 (the1, X2, 1) Dp X P
Similarly to [114], in the above we use the short hand notations Xfl’” = (X7, 17,{’”, Z,]l"”),
D, X" = (D,X" .,,D,Y"" D,z and

n+l,n n+1’ n+1’

FPI@ XS DX ) =V f(, XD XT 4V, f(6, XD, YT 4V, f(1,X0) D, 2.

n“*n+l,n n+1

In particular, combining the Feynman-Kac relations in (3.5) with the Malliavin chain
rule, one gathers the following one on one correspondence between the stochastic pro-
cesses in (3.18) and the prices and Greeks of the options in the gamma-hedging portfolio
in (3.12). Indeed, for each option j, Y/, YJ describe the continuation value and price; Z1
— derivative of the continuation value; Z/ the Delta and I the second-order Greeks. In or-
der to recover the option Deltas and Gammas from these processes, one combines (3.5)
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with (3.16), to obtain

Delta’” (1, X7) = ZJ" 67 (£, X7,
Gamma’” (t,,, XT) = (a1 (t, X)) L (y (£, Xp) = V! (1, XV (£, X1)).

As implied by these expressions above, the One Step Malliavin scheme for discretely re-
flected BSDEs in (3.18) provides discrete time approximations for the simultaneous pric-
ing and delta-gamma hedging for each option j in the portfolio (3.11). In fact, given ap-
propriate approximations of the conditional expectations in (3.18), one can quantify the
right-hand sides of (3.12) corresponding to first- and second-order Greeks of all associ-
ated options. Then the solution of the linear system in (3.12) provides the evolution of
the corresponding discretely rebalanced replicating portfolio as follows

I m , . K
PyT=0, PLT==Y V)4 alm(ShT+ql SiAL)+ Y. phTub (s, XT) + BT,
j=0 i=1 k=1

for n = 0,...,N. In the above, Bl = e"*™B" | —zglsﬁ”(aiﬁ - ai{fl) —ZIIS:I(,B’,;’” -
,Bﬁ’fl) uk(t,, X7), when n = 1, as the portfolio is self-financing. However, in order to make
the scheme implementable in a high-dimensional framework, i.e. whenever the num-
ber of underlying risk factors collected in X, or the number of options in the portfolio
J is large, one needs to have a method which accurately approximates the conditional
expectations in (3.18). This is discussed in the following section.

3.4. DEEP BSDE APPROXIMATIONS ON THE PORTFOLIO LEVEL

In order to compute the conditional expectations in (3.9) and (3.18), accurately and ro-
bustly in a high-dimensional framework when 4 in (3.1) or J in (3.2)-(3.11) are large, we
present a methodology based on deep neural network Monte Carlo regressions which is
capable of dealing with such high-dimensional problems. Our formulation is a variant of
the backward deep BSDE method. In what follows we extend this backward deep BSDE
methodology in [114] — and chapter 2 of this thesis — to the delta (3.3) and delta-gamma
hedging (3.12) framework of the portfolio problem in (3.2) and (3.11), i.e. the simulta-
neous approximation of all option prices, Deltas and Greeks j = 1,...,J. In the rest of
the chapter, 7:={0 =) < f; <--- < ty = T} denotes a partition of the finite time interval
[0, T]. Without loss of generality, we assume U§=1%f C 7, i.e. that the potential early ex-
ercise dates are included in the discrete time partition. We put Xgl = XJ! for all discrete
time time approximations over the time partition, and similarly for other processes. We
define the notations Aty := ty41 — £y, AW, =W, — Wy,
3.4.1. DEEP BSDE APPROXIMATIONS FOR THE OSM SCHEME

In order to address the second-order terms appearing in (3.12), we present the deep
BSDE methodology built on the OSM scheme (3.18), providing sufficient gamma esti-
mates that can be used in the context of delta-gamma hedging. To this end, let us put
0(16Y) : R4 = R/, (1607 : R4 — R/*? and y(-107) : RY — R/*?*4 for neural networks
depending on some parameter sets 87,0%,67. These parametrizations are supposed to
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Algorithm 2 Deep BSDE approximations with OSM schemes

Require: 71(N),p(R)<[0,T],IeN;,n:N—R

Require: ¢(-|67): RY — R/, w(-10%): RY — R/*4, x(-107) : R4 — R/*4*d 1, peural networks

Ensure: p(R) cn(N) © all discrete reflection dates are contained in the discretization
171@ — g(XX,), V4 I’\’, —V, g(XI’f,)a(T, X I’\T,) > collect terminal conditions of the BSDEs
(3.6), (3.14)
forn=N-1,...,0do

if n=N -1 then
(9%,(0),92,(0),9%(0)

) < random initialization

else
(0%'(0),0,21‘(0),9%'(0)) — (5%“, AZH,@ZH) > transfer learning in (3.26)
end if
fori=0,...,]-1do
{XYo<n=nN > Euler-Maruyama approximation of (3.1)
{D, X7, DnX,’l’ ) > Malliavin derivative approximations in (3.17)
22020 g7 > empirical version of (3.19)
Oz gDy g2 91Dy _piyv 2z oD, 00" > SGD step
end for _ _
(G;Z,é“’);) - (Gfl,(tﬂ),e%,(tﬂ))
(ZF, 20 (ty, XT)) — (w(XZIBﬁ),X(Xﬁlé%)a(tn,Xg)) > approximations Z,T
fori=0,...,/-1do
$,),/ _(Hy ) _ _ > empirical version of (3.22)
R P TONAZA Gl > SGD step
end for .
a (14
oo
YZ — @(XTI62) > approximation continuation value

77 — (RL(tn, XT, 15/,1”2,11” oo R (10, XT, 1:/,{’”2,];”)) > reflection Delta (3.20)
YF— (%},(rn,XZ, Yé’”),...,ﬂ%{,(tn,X,’;, Y,{’”)) > reflection price process (3.21)
end for

approximate the conditional expectations corresponding to the left hand sides of (3.18),
for each option j =1,..., J in the portfolios (3.2), (3.11). In particular, we emphasize that
the output of the pricing network ¢ is a vector containing the continuation value of each
option in the portfolio; the output delta network ¥ contains each option’s delta, con-
catenated row by row; whereas the output of the gamma network y is a tensor including
each option’s Gamma matrix.

In order to find appropriate parameter sets, such that ¢, v, y accurately approximate
the conditional expectations for Y, Z, DZ in (3.14), respectively, we define the following
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I? loss functions motivated by the martingale representation theorem — see [114] —

n+l1 +

1J , o
LRO%0) = 7 Y [E[an Y+ AtV f (b1, X0 ) DR X0, (3.19)
j=1

+ AL,V f (a1, X2 T DR Y

n+1
+ AV f (i1, X

/2
+

D (X100 (80, XT)
—yl (XT167) - (x) (XZ160M)0 (1, X)) T AW, 2

’

where v/ and y/ are the j’th row, jth element of the first axis of the output of the corre-
sponding neural network. One can think of the loss function in (3.19) as a mean-squared
error in the Frobenius matrix norm for the row-wise concatenated system consisting of
(3.6) for each j =1,...,J —corresponding to the collection in (3.7). This way, by minimiz-
ing (3.19), one gathers simultaneous deltas and gammas for each option, without having
to run separate optimization problems for each j =1,...,J. A suitable minimizer of £}
denoted by (@f,,@yn) can be obtained by a Stochastic Gradient Descent (SGD) type op-
timization. Subsequently, the resulting parametrizations approximate the conditional
expectation in (3.18) for each j =1,..., J in the following manner

ZIT sy (XT109), TL™ = yd (XTI0).

Thereafter, one can use the reflection operators defined in (3.6), (3.14), to get an approxi-
mation for the option Delta, and not just the derivative of the continuation value. In fact,
given an approximation of the continuation value Y;]"”, the reflection in the Z process
reads as follows

ZY" = R, X, 07 (X107, 97 (X71167) (3.20)

=yl (X107 + 1, cqnivio,r Ly (xmiony>gioem | Vo8 (X o (tn, X)) =l (X71167) .

Similarly, given the same approximation for the continuation value, the corresponding
option price can be approximated by combining the continuation value with the dis-
crete early exercise strategy implied by the reflection taking place in (3.6). The resulting
approximations read as follows

Y7 = Rt X2, 0 (XE107)) = 97 (X, 1607)

+ 1, cqivio, 1y Lopi (xrom>gi xm | 87 (Xn) — 0l (X7167) |
(3.21)

The approximations in (3.20) and (3.21) can easily be vectorized over j =1,..., J, so that
they act simultaneously on the whole row-wise concatenated system of discretely re-
flected BSDEs in (3.7). Then, combining (3.20) with the reflection in the continuation
value defined in (3.21), one can subsequently formulate the following loss function ap-
proximating the last conditional expectation in the discrete time recursion in (3.18). In
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particular, we define the following loss function for the Y part of (3.6)

LyOY) =E|IV] + (L= 0)Atnf (tye1, X0 1) + Oy Atn [ (tn, X, (X116%), ZTF) (3.22)
— (X716~ ZE AW, 7|

We emphasize that the approximation above, and its corresponding conditional expec-
tation in (3.18), is implicit in the continuation value, not just through the 9, > 0 param-
eter, but also through the reflection occuring in (3.20). In fact, the approach in (3.19),
(3.22) approximates the BSDEs in (3.14) and (3.6), respectively, meaning that the result-
ing approximations ¢, ¥ correspond to the continuation value and its gradient, respec-
tively. In order to then approximate the option prices, and their derivatives, one needs
to approximate the reflection associated with early exercising in the discrete time frame-
work. This is achieved by (3.20) and (3.21) accordingly.

The deep BSDE method outlined above explains all necessary steps one needs to
take at a given time step £, locally. Thereafter, the method given by the loss functions
(3.19) and (3.22), is made fully implementable by a backward recursion starting at ter-
minal time, executed as follows. First, given a suitable discretization of the forward
SDE and its Malliavin derivative, e.g. an Euler-Maruyama scheme such as (3.8) and
(3.17), one needs to collect the terminal condition ?ﬁ = ffﬁ = (gl(XI’\’,),..., g (X3)) and
Z% =27 = (Vg (XT),...,Vxg (XT))o (T, X) asin (3.18). Then, in a backward recursion
going from n = N — 1 to 0, one parametrizes the solution pair of the Malliavin BSDE in
(3.14) at time step n according to y(-|0%), x(:|67). These parametrizations are optimized
according to the loss function £7(6%,67) defined in (3.19). Through a suitable minimiza-
tion procedure such as stochastic gradient descent, one then subsequently gathers ap-
propriate approximations of the optimal parameter set (@2, o) e argming: gy £5(0%,07).
Setting

7 = y(X™M0Y), 27 =y(X710%) (3.23)

provides approximations for the first and second conditional expectations in (3.18).
Combining these approximations with the discrete reflections given by (3.20) and (3.21)
then gives loss function %} (67) at time step t,, that is meant to measure the approx-
imation quality in the continuation values in the discretely reflected BSDE of (3.6). A
second stochastic gradient descent optimization then estimates the optimal parameter
set 5% € argmingy £)(67), giving approximations for the continuation value at time £,
defined by the last conditional expectation in (3.18)

Y7 = (X7102). (3.24)

Finally, combining the approximations of the continuation value f’,’l’ and its gradient Z’l’
with the early exercise decision given by the vectorized expressions in (3.21) and (3.20)
forall j =1,..., ], gives the final discrete time approximations for all processes in the pair
of backward SDEs in (3.6) and (3.14)

27 =R, (b, XI, VI, 20, U7 =R, (t,, XT, V). (3.25)
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The approximations given by (3.23), (3.24), (3.25) complete the processing of time step
tn. The initialization of a stochastic gradient descent optimization has a substantial im-
pact on the speed of convergence and also on the final accuracy of the resulting approx-
imations. Argued by continuity in time of the stochastic processes Y,Zin (3 6) and (3.6)

we therefore initialize the parameter sets of the loss functions £%_, and &£; _, according
to the transfer learning trick
6%,07) — (0%,0)), 6’8,  foreachn=N-1,...,1. (3.26)

With these initial parameter guesses, all points n = N-2,...,0 in time are more efficiently
optimized. One then completes the algorithm by carrying out the same procedure in a
backward iteration terminating at n = 0. The complete fully-implementable backward
deep BSDE algorithm is collected in algorithm 2.

The backward deep BSDE method of Huré et al. [77]. When only the Deltas are of in-
terest, alternative deep BSDE schemes are applicable in the high-dimensional context,
see [32, 77]. The RDBDP scheme [77, sec. 3.3] is concerned with the numerical approx-
imation of variational inequalities, which can be considered as a continuous asymp-
totics for (3.6) in the case R — oco. Even though, their scheme is only given for a single
(J =1) continuously reflected BSDE, in what follows, we naturally extend this to the col-
lection of discretely reflected equations given in (3.7). Let us put ¢(-|67) : RY — R/ and
w(-|0%): RY — R/*4 for two feedforward, fully-connected neural networks, depending on
some potentially non-disjoint parameter sets. In fact, in [32], ¢(-|0%) = V1@ (-160")a (s, "),
with 6% = 7. These neural networks are parametrizations of the Markovian conditional
expectations of the collection of conditional expectations in (3.9) for every j =1,...,/in
(3.7). Using these parametrizations, we define the L2 loss function

xEuler(gy 02) _ [E[|

n+1
—@(XT10Y) = Aty f (tn, X, (X107, w(XT107) + 9 (X]109) AW, 7],
(3.27)

which is a function of the total parameter set © := (§7,0%). Herein, we denote the row-
wise concatenated solutions of each discretely reflected BSDE as in (3.7). As shown in
[77, thm. 4.1, 4.4], a minimizer (§y,§z) of the loss function defined by (3.27) provides
a simultaneous approximation of the conditional expectations Y, and Z}” in (3.9)
given by the following expressions Y;"" ~ ¢/ (X710Y), Z}" = yJ(X*10%), where ¢/,
denote the j’th row of the output layer of each neural network. In fact, by collecting each
discretely reflected BSDE into the system (3.7), the loss function (3.27) takes a mean-
squared loss of all equations in (3.9), for every j = 1,..., J, at the same time. The scheme
is made fully-implementable by a similar backward recursion as for the OSM scheme.
The main differences between the OSM approximation in algorithm 2 and those of [77,
32] is that the One Step Malliavin scheme does not only provide option prices and Deltas,
like [77], but also second-order Greeks, Gammas, throughout the entire spacetime by the
process DZ. This makes the deep BSDE approximations for the OSM scheme suitable
for delta-gamma hedging in (3.12). Additionally, as shown in [114], the OSM scheme pro-
vides more accurate approximations for the Z process in regression Monte Carlo frame-
works when the time step size At is small or the volatility is high. As we show below —
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see fig. 3.5, 3.3b in particular —, this in fact results in more accurate Deltas, leading to
better delta replication with the use of the OSM scheme.

3.4.2. DELTA HEDGING WITH OSM

Given the deep BSDE approximations in algorithm 2, one can subsequently solve the
delta hedging problem of our investor, which comes down to the discrete time approx-
imation of the hedging weights « in (3.2) where ¢, is in a set of finite rebalancing dates
<. Without loss of generality, we assume that the deep BSDE approximation of the cor-
responding collection of discretely reflected BSDEs in (3.7) is given over a time partition
that includes all rebalancing dates, i.e. ¥ < n(N). Therefore, combining the first-order
condition of the delta hedging weights given by (3.3) with the Feynman-Kac formula in
(3.5), one immediately gathers the following approximations for all option Deltas in the
portfolio

Delta, = (Delta.”,...,Delta.) = (Z1" 0 (ty, XT);..; 2270 (10, XT))  (3.28)
=Zno  (tn, X)),

for all £, € m(N), and in particular in .. We remark that D/GEZ € R/*4 as it is the row-
wise collection of each contract’s Delta in the portfolio. Plugging this into the first-order
conditions given by (3.3), one subsequently gathers the discrete time approximations of
the optimal hedging weights at each rebalancing date ¢, € ¥

J__ix
ay=) Delta, . (3.29)
j=1
Given (3.29), on top of the deep BSDE approximations for the option prices in the port-

folio Y;]"", the corresponding discretely rebalanced delta hedged replicating portfolio’s
value evolves according to the following recursion

J . m
pA pAT _ v ~i,7( Qi i ol _
Pyt =0, PyT==% Y"+Y @y (S +q; Sy At,) + B, forn=0,...,N,
j=1 i=1
A A L i i
R t (i _ i _
By =0, B =e¢' "BZ_I—ZSZ”(a;”—an_I), forn=1,...,N.
i=1

Notice that all necessary ingredients for the discrete time rebalancing of the hedging
portfolio are included in the OSM approximations of the discretely reflected BSDE (3.6),
i.e. option prices and Deltas.

3.4.3. DELTA-GAMMA HEDGING WITH OSM

The main motivation behind the One Step Malliavin scheme simultaneously solving the
BSDEs (3.6) and (3.14), is that through the numerical resolution of the latter, it includes
a I' process which corresponds to second-order Greeks of the associated option prices.
In particular, by modeling all options in the portfolio by the One Step Malliavin scheme
performed on the row-wise concatenated collection of reflected BSDEs (3.7), one simul-
taneously has approximations of all options’ prices, Deltas and Gammas through ?,’l’ , 2,’1’
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andT7, respectively, with the latter being recovered from the Markovian approximations
5" =y (X™). Through a discrete time expression analogous to (3.16), we find

Gamma’”" = (a7 (tp, X™))" 1(rf”—De1ta Vo (ty, X™ )) (3.30)

where the approximations ]jel?lil'n are recovered identically to (3.28). Equation (3.30)
provides discrete time approximations for the right-hand side of the linear system es-
tablished by the second-order conditions of delta-gamma hedging in (3.12a). Given a
set of Gamma hedging instruments whose Gammas are also available in (semi-)closed
form, this makes the discrete time approximation of all terms in the delta-gamma hedg-
ing portfolio (3.11) possible, after solving the following |.#| x K sized linear system

K J o
Z ﬁ]rcz'na%iuk(t,xt) = Z(Gamma{{n)ll’ ile s, (3.31a)
k=1 j=1
S ia K
@’ =) Delta) - Y Byvur(r,xy), l1<i<d. (3.31b)
j=1 k=1

Given the deep BSDE approximations of the whole Gamma matrix, the linear system
imposed by (3.31) has a solution pair ” a’ € RK x R™, which solve the discrete time
version of the first- and second-order condltlons of delta-gamma hedging in (3.12). Con-
sequently, after having solved the associated collection of discretely reflected FBSDEs by
the OSM scheme, the investor’s task at a rebalancing date is to compute the right-hand
sides of (3.31), which can easily be done by evaluating the corresponding neural net-
works ¢, v, y at a given realization of the Brownian motion. Subsequently, the investor
needs to buy and sell the tradeable risk factors, and the corresponding gamma-hedging
securities according to the differences in the hedging weights between two rebalancing
dates. The discretely rebalanced, deep BSDE approximated delta-gamma hedging port-
folio evolves according to the following discrete time recursion

J m ) o
P, = Z?J Z ai"(Sim+ gl ShTAL,) (3.32)

+ Z B uk(t,, X5+ B,  forn=0,...,N,

m
Bl =eAinpr_ Y Shm@hm—ghT ) (3.33)
i=1

K
=Y (o7 - B yuk(t,, xT),  forn=1,...,N,

with B = 0. Unlike in the delta case, the replicating portfolio is rebalanced not just by
buying and selling the tradeable risk factors S' according to the approximated hedging
weights @," but also by trading each Gamma hedging instruments according to the dif-
ference ﬁn’” - Eﬁfl The complete algorithm is collected in algorithm 3.
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Algorithm 3 Delta-gamma hedging on the portfolio level

Require: Deep BSDE approximations of (3.7) and (3.14) foreach j =1,...,J > OSMin

algorithm 2
Require: {W;, }o<n<n
1 Py —0
2: forn=0,...,N-1do
3 (XI,YT 7T > deep BSDE approximations
4 compute m,k' k=1,...,K > solution to linear system in (3.31a)
5 compute a7, > via (3.31b)
6: if n =0 then o
7 BE — ¥} -xm @Syt -y K BeTuk (e, XT)
8 else
9: update bank account B} > rebalancing with (3.33)
10: end if
11: update portfolio value Pﬁ;ﬂl > according to (3.32)
12: end for )
13: PnLA — e"TPlfl'”/(ZL1 Y > compute PnL in (3.13)

Alternative approaches to Gamma hedging. Given a differentiable function approxi-
mation of the associated option prices, one could in principle use automatic differenti-
ation to approximate the corresponding Deltas and Gammas in a discrete time frame-
work. For instance, using the deep backward dynamic programming approach of Huré
et al. in [77], one has a differentiable approximation of Z in (3.6) in the form of the
vector-valued function w('léz). Computing the Jacobian matrix by means of automatic
differentiation yields an approximation of the "derivative Z process", which is analogous
toI'in (3.14) —see also (3.15). Thereafter, plugging wa(-lgz) in the place of I in the for-
mulae (3.16), one could obtain a comparable numerical representation of the right-hand
side of (3.12a). We remark that a similar approach is taken in [32], where motivated by
the Feynman-Kac formula the authors approximate the Z by automatic differentiation
on the parametrization of the approximation of the option prices, i.e. ¥ = Vy¢. The
problem regarding the automatic differentiation approximations outlined above is two-
fold. First, as the Jacobian matrix of ¥ does not form part of the loss function in (3.27),
there is no guarantee that Vi is an accurate approximation of Vi Z — even when y ap-
proximates Z arbitrarily well. In order to ensure for this to be the case, one would have
to augment the loss function in order to account for this, which would result in a similar
representation formula as (3.14) in the OSM scheme. Regardless of the lack of theoretical
guarantees, one can carry out the corresponding automatic differentations and check if
the corresponding results yield meaningful Gammas. We found that this in fact is not the
case, rendering Vy(-|67) inapplicable in the context of delta-gamma hedging. Accord-
ing to our findings, this is already case for low-dimensional problems, and the accuracy
of the automatic differentiated Gammas further decreases as d grows. In particular, we
refer to figure 3 in [114], and figure 3.3b in our upcoming numerical experiments, which
both demonstrate this phenomenon.
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3.4.4. ABOUT THE LINEAR SYSTEM OF SECOND-ORDER CONSTRAINTS
The optimal weights with which one has to hold the Gamma hedging instruments
u* k=1,...,Kin (3.11) are determined by the solution of the linear system in (3.12a).
The main driver of the computational complexity of gamma hedging stems from the nu-
merical solution of this linear system, which depends not only on the number of gamma
hedging instruments K contained in the replicating portfolio, but also on the type of con-
tracts used as hedging instruments. In fact, the linear system in (3.12a) is a |.#| x K sized
rectangular system. In the special case when one chooses to offset all upper triangular
elements in the Gamma matrix, assigning a single gamma hedging instrument to each
gamma and cross-gamma, this results in a system of size (m(m+1)/2) x (m(m+1)/2),
depending on the number of tradable risk factors. The memory requirements of storing
the coefficient matrix of one instance of such a linear system would thus scale o (m%),
and a naive direct solution of such a linear system would require & (m®) floating point
operations, depending on the number of spatial dimensions. These scaling factors grow
substantially in case of large number of risk factors, especially compared to the simple
matrix-vector multiplication determining the delta hedging weights in (3.29).
Nonetheless, one can choose gamma hedging instruments which preserve a special
structure of the coefficient matrix in (3.12a). In fact, in the upcoming numerical experi-
ments for each higher dimensional problem we choose the gamma hedging instruments
to be European exchange options. Henceforth, given by the Margrabe formula [107],
these options admit an analytical closed-form expression not only for the prices, but
also for all Greeks up to second order in the Black-Scholes framework - see appendix
3.B. Consequently, the coefficient matrix in (3.12a) is computed analytically for each
Brownian path. Moreover, the second order derivatives Glz.j u* determine the shape of

the coefficient matrix multiplying ¥,k = 1,..., K. The choice of exchange options im-
plies that each row (or column) of the coefficient matrix in (3.12) only includes at most 3
non-zero elements, leading to a sparse linear system which can efficiently be solved by
sparse numerical linear algebra methods. In what follows we use the sparse least squares
method developed by [122].” As solving such a large linear system, for a cloud of Monte
Carlo simulations - in order to be able to assess the distribution of the corresponding
PnL distribution - is computationally expensive, this provides a substantial computa-
tional improvement for the delta-gamma hedging strategy in algorithm 3.

Replication errors and computational complexity. The main source of computa-
tional complexity of delta-gamma hedging is the deep BSDE optimization of the OSM
scheme in algorithm 2. Nevertheless, we remark that once the replicating portfolio is
constructed and the corresponding options are fixed, this step only needs to be done
once. It can be done offline, and the resulting discrete time approximations can be used
throughout the whole spacetime. With respect to the convergence of the discrete time
approximations we refer to [77, 114] where it is shown that the deep BSDE approxima-
tions converge to the continuous solution triple of the BSDEs with an L? rate of @ (|r|'/?).
These results can be generalized to the vector-valued setting corresponding to the col-
lection of BSDEs in (3.7) without any substantial difficulty. In case the forward SDE’s so-

2In particular, the scipy implementation, see documentation.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsqr.html
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lution is given in closed-form, the replication error of the corresponding delta hedging
strategy coincides with those of the deep BSDE approximations. Whereas, when the for-
ward diffusion is approximated by, e.g., an Euler-Maruyama discretization the product
term in (3.2) will hamper the convergence rate by an appropriate application of Young’s
inequality. For a theoretical assessment of the convergence rates of the tracking errors
induced by delta (3.2) and delta-gamma hedging (3.11), we refer to [64]. Therein, the
authors show that the convergence rate of the hedging portfolio depends on the frac-
tional regularity of the payoff g — at least in the European options’ context. In particular,
with the use of an equidistant time their results imply the convergence of the variance
of the PnL distribution with a rate of @(h%°) in case of delta-, and a rate of @(h° ") for
delta-gamma hedging of European put and call options. Consequently, including the
second-order Greeks enabled by the One Step Malliavin scheme in the replicating port-
folio (3.11) does not only improve replication accuracy by a constant, but in special cases
may also result in a higher order convergence rate.

3.5. NUMERICAL EXPERIMENTS

In order to demonstrate the accuracy and robustness of the proposed FBSDE based
delta-gamma hedging strategies, numerical experiments are presented. In what follows,
we formulate a (discretely reflected) FBSDE system corresponding to each portfolio be-
low. Subsequently, each of these systems is discretized using a fine time grid containing
N’ =100 equally sized intervals, and solved by deep BSDE approximations as in algo-
rithm 2, including approximations for the associated options’ prices, deltas and gammas
throughout the entire spacetime. This step is the most time consuming part of our ap-
proach, however, it needs to be emphasized that the training of these neural networks
only needs to be done once, offline. Thereafter, the resulting approximations for prices,
deltas and gammas can be simply evaluated for each rebalancing date in the updates
of the hedging strategies (3.28) and (3.30), which is fast and efficient. We choose a very
fine time partition for the numerical resolution of the FBSDE system in order to be able
to use sub-points of it for each rebalancing frequency we consider. In order to ease the
presentation, for the OSM scheme in alg. 2, we fix 9, = 1/2 and remark, that results are
very similar in case of other choices of 9, € [0, 1].

For each experiment presented below we use fully-connected, feedforward neural
networks of L = 4 hidden layers with 50 neurons in each layer and hyperbolic tangent
activations. For the networks at time step n = N — 1, batch normalization is applied
in between each pair of layers, whose parameters are thereafter frozen for preceding
time-steps n < N — 1. The historical mean and standard deviation are reset at each time
step, in order to preserve adaptivity of the solutions of the BSDEs. Adam optimization
is deployed with Iy_; = 2!6 SGD steps at the training of time step n = N — 1 and there-
after — motivated by the transfer learning trick as in (3.26) — this is reduced to I,, = 2!2
for n < N—1. The OSM method in alg. 2 has been implemented in TensorFlow 2.15.
The library used in this chapter is made publicly accessible on the first author’s personal
github repository®. All experiments below were run on a Dell Alienware Aurora R10 ma-
chine, equipped with an AMD Ryzen 9 3950X CPU (16 cores, 64Mb cache, 4.7GHz) and

3https://github.com/balintnegyesi/ OSM-delta-gamma-hedging.git


https://github.com/balintnegyesi/OSM-delta-gamma-hedging.git
https://github.com/balintnegyesi/OSM-delta-gamma-hedging.git
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#1: Vega #2: Gamma #3:Vomma #4: Vonna

T 0.3 0.4 0.3 0.25
K 10 10 9 11
R 1 1 1 1

N 60 80 60 60

Table 3.1: Example 1. Hedging instruments.

an Nvidia GeForce RTX 3090 GPU (24GDb).

For the computations of the hedging strategies in alg. 3, we use equally spaced rebal-
ancing dates with N = 1,2,5,10, 20,100, which roughly correspond to yearly, quarterly,
monthly, fortnightly, weekly and daily rebalancing of each portfolio. This choice ensures
that each rebalance date is included in the time partition used to solve the discretely re-
flected FBSDEs. In each example below, we assume that options can only be exercised
on rebalancing dates. In the replication of Bermudan options below, we denote the op-
timal stopping time at which each option is exercised by 7, which is approximated as
follows

1/ = argming/ (X™) > V. (3.34)
0=n=N
for a given path of the Brownian motion. In other words, 7J denotes the first time the
continuation value is reflected in the discretely reflected FBSDE system in (3.6). We ap-
proximate continuous Profit-and-Loss densities with a Gaussian kernel density estimate
on the discrete Monte Carlo sample.’

3.5.1. EXAMPLE 1: TWO-DIMENSIONAL STOCHASTIC VOLATILITY MODEL
Our first example is a single Bermudan put option (J = 1), issued on a single asset (m = 1)
whose price is driven by the well-known Heston model. Since multi-dimensional exten-
sions to the Heston model are known to suffer from the phenomenon of vanishing cor-
relations, we restrict our illustration to the case m = 1,d = 2, and remark that the OSM
scheme would be similarly applicable in the context appropriate higher-dimensional
stochastic volatility models, such as the Wishart model - see e.g. [56, 66]. We collect the
corresponding first- and second-order hedging conditions in the presence of stochastic
volatility in appendix 3.A —see (3.37) and (3.38) in particular. Assuming the market price
of volatility risk to be A = 0, the coefficients of the discretely reflected FBSDE system read
as follows

pVvs 1-p*/v
0 v )
ft,x=(5v), 3,2 =—ry—(fi—(r—q))zo  (t,x)s, I(x) = g(x=(s;v)) =max[K - 5,0],
(3.35)

ut,x=(s;v) = (ps;x@—=v)), o, x=(s5v) =

with x € R?. The two risk factors in (3.1) are the asset price S = x!, and its stochastic
volatility process v = x%. The parameters are chosen according to set A in [146, sec.7],

4KDE is implemented by seaborn, using a smoothing parameter of 1.8 — see documentation.


https://seaborn.pydata.org/generated/seaborn.kdeplot.html
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ie i=r=01,4g=0,k=5+v=0.16,p =0.1 and = 0.9. The Feller condition 2xv > n?
is satisfied and hence the volatility process does not attain zero. As in [146], the initial
condition of the forward SDE in (3.1) is Xy = (Sp, Vo) = (10;0.0625), and set the option
strike to K = 10. We consider a maturity of T = 0.25 and equidistant early exercise dates
with R =10, i.e. Z = {0,0.025,0.05,...,0.25}.

In order to demonstrate the method’s robustness with respect to the approximation
of the risk factors, we adopt a modified Euler approximation directly on the asset prices
and not on log-prices. The coefficients in (3.35) are truncated according to [70, 99], in
order to ensure that the discrete time approximations of the volatility process do not go
below zero either

Xo=o,vo),  Xj1 = (Shi1, Vi) = (S Vi) + pltn, X)) Aty + 0 (Ln, (S; [V ) AW,|,

whereas the Malliavin derivative is approximated according to (3.17). Given the approxi-
mations of the forward diffusion, we solve the discretely reflected BSDEs (3.6) and (3.14)
corresponding to (3.35) by the OSM scheme in algorithm 2 once, with N’ = 50 equally
sized time intervals, which through the relations (3.28) and (3.30) provide approxima-
tions for all first- and second-order Greeks. In particular, due to stochastic volatility,
the OSM scheme provides Delta, Vega, Gamma, Vomma and Vanna approximations. So
that we can hedge the volatility, similar to (3.11), we augment the replicating portfolio
with 4 additional instruments, that offset Vega, Gamma, Vomma and Vanna exposure,
respectively. These instruments are all European put options issued on the same as-
set, with maturities and strikes as in table 3.1. In order to sketch the potential of the
OSM scheme outside of the Black-Scholes framework, we use algorithm 2 as reference
prices and Greeks for the coefficient matrices in the linear system described by (3.37) and
(3.38). Algorithm 2 is run on each European option’s associated BSDE separately, with an
equidistant time grid using N intervals as in table 3.1. We consider N = 1,2,5,10,25,50
rebalancing dates, for all cases.

The impact of stochastic volatility on the hedging with only first-order constraints in
(3.29) is illustrated by figure 3.2a. Herein, we find that augmenting the replicating port-
folio with an additional Vega hedging instrument, offsetting first-order volatility sensi-
tivity according to (3.37) results in a significantly sharper PnL distribution. Neverthe-
less, as demonstrated by figures 3.2b and 3.2c, the delta-vega replicating portfolio en-
tails substantial risk due to the neglection of second-order sensitivities. Augmenting the
replicating portfolio with the additional Gamma, Vomma and Vanna hedging securities,
one can further improve the replication of the Bermudan put option at 7, resulting in
sharper profit and loss distributions centered around 0. As seen in fig. 3.2c, offsetting
all second-order sentivities with respect to the underlying risk factors improves VaRgs
by 30 percentage points. The impact on the choices of second-order Greeks to be off-
set, determined by the index set .# in (3.38) is depicted in figure 3.3a. Three cases are
compared depending on the number of second-order Greeks accounting for (i) Gamma
hedging (¢ = {11}); (ii)) Gamma-Vomma hedging (¥ = {11,22}); (iii) Gamma-Vomma-
Vanna hedging (¢ = {11,12,22,21}). As demonstrated by fig.3.3a, these gradually re-
sult in better replication, as more second-order Greeks are taken into account. Table
3.2 collects the mean and variance for the aforementioned replication strategies in case
of N = 25 rebalancing dates. In line with the discussion above, we see that offsetting
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Figure 3.2: Example 1. Comparison of first- and second-order hedging strategies in (3.3), (3.37) and (3.38),
respectively. N = 50 rebalancing dates. Dashed and dotted vertical lines corresponding to VaRgs and ESgg,
respectively. Hedging instruments as in table 3.1. PnL approximated through an independent Monte Carlo
sample of size 214

risk measure ‘ PnL2 Pan'Vega PnLl PnLE’VOmma PnL£’Vomma’vamrla
mean 1.2e-2 1.8e—-2 2.0e—-2 1.9e-2 1.9e-2
variance 1.5e—-1 9.0e-2 1.0e-2 8.5e-3 7.6e—3

Table 3.2: Example 1. Risk measures for different types of replicating portfolios and N = 25 rebalancing dates.

second-order Greeks not only with respect to the asset price but also for the volatility
considerably improves the replication accuracy across all risk metrics.

Finally, as discussed in section 3.4.1, let us compare the deep BSDE approximations
of all above considered option Greeks provided by the One Step Malliavin scheme in alg.
2 to the RDBDP method of [77]. The left plot of fig. 3.3b compares the delta-vega hedging
strategies where the corresponding right-hand sides of (3.37) are computed by the OSM
and RDBDP schemes, respectively. As we can see, even in this low-dimensional case the
OSM scheme brings a marginal improvement in the replication accuracy, indicating that
the corresponding first-order Greeks (Deltas and Vegas) are more accurately approxi-
mated by the OSM scheme. More importantly, the right side of fig. 3.3b demonstrates
the need for the Malliavin representation formula (3.14) and its corresponding discrete
time approximation by the OSM scheme in order to accurately capture second-order
Greeks. Herein, the second-order hedging corresponding to Gamma-Vomma-Vanna
hedging (3.38) are compared across the OSM and RDBDP schemes, where, for the lat-
ter, the right-hand side of (3.38) is computed by automatic differentiation. As we can
see, automatic differentiation of [77] does not provide accurate Gammas, Vommas and
Vannas, and is rendered inapplicable in the context of second-order hedging, whereas
the OSM approximations bring an improvement in the replication accuracy compared
to the first-order conditions.
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(a) Comparison on the set of second- (b) Comparison between the One Step Malliavin scheme (alg.2) and the RDBDP
order Greeks accounted for in (3.38) approach of [77]. First- (3.37) and second-order (3.38) hedging on the left and
with quarterly rebalancing (N = 2). right, respectively.

Figure 3.3: Example 1. Dashed and dotted vertical lines corresponding to VaRgs and ESgg, respectively. Hedg-
ing instruments as in table 3.1. PnL approximated through an independent Monte Carlo sample of size 214.

3.5.2. EXAMPLE 2: SINGLE HIGH-DIMENSIONAL OPTION

The high-dimensional examples are given on d = m assets driven by Black-Scholes dy-
namics under the physical measure. First, we investigate a single Bermudan geometric
call option (J = 1), with varying early exercise rights. The coefficients of the correspond-
ing discretely reflected FBSDE system read as follows’

ut,x)=pox, o(tx)=diagdoxZ, (3.36)

f(t,x,y,z)=—ry—[%_q))TzZ_l, I(x) = g(x) = max w((nxi)l/d—K),O ,

i=1

with w € {-1,1} for put and call options, respectively. In the above, fi,,q € R™ are the
drift, volatility and continuous dividend yield parameters of each asset, r is the risk free
rate and C = =7 X is the correlation structure between the assets with X being its Cholesky
decomposition. This example appears often in the literature, see e.g. [32, 77], due to its
special property in that the general d-dimensional problem can be reduced to a scalar
one. We set the parameters in (3.36) according to [32], and consider a fixed T =2, Xp =
100,r =0.0,4 =(0.02,...,0.02), w = 1, ¢;; = 0.75,i # j.

We train a deep BSDE solver once, offline for each parameter setting with N’ = 100
equally sized time intervals according to algorithm 2 and use the resulting approxima-
tions to recover option prices, Deltas in (3.28) and Gammas according to (3.30). We em-
phasize that the OSM scheme provides all Gammas in the high-dimensional framework,
including all cross-gammas, i.e. the Gamma in (3.30) takes values in R4*4, Due to the
high-correlation and similarly to example 3.5.1 — see fig. 3.3a in particular —, we found
that it is not sufficient to remove pure second-order sensitivities with respect to each
individual asset (¢ = {ii: 1 < i < m}), as there is a substantial cross-gamma exposure.
Therefore, we choose to hedge the whole upper triangular part of the Hessian matrix
in (3.12a) in case of delta-gamma hedging, i.e. ¥ ={ij:1<i < j < d}. In order to be

5we denote element-wise multiplication by ®
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able to compute the coefficient matrix on the left-hand side of the second-order condi-
tion (3.12a), we augment the delta-gamma hedging portfolio (3.11) with K = d(d +1)/2
Gamma hedging instruments, as follows

« for the diagonal elements in the Gamma matrix (i = j) we choose standard Euro-
pean put options with the same strike and maturity 7 =2T;

e for the cross Gamma indices (i # j) we choose European exchange calls with strike
K'J =1 and maturity T = 2T. This in particular implies the corresponding hedging
instruments’ prices, Delta and Gammas are all available in closed form due to the
Margrabe formula [107] — see appendix 3.B.

As discussed in section 3.4.4, these choices imply that the linear system corresponding
to (3.12) has a sparse coefficient matrix, and thus the linear system in (3.31a) can be
stored and solved efficiently for a large number of Monte Carlo simulations. We split the
discussion of the example into four key aspects: the impact of moneyness (determined
by strike K), early exercising (R), strength of volatility () and dimensionality (d = m).

OTM/ATM/ITM. We fix a European contract (R = 1,% = {0, T}) on d = m = 50 assets,
each with volatility & = (0.25,...,0.25) and an initial condition of Xy = (100, ...,100). We
consider in-, at- and out-of-the-money strikes with K = 90,100,110, respectively, to in-
vestigate the impact of moneyness on the discrete replication accuracy both in case of
delta and delta-gamma hedging. Results are collected in figure 3.4 and table 3.3. We see
that Gamma hedging significantly outperforms delta hedging in terms of replication ac-
curacy, irrespective of the moneyness. Across all values of moneyness, we found that a
fortnightly rebalanced (N = 10) delta-gamma hedging strategy achieves the same repli-
cation accuracy as a daily rebalanced (IV = 100) delta strategy. In particular, we find that
once rebalanced at least weekly (IV = 20) the delta-gamma hedging strategy achieves
an expected shortfall of less than —0.4 for each moneyness, whereas delta rebalancing
with the same frequency yields a much wider Profit-and-Loss distribution with more
profound tail risk. All risk measures are collected in table 3.3 for fortnightly (IV = 10)
rebalanced portfolios in (3.2) and (3.11). In line with fig. 3.4, we find that the discrete
replication becomes more difficult as the option is going out-of-the-money. Nonethe-
less, even in the OTM case, when the position is delta-gamma hedged with higher than
monthly (N = 5) frequency, the corresponding replication achieves a VaRg5 below —0.5,
which is only attained by daily delta rebalancing. The delta-gamma hedged portfolio
using alg. 2 and 3 achieves an order of magnitude higher replication accuracy across all
risk measures consistently, regardless of the moneyness, in the high-dimensional setting
(d =m=50).

High volatility (OSM versus Huré et al. [77]). Next, we assess the impact of the
strength of the volatility parameter ¢ in (3.36). In order to do so, we fix R = 1, consider
an ATM strike of K = 100 and vary ¢ between 0.25,0.5 and 0.75 across all d = m = 50 as-
sets, uniformly. The numerical results are given in figure 3.5 and table 3.4. As indicated
by [114], the One Step Malliavin scheme in alg.2 outperforms the reference methods [77,
32] in the approximation accuracy of the Z process in (3.6), especially in settings of high-
volatility and small time steps. This is demonstrated by figure 3.5a. We find that as the
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Figure 3.4: Example 2 in (3.36). Moneyness comparison with weekly rebalancing (N = 20). Example 2. His-
tograms for delta (3.3) and delta-gamma replication (3.12). Dotted and dashed vertical lines corresponding to

VaRgs and ESgg, respectively.

Delta Delta-Gamma
K=90 K=100 K=110 K=90 K=100 K=110
mean —-8.8e-3 —-7.4e-3 -2.7e-2 | -7.1e-3 —-1.4e-2 —4.1e-3
variance 4.4e-2 1.3e—1 3.3e—1 3.7e-3 7.9e-3 2.7e-2
VaRgs -3.7e-1 -6.3e-1 -1.1 —-7.7e-2 —-12e-1 -2.0e-1
ESgs5 -5.2e—-1 -8.6e-1 -1.5 —1.4e-1 -19e-1 -3.3e-1
semivariance 2.4e-2 6.8e—2 2.0e—1 1.7e-3 2.8e-3 1.0e-2

Table 3.3: Example 2 in (3.36). Comparison of risk measures across moneyness. Fortnightly rebalancing (N =
10).

strength of the volatility increases the OSM scheme results in gradually more accurate
Delta approximations compared to the reference method [77], which results in sharper
PnL? distributions. We found similar results in case of other references, such as [32].
This effect becomes more profound as ¢ increases, indicating that the One Step Malli-
avin scheme is not only useful in the context of second-order sensitivities, but may also
result in higher first-order replication accuracy for highly volatile assets. Nonetheless, as
shown by figure 3.5b, one can further improve the delta replication accuracy even by off-
setting the corresponding second-order sensitivities in (3.11) — even for large 6. We find
that offsetting all option Gammas enabled by the OSM scheme, further improves the
replication accuracy resulting in an approximately 30 percentage point improvement in
value-at-risk and a sharper PnL distribution around 0. Unsurprisingly, as the volatility
increases, the replication accuracy decreases, and one gains even more by delta-gamma
hedging. All risk measures are collected in table 3.4, when the corresponding discretely
rebalanced portfolios are updated daily. Comparing the delta hedging strategies be-
tween deep BSDE approximations provided by the OSM scheme and [77], we find that
algorithm 2 provides higher accuracy in the Delta approximations when the volatility
parameter is high, which results in higher replication accuracy. In particular, using the
OSM scheme, one gains a roughly 3 times lower variance for the PnL distribution around
0. Additionally, see o = (0.5,...,0.5), offsetting the associated Gammas results in an ad-



3. ADEEP BSDE APPROACH FOR THE SIMULTANEOUS PRICING AND DELTA-GAMMA
106 HEDGING OF LARGE PORTFOLIOS OF HIGH-DIMENSIONAL BERMUDAN OPTIONS

4.0
200 B Huré et al. B Huré et al.
I OSM 0 | OSM

175

1.50

2.5

density

density

0.75
050 | 1 10

0.25 05

0.0+ g y
%a%'\esus%x%\w\m»n'\%qm
»

2
SN N N N N RS 007 2700 oY TN 7 Y 2P T 9 O S T YA

SIS O QT QTN

. | |
xQQQQ’S\Q"%"’Q A A

relative PnLT relative PnLT

(a) Comparison between Deltas approximated by the OSM scheme (alg.2) and Huré et al. [77]. Left weekly (N = 20), right daily
(N =100) rebalancing.

7 7

| Pan | Pan
6 PHLE 6 PnLE

density
density

0 .5 —04 —-03 -02 -01 00 0.1 0.2
relative PnL relative PnLi

0 i | | | | |
—05 —04 —03 02 -01 00 0.1

(b) Comparison of delta (3.3) and delta-gamma replication (3.12). Left weekly (\V = 20), right daily (V = 100) rebalancing.

Figure 3.5: Example 2 in (3.36). Volatility impact comparison for & = (0.75,...,0.75). Dotted and dashed vertical
lines corresponding to VaRgs; and ESgg, respectively.

ditional order of magnitude accuracy in the variance of the profit and loss distribution.

Early exercise rights. Let us investigate the impact of early exercising on the corre-
sponding replication accuracies. We consider ATM (K = 100), Bermudan call options
as in (3.36), issued on d = m = 50 underlyings, each admitting a volatility of 0.25. In
order to assess the early exercise right’s impact on the replication accuracy we vary the
equidistant early exercise dates taking values R = 5,20, 100, which can be associated with
monthly, weekly and daily exercise rights, respectively. We remark that the case R = 100
can be thought of as a numerical approximation of the American option limit and can
thus be directly compared to the results in [32]. The numerical experiments are summa-
rized in figure 3.6 and table 3.5. As we can see, the OSM hedging strategies are robust and
accurate with respect to the number of early exercise dates of the corresponding Bermu-
dan option for both delta- and delta-gamma hedging. In fact, comparing the densities
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Huré etal. [77] OSM (alg. 2)
Delta Delta Gamma

=05 d=0.75 =05 g =0.75 =05 g =0.75
mean —4.1e-3 —-3.7e-2 —6.4e—3 —-8.0e-2 | —5.2e—-3 —8.0e-2
variance 2.0e-2 1.3e—-1 l.4e-2 3.8e-2 1.4e-3 2.3e-2
VaRg5 —2.4e-1 —-4.0e-1 || -2.1e-1 -3.8e—-1 | —6.8e-2 —-2.6e—-1
ESgs -3.4e-1 -7.2e-1 || -3.0e-1 -6.0e—-1 | —=9.2e-2 -5.1le-1
semivariance l.1e-2 8.5e—-2 7.9e-3 3.8e-2 7.7e—4 4.4e-2

Table 3.4: Example 2 in (3.36). Comparison of risk measures across different levels of volatility. Delta hedging

with OSM in alg. 2 versus Huré et al. in [77]. Daily rebalancing (N = 100).

Delta Delta-Gamma
R=5 R=20 R =100 R=5 R=20 R=100
mean 2.4e-2 7.5e-2 7.9e-2 2.9e-2 9.1e-2 9.7e-2
variance 1.3e—1 1.3e—1 1.2e—1 1.5e-2 3.5e-2 3.2e-2
VaRgs —-6.2e—1 —-5.3e-1 —-5.7e—-1 | —1.2e—-1 —-9.3e-2 —7.2e-2
ESg5 -9.0e-1 -8.6e-1 -8.3e-1 | -2.1e-1 —-1.9e-1 -1.8e—-1
semivariance 7.7e—-2 8.2e—-2 7.4e—2 4.7e-3 5.7e-3 5.8e—-3

Table 3.5: Example 2 in (3.36). Comparison of risk measures across increasing early exercise rights, from
monthly to daily exercising. Fortnightly rebalancing (N = 10).

in fig. 3.6, we find that, even though the approximation of the corresponding discretely
reflected BSDE becomes more challenging, the resulting delta-gamma hedged PnLs are
still sharply distributed around 0. The scales of the vertical axes show that the replica-
tion accuracy goes down as R increases (ceteris paribus), due to the larger number of
early exercised paths. Comparing the left and right columns we see that the additional
second-order constraints yield a substantial improvement to delta hedging. The delta-
gamma hedged portfolio achieves a similar profit and loss distribution with only fort-
nightly rebalancing (N = 10) as that of the delta hedging with daily readjusted hedging
weights (IV = 100). Risk measures for all hedging strategies are collected in table 3.5 for
portfolios rebalanced every fortnight (IV = 10). The delta-gamma hedging strategies en-
abled by the OSM approximations in algorithm 2 induce close to an order of magnitude
improvement in the variance of the associated profit-and-loss distributions compared
to mere delta-hedging, irrespective of early-exercise features, in the high-dimensional
option setting with d = m = 50 underlyings.

Dimensionality. The main motivation behind the deep BSDE approximations for the
One Step Malliavin scheme in algorithm 2 is to enable the treatment of high-dimensional
basket options, issued on many (correlated) underlyings in (3.36). We fix R = 100 cor-
responding to the American option limit, and vary the number of risk factors d = m in
(3.36) between 1, 5,20, 100. Recall that these results can directly be compared to all afore-
mentioned results given on 50 assets. The numerical results are collected in figure 3.7
and table 3.6. In figure 3.7, we see that the OSM enabled hedging strategies are robust
with respect to the number of underlying assets, and both in case of delta and delta-
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Delta Delta-Gamma
d 1 5 20 100 1 5 20 100
mean 4.1e-3 1.7e-3 1.5e-2 3.0e-2 1.4e-3 3.9e-3 1.7e-2 3.2e-2
variance 1.0e-2 1.2e-2 l.4e-2 1.8e-2 2.6e—4 3.7e—4 1.6e-3 5.3e-3
VaRgs —-1.6e-1 -1.7e-1 -1.7e-1 -1.7e-1 | —1.5e-2 —-1.9e-2 -1.9e-2 -1.8e-2
ESgs -2.3e-1 -2.3e-1 -25e-1 -25e-1 | —2.5e-2 -3.3e-2 -2.8e—2 -3.3e-2

semivariance 4.7e-3 5.0e-3 6.4e—3 6.2e—3 9.9e-5 1l.4e-4 1.7e-4 2.3e—4

Table 3.6: Example 2 in (3.36). Comparison of risk measures across increasing early exercise rights, from
monthly to daily exercising. Fortnightly rebalancing (N = 10).

gamma hedging the shape of the corresponding profit-and-loss distributions are similar
across d = 5,20,100. Observing the vertical scales from top to bottom, we see that both
in the case of first- and second-order hedging, the peak of the distribution decreases, as
the associated replication problem becomes more difficult due to dimensionality. Com-
paring the left and right columns indicates that including the additional second-order
constraints in (3.12) brings a substantial improvement to the discrete replication accu-
racy. The delta-gamma hedged strategy reaches the same replication error with an order
of magnitude less frequent rebalancing, as the mere delta hedging portfolio. The results
above illustrate that delta-gamma replication enabled by OSM achieves a given risk tol-
erance with significantly less number of rebalancing dates compared to delta hedging,
irrespective of the number of underlying assets. This is further demonstrated by figure
3.8, where the convergence of VaRgs is plotted against the number of rebalancing dates.
As can be seen, for all considered number of underlying assets, the delta-gamma hedg-
ing strategy achieves a risk tolerance level of VaRgs < 10% for all rebalancing frequencies
higher than N = 10. On the contrary, the delta hedged portfolio does not reach this accu-
racy, not even in case of daily rebalancing (N = 100). This implies that the approximation
errors in alg. 2 are negligible compared to the time discretization. Moreover, in prac-
tical applications, where rebalancing is undesirable due to potential transaction costs,
the delta-gamma hedging enabled by the Gamma approximations of OSM may achieve
a given risk tolerance more efficiently. We collect all risk measures table 3.6 for fort-
nightly (IV = 10) rebalanced replicating portfolios. For each strategy the risk measures
grow as d increases. Nonetheless, both in case of delta and delta-gamma replication,
the corresponding risk measures are robust with respect to the number of underlying
assets. Across all values of d, the Gamma hedging strategies bring an order of magnitude
improvement both in the variance and the tail risk measures of the PnL. These num-
bers demonstrate that the deep BSDE approximation for the OSM scheme efficiently
deal with Bermudan basket options in (3.36) issued on a large number of underlyings.
We emphasize that the second-order sensitivities in the OSM scheme are given by the
matrix-valued I’ process in (3.18) which takes values in R?*¢, meaning that in case of
d = m =100 the OSM scheme accurately approximates 10* gammas simultaneously.

3.5.3. EXAMPLE 3: PORTFOLIO OF SEVERAL DERIVATIVES WITH DIFFERENT
EARLY EXERCISE RIGHTS

In order to demonstrate the accuracy and robustness of the proposed hedging strategies
in the context of a portfolio of multiple options, in our last example we investigate a high-
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contract payoff
j=1 geometric put max[K; - ([T}72, x) 7™, 0]
j=2 arithmetic put on (Sy,...,S;/2) | max(K; —2/m2i"i/12 x;,0]
j=3 call on max (Sp/2+1,---,Sm) [(Max;=m/241,..,m Xi — K3l *
j=4 cash or nothing [172, T50<x;<150
j=5 put on min [Ks — min;=m/241,.,mXil*
Jj=6,...,25 call [x,-—Kj]+

Table 3.7: Example 3. Derivatives in the portfolio.

dimensional portfolio of derivatives. We take d = m = 20 Black-Scholes type underlyings
under the physical measure as in (3.36) , with parameters g = (0.2,0.19,...,0.01), ¢ =
(0.4,0.25,0.2,0.15,0.1,...,0.4,0.25,0.2,0.15,0.1), r =0.04, g = (0,...,0), Xp = (100,...,100)
and pairwise correlation c;; = 0.25,i # j. We consider a time horizon of T = 1 year,
over which J =25 Bermudan derivatives are held. The types of contracts are collected in
table 3.7. In terms of moneyness and early exercise rights, we distinguish three different
versions of the portfolio corresponding to

1. Case 1: all ATM (K; =100, j = 1,...,]), European (R; =1, j = 1,..., ]) contracts;
2. Case 2:

* varying moneyness: K; = 100,K; = 120,K3 = 80,K5 = 50,K; = 150, =
6,...,25,

¢ Bermudan options with uniform, monthly early exercise rights: R; =5, j =
L..oJ;

3. Case 3:

* varying moneyness: Ky = 100,K; = 120,K3 = 80,K5 = 50,K; = 150, =
6,...,25,

* varying early exercise rights: Ry =20,R, =5,R3 =2,R4 =1,R5 =10,Rg=R; =
5,Rg = Ry =10,Rj9 = -+ = Ry5 = 100,R16 = 2,R17 = - = Rig = 20,Rpg = --- =
Ry5 =100.

For each choice above the solutions of the collection of discretely reflected BSDEs in
(3.7) take values in R/, R/*¢ and R/*4*¢ for the prices, Deltas and Gammas, respectively.
Indeed, the Gamma process approximated by the One Step Malliavin scheme in alg. 3
has 10* elements. As this portfolio consists of multiple contracts, which may be exercised
at different points in time, we provide the profit and loss distributions at maturity T,
instead of 7 in (3.34). This means that in case one of the options in (3.2) or (3.11) is
exercised before T, the corresponding payoff is collected and the weights are computed
with the remaining derivatives only.

The numerical results are collected in figures 3.9, 3.10 and table 3.8. Looking at the
approximated PnL densities depicted in fig. 3.9, we find that the OSM scheme accu-
rately approximates all Deltas and Gammas for all derivatives in the portfolio simultane-
ously. The replication is most accurate in the case of European contracts without early
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exercise features, nevertheless, the approximations remain accurate with varying early
exercise rights for each contract separately, and also for different levels of moneyness.
Comparing the left and right columns, we find that for all three cases outlined above, the
gamma hedging strategy yields a substantial improvement in terms of replication accu-
racy compared to the standard delta hedging. For both first- and second-order hedging,
the PnL distributions are distributed around the origin with a decreasing variance as the
number of rebalance dates increases. In particular, consistently throughout all exam-
ples the gamma hedged strategies reach the same shape of the PnL distribution with
fortnightly rebalancing as the delta hedged positions with daily rebalancing. In terms
of tail risk, VaRgs is approximately 50 percentage points better across the delta-gamma
hedged portfolios.

Similar conclusions can be drawn from the histograms collected in the top row of
figure 3.10. In line with the earlier results, the delta-gamma hedged OSM portfolios sig-
nificantly outperform standard delta-hedging even for this portfolio of multiple deriva-
tives. This is accentuated with less frequent rebalancing, where the delta-gamma hedg-
ing strategies achieve a much sharper PnL in the discrete time framework. These obser-
vations hold across all three cases outlined above, irrespective of the derivatives money-
ness and early exercise features. This phenomenon is further demonstrated by the bot-
tom of figure 3.10. Herein, the convergence of the 95 percentile value-at-risk against the
number of rebalancing dates is collected. We find that VaRg5 corresponding to the delta-
gamma hedged PnL is consistently an order of magnitude smaller than in case of delta
hedging, across all different number of rebalancing dates. In other words, any prespeci-
fied risk tolerance level - measured e.g. by value-at-risk —is achieved by the delta-gamma
hedging strategy in an order of magnitude less frequent rebalancing. In particular, we
find that the multi-dimensional portfolio extension of the OSM scheme yields practi-
cally identical conclusions as in case of single options, implying that the corresponding
deep BSDE approximations truly excel in case of these high-dimensional equations.

Finally, risk measures corresponding to each hedging strategy are collected in ta-
ble 3.8 for N = 2, i.e. portfolios rebalanced once every quarter. All risk measures con-
firm our findings above. In particular, delta-gamma hedging the portfolio of Bermudan
derivatives brings an order of magnitude improvement compared to delta hedging in
terms of the variance of the profit-and-loss distribution at maturity for all three cases of
early exercise features and moneyness. Additionally, we find that offsetting second-order
sensitivities in (3.12) enabled by the Gamma approximations of the One Step Malliavin
scheme, brings a substantial improvement also in terms of tail risk measured both by
value-at-risk and expected shortfall. In particular, both for the 95 and 99 percentile tails,
the delta-gamma hedged distributions provide a factor of 3 improvement compared to
the standard delta strategies. In light of the dimensionality considered in this last ex-
ample, with a portfolio consisting of J = 25 derivative contracts issued on d = m = 20
underlyings with varying drift and volatility parameters, we can conclude that the deep
BSDE approximations of the OSM scheme provide a robust and accurate approximations
for all option Greeks in the portfolio up to second order.
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Delta Delta-Gamma
ATM Bermudan Mixture ATM Bermudan Mixture
mean —2.6e—2 —2.2e—-3 3.0e-2 —2.9e—4 2.9e-2 6.0e—2
variance 2.7e-2 1.2e—1 l.1e—1 1.3e-3 1.8e-2 1.7e-2
VaRgs —3.0e—1 —-6.5e—1 —-5.9e—1 | —5.9e-2 -1.8e—1 —1l.4e-1
ESgs —4.5e—1 -1.0 -9.3e—1 | —7.2e-2 -3.1e-1 —2.6e—1
semivariance 1.7e-2 l.1e-1 1.0e—-1 4.5e—-4 1.2e-2 1.0e-2

Table 3.8: Example 3. Convergence of VaRgs5 against the discrete number of rebalancing dates in (3.2) and
(3.11).

3.6. CONCLUSION

In this chapter we proposed a novel deep BSDE based approach for the simultaneous
pricing, delta and delta-gamma hedging of large, high-dimensional portfolios of Bermu-
dan options. First, we gave a vector-valued extension to the One Step Malliavin scheme
in [114]. This way, we casted the pricing, delta- and delta-gamma hedging of a portfolio
of Bermudan options into the framework of a system of discretely reflected BSDEs. Subse-
quently, we proposed a deep BSDE approach for the accurate numerical solution of this
collection of equations, which is robust and efficient when the number of underlying
risk factors and/or options is large. In fact, our approach includes not only prices and
Deltas but also second-order Greeks, Gammas of all options in the portfolio, simultane-
ously approximated, throghout the entire spacetime. We demonstrated the performance
of our algorithm on several examples, highlighting key features of our technique. Our
findings suggest that, the hereby proposed OSM approximations outperform reference
methods [77, 32] even in the context of delta hedging, when the risk factors are highly
volatile. Most importantly, by performing delta-gamma hedging enabled by the Gamma
approximations of the OSM scheme, we managed to improve on the discrete replication
accuracy compared to standard delta hedging. Our results demonstrate that the algo-
rithm is robust and accurate, for different levels of moneyness, high volatility, and early
exercise rights up to the American option limit even in case high dimensional basket
options issued on d = 100 assets.

3.A. BEYOND DELTA-GAMMA HEDGING

In principle, our framework is more general than mere delta-gamma hedging, as it allows
for the treatment of hedging stochastic volatility. In that case, one needs to complete the
market with an extra set of securities that have non-vanishing Vegas, such that volatility
risk can be hedged, in a similar fashion to (3.11) with first-order constraints only. Hence,
an appropriate delta-vega hedging strategy on the portfolio (3.11) would therefore yield
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the following first-order conditions

K ] .
Y Broju (e, xp =Y 0,07 (1, X)), I=d-m+1,...,d, (3.372)
k=1 j=1
J K
al=Y 0,0/, x)-Y Brojuf,xp,  i=1,...m. (3.37b)
j=1 k=1

Similar to the previous discussion, (3.37) only offsets first-order sensitivities of the
portfolio with respect to asset prices and volatility. In order to mitigate replication errors
stemming from the discrete rebalancing, one has the conditions determining the opti-
mal hedging weights by appropriate second-order constraints including second-order
sensitivities corresponding to not just asset prices (Gammas) but also to volatility such
as Vommas and Vannas. Therefore, in case such second-order sensitivities are also taken
into account in the presence of non-hedgeable risk factors such as stochastic volatility,
one can impose the following extra second-order conditions

K S
Y ot uk(t, Xy =Y 0% vl (1, Xy, iles, (3.38)
k=1 j=1

with some arbitrarily chosen index set .#. Note that in this case (3.38) and (3.37a) to-
gether form a linear system of size (d — m +|.#]) x K. Natural choices for the index set .#
include

e #={il:1=<1i=1< m}- diagonal elements of the I' matrix are hedged, corre-
sponding to second order sensitivities of the tradeable assets;

o #={il:1<1i,l < m}-thewholeI matrix is hedged, with cross-gammas included;

o #={il:m+1<i,l < d}-second-order sensitivities with respect to the volatility,
i.e. Vommas, including cross-vommas,

o ¥ ={il:1<i,l < d}- all second-order Greeks with respect to each underlying
risk factor, e.g. including mixed partial derivatives in asset prices and volatilities
Vannas.

We emphasize that the focus above on volatility risk is mere illustration. In fact, the
abstract FBSDE framework allows for the treatment of second-order Greeks of all types.
For instance, one could consider stochastic interest rates and compute the Vera/rhova as
the mixed partial derivative with respect to volatility and interest rate; as long as the cor-
responding risk factor forms part of the Itd diffusion in (3.1). As is made clear by the dis-
crete backward recursion in (3.9), the only type of second-order Greeks where one needs
to take additional measures is derivatives including time, e.g. Charm. Nonetheless, pro-
vided that the time partition used for the discrete time resolution of the discretely re-
flected FBSDE system associated with the portfolio is fine enough, one can approximate
such Greeks by finite difference type approximations.® Therefore, the framework built

4
n-1
tn—Ip-1

o/
ay-a

6e.g. Charm? = —
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on the One Step Malliavin scheme allows for the hedging of all Greeks up to second or-
der, as long as the corresponding risk factors are incorporated in associated discretely
reflected FBSDE.

3.B. MARGRABE FORMULA WITH DIVIDENDS

We have the standard Black-Scholes model (3.36) in which all assets follow a geometric
Brownian motion

dsi/Si=(r—g"dt+o'dw!, 1<i<sm=d.

The Brownian motions are pairwise correlated with a correlation parameter p’/. The
Margrabe formula [107] then gives an explicit, closed-form analytical expression for the
price of a European type contract whose payoff is as follows

k kj ol
g(1,8) =[Sy — KM s71,

at some terminal time T, where the parameter K*/ is an exchange strike. The price of
such a contract then satisfies

CHi(1,5) = e " TIskD(dl (1,9) - ¥ T KM sl (1, ),

where ® denotes the standard normal cumulative distribution function and

k
kj 1 t kjy2
da,” (t,S) = 1 . Pi— Do) T-1n|,
1 (69) kam(n(kaSi)+(q] it (@2 )

dyl (1,9 = d’ (1,8 —o¥IVT 1,

okl = \/(Uk)2 + (02 =20k gkal.
Straightforward computations lead to the first-order derivatives satisfying
0xCri(1,9) = e~ T=00(ak (1,8)), 8;C*(1,8) = —e ¥ TV kR 0@k (1,$)).
Further differentiation yields the second-order derivatives

o= k(T=1) gb(dfj(t, )
okiNT—1 S{ '

e~ 1T ¢l (1,9)
okivT—t Sk

2 kj 2 kj
02,.CH(t,8) = : % CM(1,9) = -

e~ 91T Krig(dyl(1,9))
okivT—t Sk '

e~ %T-0 Kkig(dy’ (1,8))
okivVT -1 S{ '

2 ~kj _ 2 ~kj _
0%,CM 1,9 = & ,CMt,8) =

where ¢ is the standard normal density. Note that 6? «C ki(t,8) = aijc ki(t,s).
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Figure 3.6: Example 2 in (3.36). Increasing early exercises rights, from Bermudan to American. PnL densities
for several rebalancing frequencies. Left: delta hedging 3.3, right: delta-gamma hedging (3.12). Dotted vertical
lines corresponding to VaRgs.
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Figure 3.7: Example 2 in (3.36). Comparison on dimensionality, increasing number of underlying assets. PnL
densities for several rebalancing frequencies. Left: delta hedging 3.3, right: delta-gamma hedging (3.12). Dot-
ted vertical lines corresponding to VaRgs.
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Figure 3.8: Example 2 in (3.36). Comparison on dimensionality, increasing number of underlying assets. Con-
vergence of VaRgs against the discrete number of rebalancing dates in (3.2) and (3.11).
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(c) Case 3: varying early exercise rights, mixed moneyness

Figure 3.9: Example 3. PnL densities for several rebalancing frequencies. Left: delta hedging (3.3), right: delta-
gamma hedging (3.12). Dotted vertical lines corresponding to VaRgs.
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4.1. INTRODUCTION

In this chapter, we are concerned with the numerical approximation of a system of cou-
pled forward-backward stochastic differential equations (FBSDE) over a finite time in-
terval [0, T]

r t

Xi= x0+f b(s, Xs, YS,ZS)ds+f o(s, Xs, Y5)dWs,

0 0 41)

T T (4.

Y; = g(Xr) +f f(sr Xs, Ys, Zs)ds_f ZsdW,
t t

where b : [0, T] x R? x R7 x R9*" — RY, g : [0,T] x R x RY — R*™ f:10,T] x R% x
R7 x R7*™ — RY and g : R? — RY are all deterministic mappings. The equation is
given on a complete probability space (2, %,P), over which {W;}o<r is a standard m-
dimensional Brownian motion, & := {Z}o<< its natural filtration and augmented by
the usual P-null sets. A triple of (R? x R x R9*™) valued, %; adapted stochastic processes
{(X:, Yy, Z)Yo<r=T is asolution if (4.1) holds P almost surely and the processes satisfy nat-
ural integrability conditions, see [161, 104].

The study of FBSDEs was initiated by the seminal paper of Pardoux and Peng [126],
and then extended to coupled equations by Antonelli [6]. Equations like (4.1) subse-
quently attracted widespread attention due to their inherent connections with systems
of second-order quasi-linear partial differential equations (PDE) established by non-
linear extension to the Feynman-Kac lemma, see e.g. [104, 161] and theorem 4.3.1 below.
This probabilistic representation casts FBSDEs to be the natural framework to model a
wide range of problems arising in mathematical finance, physics, biology and stochastic
control. The well-posedness of (4.1) has been rigorously studied and established under
by now standard assumptions, see e.g. [104, 129, 39, 38] and the references therein. Most
of such results rely either on classical solutions of the corresponding quasi-linear PDE
with high regularity or some abstract conditions heuristically associated with mono-
tonicity, small time duration or weak coupling. In the rest of the chapter, we consider
the setting where (4.1) is well-posed and admits a unique strong solution triple.

Solving FBSDEs analytically is seldom possible and one usually has to resort to nu-
merical approximations. In the decoupled framework where b, o in (4.1) do not depend
on Y, Z, one can detach the solution of X, and use the resulting discrete time approxi-
mation in order to approximate the solution pair of the BSDE by sequences of backward,
recursive conditional expectations, we refer to [63, 24, 13, 16, 144]. In the coupled frame-
work, things become more subtle due to the interdependence from the backward equa-
tion into the forward diffusion. Inspired by [102], classical approaches usually consist
of decoupling the forward diffusion by means of deterministic mappings, and iteratively
converging to the unique decoupling field related to the associated quasi-linear PDE,
see e.g. [102, 41, 36, 40, 17, 76]. A common challenge across the aforementioned clas-
sical references is the setting of high-dimensionality. In fact, whenever either d, g or m
are large, these methods suffer from the curse dimensionality and become intractable in
high dimensions. Such settings arise naturally, for instance, in portfolio allocation or cli-
mate risk management. A recently emerging branch of numerical algorithms called deep
BSDE methods and pioneered by [68, 43] addressed this gap, and has shown remarkable
empirical performance in terms of tackling high-dimensional FBSDEs and associated
quasi-linear PDEs. These approaches were first developed for decoupled equations, see
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e.g. [68, 43, 77, 54, 114], and then extended to the coupled framework [69, 4]. For an
overview, we refer to the recent survey [34].

Motivated by their outstanding empirical performance, serious efforts have been
made in order to establish convergence guarantees for such deep BSDE algorithms.
Originally the pioneering paper of Han and Long [69] managed to show a posteriori
bound which depends on the objective loss functional of the machine learning algo-
rithm. Their result was later extended in [87] to the case of non-Lipschitz continuous
drift coefficients, and in [74] to the vector-valued framework in the context of stochastic
optimal control. These works all have in common that they relied on the assumption
of a narrower class of FBSDEs, in fact they considered a special case of (4.1) where only
the Y process enters the dynamics of X, and not Z. Consequently, these convergence
results were inapplicable in the context a wide range of stochastic control problems,
for instance formulated through the dynamic programming principle [132], where cou-
pling occurs in Z. In particular, these works could not provide a theoretical explanation
for the phenomena observed in [4], where they found empirical evidence for the non-
convergence of the deep BSDE method for FBSDEs stemming from stochastic control.
More recently, the authors of [143] proved an a-posteriori error estimate in the frame-
work of McKean-Vlasov FBSDEs. They give a new result for general, fully-coupled equa-
tions even a mean-field term, extending earlier analyses for decoupled equations [15].
Nonetheless, their result [143, corollary 4.5] is based on a different set of assumptions as
the ones considered herein, which is concerned with the framework of [69, theorem 1].

The main motivation of the present chapter is to extend the convergence result of
Han and Long [69] to drift coefficients in (4.1) that depend on the Z process as well. The
main challenge is to handle the error estimate of the X process with extra Z coupling,
which we control by the new estimates established in lemma 4.3.2. This enables us to de-
rive our main result, stated in theorem 4.3.3, which is a posteriori error estimate similar
to [69]. In particular, our work enjoys several relevant features:

* we recover the results of [69] in the limit case of no Z coupling;

* our result is applicable for a general class of FBSDEs, including, but not limited to,
the ones obtained for stochastic control problems stemming either from dynamic
programming [4] or the stochastic maximum principle [85, 74], due to the coupling
of not just Y but also Z in the forward process;

* given a particular FBSDE, we can check whether or not it satisfies the convergence
conditions through a directly verifiable approach.

The chapter is organized as follows. In section 4.2, we give the discrete time approxi-
mation scheme of the deep BSDE algorithm with Z coupling in the drift b. Section 4.3
contains our main result stated in theorem 4.3.3. Thereafter the abstract sufficient con-
ditions of convergence are analyzed in section 4.4. In particular, we show that the as-
sumptions of theorem 4.3.3 hold under heuristic interpretations such as weak coupling
or small time duration. Additionally, we get earlier convergence results [69] as a limit
case of our more general theory. Finally, we demonstrate our theoretical contributions
by several numerical experiments on high-dimensional FBSDEs in section 4.5. These
simulations confirm and showcase our theoretical findings.
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4.2. THE DEEP BSDE ALGORITHM

In this section we formulate the deep BSDE algorithm for FBSDEs as in (4.1), naturally
extending [68, 43, 69] to the framework of Z coupling in b. For the rest of the chapter,
we denote the Frobenius norm by || x|| for any x € R*J, not to be confused with the ma-
trix 2-norm || x||2. Without loss of generality, we work with an equidistant time partition
m:={tj,i=0,...,N|0=1y < t; <--- < ty = T} with h = T/N and study the following dis-
cretization

lg (XX )= |?|, (4.2a)

inf [E[
poeN" 05).CieN 7 0F)
Xg = Xo,

Y{" = o (x0; 04 ),

s.t.] Xi,, = X5 +b(t;, X7, Yy, Z5) h+ o (4, X7, Y] ) AW;, (4.2b)
27 ={i(XT;07),

Yy =Yr = f (6, X0, Yy, Z5) h+ ZE AW,

Tit1

for i =0,...,N -1, where we put AW; := W;,,, — W;,. In doing so, the numerical solu-
tion of a coupled FBSDE (4.1) is reformulated into a stochastic optimization problem
consisting of the minimization of an objective functional (4.2a) subject to the Euler-
Maruyama discretization (4.2b). As in the continuous limit the loss functional (4.2a) at-
tains 0 at the unique solution triple {(X;, Y;, Z:)}o<:<T of (4.1) while also satisfying (4.2b),
itis expected that for sufficiently large NV and sufficiently wide function spaces Jt/()Y, </$/I.Z ,
the solution of (4.2a)-(4.2b) is an accurate discrete time approximation of (4.1). Moti-
vated by universal approximation arguments, see e.g. [71], we set A" (6 ), /% (07) to
be spaces of deep neural networks parametrized by GY,HI.Z fori =0,...,N—1. Subse-
quently, the goal of the deep BSDE method is to solve this non-linear, constrained opti-
mization problem through the training of deep neural networks. Hence, we seek to find
®o(x0;0)) € A and { (X7 ;07) € 7 that approximate Y; and Z;, sufficiently well. The
resulting pseudo-code for the complete deep BSDE method is collected in algorithm 4,
its implementation is discussed in section 4.5.

4.3. CONVERGENCE ANALYSIS

This section is dedicated to our generalized convergence analysis for the deep BSDE
method reviewed in section 4.2 and the discrete scheme (4.2b) for (4.1). In particular,
we will show that the approximation errors of the numerical solution to the FBSDE are
bounded by the simulation error of the objective function corresponding to (4.2a) which
could be arbitrarily small due to the universal approximation theorem. The convergence
analysis follows a similar strategy as that of [69]. We first introduce the standing as-
sumptions and review some useful result. Throughout the chapter we use the notation
Ei[]:=E[|F].
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Algorithm 4 Deep BSDE algorithm

1: Input: Initial parameters (93’ 0 QiZ 0y, learning rate n; batch size M; number of iter-
ations K.

2: Data: Simulated Brownian increments {A Wt(lk)}0< i<N-1,1<k<K

3: Output: Discrete time approximations {()A(’f , Z”)} i=0,..,

4: for k=1to K do > Euler-Maruyama (4.2b)
,(k J(k .nY, (k-1

5. XpW =xo, Y = g (x0; 0

6: fori=0to N-1do

7: Zﬂ,(k) _ (.(Xﬂ,(k),gz,(k—l))

8: XZ+(1/€) Xn (k) + b(t, Xn ,(k) YTE ,(k) Zn (k))h +ol(t, Xn , (k) YJT (k))AW(k)

9: YtJlTJr(lk) YT[ ,(k) f(t Xn ,(k) YT[ ,(k) Zn (k))h + Zﬂ (k)AW(k)

10: end for

;- Loss =3 XM g (X ) - v )2 > empirical (4.22)

122 Opr0,00®, @, ,05%) = (eg - D200 gLk Dy _nvLoss > SGD

13: end for

LY Onm Hmy — 7, (K+1) ,7m,(K+1) —m,(K+1) . _
1 (X7, V7, 27 = (xp oD,y Zmikely o, N-1

Assumption 4.3.1
There exist constants k? and k¥, that are possibly negative, such that

(b(t,x1,3,2) = b(t,%2,y,2) " Ax < kP |Ax]?,
(ft,x,31,2) - f(t,x,2,2) Ay <kl Iayl?.
Assumption 4.3.2

b,o, f, g are uniformly Lipschitz continuous with respect to (x,y,z). In particular, there
are non-negative constants such that

|b(t,x1, y1,21) = b, x2, 32, 22) | * < LI AxI? + LoIA Y12 + L2 Azl
ot x1, 1) = (8, 32, y2)|° < LI IAXI? + LS 1A Y1,
I (631,30, 21) = £ (£, %2, 32, 2)|* < LENARIZ + Lo Aayl? + 214217,
lgen) - gl)||” < LENAx)2.

Assumption 4.3.3
g(0),b(£,0,0,0), f(£,0,0,0) and o(t,0,0) are bounded for t € [0, T1.

Notice that assumption 4.3.2 implies assumption 4.3.1 with k?, k/ = 0. The reason
for allowing for negativity shall be made clear by the forthcoming convergence result,
see points ((3)d), ((3)e) in section 4.4 below. For convenience, we use .Z to denote the
set of all constants mentioned above and assume L is the upper bound of .Z.

Next, we introduce the following system of quasi-linear parabolic PDEs associated
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with FBSDE (4.1),

1 ) . )
v+ Eaxxv‘ 100 (t,,V) + 0,V b (t,x,v,0xva (£, x,V)) + f' (£,x,v,0,v0 (1, X,)) =0,

v(T,x)=gkx), Vi=1,---,q,
(4.3)
The following assumption is needed in order to guarantee convergence of the implicit
Euler-Maruyama scheme in theorem 4.3.2.

Assumption 4.3.4
The PDE (4.3) has a classical solution v with bounded derivatives d,v and 0 ,v, and o is
bounded.

The non-linear Feynman-Kac lemma, stated below, establishes the connection be-
tween (4.3) and (4.1).

Theorem 4.3.1 (Feynman-Kac)
Under assumptions 4.3.2, 4.3.3 and 4.3.4, the FBSDE (4.1) has a unique solution (X,Y, Z),
and it holds that for t € [0, T,

Yt:V(trXt)y Zt:axv(t)Xt)U(t)Xt)V(tth))-

The proof of this theorem can be found in [161, pp. 185-186]. Similar to other numer-
ical methods for coupled FBSDEs, we use this theorem to decouple the original FBSDE
(4.1) in order to be able to exploit standard results from the decoupled FBSDE literature.
In addition to the assumptions above, we need Hélder-continuity in time for the conver-
gence of the implicit scheme for (4.1), as stated below.

Assumption 4.3.5
b,o, f in (4.1) are uniformly H(’)’lder-% -continuous with respect to t.

Our main result in theorem 4.3.3 is concerned with an a posteriori error estimate for
discrete time approximations of the continuous FBSDE in (4.1). A necessary ingredient
in establishing this is to show that an appropriate discretization such as (4.4) below, con-
verges in the number of time steps. This is given in the following theorem.

Theorem 4.3.2 (Convergence of the implicit scheme)

Suppose assumptions 4.3.2, 4.3.3, 4.3.4 and 4.3.5, and let a suitable set of monotonicity
conditions such as in [17] or [143] hold. Then, for a sufficiently small h, the following
discrete-time equation (0 < i< N-1)

XgZXO,
KT = X7+ b, XI, U7, Z8) hv o (13, KT, V) AW,
{ Yr =g(X7), (4.4)
_ 1 _
Zr = E[E,-[YI’LIAWI-T],
YI =K Y] +f(6, X0, Y], ZT) h],
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has a solution {(X’f, Z”)}z =0,..,N, Such thde” € [?(Q,%,,P) and

.....

T
sup ([E[||Xt—)_(f||2]+[E[||Y,—Yt”||2])+f El|Z - ZF | 1dr < C(1+Ellxol) h,  (4.5)
te[0,T] 0

with X[ .= X[, Y[ = Y], Z] = Z[ for t € [t;, t;+1), where C is a constant depending on &
andT.

Remark 4.3.1

We emphasize that the convergence of the discrete time approximation scheme in (4.4)
is only a necessary ingredient in the last step of our main result in theorem 4.3.3. The
objective of the present chapter is to prove an a posteriori estimate — see (4.24) below —
given a deep BSDE approximation, and not to analyze the convergence of an abstract time
discretization. In fact, regardless of the assumptions under which theorem 4.3.2 is stated,
as long as the implicit scheme admits an estimate such as (4.5), the conclusions of our
main result remain the same. Such an estimate can be established by several different
approaches in the literature. For instance, it can be shown that the weak and monotonicity
conditions in [17] can be extended to our setting where the drift function b has an extra
argument Z, see [75]. Alternatively, one could employ the convergence result of Reisinger
et al. in [143, theorem 3.2] for the implicit Euler scheme in the framework of McKean-
Vlasov FBSDEs, which would lead to a different set of monotonicity assumptions. For an
overview on the literature of time discretization results, we refer to [161].

Recall the classical Euler scheme in (4.2b). Taking conditional expectations of the
discrete equation of Yt’;l, and of the same equation multiplied by (AW;)T, we obtain a
formulation that does not include the objective functional (4.22a), i.e.,

XgZJC(),
Xy =X, +b(t;, XL, Yy, ZE) h+o (6, X7, Y] ) AW,

1 (4.6)
Z7 =K (Y7 Aw/],

=E; Y]+ f (6, X7, Y, ZE) h].

With formulation (4.6) in hand, we can derive the following apriori estimate bounding
the difference between two solutions of it.

Lemma 4.3.1
For j = 1,2, suppose ({ t }0<1<N { } <N { 4 }0<i<N 1) are two solutions of
i<

(4.6), with X’” Y’” € L2(Q,%,,P),0
small h, denote

N. Forany Ay >0,A, > LJZC, and sufficiently

Ky=2k"+ M+ LS+ L5h, Kp:=(A7'+R) LY+ L9,

In(1-(2kf +12) h) A ) I
K3 :=— , Ky= , Ci=L)(h+A7").
s h e ), TR
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Let6X; = XZ'I —XZ’Z, JY; = Yt’i”l - Yt’;’z, 67Z; = Zg’l - ZZ’Z, then we have, for0<n<N

n-1 . n-1 .
E[16X,1%]) s Koh Y M1 IVRE(18 Y12 + Ci R Y. M DRE16 2012, (4.8)
i=0 i=0

1

N-1 )
E[16Y;11?] < eSN-DRE[I5YyI?] + Ky Y. SSU"DRE[15X,11%] h. 4.9)

=n
Proof. Let us define
8b; = b(ti,Xg'l, Yg,l,zg,l) — b1, XP2, Y2, 2,
00 IZU(ti,XZ'l, Yg’l) —U(tinZ'Z, ngz);
)1 )1 )1 ,2 ,2 2
8fii=f(tn XP VP 20 - £ (0 X2 Y12 20,

Then we have

0Xiy1=0X;+8bijh+00;AW;, (4.10)
8Y; =E;[0Yis1 +0fih], @10
and (4.6) also gives
1
82; = - [6YiAW]]. (4.12)

By the martingale representation theorem, there exists an %;-adapted square-integrable
process {6 Z} s, <;<y,,, such that

tit1
§Yia1 =Ei [6Yin] + f 52,dw,,
I

which, together with (4.11), implies

i1

L

From (4.10) and (4.13), noting that 6 X;,0Y;,6b;,00; and ¢ f; are all &, measurable, and
Ei[AW;] =0, E; [, Z:dW;] = 0, we have

E[I6X411%] =E[I6X; +8b;hl*] + hE [160:17],

2 2 Liv1 2
E(10Yinl?] = [Jovi-osnl] + [ 18217 ar,

where we also used a Fubini argument. We proceed in steps, controlling each of the
terms above.
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Step 1. Estimate for 6 X,,. By assumptions 4.3.1, 4.3.2, and the root-mean-square and
geometric mean inequality (RMS-GM inequality), we have that for any A, >0

E[16Xi 1] =E[I6X: 1] +E[I16b;1%] h* + RE[I160; 1]
.
+2hE [(b (ti,XZ’l, ngl,zgvl) s (ti,XZ’Z, Y;i"l,zgvl)) 6Xi]
T
+2hE [(b (tl-,XZ’Z, Y;i"l,zg'l) —b (tl-,XZ’z, Y;i"z,zgvz)) 6X,-]
< (1+ (2K + A0 + LS+ L2R) R)E[15X:1°]
(A7 + ) L)+ 15 ) E (1Y) B+ (L2 + AT LY E[16 211 B,
Recalling the definition of C;, K7, K> from (4.7), we subsequently gather
E[I16Xi11%] = (1+ Ky WE[I6X;11?] + K2 hE [I8Y;lI?] + C1RE[16 Z;11%] .

Notice that E [||6 Xo IIZ] =0, and thus by induction, we have that foranyl <n < N,

n-1 n-1 .
E[16X,017] = [T+ KiWE[I6XolI*] + Y 1+ Ky KE[I8Y; %] h
i=0 i=0
n—1

+ Y A+ K" TICE[I6Z 12 h
i=0

n—1 . n-1 .
<koh Y MUTTVIE(6Y 2]+ Cih ) e VRE[162:1%],
i=0 i=0

where we used the inequality (1 + x) < e¥, Vx € R. We remark that due to the coupling of
Z in the drift, the last term of the right-hand side above is not present in [69].

Step 2. Estimate for §Y,. We employ a similar approach as in step 1. Using assumption
4.3.2 and the RMS-GM inequality, we obtain for any 1, > 0,

Tiv1
E[16Yi4117%] z[E[||6n||2]+f E[162,1%]dt (4.14)

.
—2hE [(f(ti»xil'”, Yil,n,Zil,n) _f(ti;Xil’ny YiZ,n,Zil,n)) 5Yl]
.
~2hE [(f(t,—,xilrﬂ’ V27, Z207) - f (6, X327, 727, 727)) m_]
Liv1
z[E[||6n||2]+f E[I6Z,1%] dt —2k/ hE[16Y;11?]
t.

1

= (A2E (1512 + 25" (LLE [16:12] + LLE[16Z:11] ) .

To deal with the integral term in the last inequality, we derive the following relation via
Ito’s isometry, (4.13) and (4.12)

1 Tiv1
0Z; =—E; [f 5tht].
h t
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Then, by the Jensen- and Cauchy-Schwartz inequalities and the Fubini theorem, we de-
rive a lower bound for the integral term

m q m Tit1 2
E[16Zi12]h=Y Y E[62)%]h= 3PS E ([E,- U (6Zt)j,kdt]) ]
j=lk=1 j=lk=1 Li
9 m Tit1 2
< Z Z E (f 6Z1); kdt) (4.15)
qg m tiv1 tis
< Z Zf [E[(SZ,)]k]dt_f E[152:1]

where (-) j  denotes the (j, k)-entry of the matrix. Combining (4.14) with (4.15) gives
E[16Yi11%] = (1= (2K + A B)E[16YiI?] + (1= 127" E [15.2:12] h (4.16)
~ LA E[16X:12] R
Now, for any A, > L/ = 0, and sufficiently small / satisfying (2k/ + A2) h < 1, this implies
E[16Y:12] < (1- (2k + 1) h)_l (E[10Yier 1] + LEAZ E[16X:12] ).
Recalling the definitions of K3, K; in (4.7), we subsequently gather by induction that for

any0=sn=N-1

N-1 )
E[16Y,)1?] < SN -PRE (15N I2] + Ky Y. SRR 15X,117] b
i=n
We remark that this estimate coincides with the one of [69, Lemma 1].

O

Due to the coupling of Z in the drift coefficient of the forward diffusion, we need an
additional estimate to handle the extra E[||§ Z; 2] term in the estimate for E[||§ X; I1%]. One
of our main contributions is to establish the following lemma for this purpose.

Lemma 4.3.2
Under the setting of lemma 4.3.1, for any A3 > 2mL£ and sufficiently small h, let us define

Cr=2((h+ ;DL +23), Ca=2(h+A5Y), Ci=(1-mGL)'m. @17

Then we have C4 > 0, furthermore, the following estimates also hold

E[16Y;1%] < 0+ CoE[IE; (6 Y1117 (4.18)
+C3hLLE (16X 1%] + CshLLE[16Z:17],
N-1 N-1 f
hY EN6ZiI*) < Cy| Y, CohE[IE; [6Yi1l%] + CshLLE[116X;11%] (4.19)
i=0 i=1

+C4E[I6YNIP].




4. GENERALIZED CONVERGENCE OF THE DEEP BSDE METHOD: A STEP TOWARDS
130 FULLY-COUPLED FBSDES AND APPLICATIONS IN STOCHASTIC CONTROL

Proof. We take the squares of both sides of (4.11) and use the e-Young inequality to get

)

18 1% < (1 + Ash) IE; [8 Vil I? + (1 + Ash) ™1 | S £

which holds for any A3 > 0, independent of i > 0. Taking expectations on both sides and
using the Lipschitz continuity of f established by assumption 4.3.2 yields

E[I5Y:1%] = (1 + Ash)E[IE; (6 i) I?] + (h+ 25 ") hE [ 6]
< (14 ASME[IE; (6 Y51 117] + (h+ A3k (LLE [16X:12] + LIS Vi )
+LLE[162; ||2]).
Therefore by a rearrangement
(1— (h+ A3 RL)E[16Yi11%] <1+ AshE[IIE; [6 Y1112
+(h+ A3HRLLE[16 X1 + (h+ A5Y) RLLE[16.Z:1%] .

Consequently, for any A3 > 0 and sufficiently small %, we obtain the following estimate,
fori=0,1,...,N-1

E[I6Y;12] <(1+ Coh)E [IE;[6Y41111?] + CshLLE[16X12] + CshLIE[I16Z;1?],  (4.20)

where we used the definitions in (4.17). This proves (4.18).
Next, we derive the estimate for Z. Recalling the definition in (4.12), we get

h6Z; = E; [8Yi AW = E; [(0Yis1 —Ei [8Yia D AW, ].
Taking the Frobenius norm on both sides and applying the Cauchy-Schwartz inequality
then yields
h18Z;ll = |Ei [(8 Vi1 —E; [6Yia D AW, ]|
1 1
< (E: (151 —Er18Yia112])? (E: [ awT ] )?
1
= (E: (16 Yis1 —E; [6Yii111%])2 (hm)?,
which leads to
RE[16Z:1] < mE [16Yi1 — E; 6 Vi 11?] = m (E[18 Vi1 IP] — E[IE; (8 Yi1111%]).

Summing both sides from 0 to N — 1 and using the estimate (4.20), we gather

N-1
A ]<mz (E[18 Y1 1%] —E[IE; [8Y11117])
i=0

mN_l( E[I6Y:1?] —E[IE; [6 Vi1 11%]) +E[I6YnII?] = E[IIEo 6 Y111I7]

Il
Il
—

2

m ) (E[I8Yil*] ~E[IE; 18Yia]I°]) + mE [16YnI]

IA
~
I
L=

=m

MZ

(Cgh[E[II[E (6Yia1I?] + CshLLE [16X;1%] + CshLLE [16 217

,_.

i=
+mE[II8YNI?].
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Recalling C4 in (4.17), it is easy to check that for any A3 > 2mL£ and sufficiently small
h >0, we have C4 > 0 and therefore

N-1 N-1
hY E[I6ZiIP]<Cs Y (czh[E[||[Ei[6Y,-+11||2] + CshLLE[I8X; ||2]) +C4E[I6YNI?].
i=0 i=1

Remark 4.3.2

As shown in the proofs of lemma 4.3.1 and 4.3.2, the constants Cj, j = 1,2,3,4 appear
because of the Z coupling in the drift. Conversely, the constants Kj, j = 1,2,3,4 are present
even in the less general case of only Y coupling, and they are consistent with [69]. In order
to emphasize the difference, we denoted these by different letters.

With these auxiliary results, and particularly lemma 4.3.2, we are ready to state our
main result, an a posteriori error estimate, generalizing the convergence of the deep
BSDE method.

Theorem 4.3.3 (Convergence of the deep BSDE method)
Suppose assumptions 4.3.1-4.3.5 and let the conditions of theorem 4.3.2 hold. Define

. KT _
_ = - =€ 1
Bi= e RIN LGy Gy

Ky

+emCRINE CuIE 1+ AR, @2D)

] . R ( (kok
A= (L§(1 +AgeKirka)T 24 (e(K1+K3)T - 1)) (4.22)
K+ K3
o _ l_e—(I_(1+I_<3)T _ o 1_e—I_(3T
X (I—B) ! K2*+emax(_KlT'0)C1C4C2_— ,
K+ K3 K3

where K :=1limj,_¢ K, C; :=1limy_( C; for j =1,2,3,4. If

inf max(B, A) <1, (4.23)
/11 >0,A.2 >L£,A3 >2mL§,A4>O

then there exists a constant C > 0, depending only on Elllxoll2), %, T, A1, Aa, A3 and Ay,
such that for sufficiently small h, it holds that

T
sup (E[I X, — X711 +El Yt—Y;’||21)+f0 EllZ, - ZF|1%1dt (4.24)
tel0,T]

< C(h+Ellg(X7) - YFI?),
where X[ = X7, V] := Y[, 2 := Z] for t€ [1;, ti11).
Proof. Let XZ’I = X7, Yg'l = Yt’i’,ZZ'1 = Z[' given by the Euler scheme (4.2b), and XZ’Z =
)_(Z, Yg'z = Yt’i’,ZZ’Z = ZZ given by implicit scheme (4.4). Both of them solve (4.6), and

therefore we can apply lemma 4.3.1 to bound their differences. In what follows, we use
the same notations as in the proof of lemma 4.3.1.
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First, using the RMS-GM inequality, for any A4 > 0 we get

E[16YnI*] = E[lig(XT) - YT I%] (4.25)
< L+ ADE[Ig(XP) = YT IP] + LE(1 + ADE[16 XN 11%].

Let

Z = max e MME[5X,12], ¥ = OmaxNeK3”h[E[II6Yn||2]. (4.26)
=n<

0snsN

K3nh o)

From estimate (4.9) in lemma 4.3.1, we derive the following by multiplying with e n

both sides

eSE (15, 117]

N-1
<eSTE[16 VNI +Ka Y. eSE[16X,11%] h

=n

N-1
<eST((L+ A E[Ig(XF) = YEIP] + L8+ ADE[I6XNI?]) + Ky Y M E[16X;1%] 1

i=n

N-1 )
<L+ ATHE[Ig(XT) - YFIP] + [ LEQ + 1) eM1HIT L g 3 eKitKalihp | o,

i=n

where we used the definition of & in (4.26) and the estimate (4.25) in the last inequality.
Maximizing over n subsequently yields

& <eBTa+ A ME[Ig(X) - YR 4.27)
eKi+K3)T _q

g (K1+K3)T
+|L5(1+Aye +K4h—e(1<1+1<3)h_1 x.

We approach 6 X;, in the same manner, and from (4.8) collect

n-1 . n-1 .
e MME(15X, 1% < Kz Y e FHDRE[15Y; 12 R+ Cp Y e K DRE15 2,012 1
i=0 i=0

n-1 n-1
SKZ@ Z e*Kl(lJrl)h*K(;lhh_{_ Cl Z e*K](lJrl)h[E[”aZi"Z] h
i=0 i=0
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Additionally, from (4.18) and (4.19) we get
n-1 X
Cl Z e—K1h(l+l)[E [”5Zl ”2] h

i=0

N-1
<em>CKTO 0N E (152,12 h
i=0

< emaX(—Kl T,0) Cl C4

N-1 N-1
Y GRE[16YiI?]+ Y CshLLE[16X:1%] +[E[||6YN||2])
i=1 i=1

<eM&EKRTO e o p

i=1 i=1

N-1 ) N-1 )
G Z efK3(t+1)h@+C3L£ Z eKiihgr

+emX AT GE[15 YN ]

KT _q feKlT_l

o
<e™CRTOC cyn (cz e — a1 L

e~Ksh—1 xeKIh—l‘%)

+ RO o CEI8 YN I?],

where we recall the definitions in (4.7) and (4.17). Combining these inequalities and

applying estimate (4.25), we obtain the following by maximizing over n
e—(K1+K3)T -1 -K3T _ 1

e
X <KW he K1l + MR 0 0 hCye KBl

e—(K1+K3)h — 1 e—K3h — 1
KT _

1
+ eI L ey + eI L 4 A T (42D

+ KT 0 4 A7 )E [ lg (x7) - Y}T”Z] .
In order to simplify the expressions, we define

(K1 +K3)T _
e 1
Ar(h):=efTa+ /1;1), Az(h) = LE(1+ Ag)e KT L gy

T 4.29)
—(K1+K3)T_ 1 —K3T_1
— -K1h€ ._ max(-Ki T,0) -K3h €
A3(h,) = the e_(K1+K3)h—l’ A4(h) =e C1C4C2he e_K3h—1’

KT
e -1
As(h) = e™XCKTO 0 0o f hm, Ag(h) = ™R TOC 0, 181+ 14)eM T,

A7(h) = XK TO 0 0 a4+ A0h.
Consequently, (4.27) and (4.28) read as follows
@ < ME (g (xF) - 7 *| + Aatwz, (4.30)

X = 3MY + Ay(WY + As(WX + As(WZ + A7(WE [||g (X2 -Y7|*|. @31

Next, we solve (4.30)-(4.31) such that % and & are both controlled by E[|| g(X;E) - Y;‘ 121.
Let

B(h) = As(h)+ As(h), A(h):= Ay(h) (1— As(h) — Ag(h)) ™" (As(h) + Ag(h).  (4.32)
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Whenever B(h) < 1, rearranging the terms in (4.31) yields
& = (1= As(h) - As() ™" ((As() + Au(h) W + A7 (E || g (XF) - V7 *]).  @39)
Additionally, if also A(h) < 1, we can derive the following by substituting (4.33) into (4.30)
@ < (1= A (A1) + Az () (1 - BUD) ™ Az()E [ g (xXF) - 7). (4.34)
From (4.7) and (4.17), we directly collect the limits

Ki=2kP+M+LS, K=AT'Lb+19, Re=2kl+1s, Ri=L[2;', (435)
m

Ci=A'LE, Gr=203"L+43), Cy=223", Cr=————
1-2mL;A3!

Consequently, from (4.29) we directly have

=BT+ A, Ay =150+ AT (oK) a36)

I_<1+I_<3
. 1-e (R+R)T - R
Ag =Kh——, Ay= emax(_Kl 7.0 Cl C4C2 _—,
K+ K3 K3
i RTO) A & A fef(lT_1 i RT0 & A RJT
A5=emax(_ 1 ’)C1C4C3Lx 7 , A5=€max(_ 1 ’)C1C4L§(1+/14)e L
1

Ag = e™XCRTOE ¢y 14251,

with the convention Aj =limy,_gA;h), j=1,...,7. 1f Kj <0 the expressions above hold
only for sufficiently small % such that Kj < 0. Using the definitions in (4.32), it is straight-
forward to check that limy,_.o B(h) =: B and limj,_.q A(h) =: A, given by (4.21) and (4.22),
respectively. From (4.26), we get

max E[[16X,[%] < e™@&T0q  max E[I5Y,|°] < e™™KT0g  (4.37)
0<nsN 0snsN

with K7, K3 defined in (4.7), both depending on k. When B < 1 and A < 1, we have that
for any sufficiently small & (4.34) holds true. Hence, combining (4.34) with (4.37), we
derive that for any sufficiently small i

(max E[I6Y,1°] = Ch, A2, A3 A E || g (X7) - Y7 | (4.38)
with a constant independent of &, depending only on the limits defined in (4.35), (4.21),
(4.22), (4.36), and thus implicitly on 11,15, A3, A4. Similarly, when B, A < 1, combining
(4.33) with (4.34), we also have that for any sufficiently small i

max E[I6X,]1°] = € (1, Az, A0, A E | 8 (XF) - ¥7 ] (4.39)

for a constant determined by (4.36) which is independent of k.
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In order to estimate E[||5Z,|1%], we consider (4.16) from the proof of lemma 4.3.1.
Notice that 1 — L£ /A2 > 0 since we require 1, > L =0, then by rearranging the terms in
(4.16) we obtain

-1
E(16Zi12 h=(1-L2A3") (LAAZ (16 X012 h+ E (16 Y301 12] ~E[16Y;1?]
+ (2K + 2o ) RE[16Yi11] ).
Summing from 0 to N — 1 and taking the maximum on the right hand side, we gather
N-1

—_ 71 -
Z (162112 (—Lﬁazl) (L§A21T02}11XN[E[||5X,1||2]

+ (max(@k! + 22)T,01+1) max E[I5Y,]?]) ©440)
0=n=N

< C(h, A, A3, AE | g (X) - V7|

using (4.39), (4.38).
Finally, combining estimates (4.39), (4.38) and (4.40) with the convergence of the dis-
crete time approximations such as in theorem 4.3.2, we prove our statement. O

4.4. INTERPRETATION OF THE CONDITIONS IN THEOREM 4.3.3
In this section, we apply theorem 4.3.3 to special cases of FBSDEs and discuss how the
conditions change depending on the coefficients in (4.1). Furthermore, we illustrate the
role of the abstract conditions imposed by (4.23), and discuss several important heuristic
settings under which they are satisfied.

(1) Decoupled FBSDE

In this case, Lb Lb L" = 0, which immediately implies that B = A =0, since both
C;=0and K, =0. Estlmates (4.33), (4.34) then reduce to

2=0, @ =P g () - VI

Consequently, the total errors in the SDE reduce to those of the Euler-Maruyama dis-
cretization from (4.4), whereas for the BSDE part an a posteriori error term remains in
(4.24).

(2) Coupled FBSDE with only Y coupling

In this case Lé’ =0 and therefore C; = 0. We remark that we fully recover the result of [69]
in this setting, in particular

_ L _ ,—(K+K3)T

B=0, A=(L§(1+19e® T, & 4 (eRrR)T _ 1))(1‘@%),
K1 + K3 Kl + Kg

where the condition B < 1 becomes redundant and is automatically satisfied, whereas A
has the same expression as the one derived in [69]. Moreover, we recover the weak and
monotonicity conditions as in [69, remark 6], which guarantee A<l1.
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(3) Coupled FBSDE in general as in (4.1)

This is the general setting we considered throughout this chapter corresponding to (4.1).
In order to guarantee that the conditions of theorem 4.3.3, and in particular (4.23) are
satisfied we need certain requirements about T, the constants in £, and choose 1}, 12,
A3 and A4 in an appropriate way. Recall that B = B(A1,12,13,A4) and A= A(A1, 12,13, 4)
are functions of all As, defined by (4.21) and (4.22), respectively. We divide the discussion
into the following five cases which all have important physical interpretations.

(a)

(b)

(©

(d)

Small time duration. Suppose all other constants, A, 13 and A4 are fixed. If T > 0
is sufficiently small, we can choose, for instance, 1; =1/ VT which implies that B is
sufficiently close to zero due to the factors C; and K71, Similarly A is sufficiently
close to zero as well, due to the scaling factors Ky, 1 — e"®1+K)T & 1 — ¢K7 in the
last term of (4.22). Therefore (4.23) is satisfied for sufficiently small time durations
T.

Weak coupling from BSDE to SDE. Suppose all other constants, 11,12, 13 and 14 are
fixed. If L > 0, L? > 0 and L > 0 are sufficiently small, then so are the factors C,
and K;. Notice that B is scaled by C1, and for A, the last term in (4.22) is scaled by
both C; and K>, and therefore both A and B are sufficiently close to zero and (4.23)
holds.

Weak coupling from SDE to BSDE. Suppose all other constants, 11,13, A3 and A4
are fixed. If I8 > 0 and L, > 0 are sufficiently small, and additionally L? > 0 is
sufficiently small as well, then both B and A could be sufficiently close to zero, due
to the scaling factors L£ ,Cr and L in B, and L¢ and K, in the first term of (4.22) for
A. Consequently, (4.23) is satisfied.

Monotonicity in b. Suppose all other constants, A3 and A4 are fixed, k¥ < 0 is suf-
ficiently negative and L? > 0 is sufficiently small. We set 1; = —2k” —e > 0 which
implies Kj = —e+ L9 < 0 is fixed for any chosen € > LZ. Then, B could be sufficiently
close to 0 since Kj < 0is fixed and C; = A7 LY could be sufficiently small. For A, we
directly compute from (4.22)

i (1_ 31| max(-K,T,0) & A~ A 1-e T g (Ri+K3) T
A=(1-B) |e C1C4C2—I_< L5+ Ag)e
3

_ _ KT % _
Lo -RiITO G 6, 6l ( Ky (e(K1+Ka)T_1)) (4.41)
K3 K+ K3
e(f(1+K3)T_l o e(K1+I_<3)T+e—(I_<1+I_(3)T_2)

+ 50+ MK ——— + KGK _—
* R K1 +K3 2 (K1 + K3)?

Let us first consider the last two terms in (4.41). Notice that we could fix some
sufficiently large € > L7 and A, > L such that Ky + K3 = —¢ + LI+2kl + A, <0'is
fixed and negative enough, and the penultimate term is sufficiently small because
the fraction term is decreasing in K; + K3 and 1, is sufficiently large. The last term
could be sufficiently small as well, since K + K3 is fixed and K, = Lf /A5 can be
sufficiently small by choosing a large enough A,. For the remaining first two terms
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in (4.41), notice that K + K3 is fixed, and for the previously chosen A5, K3 is fixed as
well, then both two terms are scaled by C; with a sufficiently small Li’. Combining
all these arguments we have A <1 and conclude that (4.23) is verified.

(e) Monotonicity in f. Suppose all other constants, Ay, 13 and A4 are fixed. If k<o
is sufficiently negative, and L > 0 is sufficiently small, then it is easy to see that
B could be sufficiently close to 0 due to the scaling factor C; = /11‘1ng and the fact
that B does not depend on k/ and A,. To deal with A, we set 1, = —2k/ — ¢, where
€ > 0 is chosen such that K; + K3 = 2k + Ay + LY — e < 0 is negative enough and
the penultimate term in (4.41) is sufficiently small. Since now Kj + K3 and K3 = —¢
are fixed, the remaining three terms in A are all scaled by C; and therefore we have
A <1 guaranteeing (4.23).

(4) Coupled FBSDE with b only depending on Z

In this case L? = 0. However, all constants I_(j, C’j for j =1,2,3,4 defined in (4.7), (4.17)
are not zero in general, and therefore the conditions fall back under the general case
discussed above. Even in a more special setting with L? = L‘; = Lfvc =kf =0, ie when
there is no Y coupling in neither the forward nor backward equation, the conditions do
not seem to be easier to satisfy. Specifically, we have K, = 0 in this special setting and
consequently there will be one term less in A given by (4.22), but the expression (4.21)
for B remains unchanged as it does not depend on K. On one hand, this reduces some
efforts due to the missing term in A, for example, we do not take care of the last terms
discussed in ((3)d) as they vanish. On the other hand, as kf = 0in this special case, we
lost one possible way to make the conditions hold, i.e. ((3)e) does not apply anymore.
In overall, we conclude that coupling in Z, even in the special cases mentioned above,
induces the need to treat the conditions in theorem 4.3.3 under the general framework
established by our convergence result.

Remark 4.4.1

The above five cases in (3) may be viewed as a generalization of the weak and monotonic-
ity conditions stated in [69, 17]. One should note that, because of the extra Z coupling,
we have to pay an extra price in establishing these five cases, e.g., we need to choose As
appropriately instead of fixing them as constants as in [69], and in particular, we require
LY > 0 to be sufficiently small for (3)c, (3)d and (3)e.

Remark 4.4.2

In [69, remark 2], it is claimed that it is general to consider drifts which only depend on
X and Y but not on Z, since, by an appropriate change of probability measure, one can
always reformulate (4.1) into an equivalent FBSDE whose drift is independent of Z yet its
solution coincides with the same quasi-linear PDE. However, we find that there are several
important issues with this statement both theoretically and numerically:

(1) such approach would change the probability measure under which X is simulated,
consequently the training of neural networks would be carried out in a different
spatial region, and therefore the algorithm may have poor accuracy around the area
of the domain of interest;
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(2) it is common that the reformulated FBSDE does not satisfy the theoretical assump-
tions needed for convergence while the original one does. For instance, a linear z
term in b would result in a quadratic term in the reformulated driver, which vio-
lates the assumptions of Lipschitz continuity. We illustrate this through Example
4.5.1in section 4.5 below. Therefore, we believe our theory is a necessary generaliza-
tion to [69] and it is applicable to a wider class of FBSDEs;

(3) with the same approach, one could remove the entire drift to the driver, and simulate
a reformulated FBSDE with zero drift, but this, for the two reasons above, is rarely
done in practice.

Finally, let us derive a lower bound for B in (4.21) by computing the infimum of B
over all possible choices of As. Notice that B does not depend on A, decreases in A3 and
increases in 14, and therefore we shall mainly look at ;. Let

By = inf B. (4.42)
A1>0,A3>2mLL 14>0

1) IfA; = max(—Zkb —L7,0), then B admits a unique stationary point along the 1,
direction, and

— b - o —
By=mLPL8eRK T HIDT  arg inf B =(1/T,+00,0).
A1,A3,M4

2 Ifo<A < max(—2k? — L7,0), then B is convex in A; but there is not stationary
point in this range, and

i b ;
By=m——2 18, inf B=(-2k?-1%, +00,0).
(=M gl g, b B x¥e00)

This result is particularly useful in practice and can serve as a preliminary test for the
convergence of a given FBSDE. In fact, given an equation and all its relevant Lipschitz
constants, if we find B, = 1, then we know that the conditions of theorem 4.3.3 cannot
be satisfied and that the deep BSDE algorithm is less likely to converge. On the other
hand, if By is less than 1 or in particular even close to 0, we may check if A < 1, which can
be solved efficiently by a numerical constrained minimization method ranging different
/11, /12, /13 and 14.

4.5. NUMERICAL EXPERIMENTS

We implemented the deep BSDE method in TensorFlow 2.9. The errors correspond to
the discretized version of the left hand side of (4.24) and are defined as follows

error(X) := max [E[”XZ—XM ||2] , error(Y):= max E
0<nsN 0<ns<N

192 v, 7],

N-1
error(Z):=1/N ) E
n=0

|27 -z, ||2] ., total = error(X) + error(Y) + error(Z).
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We also define relative L2 approximation errors by error(X)/E[|| X;, 2] and similarly for
Y, Z and total errors. In what follows, the true expectations are approximated over a
Monte Carlo sample of size 2'2. Given a classical solution to the corresponding quasi-
linear PDE used for decoupling, we gather a reference solution to the associated FBSDE
(4.1) by an Euler-Maruyama simulation with N’ = 10* time steps, in order to guaran-
tee that the time discretization error of the reference solution is negligible compared to
the approximation errors incurred via the deep BSDE method. In all experiments below,
we use neural networks with hyperbolic tangent activation, an input layer of width d,
2 hidden layers 30 + d neurons wide each, and an output layer of appropriate dimen-
sions depending on the process approximated. As an optimization strategy, we use the
Adam optimizer with default initializations and a learning rate schedule of exponential
decay, starting from 1072 with a decay rate of 1072. For a fixed N we perform 2'* SGD
iterations, and for each iteration we take an independent sample of 2!° trajectories of
the underlying Brownian motion. All experiments below were run on an Dell Alienware
Aurora R10 machine, equipped with an AMD Ryzen 9 3950X CPU (16 cores, 64Mb cache,
4.7GHz) and an Nvidia GeForce RTX 3090 GPU (24Gb). In order to assess the inherent
stochasticity of both the regression Monte Carlo method and the SGD iterations, we run
each experiment 5 times and report on the mean and standard deviations of the resulting
independent approximations. All operations were carried out with single precision.

4.5.1. EXAMPLE 1

The following example is a modified version of the one in [17], where in order to demon-
strate our theoretical extension we include Z coupling in the drift of the forward diffu-
sion. The coefficients of the FBSDE system (4.1) read as follows

d
b(t,x,y,2) = Kyoylg +1<zzT, ot,x,y)=0yly, gkx)= Z sin(x;), (4.43)
i=1

d
ft,x,y,2)=—ry+1/2e7" 70523 sin(x;))?

i=1

d d d
-Ky ) zi— Ky ae 3rI-n Y sin(x;) Y cos®(x1),
i o1 i=1

with g = 1,d = m. The analytical solution pair to the backward equation is given by

d d
y(t,x)=e "I Y sin(xy), zi(t,x)=e 2T 0G( Y sin(xj)) cos(x;).  (4.44)
im1 i=1

We note that the equation above falls under the theoretical assumptions of section
4.3. In particular, we get the following set of values for the corresponding constants
If = d, 1} = 2(x,0)%, LY = 22, 1§ = d6?, L} = 3/2d(362d? 12 + 2k .5d)?, I, = 18r2, L) =
3.6d1<§,, kI = —r,k? = L9 = LZ = L’ = 0. We consider the equation in d = 10 dimensions.
The strength of coupling is determined by the values &,,x,x ;. In order to satisfy the
sufficient conditions of theorem 4.3.3, we put r = 1,6 = 0.1,k = 10"!,x, = 1072 and
T =0.25,Xp = (n/4,...,m/4). Convergence results are collected in figure 4.1. Figure 4.1a
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10
103
102
10!
10°
1071
1072

(a) B, A as functions of 1, for given (A2,13,14) in case of (4.43). Dotted vertical
red lines mark the endpoints of the interval where B, A < 1, and the shaded red
area the subset of the plane where the sufficient conditions of theorem 4.3.3 are

satisfied.
—1_- * Xi loss
10
] An Yl total O(hO?)
107%1"
L T
04
10°

(b) Convergence in N. Empirical convergence rate in labels. Dotted black line
indicates the expected @ (h) rate predicted by theorem 4.3.3.

Figure 4.1: Example 4.5.1. T =0.25,Xo = (n/4,...,7/4).
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shows that the conditions of theorem 4.3.3 are indeed satisfied, there exists a quadruple
(11,12, A3, 4), such that B, A defined by (4.22), (4.21) admit max(B, A) < 1. In particu-
lar, for the fixed A5, A3, 14 we mark the interval of admissible 1;s such that the sufficient
conditions are satisfied within the shaded red area. Figure 4.1b depicts the convergence
of the deep BSDE method. Its most important implications are as follows. The conver-
gence is only guaranteed in a posteriori sense. In fact, as can be seen the convergence
only shows the expected & (h) behavior whenever the loss function corresponding to the
last term of (4.24) is dominated by the discretization error. In particular, for N € {50,100}
we see that the approximation errors of Z begin to stall and the total approximation er-
rors are dominated by the loss function. This indicates that for very fine time grids one
needs to make sure that the loss is appropriately minimized when trying to recover dis-
cretization errors. Given the global minimization structure of the deep BSDE method the
corresponding optimization problem becomes more difficult with an increased number
of time steps. This demonstrates a clear trade-off between discretization and optimiza-
tion, which is fully explained by theorem 4.3.3 and should be carefully considered in
applications. Nevertheless, we get an empirical convergence rate of @ (h%?) for all time
points, and accounting for the reasoning above we recover the predicted rate of our con-
vergence analysis.

Furthermore, let us return to remark 4.4.2. In particular, Han and Long in [69, Remark
2] claim that the setting of Z independent drift is general, since, due to the connections
with the associated quasi-linear PDEs, one can always move the Z dependence from
the drift to the driver. In order to complement our arguments against this reasoning in
remark 4.4.2, we provide a numerical demonstration of the points raised therein. One
can derive a reformulated FBSDE system which is decoupled in Z and whose solution
will coincide with (4.44). This equation has a modified drift and driver

b(t,x,y) =x,6yla, f(t,x,3,2)=f(t, %12 +x1z1*/@GY), (4.45)

whereas the rest of the coefficients remain the same as in (4.43). First, notice that even
though (4.43) satisfies the theoretical assumptions of theorem 4.3.3, the reformulated
FBSDE (4.45) does not. In particular, f is not Lipschitz continuous in y,z which ren-
ders the results of theorem 4.3.3, or [69] as a limit case, inapplicable. This demonstrates
point-(2) from remark 4.4.2. Nonetheless, as our convergence analysis only gives suffi-
cient conditions one can still run the deep BSDE algorithm and find satisfactory results
without theoretical guarantees. Table 4.1 shows that for equation (4.45) this is not case.
Running the algorithm on the reformulated FBSDE (4.45) results in diverging errors. In
fact, due to the singularity arising in the driver f, the backward equation blows up as
N increases, which results in the forward equation also exploding due to the coupling.
On the contrary, the original equation (4.43) with Z coupling converges as predicted by
theorem 4.3.3 and also illustrated by figure 4.1. This observation demonstrates point-(1)
from remark 4.4.2 and implies that the Lipschitz features in our analysis are crucial also
in practice, in order to avoid such explosion of the coupled forward diffusion. This is in
line with related results in the literature, see [17, pg.170]. Overall, we conclude that the
framework of Z coupling in the drift cannot in general be circumvented neither theoret-
ically nor numerically, and one needs to rely on our convergence result in theorem 4.3.3
instead.
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Table 4.1: Comparison on the convergence of the deep BSDE algorithm between (4.43) and (4.45). Numbers
correspond to the mean(std.dev.) of the total approximation errors of 5 independent runs of the algorithm.
T=0.25Xo = (n/4,...,m/4).

N | 1 5 10 20 50 100
total-Eq.(4.43) | 1.49e—1(3e-3) 1.28e-2(3e—4) 5.5e-3(2e—4) 2.86e—3(5e-5) 2.02e—3(4e-5) 2.16e-3(6e-5)
total-Eq.(4.45) | 1.52e—2(3e-3) 4e+2(2e+2) 2e+6(4e+6) NaN NaN NaN

4.5.2. EXAMPLE 2

The following d = 25 dimensional example is related to a linear-quadratic stochastic
control problem appearing in [4, example 3], which is defined by the following set of
coefficients

M, = -diag(1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1), (4.46)
M, =(1,1,05,1,0,0,1,1,0.5,1,0,0,1,1,0.5,1,0,0,1,1,0.5,1,0,0,1) T,
M., =-M(-0.2,-0.1,0,0,0.1,0.2,-0.2,-0.1,0,0,0.1,0.2,
-0.2,-0.1,0,0,0.1,0.2,-0.2,-0.1,0,0,0.1,0.2,-0.2) |,
Y =diag(0.15,0.15,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,
0.25,0.15,0.15,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25),
Ry =2diag(25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1, 25,1,25,1,25), R, = 2,

G = 2diag(25, 25, 25,25,25,25,1,25,1,25,1,25,25,25,25,25,25,25,1,25,1,25,1,25,1).

One can derive an associated FBSDE system via either dynamic programming (DP) or
the stochastic maximum principle (SMP), see e.g. [156]. The correspondi7eng equations’
coefficients in (4.1) then take the following form in case of DP

bop(1,%,y,2) = Myx = MyR, ' My (227D, opp(t,x,) =2, (4.47)

u

for(t,x,9,2) = 1/2(x" Rex+ 22 Y (R,' M) T M) (z271)T),  gpp(x) =1/2x" Gx,
with g = 1,d = m = 25; and in case of SMP

bsmp(t,x,y,2) = Mxx+MuR;1M;y, osmp(t,x,y) =2, (4.48)
fSMP(trx) ) Z) = _Rxx+ Mxy, gSMP(x) = —Gx'

with g = d = m = 25. The main difference between the two formulations is that (4.47)
leads to an FBSDE where coupling into b occurs through Z, whereas in (4.48) only
through Y. Furthermore, the first equation gives a scalar-valued BSDE, whereas (4.48)
is a vector-valued one. Both equations admit semi-analytical solutions given by the nu-
merical resolution of a system of Ricatti ODEs. For details, we refer to [74] and the refer-
ences therein.

Remark 4.5.1
Notice that the dynamic programming FBSDE (4.47) does not satisfy the Lipschitz con-
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ditions imposed in section 4.3. In fact, gpp, fpp in (4.47) are quadratic in x,z. Nev-
ertheless, one can use a localization argument, and consider the equation over a com-
pact domain such that the corresponding coefficients become Lipschitz continuous with
a constant depending on the width of the domain. We choose truncation radiuses
based on upper bounds for 99% quantiles of | X;|l, | Z:|l computed over an indepen-
dent Monte Carlo simulation consisting of 2°° paths using the semi-analytical refer-
ence solution. This results in a negligible truncation error and truncation radiuses ry =
1,7, = 10, with which we obtain a Lipschitz continuous approximation of gpp, fpp for
which the constants in section 4.3 can be computed even in the case of (4.47), and read
as follows L% = r2|GI3/2, L% = 2| M|, LY = 21 MR, ' M} (=13, 1L = r2| Rell3, I =
rEIET R M) TM ETYTIS P = -1, L = 1 = 19 = Lf; =k/ =o0.

NON-CONVERGENCE OF THE DEEP BSDE METHOD

Let us first focus on the FBSDE stemming from the dynamic programming principle. In
[4] it was observed that the deep BSDE method does not converge for the FBSDE defined
by (4.47) with coefficients asin (4.46) and T = 1/2, Xy = (0.1,...,0.1). Earlier convergence
analyses such as [69] could not justify this phenomenon, as in (4.47) the coupling into
the drift takes places via Z, which fell out of the framework of the aforementioned paper.
Our generalization provided by theorem 4.3.3 enables the treatment of such equations,
and in particular explains the non-convergence phenomenon. The problem lies in the
strength of the coupling of Z into the forward diffusion. In order to demonstrate this,
we consider two versions of (4.47), which differ in the coefficient M,,. One labelled as
"original", where the coefficients of the corresponding LQ problem are as in (4.46), and
a "rescaled" version where M, is replaced by M, /150 and all other coefficients remain
the same. Our findings are illustrated by figure 4.2. In particular, figure 4.2a depicts the
contraction constants B, A defined by (4.21), (4.22) appearing in theorem 4.3.3 for both
versions. As can be seen, in case of the "original" equation one gets a lower bound B,
defined by (4.42) which is of @(10'6). In fact, this implies that the conditions of theo-
rem 4.3.3 can never be satisfied for the original version of (4.47). However, as is also
suggested by figure 4.2a, decreasing the strength of the coupling by the given rescaling
of M, we get an equation whose B, A satisfy the sufficient conditions (4.23). Motivated
by this, we collect the convergence of the total approximation errors in figure 4.2b. In
line with the discussion above, we find that the deep BSDE method does not converge
in the "original" case, whereas it does converge for the "rescaled" version, once we make
sure that there exist appropriate contraction constants B, A < 1 such that the sufficient
conditions of theorem 4.3.3 are satisfied. The empirical rate of convergence is of @ (h'9).
Note that this example illustrates the weak coupling condition described in point (3)c of
section 4.4. We emphasize that B is inherent to the Z coupling and it is the main novelty
of our convergence analysis.

STOCHASTIC CONTROL VIA DP OR SMP

In [74] a convergence analysis has been given in the context of solving stochastic control
problems with the deep BSDE method applied on the FBSDE system derived through
the stochastic maximum principle (SMP) similar to (4.48). This analysis provided a nat-
ural extension to the works of Han and Long by extending [69] to vector-valued settings.
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(a) B, A as functions of A; for given (1,13,14) in case of the "rescaled" version of
(4.47). By as lower bound for B in case of the "original" version. Dotted vertical
red lines mark the endpoints of the interval where B, A < 1, and the shaded red
area the subset of the plane where the sufficient conditions of theorem 4.3.3 are
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(b) Convergence in N. Empirical convergence rates in labels. Dotted black line
indicates the expected @ (h) rate predicted by theorem 4.3.3.

Figure 4.2: Example 4.5.2. Comparison of the Deep BSDE method on (4.47) between coefficients as in (4.46)
(original) and My, replaced by M,,/150 (rescaled). T =1/2, Xp = (0.1,...,0.1).
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(a) A as function of 1; for given (12,13, 14) in case of the SMP equation in (4.48).
By as lower bound for B in case of the DP equation in (4.47). Dotted vertical red
lines mark the endpoints of the interval where A < 1, and the shaded red area the
subset of the plane where the sufficient conditions of theorem 4.3.3 are satisfied.
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(b) Convergence in N. Empirical convergence rates in labels. Dotted black line
indicates the expected @ (h) rate predicted by theorem 4.3.3.

Figure 4.3: Example 4.5.2. Comparison between the FBSDEs derived via dynamic programming (4.47) and
the stochastic maximum principle (4.48) approximated by the deep BSDE method. Coefficients as in (4.46),
T=1073%,Xy=(0.1,...,0.1).
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In [4] it was found that for certain FBSDEs derived in the dynamic programming frame-
work, such as (4.47), the Deep BSDE method does not converge. On the other hand,
the authors of the present chapter found in [74] that the same problems tackled by the
stochastic maximum principle lead to an FBSDE (4.48) for which the deep BSDE method
does converge to the unique solution triple. Our results in theorem 4.3.3 provide a natu-
ral explanation for these empirical findings. In fact, the problem lies in the Z coupling in
(4.47), and in particular the value of the contraction constant B defined in (4.21). Con-
versely, (4.48) derived from the stochastic maximum principle has coupling only in Y,
not in Z, leading to B = 0. In order to illustrate this, we ran the deep BSDE algorithm for
both (4.47) and (4.48) with coefficients defined by (4.46), a short time horizon T = 1073
and X =(0.1,...,0.1).

First, notice that only (4.48) satisfies the Lipschitz conditions imposed in section
4.3, with corresponding constants L§ = |G3, LY = 2 MlI3, LY = 2IM, R,* M,} |13, L=

20Rl3, L] =21 M3, K/ = kP = -1,1 = L = L = L = L = 0. Hence, only the SMP for-
mulation guarantees direct applicability of the convergence results. Nevertheless, with
the localization argument in remark 4.5.1 one can find an accurate Lipschitz continuous
approximation of the DP equation (4.47) for which the sufficient conditions can also be
checked. More importantly, (4.47) and (4.48) also differ in the type of coupling. Namely,
in case of the former, Z couples into the forward diffusion, whereas in case of the latter
only Y does. This in particular implies that besides the different Lipschitz constants, the
two equations also differ in terms of the sufficient conditions of (4.24). In fact, for the
SMP equation (4.48), there is no coupling in Z which implies B =0, see also discussion
in section 4.4. Hence (4.48) reduces to the theoretical framework of [74, 69] under which
it is sufficient for A < 1 to hold. On the other hand, (4.47) couples through Z, which
in light of theorem 4.3.3 implies that B, A < 1 need to hold simultaneously, leading to
stronger conditions to hold.

The above discussion is illustrated by figure 4.3. From figure 4.3a, we find that in
case of the dynamic programming equation (4.47) B admits a lower bound B, defined
by (4.42) which is of @(10°). In particular, this implies that the dynamic programming
formulation can never satisfy the sufficient conditions imposed by theorem 4.3.3. On
the contrary, under the SMP formulation we find a range of 11,1, 13,14 such that A< 1
meaning that the convergence criteria are met. Motivated by these conditions, the con-
vergence of the deep BSDE method is collected in figure 4.3b for both equations. In line
with our previous observations, we find that the method converges with an empirical
rate of ©(h'*) for the SMP equation (4.48), which in this particular case is even faster
than the rate predicted by [69, 74]. On the other hand, for the FBSDE derived via dy-
namic programming we find that the deep BSDE does not converge. As shown by figure
4.3b this is not due to the posteriori nature of the estimate in theorem 4.3.3, as the errors
are growing even as the loss functional decreases. The critical phenomenon is indeed
the coupling in Z, and the extra conditions it imposes as predicted by theorem 4.3.3.
These findings complement our earlier convergence results in the context of stochastic
control tackled by the deep BSDE method and the stochastic maximum principle [74].
In particular, our generalization in theorem 4.3.3 explains our empirical findings in [74]
suggesting that for a large class of stochastic control problems, deriving an associated
FBSDE through SMP leads to a system which is more tractable by deep BSDE formula-
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tions. The crucial property here is the lack of Z coupling leading to milder conditions to
ensure convergence according to our new convergence result in theorem 4.3.3.

4.6. CONCLUSION

In this chapter a generalized proof for the convergence of the deep BSDE method was
given. Our main contributions can be summarized as follows. We extended the conver-
gence analysis of [69] to FBSDEs with fully-coupled drift coefficients. Such an extension
is essential in practice as it enables the treatment of FBSDEs stemming from stochastic
optimal control problems. Our theory provides a unified framework and, in particular,
includes earlier results from the literature as limit cases. Due to the extra Z coupling, the
final posteriori error estimate stated in theorem 4.3.3 requires an additional condition
expressed by (4.23). These sufficient conditions are directly verifiable for any equation,
and as shown in section 4.4, they are satisfied under heuristic settings such as weak cou-
pling, short time duration or monotonicity. Moreover, as demonstrated in section 4.5.2,
our theory explains the non-convergence of the deep BSDE method observed in recent
literature, and provides direct guidelines to avoid such issues and ensure convergence
in practice. Several numerical experiments were presented for high-dimensional equa-
tions, which support and highlight key features of the theoretical findings.
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5.1. INTRODUCTION

In this chapter we are concerned with solving the following fully-coupled system of
forward-backward stochastic differential equations (FBSDE)

t t
X, =x0+ f (s, X, Y, Zs)ds + f o (5, X, Y, Ze)dAW, (5.1a)
0 0

T T
Y; = g(Xr) +[ f(S, X5, Y, Zs)ds_f Z;dW, (5.1b)
t t
where all coefficients are deterministic, scalar valued functions, T > 0 is a finite time
horizon, and {W;} (o, 1) is a standard Brownian motion over an appropriate probability
space. Such equations have an innate connection with second-order, parabolic, quasi-
linear PDEs with terminal boundaries of the following form

1
orult,x)+ Eﬁz(t, X, u,(’)xu)aixu(t, X)

+ u(t, x, u,05xu0)0u(t, x) + f(t, x,u,0xuo0) =0, (5.2)
u(T, x) = g(x),

where ¢ is connected to o and the coefficients y, f, g coincide with thosein (5.1) —see e.g.
[161, 52]. In particular, due to non-linear generalizations of the Feynman-Kac formula,
the solution of (5.2) is related to the solution triple of (5.1) by the following relations

Yt: u(t)Xt)r Zt:axu(t,X[)U(t,Xt,u(t,Xt)) = U(S,Xs); (53)

atleast in the case when the diffusion coefficient does not depend on Z [126, 161].

Fully-coupled FBSDEs naturally arise in applications of stochastic control, [156, 132].
Solving such equations analytically is seldom possible in an analytical fashion and one
most often has to resort to numerical approximations instead. The literature in the so
called decoupled framework, i.e. when the coefficients y,0 do not depend on Y and
Z are thoroughly studied, see e.g. [24]. However, things get more complicated in the
coupled setting, i.e. when the coefficients y, o in (5.1a) take Y, Z as arguments. Due to
the nature of the coupling, the forward simulation of (5.1a) is not straightforward, as
one needs to have approximated the backward equation’s solution pair (5.1b) in order
to do so beforehand. Several approaches have been proposed in the past decades, start-
ing with the famous four step scheme [102], built on the connection with the associated
quasi-linear PDEs (5.3). Without the sake of completeness, we mention [17, 113, 36, 104,
161] and the references therein.

Classical techniques include Monte Carlo techniques, branching diffusions, quanti-
zation algorithms [40], Fourier cosine expansions. In particular, starting with the decou-
pled setting Ruijter and Oosterlee [144] proposed an algorithm for the numerical resolu-
tion of decoupled FBSDEs, built on the COS method [48], where the corresponding con-
ditional expectations are approximated by means of Fourier cosine expansions enabled
by the fact that, at least in the Markovian framework, the characteristic function of the
transition between two time steps is known in closed form, given a suitable discretiza-
tion of (5.1a). In their original work, the forward diffusion was assumed to be a standard
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Arithmetic Brownian motion, giving pathwise analytical solutions for (5.1a), eliminat-
ing the need for discrete time approximations. Later on, they extended this framework
in [145] to more general, state and time dependent drift and diffusion coefficients, up
to discretizations by second-order Taylor schemes, including the Euler-Maruyama and
Milstein schemes. In case of the former, their algorithm exhibited a strong convergence
rate of order 1/2, whereas in case of the latter, this was improved to order 1. Neverthe-
less, these extensions were given in the decoupled setting, i.e. Y, Z did not enter the drift
and diffusion coefficients in (5.1a).

In order to remedy this, following their ideas, Huijskens et al. in [76] extended their
algorithm to the coupled FBSDE framework of (5.1). Therein, the forward and back-
ward equations are first discretized by order 1/2 Euler schemes, and are subsequently
decoupled by suitable decoupling fields which approximate the deterministic mappings
in (5.3). Thereafter, they proposed three different strategies for finding the optimal de-
coupling fields: the so called explicit method, in which throughout the backward recur-
sion, the decoupling relations at time ¢, are replaced by the already computed approx-
imations at time step f,+1; a local method where the decoupling relations are obtained
via Picard iterations at each time step; and a global method where Picard iterations take
place simultaneously, at all points in time similar to [17]. They found that the explicit
method, inspired by [40], is the most robust, giving strong convergence rate of order 1/2,
even in the case of fully-coupled systems, where the diffusion coefficient o depends also
on Z,asin (5.1a).

The purpose of the present chapter is to combine [145] with [76] for the coupled
system (5.1). Doing so, we extend the COS approximations of [76] to higher-order dis-
cretizations for fully-coupled FBSDE systems, such that strong convergence rates of or-
der 1 and weak convergence rates of order 2 can be achieved. In particular, we generalize
the discretization of the forward diffusion in (5.1a) to second-order Taylor schemes, see
e.g. [90], including the Milstein- and simplified order 2.0 weak Taylor schemes. Subse-
quently, in order to preserve the higher-order convergence rates in the forward diffusion,
we solve the corresponding backward recursions in the approximations of the backward
equation by appropriate second-order schemes [164, 35], in order to obtain a suitable
pair of decoupling fields (5.3). In this sense, our work is a generalization of [145], extend-
ing the approaches proposed therein from the decoupled to the fully-coupled setting.
The main challenge in doing so, is that higher-order correction terms involve derivatives
of the decoupling fields in (5.3). In order to remedy this, we capitalize on the fact that
COS approximations are infinitely differentiable, and given an explicit scheme, these
derivatives can be computed directly at each step in the backward recursion. This en-
ables higher-order discretization schemes, up to strong convergence rates of order 1 with
a Milstein-, and weak convergence rates of order 2 with a simplified order 2.0 weak Taylor
scheme, when the characteristic function of the corresponding Markov transition is still
available in closed form.

The rest of the chapter is organized as follows. Section 5.2 is devoted to the discrete
time approximations of (5.1a). After introducing key notations and theoretical concepts,
general, second-order schemes are formulated for the forward component (5.1a), fol-
lowed by the standard, recursive sequence of conditional expectations related to the so-
lution pair of the backward equation (5.1b). In order to make these discrete time ap-
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proximations fully-implementable, section 5.3 explains the BCOS method in the cou-
pled setting. Our main results are given in section 5.4, where numerical experiments are
presented for a selection of coupled FBSDE systems, exhibiting the proclaimed rate of
strong and weak convergence rates for a wide range of problems.

5.2. DISCRETE TIME APPROXIMATIONS OF FORWARD-

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
Throughout the chapter we are working on a filtered probability space (Q,% =
Neejo, 111, P), where &; is the natural filtration generated by the Brownian motion
{Wi}rero,r) augmented with the usual P-null sets. The solution of (5.1) is a triplet of
predictable stochastic processes {(X;, Yz, Z:)}ejo, 1) such that (5.1) is satisfied P almost
surely, and the processes satisfy the following integrability conditions

T
f 1Z,2ds
0

The well-posedness of (5.1) has been deeply studied, and established under by now clas-
sical assumptions, see e.g. [161, 126]. For the rest of chapter we consider equations
such that any of such conditions is satisfied, and assume that (5.1) has a unique solution
triplet {(Xy, Yy, Z1)} te[0,T]-

In what follows, the following standard notations are used. Conditional expectations
at t, € [0, T'] are denoted by Ej,[] := E[-|%;,]. For a function f: [0, T] xRxRx R — R, we
put d; f for the partial derivative in time, and 0, f, 9, f, 0. f for the corresponding spatial
derivatives. Second-order derivatives are denoted by 6§,x [ =0y(0x[), and analogously
for all other partial derivatives. Given a function f: (¢, x, y, z) — f, and two deterministic
mappings ¢ : x — ¢, { : x — {, we put f“”((t, x) := f(t,x,p(x),{(x)), consequently

E +E| sup |V, | +E < 0.

t€[0,T]

sup |X,[?
te(0,T)

0xfN (8, %) = 0 F(£,%,0(x),{ (X)) + 0y (£, X, (), { (X)) p(x) (5.4)
+0,f(t,x,9(x),{(x))0x{ (x).

For the rest of the chapter, 7 := {0 =ty < f; <--- < tiy = T}, denotes a partitioning of [0, T],
with At == ty41 — ty, and |7| := max,=o,.,N-1At,. The Brownian increments between
two adjacent time points are given by AW,, := W, ., — W,,. For an equidistant time grid
weuse h:=T/N, t, =nh, n=0,...,N—1. We will first discuss the discrete time approxi-
mations of the system (5.1) that are investigated in this chapter.

5.2.1. FORWARD DISCRETIZATION

The literature on numerical approximations for forward stochastic differential equations
is vast, for a classical reference we refer to [90]. However, in case of coupled FBSDEs as
in (5.1a) numerical approximations become more intricate due to the coefficient func-
tions pu and o depending on not just the state process X, but also the solution pair of
the backward equation (Y, Z) in (5.1b). In order to enable the numerical approxima-
tion of forward equation, one first needs to decouple (5.1a) from (5.1b). Motivated by
the Feynman-Kac formulae in (5.3), the standard technique is to construct a so called
decoupling field, which is a deterministic mapping of X at each point in time. In fact,
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the Markov property of the solution pair of (5.1b) together with (5.3) imply the existence
of two deterministic mappings of time and state, such that the solution to the following
forward SDE

t
X' = xo +f (s, XY, uls, X)), v(s, X¥)ds (5.5)
0
t
+[ a(s, XY, uls, X&), v(is, X)) dWy
0

coincides with that of (5.1a) pathwise, almost surely. Therefore, given the true decou-
pling fields u, v, one can construct a decoupled FBSDE system consisting of (5.5) and
(5.1b), and proceed with standard approximations techniques developed for the de-
coupled framework in order to numerically solve the entire system in (5.1). The main
difficulty in the approach described above is that the decoupling relations u, v are not
known in advance, one has to provide numerical approximations of them in the discrete
time framework, combined with the numerical approximation of the backward equation
(5.1b).

To this end, let us fix two adjacent points #,, t,+; in the time partition and a decou-
pling pair ¢,{ : R — R. Following standard techniques of It6-Taylor expansions, see e.g.
[145] and the references therein, one can approximate the solution {X;""}e(s,, 1,11 Of
(5.5) by the second-order Taylor expansions of the general form

XZL'” =x, (5.6)

X0 = s P (1,0 (£ — 1) + 59 (L, ) (W, = Wi,) + RS (£, ) (W, — W, )2,

for t € (t, th+1], given @(x),{(x) are accurate approximations of u(z,, x) and v(t,, x), re-

spectively, for any x. We use the notation Xfr’:l'x"”'( = X"?% for m = n,n + 1. The general

second-order approximation in (5.6) includes famous discretization schemes such as the
Euler-Maruyama scheme defined by

mP(t,x) = @246, x), 746X =6 (t,x), KPN(t,x)=0; (5.7)
the Milstein scheme defined by
mPe (L, x) = (4 (1, ) - kP4 (1, %), $P(8,x) =690 (1, %), (5.8)
RPC(t,x) = 3P (1, )0, (1, %)/2;
or the simplified order 2.0 weak Taylor scheme given by
mPe (1, x) = g2 (1, x) — 5P (1, )0, (£, %) /2
+(0:2%% (1, %) + @20 (1, )0 1P (1, x) + 0%, 19 (£, x) (G (£, %)) 12) Aty 12
§94(t,x) = 54 (1, x)
+(0x % (£, )5 (£, %) +0,:5PC (2, x) + A9 (£, ¥)0,67C (1, X)
+02, 574 (8, ) (P (£, )2 12) Aty /2

(5.9)

(1, %) = 6951, )0,9° (1, x) /2.
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‘ Euler-Maruyama Milstein simplified order 2.0 weak Taylor
weak 1 1 2
strong 1/2 1 1

Table 5.1: Weak and strong convergence rates of (5.6) given different discretization schemes

It is well-known, see e.g. [90], that under standard assumptions the classical discretiza-
tion schemes above converge to the continuous solution of (5.5) and thus also that of
(5.1a), with strong and weak convergence rates as in table 5.1, where the convergence
rates are defined as follows

sup (E[IX"" = X7 P2 < Clnl™,  [Elp(X[*)] - Elp(X] ")) < Clrl"™.
t€[0,T]

In the above p(x) is any 2(y,, + 1) continuously differentiable function of polynomial
growth, and C is a generic constant independent of |z|. Strong convergence implies con-
vergence in probability to the true solution of (5.5), whereas weak convergence provides
relevant information about the solution at ¢ = 0 whenever the initial condition of the for-
ward SDE is deterministic, which in many financial applications is of special relevance.

Remark 5.2.1

Many higher-order Taylor expansions similar to (5.6) could be considered such as the or-
der 1.5 strong Taylor — see e.g. [90] —, including more terms of the corresponding It6-Taylor
expansion, involving powers of the Brownian increment W,— W, which are higher than2.
The main reason why we restrict our further analysis to second-order schemes of the form
(5.6) is due to the COS approximations that follow. In fact, when the highest power of the
Brownian increment in (5.6) is at most 2, the corresponding Markov transition’s charac-
teristic function can be computed in closed form — see lemma 5.3.1 below — which is a key
component of the COS method applied hereafter. However, for schemes of order higher
than 2 this property no longer holds, and in order to be able to compute the COS formula,
one would first have to numerically approximate the corresponding characteristic func-
tion.

5.2.2. BACKWARD DISCRETIZATIONS

Let us turn to the discrete time approximations of the backward equation (5.1b). In light
of (5.5), we fix a decoupling field (¢,{) and consider the corresponding decoupled BSDE
defined by

T T

v/t = g(x?%)+ f Fls, x84, vP4, 28 ds - f z¢4aw, (5.10)

t t

which coincides with the solution pair of (5.1b) when ¢ = u,{ = v, established by (5.3).
Given that the objective is to formulate a higher-order scheme in the fully-coupled set-
ting, e.g. without knowing an exact decoupling pair (u, v), it is fundamental that the
corresponding discrete time approximations of (5.10) admit a higher-order convergence
rate than that of the classical backward Euler scheme of [24]. In what follows we con-
sider two second-order schemes from the BSDE literature. Zhao et al. in [164] proposed
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a generalized theta-scheme which approximates the Markovian solution pair of (5.10) by
the following backward recursion of conditional expectations

}’(tN,x) = g(x); Z(tN)x) = 0xg(x)a(tN’ (tN,x),Z(tN,x)),

2t x) = 5= (4D tuEy [2(tns1, X X + (03 — O ES Yty X0 ) AW,
3 n
+ (1= 0 ALEE [ (e, (st X0 56), 2(tnen, X0 AW,]), (61D

Yty ) = EE [y (o, Xo28) 4 (1= 00 At f (tnst, Yt X 2), 2001, X220

+01Atnf(tn; (t}’l) x)r Z(t}’hx))y

with 04,60, € [0,1], O3 € (0,1], |604] < O3 — see also their related works in [162, 165]. We
remark that the generalized theta-scheme in (5.11) includes many classical discretiza-
tion schemes such as the (implicit) backward Euler scheme of Bouchard and Touzi
[24] with 6; = 0, = 03 = 1,04 = 0; or the theta-scheme considered in [144, 76] with
0, =03,0, = 03— 1 and also the one of [145] with the extra condition 6; = 0,. In [164] the
authors show that the generalized theta-scheme in (5.11) has a strong convergence rate
of order 2 in the decoupled framework, when 6, = 6, = 65 = 1/2 and 6, < 03, given that
the underlying forward diffusion is a Brownian motion, i.e. u(¢,x,y,2) =0,0(t,x,y,2) =1
in (5.5), and the coefficients of the BSDE g, f are sufficiently smooth with bounded
derivatives. This makes the scheme (5.11) a suitable choice for the second-order ap-
proximation of (5.1), as using the estimates in (5.11) for the decoupling of (5.6) induces
errors that scale with order of at most 2, preserving the convergence rates of a second-
order Taylor scheme.

Alternatively, Crisan and Manolarakis in [35] proposed a second-order discretization
for decoupled FBSDEs, defined by the following backward recursion

YN, x) = g(x), z(tn,x) =0x8(x), (5.12)
4 tn 6tn X ”v(p:( ]T(p(
2l 3) = — s Bl (e, X) + A f OGS Vi1, X 00, 2t X)) AW,
n
6

In+1
Gl a0

+ AL f XS Y tnan, X090, 21, X100,

n+l "’
Yt X) = ESLY Ut X280 + At /2 f (X2, Y (tar, X290, 211, X9
+Atn/zf(xyy(tn»x)yz(tmx)-

In [35], the authors prove second order convergence in |r| for (5.12) under sufficiently
smooth coefficients, generalizing second-order convergence beyond Brownian noise.
Furthermore, they show that whenever those assumptions are not satisfied, their scheme
still preserves the strong convergence rate of the backward Euler scheme of order 1/2.

We note that the discretization of Y is always implicit in (5.12) and also in (5.11)
whenever 0; > 0.

Single versus multi-step backward schemes. It is important to mention that higher-
order discretizations of BSDEs have been thoroughly studied, and many important re-
sults have been established in this regard. In fact, besides the two one-step schemes
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mentioned above, many multi-step approaches have been developed over the past
decades, which may guarantee higher order convergence rates. Without the sake of com-
pleteness, we mention [27, 30, 166, 167] in the decoupled setting, and [163, 152] for the
coupled framework. In case of the latter two, one can construct a multi-step discrete
time approximation scheme for the BSDE (5.1b) which reads as follows

y(tn, x) = g(x), z(in,x) =0,g(x)o (N, X),

k
2(tn, ) = ) abER Wy, = Wy, )y (e, X, )]
j=1

1 k
Ytn,x) = — (= X abEx [y tns j, XJ, )1 = f (0, X, y(tn, X), 2(En, X)),
@y j=1

where the {a;? }j=0,...,k are known explicitly, for every k = 1,...,6. The scheme is supposed

to converge with a rate of 0 (I7r]%), at least in the weak sense. The main difference be-
tween the thereby proposed multi-step approaches and that of the present chapter is
twofold. First, the k-step multi-step schemes are not immediately implementable with-
out appropriate approximations for the first Y, Z at the first k time steps closest to T.
In other words, one has to compute y(ty-j,x), z(ty-j, x) for j =1,..., k on either a finer
time grid/using a higher-order FBSDE method, such as e.g. [164, 35], in order to be able
to keep the same rate of convergence. Second, all multi-step schemes mentioned above
require the numerical approximation of k conditional expectations with transitions be-
tween time step £, and #,4j,j = 1,..., k. As we shall see in the next section, in the con-
text of the COS method this would imply the computation of the transition matrix ®,,
in (5.22), k times for each time step, which is the computationally most expensive part
of the algorithm proposed therein. Therefore, a one-step scheme such as (5.11)-(5.12)
is computationally preferable compared to multi-step alternatives when the spatial ap-
proximations are given by the COS method. Finally, and most importantly, the multi-
step approximations for coupled FBSDEs in [163, 167, 152] are only providing higher-
order convergence of the backward equation’s solution pair Y, Z in (5.1b), and not that
of (5.1a) which is still discretized by an Euler-Maruyama scheme. In other words, the
somewhat surprising conclusion of [163, 152] is that higher-order convergence of Y, Z
can be achieved even with a lower order scheme for the forward diffusion. In some ap-
plications, such as option pricing, this is sufficient as the main interest is the solution
of the backward equation. However, in many other applications, e.g. stochastic optimal
control, the forward diffusion is the main quantity of interest, in which case one wants
to provide a higher-order scheme for the whole system in (5.1), making higher-order ap-
proximations for the forward diffusion inevitable.

For the reasons above, we discretize the backward equation by the one-step schemes
(5.11)-(5.12). Both discrete time approximation schemes are only implementable given
a machinery which approximates the conditional expectations on the left hand side. In
our case, this will be done by the COS method, explained in the upcoming section.
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5.3. COS APPROXIMATIONS
The COS method originally proposed in [48] is a Fourier based method to approxi-
mate conditional expectations, given that the underlying randomness is generated by
a Markov transition whose characteristic function is known in (semi-)analytical closed
form. In what follows we fix t,, and the corresponding decoupling fields ¢,{ in (5.5).
Then, we are interested in the Markov transition X;,’ P8 =x— X" (p ¢ defined by the fol-
lowing second-order Taylor scheme

X908 = s P (1, %) Aty + 52 (1, X) AW, + RO (£, X) (AW, (5.13)

n+1

The COS approximation of a conditional expectation of some function of XZ fl( then
reads as follows

-1
EX(0(tnen, X099 = Z Vk(tnmRe{<pxn,¢l,((kn/(b—a)ltn.x) eXp(—ikﬂa/(b—a))},(S-M)
k 0 n+

7,0,{

where ¢, x nipd is the characteristic function of X, /|

and the Fourier cosine expansion co-

efficients are defined by

2 b kn
Vie(tp41) = —f v(tn+1,x)COS( (x—a)|dx, (5.15)
b—ala b-a

s k
V(tps1,Xx) = Z/Vk(tn+1) cos( b—na (x— a)),

k=0

and the notation Y’ means that the 0’th term in the summation is halved.
For any given triple m?% 524 k9< the following lemma, see [145, lemma 3.1], estab-
lishes an explicit, closed form expression for the characteristic function of the Markov

transition X, C=x—X" ‘p ¢ given a decoupling field (¢, ().
Lemma 5.3.1 (Characterlstlc function of Markov transitions, [145])

,¢,8

Consider (5.13), for any decoupling pair ¢,{, the characteristic function of X, "\” given
X™P% = x reads as follows
o WXy = x) = B [exp(1ux )X = ] (5.16)

2(1=-2iuk®S (tn,x)Atn)

V(L= 2iuk?S (t,, X)Aty)
Proof. The proof is analogous to that of [145, lemma 3.1]. Due to AW,, ~ A (0,Aty),
for an x such that ¥#?¢ (tn,x) = 0, the transition in (5.13) is normal with mean x +
[ﬂ”((tn, x)At, and variance (5‘/"((1‘”, X))2At,. Equation (5.16) is then found by substitut-
ing into the characteristic function of a normal distribution.
For an x such that k‘p'((tn, x) # 0, one can write

exp(iu(x +m?C (ty, X)AL,) —

X8 = 19 (1, ) Ay — (524 (1, X)0)2 1 (ARP (1, %)) (5.17)

n+1
+ &R (1, %) (AW, + 59 (1, X)1 2R P (£, X))

L+ @28 (1, ) Aty — (5 (£, )21 ARPE (£, %)) + &P (£, VA tn X
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where & ~ y'2(A(x)) follows a noncentral y? distribution with degrees of freedom v = 1
and non-centrality parameter A = (5% C(ty, X2 12894 (£, X) /D E,)2, whose characteristic
function is given by

gbxrvzm (ulx) =exp(idu/(1-2iu)/(1 —2iu)™v"?. (5.18)
Combining (5.18) with (5.17), we finally obtain (5.16). O

The BCOS method, originating from [147] and later extended in [145, 76] proposes to
approximate the conditional expectations in the discrete time approximations schemes
of BSDEs collected in (5.11) and (5.12) by the COS formula (5.14). Indeed, by virtue of
lemma 5.3.1, the conditional expectations defining the approximations of Y at time step
n are fully-implementable, given the availability of Fourier cosine expansion coefficients
at time step t,+1. However, in order to be able to apply the COS method on the afore-
mentioned discretizations, one also needs to solve conditional expectations of the form

EX[0(tner, X300 AWE],  keN,
which appear in the approximations for Z in (5.11) and (5.12). Given Fourier cosine
expansion coefficients for the deterministic function y — v(¢,+1,y) defined by (5.15),
one has

EX [0(tne1, X705 (AW

n+l1
X4 g
- Z Vi(tns ) ES cos(ln”bL)(Awn)k]

=0

oo ,¢,¢

= (tn+1)Re{ exp(lln an )(AWn) exp(—ilna/(b—a))}
1=0

=Y "Yi(tps) Re{J(xlin/ (b - @) exp(~ilmal (b— @)},
1=0

where we put

Ji(xlw) =E keN. (5.19)

n+1

exp(iux”"”" )(AW,,)"

Given the Markov transition (5.13), the following lemma generalizes the truncated se-
ries expansion argument in [145, eq. 3.31], and is established by an integration by parts
argument.

Lemma 5.3.2 (Integration by parts formulae with discretization (5.13))
Given the discretizations (5.13), the conditional expectations of the form (5.19) admit for
eachk=1

ius?t(t,, x)At, (k—1DAt,

xlu) = 1(xlu) + 1y (k
Jilxlw) 1 2iurei (s, 0ag, k1l 1)+ Lz ( N 2tukoi (1, 0oL,

Jr—2 (x| ).
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Proof. Combining (5.19) with (5.13) we get

Jie(xlu) = f exp( i1+ 71 (b, DAty + 5 (1, D + KO (1, 087
R

 ck exp(—&2/(2Aty,))

d ’
V2TAtL, d

as AW, ~ A& (0,Aty,). It is straightforward to check that

eFexp(~&2/2Aty))

dgk-t —&2/(2At
=T 21 (k) (k= DAL,E* 2 exp(=E21(2A 1)) - Aty (T exp (¢ /( ”)).

d¢
Plugging this in the above gives
Jie(xlu) = Lz (k) (k= DAL, Ji—o (x| 0) (5.20)
L fn J n¢ A s 2
- 2ﬂAtnfReXp(lu(an (tn, X) Aty + 59 (£, X)E+ &P (£, X)E ))

d§* " exp(=¢*/(2A1))
X
dé
= D=1 () (k = DAL Tz (1) + I (xlw).

d¢

We apply integration by parts on the second term, which gives

L(xlu) = — At, exp(iu(x+m“”((tn,x)Atn+§‘p'((tn,x)cf+1'<‘p'z(tn,x)52)) (5.21)

+00

e exp(—¢2/(2Aty))
V2rAt,

i1 €xp(—&€2/(2Aty))
YT Veman

kexp(—fz/(ZAtn))
C T Vman

=0+ iuS? (t, X) Aty Ty (x110) + 20 uR P (£, ) Aty T (x| 10),

—00

+Atnf ius?C (t,, %) exp(iuXﬂ'(p’c(f)) d¢
R

n+1

d¢

n+1

+ Atnf 2iuk?* (1, x) exp(iuX”’w’((cf))
R

for any v with sufficient radial decay in space. Combining (5.20) and (5.21) finally gives

ius? (1, X)At (k- DAt
— m Jro1 () + Ty i) — N
1-2iuk?€(t,, X)Aty, 1-2iuk?€(t,, x)At,

Je(xlu) = Ji—2(x|u).

Combining this with the result of lemma 5.3.2, introducing the notation

© 7 (ulx) = ¢y " (ulx) exp(— iua), (5.22)
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we subsequently gather via recursion

EX [A(tnsr, X720

n+1

—Z Hr(t) Re{ @ (b - @) 0},

EX [h(tne1, X250 AW, ]
i sP8 (ty, X) Aty (b— a)
1-2ilgk?S(t,, x)At,/(b—a)

00/
=Y H(tns1)Re
=0

EX [h(tne1, X200 (AW
imsP8 (£, X) Aty (b - a)
1-2ilak?¢(t,, x)At,/(b— a)

k-1)At
Re{ - _( JAln @Z’w'((ln/(b—a)lx)}.
1-2ilgk?S(t,, x)At,/(b—a)

" (In/ (b - a)lx)},

=Y ) (tns1) | Re

" (In/ (b - a)lx)}
=0

Given the analytical expression for CDZ"”'((qu) established by lemma 5.3.1, a sufficiently
truncated finite cosine expansion gives the necessary COS estimates. Consequently, us-
ing lemma 5.3.2 and the expressions above, one can compute all conditional expecta-
tions arising in the scheme (5.11), provided that the Fourier cosine expansion coeffi-
cients of the deterministic functions z(t, 41, x), y(£n41, X) and f2Un0bynend (g, 1 x) are
available, or at least can be approximated.

Nonetheless, in order to make the scheme (5.12) fully-implementable in the BCOS
framework, one needs to establish an additional integration by parts formula that allows
the computations of conditional expectations of the form

Ex

Int1
( f (s — t)dW;) vt X055 |, (5.23)
tn

appearing in (5.12). In the following proposition, we show that for given choices of
01,0,,03,0, the second-order scheme of [35] in (5.12) is included in the generalized
theta-scheme of [164] in (5.11).

Proposition 5.3.1
For conditional expectations of the form (5.23), the following identity holds

Ey

n+1

tn+1 n(p( Atn "
(| sdW) ot X350 = SEE AW tn, XEEOL (520
In

In particular, (5.12) is included in (5.11) for0, =1/2,03=1-0,,04=0.

Proof. Let us consider the conditional expectation given by (5.23). Similarly to lemma
5.3.2, we use an integration by parts argument to show that for AB, := |, ttn"“ (s—t)dWs,

iy, _ COVIABy, AW,

1,9,
= iy En AW, XL (529)

EX[ABy U(tns1, X
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As the integrand in AB, = fti"“ (s — tp,)dW; is deterministic, we have that AB, ~

N (0,(AL,)313 = fti”“ (s—t,)?ds), and due to Itd’s isometry
E[AB,]1 =0, E[(AB,)%]=(At,)%/3, Cov[AB,, AW,] = (At,)?/2. (5.26)

Then the joint distribution of (AB;,, AW,,) is a multivariate normal distribution with co-
(At)3/3  (Atp)?12
(At)?12 Aty

conditional expectation in (5.23) takes the following form

variance matrix X = ( ) and det(Z) = (Af,)%/12. Consequently, the

_ Arnnz—(Atn)2nf+(Arn)362/3)

oo oo exp( 2
fye1, X706
f_wf_oo”( wi, X225 @ YD

dnde. (5.27)

By formal differentiation, it is straightforward to show that

Atn&2—(Aty)?né+(At,)3E%13
0 (—exp(— 2 ) ( Atnfz—(Atn)2n§+(Atn)3§2/3)
_ =nexp|—
on Aty nexp 2
Aty A1n&% = (Aty)*né + (A1,)*E2/3
T2 2 |

and thus we can write (5.27) in the following way, by virtue of integration by parts and
the Fubini theorem

A= (Atp)*né+(At,)3E213
I Dter, X250 [ —exp(- ] )1 N
oo 27(Aty)4/12 At, e
At —(Atn)2né+ (A 1)3E%/3
+% wv(tnﬂ,X”""’((f))Eexp( - )dnds‘.
oo n+l 2m(Aty)4 /12

The integrand of the first term vanishes for any v with sufficient spatial radial decay,
whereas the second term is identically equal to the right-hand side of (5.25) combined
with (5.26). This completes the proof of identity (5.24).

Combining this with the second line of (5.12), we finally find that (5.12) is also in-

cluded in the generalized 0-scheme of [164] given by (5.11), with the particular choice of
0,=1/2,03=1-0,,0,=0. O

In light of proposition 5.3.1, for the upcoming numerical experiments, we implement
the theta-scheme (5.11) for general s, which includes the second-order scheme in (5.12)
for the choices above.

At this point the COS approximations of the conditional expectations in both (5.11)
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and (5.12) can be obtained as follows

K-1
2ty ) = — (94AtnZ’zk(tn+1)Re{q>Z"”"(k/(b—a)|x)} (5.28)
O3At, =0
K_ll ~
+3 (03 =00 (tn1) + 1= 02) Aty Fic (1))
k=0
7 '<P,( —
< Re ikns _(t,,,x)Atn/(b a) @Z’w'((kn/(b—a)lx) )’
1-2ikni?€ (t,, X)Atn! (b— a)
Y(tn, x) =014, f (8, X, y(tn, %), 2(tn, X)) (5.29)
K-1
+ Y @hltne)) + (1= 0D AL T (t11) Re{ 077 (k1 (b - @)]x) |
k=0

However, these expressions are only fully implementable in the decoupled framework,
i.e. when the drift and diffusion coefficients in (5.1a) do not depend on the solution
pair of the backward equation. Indeed, in that case the characteristic function does
not depend on the decoupling pair ¢, either — see (5.16). Nonetheless, in the coupled
framework, one needs to find reasonable approximations of the true decoupling rela-
tions given in (5.5), and use those for (¢, {) in between two time steps ¢, and #,+;. In the
paper of Huijskens et al. [76], using an Euler scheme for the discretization of the forward
component — see (5.7), in particular ¥ (t,, x) = 0 — there are three choices made in this
regard. In the so called explicit method, argued by sufficient continuity in time of the so-
lution pair of (5.1b), the decoupling relations are chosen to be the discrete time approx-
imations at the next point in time ¢ = y(f,+1,),{ = z(f,+1,+). Note that (5.11) is a back-
ward recursion, therefore these approximations are indeed available at the processing of
time step t,. Alternatively, [76] proposed a so-called local method, where — starting off
from some initial conditions — the decoupling relations (¢, {) are gathered through Picard
iterations at each time step f,, assuming that the mapping (¢,({) — (y(fn+1,), 2(tn+1,7)
defined by (5.28) is a contraction for small enough time steps. Finally, [76] also proposed
a so called global approach, in which the solution pair is gathered through taking Picard
iterations over the whole backward recursion in (5.11) — similar to [17]. As found in [76],
the most efficient of these three options is the explicit method, as it only requires com-
puting @Z’w’((kn/ (b — a)|x) once at every time step, and it does not require the mapping
in (5.28) to be a contraction either. In our implementation, we confirmed the findings
of [76] even in case of Milstein- and 2.0 weak Taylor discretizations, and found that a
local method is both less stable and less accurate while creating an unnecessary com-
putational overhead compared to the explicit decoupling. Therefore, in what follows we
consider the explicit method only.

5.3.1. DERIVATIVE APPROXIMATIONS AND THE BCOS METHOD WITH

HIGHER-ORDER TAYLOR SCHEMES
Nonetheless, in contrast to [76], the BCOS approximations (5.29)-(5.28) are not imple-
mentable, in case the forward diffusion is discretized with a second-order Taylor approx-
imation, including the Milstein- and 2.0 weak Taylor approximations. Indeed, then the
corresponding second-order term in (5.13) has € # 0. In particular, in case of the Mil-
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stein scheme, through the total derivative of the diffusion coefficient, the derivatives of
the decoupling relations also appear in the computation of €¥*¢ which implies that one
needs to choose decoupling relations carefully such that their derivatives are either avail-
able in closed form or can be accurately approximated. Our main result is built on the
insight that whenever the decoupling relations in the BCOS method are chosen accord-
ing to the explicit scheme — that is ¢ = y(#,+1,),( = z(t;+1,) — the derivatives ¢ and
04( are analytically available provided by the smoothness of the Fourier cosine expan-
sion (5.15). In fact, when the Fourier cosine expansion coefficients % (t,,+1), Zx (£n+1) of
Y(tn+1,°), 2(tye1,) in (5.29) and (5.28) are known, then

g kr
Y(tpe1,X) = @/k(tn+1)005( (x—a)),
k=0 b-a
(5.30)
KL kr
zZ(ty+1, %) = Zk(tn+1)COS( (x—a)),
k=0 b-a
and their corresponding derivatives can analytically be computed as follows
K-1
kn kn
0xy(tps1,x) = Z'——@k(tnﬂ)sin( (x—a)),
iy b-a b—a
ko, . (5.31)
11 , 71
0xz(tps1,X) = k;’ _mzk(twrl) s1n( h—a (x— a)).
Similarly, the second derivatives appearing in m%¢ and §#¢ in (5.9) are given by
K-1 2
94 kn
aixy(tml,x): Z’—(—) @k(InH)COS( (x—a)),
o \b—a b—a
K1 e . (5.32)
f/2 /1
0% 2(tye1, %) = lg - (m) Zi(the1) COS( PR G a)).

For the BCOS approximation at time step f,, we choose to decouple the Markov transi-
tion (5.13) of the forward diffusion by setting ¢ = y(¢,+1,) and { = z(;+1,), in a similar
fashion to the explicit method in [76]. In case the Markov transition is modeled by the Eu-
ler scheme (5.7), the Fourier cosine expansions in (5.30) are sufficient to compute (5.22)
and thus to make the abstract scheme in (5.29)-(5.28) fully implementable. However,
when the transition is approximated by a Milstein scheme then the coefficients m%*
and §9¢ depend on the derivatives 0, y(t,+1,-) and 0,z(t,+1,-) via the total derivative of
0, 6Y I+ )21 (¢, x) according to (5.4). Nonetheless, due to (5.31), these expressions
can be analytically computed for the choice ¢ = y(#,,41,+) and { = z(t;+1, ), which makes
the computations of the coefficients in (5.8) possible, and subsequently enables to com-
pute @Z"P’((ulx) even in the case of a Milstein transition.

Moreover, when the transition is given by a simplified order 2.0 weak Taylor approxi-
mation (5.9), then the coefficients m?¢ and 59 also depend on the second order deriva-
tives of the decoupling fields ¢ and ¢, through 6§x6‘/"((tn,x) according to (5.4). Sim-
ilarly to the previous reasoning, when the decoupling is chosen by ¢ = y(#,+1,:) and
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{ = z(ty+1,°), the formulas for the second-order derivatives in (5.32) enable the compu-
tation of the coefficients in (5.9). Thereafter, (5.31) and (5.32) together enable us to com-
pute the characteristic function in (5.22) even in case the Markov transition is modeled
by a 2.0 weak Taylor approximation.

Coefficient recovery. The discussion above implicitly relied on the availability of the
Fourier cosine expansion coefficients #;(t,+1) and Z(#,+1), defined by (5.15). How-
ever, during the backward recursion of the discrete approximation of the BSDE as in
(5.29)-(5.28), these coefficients cannot be analytically computed. In order to make the
transitions implementable, one needs to numerically approximate the continuous inte-
gral in (5.15), which can be achieved by a discrete Fourier cosine transform. In order to
do this, we construct a discrete spatial grid partitioning the truncated integration range
[a, b] defined by the following points

b-a
xl:=a+(l+1/2)T, l=0,...,K-1, (5.33)
given that the Fourier cosine expansion is truncated to K-many terms. We put I := {x; :

1=0,...,K—1}. Subsequently, the continuous integral in (5.15) can be approximated by

2 K=l 20+1
Vi(tpg1) = E ;} V(tn+1;xl)C05(k7T 2K ), (5.34)

which is a Discrete Cosine Transform (DCT) approximation of type 2. Given the termi-
nal condition of the BSDE in (5.1b), the coefficient recovery defined by (5.34) makes the
backward recursion in (5.29)-(5.28) implementable for all forward transition schemes
(5.7)-(5.8)-(5.9), together with (5.31)-(5.32) and the discussion above.

Picard iterations. Finally, we address the implicitness of the discrete time approxima-
tions in (5.29) in case 6; > 0. When the time step At, is sufficiently small, the implicit
equation is uniquely defined for each x. In order to find the unique fixed point, we carry
out Picard iterations indexed by p. We initialize the Picard iterations by the explicit ap-
proximation of (5.29) with ; =0
K-1
h(tn, 0= Y @ltnrn) + AtuFi(tn41) Re{ @} (K1 (b - @)]x) |, (5.35)
k=0

and set y© (¢,,41, x) = h(ty, x). From thereon, the following Picard update is carried out
PP, 0 = yP (1, %) + h(ty, 0) (5.36)

until a required error tolerance level € is reached, measured by

r;leanx|y(”“)(tn,x)—y(”)(tn,x)| <e. (5.37)

In order to simplify the notation, we define y7 (x) := y(t,+1, x) and zJ} (x) := z(fp41, X)
for the series expansions (5.30), with expansion coefficients recovered by DCT. With the
above steps, the coupled BCOS method using higher-order Taylor discretizations as in
(5.6) is now fully-implementable. The complete algorithm is given in algorithm 5.
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Algorithm 5 Coupled BCOS algorithm with higher-order Taylor schemes

Require: [a, b]: integration range; K: number of Fourier terms; 7: discrete time partition
of [0, T]

Require: forward discretization scheme ((5.7) or (5.8) or (5.9)); 01,0,03,04: generalized
0-schemein (5.11)

I xj=a+({i+1/2)(b—a)/K,i=0,...,K—1: spatial grid to compute DCT

2: if 0 depends on Z then

3: Solve z7,(x;) = o (T, x;, §(x;), 23, (x;)) forall i = 0,..., N -1

4: end if

5: Y (T), Z, k(T),gk(T) > Fourier coefficients at T — analytically or via DCT
6: forn=N-1,...,0do

7: o=yl —2zr > decouple by approximations at next time step

8: (D],Tl'y ne1 > compute characteristic function by (5.22) and (5.16) with (5.7) or
(5.8) or (5.9)

9: zZr(x;) > compute Z approximations over spatial grid by (5.28)
10: y,ﬂo) — h(ty,x) > initialize Picard iterations by explicit approximation in (5.35)
11:  while (p < max. Picard iter.) and (tolerance in (5.37) is not reached) do
12: yi,p ) (x;) > Picard update according to (5.36)
13: end while
4 e — yh )

15: Wi (tn), Z(ty), Fr(ty) > coefficient recovery by DCT (5.34) on
Zn(X7), YR (x1), Y (ty, x;)
16: end for

5.3.2. ERRORS AND COMPUTATIONAL COMPLEXITY
In what follows, we discuss the errors and computational complexity induced by the
coupled BCOS method in algorithm 5.

Error analysis. The main sources of numerical errors and their contributions to the
final approximation accuracy can be summarized as follows

¢ K - truncation of the Fourier cosine series: for smooth densities, the Fourier
cosine expansion terms converge exponentially — see e.g. [48]. However, as
algorithm 5 relies on Discrete Cosine Transforms to recover the coefficients
Y (tn), Zx(tn), F (t,), the total error term only converges quadratically in the
number of Fourier terms @ (K~2), which is the accuracy of the numerical integra-
tion in (5.34);

e N —time discretization:

— forward SDE (5.1a): depending on whether the forward transition is approx-
imated by an Euler (5.7), Milstein (5.8) or 2.0 weak Taylor scheme (5.9), weak
and strong errors converge according to the rates collected in table 5.1;

— backward SDE (5.1b): considering the generalized 8-scheme of [164], the cor-
responding discrete time approximations in (5.11) converge with @ (h?) in the
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strong sense when 8; =0, =03 =1/2, 04 < |03]. This in particular includes the
scheme of [35], for 84 = 0 as established by (5.24);

e P - Picard iterations to approximate the implicit part of the conditional expecta-
tion in (5.29) when 6, > 0: when the driver f is Lipschitz in its spatial arguments,
the implicit mapping is contractive for small enough time steps At¢,; then the Pi-
card iterations converge exponentially, with the constant depending on the Lips-
chitz constants of the driver f in (5.1b);

° a,b - truncated integration range: for each problem the range should be chosen
carefully wide enough such that its overall contribution is negligible. The precise
impact of this error is difficult to quantify; a recent result on the optimal choice
of a,b is given in [88], however, it is not straightforward to extend this proof to
coupled FBSDEs as one can not have a-priori guarantees about the distribution
of X at a given time due to the coupling. In the numerical experiments below, we
choose a wide enough integration range such that the corresponding error term is
negligible.

We emphasize that the derivative approximations (5.31) and (5.32), which enable
second-order Taylor discretizations (5.6) of the forward SDE do not add numerical
errors, as they can be computed analytically given the cosine expansion coefficients
% (tn), Z(ty) at each time step. This is the key observation that extends the coupled
BCOS method to Milstein and 2.0 weak Taylor approximations for the Markov transition,
together with the closed-form characteristic function provided by lemma 5.3.1.

Computational complexity. The overall computational complexity of the second-
order scheme proposed in algorithm 5 consists of the following components while pro-
cessing time step f;:

o W (T), Zi(T),Fr(ty) — terminal expansion coefficients: analytically @ (K) or by
DCT G (Klog(K));

° ¢ —yr. ¢ — 2}, ;- computing decoupling fields: one needs to compute (5.30),
(5.31) and (5.32) for each pair (x;, k) leading to
Euler Milstein 2.0-weak-Taylor
OK) OK? O(K?)

o CDZ’(p’((kﬂ/ (b — a)|x;) - computation of the characteristic function over the spatial
grid x; foreach k=0,...,K - 1: 0(K?);

° yﬁlp D _ Picard iterations for the implicit part in (5.29): G (PK)
* y¥(x), 2} (x;) — BCOS approximations (5.29) and (5.28): @ (Klog(K));
o Wi(tn), Zi(tn), Fr(ty) — coefficient recovery by DCT: @ (Klog(K)).

Apart from the first item, every point is repeated for all time steps n = N-1,...,0, and
the coupled BCOS method scales linearly with respect to the number of discretization
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points in time. The overall computational complexity is thus given by G@(N(N + N? +
PN+ Nlog(N))). Comparing this to the computational complexity of the explicit method
in [76], which uses the Euler discretization (5.7) in the approximation of the Markov
transition (5.6), we find that our generalized higher-order BCOS method admits to the
same computational complexity with a higher constant. In fact, our extensions to the
method using higher-order Taylor schemes such as the Milstein (5.8) or 2.0 weak Taylor
(5.9) schemes only create a computational overhead in the computations of the deriva-
tives in (5.31) and (5.32), which scale as @(K?) in both cases. As the most expensive
part of the BCOS algorithm is to compute the characteristic function (5.16) at each time
step, which requires @ (K?) operations, the additional steps for the Milstein and 2.0 weak
Taylor discretizations only double and triple this, respectively. As we shall see in the nu-
merical experiments presented below, this marginal computational overhead is justified
by the significantly improved convergence rates — see table 5.1 — in the number of dis-
cretization points in time. In other words, even though the Milstein and 2.0 weak Taylor
approximations require the extra computation of the derivatives of the decoupling fields,
they reach a desired error tolerance level faster in NV due to their higher strong and weak
convergence rates, respectively.

Remark 5.3.1

This chapter is concerned with scalar valued FBSDE systems, i.e. the solution to (5.1)
is a triplet of scalar valued processes. Let us briefly highlight the main challenges one
faces when generalizing algorithm 5 to higher dimensional equations. First, in case (5.1a)
admits a vector-valued solution, one needs additional assumptions to preserve the con-
vergence rates in table 5.1 for higher-order Taylor schemes. For instance, the Milstein
scheme in (5.8) only has a strong convergence rate of O (h) for commutative noise — see
[90]. Moreover, for a vector-valued X the corresponding decoupling fields in (5.3) are mul-
tivariate functions, admitting multi-dimensional Fourier cosine expansions in place of
(5.15). In particular, this implies a Fourier expansion along each dimension, on fop of the
discretization (5.33) and numerical integration (5.34) of the multi-dimensional domain.
Subsequently <I>Z'(P’( in (5.22) becomes a K% x K% matrix. As discussed above, the compu-
tation of these transitional weights determined by the characteristic function is the most
expensive part of algorithm 5, which would scale exponentially in the number of spatial
dimensions. Regardless of this curse of dimensionality, the method could be extended up
to dimension 3 with increasing memory constraints on K. We refer to [146, 139] where
two-dimensional COS methods are presented, with the latter in the FBSDE framework.
We refer to [146] where a two-dimensional COS methods is presented, outside of the FB-
SDE framework.

5.4. NUMERICAL EXPERIMENTS

The BCOS method has been implemented in a Python library, which is openly accessible
through the following github repository'. All computations were carried out on a Dell
Alienware Aurora R10 machine equipped with an AMD Ryzen 9 3950X CPU (16 cores,
64Mb cache, 4.7 Ghz) using double precision. The solution triplet of each equation is
computed by plugging the analytical solution of the corresponding quasi-linear PDE in

Lhttps://github.com/balintnegyesi/coupled-BCOS
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(5.3) into a simplified order 2.0 weak Taylor discretization of the forward diffusion in
(5.1a) over a fine, equidistant time grid, consisting of N’ = 108 equally sized intervals.
This way the time discretization error of the reference solution is negligible.

Each FBSDE below is discretized by an equidistant time partition, consisting of N+1
points, leading to a uniform time step size & = T/N. The forward SDEs are discretized by
(5.6), including Euler, Milstein and 2.0 weak Taylor approximations. Each BSDE below is
discretized according to the generalized 8-scheme in (5.11) with 8; =0, =03 =1/2. In
order to distinguish between the two second-order schemes of the backward equation
given by (5.11) and (5.12), we consider the values 84 = —1/2 and 84 = 0 corresponding
to (5.12) as shown by (5.24). For the COS method we specify an integration range [a, b]
wide enough for each problem specifically, such that the truncation error is negligible.
For the implicit part of (5.29), we set the maximum number of Picard iterations in (5.36)
to 100, and the tolerance level in (5.37) to £ = 10715.%

Strong L? errors are computed over an independently simulated Monte Carlo sam-
ple consisting of M = 2!° paths of the Brownian motion, using the following discrete
approximations

1/2
|XT (m) —th(mnz) ,

strong error Y = max

0,..,N

strong error X = max (
1/2
( 1Y, (m) - Ytn(m)|2) : (5.38)

1/2
strong error Z = | Zy (m) = Zy, (m)lz) .

The total strong error is given by the sum of the above three terms. Given the determin-
istic, fixed initial condition in (5.1a) for each of the equations below, the approximation
errors at ¢ = 0 coincide with the weak errors in mean

error Yy = |yg (x0) — u(0,xo)|, error Zy = |z{ (x9) — v(0, xp)|.
The total weak approximation error at f; is given by the sum of the above two terms.
5.4.1. EXAMPLE 1: DECOUPLED FBSDE
In order to demonstrate the slight differences between the discretizations (5.11) and the

one applied in [145], on top of the generalization provided by lemma 5.3.2, our first ex-
ample corresponds to the special case of decoupled FBSDEs. This example appears in

Zthanks to the exponential convergence of the Picard iterations, the tolerance level is usually reached in 5
Picard iterations
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Figure 5.1: Example 1in (5.39). (84 =0,01 =02 =603=1/2,K = 29.)

[145, example 1] and is originally from [113]. The coefficients in (5.1) read as follows

wt, x,9,2) =xA+x)/2+x%), ot,x,y2=0+x)/2+x),
g(x) = exp(-x*/(T +1)),

2 2 2
1 ) , 1+x? (1+x2 ( 2x* x )
LXx,9,2)=—— -x“/(t+1)) 4 + - — 5.39
f6x32) t+1eXp( x )) |4 (24+x2)3 \2+x2 t+1 t+1 (5-39)
zx 1+ y% +exp(-2x2/(t+1))
+ .
2+ x2)2 1+2y2

The analytical solution pair to (5.1b) is given by the following deterministic mappings in
(5.3)

2x(1+ x%)

_ _ 2 -
u(t,x)—exp( X /(t+1)), v(t,x) T+ D)2+ x2)

exp(—le(t +1)).
In line with [145], we choose xy = 1, T = 10 and for the COS method, we fix K = 512
Fourier coefficients, and set the domain [a, b] as in® [145].

The numerical results are collected in figure 5.1 for all forward discretizations in (5.6),
using the generalized 6-scheme (5.11) with 8, =0, =63 =1/2,0,4 = 0. In figure 5.1a, the
strong convergence rates of all three processes are presented for each method, com-
puted according to (5.38). As we can see, when the forward transition in (5.6) is approx-
imated by the Euler discretization (5.7), each process converges with a rate of @(h'/?) in

3resulting in a~—19.341110327048455 and b = 22.822591808529936
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K 1 2 22 28 24 25 26 27 28 29 210
Euler 0.17 0.18 0.19 020 022 029 056 163 580 2375 107.56
Milstein 0.19 020 021 022 024 033 0.65 193 6.89 28.00 126.36

2.0 weak Taylor | 0.26 0.27 0.28 0.29 0.31 0.40 0.72 2.02 7.02 28.40 121.63

Table 5.2: Example 2 in (5.40), with x; = 1072, CPU runtime in seconds. (0] = 0, = 03 =1/2,04 =-1/2,
N=10%)

the step size. However, this rate can be improved by the Milstein (5.8) and 2.0 weak Tay-
lor schemes (5.9), which both show an asymptotic convergence rate of & (h). The conver-
gence of the total strong errors is given in figure 5.1¢, which demonstrates the improved
first-order strong convergence with the Milstein and 2.0 weak Taylor discretizations. Fig-
ure 5.1b can be directly compared to fig. 5.1 in [145]. Regardless of the slight difference in
the backward theta-scheme considered therein, one can draw similar conclusions about
the convergence of the approximation errors at #, = 0. Given the deterministic condi-
tionin (5.1a), errors at fy coincide with weak errors, and the corresponding convergence
rates admit weak convergence rates. This results in the Euler and Milstein discretiza-
tions exhibiting a weak convergence at #, with rate ©'(h) ; whereas the 2.0 weak Taylor
scheme improves this to ©(h?). We remark that the latter convergence, in light of (5.9),
also implies the convergence of the second-order derivatives (gammas) in (5.32). Exper-
iments with other choices of 01,0,,05 confirmed the findings of [145], in terms of the
weak convergence at fy. In particular, by N = 103, one gains approximately two orders
of magnitude accuracy at ty by employing the 2.0 weak Taylor scheme. In many applica-
tions —e.g. hedging, or portfolio allocation — this is of high importance. Additionally, and
in line with [145], we found that in order to have a strong convergence of rate G (h) for
the Milstein and 2.0 weak Taylor schemes, it is necessary for the backward component
to be discretized by a second-order scheme.

5.4.2. EXAMPLE 2: PARTIAL COUPLING

The following coupled FBSDE system from [115] is an adaptation of [17], including Z
coupling in the forward diffusion’s drift coefficient. The coefficient functions in (5.1)
read as follows

ut, x,y,2) =xy0y+xzz, o(t,x,y)=0y, gx)=sin(x),
—Sr(T—t)é_Z =3r(T-1)

(5.40)

flt,x,y,2)=-ry+1/2e sing(x)—Kyz—ch'fe sin(x) cos?(x).

The Markovian solution pair of the BSDE is given by the following deterministic map-
pings in (5.3) solving the corresponding quasi-linear PDE

-r(T-1) =2r(T-1) =

u(t,x)=e sin(x), v(t,x)=e 0 sin(x) cos(x).

We take T =1,Xg =7/4,fixr =0,6 =0.4and x, = 107!, which results in a numerically
challenging equation with no monotonicity and strong coupling — see [17]. We fix a wide
integration range by choosing a = -3, b = 5.

For the coupling of Z in the drift, we consider two different values for «,:

1. x; = 0: the backward equation only couples into the forward equation through the
Y process;
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Figure 5.2: Example 2 in (5.40) with k ; = 0. Strong convergence. (01 =02 =63 =1/2,K = 210.)

2. x, =1072: Z is also coupled into the forward SDE but only through the drift and
not the diffusion coefficient.

COUPLING ONLY IN Y
We start by presenting results on the first case, when «, = 0, i.e. the Z process does not
enter the forward diffusion (5.1a). In order to be able to neglect the Fourier truncation
error term in the second-order weak convergence of the 2.0 weak Taylor discretization
for very fine time grids, we use a larger number of Fourier terms K = 2!° and remark that
the rest of the results are close to identical for significantly smaller number of expan-
sion coefficients. The strong convergence rates for each process of the solution triplet
are plotted against the number of discretization points in time in figure 5.2 for 84, = 0
(fig.5.2a) and 84 = —1/2 (fig.5.2b). The strong errors across the different backward dis-
cretizations are comparable, with an order of magnitude gain when using 64 = —1/2 in
the approximation of Z while using Milstein or 2.0 weak Taylor forward schemes and
fine time partitions. Each discretization exhibits the theoretically expected strong con-
vergence rate predicted in table 5.1 for both 8, values. In fact, we recover a strong con-
vergence rate of ©(hY'?) in case of the Euler transitions, as in [76]. However, thanks to
the generalization by algorithm 5 to higher order schemes, we manage to improve the
strong convergence rate to €'(h) by using the Milstein and 2.0 weak Taylor transitions in
(5.6), even in the case of coupling in Y. In particular, due to the higher order discretiza-
tions enabled by algorithm 5, the Milstein and 2.0 weak Taylor approximations achieve
an almost three orders of magnitude higher accuracy in the total strong approximation
error than the Euler method in [76], when N = 103.

The main difference between the choices in 8, is illustrated by figure 5.3, where the
weak convergence rates of the approximation errors at #, are depicted. As can be seen,
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Figure 5.3: Example 2 in (5.40) with x; = 0. Weak convergence at fy. (01 =02 =03 =1/2, K = 210.)

when the forward diffusion is approximated by either an Euler or Milstein scheme, the
weak errors at fy converge with the expected € (h) regardless of the value of 64. How-
ever, the same cannot be said about the 2.0 weak Taylor discretization. In fact, we find
that the errors at £y only show second-order convergence when 8, = —1/2. With 64 =0,
the accumulating approximation errors from the backward equation result in a slower
convergence of the same @ (h) or as with the Euler and Milstein schemes. These find-
ings suggest that in applications where the approximation accuracy at f, is of special
relevance, 8, = —1/2 may be a preferred choice for the discretization of the backward
equation, when the forward transition is modeled with a 2.0 weak Taylor scheme."

Z COUPLING IN THE DRIFT

Let us consider the second case of (5.40), corresponding to x; = 1072, i.e. when the Z
process enters the dynamics of the forward diffusion (5.1a) but only through the drift.
Similar to the previous case, we fix K = 210 and as the conclusion on 6y is verbatim, we
only present results in the case 0, = —1/2.

Numerical results are collected in figure 5.4. The strong approximation errors are
depicted in fig. 5.4a. As we can see, the Milstein and 2.0 weak Taylor approximation
preserve their theoretically expected @' (h) convergence rate — improving on that of the
Euler scheme - even when Z enters the forward dynamics. For fine time grids such as
N = 103 this results in a more than 2 orders of magnitude improvement compared to
the method employed in [76]. Moreover, similarly to the previous case, the theoretically

4The choice 6, = 0 may be necessary in some applications where the solutions are highly oscillating. In such
case with 84 = —1/2 one could face stability issues, whereas the second-order scheme in (5.12) would preserve
the convergence rate of the standard backward Euler scheme - see [35]. Our results suggest that even in such
case, the strong convergence rates can be improved by the second-order Taylor schemes in (5.6).
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Figure 5.4: Example 2 in (5.40), with k; = 1072, (01 =6 =03 =1/2,04 = -1/2, K =210))

expected weak convergence rates are recovered for each forward discretization for the
approximation errors computed at fy, as illustrated by fig. 5.4b. In fact, we find that
whereas the Milstein scheme brings a marginal improvement in the accuracy at fy com-
pared to the Euler scheme, they both exhibit first order weak convergence. On the other
hand, by employing a 2.0 weak Taylor discretization in the forward diffusion’s Markov
transition as in (5.9), one achieves second-order convergence. This results in the ap-
proximation accuracy at fy reaching practically machine accuracy by N = 103, yielding 3
orders of magnitude gain compared to Euler and Milstein. As discussed in section 5.3.2,
this comes with additional computational complexity driven by 2 x 2 matrix vector mul-
tiplications, in order to compute the corresponding first- and second-order derivatives
of the decoupling relations in (5.31) and (5.32). Table 5.2 translates this additional com-
putational complexity into CPU time by collecting the total runtime of the BCOS method
for each forward discretization and different choices of the truncation of the Fourier se-
ries, with a fixed N = 103. Unsurprisingly, the Euler approximations are the fastest as
they do not require the computations of the derivatives in (5.31) and (5.32). Nonethe-
less, the Milstein approximations are executed in merely 20% additional CPU time, while
gaining an extra order in strong convergence. Moreover, the 2.0 weak Taylor approxima-
tions are the most computationally expensive, as on top of the first order derivatives of
the decoupling fields, they also require the computation of the second-order derivatives
in (5.32). Interestingly, the difference between the CPU times of the Milstein and 2.0
weak Taylor approximations vanishes as K increases, which is explained by the reduced
number of Picard iterations in the computation of the implicit conditional expectation
of y in order to reach our desired tolerance level — see discussion in section 5.3.2. We
remark that the difference in computation times also shows that employing a higher-
order Taylor scheme in the approximation of the forward SDE of a coupled FBSDE sys-
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tem is advantegeous compared to Richardson extrapolating at f, with the Euler scheme
as in [76, sec. 4.3]. Namely, since Richardson extrapolation would require re-running
the method with a finer time grid (e.g. //2) once, doing so the computation time dou-
bles, while for smoothly converging errors at #, the weak convergence rate is improved
to @(h?). Nonetheless, Richardson extrapolation does not improve the G(h'/?) strong
convergence rate of the Euler scheme , while being both more restrictive and expensive
than a 2.0 weak Taylor approximation, as indicated by table 5.2.

5.4.3. EXAMPLE 3: FULLY COUPLED FBSDE, STOCHASTIC OPTIMAL CON-
TROL

Our final numerical example is a fully-coupled FBSDE system which is related to alinear-

quadratic stochastic optimal control problem and is derived from the stochastic maxi-

mum principle - see e.g. [156, 132]. For the derivation of the corresponding FBSDE, we

refer to [74] and the references therein. The coefficients in (5.1) read as follows

2

Ryy B
t,x,y,2)=|A-B +—y+—2z+p,
ML % ,2) ( Ra ) TR TR, DTP
R DB D?
a(t,x,y,z)z(C—D x”)x+—y+—z+2, g(x) =-Gux, (5.41)
Ry R,” Ry

BR DR R
fl,x,y2= (A—R—xu)y+(c_R_x”)z_(Rx_ xu)x

u u RM

Notice that, unlike in the previous example, the diffusion coefficient of the forward SDE
also takes Z as an argument. The semi-analytical solution can be obtained by numerical
integration of a system of Ricatti ODEs, with practically arbitrary accuracy - see [74, eq.
(45)]. We take N’ = 10° steps in order to compute the reference solution over a refined
time partition. As a one-dimensional version of example 1 in [74], we consider the pa-
rameter values A=-1,B=0.1,=0,C=1,D0=0.01,2=0.05,Ry =2,Ry;, =0,R;, =2,G =
2. The truncation range in the BCOS approximations is set to a = =5, b = 5.

The convergence results are depicted in figure 5.5. In particular, as can be seen in fig.
5.5a, each hereby considered forward discretization exhibits its theoretically expected
strong convergence rate. In case of the Euler scheme, all processes converge with a rate
of G(h!''?), whereas for the Milstein and 2.0 weak Taylor approximations, this rate is im-
proved to G(h). Even though the strong convergence rate with the latter two schemes
is first-order in both cases, the 2.0 weak Taylor approximations admit an advantageous
constant, resulting in an order of magnitude higher overall strong approximation accu-
racy. The weak convergence errors are collected in fig. 5.5b, from which we can draw
similar conclusions as for our earlier examples. All forward discretizations preserve their
theoretical weak convergence rates to the fully-coupled FBSDE setting of (5.41). In fact,
the Euler and Milstein approximations agree to errors converging with a rate of @(h)
at tp, to which the 2.0 weak Taylor approximation brings a significant improvement by
speeding up convergence at f; to second-order in exchange for a marginally higher total
CPU time - runtimes are comparable to table 5.2 and are thus omitted.

As equation (5.41) is derived from a stochastic optimal control problem, see [74] and
the references therein, the approximation accuracy for the solution of the forward SDE
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is of special importance. As we can see, the methods proposed in the present chapter
using Milstein and 2.0 weak Taylor approximations for the numerical resolution of the
forward diffusion do not only result in a higher order strong convergence rate, but also
significantly improve the approximation accuracy for a given N in the controlled for-
ward diffusion. According to fig. 5.5a, this results in 2 orders of magnitude gain in strong
approximation accuracy; and almost 4 orders of magnitude improvement in the approx-
imation quality at #j, when N = 10° compared to the Euler method deployed in [76].

Finally, in order to assess the influence of the truncation in the Fourier cosine expan-
sions, we collect strong and weak approximations errors in tables 5.3 and 5.4, respec-
tively, for different values of K and N. Comparing tables 5.3a with 5.3b, we find that both
the Euler and Milstein discretizations are robust with respect to the number of Fourier
coefficients K. In particular, from K = 27 the main source of strong approximation er-
rors is the time discretization term. In line with fig. 5.5a, the Milstein approximation
proposed in this chapter yields 2 orders of magnitude improvement to the total strong
approximation error compared to the Euler scheme of [76], independently of the choice
of K.

Similar conclusions can be drawn from the comparison of tables 5.4a and 5.4b, which
collect the weak approximation errors of the Milstein and 2.0 weak Taylor schemes for
the fully-coupled equation (5.41). In case of the Milstein scheme, the BCOS method is
not sensitive to the choice of K and the errors at #, are dominated by the time discretiza-
tion. On the other hand, as can be seen from tab. 5.4b, in case of the 2.0 weak Tay-
lor discretization, due to the higher order convergence, the BCOS method more quickly
reaches an error level, where the Fourier truncation becomes prominent. In particular,
for the errors in Z, second-order convergence is not fully reached with K = 27 Fourier
terms only, and one can gain an additional order of accuracy by choosing a K = 210 large
expansion instead.

Summarizing the implications of tables 5.3 and 5.4, the BCOS method in algorithm 5
is robust with respect to the number of Fourier terms K in the cosine expansions, even in
the case of fully-coupled FBSDEs. Strong approximations quickly converge to the time
discretization errors in K. In terms of weak approximation errors at #y using the 2.0 weak
Taylor scheme in the forward SDE, one may need to enlarge the truncated Fourier series
in order to preserve second order convergence, as the corresponding time discretization
error decays with a faster rate of O (h?).

5.5. CONCLUSION

In this chapter, we extended the BCOS method of [144, 145, 76] to second-order Tay-
lor schemes approximating the Markov transition between two time steps in the fully-
coupled FBSDE setting. We presented an algorithmic framework that unifies second-
order Taylor schemes for fully-coupled equations, including the Euler-, Milstein- and
simplified order 2.0 weak Taylor approximations for the forward SDE; and the general-
ized theta-scheme of [164] for the BSDE. Building on the closed-form expression for the
characteristic function of the corresponding Markov transitions in lemma 5.3.1, we ex-
tended the coupled BCOS method and gave an implementable, higher-order numerical
method for the fully-coupled FBSDEs in algorithm 5. We demonstrated the robustness
and accuracy of our algorithm on a wide range of equations, spanning from the decou-
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strong error X strong error Y strong error Z
N\K ‘ 128 512 1024 128 512 1024 128 512 1024
10 7.7e-3 7.7e-3 7.7e-3 | 1.5e-2 1.5e-2 15e-2 | 3.3e-3 3.3e-3 3.3e-3
100 24e-3 24e-3 24e-3 | 4.7e-3 4.7e-3 4.7e-3 | 83e-4 8.3e-4 8.3e-4
400 1.2e-3 1.2e-3 12e-3 | 2.4e-3 2.4e-3 24e-3 | 4.1e-4 4.le-4 4.le-4
1000 | 7.7e-4 7.7e—4 7.7e-4 | 1.5e-3 1.5e-3 1.5e-3 | 2.7e-4 2.7e-4 2.7e-4

(a) Euler with (5.7)

strong error X strong error Y strong error Z
N\K 128 512 1024 128 512 1024 128 512 1024
10 1.7e-3 1.7e-3 1.7e-3 | 3.5e-3 3.5e-3 3.5e-3 | 1.9e-3 1.9e-3 1.9e-3

100 1.7e—4 1.7e-4 1.7e—4 | 3.3e—4 3.3e—-4 33e—4 | 1.9e-4 19e-4 1.9e—4
400 4.3e-5 4.3e-5 4.3e-5 | 8.7e-5 8.7e-5 8.7e-5 | 49e-5 4.9e-5 4.9e-5
1000 1.7e-5 1.7e-5 1.7e-5 | 3.4e-5 3.4e-5 3.4e-5 | 2.0e-5 2.0e-5 2.0e-5

(b) Milstein with (5.8)

Table 5.3: Example 3 in (5.41). Strong approximation errors with various forward discretizations in (5.6), and
for different values of K and N. (01 =02 =03 =1/2,04=-1/2,K = 210

pled to the fully-coupled case, and found that the hereby proposed second-order Taylor
methods bring an improved first-order strong convergence to the total approximation
error of the FBSDE compared to the Euler scheme in [76], if the theta parameters of the
backward discretization are chosen accordingly. Additionally, we found that the 2.0 weak
Taylor discretization further improves the convergence of the approximation errors at %,
to second-order, which is crucial in applications such as stochastic optimal control. On
top of the improved accuracy, the methods also proved to be robust with respect to the
number of terms in the finitely truncated Fourier expansion.
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error Yy error Zy
N\K 128 512 1024 128 512 1024

10 8.8e—4 8.8e—4 8.8e—4 | 3.4e-3 3.4e-3 3.4e-3
100 8.6e-5 8.6e-5 8.6e-5 | 3.2e—4 3.2e—-4 3.2e-4
400 2.2e-5 2.2e-5 2.2e-5| 74e-5 7.4e-5 7.4e-5
1000 | 8.6e—6 8.6e—6 8.6e—6 | 2.4e—5 2.4e-5 2.4e-5

(a) Milstein with (5.8)

error Yy error Z
N\K 128 512 1024 128 512 1024
10 1.5e-5 1.5e-5 2.le-5| 7.1e-5 6.9e-5 2.le—4

100 8.4e—8 8.4e—-8 8.4e-8 | 1.0e-6 7.2e-7 7.le-7
400 5.2e—8 5.2e—8 5.2e—8 | 3.2e-7 6.0e-8 5.1e-8
1000 | 2.2e—8 2.2e—8 2.2e-8 | 2.8e—7 2.0e-8 1.1e-8

(b) 2.0 weak Taylor with (5.9)

Table 5.4: Example 3 in (5.41). Weak approximation errors at ¢y, with various forward discretizations in (5.6),
and for different values of K and N. (61 =02, =03 =1/2,04=-1/2,K = 210
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Figure 5.5: Example 3in (5.41). (9] =0 =03 =1/2,0, = -1/2, K =210)
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I'm learning to fly but I ain’t got wings
Coming down is the hardest thing

Tom Petty and the Heartbreakers (Learning to Fly)


https://www.youtube.com/watch?v=s5BJXwNeKsQ
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Throughout this thesis, we investigated modern, machine learning methods for the
numerical approximation of high-dimensional forward-backward stochastic differential
equations. We examined the convergence of discrete time approximations in several
different settings. We analyzed two different methods for the approximation of the as-
sociated conditional expectations, the deep BSDE method in high-dimensional settings,
and the BCOS method in the classical, one-dimensional framework. In this conclud-
ing chapter, we summarize the main results of the thesis and point out several research
directions with related interesting, open follow up questions.

6.1. MAIN RESULTS

In the first two chapters, we derived a new discretization for Malliavin differentiable
BSDEs, analyzed and proved its convergence, and studied two fully-implementable ap-
proaches including a thorough regression error analysis. The main application of the
One Step Malliavin scheme is the numerical resolution of delta-gamma hedging in (1.13)
of high-dimensional financial options, which we carried out in chapter 3. The last two
chapters were concerned with the fully-coupled FBSDE setting in (1.3)-(1.2). First, in
chapter 4, we established a new, a posteriori convergence result for the approximation
errors of the deep BSDE method, involving coupling in the control process. Finally, in
chapter 5, we presented a higher-order numerical method for the scalar-valued case,
capitalizing on differentiable approximations in a Fourier cosine expansion scheme. In
what follows, we summarize the main results established along the way.

6.1.1. ONE STEP MALLIAVIN SCHEME AND ITS APPLICATIONS

Chapter 2 laid down the foundations of the One Step Malliavin scheme in the Marko-
vian framework. Building on the representation formulae established by the theorems
in section 2.3 we derived the discrete time approximations of the OSM scheme. The
main ingredients were the Malliavin differentiability of the solution triplet of the FBSDE
system, and the linear SDE and BSDE their Malliavin derivatives satisfy. Given a merged
formulation of the Malliavin chain rule in lemma and the Feynman-Kac formulae, we
derived the discrete OSM approximations, after a suitable discretization of the continu-
ous time integrals. The crucial difference between the discretization therein, compared
to, for instance, the standard Euler discretization of BSDEs, is the presence of a I" pro-
cess. This, on top of discretizing the control process through the linear BSDE governing
the paths of the Malliavin derivatives, guarantees a stochastic representation of the sec-
ond derivatives of the solution of the associated parabolic problem, which is in fact the
key input for the delta-gamma hedging applications carried out in chapter 3.

Subsequently, we carried out a complete, discrete time approximation error analy-
sis in section 2.4. Under standard Lipschitz assumptions, we showed that the time dis-
cretization errors induced by the OSM scheme admit an asymptotic convergence rate
of order 1/2 in natural L2 norms. The main challenge in the proof was controlling the
L? regularity of the Malliavin derivative of the control process and establishing suffi-
cient estimates for the discretization error of the I" process, that could later be combined
with a discrete Gronwall lemma. The most important differences between the error esti-
mates of the OSM scheme, and that of the convergence of the standard backward Euler




182 6. CONCLUSION AND OUTLOOK

scheme of BSDEs are as follows. First, due to discretizing the control process through
the Malliavin representation formula, the errors in the Z process are controlled by the
maximum error over discrete time points. Furthermore, by solving an additional, linear,
vector-valued BSDE of the Malliavin derivatives, the OSM scheme solves a larger prob-
lem, including second derivative estimates by means of the I' process. Nonetheless, the
One Step Malliavin scheme exhibits the same, optimal convergence rate as that of the
standard Euler scheme.

The discrete time convergence analysis was followed by a thorough regression study
in section 2.5, where we investigated two fully-implementable approaches approximat-
ing the backward recursion of conditional expectations in the abstract time discretiza-
tion. First, we derived the corresponding BCOS approximations, computing the associ-
ated conditional expectations by means of Fourier cosine expansions, using the known
conditional characteristic functions of the Markov transitions. This approach was partic-
ularly useful for the empirical study of regression errors stemming from the deep BSDE
approximations of higher-dimensional equations — we refer to figure 2.2 in particular.
Most importantly, we derived backward deep BSDE approximations of the OSM scheme
in section 2.5. Argued by the martingale representation theorem, we derived two sepa-
rate loss functions, depending on whether the I" process is parameterized or computed
directly by means of automatic differentiation. Sufficient minimizers of these loss func-
tions directly approximate the conditional expectations corresponding to Z and T es-
timates. Subsequently, we derived a similar loss function for the Y part of the equa-
tion. We established the consistency of the deep BSDE approximations up to a universal
approximation type argument, for both the parametrized and automatic differentiated
cases of I'. In particular, assuming perfect minimizers of the associated loss functions,
we managed to control the total approximation errors by an upper bound depending
on the discretization errors and the sum of regression biases. Therefore, given an ap-
propriate UAT result, the bounds can be made arbitrarily small, assuming a converging
stochastic gradient descrent optimization. The main challenge in the proof was a suffi-
cient sandwiching of the regression errors in the presence of the I' process.

In the final section of chapter 2, we presented several numerical experiments, span-
ning a wide range of high-dimensional semi-linear equations, demonstrating the robust-
ness and accuracy of the deep BSDE approximations of the One Step Malliavin scheme
up to d = 50 spatial dimensions. In particular, we found that the OSM approximations
bring a significant improvement in the errors of the Z process for heavily control depen-
dent equations, which are particularly relevant in stochastic optimal control.

DELTA-GAMMA HEDGING

The main motivation behind the development of the One Step Malliavin scheme was the
numerical resolution of delta-gamma hedging of high-dimensional options. Capitaliz-
ing on the I's involved in the OSM scheme, in chapter 3 we carried out this application
in depth. In order to be able to treat financial options with early-exercise features, we
first extended the One Step Malliavin scheme to discretely reflected BSDEs. The main
challenge is the sufficient numerical treatment of the (disretized) reflection process, en-
suring that the Y process stays above Markovian lower boundary over the discrete set of
reflection points. Thereafter, in order to be able to hedge on the portfolio level, we gen-
eralized the OSM approximations to the vector-valued setting, allowing for the simulta-
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neous treatment of systems of discretely reflected BSDEs corresponding to multiple op-
tions. For an efficient numerical resolution of this system, we proposed a vector-valued
extension of the deep BSDE method for the One Step Malliavin scheme in algorithm 2.
This approach involves not only option prices and Deltas, but also second-order Greeks
throughout the whole time horizon. Additionally, we extended the method to stochastic
volatility models.

We performed extensive numerical experiments highlighting several key features of
the proposed methodology. Our findings suggest that the OSM scheme provides highly
accurate Greeks up to second order, resulting in high quality discrete time replication,
both in the case of delta- and delta-gamma hedging. In particular, we found that the
deep BSDE approximations of the One Step Malliavin scheme surpass reference meth-
ods [77, 32], even in the context of delta hedging, when risk factors exhibit high volatil-
ity. Most importantly, we showed that the Gamma approximations induced by the OSM
scheme are of high accuracy, and are applicable in the context of discretely rebalanced
delta-gamma hedging for high-dimensional Bermudan options. The delta-gamma repli-
cation accuracy induced by OSM approximations significantly improved on that of sole
delta hedging, even in the presence of d = 100 risk factors. The thorough numerical ex-
periments indicate that our methodology is robust and accurate for different levels of
moneyness, high volatility, varying early exercise rights up to the continuously reflected
American option limit. Hedging on the portfolio level proved to be successful up to 25
high-dimensional basket contracts issued on d = 100 risk factors.

6.1.2. A POSTERIORI CONVERGENCE OF THE DEEP BSDE METHOD AND ITS
APPLICATIONS

For the last two chapters of this thesis, we investigated numerical methods for the so-
lution of fully-coupled FBSDE systems, targeting applications in stochastic control. Our
first main contribution was given in chapter 4, where we generalized the a posteriori
convergence result of the forward deep BSDE method of [69] to general drift terms in the
forward diffusion, admitting Z as an argument.

After a suitable reformulation of a discretized coupled FBSDE system into a stochas-
tic target problem, we investigated the forward deep BSDE method. Under suitable as-
sumptions, we proved the a posteriori bound following a sequence of auxiliary lemmas,
bounding the difference between two solutions to the time discretization, without im-
posing the terminal condition on the FBSDE. First, we gave an a priori estimate, control-
ling the difference in X and Y. Compared to the related convergence result of Han and
Long [69], our conditions involved an extra constant due to the extra Z coupling. We
handled this extra term in a subsequent lemma, by proving further a priori estimates.
Due to the Z coupling in the drift, this induces three additional constants. The key step
herein was to restrict the free constant 13 stemming from the application of the e-Young
inequality, to values 13 > 2mL£ , related to the strength of Z coupling. Building on this
sequence of lemmas, our main theorem was stated and proved in theorem 4.3.3. The
main condition in this theorem is related to the two coefficients B, A, and establishes
that whenever these coefficients are contractive at the same time, then the forward deep
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BSDE method, admits an a posteriori bound, which can informally be written as follows
total approximation error < time discretization + loss function.

Compared to earlier results of Han and Long [69], our extra condition related to B, which
stems from the coupling of the Z process.

We gave detailed interpretations for our weak coupling conditions in section 4.4. We
showed that the conditions hold under many relevant applications, such as

e decoupled FBSDEs;

short time horizons T;
* weak coupling;
° strong monotonicity.

In particular, we proved that our theory includes the setting of [69], and that in the ab-
sence of Z coupling, we recover their convergence result as a limit case of our theorem.

In the final section of chapter 4, we provided several numerical experiments sup-
porting our theory. Among others, our theory explains the divergence of the deep BSDE
method previously observed in the stochastic control literature in [4]. We showed that
the reason behind this is related to the strength of Z coupling, resulting in the violation
of our conditions. We demonstrated that whenever the equation is rescaled in a way that
this condition is satisfied, the deep BSDE method converges for all other coefficients
being equal. Ultimately, as an application on high-dimensional stochastic control prob-
lems, we compared solutions of the same optimal control problem, where the associated
coupled FBSDE system was first formulated by the dynamic programming and then by
the stochastic maximum principle. We found that for drift control problems, deriving
an associated FBSDE system by means of the stochastic maximum principle leads to an
equation more tractable in deep BSDE frameworks, due to the lack of Z coupling, which
renders the extra condition of our theory automatically satisfied. Therefore, the conver-
gence of the deep BSDE method can be ensured by milder conditions imposed only on
the coupling in Y. These observations are in line with the findings of [74].

6.1.3. HIGHER-ORDER BCOS METHOD

In the final part of this thesis, chapter 5, we took a step away from high-dimensional
equations, and developed a new numerical method for one-dimensional, fully-coupled
FBSDEs. Distinct from most classical references, we did not only discretize the coupled
forward diffusion by means of Euler-Maruyama approximations, but gave a unifying
framework for second-order Taylor schemes, also including Milstein- and simplified or-
der 2.0 weak Taylor discretizations. The latter two schemes imply an improved strong
convergence rate of order 1, and in case of the last scheme, improved weak convergence
of order 2. In order to preserve the higher order convergence rates from the approxima-
tion of the backward equation, we discretized the BSDE by the second order schemes of
Zhao et al. [164] and Crisan and Manolarakis [35], given in (5.11) and (5.12), respectively.
In proposition 5.3.1, we proved that the latter scheme can be expressed in terms of the
generalized theta-scheme of Zhao et al. [164].
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For the approximations in space, we employed the COS method, built on finite
Fourier cosine expansions, and known conditional characteristic functions. To this end,
for any fixed decoupling field (¢, (), we proved that the characteristic function of the
Markov transition associated with second-order Taylor schemes admits a closed form
expression. Subsequently, in order to approximate all conditional expectations in the
discretization of the BSDE, we proved a recursive formula, establishing analytical ex-
pressions for conditional expectations where the argument is multiplied by powers of
the Brownian increment. Finally, to address the derivatives of the decoupling fields (¢, ()
appearing in the second-order Taylor approximations, we capitalized on the differentia-
bility of COS approximations, in an explicit backward recursion. In particular, similar to
the explicit scheme in Huijskens et al. [76], setting the decoupling relations ¢ = y(#,+1,")
and ¢ = z(t,+1,+) at time step ¢, one recovers analytical expressions for the correspond-
ing spatial derivatives. This makes the computation of all coefficients in (5.6) possible.
The resulting algorithm was given in algorithm 5.

Numerical experiments supported the claims on higher order convergence for a
range of FBSDEs, from the decoupled to the fully-coupled settings. These results sug-
gest that both the Milstein and simplified order 2.0 weak Taylor discretizations, approx-
imated by the COS method, achieve a strong convergence with rate of order 1, for all
levels of coupling. Additionally, in case of the latter scheme, an asymptotic weak con-
vergence rate of order 2 can be achieved when using the generalized theta-scheme with
certain parameters. This implies improved approximations at ¢ = 0, in case the initial
condition of the forward diffusion is deterministic, which has accentuated relevance in
stochastic optimal control applications.

6.2. OUTLOOK

There are several promising directions in which the results in this thesis can be extended.
As a closure to our work, we list a few of them, pointing out the main foreseeable chal-
lenges, where possible.

Convergence analysis of OSM discretization for general diffusions. In chapter 2, we
proved that under certain assumptions, the discrete time approximations of the OSM
scheme converge with an L2 order of @(||'/?), as the mesh size of the corresponding
time partition vanishes. A key assumption this result was based on, is the condition
of additive noise in the forward diffusion. In particular, this assumption enabled us to
neglect product terms from the approximation error of the merged formulation of the
Malliavin chain rule and the Feynman-Kac formulae. A promising area of further re-
search could be the relaxation of this condition, and proving convergence of the OSM
discretization for more general diffusion coefficients. In doing so, the main challenge
is to sufficiently control the approximation errors from the merged formulation of the
Malliavin chain rule and the Feynman-Kac formula, inducing terms as in (2.41). We refer
back to the discussion on this subject in section 2.4.2. Note that a necessary sub-result
was shown in section 2.A, where the convergence of the Euler-Maruyama approxima-
tions for the Malliavin derivative of the forward diffusion is derived under mild condi-
tions, capitalizing on approximations only being required between adjacent time points.




186 6. CONCLUSION AND OUTLOOK

Finally, we remark that empirical results indicate that the additive noise condition can
indeed be substantially relaxed — we refer to example 3 in section 2.6.

OSM for fractional diffusions and BSDEs with jumps. In chapter 2, we derived the
One Step Malliavin scheme for Markovian FBSDE systems, i.e. where solutions to both
the forward diffusion and the BSDE are Markov processes. A generalization of these
results to non Markovian diffusion frameworks would allow the treatment of many fi-
nancially relevant problems. For instance, one could consider rough volatility models,
where the volatility process is driven by a fractional Brownian motion, see e.g. [18, 55].
Such models exhibiting memory can approximated by a sequence of Markovian approx-
imations, and in this regard, the results in this thesis could form the basis for fractional
generalizations. Due to their efficiency in handling high-dimensional problems, deep
BSDE methods seem a suitable candidate for such numerical approximations — we refer
to [81] for a recent study in this direction.

Similarly, another significant extension of the One Step Malliavin scheme would be
the treatment of jump diffusion frameworks. Indeed, the linear BSDE governing the
paths of the Malliavin derivatives of the solution pair of the backward equation, remains
to be true in the general, jump diffusion settings, we refer to [57] for a recent result in
this direction. Therein, the authors show that a similar Malliavin representation formula
holds, as long as the equation is driven by a Lévy process. A suitable discretization of this
BSDE would allow for delta-gamma hedging in the presence of jumps.

Convergence of the deep BSDE method for fully-coupled FBSDEs. In chapter 4, we
proved the a posteriori convergence of the forward deep BSDE method for general drift
coefficients in the forward diffusion, also admitting Z as an argument. A natural open
question is what conditions would Z coupling in the diffusion have to satisfy, so that
this result can be generalized to the fully-coupled case? The two main obstacles are as
follows. First, one would need to ensure that the corresponding discrete time approx-
imations admit a similar convergence result as the one employed in chapter 4. There-
after, one would have to generalize the estimates in the relevant lemmas to allow for
fully-coupled diffusions, and check how the resulting estimates would change the con-
tractivity condition. In particular, it remains to be an open question, whether a similar
result could be established without putting further restrictions on the length of the time
horizon T.

Convergence analysis of BCOS. In chapter 5, we developed a BCOS method for fully-
coupled FBSDEs, and showed empirically that this method admits higher order con-
vergence rates, both in the strong- and weak senses. A rigorous, theoretical conver-
gence proof of these observations remains an open problem, even in the case of Euler-
Maruyama discretizations. The main intricacy in proving the convergence of the BCOS
method is the interplay between the COS approximations and the time discretizations, in
the presence of coupling. We believe that an error analysis similar to [40] could be estab-
lished with some new ideas handling the COS errors terms. In particular, the truncation
of both the Fourier cosine series to a finite number of terms K, and the integration range
to a finite interval [a, b] induce non-trivial error terms that are intertwined with the time
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discretization. In case of the former, the coefficient recovery, done by discrete cosine
transforms, requires tight bounds on the size of the coefficients, such that discrete time
error remain meaningful in a backward recursion. For the latter, one would need to en-
sure that the relevant regions of Markov transitions are covered with high-probability, in
between each pair of time steps. A clever combination of density estimates for FBSDEs,
see e.g. [95], with recent results on the optimal integration range for the COS method
[88] may provide a satisfactory answer to the these open questions.

Higher-order backward deep BSDE method using a Milstein discretization. In chap-
ter 5, we heavily relied on the assumption that the forward diffusion in the coupled FB-
SDE system is one-dimensional. As is well-known in the numerical SDE literature [90],
one needs to impose additional assumptions on the coefficients, in order to preserve a
strong convergence rate of order 1 for the Milstein scheme of high-dimensional diffusion
models. A promising, multi-dimensional extension in the spirit of chapter 5 would be to
extend the backward deep BSDE method of Huré et al. [77] to forward discretizations by
the Milstein scheme. In case of commutative noise, the discretized forward approxima-
tions are expected to exhibit a strong convergence rate of order 1, and it remains to be
seen, how one could formulate a suitable loss function for a second-order discretization
of the BSDE, in a similar way to the generalized theta-scheme of [164]. Addressing these
gaps would result in a higher-order Monte Carlo method, for a special class of decoupled
FBSDEs.

Comparison of deep BSDE methods with Physics Informed Neural Networks.
Throughout chapters 2, 3 and 4, we considered several variants of deep BSDE meth-
ods, with the main motivation of tackling high-dimensional problems in option pricing,
hedging, and stochastic optimal control. One attribute, all methods have in common
is that they consider a stochastic reformulation of an associated nonlinear PDE such as
(1.8), by means of a BSDE, and solve this backward SDE in a suitable machine learning
formulation. There is a disjoint class of competitive numerical methods in the recent lit-
erature of scientific computing, which directly tackle the solution to a pricing PDE or HJB
equation. This class of methods is often referred to as Physics Informed Neural Networks
(PINN), see e.g. [149, 142, 140]. To the best of our understanding, there is no satisfactory,
in depth comparison between deep BSDE methods and PiNNs in the context of financial
mathematics. Therefore, it remains to be an open question, which of these methods are
more accurate in the context and applications of this thesis.
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