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Semantic Scene Completion Using Local Deep
Implicit Functions on LiDAR Data

Christoph B. Rist , David Emmerichs , Markus Enzweiler , and Dariu M. Gavrila

Abstract—Semantic scene completion is the task of jointly estimating 3D geometry and semantics of objects and surfaces within a

given extent. This is a particularly challenging task on real-world data that is sparse and occluded. We propose a scene segmentation

network based on local Deep Implicit Functions as a novel learning-based method for scene completion. Unlike previous work on scene

completion, our method produces a continuous scene representation that is not based on voxelization. We encode raw point clouds into

a latent space locally and at multiple spatial resolutions. A global scene completion function is subsequently assembled from the

localized function patches. We show that this continuous representation is suitable to encode geometric and semantic properties of

extensive outdoor scenes without the need for spatial discretization (thus avoiding the trade-off between level of scene detail and the

scene extent that can be covered). We train and evaluate our method on semantically annotated LiDAR scans from the Semantic KITTI

dataset. Our experiments verify that our method generates a powerful representation that can be decoded into a dense 3D description

of a given scene. The performance of our method surpasses the state of the art on the Semantic KITTI Scene Completion Benchmark

in terms of geometric completion intersection-over-union (IoU).

Index Terms—LiDAR, semantic scene completion, semantic segmentation, geometry representation, deep implicit functions

Ç

1 INTRODUCTION

AUTONOMOUS mobile robots have to base their actions
almost exclusively on an internal representation of their

current environment. Perception systems are built to create
and update such a representation from real-time raw sensor
data. We are interested in a model of the current environ-
ment that preferably condenses the information that is
important for the task at hand or makes it easy to extract rel-
evant information. For robot navigation it is required to esti-
mate whether a certain area is occupied by an object and
what semantic meaning different objects and surfaces hold.
Even non-mobile settings, e.g., mapping applications, bene-
fit from an effective geometric and semantic completion of
low-resolution or incomplete sensor data. To fulfill this
need 3D completion aims to map and infer the true geome-
try of objects from sensor input. Semantic scene completion
extends this task to larger arrangements of multiple objects
and requires to predict the corresponding semantic classes.

Sensor data can only reflect partial observations of the real
world. First, this is because of the physical properties of the

sensors themselves which impose limits on their ultimate
resolution, frequency, and minimal amount of noise with
which they capture data. Second, it is because every sensor is
restricted to its current perspective. Thus, after the point-of-
view sensor data is mapped into the 3D scene, the result will
always be characterized by a distance-decreasing sampling
density, occlusions and blind spots (see regionsmarkedA, B,
C in Fig. 1 respectively). Multiple sensors mounted on a sin-
gle vehicle do not alleviate that issue significantly. They are
usually positioned rather close together, so that their view of
the surroundings still exhibits almost the same degree of
occlusions and shadows. Hence, the completion task in 3D
euclidean space represents a key challenge for perception in
real-time cognitive robotics: Making predictions about cur-
rently unobserved areas by the use of context and experi-
ence. This ability is only necessary for real-time perception
systems. In a static world without time constraints it would
be possible to just move the sensors towards areas of interest
to gain evidence of their true appearance. But unlike static
worlds, mobile robots need to reason about the nature of
objects given only the current observations.

The semantic scene completion task is based on a correla-
tion between the semantic class of an object or surface and
its physical 3D geometry. In the case of LiDAR, the sensor
observes a part of the scene’s geometry. The semantics that
can be deduced from this geometry can be used to then
again complete the missing geometry. Regardless of the
dataset in use, hidden geometry can only be completed by
means of what is probable but never with absolute certainty.
This probability is in turn associated with the type of objects
within the scene. Naturally, human perception exhibits the
same inherent limitations as computer sensors when it
comes to physical limitations and the laws of 3D geometry.
However, humans make up for this by fitting a powerful
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model to infer even large missing pieces of geometric and
semantic information about their surroundings.

Our approach is a deep learning method that we train on a
large number of semantically annotated LiDAR measure-
ments. The model leverages the training data as prior knowl-
edge to reason about the geometry and semantics of the
complete 3D scene from a single LiDAR scan as input. We
propose to represent the scene completion output with local-
ized Deep Implicit Functions (DIFs). A DIF is a continuous
function over 3D space which classifies individual positions.
The composed scene completion function fcLDIF : R3 !
½0; 1�Nþ1 is defined over all scene positions and outputs a clas-
sification vector over N semantic classes and free space. This
continuous representation avoids a trade-off between achiev-
able spatial output resolution and the extent of the 3D scene
that can be processed. Fig. 1 presents a visualization of the
resulting function and a comparison to a voxelized output.

When it comes to the representation of geometry, exist-
ing works on object or scene completion focus most com-
monly on voxelization [1], [2], [3], [4], [5], [6], [7], [8], [9].
However, this results in satisfactory output resolutions only
for volumes of limited extent. Approaches using DIFs to
represent shapes [10], [11], [12], [13] only encode single
objects into a fixed size latent vector. Most previous work
completes 3D geometry on the assumption that the scene in
question is covered evenly with sensor measurements, such
as indoor scenes recorded with RGB-D cameras. In compari-
son, the density of a LiDAR scan decreases steadily with
distance so that gaps between measurements get larger. Dis-
tance to the sensor and occlusions lead to areas where the
actual ground truth geometry cannot be inferred anymore
from the measurements. This label noise and the varying
sparsity is a challenge for current models [6].

Our method requires accurate 3D measurements of a
scene to be trained for geometric completion. These

measurements can be obtained from one or multiple LiDAR
sensors, or a LiDAR sensor that is moved through the scene,
provided that all measurements can be transformed into a
single reference coordinate system. If semantic annotations
are not available our method can still be trained for pure
completion of scene geometry.

This paper builds upon our earlier work on LiDAR-based
scene segmentation [14]. For this work, we created a train-
ing procedure for semantic scene completion based on accu-
mulated LiDAR data and conducted an extensive
experimental evaluation of our design choices and parame-
ters. In summary, our contributions are:

� We produce a representation for both geometry and
semantics of 3D scenes by Deep Implicit Functions
with spatial support derived from a 2D multi-resolu-
tion grid. Our combination with continuous output
coordinates make dense decoding of large spatial
extents feasible.

� We generate point-like training targets from time-
accumulated real-world LiDAR data and the
included free space information. Dynamic objects
are considered separately to ensure consistency.

� In experiments on the Semantic KITTI Scene comple-
tion benchmark, we show that the proposed
approaches outperform voxel-based methods on
geometric completion accuracy.

2 RELATED WORK

First, this section discusses ways to represent geometry and
surfaces within the context of reconstruction algorithms.
Second, related work about geometric completion is catego-
rized into completion of single object shapes and comple-
tion of indoor scenes from synthetic or RGB-D data. Finally,
we take a look at the state of the art in semantic segmenta-
tion and scene completion of outdoor scenes from real-
world LiDAR data.

2.1 Geometry and Surface Representation

Most commonly the output representation for 3D scene
completion is a voxel occupancy grid [4], voxelized (trun-
cated) signed distance functions (SDFs) [1], [2], [3], [5], [15],
or interpolation and CRFs [16] for sub-voxel accuracy. A dif-
ferentiable deep marching cubes algorithm replaces the SDF
as an intermediate representation and enables to train the
surface representation end-to-end [17] but the resulting
representation is still constrained to the underlying voxel
resolution. The general trade-off between output resolution
and computational resources is an issue for 3D representa-
tions [1]. Octree-based convolutional neural networks
(CNNs) have been proposed to represent space at different
resolutions and to perform gradual shape refinements [18],
[19], [20], [21].

Recent works represent 3D shapes and surfaces implic-
itly as isosurfaces of an output function which classifies sin-
gle points in euclidean 3D space [10], [11], [12], [13].
Depending on the output function’s complexity this
approach has the capacity and expressiveness to represent
fine geometric details. An encoder creates a parameter vec-
tor that makes the output function dependent on the actual

Fig. 1. Illustration of the semantic scene completion task and the output
of our method. Sensors are limited in their resolution and restricted to a
single perspective of their surroundings. A LiDAR scan (herein depicted
as black points) is characterized by a varying degree of sparsity caused
either by distance (A), occlusions from objects (B) or sensor blind spots
(C). Our method is able to complete the sparse scan geometrically and
semantically and can be applied to large spatial extents as typically
found in outdoor environments. The underlying representation is not tied
to a fixed output resolution and describes the scene using a continuous
function (right side, color indicates semantic class). Therefore the geom-
etry does not exhibit quantization artifacts resulting from a discretization
into voxels (left side).
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input data for geometric reconstruction. Both the output
function and encoder are represented as deep neural net-
works (DNNs) and trained by backpropagation. They either
use oriented surfaces [12] or watertight meshes [11] from
ShapeNet [22] as synthetic full-supervision training targets.
These methods have improved the state of the art signifi-
cantly for shape reconstruction and completion. However,
their scope is limited to the reconstruction of single objects.
These approaches do not generalize or scale well because of
the nature of a single fixed-size feature vector that repre-
sents a shape globally.

Recently, DIFs are combined with grid structures or
other support positions that improve their spatial capabili-
ties to describe larger scene extents [23], [24] or more com-
plex geometric details of individual objects [24], [25], [26]
instead of only simple shapes.

To represent more complex details in 3D shapes, a set of
local analytic 3D functions with limited support can be com-
bined with deep implicit functions to predict occupancy
[26]. The latent representations of individual small synthetic
object parts can be used to assemble a large 3D scene [23].
For this purpose, synthetic objects are first auto-encoded to
generate the latent space. Then, a possible representation of
a scene is found by iterative inference. This setup only
requires a decoder from latent grid to the 3D scene. Concur-
rent to our work, [24], [25] encode 3D points into a 2D grid
or 3D feature volume and perform bilinear or trilinear inter-
polation on this feature space. Here [25] explicitly considers
features from multiple resolutions and the query position in
only used for interpolation, not in the decoder. [24] uses the
query position for interpolation and again as concatenation
to the latent feature in the decoder. The feature grid is sin-
gle-resolution. For geometric reconstruction of indoor RGB-
D data, the full volumetric grid performs best. With a focus
on representation and reconstruction of geometry, the
method is trained on synthetic watertight-meshes and uni-
formly sampled point clouds are used as input.

2.2 Shape Completion

Poisson surface reconstruction is a state-of-the-art recon-
struction algorithm for an object’s surface from measured
oriented points [27]. As with other implicit representations
the resulting geometry needs to be extracted by marching
cubes or an iterative octree variant of marching cubes [11].
Poisson surface reconstruction handles noise and imperfect
data well and adapts to different local sampling densities.
However, it is of limited use on real-time real world data as
it is unable to leverage prior knowledge to complete unseen
or sparse regions unlike methods based on learned shape
representations.

Many data-driven, learning-based and symmetry-based
approaches have been proposed for shape completion. We
refer to Stutz et al. [28] for an overview and focus on shape
completion on LiDAR scans. 3D models can be used to train
a DNN for the shape completion problem on synthetic data
and perform inference on real LiDAR scans [29]. Alterna-
tively, a shape prior from synthetic data can be used for
amortized maximum likelihood inference to avoid the
domain gap between synthetic and real data [28]. Recently,
it has been shown that synthetic data can be avoided

altogether by using a multi-view consistency constraint to
train shape completion only from LiDAR scans without full
supervision [30].

2.3 Semantic Scene Completion

For a recent comprehensive survey on semantic scene com-
pletion we refer to [31]. The subject of scene completion has
first gotten momentum from the wide availability of RGB-D
cameras leading to the advent of indoor semantic segmenta-
tion datasets such as the NYUv2 Depth Dataset [32] and
ScanNet [33]. [2] is a pioneering work to infer full scene
geometry from a single depth image in an output space of
voxelized SDFs. Generalization to entirely new shapes is
data-driven and implemented with voxel occupancy pre-
dicted by a structured random forest. A specially created
table-top scene dataset with ground truth from a Kinect
RGB-D camera is used as full-supervision training target.

A volumetric occupancy grid with semantic information
can be predicted from voxelized SDFs as input in an end-to-
end manner [1], [4]. They apply their methods to synthetic
indoor data from the SUNCG dataset. While [4] is appropri-
ate only on single RGB-D images, [1] extends to larger spa-
tial extents. Multiple measures improve geometric precision
and consistency: Using SDFs as output representation per
voxel, an iterative increase of voxel resolution, and the divi-
sion of space into interleaving voxel groups. Voxelized
SDFs and semantic segmentation can be inferred by explicit
fusion of single depth images with RGB data [3]. [23] vali-
dates the geometric representation power of DIFs in combi-
nation with a structured latent space approach on indoor
RGB-D data of the Matterport3D dataset [34]. The details in
the completion of RGB-D scans from Matterport3D can be
improved by progressive spatial upsampling in the decoder
and a deliberate loss formulation that does not penalize
unseen areas [15].

2.4 Segmentation and Scene Completion on LiDAR
Data

Numerous prior works focus on semantic segmentation of
all observed data points resulting in a pixel-wise or point-
wise classification of LiDAR data. These methods do not
predict any labels for invisible parts of space from the
sensor’s perspective. However, datasets and benchmarks
on real-world road scenes have defined a standard of
semantic classes that is significant while simultaneously
advancing the state of the art [6], [35], [36]. CNN-architec-
tures on RGB-Images for segmentation and detection [37],
[38] have inspired sensor-view based approaches in the
more recent LiDAR-based segmentation task [39], [40], [41].
Neural network architectures adjust to the three dimen-
sional nature of a segmentation or detection problem
through voxelization of input data [42], [43], [44], [45], com-
bination with sensor-view range images [46], and use of sur-
face geometry [39]. Computation, memory efficiency and
representation of details of voxel architectures can be
improved by combining a coarser voxel structure with a
point-feature branch for details [45] and neural architecture
search [47].

The scene completion problem on real-world data has
only recently been advanced by the large-scale Semantic
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KITTI dataset [6] featuring point-wise semantic annotations
on LiDAR together with a private test set and a segmenta-
tion benchmark for semantic scene completion. Methods
originally applied to scene completion from depth images
[3], [4] can be adapted for LiDAR scene completion: The
Semantic KITTI authors [6] adapt the Two-Stream (TS3D)
approach [3] which is originally applied to depth images of
indoor scenes of the NYUv2 dataset. TS3D combines geo-
metric information from a depth image and a predicted
semantic segmentation from an RGB image in a volumetric
voxel grid. For Semantic KITTI outdoor scenes, they use a
state-of-the-art DeepNet53 segmentation network trained
on Cityscapes [36] and SatNet [48] for voxel output.

The three recent methods LMSCNet [7], JS3CNet [8], and
S3CNet [9] only use LiDAR data as input. The usage of U-
net architectures for down-, upsampling, and spatial context
is a common architectural pattern. LMSCNet [7] operates on
the voxelized LiDAR input and uses a 2D-CNN backbone
for feature extraction. The voxelized output is inferred with
a monolithic hybrid-network that predicts the completion
end-to-end. LMSCNet can output a lower-resolution coarse
version of a scene at an intermediate stage. However, their
experiments show that the single-output version trained
only on the highest resolution performs slightly better than
the multi-scale version trained with multiple-resolution
losses.

S3CNet [9] and JS3CNet [8] both use the raw LiDAR scan
as input. Both also propose to use a lower resolution scene
representation internally which is subsequently upsampled
into the full output voxel resolution. JS3CNet proposes a
two-stage approach: First, a semantic segmentation of the
input LiDAR scan is inferred. Second, a neural network

fuses the voxelized semantic segmentation and point-wise
feature vectors into the voxelized representation of the com-
pleted scene. S3CNet augments the input LiDAR scan with
a calculation of normal surface vectors from the depth-com-
pleted range image and TSDF values. These are stored in a
sparse tensor. A semantic 2D BEV map and a 3D semantic
sparse tensor are predicted in parallel. These are then subse-
quently fused into a full 3D tensor. The final scene comple-
tion is obtained after a second semantically-based post-
processing. The authors conduct ablations and attribute a
large share of the final results to the post-processing.

3 PROPOSED APPROACH

3.1 Overview

Our method takes as input a LiDAR scan and outputs the
corresponding scene completion function fcLDIF : R3 !
½0; 1�Nþ1. This function maps every 3D position p within the
scene to a probability vector that we define to represent the
semantic class of the position p. The dependence of the com-
pletion function fcLDIF on the input data is expressed by the
superscript vector c. Positions belonging to objects in the
scene are categorized into N semantic classes. The addi-
tional class free space represents positions that are not occu-
pied by any object (instead they are occupied by air). The
resulting total ofN þ 1 classes is able to describe every posi-
tion within the scene. Hence the fcLDIF function uniformly
represents the geometric and semantic segmentation of
space instead of only the physical boundaries of objects.
The global fcLDIF function is built from many local functions
fL. Every local function has two distinctive inputs: The coor-
dinate of interest Dp and a parameterization vector cV . In

Fig. 2. Network architecture: The feature extractor creates a top-view feature map of the input point cloud. The CNN-encoder outputs feature maps at
three different resolutions that make up the latent representation of the 3D scene. The decoder classifies individual coordinates within the 3D scene
extent. Latent feature vectors and relative-coordinates are processed by conditioned batch normalization in the decoder.
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the context of DIFs, producing an output function fcL means
generating a parameterization (conditioning) vector cV .
When the parameterization vector cV is fixed we obtain the
conditioned function fcL which is only dependent on the
remaining input coordinate Dp. Our approach to the com-
position of the fcLDIF function is designed to encode large
outdoor scenes. While related works on single object shape
representation encode geometry information in a fixed size
conditioning vector, we add spatial structure to the latent
space through the use of a 2D feature grid. Each grid entry
is a conditioning vector for a local function. The grid is cho-
sen to be two-dimensional, uniform and represents the
xy-coordinates of a flattened scene that omits the vertical
dimension. We use three grids, each with its own feature
resolution. An illustration is given in Fig. 2. As a conse-
quence of the grid approach, the amount of conditioning
information is tied to the spatial extent of the scene. The
intuition is that each individual conditioning vector now
describes only a small part of the complete scene in the
vicinity of its own position. Each grid entry always encodes
a volume of the same size, regardless of the overall scene
extent.

We propose a convolutional encoder to generate the fea-
ture maps that make up the conditioning grid. Outdoor
scenes are mainly composed from objects at different loca-
tions on the ground plane (xy). Therefore the configuration
of outdoor scenes is assumed to be translation-invariant in
x and y direction. Intuitively, the encoding of the front of a
car or a part of a tree can be the same regardless of the abso-
lute position of the object within the scene. For this reason
we consider the implementation of the encoder as a convo-
lutional neural network as appropriate. Fig. 2 gives a sche-
matic overview over the point cloud encoding stage, feature
selection, and decoding a position into a coordinate
classification.

The next section describes the details of the composition
of the global completion function fcLDIF from multiple condi-
tioning vectors and grid resolutions. A sampling-based
supervised training method from real-world LiDAR data is
proposed and details on the used network architecture and
inference procedure follow.

3.2 Spatial Structure of Latent Feature Grid

Composition of fcLDIF. Centerpiece of our method is the for-
mulation of latent conditioning vectors that are spatially
arranged in a grid and generated by a convolutional
encoder network on LiDAR point clouds. Each individual
conditioning vector cV parameterizes a local segmentation
functionfcLðDpV Þ to classify a position of interest p. Even
though the domain of individual local functions is R3 and
therefore infinite, the classification will only be meaningful
for positions that are close to the conditioning vector’s posi-
tion within the scene.

It is necessary to define how a conditioning vector is
selected for a given query coordinate p. It is straightforward
to use the single vector of the grid cell that contains the coor-
dinate p when projected onto the ground plane. But with
this approach the resulting global function would exhibit
discontinuities between grid cells. Instead, we select the
four grid cells with the closest center coordinates for the

query coordinate p. Thus we obtain four individual classifi-
cations for p and perform bilinear interpolation according
to p’s position within the square of the surrounding grid
cell center points. We denote the set of the four closest con-
ditioning cells the support region Vp of the coordinate p and
the corresponding coefficients for bilinear interpolation w.
This yields the global classification function

fcLDIFðpÞ ¼
X
V 2Vp

wðDpV ÞfLðcV ;DpV Þ (1)

with DpV ¼ p� oV ; (2)

for a coordinate p. oV is the center position of a cell V and cV
is the conditioning vector at cell V . The coefficients for bilin-
ear weighing wðDpV Þ sum to 1. Intuitively, the spatial extent
of a scene can be thought of as covered by overlapping func-
tion patches fL. Each function fL has its own coordinate
origin oV at the center of its grid cell V . Eq. (2) conveys
the translation of scene coordinates p into the coordinate
system of the conditioning vector’s grid cell that shall
describe p.

Multi-Resolution Scene Representation. An important aspect
of the composition of fcLDIF is the use of three individual
conditioning vectors from three different resolutions levels.
The intuition behind this is that the geometric structure of a
scene is composed of different levels of detail. There is the
coarse positioning of the ground level and large structures
as well as more fine-grained details like curbstones, small
objects and poles. We reproduce this range in the network
structure to facilitate learning of a smooth representation
with more details and more consistency over cell bound-
aries. The conditioning information for a single local func-
tion fL is composed from three resolution-specific feature
vectors. We opt for features cV ¼ðc1; c2; c3Þ from the resolu-
tion ratios 1:16, 1:4, and 1:1 that originate from a U-net-struc-
tured [49] convolutional feature encoder, as illustrated in
Fig. 2. The resolution ratios correspond to grid cells with
5.12 m, 1.28 m, and 0.32 m edge length respectively.

For a scene position p, we select the four closest feature
vectors within the highest resolution feature map as support
region. This 2�2 square of feature vectors is used for bi-lin-
ear interpolation. For each of the lower resolutions, the sin-
gle closest feature vector and associated cell is selected to
complete the conditioning of the local function. The result-
ing four local segmentation functions all describe the single
position p in the scene. All four need to be evaluated to
obtain the final interpolated classification result.

Each conditioning vector ci; i 2 f1; 2; 3g belongs to a grid
cell Vi at resolution i defining a coordinate system relative
to its own position through its origin oVi . Due to the hierar-
chical set of vectors ðc1; c2; c3Þ at different resolutions, we
also obtain a corresponding 3-tuple of relative coordinates
DpV ¼ ðp1;p2;p3Þwith pi ¼ p� oVi as input for fL.

3.3 Training on LiDAR Point Clouds

Sampling Targets for Supervised Training. The decoder neural
network and feature encoder are trained end-to-end using
individual coordinates within the scene and their associated
training labels. This set of coordinate-label tuples is gener-
ated from different data sources. The large number of time-
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accumulated LiDAR measurements is used as primary
training target. Each LiDAR point has a position in the refer-
ence coordinate frame and an associated semantic label.
Together, these positions make up all training targets for
the occupied classes. The top row of Fig. 3 shows the single
input point cloud and the accumulated training targets with
semantic annotations.

Next, we need to obtain positions that are of the free
space class, so not occupied by any object. The pre-process-
ing that accumulates LiDAR points keeps track of all voxels
that are observed at least once, but empty. In every such
empty voxel we sample a free space position target uni-
formly at random. This ensures that the scene extent is
evenly covered with free space information.

We use the input point cloud as a second source of free
space positions. The straight line between a LiDAR mea-
surement and the sensor’s position at time of measurement
is empty, meaning not occupied by any object. We exploit
this reality for self-supervised training of object geometry.
The goal of our scene completion function is to resemble
physical boundaries. Wherever surfaces are scanned by the
LiDAR sensor we would like to have a sharp transition of
the completion function from the prediction of an occupied
class to a free space prediction. Therefore we sample free
space positions on the straight lines between LiDAR mea-
surement and sensor position. We use an exponential
decaying probability distribution to sample the free space
positions close to the surfaces of objects. The approach of
close surface sampling of free space targets and the combi-
nation of surface sampled and global training positions is
similar to [26].

Loss Function. Training the classifier involves three sepa-
rate loss terms: semantic LS , geometric LG, and consistency
LC loss. Semantics and geometry could also be covered by a
single cross-entropy classification problem. However, the
formulation with individual losses allows to include posi-
tions that are known to be occupied by an object without
information about an object class, e.g., unlabeled LiDAR
points. Moreover, geometric and semantic loss terms can be

weighted more easily against each other. The overall loss

L ¼ �S

X
P

LS þ �G

X
P

LG þ �C

X
P

LC; (3)

is the weighted sum of the individual losses that are each in
turn summed over all training targets. We write the pre-
dicted probability vector at position p as ½f1; . . . ; fN; fNþ1�⊺ ¼
fcLDIFðpÞ. The scalar fNþ1 is the predicted probability of the
free space class.

The semantic loss LS is a cross-entropy loss between the
classification output vector ½f1; . . . ; fN �⊺ and semantic
ground truth. The ground truth free space probability for
LiDAR targets is always zero as LiDAR measurements L
are assumed to be located on objects. This loss is not evalu-
ated for free space targets.

The geometric reconstruction loss

LG ¼ H loccupied; lfree
� �⊺

;
XN
i¼1

fi; fNþ1

" #⊺ !
; (4)

is the binary cross-entropy H between the sum of the
semantic class probabilities ½f1; . . . ; fN � for all objects and
the remaining free space probability fNþ1. It is available for
all free space points with ½loccupied; lfree�⊺ ¼ ½0; 1�⊺ and all

LiDAR points with ½loccupied; lfree�⊺ ¼ ½1; 0�⊺.
The consistency loss

LC ¼ JSD fL;0ðpÞ; . . . ; fL;mðpÞð Þ (5)

¼ H
1

m

X
V 2Vp

fLðcV ;DpV Þ
0
@

1
A

� 1

m

X
V 2Vp

H fcLðDpV Þ
� �

;

(6)

for a given coordinate p is the Jensen-Shannon divergence
(JSD) between m ¼ jVpj probability distributions predicted
by the local segmentation functions fL on the support region
Vp of a consistency point p. HðPÞ denotes the entropy of dis-
tribution P. The JSD is symmetric and always bounded.Mul-
tiple local functions fL make a prediction for the same
position in the scene. The unweighted output of these local
functions fL exhibit grid artifacts between neighboring cells.
The consistency loss acts as a regularizer by penalizing
divergence between the grid cells without the need to specify
any particular semantic or free space target label. Thereby,
this loss term is available at any position within the scene,
not only at regionswhere training targets from LiDARpoints
or sampled free space targets are occurring. We provide our
numerically stable formulations of the geometric and consis-
tency loss terms in the supplemental material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3095302.

3.4 Implementation

All DNN network details and the hyperparameters are
listed in the supplemental material in Tables 1 and 2, avail-
able online.

Fig. 3. Left to right, top to bottom: Input points, ground truth accumulated
points, mesh visualization of continuous output function, derived voxeli-
zation at 20cm edge length. Geometric details can be represented more
accurately by our continuous output function as compared to the voxeli-
zation resolution of the Semantic KITTI dataset. Our method does not
cause artifacts on slanted surfaces (e.g., road plane) or edges between
objects.
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LiDAR Point Cloud Encoding. At the base layer we use a
voxel-wise point cloud feature encoder from recent litera-
ture [42], [44]. The encoder transforms the raw input point
set into a fixed-size bird’s-eye view feature representation
(Fig. 2, top-left) that corresponds to the spatial extent of the
scene and is a suitable input for a convolutional feature
extractor. Note that the encoder input feature space is in
principle unrelated to the R3 domain of the generated com-
pletion function. This means that the point cloud encoder
can make use of additional information of the sensor. We
supply the reflectivity value of every LiDAR point as an
extra feature. The positions of LiDAR points are encoded as
separate coordinates relative to the mean position of the
points within the voxel and the voxel center.

Decoder for Batch-Norm Conditioned Classification. Spatial
encoding is implicitly modeled with a local output function
fL that needs to be conditioned on the latent vector cV of the
feature extractor. This single-position classification function
is implemented as a Multi-layer perceptron (MLP) that uses
conditioned batch normalization (CBN) layers to express its
dependency on the latent vectors [50]. Hereby, the resulting
mean and variance of feature maps are generated by an
affine transformation of the respective conditioning vectors.
Our method divides the latent coding cV into resolution-
specific latent vectors cV ¼ðcV 1; cV 2; cV 3Þ and their associated
relative positions DpV ¼ðDp1;Dp2;Dp3Þ. This information
then conditions the output function from coarse to fine:
Thus beginning with the lowest resolution latent vector and
adding more fine-grained information in the later layers of
the MLP. The decoder diagram on the right of Fig. 2 illus-
trates this setup.

Training Details. Training the architecture involves com-
mon spatial augmentations of the input LiDAR point clouds
in sensor coordinates. We use random uniform rotation
over full 360�, random uniform scaling between �5%, ran-
dom uniform translations between �5 cm. When training
we use a top-view input grid with 256� 256 voxels which
results in a square with edge length of 40.96m within the
scene. The grid is initially centered over the area where the
accumulated training targets have been generated. The
voxel grid is shifted off-center using normally-distributed
offsets with standard deviation s ¼ 8 m. We sample a single
free space point for each point in the input LiDAR point
cloud and a single free space point within each empty voxel.
Additionally, 2500 random scene locations are sampled and
contribute to the consistency loss term, but do not have any
other annotations. When training, only two out of the four
nearest local functions fL are evaluated for each query point
to be able to include almost twice as many query training
targets in a single batch. The two selected weighting coeffi-
cients w are scaled up accordingly. Depending on available
VRAM and desired batch size the total number of training
targets is clipped to a maximum value. For a KITTI scan
with around 120 000 points and GPUs with 16 GB VRAM
we selected a batch size of two and 400 000 training targets
per GPU. Training on four Tesla-V100-GPUs with an effec-
tive batch size of eight took around four days to complete.

3.5 Inference and Visualization

We use latent conditioning vectors to define a function fcLDIF
over R3 to represent geometry and semantics in a single

classification vector. Depending on the task at hand this implicit
representation necessitates different procedures to obtain
explicit results. In any case, the completion function is evalu-
ated for an arbitrary number of query coordinates at test time.

Semantic Scene Completion.We query the completion func-
tion for all corner points of all voxels within a dense voxel
grid. Every corner point is shared by eight voxels. A voxel is
marked as occupiedwhen at least a single corner of the voxel
is assigned any occupied class. The semantic label is aver-
aged from all corners which are predicted as occupied. A
threshold uempty voxel 2 ð0; 1Þ declares the free space probabil-
ity under which a coordinate is considered occupied. This
hyper-parameter controls the position on the precision-recall
curve for the occupied class and is tuned on the training set
to reach themaximum IoU of the occupied class.

LiDAR Semantic Segmentation. The positions of the LiDAR
points themselves are used as query points at test time to
obtain semantic predictions for a LiDAR point cloud. In this
mode, it is previously known that none of the query posi-
tions can accurately be classified as free space. Therefore, the
predicted class value is just the argmax over all non-free-
space semantic classes.

Visualization. The fcLDIF function can be visualized by 3D
meshes which represent the isosurface of the scalar free
space function as close as possible (see Fig. 4, left column).
From the Nþ1 semantic classes of the vector-valued fcLDIF

function we extract the free space probability isosurface at a
threshold ufree space 2 ð0; 1Þ. This isosurface fp 2
R3jfcLDIFðpÞNþ1 ¼ ufree spaceg resembles the estimated bound-
aries of all objects in the scene and therefore gives an idea of
the learned scene representation. To extract the mesh, we
use multiresolution IsoSurface Extraction (MISE) [11]. MISE
evaluates points in an equally spaced grid from coarse to
fine. By only evaluating the points of interest close to the
isosurface the number of calculations is reduced consider-
ably. Subsequently, the marching cubes algorithm is app-
lied and the resulting mesh is refined by minimizing a loss
term for each vertex using the proximity to the desired
threshold value and the gradient information for faces of
the mesh. This approach removes artifacts from the march-
ing cubes algorithm and requires that gradients w.r.t. the
position of input points are available. We query the fcLDIF

function for all face-center positions of the resulting mesh
and color the mesh based on these semantic predictions.
Fig. 3 compares the mesh visualization and voxelized out-
put that is obtained from the completion function.

We create a ground segmentation image to inspect the
completion function at positions which are hidden in the
scene. First, semantic segmentation is applied to the input
point cloud. The LiDAR points that are identified to belong
to one of the ground classes are selected. Then, the positions
of the selected ground points are used for a bi-variate spline
interpolation of all ground positions. A dense regular top-
view grid of predicted ground positions is extracted. We
query the completion function and display the predictions
for the previously selected ground classes as image.

4 EXPERIMENTS

In this section, we first describe the details of our training
dataset and how it differs from the published Semantic KITTI
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scene completion dataset. Next, we introduce other pub-
lished methods for real-world outdoor semantic scene com-
pletion and compare the quantitative results on the closed
test set through the public benchmark. Finally, we perform
an ablation study about the upsampling architecture, hyper-
parameter choices and semantic supervision signal.

4.1 Dataset and LiDAR Accumulation

The Semantic KITTI authors construct the semantic scene
completion task from LiDAR scans of the KITTI Odometry
dataset [51] and their corresponding semantic annota-
tions [6]. The LiDAR sensor is a Velodyne HDL-64 that
rotates with a frequency of 10Hz. The continuously mea-
sured LiDAR points from a full revolution are bundled into

a LiDAR scan. The cut between scans is the negative x-axis
in sensor coordinates so that every scan begins and ends
looking backwards. LiDAR points are annotated with their
respective semantic class.

The recordings are made up of 21 sequences in total. The
data is split on a per-sequence basis: Ten sequences for
training (19130 point clouds), one sequence for validation
(4071 point clouds) and eleven sequences for testing (20351
point clouds). In the KITTI Odometry dataset the LiDAR
scans are already ego-motion corrected. All points within a
single 360� scan are transformed into the coordinate system
located at the sensor’s position in the moment the sensor
was looking in the direction of the vehicle’s front. In addi-
tion, the Semantic KITTI authors provide a frame-by-frame

Fig. 4. Columns from left to right: Completed scene, accumulated LiDAR as ground truth, ground segmentation, and corresponding ground truth.
Each row displays qualitative results and ground truth for a single scene on the Semantic KITTI validation set. The single LiDAR scan used as input
for our method is depicted as an overlay of black points. The far-right section in each scene view demonstrates that our approach is able to operate
on areas that include hardly any LiDAR measurements anymore. The method is data-based and takes advantage of experience from the training
dataset to facilitate predictions based on the larger context of the scene. This is particularly visible from the completed courses of streets and side-
walks. We provide more qualitative results from diverse scenes of the test set in the supplemental material, available online.
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point cloud registration. Sequences and registration are cru-
cial as they allow to accumulate LiDAR measurements of a
longer time span into a single fixed reference coordinate sys-
tem. This process creates the annotations of the semantic
scene completion task without requiring any additional
manual annotations. The Semantic KITTI completion task
combines a sequence of future LiDAR scans to generate the
completion target of the scene at the time of the input
LiDAR scan. This accumulation naturally includes future
pathways of dynamic objects and therefore requires to pre-
dict object motion to solve the task in full. Section 4.2 details
how we deviate from this handling of dynamic objects and
explains the static scene accumulation targets that we pro-
pose instead.

The Semantic KITTI scene completion task uses a voxel-
ized scene as output representation. A voxelized input
LiDAR scan is also provided next to the raw LiDAR scan
from the KITTI Odometry dataset. However, we do not use
the provided voxelized scene to train our method as it is
designed to classify individual positions. Instead of creating
a labeled voxel grid from accumulated LiDAR measure-
ments we use all of the individual points as training targets.
The accumulated point clouds are sub-sampled to include
only a maximum of 10 points within each original
Semantic KITTI voxel. This reduces the overall dataset size
and eliminates a large part of the redundancy in regions
that are scanned by the sensor in multiple frames. The sec-
ond column of Fig. 4 shows examples of the accumulation
result. The input LiDAR point cloud is shown as on overlay
over the prediction in the first column (left). We use the
same extent for accumulation as the Semantic KITTI scene
completion dataset: A square with 51.2m edge length where
the ego-vehicle is located in the middle of an edge facing
the center of the square.

The difficulty of the scene completion task gets apparent
when looking at the pronounced sparsity of the input point
cloud in a distance of around 50 m from the sensor. In
sparse regions most geometric details have to be inferred
from scene context. It is apparent that there are geometric
and semantic ambiguities within the 3D scenes which can-
not be decided with high confidence from the single input
LiDAR scan. Fig. 5 shows a projection of the LiDAR point
cloud into the camera view of the ego-vehicle. The Velodyne
HDL-64 sensor features a vertical field of view that at the
top only covers a few degrees over the level horizon. Thus,
in the vicinity of the ego-vehicle the LiDAR only covers a
height of about 2m over ground. The scene completion tar-
get does however include geometry further up because it

includes LiDAR points that were recorded from a greater
distance of the ego-vehicle. This is another prominent ambi-
guity of the training data that requires a method to guess
e.g., if there is a traffic sign attached to a pole without actual
evidence from the sensor.

4.2 Handling of Dynamic Objects

We use static training and evaluation data for the semantic
scene completion task. We regard this variant as more suit-
able for a meaningful evaluation of performance compared
to the handling of dynamic objects in the original scene
completion annotations. The KITTI Odometry scenes con-
tain dynamic objects such as moving cars and pedestrians.
These objects are additionally annotated with a dynamic
flag. The original Semantic KITTI scene completion data
accumulates the occupied voxels from dynamic objects in
the reference frame just as the voxels of any other static
object. Effectively this creates spatio-temporal tubes of moving
traffic participants along their respective path. Therefore,
fully solving the Semantic KITTI scene completion task
requires predicting the future trajectories of traffic
participants.

As we focus on geometric reconstruction of the scene in
the instant of the input LiDAR scan, we take a different
approach to ground truth targets for dynamic objects. Meas-
urements on dynamic objects are omitted from the accumu-
lation while the input LiDAR scan is kept unmodified.
When accumulating LiDAR measurements, we only keep
the single current scan on dynamic objects. By omitting the
following scans over dynamic objects no trajectory tube is
created. Next, it is necessary to ensure that no free space
points get sampled within the extent of a dynamic object.
As the object potentially moves from its initial position, the
following LiDAR scans will record the initial position as
free space. So to prevent free space targets within the actual
object we record the shadow cast by the object in the first
frame and treat the occluded regions as unseen regions
where no free space points are sampled (see black regions
in Fig. 6a). These two measures make the replicated geome-
try consistent in the presence of dynamic objects. The result-
ing set of training targets reflects the true scene at the
moment of the input LiDAR scan. Areas where we cannot
obtain consistent targets from future frames are ignored in
the training.

In Fig. 6 we compare the two approaches for dynamic
objects and show an example. We quantitatively measure
the difference in performance when using the different
dataset targets for evaluation. Note, that in this comparison,
our method is trained on our static version of the data in
both cases. This allows us to better judge the performance
reported by the benchmark on the private test set. We see
that there is almost no quantitative difference for the geo-
metric completion evaluation (Occupied IoU) because static
objects are prevalent over dynamic objects. However, for
semantic scene completion we expect a significant differ-
ence. Object classes with a large proportion of dynamic vox-
els perform much worse if a method does not predict the
object’s movement. By not requiring our method to predict
complicated object trajectories of even completely invisible
objects we generate a consistent supervision signal.

Fig. 5. LiDAR scan (green) projected into reference RGB image. The ver-
tical field of view of the KITTI LiDAR sensor only covers a range up to a
few degrees over the horizon. Nevertheless, the resulting scene comple-
tion training targets cover objects at more than 2m over the ground since
they are accumulated from more distant ego-positions.
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Qualitative results of other methods [6], [8], [9] on Semantic
KITTI show that they do not predict tubes as well, but
instead also complete dynamic objects as if they were static.
Having said this, the benchmark metric of course penalizes
all methods equally for not predicting spatio-temporal
objects tubes for dynamic objects.

4.3 Scene Completion Evaluation

In accordance with the scene completion benchmark [6] we
use the mean intersection-over-union (mIoU) metric to
assess both geometric completion performance and seman-
tic segmentation accuracy. This metric is calculated on a
per-voxel basis for the semantic scene completion task and
on a per-point basis for single-scan LiDAR semantic seg-
mentation. The semantic scene completion task is ranked by
the mIoU value over all semantic classes including the free
space class. The mere geometric completion performance is
rated by the IoU value over all occupied classes combined,
that is all classes except for free space.

The threshold uempty voxel 2 ð0; 1Þ is selected individually
for each network variant based on the training set. This
ensures that precision and recall values are balanced out,
resulting in the respective maximum value for completion
IoU and semantic mIoU. Fig. 7 plots the precision-recall-
curve for the occupied class on the validation set together
with IoU values for our best performing network.

We apply test-time augmentation (TTA) to our best per-
forming approach for better comparison to the concurrent
work JS3CNet. The regular predictions and predictions
with TTA are submitted separately to the benchmark. TTA
is implemented by augmenting the input point cloud at test
time and averaging over the lattice grid predictions before
generating the final voxel grid.

4.4 Semantic Scene Completion Benchmark
Results

We compare our approach against four recently published
deep-learning-based methods on the challenging outdoor
LiDAR semantic scene completion task. Quantitative results
are reported by their respective authors on the benchmark
and are compared in Table 1.

The performance of our method surpasses all other meth-
ods in pure geometric completion performance (57.7 per-
cent). Here we exceed the second-best performing method
LMSCNet-singlescale [7] by a margin of 1.0 percent. The
authors of JS3CNet [8] only report benchmark results with
TTA, so we use TTA as well for comparison. JS3CNet
achieves a marginally higher mIoU (+0.2%) than our
method with TTA, while being considerable inferior in geo-
metric completion (-2.3% IoU). JS3CNet is more accurate on
small object classes and less accurate on the larger ground
classes. S3CNet [9] outperforms all other methods by a large
margin on the semantics of small object classes, resulting in
the best mIoU value. For the other object classes, it does
however perform comparably or even worse to our method.
Overall, when it comes to geometric accuracy, S3CNet
underperforms significantly. This might be a result of the
semantic post-processing steps.

4.5 Ablation Study

We use the Semantic KITTI validation split and the static
scene data variant for evaluation of the ablation study. All
ablation results are listed in Table 3.

Multi-Resolution Upsampling and Decoder Variants (Table 3,
Architecture). The individual local functions are arranged in
a grid where each cell has an edge length of 0.32m. The
encoder uses a number of pooling layers and generally pro-
duces feature maps at lower resolutions of up to 16 times
the output grid size. Our baseline Local-DIFs variant
achieves a high resolution output grid by two independent
upsample approaches. The first is upsampling and
concatenating the lower resolution feature maps progres-
sively in the encoder. The second is to supply pairs of rela-
tive coordinates and conditioning vectors for different
resolutions. The decoder then handles the fusion of multiple
feature maps. The conditioned-batch normalization (CBN)

Fig. 6. Our dataset ((a) static scene) and the official benchmark ((b) spa-
tio-temporal tubes) handle dynamic objects differently. We remove all
free space targets within the shadows of dynamic objects (marked as
black regions) to obtain a consistent static scene. We evaluate the same
model on both variants to measure this difference quantitatively. The
impact on overall reconstruction performance in terms of IoU for occu-
pied and free space class is marginal because of the prevalence of vox-
els belonging to static objects. However, the impact on IoU of small
object classes that are primarily dynamic (e.g., Person, Bicyclist) is sig-
nificant and leads to an increase in mIoU over all classes of about 2.1%.
The comparison highlights that our method is in fact able to recognize
smaller traffic participants. But an additional requirement to predict their
motion will hide this ability.

Fig. 7. Precision-recall curve for the occupied class. We plot the (m)IoU
values for occupied, free and semantic classes of the baseline network
variant. Markers are at the free space thresholds that are evaluated,
interpolation in between.
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works as an attention mechanism between latent vector and
query position. This variant is unique to decoder architec-
tures based on DIFs.

We drop one of the two upsample approaches at a time
resulting in two model architecture variants: Local-DIFs-
CBN does not have transposed convolutions for upsampling
in the encoder. Local-DIFs-c3 uses only the highest resolu-
tion feature map in the decoder. Both completion and
semantic scene completion performance is highest when
using the baseline model that can rely on both upsample
pathways. Building the decoder only on the high resolution
feature map in Local-DIFs-c3 reduces performance to a lesser
extent than removing the transposed convolutions in the
encoder in Local-DIFs-CBN. In both cases the drop in seman-
tic scene completion is more noticeable than the drop in
pure geometric completion. Local-DIFs-CBN reduces the
number of trainable parameters compared to the baseline to
about 78 percent (Table 2). The transposed convolutions
account for a considerable share of the total parameters of
the encoder. This experiment indicates that a decoder based
on coarse grid cells together with coordinates as an atten-
tion mechanism can reduce the number of network weights
required for upsampling.

Inspired by [24], [25], we construct a continuous repre-
sentation decoder without the use of CBN. This third
architecture variant feature interpolation performs bilinear
interpolation on each resolution of the 2D feature grid to
obtain a latent feature vector corresponding directly to
the query position. As this feature only contains informa-
tion about the xy-position we also concatenate the z-posi-
tion of the query position onto this positioned vector. The
resulting decoder structure contains almost the same
number of parameters. While the overall performance is

comparable to the baseline, the accuracy in semantic
mIoU declines.

Grid Cell Size (Table 3, Cell Size). We review the impact of
the architecture’s grid cell size by scaling the base cell size
of 0.32m to {75.0%, 87.25%, 150%, 200%} of its original value.
The lower resolution feature maps as well as the input voxe-
lization resolution are scaled accordingly. Larger grid cells
tend to have only a negligible impact on the large ground
object classes. However, semantic mIoU drops due to over-
all lower accuracy over all classes.

Loss weighting (Table 3, Loss). The individual loss weights
�fS;G;Cg of the baseline network are �S ¼ 7:5; �G ¼ 2:0; �C ¼
1:0. We vary this weighting towards a larger contribution of
the semantic loss, a larger contribution of the geometric
loss, and a disabled consistency loss. Reducing the semantic
loss weight does help with geometric reconstruction accu-
racy. However, the semantic segmentation accuracy does
not improve over the baseline level by a higher relative
weighting.

Impact of Semantic Supervision Signal on Geometric Comple-
tion Quality (Table 3, Data). Previous work uses deep neural
networks to perform geometric scene completion both with

TABLE 1
Quantitative Scene Completion Results for Our Method and Recently Published Approaches on the Semantic KITTI Scene Comple-

tion Benchmark (in Intersection-Over-Union, Higher is Better)

y: Method uses test-time augmentation.

TABLE 2
Network Parameter Count for Architecture Variants

Point feat. Encoder Decoder

Variant S Convs Upsample

Local-DIFs 9 892 788 1280 7 123 648 1 656 192 1 111 668
Local-DIFs-CBN 7 712 308 1280 7 123 648 0 587 380
Local-DIFs-c3 9 556 340 1280 7 123 648 1 656 192 775 220
Feature interp. 9 897 364 1280 7 123 648 1 656 192 1 116 244

TABLE 3
Quantitative Results of Baseline and Ablations on the Validation

Set (Higher is Better)
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and without semantic understanding of objects or scenes.
This choice primarily depends on the existence on semantic
ground truth annotations. Previous experiments suggest a
correlation between semantic classification of objects on the
SUNGC dataset and the accuracy on geometric completion
of the scene [4]. We investigate if the semantic supervision
signal helps with understanding objects in the scene and
therefore also with geometric reconstruction.

We compare our baseline model on the validation set
with two models that are trained on variants of the training
dataset. First, we map the 19 semantic classes of the seman-
tic KITTI dataset to a simpler set of only 9 classes. For
instance, similar object classes are pooled into categories for
small and large traffic participants. Second, we omit seman-
tic classes altogether and only differentiate between occupied
and free while training. Quantitative results are listed in
Table 3 grouped under Data. The performance on geometric
completion is almost unaffected by semantic supervision:
57.6 percent for the baseline versus 57.9 percent without
semantic predictions. It is still noteworthy that the seem-
ingly more difficult task of semantic scene completion is
solved by a network of the same size almost without a loss
in geometric completion performance. This suggests that
the semantic and geometric completion task are indeed
related.

Impact of Scene Completion Training Data. We analyze the
single frame segmentation performance measured by the
mIoU over the segmentation of all input LiDAR points. For
this purpose, we train our method on single LiDAR scans
with free space sampling and compare it to the baseline
trained for scene completion on accumulated data. The net-
works are identical and the accumulated scene completion
targets are a super set of the semantic segmentation of a sin-
gle LiDAR scan. The segmentation performance of the scene
completion model with accumulated supervision is almost 6
percent lower than that of the model only trained on single
frame segmentation. Smaller object classes see the strongest
declines. The quantitative results of this comparison and
the differences in IoU scores are listed in the supplemental
material, available online.

5 DISCUSSION

It is noteworthy that we can compete on a benchmark based
on a voxelized representation even though we do not use
voxels as input or training targets. The voxelized scene that
we generate from a post-processing step is more accurate
than the end-to-end learned voxelization of other methods.
We believe that our continuous representation benefits the
learning of a spatially accurate scene representation. Voxeli-
zation causes quantization noise in the input signal and the
supervision signal which we can avoid entirely.

We have analyzed how the generated scene completion
function behaves when confronted with sparse measure-
ments. The ground segmentation images illustrate that the
representation generalizes to areas that are never directly
observed with the LiDAR sensor. Our method learns to
interpolate the course of the road, sidewalks or parking
areas between measurements. Fig. 8 highlights completion
modes for areas that are highly predictable (top row) and
areas where completion is based on a best guess from the

prior data distribution obtained from the training dataset
(bottom row). For the latter part we say that the DNN com-
pletes the scene from experience when presented with prac-
tically no evidence from measurements. We examine
another aspect of the scene completion function and plot
the results in the right column of Fig. 8. As before, we create
a mesh that approximates the decision surface of the com-
pletion function at a certain threshold for the free space
probability. In addition, we determine the gradient of the
free space value w.r.t. to the surface normal. The magnitude
of this gradient is now transformed into a pseudo-color of
the mesh. With a larger magnitude the transition from free
space to an occupied class gets sharper. It is clearly visible
that the ground level has a sharp transition even in high dis-
tances as it is easier to predict. Smaller objects show gener-
ally smaller gradients at their surfaces. But it is also
noteworthy that the invisible rear side of objects as well as
the predicted clouds of parking-car-probabilities have a
small magnitude. Meaning that there is a softer transition in
the completion function. It appears that the free space gradi-
ent correlates with the certainty of the spatial position of a
surface. However, it can not be considered a well-calibrated
measure of uncertainty in the output, but probably more as
an indication of such.

We identify a failure mode of our method when it
comes to the representation of fine geometric details and
the drop of single frame segmentation performance as ana-
lyzed in the ablation about completion versus segmenta-
tion training data (Section 4.5, final paragraph). This loss
in segmentation performance is significant given that the
segmentation is derived from the exact same input point
cloud. We do not have a definitive explanation for the
magnitude of this circumstance. A possibility is to attribute
the drop to the domination of the learning process by the
completion task that leads to poorer performance on the
segmentation task. An effect that can similarly be observed
in multi-task learning setups. Another effect that contrib-
utes is that the completion task exhibits many ambiguities

Fig. 8. Left: Top-view scene completion. Right: Magnitude of the gradient
of the free space probability w.r.t. the surface normal. The top row dem-
onstrates a highly predictable completion of road surface, the bound-
aries of the sidewalk, and a car in proximity to the ego-vehicle. Far away
from the ego-vehicle, the bottom row shows how our method guesses
the most likely classification of each individual scene coordinate in the
absence of almost all evidence from actual measurements. The scene
completion function is softer at these object boundaries (red surfaces).
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in the areas where the input point cloud is sparse. There
predictions are dominated by the dataset prior where small
object classes are underrepresented. The convolutional
architecture shares all weights over the spatial scene extent
so that this kind of label noise contributes to the blurring
of smaller object classes.

6 CONCLUSION AND FUTURE WORK

We presented a novel approach to predict a semantically
completed 3D scene from a single LiDAR scan. Our method
is able to infer 3D geometry and semantics in sparsely mea-
sured areas from context and prior experience. In doing so
we address two essential challenges: The first is to use
LiDAR data and the included free space information as
supervision signal. The second is being able to process large
spatial extents for outdoor use while maintaining a high
spatial resolution of the predicted completion at the same
time. The key aspect is to encode LiDAR point clouds in a
structured latent representation that is then decoded using
local deep implicit functions at multiple resolutions. The
output representation can be post-processed to obtain a
voxel representation or 3D meshes for visualization pur-
poses. We believe that we have set an important LiDAR-
only baseline in the emerging field of large-extent outdoor
scene completion.

Our approach surpasses all other methods on the chal-
lenging voxel-based Semantic KITTI scene completion
benchmark in terms of geometric completion IoU (+1.0%).
The ablation experiments demonstrated the advantage of
the multi-resolution latent grid over a single resolution and
verify the selected hyper-parameters. We showed that
learning semantic classes along with geometry does not
induce a performance penalty on the geometric completion
performance. Uncertainty is inherent in the real-world scene
completion task. As future work it will be rewarding to
address this uncertainty by means of calibrating the net-
work output or learning of a mapping to uncertainty from
the input data. A well-calibrated uncertainty estimate will
help to take full advantage of learning-based scene
completion.
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