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ABSTRACT

The dynamic interaction of two planar and asymmetric
shock waves at a free-stream Mach number M∞ = 3 is
studied numerically in order to characterize the transition
between the regular (RI) and Mach (MI) interaction pat-
terns. Shock deflection disturbances are independently
introduced in the form of a sinusoidal oscillation of the
shock generator. Selected amplitudes of oscillations en-
sure that both boundaries of the theoretical dual solution
domain (DSD) are crossed every period. The range of an-
gular frequencies investigated resembles the dynamics of
the separation shock in shock-wave/turbulent boundary-
layer interactions. Computational results show that the
MI unambiguously prevails regardless of the initial wave
pattern disturbed, provided that the oscillation frequency
is not too large. This holds for mean conditions embed-
ded inside the DSD. For those outside, a RI�MI alterna-
tion is observed when the initial wave pattern is a RI, and
no single event of a RI interaction occurs when the initial
patter is a MI.

1. INTRODUCTION

Practically relevant high speed aerodynamics applica-
tions such as supersonic intakes and nozzle flows, often
involve the presence of highly asymmetric shock wave
structures. It is well known that for a range of param-
eters, these shock structures form a bi-stable system for
which either the regular interaction (RI) and the Mach
interaction (MI) wave patterns materialize. The former,
depicted in Figure 1a, involves five discontinuities: two
incident C1,C2 and two reflected C3,C4 shock waves, and
one slipline s. They all intersect at one location. Alterna-
tively, the MI includes a fifth quasi-normal shock wave,
the Mach stem m, which segregates shock waves C1 and

C3 from C2 and C4. As a result, two sliplines s1 and s2
emerge instead of one, see Figure 1b.

Classical gas dynamics theory characterizes stationary
shock interactions [1]. Compatibility conditions for the
RI require equal static pressure and flow deflection across
the slipline s. The latter condition, if flow deflections are
taken positive counter-clockwise, implies that

ϑ1−ϑ3 = ϑ2−ϑ4 (1)

Given a certain free-stream Mach number M∞, the afore-
mentioned relation can only be satisfied for a subset of
values in the ϑ1-ϑ2 space. Considering all possible com-
binations, a stability boundary called the detachment cri-
terion can be drawn in the ϑ1-ϑ2 plane. For M∞ = 3, it
corresponds to the solid line in Figure 1c which divides
the domain in two regions, one where a stationary RI is
possible (below) and one where it is impossible (above).

For the MI configuration, the compatibility condition
arises from the fact that the pair of sliplines s1-s2 should
form a convergent duct in order to allow the subsonic flow
after the Mach stem m to accelerate. In the presence of
one or more Prandtl–Meyer expansions (PME), an extra
divergent side of the duct is generated allowing the flow
to reach sonic conditions at the throat and further accel-
erate to supersonic velocities. The height of the resulting
Mach stem m for a stationary wave system is such that a
suitable duct inlet-to-throat ratio is attained. Static pres-
sure remains constant across both sliplines, but pressure
varies inside the subsonic duct which results in a curved
Mach stem m. In terms of flow deflections, the require-
ment for convergent sliplines implies that

ϑ3−ϑ1 > ϑ2−ϑ4 (2)

The limit case thus corresponds to the conditions for
which s1 and s2 are no longer convergent but parallel,
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Figure 1: (a) Schematic of a regular interaction pattern with asymmetric incident shock waves, (b) schematic of a Mach
interaction pattern with asymmetric incident shock waves, and (c) dual solution domain (shaded in gray) in the ϑ1-ϑ2
space at a free-stream Mach number M∞ = 3. The dashed line indicates the von Neumann condition and the solid line the
detachment criterion.

for which eq. 2 reduces to eq. 1. This defines the sta-
bility boundary of the MI, and it is called the mechani-
cal equilibrium criterion since the pressure jump through
the shock system is the same as for the corresponding
RI for the same flow deflections. Considering all possi-
ble combinations in the ϑ1-ϑ2 space satisfying the afore-
mentioned, the dashed line in Figure 1c is defined. It also
segregates the domain in two regions: one where the MI
is physical (above) and one where it is unstable (below).
Many works on the topic often refer to this boundary as
the von Neumann condition in honor of the author of [14].
It is worth mentioning that useful intuition behind the von
Neumann and detachment conditions is usually provided
through a shock polar analysis. It is based on a graphical
representation of the Rankine-Hugoniot relations across
C1, C2, C3 and C4 in the pressure-deflection plane where
the compatibility conditions are defined. For a detail ex-
planation of the method the reader is referred to [11] and
[1].

It is clear from Figure 1c that the von Neumann and
detachment conditions are distinct and enclose a range of
flow deflections where both the RI and the MI are phys-
ically possible. This region is called the dual-solution
domain (DSD) [5]. Under the framework of stationary
and symmetric shock interactions, Hornung et al. [5] put
forward the hypothesis that a characteristic flow hystere-
sis should manifest when the DSD is smoothly penetrated
either from the RI or the MI domain. On these grounds,
they advocated that RI→MI transition should occur at
the detachment criterion and the MI→RI transition at the
von Neumann condition. Numerous experimental studies,
e.g. [6] and [3] among others, were conducted thereafter
on a symmetric wedge set-up in order to validate the ideas
put forward by Hornung et al. [5], but in general no DSD
was revealed - transition was occurring close to the von
Neumann condition regardless of the initial wave pattern.
Discrepancies between theoretical predictions and exper-
imental data raised the popularity of the problem and in-
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centivized numerical investigations on the topic. Compu-
tations reported in [7] and [2] did succeed at revealing the
predicted hysteresis and the width of the theoretical DSD.
It was soon after concluded by [8] and [10] that the pres-
ence of free-stream disturbances in the flow were capable
of promoting RI→MI transition.

Therefore, it becomes clear that the transition between
shock structures in real life applications is a complex dy-
namic phenomenon. Up to date, very few publications
have tackled the problem of dynamic shock interactions
in a systematic manner. Kudryavtsev et al. [10] and
Khotyanovsky et al. [9] considered the effects of iso-
lated free-stream disturbances either in the form of an
elementary wave (shocks, expansion waves and contact
discontinuities) or a laser pulse. Their results indicate
that the MI type is the most robust wave pattern inside
the DSD because the temporal and spatial scale of the
disturbances required to trigger transition to RI is larger
than in the opposite case. However, only the effect of iso-
lated disturbances on a symmetric wave system was ex-
amined, whereas multiple aerospace applications involv-
ing shock interactions evidence that asymmetric rather
than symmetric wave systems are more prompt to oc-
cur. If one considers a very relevant scenario in super-
sonic flight, the shock-wave/turbulent boundary-layer in-
teraction (SWTBLI) with mean boundary-layer separa-
tion, a characteristic unsteadiness of the separation shock
with varying flow deflection is observed. This constant
excitation of the shock system may play a role on the
character of the shock interaction materializing outside of
the turbulent boundary-layer (TBL), which for this type
of flows is highly asymmetric. Large-eddy simulations
(LES) performed by Matheis and Hickel [12] on a SWT-
BLI at M∞ = 2 demonstrates that the transient nature of
the flow deflection across the separation shock suffices
not only to trigger premature RI�MI transition, but also
to sustain the MI over a long integration time for mean
flow deflections in the RI domain where the MI is un-
stable. Their computations at M∞ = 3 also revealed pre-
mature RI�MI transition for mean flow deflections em-
bedded within the theoretical DSD. Such an unbalanced
excitation of an asymmetric shock system has not been
captured in previous investigations on dynamic shock in-
teraction and thus, due to their relevance in high speed
flight, demands a more fundamental study.

In the present paper, we thus conduct a numerical
investigation to provide insight on the inviscid transi-
tion dynamics between asymmetric interactions of pla-
nar shock waves triggered by periodic excitations. Two
wedges are used to asymmetrically deflect the free-
stream flow at M∞ = 3 and introduce the incident shock
waves and the PME’s in the computational domain. In
order to resemble the characteristic unsteadiness of the
separation shock in SWTBLI, a sinusoidal oscillation of
the lower wedge deflection around a nominal value is im-

posed with sufficiently large amplitudes to enforce tran-
sition and characteristic oscillation frequencies of TBL’s.

This paper is organized as follows. In §2 we describe
our numerical method and the setup. Three different
cases are considered for the computations of periodic ex-
citations: A) the initial flow deflections ϑ1 and ϑ2 across
the incident shocks are embedded within the theoretical
DSD (see Figure 1c), B) the flow deflections are located
outside of DSD on the RI side, and C) the flow deflections
are located outside the DSD on the MI side. Numerical
results are discussed in §3.1 for case A and in §3.2 for
cases B and C. Conclusions and further remarks are given
in §4.

2. COMPUTATIONAL SETUP

We solve the two-dimensional unsteady Euler equations
in differential conservative form

∂U
∂ t

+
∂F
∂x

+
∂G
∂y

= 0 (3)

where

U=


ρ

ρu
ρv
E

, F=


ρu

ρu2 + p
ρuv

u(E + p)

, G=


ρv

ρuv
ρv2 + p
v(E + p)

 (4)

The above equations are non-dimensionalized using the
free-stream velocity u∞ and the wedge hypotenuse w,
which combined define the characteristic time scale w/u∞
of the problem. To close the system, the equation of state
for perfect gases is used

p = (γ−1)
(

E−ρ
u2 + v2

2

)
(5)

with the specific heats ratio γ = 1.4.
The system of governing equations is discretized on a

Cartesian grid with a conservative finite volume scheme.
The in-house solver INCA has been used for the compu-
tations. Fluxes are obtained as follows: first they are com-
puted using the Roe average of the primitive variables at
the cell faces, then they are projected into the right eigen-
vector space where a global Lax-Friedrichs flux vector
splitting and a third-order WENO reconstruction is per-
formed [13], and finally they are projected back to the
conserved quantities. A third-order explicit Runge-Kutta
scheme is used for time integration [4].

A sketch of the computational domain is included in
Figure 2. We consider two wedges of hypotenuse w
asymmetrically deflecting the free-stream flow at M∞ = 3
and generating a pair of intersecting waves C1, C2 and
centered PME’s around their trailing edge. The wedges
are not included in the computational domain, how-
ever. Instead, we account for their effect through time
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Figure 2: Computational domain and definition of rele-
vant parameters.
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Figure 3: Corresponding Mach stem height evolution for
dϑ2(t)/dt = 0.01w/u∞ rad s−1 and different grid sizes
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dependent boundary conditions satisfying the Rankine-
Hugoniot relations for the incident shocks {(0)→(1),
(0)→(2)} and the Prandtl-Meyer relations for the cen-
tered PME’s {(3), (4)}. The upstream extension of the
domain L1 from the stream-wise location of the trailing
edges is such that the inlet conditions at the left bound-
ary correspond to the free-stream (0) at all time instances.
Similarly, L2 ensures that the flow at the outlet (5) is al-
ways supersonic. The characteristic length scale of the
geometry is imposed through the ratio 2g/w, which is set
to 0.84.

The problem is discretized on a uniform grid with spac-
ing h in both spatial directions. A grid convergence anal-
ysis is performed to asses the impact of the shock thick-
ness on the Mach stem height (MSH) evolution and the
transition process. The MSH is considered as the vertical
distance between both ends of m in Figure 1b. An ini-
tially steady MI with ϑ1 = 25◦ and ϑ2 = 19◦ (outside of
DSD, see Figure 1c) is obtained for an integration time of
more than 50 flow through times (FTT). Transition to RI

is then enforced by decreasing the lower wedge deflec-
tion at a constant angular speed dϑ2(t)/dt = 0.01u∞/w.
The MSH evolution with respect to the flow deflection
measured at a distance 0.01w below the C2-C4 inter-
section is investigated for four different grid spacings:
w/h = 200,400,800 and 1600. Results are shown in Fig-
ure 3 for sampling intervals of 0.025w/u∞ in all cases. A
clear convergence is observed for w/h = 1600 and thus is
used for all computations hereafter.

Simulations with a periodic excitation of the shock sys-
tem are initialized with a steady state solution, then per-
turbed asymmetrically by a sinusoidal oscillation of the
lower wedge deflection ϑ2(t):

ϑ2(t) = ϑ i
2 +∆ϑ sin(2π f (t− t0)+φ), (6)

where ϑ i
2, ∆ϑ , f , t0 and φ correspond to the mean lower

wedge deflection, the amplitude of oscillation, the fre-
quency of oscillation, the time at which the oscillatory
motion is initiated and the phase shift respectively. Re-
garding the initial steady state solution, three different
cases are considered:

A) the corresponding ϑ1-ϑ2 combination is located ex-
actly in the middle of the DSD,

B) the ϑ1-ϑ2 combination is located outside of the DSD
on the RI side,

C) the ϑ1-ϑ2 combination is located outside of the DSD
on the MI side.

The upper wedge deflection ϑ1 is kept at 25◦ in all com-
putations, and ϑ2 is set as 15.78◦, 13.89◦ and 17.66◦ for
cases A, B and C respectively. A close-up view of the re-
gion of interest of the DSD in the ϑ1-ϑ2 space is shown in
Figure 4 where all cases are highlighted. For case A, both
the initial RI and MI are investigated. In order to obtain
the steady solution for the latter, the lower flow deflection
of the steady wave pattern in case C is slowly decreased
from 17.66◦ to 15.78◦ and then kept unaltered until the
MSH remains constant over time.

The oscillatory motion of the lower shock generator
commences at t = t0 and its initial effect is to bring ϑ2(t)
closer to the stability limit of the initial steady wave pat-
tern. This implies that ϑ2(t) initially increases if the start-
ing wave pattern is a RI, and decreases if it is a MI. Thus,
a phase shift of φ = 180◦ is required in equation 6 for
the latter. Concerning the amplitudes of oscillation ∆ϑ in
eq. 6, they are chosen according to the theoretical extent
of the DSD. For case A, Figure 4 shows that an ampli-
tude of 2◦ suffices to bring ϑ2(t) outside of the DSD in
both directions. For case B and C, a larger amplitude
of 4◦ is used. The theoretical von Neumann and detach-
ment conditions for M∞ = 3 and ϑ1 = 25◦ correspond to
ϑ v

2 = 14.14◦ and ϑ d
2 = 17.43◦ respectively.

The frequency of oscillation is the last parameter re-
quired to close the problem. It is well established for
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Figure 4: Close-up view of the theoretical DSD (shaded
in gray) around the cases considered. The dashed line
indicates the von Neumann condition and the solid line
the detachment criterion.

SWTBLI that, even though a broad range of temporal
frequencies are involved, those related to the motion of
the separation shock are typically about two orders of
magnitude lower than u∞/δ , being δ the 99% incom-
ing boundary-layer thickness. On these lines, an ex-
citation frequency of f1 = 0.125u∞/w appears to be in
good agreement with the literature, specially with [12] in
which a explicit relation between δ and w is imposed.
In order to assess the effect of increasing excitation fre-
quency f in the response of the wave system, frequencies
f2 = 0.25u∞/w and f3 = 0.5u∞/w are additionally con-
sidered.

3. RESULTS

3.1 Wave pattern inside DSD (case A)
The periodic excitation of an initially steady RI and MI
were simulated independently. Numerical data corre-
sponding to an oscillation frequency of f1 = 0.125u∞/w
reveals that RI→MI transition occurs during the first pe-
riod of oscillation when the initial wave pattern is a RI,
and thereafter the MI configuration unambiguously pre-
vails. However, this does not hold for larger excitation
frequencies f2 = 0.25u∞/w and f3 = 0.5u∞/w where a
constant RI�MI alternation is observed at every period.
Regarding the excitation of an initial MI configuration,
transition to RI never takes place for any of the frequen-
cies investigated.

Consider Figures 5a-c where the evolution of the
MSH, the instantaneous lower flow deflection ϑ2(t) be-
low the intersection C2-C4, and the instantaneous flow
pressure downstream of intersections C1-C3 (blue line)
and C2-C4 (orange line) for the excitation frequency f1 =
0.125u∞/w are included. Solid lines describe the case of
an initial RI pattern, and dashed lines denote the case of
an initial MI. For the former, even though both stability
boundaries (dashed blue lines in Figure 5b) are crossed
during every period, the Mach stem appears the first time

the detachment condition is exceeded and never disap-
pears again. During this single RI→MI transition event, a
characteristic discontinuity in pressure is observed. This
discontinuity, which propagates downstream in the form
of a pressure wave, appears because the pressure jump
through the shock system is different for the RI and the
MI at detachment. A sequence of instantaneous impres-
sions of the density gradient magnitude for four different
time instances in the first period of oscillation is shown in
Figures 6a-d. For the sake of completeness, red squares
corresponding to the instantaneous MSH, ϑ2(t) and pres-
sure of the flow impressions are introduced in Figures
5a-c respectively. The precise instant of transition is cap-
tured in Figure 6a. Notice how a kink in both reflected
shocks is generated as the pressure wave travels down-
stream. For the upper reflected shock C3, the pressure
wave segregates the strong shock solution characteristic
of the RI at detachment (where the flow is subsonic, em-
bedded within the yellow line defining the sonic contour
M = 1) from the post-wave state corresponding to the
weak shock solution associated to the emerging MI.

The relative orientation of the sliplines in Figure 6a is
key for preventing any further transition back to RI. As
the MI configuration emerges from the interaction, the
resulting pair of sliplines emanating from each end of the
Mach stem m form a convergent duct within which the
subsonic flow accelerates. However, since both sliplines
intersect before being influenced by the PME’s, the sub-
sonic flow momentarily chokes. This results in an over-
pressure that pushes the Mach stem upstream and forces it
to grow. Notice the clear difference between the MSH in
Figures 6a and b. In Figure 6b, the sliplines have reached
the domain of influence of the PME’s already, but at this
time instance the lower flow deflection ϑ2(t) at the in-
teraction has been reduced to a magnitude below the von
Neumann condition, which makes the MI unstable. The
relative orientation of the sliplines, as observed in the fig-
ure is thus divergent, which promotes the reduction of
the Mach stem size to that of Figure 6c. If the shock
system was exposed to such boundary conditions for a
sufficiently long period of time, MI→RI transition would
eventually happen. Nevertheless, due to the oscillating
behavior of the lower wedge, this is not the case. The
imposed increase of ϑ2(t) again results into a convergent
slipline configuration in which the subsonic flow accel-
erates. Even though the sliplines are already embedded
inside the domain of influence of the PME’s, the current
inlet-to-throat ratio between the MSH and the minimum
slipline distance is not suitable for a steady configuration.
This prevents the flow going through m to be swallowed
at sonic conditions at the throat, which is again translated
into choking, an over-pressure inside the duct and a con-
sequent growth of the MSH (see Figure 6d). The process
is then periodically repeated and the MSH converges to
an oscillation steady mean value as observed in Figure
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Figure 5: Numerical data for case A with an initial RI under an excitation frequency of: (a)-(c) f1 = 0.125u∞/w, and
(d)-(e) f2 = 0.25u∞/w. The start time of oscillation is denoted by t0, and the time axis is non-dimentionalized with the
excitation frequency f . MSH is the Mach stem height measured as the vertical distance between the extremes of m in
figure 1b. ϑ2 corresponds to the flow deflection measured below the C2-C4 intersection at a distance 0.01w. p/p∞ is the
pressure ratio measured at a distance 0.01w downstream of the C1-C3 intersection (blue) and C2-C4 intersection (orange).
Dashed horizontal blue lines highlight the values at detachment (upper) and von Neumann (lower) conditions.

5a. It is important to note that the evolution of the MSH
and pressure behind m after several periods of oscillation
is independent of the initial steady state solution (com-
pare solid and dashed lines in Figures 5a and c).

Results for the other frequencies considered, f2 =
0.25u∞/w and f3 = 0.5u∞/w, show that transition to MI
still occurs when disturbing an initial RI but the former
wave pattern is not sustained thereafter. Instead, a con-
stant alternation between RI and MI is observed. Con-
sidering the MSH evolution included in Figure 5d for the
excitation frequency f2, the Mach stem emerges and dis-
appears during every period. The associated pressure sig-
nal, shown in Figure 5f, oscillates accordingly between
characteristic RI and MI levels. Four snapshots within
the first period of oscillation for f2 are included in Fig-
ures 6e-h where the density gradient magnitude is shown.
The exact times correspond to the red squares highlighted
in Figures 5d-f. Starting from Figure 6e, the flow deflec-
tion ϑ2(t) at this point is above the detachment condi-
tion, which makes the RI unstable. Thus, a two slipline
configuration can already be identified. Additionally, the
strong shock solution for some portion of C3 and C4 is
still materializing. However, moving from Figure 6e to
f reveals very important features that are key to explain
why the MI is not sustained. The MSH associated to Fig-
ure 6f coincides in magnitude with that for Figure 6d.
Yet, if one compares both figures, it can be seen that the
strong shock solution for the wave C3 is still present in
the latter. This indicates that conditions downstream of
the traveling pressure wave are those associated to an RI

close to detachment. Conversely, the strong shock so-
lution for C3 has totally vanished in Figure 6f. This is
because the flow deflection ϑ2(t) below the C2-C4 inter-
section has changed already to a value close to the von
Neumann condition. The resulting pair of sliplines thus
becomes divergent and forces the Mach stem to reduce its
size and eventually collapse at the interaction point. This
situation corresponds to figure 6g where another discon-
tinuity in pressure is observed. This one is attributed to
the acceleration effect of the Mach stem collapsing at the
interaction point, which locally produces a peak in pres-
sure as observed in Figure 5f. This discontinuity travels
downstream in the form of another pressure wave (see
Figure 6h) and the process is repeated as the oscillation
of the lower wedge progresses. Results for the angular
frequency f3 = 0.5u∞/w are not shown as they do not re-
veal further information than those for f2 = 0.25u∞/w.

Therefore, results demonstrate that the low frequency
motion of the lower incident shock in SWTBLI can trig-
ger RI→MI transition and sustain the MI when the dis-
turbed wave pattern is included inside the theoretical
DSD. Our findings are consistent with the computations
of Matheis and Hickel [12] for a SWTBLI at M∞ = 3
where they also observed the MI materializing for mean
flow deflections embedded within the DSD. Numerical
data indicates, however, that excitation frequencies of
magnitude 0.25u∞/w and above prevent the MI from pre-
vailing over an extended integration time. This identifies,
for the amplitude of oscillation considered (∆ϑ = 2◦),
a certain time scale required for the Mach stem growth

6



(a)

-0.1

0

y/
w

(e)

-0.1

0

y/
w

(b)

-0.1

0

y/
w

( f )

-0.1

0

y/
w

(c)

-0.1

0

y/
w

(g)

-0.1

0

y/
w

(d)

-0.1 0 0.1 0.2

-0.1

0

x/w

y/
w

(h)

-0.1 0 0.1 0.2

-0.1

0

x/w

y/
w

Figure 6: Sequence of instantaneous density gradient magnitude for case A with an initial RI under an excitation frequency
of: (a)-(d) f1 = 0.125u∞/w, and (e)-(h) f2 = 0.25u∞/w. Time instances are marked sequentially as red squares in Figures
5(a)-(c) and (d)-( f ) respectively for f1 and f2. The solid yellow line denotes the sonic condition M = 1.

and defines a threshold in the frequency of incoming dis-
turbances associated to a TBL that could trigger prema-
ture RI→MI in real life experiments. In view of the fact
that the MI always materializes when an initial RI is per-
turbed, whereas for the opposite case the RI configura-
tion never appears, it is then certain to conclude that the
MI pattern inside the DSD is more robust in front of per-
turbations. Also in line with the concluding remarks of
Kudryavtsev et al. [10] and Khotyanovsky et al. [9],
larger disturbances are required to enforce MI→RI tran-
sition than in the opposite direction.

3.2 Wave pattern outside DSD (cases B&C)
Computations for cases B and C were conducted with the
goal of enforcing transition and sustaining the opposite
wave pattern for an initial ϑ1-ϑ2 combination residing
outside of the a DSD. However, for the range of frequen-
cies considered ( f1 = 0.125u∞/w, f2 = 0.25u∞/w and
f3 = 0.5u∞/w), this was not found. As observed in the
evolution of the MSH included in Figure 7a for case B,
transition to MI still occurs but the MI configuration is
not sustained. Instead, a constant RI�MI alternation is

identified similar to that of case A under an excitation
frequency larger than 0.125u∞/w. The explanation re-
sides in the evolution of the effective lower flow deflec-
tion measured below the C2-C4 intersection and shown in
Figure 7b. It can be seen that ϑ2(t) persists above the
von Neumann condition for less than half of a period.
Within this time, its value changes almost 8◦. Even for
the lowest excitation frequency ( f1 = 0.125u∞/w), ϑ2(t)
still changes twice as fast as the for the largest excitation
frequency investigated in case A. Therefore, the boundary
conditions change so rapidly that the Mach stem height
cannot grow. Regarding the evolution of the MSH and the
lower flow deflection included in Figures 7c-d for case C,
not a single event of a RI is revealed for the frequencies
considered. Rather, a constant shrink and growth of the
Mach stem occurs. This circumstance underlines once
more that the time scale associated to a disturbance capa-
ble of triggering MI�RI transition must be larger than in
the opposite direction.

A noteworthy feature in case C is the asymmetric re-
sponse of the Mach stem height during one period of
oscillation of the lower incident shock. This becomes
more pronounced as the excitation frequency increases,
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Figure 7: Evolution of the Mach stem height MSH and the lower flow deflection below the C2-C4 intersection for the
oscillation around ϑ i

2 = 13.89◦ (a-b) and ϑ i
2 = 17.66◦ (c-d). Dotted lines denote the numerical results for the excitation

frequency f1 = 0.125u∞/w, solid lines for f2 = 0.25u∞/w and dash-dotted lines for f3 = 0.5u∞/w respectively. The start
time of oscillation is t0, and the time axis is non-dimentionalized with the excitation frequency f . Dashed horizontal blue
lines highlight the values at detachment (upper) and von Neumann (lower) conditions.

see dash-dotted lines in Figure 7c. We believe that this
phenomena is associated with a delay in the response of
the flow around s1 essentially because, due to the pres-
ence of the Mach stem, it is further away than s2 from the
source of the disturbance (which is the shock foot of C2
in Figure 2). This delay conditions the speed at which the
relative slipline orientation is modified, which in turn in-
fluences the Mach stem growth and shrink rate. In Figure
7c it can be seen that the Mach stem grows faster than
it shrinks because the upper slipline is modified faster
(leading more rapidly to a relative slipline orientation that
forces the Mach stem to grow) when the Mach stem is
smaller.

In view of the fact that the MI was not sustained (see
Figure 7a and b), additional computations were con-
ducted for case B. Instead of an initial RI, the initial
steady MI obtained in case C was used as the starting
wave pattern. A phase φ to the oscillating motion of
the lower wedge was then given (π/2 < φ < π) in or-
der to impose ϑ2(t0) = 17.66◦. This way, even though
the mean value of the lower wedge deflection remained
ϑ i

2 = 13.89◦ (outside the DSD on the RI domain), the pe-
riodic excitation commenced with a fully developed MI.
Results for the MSH and the lower flow deflection be-
low the C2-C4 intersection are respectively included in
Figures 8a and b where it is shown that the MI interac-
tion is still not sustained over time. Instead, what appears
to be an exponential decay of the MSH is observed su-
perimposed to the sinusoidal oscillation. Dotted, solid
and dash-dotted lines denote excitation frequencies of
f1 = 0.125u∞/w, f2 = 0.25u∞/w and f3 = 0.5u∞/w re-
spectively, revealing that the aforementioned decay is in-
dependent of the excitation frequency. After some peri-
ods of oscillation, the evolution of the MSH is identical

to that obtained for an initial RI.
Thus, our numerical simulations did not confirm that a

MI can be sustained at M∞ = 3 with a periodic excitation
of the lower incident shock and mean flow deflections lo-
cated outside of the DSD on the RI domain. Results in-
dicate that characteristic TBL frequencies together with
the amplitudes of oscillation required to traverse the span
of the DSD introduce disturbances in the shock system
that are too fast for the Mach stem to develop. This is in
agreement with the computations of Matheis and Hickel
[12] for a SWTBLI at the same free-stream Mach number
where also no event of a MI sustained over time was de-
tected for mean flow deflections below the von Neumann
condition.

4. CONCLUSIONS

Numerical simulations were performed to provide insight
on the inviscid transition dynamics between asymmetric
interactions of planar shock waves triggered by periodic
excitations. Two wedges were used as shock generators
at a free-stream Mach number M∞ = 3. Computations
were initialized with a steady state solution, either with
a RI or a MI, that was then perturbed with a sinusoidal
oscillation of the lower wedge deflection around a nomi-
nal value. Three different flow deflections for the initial
steady wave pattern were considered: A) flow deflections
embedded within the DSD, B) flow deflections located
outside of the DSD on the RI side, and C) flow deflec-
tions located outside on the MI side. Amplitudes of os-
cillation of 2◦ for case A and of 4◦ for cases B and C
were chosen based on the theoretical DSD, and the effect
of three different excitation frequencies characteristic of

8



0 5 10 15 20
0

0.1

0.2

0.3 (a)

(t − t0)u∞/w

M
SH

/
w

0 5 10 15 20
10

12

14

16

18 (b)

(t − t0)u∞/w

θ 2
[d

eg
.]

Figure 8: Evolution of (a) the Mach stem height MSH and (b) the lower flow deflection below the C2-C4 intersection for the
oscillation around ϑ i

2 = 13.89◦ with an offset such that ϑ2(t0) = 17.66◦. The initial steady state solution is that of case C.
Dotted lines denote the numerical results for the excitation frequency f1 = 0.125u∞/w, solid lines for f2 = 0.25u∞/w and
dash-dotted lines for f3 = 0.5u∞/w respectively. The start time of oscillation is t0, and the time axis is non-dimentionalized
with the characteristic time scale w/u∞. Dashed horizontal blue lines highlight the values at detachment (upper) and von
Neumann (lower) conditions.

TBL’s was investigated: f1 = 0.125u∞/w, f2 = 0.25u∞/w
and f3 = 0.5u∞/w.

Results for case A perturbed at an excitation frequency
f1 reveal that the MI unambiguously prevailed regardless
of the initial wave pattern. For larger frequencies, how-
ever, a constant RI�MI was observed. No single event
of a RI was detected when the initial wave pattern was a
MI. Concerning case B, an amplitude of oscillation of 4◦

along with the frequencies investigated appeared to in-
troduce flow disturbances in the wave system that were
too rapid to allow the Mach stem to grow. Still, a similar
RI�MI alternation as in case A was found. Oscillations
in case C lead to a constant growth and shrink of the Mach
stem without the RI materializing. This response of the
Mach stem during a period of oscillation is asymmetric
(grows faster than it shrinks) and the asymmetry is ac-
centuated with increasing excitation frequency.

In an attempt to sustain the MI for mean flow deflec-
tions where it is not stable, the initial steady MI defined
in case C was used as the initial wave pattern in case B.
A phase was then given to the sinusoidal oscillation of
the lower wedge in order to match the flow deflections of
both cases at t = t0. This way, a fully developed MI was
exposed to the oscillatory motion of the lower incident
shock around a mean value below the von Neumann con-
dition. For none of the excitation frequencies considered
( f1, f2 and f3), however the MI was sustained. Instead, it
appeared to decay exponentially with a sinusoidal oscil-
lation superimposed until a constant RI�MI alternation
was obtained.

Thus, our results demonstrate that a MI can trigger
RI→MI transition and sustain the MI for conditions en-
countered in SWTBLI scenarios with mean flow deflec-
tions within the theoretical DSD. This confirms that the
MI pattern is the most robust configuration inside the
DSD, and that larger disturbances are required to trigger
RI→MI transition than in the opposite direction. How-
ever, the analysis does not show that the MI can be sus-
tained for mean flow conditions located outside the theo-

retical DSD on the RI side. This might be attributed to the
width of the DSD at M∞ = 3, which extends over several
degrees for the upper wedge deflection considered.
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