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SUMMARY

Induced seismicity refers to seismic events (earthquakes) triggered by human activities.
Such events, even when characterized by relatively modest magnitudes, have the poten-
tial to jeopardize the safety of individuals, the surrounding environment, and infrastruc-
ture.

Production from hydrocarbon reservoirs can alter the in-situ stress state, leading to
induced seismicity. This is reported in the Groningen field, where substantial gas pro-
duction caused fault reactivation and subsequent earthquakes. Understanding events
in the deep subsurface is crucial to proactively mitigate future seismic occurrences.

To understand the causes of induced seismicity, the underlying physics are examined
and defined in terms of relevant governing equations and models. This reveals the in-
terconnected nature of fluid depletion, rock deformation, and fault slip. The goal of this
study is to develop simulation techniques to solve these equations.

Towards this end, firstly, a finite volume embedded-numerical simulation method,
called the Smoothed Enhanced Finite Volume method (sEFVM), is developed. This method
is revealed to be computationally efficient for reservoir-scale modeling of heavily faulted
systems and performed well in comparison to known solutions and other simulators.

However, in settings where analytical solutions indicated noncontinuous shear stress
profiles, sEFVM accuracy suffers. Recognizing this limitation, a semi-analytical approach
is developed, extending analytical expressions to be solved over the sEFVM mesh. This
extension allows for more accurate solutions, accommodating complex reservoir and
fault geometries. The semi-analytical method is successfully used to estimate the onset
of fault nucleation and the magnitude of the seismic moment resulting from depletion.

The semi-analytical approach is limited to simulating fault slip up to the point of nu-
cleation. To overcome this constraint, a hybrid method is developed. With appropriate
assumptions regarding the post-nucleation state and the use of sEFVM to numerically
calculate post-nucleation stresses, the hybrid method can effectively model multi-fault
systems in the seismic stage assuming quasi-static behavior.

In summary, this research contributes by presenting novel computational frameworks
for studying fault reactivation in faulted poroelastic media, offering insights into the
complex interactions of the physics at play. The proposed embedded-numerical, semi-
analytical, and hybrid methods pave the way for further advancements in the field.
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SAMENVATTING

Geïnduceerde seismiciteit verwijst naar seismische gebeurtenissen (aardbevingen) ver-
oorzaakt door menselijke activiteiten. Dergelijke gebeurtenissen, zelfs wanneer geken-
merkt door relatief bescheiden magnitudes, hebben het potentieel om de veiligheid van
individuen, de omgeving en infrastructuur in gevaar te brengen.

Productie uit koolwaterstofreservoirs kan de in-situ spanningstoestand veranderen,
resulterend in geïnduceerde seismiciteit. Dit wordt gemeld in het Groningen-veld, waar
aanzienlijke gasproductie breukreactivatie en daaropvolgende aardbevingen veroorzaakte.
Het begrijpen van gebeurtenissen in de diepe ondergrond is cruciaal om toekomstige
seismische gebeurtenissen proactief te beheersen.

Om de oorzaken van geïnduceerde seismiciteit te begrijpen, wordt de onderliggende
natuurkunde onderzocht en gedefinieerd in termen van relevante vergelijkingen en mo-
dellen. Dit onthult de onderling verbonden aard van gasproduktie, deformatie van ge-
steente en breukverschuiving. Het doel van deze studie is het ontwikkelen van simula-
tietechnieken om deze vergelijkingen op te lossen.

Om dit te bereiken, wordt allereerst een numerieke simulatiemethode met ingebedde
eindige volumes ontwikkeld, genaamd de Smoothed Enhanced Finite Volume-methode
(sEFVM). Deze methode blijkt rekenkundig efficiënt te zijn voor het modelleren van re-
servoirs op grote schaal met veel breuken en presteerde goed in vergelijking met bekende
oplossingen en andere simulatoren.

Echter, in situaties waar analytische oplossingen niet-continue schuifspanningspro-
fielen aangaven, lijdt de nauwkeurigheid van sEFVM. Daarom wordt een semi-analytische
benadering ontwikkeld, waarbij analytische uitdrukkingen worden uitgebreid om te wor-
den opgelost over het sEFVM-rooster. Deze uitbreiding maakt nauwkeuriger oplossin-
gen mogelijk, aangepast aan complexe geometrieën van reservoirs en breuken. De semi-
analytische methode wordt met succes gebruikt om het begin van breuknucleatie en de
omvang van het seismische moment als gevolg van gasproduktie te schatten.

De semi-analytische benadering is beperkt tot het simuleren van breukverschuiving
tot het punt van nucleatie. Om deze beperking te overwinnen, wordt een hybride me-
thode ontwikkeld. Met geschikte aannames over de postnucleatie-toestand en het ge-
bruik van sEFVM om postnucleatie-spanningen numeriek te berekenen, kan de hybride
methode effectief meerfoutssystemen modelleren in het seismische stadium, onder aan-
name van quasi-statische condities.

Samengevat draagt dit onderzoek bij door nieuwe rekenkundige kaders te presenteren
voor het bestuderen van breukreactivatie in verbreukte poro-elastische media, en biedt
inzichten in de complexe interacties van de natuurkunde die in het spel zijn. De voorge-
stelde ingebedde numerieke, semi-analytische en hybride methoden banen de weg voor
verdere vooruitgang op dit gebied.
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1
INTRODUCTION

Induced seismicity can result in significant detrimental consequences. In the Groningen
field, despite production cutbacks since 2013, the problem of induced seismicity has
persisted and is expected to continue well past the full-field shutdown. This signifies
the importance of scientific research to understand the causal mechanisms behind
induced earthquakes. Simulation techniques in the field of geomechanics are a focal
point of research with a relevant application in the study of induced seismicity.

This chapter draws attention to the importance of induced seismicity and provides
relevant background information regarding the Groningen field. This is followed by
a literature review on numerical, analytical, and semi-analytical methods that have
been used in the field of computational geomechanics. A summary of the scope
and limitations of the methods highlights the contribution of the current study. The
chapter concludes by offering a roadmap to the content covered in the following
chapters.

1.1. INDUCED SEISMICITY AND ITS IMPACT
Induced seismic events are earthquakes caused by human activity that alter
subsurface stresses. Prior to any human intervention, faults are subject to an initial
stress state resulting from the depositional environment of the reservoir and tectonic
movements in the earth’s crust. After fluid production or injection, stress will alter
due to changes in reservoir pore pressure. This change in stress can potentially
cause a re-activation of faults. This would result in the movement of the fault, in
the tangential direction along the fault plane. The measure of this movement (also
known as the slip) is important in the study of induced seismicity as it can be used
to estimate when an earthquake is expected, and what magnitude it may have.

The concept behind induced seismicity is well established. It has been shown that
hydrocarbon gas production correlates with induced tremors, especially in depleting
gas fields. The Groningen field in the Netherlands is a well known example for
induced seismicity [1].

The induced tremors in the Groningen field have remained small on the Richter
scale, but they pose risks that prevent further utilization of subsurface capacity for
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energy and climate relevant projects. These events carry significant detrimental
consequences. Induced earthquakes are a subject of increasing concern due to their
potential adverse impacts on both human societies and the environment. They
have been linked to structural damages in buildings, bridges, and other critical
infrastructure. The ground shaking and vibrations can compromise the integrity
of structures, leading to safety hazards and economic losses. This can pose
immediate threats to public safety. The unpredictability of induced earthquakes can
catch communities off guard, potentially causing panic and injury [2]. Prolonged
exposure to low-level seismicity has been associated with psychological stress and
anxiety among residents living in affected regions [3]. Induced seismicity can
disrupt economic activities in the affected regions. Property devaluation, decreased
tourism, and increased insurance costs are potential consequences that can strain
local economies and livelihoods [4]. The perception of risk can erode public trust
in industries that trigger such events. Public skepticism and concerns about the
transparency of operations can hinder the social license to operate for industries
involved in activities linked to seismicity [5]. The negative impacts of induced
seismicity have prompted debates about regulatory measures and legal frameworks
[6].

Gas production from the Groningen field has been throttled back since 2013
and will come to a full shut-down by mid-2024 to curtail future events [7]. But
field shut-down does not necessarily guarantee the immediate prevention of future
seismic events. In fact, the underground stress stabilization occurs through a slow
time-dependent process of pressure equilibration, during which fault activation
(perhaps with lower magnitudes) can potentially take place. For the case of the
Groningen, they are expected to continue, but gradually diminish. This prediction
is shown in Figure 1.1 [8]. This figure also shows that induced seismic events
will continue to remain an important topic in the coming decades. This situation
emphasises a need to look beyond field shut-down and to develop robust strategies
to minimize future risks.

1.2. THE GRONINGEN FIELD SEISMICITY: FROM DISCOVERY

TO SHUT DOWN
The Groningen field was discovered in 1959. Interestingly, its enormous gas reserve
was recognized a year later in 1960 with an initial estimate of 60 billion cubic meters
(bcm). This appraisal underwent several revisions over time. By early 1962, the
estimated gas reserve was adjusted to 150 bcm, which further increased to 470 bcm
by the end of that year. Subsequent re-evaluations were made, with the estimate
reaching 1100 bcm in 1963, 1900 bcm in 1967, 2409 bcm in 1987, and finally 2750
bcm in 1993. The more recent calculation is approximating 2900 bcm of initial gas
in place[9].

The Groningen gas field is one of the largest natural gas fields in Europe and
one of the most important in the world. Gas from the Groningen field has played
a crucial role in the Dutch and European energy mix, contributing to energy
security and independence. This gas has been the primary source of energy for the
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Figure 1.1.: A forecast of the number of earthquakes in the Groningen gas field
following field shut-down [8].

populations of the Netherlands and is used by neighboring countries [10].
The composition of the Groningen gas, like natural gas reservoirs in general,

primarily consists of methane gas (C H4). However, it has a high nitrogen (N2)
content of roughly 14%. This makes the gas low-calorific. A low-calorific gas provides
a lower amount of energy compared to when less N2 is present. The low-calorific
gas from the Groningen field has become the standard for the consumers in the
Netherlands. For example, the gas stoves in Dutch households were designed for a
low-calorific gas [11].

As of 2015, approximately 75% of the Groningen gas has been extracted. This
occurred over a remarkable 55-year period of gas production. Before production,
the Northern Netherlands (where the Groningen field is located) had no records of
natural earthquakes, and the region was considered tectonically stable. However,
with increased gas production from the Groningen field, more earthquakes were
identified, and these events registered larger magnitudes on the Richter scale [12].

The Groningen gas field has been the focus of numerous scientific studies aimed at
improved understanding of induced seismicity within the field. These investigations
reveal that the change in the stress state has impacted faults, resulting in their
reactivation. Such fault reactivation is identified as a potential cause of induced
earthquakes [13].

To address the issue of induced seismic events in Groningen, the Dutch government



1

4 1. INTRODUCTION

implemented measures to reduce gas production. In 2018, it was decided to cease
production by 2030. This deadline was moved forward to 2023. There has since been
a decline in annual production. The production was scaled down from an unusually
high 54 bcm per year in 2013 to 4.5 bcm per year in 2022. Present international
circumstances have prompted a new policy where gas production is partly continued
at a "minimum flow" rate of 2.8 bcm per year [14]. It is expected that with the
reduction, and eventual end to gas production from the field, the induced seismic
events also stop. This was shown in Figure 1.1.

As technological advancements continue to push the boundaries of subsurface
extraction and/or storage, it is essential to perform rigorous scientific research with
the hopes of mitigating induced seismic events in the future. To achieve this goal, it
is necessary to understand the mechanisms that lead to such unfavorable situations
via various research techniques, such as simulation. The subsequent section outlines
some of the computational approaches employed in studying and simulating faulted
poroelastic media.

1.3. COMPUTATIONAL METHODS FOR SIMULATION OF

FAULTED RESERVOIRS
Computational geomechanics has been a focal point of research in the past decade,
due to its vast applications. It plays a critical role in production optimisation
and safety assessments [15, 16]. Examples can be found, e.g., in studies related
to hydraulic fracking [17], quantification of surface subsidence [18], geothermal
energy extraction [19], CO2 sequestration [20], hydrogen energy storage [21, 22], and,
importantly, induced seismicity [23].

Numerical models for induced seismicity have evolved over the years. Earliest
proposed models for geo-systems proposed loosely coupled flow dynamics and
mechanics [24, 25]. Later, iterative or sequentially coupled [26] and fully coupled
methods [27] emerged. These incorporate the effects of geomechanical deformation
on flow parameters (such as permeability and porosity) and vice versa (e.g., the effect
of pressure on fault stability). Fully-coupled approaches add to the computational
costs, but extend the simulation stability compared with their loosely-coupled
predecessors [26].

Modeling efforts for mechanical deformation originally relied on linear elastic
deformation. Contributions from viscoplasticity, elastoplasticity and creep were later
recognized and included [28, 29]. Thermo-poroelasticity models are used when
non-isothermal fluid flow is considered in deformable media. [30, 31].

Fault stability was initially modeled based on a simple Coulomb failure criterion
[32]. This model correlates the normal stress on the fault with a maximum
threshold, beyond which the fault slips. More realistic quasi-static and dynamic
friction models were later developed by incorporating more complex physics of
fault re-activation. These include slip weakening or strengthening models [33, 34],
rate and state models [35–37] and more recently the CNS model [38–40]. Dynamic
frictional fault slip models are used to capture more complex behavior. In these
models, parameters such as energy dissipation rate, damage potential, slip velocity,



1.3. COMPUTATIONAL METHODS FOR SIMULATION OF FAULTED RESERVOIRS

1

5

slip duration and thermal weakening effects are considered [41]. These models do
well in characterising laboratory friction experiments, but challenges still remain in
scaling up the results to make them relevant for real-field natural fault systems [42].

The choice of the numerical discretization approach for the faulted poroelastic
system, be it finite volumes (FVM) [43, 44], elements (FEM), or differences (FDM)
[44, 45], is not an obvious one [46]. Given that each offer problem-specific
advantages, all have been adapted individually, or in combination with each other
for flow and mechanics. The FDM has been the earliest discretization scheme, due
to its simplicity and convenience for structured grids. One motivation behind the
development of newer integral-based discretization techniques (FVM and FEM) is
the limitation of the FDM in handling complex geometries especially in multiple
dimensions [47]. The FEM was originally developed for static stress analysis
but expanded well beyond its scope. It remains the most widely used method
in computational mechanics. This is in part due to its versatility in handling
highly heterogeneous, geometrically intricate domains with irregular boundaries [48].
However the FEM requires more modeling effort in comparison with the FDM and
the FVM. Also, it is the second best option for flow modeling after the FVM. This is
because the FVM is locally conservative at the discrete level [49]. The FVM has the
combined advantage of the FDM in being relatively simple to implement, and the
FEM in having flexibility towards complex geometries.

Another method commonly used for fault simulation is the (spectral) boundary
element method (BEM). In this method, the fault geometry is discretized into
boundary elements and often Green’s functions are used to solve for stress and
displacement on the fault [50–52].

Initially, the computational mesh used for capturing the geological domain was
always a structured mesh, imposed on the heterogeneous geological field. Later
unstructured meshes were also utilized to capture discontinuities (e.g. faults and
fractures) by confining them at grid interfaces. However, for complex geometries,
this representation often becomes overly detailed making subsequent calculations
impractical [53–56].

Embedded methods use appropriate relationships to link the fault network to the
matrix with minimal mesh complexities [57–60]. The embedded framework has
been used with both the FEM (e.g. XFEM [61–63]) and FVM with sequentially-
coupled [64, 65] and fully-coupled [66] flow-mechanics simulations. A benchmark
study was performed to compare the quality of the embedded-structured and
conforming-unstructured mesh approaches for single-phase flow in porous media
[67].

The embedded FVM (EFVM) was successfully used for determining pressure
and displacements in a faulted system under pore pressure variations. Flow and
mechanics were loosely coupled using a sequential coupling approach based on
a fixed-stress scheme [64, 65]. Later, the computational efficiency and condition
number of the EFVM was compared to the XFEM [68]. This showed the EFVM is
much faster in terms of CPU time, but has a higher condition number. There are
two reasons for this. First, for each direction, there is one additional unknown per
cell in the EFVM, whereas there are at least four in the XFEM. Second, the EFVM
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integrals are found analytically, while the XFEM uses numerical integration.

Despite the recent progress in the EFVM, major challenges remain for reliable
simulation of fault reactivation in the context of induced seismicity. First of these
is the incorporation of fault slip as a fully-implicit fully-coupled process with direct
functionality of pore pressure and deformation. This plays an essential role when the
geologic setting exhibits a strong physical association of mechanics with flow, such
as in the case of production from faulted gas reservoirs [69]. A weak or sequential
coupling may potentially result in conditionally stable results for multi-physics
problems [26] or becomes more expensive in terms of CPU performance [70].

Second is the accurate calculation of the stresses affecting faults. These stresses
are fundamental in identifying the stick-slip situation and quantifying the correct
value of slip. But an element of nonlinearity arises due to the inter-dependence of
slip on post-processed stresses. This requires iterations to ensure the estimated fault
slip remains in agreement with the most recent stress field. Third is the occurrence
of oscillations in the stress and slip profiles of the faults. This is observed in
previous EFVM results [64, 65]. These oscillations arise due to the embedded nature
of the EFVM, primarily when faults are misaligned with the matrix mesh. While
the embedded framework is quite convenient for heavily-faulted systems [71], these
oscillations pose a substantial hindrance to the monotonicity and stability of the
implicit EFVM.

There are studies which have specifically focused on the simulation of depletion
and injection-induced seismicity in the Netherlands. The Royal Netherlands
Meteorological Institute (KNMI) documented the first seismic event in the
Netherlands in 1986. Since that time, seismic activity has been documented in over
30 Dutch gas fields, most notably, the Groningen field [72].

In 1994, Roest and Kuilman looked at the relationship between gas production and
tremors in the Netherlands and performed a geomechanical analysis of the reported
seismic events in Eleveld gas reservoir [73]. They looked at the effect of the geometry
of the reservoir on induced seismicity and found that fault throw has prominent
effect on fault slip.

In 2003, Mulders used 3D geomechanical modeling to analyze the effects of
factors such as reservoir compartmentalization, rock stiffness (Young’s modulus and
Poisson’s ratio), stress field orientation, initial state of stress, the influence of the
surrounding rock properties and reservoir and fault geometry to assess seismic
energy release in the development of gas fields [74].

In 2014, van Wees et. al. reported on the influencing factors affecting induced
seismicity based on gathered data from over 190 gas fields in the Netherlands where
only 15 of them experienced seismicity. They reported that major seismic activity
is more probable in pre-existing faults as a result of compaction. Their findings
indicate that faults in these fields are initially far from critically stressed. These faults
typically do not become active before the gas reservoirs reach around 28 percent of
depletion of the initial gas in place [75].

In 2015, van den Bogert performed a sensitivity analysis to delve deeper into
the issue of induced seismicity in the Groningen gas field. A finite-element based
numerical solver was used in this study. The parameters considered included
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reservoir offset, in-situ stresses, fault friction behavior, fault orientation, reservoir
thickness and elastic properties of the system [76]. In 2018, Van den Bogert
complemented the earlier 2015 report, with a focus on residual friction coefficient,
reservoir offset, reservoir thickness and the slope of the slip weakening relationship.
Their simulations captured the point of nucleation and the seismic growth of the
rupture in the seismic stage [77]. Similar numerical simulations were also conducted
by Buijze et. al. in 2015, and later in 2017 [72, 78].

Besides the numerical methods reviewed so far, another branch of simulation
techniques were developed for the study of induced seismicity: analytical and
semi-analytical methods. These methods offer multiple advantages. They are
usually based on fewer parameters than numerical models. This allows for easier
interpretation of the simulation results [79]. When it comes to resolving the issues
with estimation of stresses (such as stress peaks in a reservoir with a fault throw),
analytical and semi-analytical methods hold a clear advantage in their accuracy
[80]. Furthermore, they are generally computationally simpler and much faster
than numerical methods [81]. However, they can be limited in that it is not as
straightforward to include complexities in these models. These complexities include
some of the important real-field parameters such as geological heterogeneities and
geo-model geometry.

Analytical and semi-analytical methods used for modeling fault slip are based on
fracture mechanics and dislocation theory. Dislocation theory was originally used
in the study of material properties and deformation [82]. It was later extended to
earth sciences. In geophysics, dislocation theory is used to model the movement
along fault planes, the patterns of stress distribution, and the factors influencing
earthquake generation and propagation. This is because a fault plane that has
experienced slip due to applied stresses, can be considered as an array of dislocations
in itself. Here, slip is defined where the fault surfaces have shifted over a confined
region [83]. The elastic fields of dislocations in isotropic media have been studied as
far back as the beginning of the 20th century [84].

Earlier analytical and semi-analytical studies of stresses in the deep subsurface
focus on the issue of depletion-induced subsidence. This concern was predominantly
reported by the oil and gas industry. In 1966, Geertsma looked at subsidence
as a results of production-induced reservoir compaction [85]. Later in 1973, he
complemented his study on this topic and specifically considered the Groningen
field. He suggested there are higher risks associated with subsidence in the
Groningen field [86].

One of the most well-known solutions to describe the impact of variations in
geometry and elastic properties on the local stress state was proposed by Eshelby in
1957 [87]. He modeled the elastic strain field perturbations resulting from a change
in size or shape in an inclusion inside an infinite medium. He employed a method
that begins by extracting the inclusion from the surrounding medium. The inclusion
is allowed to experience a stress-free transformational strain. Subsequently, precise
surface tractions are applied to restore the inclusion to its initial size and shape.
Afterwards, the inclusion is reintegrated into the matrix material, welded and the
interfacial boundary tractions is eased. Eshelby (1957) demonstrated the procedure
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for computing the constrained strain field that emerges once the interfacial tractions
are eased [87].

In 1985, Segall analyzed stress changes as a results of fluid production from a
reservoir to evaluate induced seismic events for the 1983 Coalinga Earthquake [88].
In 1989, he suggested that earthquakes can be triggered by poroelastic stresses
due to reservoir pore pressure reduction resulting from fluid production. He used
constitutive equations for linear poroelastic media and suggested analytical models
to describe the phenomena. He made the following conclusions regarding the issue
[89]:

• Seismic activity has demonstrated a spatial and temporal correlation with
production activities in certain oil and gas fields, where pore pressures have
experienced significant declines, often reaching several tens of MPa. Reports of
production-induced seismic activity near oil and gas fields have been recorded
since the 1920’s, such as the case of the earthquakes near the Goose Creek oil
field in south Texas [90].

• Both reverse faults above and below petroleum reservoirs, and normal faults on
the flanks of reservoirs have been observed to be influenced by pore pressure
reduction.

• The theory of poroelasticity can explain how fluid extraction creates localized
alterations in the stress state.

• The calculated stress changes correlate well with observed earthquake locations.

In 1992, Segall explained the underlying physics of induced seismicity in oil and
gas fields as follows: During depletion, reservoir pore pressure reduction is higher in
the reservoir layers than the surrounding. This situation results in a strain imbalance,
where reservoir rocks compact more than the surroundings. This imbalance creates
additional stresses which can trigger induced seismic events [91].

Later in 1994, Segall et. al. studied induced seismicity near the Lacq gas field in
France. They examined changes in the stress field as results of depletion-induced
subsidence. They correlated the stress change with the spatial occurrence of induced
seismicity [69].

In 2001, Du and Olson analytically analyzed the effect of pressure variations within
a reservoir on subsidence and rock compaction [79]. A year later, Walsh (2002)
developed another analytical method for calculating the fluid production-induced
subsidence. His method yielded a more precise estimate of the surface subsidence
[92]. In the same year, Rudnicki generalized the work of Walsh (2002) and reported
on the similarities and differences between the study by Walsh (2002) and the studies
by Geertsma ([85, 86]) and Segall ([91]) [93].

In 2008, Soltanzadeh and Hawkes studied stress changes and fault reactivation for
horizontal and inclined reservoirs under plain strain conditions. They reported that
fault reactivation depends on the geometry and dip angle of the reservoir [94].

More recently, Jansen et. al. (2019) analytically calculated stresses, strains and
corresponding displacements as a result of fluid depletion and injection in faulted
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reservoirs [80]. Jansen and Meulenbroek (2022) extended the earlier work by Jansen
et. al. (2019) [95]. They analyzed the onset of fault nucleation based on an earlier
study by Uenishi and Rice (2003) [96]. Following the determination of the nucleation
pressure, they suggested a method for calculating the magnitude of the seismic
moment for vertical and inclined faults. In 2023, this work was extended to account
for non-uniform pressure fields [81]. The work conducted by Jansen et. al. in
2019 and Jansen and Meulenbroek (2022) serves as a basis for the semi-analytical
and hybrid methods developed in this work. These studies were developed for a
single-fault system with a relatively straightforward geometry, leaving opportunities
for further exploration and enhancement. Furthermore, another aspect meriting
further development is extending the analytical expressions to model post-nucleation
fault behavior.

1.4. AN OVERVIEW OF RESEARCH OBJECTIVES, SCOPE AND

METHODOLOGY OF THIS STUDY
This project was defined within the Science4Steer project. Science4steer aims to
provide a scientific basis for fluid production and re-injection strategies to minimize
induced seismicity in Dutch gas fields. Science4steer investigates this problem in
different scales from the lab to the field scale.

The Science4Steer project falls under the scope of a larger project known as
DeepNL. The goal of the DeepNL research program is to improve the fundamental
understanding of the dynamics of the deep subsurface under the influence of human
interventions.

The current study aims to analyse computational methods for the study of induced
seismicity in reservoirs undergoing pressure change. This involves simulating fault
slip, matrix deformation, and fault and matrix pressure in faulted poroelastic
media at the field scale. An effort is made to follow a physics-based approach
where relevant processes and mechanisms which affect the faults are taken into
consideration. This study takes advantage of the vast body of knowledge available
in the field of computational geomechanics, relevant models used in the study of
induced seismicity and the available real field data from the Groningen gas field.

A notable emphasis within this work is placed on examination, validation, and
accurate documentation of the limits in the methodologies used for modeling fault
reactivation. This study takes on the challenge of simulating fault reactivation using
a combination of methods. These methods are 1. numerical simulation approach,
2. semi-analytical approach and 3. hybrid approach. The subsequent section offers
brief reviews of each.

1.4.1. NUMERICAL METHOD

A finite-volume based, embedded numerical approach, called the Smooth Enhanced
Finite Volume Method is developed to model heterogeneous faulted poroelastic
systems. The sEFVM is a fully-implicit fully-coupled smoothed embedded finite
volume approach for modeling poroelastic deformation and fault slip.
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This computational framework accommodates the consideration of heterogeneous
properties within rock formations and faults. One key aspect addressed in the
sEFVM is the oscillation observed in stress and slip profiles along fault planes,
arising from the embedded fault representation. These oscillations have implications
for simulation of slip, prompting means to mitigate them. Additionally, an iterative
strategy is introduced to achieve implicit full coupling of fault slip, pore pressure,
and rock deformation. This novel approach enhances the accuracy of fault slip
predictions within the numerical framework.

To validate the efficacy of the sEFVM, a comprehensive set of numerical test
cases are studied. These cases benchmark the method against available analytical
solutions. The sEFVM is shown to effectively simulate deformation and fault slip for
complex geological models.

The sEFVM is applied to examine fault configurations relevant to the Groningen
field. These setups include faults in reservoirs with offset. In the case of depletion
in such systems, the stress profiles demonstrate infinite peaks at offset points and
are not continuous. This poses a significant challenge to the sEFVM, leading to
diminished accuracy when stress discontinuity exists over the fault.

The infinite peaks and discontinuous shear stress profiles in reservoirs with offset
are accurately simulated using an analytical approach in a study by Jansen et. al.
(2019) [80]. This motivates the development of a semi-analytical method.

The sEFVM is not en entirely new method. It shares its methodological framework
with XFVM originally proposed by Deb and Jenny [65]. The term "enhanced finite
volume" in the definition of sEFVM, as opposed to "extended finite volume" in
XFVM does not indicate otherwise. The sEFVM deviates from XFVM in the following
respects:

• The pressure-mechanics system is solved in a fully-coupled manner. This
implementation is aimed at enhancing stability within the computational
framework in comparison to when the pressure-mechanics system is
sequentially coupled.

• The sEFVM incorporates a procedure to smooth slip profiles. This step is
considered for maintaining the convergence of the method, especially when
dealing with faults characterized by arbitrary grid-misaligned angles.

1.4.2. SEMI-ANALYTICAL METHOD

The study by Jansen et. al. in 2019 and Jansen and Meulenbroek in 2022 present
analytical expressions for the estimation of stresses and aseismic fault slip resulting
from pore pressure change [80, 95]. These studies look at single-fault systems in a
reservoir with relatively simple geometry.

In the context of this research, these formulations are extended to accommodate
the mesh structure of the sEFVM, thereby enabling their application within a
semi-analytical framework. The semi-analytical method facilitates the consideration
of multiple faults and builds on previous analytical formulations that were tailored
to simpler reservoir configurations.
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The developed semi-analytical approach is found to agree with analytical solutions.
It provides more accurate solutions for stress and slip profiles for faulted reservoirs
with an offset, in comparison to the sEFVM.

One drawback of the semi-analytical method is that it is unable to simulate
post-nucleation fault behavior. That is when the the slip of a fault outgrows
the domain of aseismic slip. In the case of multi-fault systems, semi-analytical
simulations only continue up to the point of nucleation of the first fault. Beyond
this point, the state of the nucleated fault is unclear and semi-analytical simulations
cannot proceed.

The limitation of the semi-analytical method motivates the development of an
approach enabling the simulation of fault reactivation both before and after fault
nucleation.

1.4.3. HYBRID METHOD

It is reported that in faulted media, slip distributions in one fault can influence
nearest neighbouring faults through perturbations in the stress fields [97, 98]. A
hybrid method is developed that takes this into consideration in a quasi-static sense.

In the hybrid method, the incremental stresses incurred as a result of nucleation of
a fault (and subsequent rupture growth) are incorporated numerically in the overall
stresses. Assumptions are made with respect to the post-seismic frictional behavior
of the faults. The stress perturbations resulting from seismic rupture are accounted
with the use of sEFVM. The hybrid method is used to simulate fault slip before
nucleation, and after nucleation in the seismic slip stage. This method is found to
be effective in simulating more realistic multi-fault setups.

1.5. THESIS OUTLINE
This thesis is structured in the following manner.

CHAPTER 2: PHYSICS OF FAULTED POROELASTIC SYSTEMS

In the next chapter, the physics associated with flow, deformation and fault slip in
faulted poroelastic media are reviewed.

This is followed by an overview of underlying physical equations which are used
for the estimation of stresses in specific setups of this study.

Subsequently, a brief overview is given on friction models relevant in the study of
induced seismicity in the Groningen field.

Finally, equations for determination of the onset of fault nucleation are discussed.
The chapter ends with a discussion on the validity range for the analytical method

used within the framework of the semi-analytical and hybrid methods of this study.

CHAPTER 3: METHODOLOGY

This chapter consists of three main sections which explain the assumptions and
implementation of 1. the numerical sEFVM, 2. the semi-analytical method and 3.
the hybrid method.
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In the first part, a description of the embedded mesh, the basis functions, the
finite-volume control volumes, the method used for including the slip discontinuity
in the basis functions, and the iterative procedure of the sEFVM is discussed.

In the second part the semi-analytical method is explained. This part begins with
a review of the analytical expressions used for estimation of stresses and slip as
suggested by Jansen et. al. (2019) [80]. It is demonstrated how these expressions are
extended to be solved over the sEFVM computational domain. Lastly, the algorithmic
implementation of the semi-analytical method is explained.

In the last part of Chapter 3, the hybrid method is detailed in terms of its link to
the semi-analytical method and the sEFVM.

CHAPTER 4: RESULTS AND DISCUSSION

The results in Chapter 4 follow the same pattern as the previous chapter where
results for the three methods are presented in a consecutive order.

Initially, the sEFVM is validated against analytical solutions and is benchmarked
against alternative simulation methods. This chapter serves to establish the
credibility and robustness of the sEFVM for the simulation of faulted poroelastic
media.

Next, specific Groningen-relevant test cases are modelled where limitations of the
sEFVM become evident. The inaccuracies are evaluated against analytical solution
and another grid-conformal finite volume-based method. This is followed by results
of the semi-analytical model. The method is benchmarked against earlier analytical
solutions.

The semi-analytical method is used to simulate a wide range of reservoir-fault
configurations. Simulation results are qualitatively used in the evaluation of the
more consequential parameters in the study of induced seismicity. Findings are
compared with previous research relevant to the Groningen field.

Finally, some results for the hybrid method are presented and discussed. This
section shows the extension of results to multi-fault systems and modeling of
quasi-static seismic slip. It ends with application of the results to a more realistic
model for the Groningen field.

CHAPTER 5: CONCLUSIONS

In Chapter 5, an overview of the findings of this study is presented. Looking
back at the entirety of the thesis, contributions and limitations of each method are
reappraised.

Furthermore, based on the performed sensitivity analysis, some remarks are made
on the topic of induced seismicity in the Groningen field.

This chapter also provides ideas for potential future directions in the domain of
simulation of faulted poroelastic media.



2
PHYSICS OF FAULTED POROELASTIC

MEDIA

The intricate interplay between geological structures (e.g. presence of a reservoir
offset or faults), fluid movement and mechanical responses defines the behavior of
subsurface formations under stress. The first step to modeling the geomechanics of
faulted poroelastic systems is understanding the underlying physics. This chapter
reviews the fundamental equations that define faulted poroelastic systems, providing
a comprehensive investigation of the mathematical expressions that describe the
coupling between stress, strain, fluid flow, porous media deformation and fault
re-activation. This chapter also includes a discussion regarding the development of
the aseismic slip patch and potential rupture.

2.1. PHYSICS OF FLOW IN FAULTED POROELASTIC MEDIA
The single-phase mass conservation equations for a slightly-compressible poroelastic
domain and flow-conductive fractures and faults based on the embedded discrete
fracture modeling (EDFM) approach read [57, 59]

b
Ç∇· u⃗

Çt
+ 1

M

Çpm

Çt
+∇·

(
− km

µ
·∇pm

)
+Ψm→ f =Qm , (2.1)

and
ÇE f

Çt
+∇·

(
− ak f

µ
·∇p f

)
+Ψ f →m =Q f , (2.2)

where b is the Biot coefficient, u⃗ is matrix deformation, t is time, M is the
Biot modulus, p is pressure, k is permeability, µ is phase viscosity, Ψ is the net
flux exchanged between the matrix and fracture/fault, Q is the source term, a
is fracture/fault aperture and E f is the total accumulation in the fracture/fault.
Subscripts m and f stand for the matrix and fault/fracture, respectively.

Parts of this chapter have been published in the Journal of Computational Physics (2022) [99].
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The term E f becomes negligible if the change in the aperture (e.g. dilation) and
porosity of flow-conductive faults and fractures (φ f ) is neglected, because

ÇE f

Çt
=

[ 1

ρ

Ç

Çt
(aρφ f )

]
≈ Ç

Çt
(aφ f ). (2.3)

Note that one can include dilation due to slip to further model the void aperture E f

term [100].

2.2. PHYSICS OF DEFORMATION IN FAULTED ELASTIC MEDIA

The linear momentum balance for a poroelastic domain with faults and fractures
can be stated as

∇· (σ̃−bpĨ )+ f⃗ = 0, (2.4)

where σ̃ is the effective stress tensor, Ĩ is the identity matrix and f⃗ is the body force
per unit volume [101]. Assuming linear elastic deformation [101], stress is linearly
proportional to the displacement gradient, i.e.,

σ̃= C̃ : ∇s u⃗, (2.5)

where ∇s is the symmetric gradient operator and C̃ is the elasticity tensor consisting
of elasticity parameters [101].

2.3. PHYSICS OF FAULT SLIP IN FAULTED POROELASTIC MEDIA

UNDERGOING PRESSURE CHANGE

Fault slip occurs when the tangential stresses on the fault, i.e., τ, surpass the
maximum threshold value, i.e., τmax . Here, the Coulomb/Byerlee friction law [32] is
applied to quantify τmax as

τmax = |τc |+µ f ·σn . (2.6)

Here, µ f is the friction coefficient, τc is the cohesive force of the contact, and σn is
the normal stress on the fault. Where not mentioned in this study, the value of τc is
taken as zero.

2.4. INITIAL AND BOUNDARY CONDITIONS FOR A

WELL-POSED PROBLEM

The governing equations described so far are subject to proper initial and boundary
conditions for both flow and mechanics to form a well-posed system of equations.
These conditions in general form can be expressed as
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Prescribed boundary displacement: u⃗ = u⃗ÇΩu,D (2.7a)

Prescribed boundary total stress: (C̃ : ∇s u⃗ −bpĨ ) · n⃗ÇΩu,N = f⃗ (2.7b)

Prescribed boundary pore pressure: p = pÇΩp,d
(2.7c)

Prescribed boundary flux: −(
km

µ
·∇p) · n⃗ÇΩp,N =Q (2.7d)

Initial pressure: pΩp = pΩp (t = 0) (2.7e)

Initial displacement: u⃗Ωu = u⃗Ωu (t = 0) (2.7f)

Here, n⃗ is the unit normal vector to the corresponding boundaries of flow
and mechanics. In addition, sub-indices •,D and •,N indicate the part of the
displacement and pressure domain boundaries (• ∈ {ÇΩp ,ÇΩu}) in which Dirichlet
(D) and Neumann (N) boundary conditions are imposed. Note that the union of the
Dirichlet and Neumann boundary interfaces form the entire domain boundary, i.e.,
Ωp,D ∪ Ωp,N =Ωp and Ωu,D ∪ Ωu,N =Ωu .

2.5. ANALYTICAL ESTIMATION OF STRESSES AND

DEFORMATION

2.5.1. A RELEVANT SETUP IN THE STUDY OF INDUCED SEISMICITY

This section describes relevant setups for the study of induced seismicity in the deep
subsurface and the relevant fundamental relationships to define them.

Figure 2.1 shows three images. The left image shows a cross-section from the
geomechanical model of the Groningen field. The captured area has a size of 45
km (horizontally) by 4.5 km (from a depth of 0 down to -4.5 km subsurface depth).
Details on how this cross section is obtained are provided in Appendix C.

If a segment, consisting of the reservoir and some depths of the overburden and
underburden are cropped out of this cross-section, the central image in Figure 2.1 is
obtained. This cut-out can be modelled with the simplistic schematic shown on the
right side of the aforementioned figure.

The simplistic schematic in Figure 2.1 is a well-known representation for a faulted
buried reservoir section. Similar setups have been considered in literature for the
simulation of fault reactivation in the Groningen gas field [76, 77, 80, 95, 102].

This setup is a two-dimensional model, with height H and width W . There is a
porous reservoir in the center with a thickness of th = h1 +h2. The reservoir, shown
in a darker shade in Figure 2.1, is surrounded by the overburden and underburden
layers. Flow can occur in the reservoir, as it is considered porous. The segments
outside of the reservoir are impermeable.

The entire domain is assumed to have uniform isotropic elastic properties. This
simplification is intended for the ease of calculating the stresses analytically later.

There is a fault extending through the entire block, passing through the center
point of the domain. The reservoir has an offset at the location of the fault.
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This offset is also referred to as the fault throw. Based on the definitions in
Figure 2.1, the size of the offset is to = h2 −h1.

The vertical height of the domain, H , is finite. While the entire frame is shown as
a square, an assumption can be an infinitely-extending reservoir in the horizontal
direction (W ∼∞). This is a valid assumption for very large fields, such as the
Groningen gas field. In the current example, the width to height ratio of the realistic
cross-section of Figure 2.1 is 10 to 1, based on the actual dimensions of the cross
section which is 45 km×4.5 km.

h1
h1h2

h2
H

W

Figure 2.1.: An illustrative model (right) inspired by the Groningen gas field model
(left and center). The darker shade shows the permeable reservoir. The
images on the left and center are extracted from the geomechanical
model developed for the Groningen gas field. Details of this model are
presented in Appendix C.

To simulate induced seismicity in the setup of Figure 2.1, the relevant processes
are considered. These consist of:

• Initialization: In the first step, the initial in-situ stresses and pressure existing
in the depositional environment are calculated. The cropped domain is
extracted from a larger environment. Therefore, in order to simulate the
system when the domain is modelled independently, it needs to be subjected
to forces that replicate the presence of the eliminated external environment.

• Depletion: In the second step, the reservoir pressure change is simulated. This
step is to simulate what happens during production from gas reservoirs.

Each of the above steps is described next.

2.5.2. INITIALIZATION OF STRESSES AND DEFORMATION

INITIAL IN-SITU STRESS CALCULATION

To begin with a simple test case, it is initially assumed that the reservoir is not
faulted and there is not an offset in the system (i.e. h1 = h2). This setup is
shown in Figure 2.2. This image shows the reservoir with the applied boundary
conditions. These boundary conditions consist of vertical loads on the top and
bottom, horizontal loads on the sides and three points with restricted movement to
constrain rigid body translations and rotation.
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h1

h2

fv (y = H/2)

fh (x = 0) fh (x = W)

fv (y = - H/2)

Figure 2.2.: Schematic of load configuration and mechanical boundary conditions to
simulate initial stresses. Vectors illustrate the stress direction imposed on
the boundaries.

The vertical load on the system, fv , at depth y depends on fluid density, ρ f l , solid
rock density, ρs , and rock porosity, φs , as

fv (y) =σ0
y y (y) = [(1−φ)ρs +φρ f l ]g (y −D0), (2.8)

In Equation 2.8, g is the acceleration of gravity and D0 is the depth at the center
of the reservoir. σ0

y y is the initial vertical stress. This formula is used for determining
the vertical load at the top, and bottom of the model in Figure 2.2. The vertical
load can be interpreted as a consequence of the presence of the overburden and
underburden layers surrounding the system. The sign of the force is different at
the bottom and the top of the domain. This is incorporated in Equation 2.8 by
considering y to be positive or negative with respect to the reference depth of D0.

In addition, there is also another vertical load applied to the system. This second
vertical load is due to the effect of gravity on the system itself and is calculated
similarly using Equation 2.8.

It is usual, that a ratio is considered between the initial effective horizontal to
vertical in-situ stresses. This ratio, denoted here as K 0, is referred to as the coefficient
of earth pressure at rest [103]. Based on this idea, the horizontal load, fh , is

fh(y) =−σ0
xx (y) =−

{
K 0[σ0

y y (y)+bp0(y)]−bp0(y)
}

, (2.9)

where b is the biot coefficient, σ0
xx is the initial horizontal stress and p0(y) is the

initial pressure distribution.

The initial pressure is calculated based on the initial pressure, p0
0 at the reference

depth (i.e. D0) as

p0(y) = p0
0 −ρ f l g y (2.10)
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When the model is subjected to vertical and horizontal forces, it may displace
(move in the 2D space), and/or rotate. This does not happen in reality for the
reservoir. Therefore, to prevent this during the simulation, movement in three points
of the model are restricted. This is done by considering

uy (0,
L

2
) = 0, (2.11a)

uy (W,
L

2
) = 0, (2.11b)

ux (
W

2
,0) = 0. (2.11c)

In Equation 2.11, uy is the vertical displacement, ux is the horizontal displacement,
the first input in the parenthesis is the horizontal coordinate and the second input
in the parenthesis is the vertical coordinate.

With the considerations so far, the initial stresses will be

σ0
xx (y) =−1

2
[ fh(0)+ fh(H)]+ [ fh(0)− fh(H)]

y

H
, (2.12)

σ0
y y (y) = 1

2
[ fv (0)+ fv (H)]+ [(1−φ)ρs +φρ f l ]g y, (2.13)

σ0
x y (y) = 0. (2.14)

The initial zero shear stress is not necessarily representative of actual reservoir
conditions but is a simplifying assumption made here.

Stress can be found along other orientations with proper mathematical
manipulations. This is of interest, for example, when calculating the stresses along a
fault line. The stresses tangential and normal to the fault line are of interest when
studying the fault friction law as described in Equation 2.6.

The normal stress, σ0
n , and shear stress τ0 acting on a fault line making an angle

of θ with respect to the horizontal are [95]

σ0
n(y) =σ0

xx (y)sin2θ+σ0
y y (y)cos2θ (2.15a)

τ0(y) = 1

2
[σ0

xx (y)−σ0
y y (y)]sin2θ, (2.15b)

where positive shear stresses are designated to the setup which promotes normal
faulting, as opposed to a reverse faulting configuration.

INITIALIZATION OF DEFORMATION

For the configuration of Figure 2.2, deformation can be determined analytically.
Deformation of a block of size H ×W is related to strain, ϵ, as [101]
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u0
y =

∫ H
2

− H
2

ϵ0
y y d y, (2.16a)

u0
x =−

∫ 0

−W
2

ϵ0
xx d x. (2.16b)

In Equation 2.16, u0 is the initial deformation and ϵ0 is the initial strain resulting
from the applied loads in the initialization stage.

Strain is a function of stress. By assuming poroelastic plain strain conditions, it is
found as [101]

ϵ0
y y =

1

E
(1−ν2)σ0

y y (y)−ν(1+ν)σ0
xx (y)+b(1+ν)(1−2ν)p0(y), (2.17a)

ϵ0
xx =−W

2E
[(1−ν2)σ0

xx (y)−ν(1+ν)σ0
y y (y)+b(1+ν)(1−2ν)p0(y)]. (2.17b)

In Equation 2.17, E is the Young’s modulus and ν is the Poisson ratio. Conversion
equations for these properties are presented in Appendix A.

Using Equation 2.17 and Equation 2.16, deformation can be determined based on
initial stresses (Equation 2.14) and initial pressure distribution (Equation 2.10).

2.5.3. DEPLETION-INDUCED INCREMENTAL STRESSES AND

DEFORMATION

RESERVOIR WITHOUT AN OFFSET

Following initialization, the setup of Figure 2.2 is assumed to undergo depletion. To
simulate depletion, new boundary conditions are considered based on the results
of the initialization step. A schematic of these boundary conditions is shown in
Figure 2.3.

The depletion setup has prescribed boundary displacements which read

ux (0, y) = u0
x (0, y), (2.18a)

ux (W, y) = u0
x (W, y), (2.18b)

uy (x,0) = u0
y (x,0)+|u0

y (x, H)|. (2.18c)

In Equation 2.18, u0
x (0, y) and u0

x (W, y) are the horizontal displacements on the
left and right boundary, respectively. These values are simulation outputs from the
initialization stage.

According to Equation2.18c, the magnitude of the vertical displacement at the top,
u0

y (x, H), and the bottom, u0
y (x,0) of the initialized model, are used to confine the

displacement of the bottom boundary in the depletion setup.
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h1

h2

fv (y = H/2)

uy
0 (y = - H/2)

ux
0 (x = 0) ux

0 (x = W)

Figure 2.3.: Schematic of load configuration and mechanical boundary conditions
to simulate depletion. A vertical load is applied on the top boundary
to simulate the effect of overburden. On the left, bottom and right
boundary, the displacement values obtained from the initialized model
(Figure 2.2) are assigned.

The vertical load calculated in replacement of the overburden (Equation 2.8)
continues to affect the system. The vertical load from gravity affecting the reservoir
cells similarly remain as in the initialized case.

Reservoir depletion will result in uniform vertical deformation (compaction). The
magnitude of this deformation depends on the thickness of the reservoir (th) as

∆h = thϵy y , (2.19)

where ϵy y is the vertical strain. This property is defined as

ϵy y =
σ′

y y

Kv
, (2.20)

where Kv is the uni-axial vertical stiffness factor with definitions found in Appendix
A. σ′

y y is the effective vertical stress resulting from pressure depletion and is

σ′
y y = b∆p. (2.21)

In Equation 2.21, b is the Biot coefficient and ∆p is the pressure depletion.

If the reservoir is assumed horizontally infinite, depletion does not enforce any
additional horizontal strain, therefore

ϵxx = 0. (2.22)

However, there are incremental horizontal stresses. The incremental effective
horizontal stress (σ′

xx ) is found as [101]
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σ′
xx = ν

1−νσ
′
y y , (2.23)

here, σ′
y y is found according to Equation 2.21.

The total incremental horizontal stress (σxx ) depends on pressure and is

σxx =σ′
xx −bp. (2.24)

In a continuum system without faults, incremental shear stresses due to depletion
are zero (i.e. σx y = 0). Given that the initial shear stresses are also zero (as shown in
Equation 2.14), the total shear stresses remain zero after depletion (i.e. Σx y = 0).

However, in the same system without an offset, if the shear stresses are evaluated
at an inclined angle (for example along the path of a delineated fault), they are not
zero. The nonzero incremental horizontal stresses (calculated according to Equation
2.24), influence both the normal and shear stresses based on Equation 2.15.

It should also be noted that in this study, the effective stresses at the fault are
calculated by assuming that the biot coefficient for the fault is the multiplier for the
pressure term. An alternative definition exists for this multiplier, which aligns with
the Terzaghi definition of effective stress. According to that definition, this multiplier
is equal to unity [104].

RESERVOIR WITH AN OFFSET

A new setup is considered which includes a fault. This fault separates the reservoir
into two compartments that have an offset with respect to each other. This is shown
in Figure 2.4. Both reservoir compartments have the same thickness.

h1

h1h2

h2

fv (y = H/2)

uy
0 (y = - H/2)

ux
0 (x = 0) ux

0 (x = W)

Figure 2.4.: Schematic for load configurations and mechanical boundary conditions
for a faulted system with an offset. The vertical load on top and constant
displacements on other boundaries are similar to those in Figure 2.3.

In the presence of a fault, friction is important. The friction coefficient appears in
the definition of the Coulomb stress, ΣC , as
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ΣC = |T |+µ f Σ
′
n , (2.25)

where T is the total tangential stress and Σ
′
n is the total effective normal stress.

The definition for T and the total normal stress, Σn , is

T = τ0 +τp , (2.26a)

Σn =σ0
n +σp

n . (2.26b)

In Equation 2.26, τ∆p is the incremental shear stress due to depletion and σ
∆p
n is

the incremental normal stress due to depletion.

These terms are obtained with proper rotation of the incremental stresses along
the direction of the fault line as

σ
p
n =σp

xx sin2θ+σp
y y cos2θ−σp

x y sin2θ, (2.27a)

τp = 1

2
(σp

xx −σp
y y )sin2θ−σp

x y cos2θ. (2.27b)

In Equation 2.27, σ
p
xx , σ

p
x y and σ

p
y y are the components of the incremental

depletion-induced stress tensor.

The effective normal stress is calculated as

Σ′
n =Σn +β(p0 +p), (2.28)

where β may be equal to the Biot coefficient (i.e., β= b). It can also be taken as
unity if the Terzaghi definition is used [104]. In this study, β is taken equal to the
Biot coefficient.

The values of T and Σ
′
n are used to calculate the Coulomb stress according to

Equation 2.25. Another parameter in this equation is the friction coefficient which is
addressed in the next section.

2.6. MODELS FOR THE FRICTION COEFFICIENT

The friction coefficient, featured in Coulomb stress equation (Equation 2.25), is
crucial for assessing fault slip potential.

Under the simplest assumption, the friction coefficient can be held constant.
However studies have shown that it can depend on the slip, or the rate of slip. With
increasing slip or slip rate, the fault can weaken, meaning its friction coefficient
drops. The friction coefficient can also strengthen with slip, meaning its friction
coefficient will increase. In this section, some of the more well-known models for
the friction coefficient are presented.
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2.6.1. LINEAR SLIP-DEPENDENT FRICTION MODEL

A linear, slip-dependent friction coefficient can be defined as [95]

µ f (s) =
µs

f +
µd

f −µs
f

δ |s| s ≤ δ
µd

f s > δ

where µs
f is the static friction coefficient before any slip. After slip, the friction

coefficient begins to change until it reaches the critical slip distance (or critical slip
length) of δ. The value of the friction coefficient at a slip value of δ is equal to the
dynamic friction coefficient, i.e. mud

f .

Figure 2.5 shows a schematic of a slip-dependent frictional weakening regime.

μ[ - ]

Slip [m]δ

μf
s

μf
d

Figure 2.5.: Schematic of a linear slip-weakening friction behavior.

2.6.2. SLIP RATE-DEPENDENT FRICTION MODEL

Another model for the friction coefficient is the slip-rate dependent model. In this
law, the friction coefficient depends on the rate of slip (i.e. change of the slip
magnitude over time). By assuming steady state conditions as described by [105],
the friction coefficient can be found as

µ f (V ) =µs
f + (A−B) ln

V

V0
, (2.29)

where, V is the slip rate during depletion and V0 is the slip rate at initial
conditions. The parameters A and B are lab-determined coefficients. This model
assumes there is an initial velocity for slip. This indicates that the fault slip even
prior to nucleation.
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2.7. SLIP PATCH GROWTH
In this section the stages of fault slip in a reservoir undergoing depletion are
discussed.

2.7.1. INITIAL IN-SITU CONDITIONS

At initial conditions, before any depletion, the fault is affected by an initial stress
regime. This initial stress depends on the geometry of the reservoir and the fault
and the geomechanical properties of both. The governing relationships in Section
2.5.2 can be used for calculating these initial stresses. Two possibilities can exist
based on the Coulomb stress affecting the fault at initial conditions

• Case 1: The initial Coulomb stress has a negative magnitude. This implies that
the fault does not slip. Under this assumption, the system can be initialized
for depletion according to the procedure explained in Section 2.5.3. Where
the fault has a throw, points located at the tip of the offset will slip during
depletion. With increasing depletion, it is possible for the Coulomb stress to
become positive for larger sections along the fault. When this happens, the
slip patch grows.

• Case 2: The initial Coulomb stress is positive. This indicates the fault already
slips before any depletion. With this assumption, the procedure of Section 2.5.3
cannot be followed. This condition can favor the occurrence of a run-away
rupture [106], which is addressed later in this section

The magnitude of the stresses on the system can be determined as

Σxx =σ0
xx +σp

xx , (2.30a)

Σy y =σ0
y y +σp

y y , (2.30b)

Σx y =σp
x y . (2.30c)

Here, Σ is used to show total stresses. The superscripts 0 denote initial stresses,
and σ

p
xx , σp

y y , and σ
p
x y are incremental stresses due to depletion.

For a fault line with an angle of θ with the horizontal direction, the acting shear
and normal stresses are

Σn =Σxx sin2θ+Σy y cos2θ−Σx y sin2θ, (2.31a)

T = 1

2
(Σxx −Σy y )sin2θ−Σx y cos2θ. (2.31b)

Equation 2.31 is another representation for Equation 2.26 based on the definitions
of total stresses in the x-y coordinate.
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The threshold for slip, Σsl , for a friction regime without cohesion is

Σsl =−µ f Σ
′
n , (2.32)

where Σ′
n is the effective total normal stress calculated according to Equation 2.28.

If −Σsl ≤ T , fault will slip, otherwise there is no slip in the fault.
If the initial stresses acting on a fault (i.e. σ0

xx and σ0
y y ) are large enough to meet

the −Σsl ≤ T condition, slip occurs even before any depletion. In this situation the
system is unstable and run-away rupture can occur [72].

Using the equations provided in this section, it is possible to identify a minimum
threshold for the friction coefficient that ensures system stability, given a particular
initial stress state.

2.7.2. DEPLETION-INDUCED FAULT SLIP

The analytically determined depletion-induced slip profiles for reservoirs with an
offset indicate that there are points, exactly at the offset location, which will slip
following even infinitesimal amount of fluid depletion [95].

There are two offset points along the fault: one in the shallower region (top)
and another in the deeper part (bottom) of the reservoir. With a growing positive
Coulomb stress acting on the fault, these slip patches will grow. The pace and the
size of the slip patch growth is not identical for the shallower and the deeper slip
patches. With increasing depletion, both slip patches grow in size. But for the simple
one-fault model of Figure 2.3, the slip patch in the shallower section precedes that
in the deeper section. For this case, the shallower slip patch is also larger in size.
There may be instances where only one slip patch exists. Where there are two slip
patches, they can influence each other. The magnitude of this influence depends on
the distance between the slip patches [98].

With the growth of the slip patches, the following situations can occur [95]

• If a constant friction coefficient is considered, the slip patches grow and merge
to create a single large slip patch. Fault nucleation before this merging is not
captured.

• Assuming a linear slip-weakening friction regime, the slip patches grow with
increasing depletion until reaching nucleation. At the nucleation point, there
is a fast, sudden merging of the slip patches.

• Van den Bogert (2018) reports another condition under the linear slip-
weakening regime. He reports that the slip patches can grow to merge without
nucleation. Following nucleation, a single merged slip patch will continue to
grow. Then, at a certain point, this single slip patch will nucleate [77].

According to the above description, when a slip-weakening friction law is
considered, the slip patches will grow in size with increasing depletion until reaching
nucleation. Any further depletion beyond the nucleation point will result in seismic
rupture. This correlates with an induced seismic event.
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For this reason, determination of the nucleation point is of high importance. The
depletion pressure at which nucleation occurs is called the nucleation pressure [95].

2.7.3. FAULT NUCLEATION

Uenishi and Rice (2003) presented an analytical stability criterion for aseismic slip.
They found an upper limit for the slip patch, up to which a fault remains stable with
increasing shear stress [96]. Instability of the slip patch coincides with the nucleation
point. Therefore their relationship is widely accepted for analytical determination of
the nucleation point [76, 77, 95].

Uenishi and Rice (2003) used a linear slip-weakening law for the friction coefficient
and found the critical slip patch size (∆y∗

U R ) as [96]

∆y∗
U R = 1.158

G

Wav (p)(1−ν)
, (2.33)

where G is the shear modulus, ν is the Poisson coefficient and Wav (p) is a spatial
average function defined as

Wav (p) =
∫ y+

y− W (y, p)d y

y+− y−
, (2.34)

where y− and y+ are the bounds of the slip patch along the vertical axis. W (y, p)
is a multiplier of the effective total normal stress (Σ′

n) and is defined as

W (y, p) =
(µs

f −µd
f )

δ
Σ′

n , (2.35)

where µs
f , µd

f and δ are constants of the linear slip weakening friction model

defined in Equation 2.6.1.

It is possible to find nucleation point using simulation. However, using simulation
is generally more time consuming. Simulation results are also more susceptible to
precision-related errors. For this reason, Equation 2.33 is preferred for determining
the nucleation point [80].

2.7.4. POST-NUCLEATION RUPTURE PROPAGATION

When nucleation takes place, there is an abrupt energy release, indicating the
occurrence of an earthquake. The aseismic slip patch merges and creates what is
referred to as a seismic slip patch, or a rupture.

In 2020, Buijze performed a dynamic study of rupture propagation in the
Groningen field. She reports that the rupture can [102]:

• Grow until reaching the limits of the reservoir. This is referred to as a confined
rupture. Buijze reports that most of their simulated ruptures are of this type
and grow within the limits of the reservoir.
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• Grow past the internal boundaries of the reservoir and arrest at a certain depth
outside the reservoir. Buijze reports that some ruptures propagate into the
underburden and the overburden in this manner.

• Grow indefinitely past the boundaries of the reservoir. There can be instances
assumed where the rupture does not rest. This is referred to as a runaway
rupture.

Buijze (2020) suggested a rupture has more potential to grow past the boundaries
of the reservoir under the following conditions [102]

• The fault is critically stressed at initial in-situ conditions. This is explained in
Section 2.7.

• The fault offset is small. Nucleation is promoted in reservoirs with a smaller
offset but the developed rupture is smaller.

• There is a large drop in the stresses affecting the fault. This can be the result
of a strong friction weakening regime. An example of this is a steep change
in the friction coefficient from the static friction coefficient to the dynamic
friction coefficient.

• If the fracturing energy is small. This energy is the energy that is dissipated
during frictional weakening. When there is a linear slip weakening friction
law, this is equivalent to the area under the slip weakening function, above
the dynamic shear stress level. When the system has a higher potential for
fracturing, the fault can propagate more easily.

• If the stress distribution over the fault does not impede rupture propagation.
The Coulomb stress profile is discontinuous along the fault. Depletion creates
peaks in Coulomb stress profile which result in slip at the offset points. There
are also stress peaks at the tip of the reservoir boundary. These stresses,
depending on their magnitude, can act as a barrier to rupture growth.

The study of Buijze (2020) showcases a range of rupture behaviors, from confined
ruptures within reservoir limits to runaway ruptures that extend indefinitely. This
study highlights the influence of factors like critical stress, fault offset, stress drop,
fracturing energy, and stress distribution on the potential for rupture growth beyond
reservoir boundaries [102].





3
METHODS FOR SIMULATION OF

FAULTED POROELASTIC MEDIA

Three different methods are presented in this chapter. First is a finite volume-based
approach that is customized for modeling fault reactivation in heavily-faulted
poroelastic media. The development is called the Smoothed Enhanced Finite Volume
Method (sEFVM). This method relies on the framework proposed by Deb and Jenny
[65] which incorporates faults in an efficient embedded manner and finite volume
basis functions are appended to allow for the direct calculation of slip at the fault
nodes. The sEFVM finds the solution for displacement, pressure in the matrix, pressure
in the fault in a fully implicit fully coupled manner.

The second development is the semi-analytical method. In the semi-analytical method,
analytical expressions for estimating depletion-induced incremental stresses and fault
slip are solved over the refined computational domain of the sEFVM.

Lastly, the hybrid method is introduced. The hybrid method extends the semi-analytical
solution to simulate post-nucleation seismic slip. This method relies on relevant
assumptions regarding the post-nucleation state of faults and numerical estimation of
stress perturbations resulting from fault rupture.

3.1. THE SMOOTHED ENHANCED FINITE VOLUME METHOD:
SEFVM

3.1.1. COMPUTATIONAL DOMAIN AND DERIVATIONS

In this section, the underlying framework for sEFVM is described. This framework
is based on the methodology of the XFVM suggested by Deb and Jenny [65]. In
this study, the "enhanced" nomenclature used in the sEFVM was chosen instead of
"extended" in the XFVM only to substantiate the difference of the FVM approach to
the extended finite element method known as XFEM [63].

Parts of this chapter have been published in the Journal of Computational Physics (2022) [99].

29
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The finite volume method (FVM) is applied on staggered structured grids for
both flow and mechanics. In this approach, the equations for mechanics and flow
(as described in Section 2.1) are integrated over corresponding control volumes for
mechanics (Ωu) and flow (Ωp ) shown in Figure 3.1.

S, Pf

U1

U3

U2

U4

Pm3

U

Ωu

Ωp

Pm1 Pm2

Pm4

Ωf
Ui,j

Ui-1,j-1

Ui-1,j+1

Ui-1,j Ui-1,j+1

Ui,j+1Ui,j-1

Ui+1,j-1 Ui+1,j

A2

A3A4

A8A7

A1

A5

A6

Figure 3.1.: Control volumes and numbering scheme for displacement and matrix
pressure (top) and integration surfaces for mechanical control volume
(bottom).

For flow inside a faulted poroelastic rock matrix, Equation 2.1 is integrated over
the control volume for flow inside the matrix (Ωp ) as

b
∫
ÇΩp

Çu⃗

Çt
· n⃗ dS +

∫
Ωp

1

M

Çpm

Çt
dV −

∫
ÇΩp

km

µ
·∇pm · n⃗ dS +

∫
Ωp

Ψm→ f dV =
∫
Ωp

Qm dV.

(3.1)

Faults are represented with a lower dimension than the matrix grid. Slip (s) and
fault pressure (p f ) unknowns are located on the embedded fault. Clearly, the mesh
for the reservoir and faults and fractures are completely independent. For flow
inside the fault, Equation 2.2 is integrated over the displacement control volume of
the fault, i.e. Ω f , as

∫
Ω f

ÇE f

Çt
dS −

∫
ÇΩ f

ak f

µ
·∇p f · n⃗ dl =

∫
Ω f

Ψ f →m dS +
∫
Ω f

Q f dS. (3.2)

In these equations, the net flux leaving the matrix to the fracture/fault domain is
identified by Ψm→ f [59], which is defined as

Ψm→ f = η
km

µ

p f −pm

V
. (3.3)
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Similarly, Ψ f →m indicates the flux leaving fracture/fault to matrix, i.e.,

Ψ f →m = ηkm

µ

pm −p f

A
. (3.4)

Here, V and A are volume of matrix element and area of the overlapping fault cell.
Moreover, η is the connectivity index between matrix and fault/fracture. For matrix
cell (i , j ) and fracture element k, it is defined as

ηi j ,k = Ai j ,k

〈d〉i j ,k
, (3.5)

where Ai j ,k is the area fraction of the fracture element inside the matrix cell and
〈d〉i j ,k is the average distance of a point inside the cell to the fracture segment.
More details can be found in the literature [59, 71].

For mechanics, Equation 2.4 is integrated over control volume Ωu as

∫
Ωu

∇· (C̃ : ∇s u⃗ −bpĨ ) dV =
∫
Ωu

f⃗ dV. (3.6)

According to the divergence theorem [107], this integral is restated as

∫
ÇΩu

(C̃ : ∇s u⃗) ·m⃗Ωu dS −b
(∫

ÇΩu

p dS
)

Ĩ =
∫
Ωu

f⃗ dV , (3.7)

where, ÇΩu is the boundary of the displacement control volume, which consists of
8 segments for each cell named A1 to A8 as shown in Figure 3.1.

The effective stress tensor is defined as

σ̃=
(
σxx σx y

σy x σy y

)
, (3.8)

and by incorporating this definition into Equation 3.7 it is found that

∫
ÇΩu

(σxx −bp) d y +
∫
ÇΩu

σx y d x +
∫
Ωu

fx dV = 0, (3.9a)∫
ÇΩu

(σy y −bp) d x +
∫
ÇΩu

σy x d y +
∫
Ωu

fy dV = 0. (3.9b)

for structured grids.

Using linear elasticity theory based on the first (λ) and second (G) Lame
parameters, components of σ̃ are
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σxx = (λ+2G)
Çux

Çx
+λÇuy

Çy
, (3.10a)

σy y = (λ+2G)
Çuy

Çy
+λÇux

Çx
, (3.10b)

σx y = σy x = G

(
Çux

Çy
+ Çuy

Çx

)
. (3.10c)

The elasticity parameters (λ) and (G) are assigned to mechanical control volumes
(i.e. Ωu). They can constitute a heterogeneous map over the domain.

If Equation 3.10 is placed in Equation 3.9, the momentum balance reads

∫
dΩu

(
(λ+2G)

Çux

Çx
+λÇuy

Çy
−bpm

)
d y +

∫
dΩu

G

(
Çux

Çy
+ Çuy

Çx

)
d x = −

∫
Ωu

fx dV , (3.11)∫
dΩu

(
(λ+2G)

Çuy

Çy
+λÇux

Çx
−bpm

)
d x +

∫
dΩu

G

(
Çux

Çy
+ Çuy

Çx

)
d y = −

∫
Ωu

fy dV. (3.12)

These equations can be quantified based on the integrals of derivatives of
displacement.

The displacement field is discontinuous when slip occurs. To capture this
discontinuity it is suggested to append the regular, continuous part of displacement
with a jump [108]. Based on this approach the appended displacement field is

u⃗ ≈
4∑

i=1
Ni u⃗i +

ns∑
i=1

si Wi t⃗i , (3.13)

where s is slip. Ni are bi-linear FVM basis functions that interpolate displacement
at local coordinates of (x, y) inside a block of dimensions ∆x by ∆y . These are

N1(x, y) =
(
1− x

∆x

)(
1− y

∆y

)
, (3.14a)

N2(x, y) =
( x

∆x

)(
1− y

∆y

)
, (3.14b)

N3(x, y) =
( x

∆x

)(
y

∆y

)
, (3.14c)

N4(x, y) =
(
1− x

∆x

)(
y

∆y

)
. (3.14d)

The numbering from 1 to 4 refers to corners of a square grid counted
counter-clockwise beginning from the bottom-left as shown in Figure 3.1 for
displacements.

For cells intersected by faults, the latter part of Equation 3.13 is included.
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This term consists of tangential slip (s), directional component of the unit tangent
vector to the fault (⃗t ), and function W defined as

W (x, y) =
4∑

i=1
Ni (x, y)

[
H

(
f
(
x , y

))−H
(

f
(
xi , yi

))]
, (3.15)

where H is a modified Heaviside function defined as

H(ζ) =
{ −1 ζ≤ 0

+1 ζ> 0
. (3.16)

In Equation 3.15, f (x, y) is the signed distance from the fault. Depending on which
side of the fault a point is located, it will be positive or negative. The Heaviside
value of f (x, y) will be +1 or -1. This introduces a discontinuity into the model
which is used to calculate the tangential slip. It is noted that the current framework
allows for definition of a single fault node per matrix grid cell.

Figure 3.2 shows a plot of the FVM basis functions and W (x, y) over a unit square
grid. This image shows that the displacement is linearly interpolated inside each
grid cell. In the case of a faulted grid, there is a jump at the location of the fault.

Figure 3.2.: Illustration of basis functions and the W function used in the EFVM.

The chosen form for Equation 3.13 gives the EFVM advantages. First, the
simplicity of the bi-linear basis functions allows for analytical determination of the
integrals in Equation 3.12. Here, the derivatives of the displacement are calculated
analytically, and then integrated over the control volume surfaces of the structured
grid considered in Figure 3.1.

One example of analytical derivation of the terms in Equation 3.12 is provided
here. The integral in this equation contains derivatives of displacement which are
found analytically based on definitions given in Equation 3.13 as follows
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Çux

Çy
= ÇN1(x, y)

Çy
ux,1 + ÇN2(x, y)

Çy
ux,2 + ÇN3(x, y)

Çy
ux,3 + ÇN4(x, y)

Çy
ux,4 + ÇW (x, y)

Çy
stx .

(3.17)
The numbering scheme in Equation 3.17 follows that in Figure 3.1.
Next, derivatives in Equation 3.17 are calculated. One example for a derivative of a

basis function is shown here as follows

ÇN1(x, y)

Çy
= (

−1

∆y
)(1− x

∆x
), (3.18)

Another example for the derivative of the W function is

ÇW (x, y)

Çx
= ÇN1(x, y)

Çx

[
H

(
f
(
x , y

))−H
(

f
(
x1, y1

))]+
ÇN2(x, y)

Çx

[
H

(
f
(
x , y

))−H
(

f
(
x2, y2

))]+
ÇN3(x, y)

Çx

[
H

(
f
(
x , y

))−H
(

f
(
x3, y3

))]+
ÇN4(x, y)

Çx

[
H

(
f
(
x , y

))−H
(

f
(
x4, y4

))]
, (3.19)

where the values of
[
H

(
f
(
x , y

))−H
(

f
(
xi , y j

))]
are found numerically based on

the local coordinates of corner points (xi and yi ) at any location x and y . For each
grid cell, this location is the coordinate of the fault node. Other terms in Equation
3.12 are similarly found.

Next, the integral in Equation 3.12 is determined. This integral is calculated
analytically at boundary segments A1 to A8 shown in Figure 3.1. The range of

integrals are from −∆x
2 to ∆x

2 and −∆y
2 to ∆y

2 for x and y , respectively. One example
is provided for an integral over section A1 as

∫
A1

Çux

Çy
d x = [(

−ux,1

8
− −3ux,2

8
+ 3ux,3

8
+ ux,4

8
)+ (

−H1

8
− −3H2

8
+ 3H3

8
+ 1H4

8
)stx ]

∆x

∆y
.

(3.20)
Other integrals are obtained similarly. The multipliers for u1 to u4 are used to the

coefficients for displacement.
For the multipliers of pressure in the momentum balance equation, the following

term from Equation 3.12 is integrated as∫
ÇΩu

−bpmd y = −b∆y

2
((pm4 +pm1 )− (pm3 +pm2 )). (3.21)

The numbering scheme is shown in Figure 3.1. The momentum balance equation
is not assumed to be affected by fault pressure, multipliers of fault pressure are zero.

An advantage of the EFVM is that the total displacement function of Equation 3.13
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includes the slip. The slip is calculated directly as an independent variable at the
fault location and is not determined as a post-processed estimate. Furthermore,
the EFVM can be used with embedded fracture/fault models for flow with the least
amount of complexity.

Next, the friction law (Equation 2.6) is considered for the fault. Based on the τmax

obtained from friction law, the following is implemented based on the local shear
stress for node i along the fault j (i.e. τi , j ):

τi , j =
{
τi , j τi , j < τmax

i , j

τmax
i , j τi , j ≥ τmax

i , j
. (3.22)

In Equation 3.22, the shear stress (τ) is compared to τmax , which depends on the
normal stress (σn). These stresses are found by projection of the effective stress
tensor onto the fault. This is done via defining the traction vector T⃗r as

T⃗r = σ̃ · n⃗. (3.23)

Here, n⃗ = nx i⃗ +ny j⃗ is the unit normal vector to the fault. Then, the normal and
tangential stress components are

σn = T⃗r · n⃗, (3.24a)

τ= T⃗r · t⃗ . (3.24b)

Here, t⃗ is the unit tangential vector to the fault. Given that this vector is normal to
n⃗, it has components t⃗ = ny i⃗ −nx j⃗ . It is noted that the vector form for these stresses
is used to represent the vector of scalar values of normal and tangential stresses
along the nodes of the fault.

Equation 3.24 can be used to express the stresses at the fault location as

σn = (λ+2Gn2
x )
Çux

Çx
+ (λ+2Gn2

y )
Çuy

Çy
+2Gnx ny (

Çux

Çy
+ Çuy

Çx
), (3.25a)

τ = 2Gnx ny
Çux

Çx
−2Gnx ny

Çuy

Çy
+G(n2

y −n2
x )
Çuy

Çx
+G(n2

y −n2
x )
Çux

Çy
. (3.25b)

3.1.2. IMPLEMENTATION OF THE SEFVM
The sEFVM differs from XFVM [65] in two key implementation aspects. First, the
XFVM finds the solution to the pressure-mechanics system with sequential coupling,
while the sEFVM solves for a fully-coupled system. Furthermore, a smoothing
procedure is included in the sEFVM to assist with oscillatory slip profiles that arise
in the embedded method due to misalignment of the embedded faults with the
underlying grid. These points are clarified further in this chapter.
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In sEFVM, the momentum balance equation for the matrix, i.e. Equation 3.12,
friction law for the fault, i.e. Equation 3.25, mass balance equation for the matrix, i.e.
Equation 3.1, and mass balance equation for the flow-conductive fault, i.e. Equation
3.2, are solved together fully-implicitly and fully-coupled for the faulted poroelastic
system, i.e., 

Juu Jus Jupm Jup f

Jsu Jss Jspm Jsp f

Jpm u Jpm s Jpm pm Jpm p f

Jp f u Jp f s Jp f pm Jp f p f

 ·


u
s

pm

p f

 =


fu

cs

Qpm

Qp f

 . (3.26)

The Jacobian matrix entries are identified by Ji , j , ∀{i , j } ∈ {u, s, pm , p f }. Also note
that the slip nodes at which the most-updated estimate of friction is equal or greater
than the maximum tolerable friction are included in this system. All other slip nodes,
i.e., belonging to stick condition, are excluded in the linear system of Eq. (3.26).

The procedure of the sEFVM for each time step is shown in Algorithm 1. In
the first time step, the system of equations is solved using a continuum model
(assuming there are no slipping nodes). This predictor-step solution is used as a
first estimate for calculating stresses at the faults. The shear stresses along the
faults, i.e. τ, are then obtained and compared to the maximum tolerable threshold
of τmax , as in Equation 2.6, for each fault. New degrees of freedom, i.e. n⃗s , are
then appended to the system of Eq. (3.26) only when, and where, the slip criterion
is met (i.e. nodes which satisfy τ> τmax ). The new system is solved, stresses are
recalculated, slip-stick conditions are re-identified and the procedure is repeated
until convergence is reached.

Algorithm 1: Procedure of the sEFVM at each time step

Result: [ux ,uy , pm , p f , s′]
1 Solve poroelastic continuum model to find [ux ,uy , pm , p f ]1 ; // Initialize
2 Calculate stresses τ⃗1 and σ⃗1

n ;
3 Determine frictional threshold τ⃗max,1 using Equation 2.6;
4 Find slipping nodes n⃗1

s where τ⃗1 ≥ τ⃗max,1 ;
5 Set ξ= 1 and κ= 1;
6 while ξ ̸= 0 do // Begin iterative loop
7 Append system of equations with n⃗κ

s unknowns for fault slip;
8 Solve poroelastic faulted model to find [ux ,uy , pm , p f , s]κ+1 ;
9 Calculate stresses τ⃗κ+1 and σ⃗κ+1

n ;

10 Find smooth stress profiles τ⃗′
κ+1

and σ⃗′κ+1
n ; // Smoothing of stress

11 Determine frictional threshold τ⃗max,κ+1 using Equation 2.6;

12 Find new slipping nodes n⃗κ+1
s where τ⃗′

κ+1 ≥ τ⃗max,κ+1 ;
13 Update ξ, i.e., count of nodes for which stick-slip condition is changed ;
14 Assign (κ+1) → κ ;

15 Find smooth slip profile s′ ; // Smoothing of slip
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As numerical examples will show in the results of Section 4.1, oscillations can
arise in the fault stress (and slip) profiles of the EFVM. These oscillations are an
anticipated consequence of the embedded incorporation of faults in the EFVM,
when faults are misaligned with the matrix grid. An oscillatory stress profile will
cause problems because it is used for determining stick-slip conditions. When an
oscillatory stress profile is used, the slip-stick condition can fluctuate for a node,
preventing the convergence to a consistent slip condition.

To resolve this challenge, a smoothing procedure is developed in this study. During
iterations, the smoothing domain covers the stress profile for each fault. The fault
stress profile has no overlap or gaps. So, a smooth profile is fitted to the original
curve. The method for deriving this fit can vary.

The smoothed stress is used instead of the oscillatory curve, to find n⃗s again. If the
estimates are different, the system is solved with new degrees of freedom for fault
slip defined by the updated n⃗s vector. This is repeated until n⃗s remains unchanged.
At that point, the procedure moves forward in time. For problems where faults are
close to slip, neglecting this iterative step can result in incorrect results (as shown in
later examples). For cases far from such conditions (e.g. the fault will clearly slip or
remain stationary), the initial assumption is usually correct. For most problems, a
single iteration is sufficient, thus the added computational load for the studied cases
is found to be insignificant. The small number of iterations is believed to be due to
the fact that there is little nonlinearity in the simplified physics of the studied model.

The slip profile may also demonstrate oscillations. For this reason, it is smoothed
at the last time-step for improved interpretation.
In this study when not defined otherwise, the error ϵ is defined as

ϵ=
∥∥xr e f −x

∥∥
∞∥∥∥xh

r e f

∥∥∥∞ , (3.27)

where xr e f is the reference solution and x is the approximate solution.
Flow simulations are time-dependent. In this study, following the literature [109],

dimensionless time tD is obtained as tD = t/tc , where the characteristic time scale tc

is defined as

tc = µ φ L2

k̄ ∆p
. (3.28)

Here, φ is rock porosity, k̄ is average permeability, L is the characteristic length of
the domain and ∆p is the estimation of the pressure difference across the domain,
e.g. the difference between injection and production pressures.

3.2. SEMI-ANALYTICAL METHOD

3.2.1. DEPLETION-INDUCED STRESSES

In the context of the semi-analytical and hybrid methods of this study, an approach
described by Jansen et. al. (2019) [80] is adapted for calculating depletion-induced
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stresses over faults. In this section, the adapted method is briefly reviewed.
Jansen et. al. (2019) use Green’s functions (gi ) to give the displacement at a point

(x, y, z) in direction i ∈ x, y, z as a result of a unit force at point (ζ,ξ,ψ) in direction
j ∈ x, y, z as [80]

ui (x, y) = C

2

Ï
Ω

gi (x, y,ζ,ξ) dζ dξ, (3.29)

where C is

C = (1−2ν)bp

2π(1−ν)G
(3.30)

and gi in Equation 3.29 are the Green functions found as

gx (x, y,ζ,ξ) = x−ζ
R2 (3.31a)

g y (x, y,ζ,ξ) = y−ξ
R2 , (3.31b)

with R defined as

R =
√

(x −ζ)2 + (y −ξ)2. (3.32)

Strain is found according to

ϵi j = 1

2

(
Çui

Çx j
+ Çu j

Çxi

)
, (3.33)

which gives

ϵxx =C
Ç

Çx

Ï
Ω

gx (x, y,ζ,ξ)dζdξ, (3.34a)

ϵy y =C
Ç

Çy

Ï
Ω

g y (x, y,ζ,ξ)dζdξ, (3.34b)

ϵx y = C

2

(
Ç

Çx

Ï
g y (x, y,ζ,ξ)dζdξ+ Ç

Çy

Ï
gx (x, y,ζ,ξ)dζdξ

)
. (3.34c)

Using Hook’s law, stresses are written based on strain as

σxx = (λ+2G)ϵxx +λϵy y −bp δΩ, (3.35a)

σy y =λϵxx + (λ+2G)ϵy y −bp δΩ, (3.35b)

σx y = 2Gϵx y . (3.35c)
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Combining equations 3.29 to 3.35, the general formula for total stress outside the
reservoir is

σi j (x, y) =C
∫ ∫

Ω
gi j (x, y,ζ,ξ)dΩ. (3.36)

A general formula for total stresses both inside and outside the inclusion is [80]

σi j (x, y) =C

[∫ ∫
Ω

gi j (x, y,ζ,ξ)dΩ,−2πδΩ

]
, (3.37)

where δΩ has a value of 1 inside the inclusion and 0 outside of it. This means that
only for cells inside the reservoir, a value of 2π is deducted. The definitions for the
Green’s functions (gxx , g y y and gx y ) are available in [80] and will not be repeated
here.

Equation 3.37 can be used for finding the Coulomb stress for a vertical frictionless
fault (i.e. θ = 900 and µ f = 0). For a frictionless fault, the Coulomb stress is equivalent
to the tangential stress, and for a vertical fault, the tangential stress is σx y . With
these assumptions and a geometry similar to Figure 2.4, the Coulomb stress is [95]

ΣC (y) =σx y = C

2
ln

(y −h1)2(y +h1)2

(y −h2)2(y +h2)2 , (3.38)

where C is defined in Equation 3.30.

3.2.2. FAULT SLIP

The semi-analytical and hybrid methods rely on the work of Jansen and Meulenbroek
(2022) for finding a value for the slip profile analytically [95]. These authors use
dislocation theory to quantify a slip profile that eliminates the positive Coulomb
stress over the fault. A brief description of their procedure is provided in this section.

Jansen and Meulenbroek (2022) define an edge dislocation (δ) as a shear
displacement along a semi-infinite slip line. They show that the shear stress from
infinitesimal edge dislocations (dδ) for plain-strain conditions is [95]

τ̂(s) = D
∫ s+

s−

∇δ(ξ)

ξ− s
dξ, (3.39)

where s is slip and D is defined as

D = G

2π(1−ν)
, (3.40)

and ∇δ(s) is the slip gradient found as

∇δ(ξ) = Çδ(s)

Çs
|s=ξ. (3.41)

The value of ∇δ(s) is calculated based on mathematical inversion of Equation 3.39
as outlined in [80]. Following this inversion, slip is
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δ(s) =
∫ s

s−
∇δ(ξ)dξ. (3.42)

According to this procedure, the slip profile for the case of a vertical, frictionless
fault with the geometry of Figure 2.4 is [95]

δ(y) = C

D



0 if y ≤ h2

−(y +h2) if −h2 ≤ y ≤ h1

(h1 −h2) if −h1 ≤ y ≤ h1

(y −h2) if h1 ≤ y ≤ h2

0 if h2 ≤ y,

where D and C were defined by Equations 3.40 and 3.30, respectively.
As mentioned in Section 2.7, where there are two slip patches along a fault,

they are expected to influence each other [98]. However, in the analytical method
discussed here, the interactions between slip patches is ignored. According to the
findings of Jansen and Meulenbroek (2022), the interaction between slip patches
affects the results when the slip patches grow closer to each other [95]. In ignoring
this effect, it should be expected that the results of the semi-analytical and hybrid
solutions of this study will not be precisely accurate for slip patches that have grown
large enough in the vicinity of each other.

3.2.3. MAGNITUDE OF THE SEISMIC MOMENT

The seismic moment is a parameters used to quantify the magnitude of an
earthquake. The magnitude of the seismic moment is important in the study of
induced seismicity, because it provides an estimation of the energy released during
seismic events [110].

The idea to use the seismic moment to measure the size of an earthquake is based
on the equivalency of displacement (i.e. slip along a fault) and a double couple.
In seismology, a "double couple" is characterized by two opposing forces acting in
opposite directions along a fault plane. One force is a normal faulting motion,
pushing rocks apart vertically, and the other is a dip-slip motion, causing horizontal
motion along the fault. These two motions combined create the observed fault slip
[111].

For the case of a linear slip-weakening fault, Jansen and Meulenbroek (2022)
presented a relationship for determining the magnitude of the seismic moment (Ms )
as [95]

Ms =G

(∫ y2,ps

y1,ps

δps (y)d y +
∫ y4,ps

y3,ps

δps (y)d y −
∫ y∗

2

y∗
1

δ∗(y)d y −
∫ y∗

4

y∗
3

δ∗(y)d y

)
, (3.43)

where G is the shear modulus and δ∗ is the slip patch size at nucleation pressure.
If the reservoir has the geometry of Figure 2.4, there will be two slip patches forming.
This is explained in Section 2.7.
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There will be a slip patch at the top and another at the bottom offset point.
The variables y∗

1 to y∗
4 give the extension of these patches. The bottom patch will

extend from y∗
1 to y∗

2 and the top patch from y∗
3 to y∗

4 . The parameter δps is the
post-nucleation seismic slip profile. This profile is obtained by assuming the fault
seismic slip profile will continue to slip according to the dynamic friction coefficient
(i.e. µd

f ).

It is important to note that when using the dynamic friction coefficient at
nucleation pressure, there may be two slip patches, or a single merged slip patch. If
there are two patches, similarly as explained above, the first will extend from y1,ps to
y2,ps and the second from y3,ps to y4,ps . If there is just one merged patch, the two
integrals of Equation 3.43 become one. In the case of one large merged slip patch,
the seismic slip profile is then integrated from start to end (i.e. ytop,ps to ybot ,ps )
and included in the equation.

3.2.4. COMPUTATIONAL DOMAIN AND IMPLEMENTATION OF THE

SEMI-ANALYTICAL METHOD

In Section 2 the formulas for analytical determination of initial in-situ stress
were presented. In Section 3.2.1, the analytical expressions for calculation of
depletion-induced stresses were presented. These equations show that stresses
depend on the location of the fault and the cells undergoing pore pressure change.
Depletion-induced stresses were determined by calculating Green function integrals
over the cells of the domain undergoing pressure change.

For this purpose, the reservoir is subdivided into geometrical entities for the
integrals to be calculated. The integrals are added back together based on
the principle of superposition, to obtain the total value for the domain. The
computational domain and procedure of the semi-analytical method are described
in this section.

COMPUTATIONAL DOMAIN AND DERIVATIONS

In the study by Jansen et. al. (2019) [80], reservoirs with and without offsets are
considered. The configuration of the reservoir where there is an offset is shown in
Figure 2.4.

The computational domain they assumed is created by sub-dividing the depletion
zone into four large domains consisting of two large triangles, and two large
rectangles.

Later in 2023, Cornelissen and Jansen used a finer mesh consisting of many
triangles and many rectangles [81]. This attempt is made to allow for the
incorporation of the effect of non-uniform pressure fields in the depleting reservoir.
The suggested grid by Cornelissen and Jansen (2023) conformed to the fault. They
used same-size rectangles and triangles. Both studies in 2019 and 2023 focused on
single-fault systems.

In the semi-analytical approach proposed in this study, the computational grid
is more flexible. The flexibility is in allowing for the consideration of multiple
faults and non-uniform geometry. The embedded gridding of the sEFVM, as shown
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in Figure 3.1 is used for the semi-analytical, and later the hybrid method. The
analytical expressions of Section 3.2.1 are solved over the refined grid of the sEFVM.

The computational gridding method used by Jansen et. al. (2019) [80], Cornelissen
and Jansen (2023) [81] and the one of this study, are shown in Figure 3.3.

Figure 3.3.: The computational grid used by Jansen et. al. (2019) [80] (top left),
Cornelissen and Jansen (2023) [81] (top right) and in this study (bottom).

Jansen et. al. (2019) provided expressions for the Green function integrals
over triangular, rectangular (and trapezoidal) domains [80]. They defined these
geometrical entities as shown in Figure 3.4.

Based on the location parameters of Figure 3.4, they defined Green function
integrals as [80]

Grec
i j =

∫ s

r

∫ q

p
gi j (x, y,ζ,ξ)dζdξ, (3.44a)

G tri
i j =

∫ s

r

∫ p

ξ
tan(θ)

gi j (x, y,ζ,ξ)dζdξ, (3.44b)

where Grec
i j is the Green function integral for rectangles and G tri

i j the Green function

integral for triangles.
It can be seen from Equation 3.44 that the orientation of the rectangle does not

influence the Green function integral. Only the coordinates of the rectangle vertices
are important. However, for the case of triangles (and trapezoids), the orientation
influences the integral bounds, and therefore require attention. This can be seen in
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Figure 3.4.: Illustration of the shapes for integration of the Green functions in the
hybrid method for the rectangle (left) and normal triangle (right) [80].

the integral bounds of Equation 3.44 for G tri
i j .

The semi-analytical method used here calculates the integrals over the triangles
and rectangles created by the more accurate geometry of the reservoir and the
fault(s). This is explained for the case of a one-fault model.

The computational grid of the sEFVM is Cartesian and embedded. This implies
that the fault passes through the grid independently of its alignment with the matrix
mesh. Therefore, the faulted reservoir can be represented with a series of triangles,
rectangles and trapezoids of various sizes and orientations. Trapezoids can be
divided up into triangles and rectangles. Therefore, using analytical expressions for
rectangles and triangles would suffice in capturing the computational domain.

This gives the sEFVM an advantage in being used for the development of a
semi-analytical method. Various configurations that arise in the embedded mesh of
the sEFVM are shown in Figure 3.5.

Figure 3.5.: Illustration of the possible configurations of the fault and the reservoir
in the 2D computational domain used for the semi-analytical method.

As can be seen in Figure 3.5, there are four types of triangles. There can also be
rectangles, and or a combination of a rectangle and a triangle in each cell.
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The integration area used in Equation 3.44 depends on which side of the fault
depletes. Clearly, only the depletion zone affects the depletion-induced stresses.
Various forms of the triangle are shown in Figure 3.6. The triangles are defined
as normal, up-side down, and mirrored version of both (i.e. mirrored normal and
mirrored upside-down).

The "normal" triangle is the form shown in Figure 3.4. Other triangle orientations
are shown in Figure 3.6.

y

x
x0 x1

y0

y1

(a) upside-down

y

x
x0 x1

y0

y1

(b) mirrored normal

y

x
x0 x1

y0

y1

(c) mirrored upside-down

Figure 3.6.: Triangles of other orientations (than Figure 3.4) in the semi-analytical
method.

The formulations for the normal triangle (Figure 3.6) are given by [80] as

Gxx =
∫ y1

y0

∫ x1

ξ
tanθ

gxx dζdξ, (3.45a)

Gy y =
∫ x1

x0

∫ ζ tanθ

y0

g y y d y dζ. (3.45b)

Here, x0 = min
(
o, p

)
, x1 = max

(
o, p

)
, y0 = min(r, s), and y1 = max(r, s). According to

this definition, the locations of points (o,r ) and (p, s) are equivalent to (x0, y0) and
(x1, y1), respectively. The definition for o, p, r and s can be found in Figure 3.4.

For the upside-down triangle, i.e. Figure 3.6a, the Green function integrals are
re-written as

Gxx =
∫ s

r

∫ ξ
tanθ

x0

gxx dζdξ=−
∫ y1

y0

∫ x0

ξ
tanθ

gxx dζdξ=
∫ y0

y1

∫ x0

ξ
tanθ

gxx dζdξ, (3.46a)

Gy y =
∫ p

o

∫ y1

ζ tanθ
g y y d y dζ=−

∫ x1

x0

∫ ζ tanθ

y1

g y y d y dζ=
∫ x0

x1

∫ ζ tanθ

y1

g y y d y dζ. (3.46b)

Here, x0 = min
(
o, p

)
, x1 = max

(
o, p

)
, y0 = min(r, s) and y1 = max(r, s). With

this definition, the points (o,r ) and (p, s) are equivalent to (x1, y1) and (x0, y0),
respectively.
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For the mirrored normal triangle, i.e. Figure 3.6b, the Green integrals become

Gxx =−
∫ y1

y0

∫ x0

ξ
tanθ

gxx dζdξ, (3.47a)

Gy y =−
∫ x0

x1

∫ ζ tanθ

y0

g y y d y dζ, (3.47b)

where x0 = min
(
o, p

)
, x1 = max

(
o, p

)
, y0 = min(r, s) and y1 = max(r, s). Based on

this definition, the points (o,r ) and (p, s) are equivalent to (x1, y0) and (x0, y1),
respectively.

Lastly, for the mirrored normal triangle, i.e. Figure 3.6c, the Green function
integrals are

Gxx =−
∫ y0

y1

∫ x1

ξ
tanθ

gxx dζdξ, (3.48a)

Gy y =−
∫ x1

x0

∫ ζ tanθ

y1

g y y d y dζ, (3.48b)

where x0 = min
(
o, p

)
, x1 = max

(
o, p

)
, y0 = min(r, s) and y1 = max(r, s). With

this definition, the points (o,r ) and (p, s) are equivalent to (x0, y1) and (x1, y0),
respectively.

Using the above changes in how o, p, r and s are defined, the equations in [80]
can be used for calculating the Green function integrals over triangular segments of
all orientations.

Figure 3.5 shows possible segments that can arise in a Cartesian grid system. If a
depleting cell is partly in the reservoir region, then the following can occur

• Cell is not depleted: where there is no pressure depletion (i.e. ∆p = 0) the cell
is not included in the calculation performed analytically over the fault.

• Cell is entirely depleted: the sEFVM mesh is Cartesian. Therefore if the grid
cell is entirely in the depleted region, the rectangular formulas for gi j are used.

• Triangular depleted region is inside a cell: if only a triangular corner of
a cell undergoes depletion, gi j are calculated for the triangle based on the
orientations shown in Figure 3.6.

• The entire cell, excluding a triangular corner, is depleted: This setup is
also shown in Figure 3.5. For this configuration, gi j ’s are determined by
including the entire cell as a rectangle (using the gi j for rectangle). Then, the
non-depleting triangular segment is taken out (using the gi j for the triangle as
described in the previous bullet).

• Trapezoidal depleted region is inside a cell: If the depleted and non-depleted
zones divide the cell from top to bottom, or left to right, two trapezoids form
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on either side of the fault. For such setups, the trapezoid on the depleted side
is used in the analytical method. As a trapezoid can be considered the sum
of a rectangle and triangle, for this configuration, gi j are calculated for both
these shapes and added together to obtain the total gi j for that cell.

The above calculations depend on the location of the integration points (i.e. o,
p, r and s). These points depend on the location of the sEFVM mesh nodes, the
geometry of the depleted zone (e.g. how the reservoir geology is defined and the
offset) and the orientation of the fault (e.g. fault dip and and where the fault nodes
are placed along the fault). In the semi-analytical method, these calculations are
carried over from the sEFVM.

IMPLEMENTATION OF THE SEMI-ANALYTICAL METHOD

The procedure of the semi-analytical method for each time step is shown in
Algorithm 2.

In the first step, in-situ stresses are initialized. This gives the initial deformation
(ux and uy ) field which will be used as bounds for the second simulation stage,
where depletion is modeled. Initial pressure distribution is also calculated.

In the second step, the system is depleted in steps, until reaching a chosen final
depletion pressure (i.e. p f i nal ). In every depletion step, the Coulomb stress (σc )
profiles are analytically calculated.

The Coulomb stress profile is used for the evaluation of slip. For any fault node
where σc ≤ 0, there is no slip. Otherwise, σc is used for calculating the slip according
to the analytical solution which would reset σc to zero (as explained in Chapter 3).

Algorithm 3 is defined for the case of having a non-constant friction coefficient.
When the friction coefficient depends on slip or slip-rate, both the slip and friction
coefficient are found in an iterative manner. This means that the slip is calculated
first and then it is used to find the friction coefficient. The new friction coefficient is
used again to re-estimate slip and so on. Therefore, when a slip-dependent or slip
rate-dependent friction law is used, the friction coefficient is iteratively estimated
until the changes in the estimated friction coefficient reach a desired accuracy (e.g.
∆µ f ≤ 1e −2).

Algorithm 4 is used to detect nucleation. In this algorithm, the slip patch sizes
are monitored. For each pressure step, the effective normal stress profiles over
the slipping region are used for calculating the analytical Uenishi and Rice (2003)
nucleation critical slip patch size [96]. When the size of the simulated slip patch
size become equal or greater than the Uenishi and Rice critical value, the fault is
assumed to nucleate. This criterion is used for the identification of the nucleation
pressure.
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Algorithm 2: Procedure of the semi-analytical method

Result: [σn ,τ, s,µ f ]
1 Initialize [ux ,uy , pm , p f ]i=0 according to Section 2.5.2. ;

2 Assume no slip: [s]i=0 = 0. ;

3 Set the initial friction coefficient: [µ f ]i=0. Assume no initial nucleation = 0. ;
4 Set i = 0 ; // Initialize
5 while p ≤ pmax and nucleation = 0 do
6 i = i +1 ;

7 Deplete: [p]i+1 = [p]i +∆p i according to Section 2.5.3;

8 Find [σc ]i according to 3.2.1 ; // Analytical depletion-induced stress
update

9 if 0 ≤ [σc ]i then
10 Calculate slip [s]i according to 3.2.2 ;
11 if slip-dependent friction law then
12 Run Algorithm 3 to find corrected [s]i and µi

f ;

13 Run Algorithm 4 to detect nucleation pressure.;
14 if nucleation detected then
15 nucleation = 1 ;

16 Calculate the magnitude of the seismic moment according to Equation 3.43.;

Algorithm 3: Iterative determination of the slip and friction coefficient in case
of a slip-dependent friction law

Result: [s,µ f ]
1 Initialize error: εs = 1;
2 set tolerance:εt = 1e −2;
3 Initialize while εs ≥ εt do
4 Calculate friction coefficient [µ f ]i based on the governing friction law

(Section B.0.3);

5 Set xr e f = [s]i ;

6 Calculate new slip x = [s]i according to Section 3.2.2.;

7 εs = |(xr e f −x)|2
|(xr e f )|2 ; // Iterations for friction coefficient
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Algorithm 4: Detection of the nucleation pressure using the Uenishi and Rice
(2003) method [96]

Result: [s,µ f ]
1 Find top slip patch size: y i ;
2 Extract the corresponding section of the effective normal stress profile that

pertains to y i ;
3 Calculate W (y, p) from Equation 2.35 ;

4 Calculate Wav(p) by integrating W (y, p) over y i ;

5 Calculate the critical length using Equation 2.33 as [y∗
U R ]i ;

6 if [y∗
U R ]i ≥ y i then

7 Report nucleation pressure of [pn](i )

Algorithm 2 runs until one of the following two outcomes occur:

• The depletion pressure is reached prior to reaching nucleation.

• Nucleation occurs. In this case the semi-analytical simulation ends. This
algorithm only captures aseismic fault slip and cannot simulate the system
further.

To visualize the procedure of the semi-analytical method, Algorithms 2, 3 and 4
are summarized in the flow-chart of Figure 3.7.

In order to simulated post-nucleation slip, the Hybrid method is developed. The
procedure of this method is described next.

3.3. HYBRID METHOD
In this section, the hybrid method is introduced for the simulation of aseismic and
seismic fault slip. This method builds up on the semi-analytical method by allowing
quasi-static simulation of fault slip in the post-nucleation phase.

In the hybrid method, the stresses affecting the fault(s) consist of the effect of
three factors. These are 1. the effect of initial stresses, 2. the effect of depletion.
3. the effect of seismic rupture of a fault on other faults (if present). In the
semi-analytical method, only the first two were considered. In the hybrid method,
the last effect is introduced.

The hybrid method is different from the semi-analytical method in that a new
procedure is followed after a fault nucleates. Assumptions of the hybrid method are:

• During depletion, at least one fault will reach nucleation pressure and nucleate
before reaching the final depletion pressure. Otherwise, the calculations of the
hybrid method are the same as the semi-analytical method.

• When the depletion pressure exceeds the nucleation pressure of a fault, that
fault will undergo seismic slip. This would create a post-seismic slip patch also
referred to as rupture. This is explained in Section 2.7.
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Figure 3.7.: A flow-chart outlining the procedure of the semi-
analytical method for each fault.
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• The size of the seismic rupture is determined assuming depletion would occur
with a dynamic friction coefficient for the fault.

• With increased depletion exceeding nucleation pressure, the post-seismic slip
patch will grow.

• The post-seismic slip patch will affect the local stress map, creating a new
perturbed stress state.

• The new perturbed stress field is assumed to not affect the fault itself. It is
assumed that such effects are already considered in the analytical solution.

• The new perturbed stress field can affect other faults, if other faults are located
close enough and the effects are large enough in terms of magnitude.

The procedure of the hybrid method is shown in Algorithm 5.

Algorithm 5: Procedure of the hybrid method

Result: [σn ,τ, s,µ f ]
1 Initialize [ux ,uy , pm , p f ]i=0 according to Section 2.5.2. ;

2 Assume no slip: [s]i=0 = 0. ;

3 Set initial friction coefficient: [µ f ]i=0. ;
4 Assume no initial nucleation = 0. ;
5 Set i = 0 ; // Initialize
6 while p ≤ pmax do
7 i = i +1 ;

8 Deplete: [p]i+1 = [p]i +∆p i according to Section 2.5.3;

9 Find [σc ]i according to Section 3.2.1 ; // Analytical depletion-induced
stress update

10 if nucleation = 1 then
11 Run Algorithm 6 to update initial stress field.

12 if 0 ≤ [σc ]i then
13 Calculate slip [s]i according to 3.2.2 ;
14 if slip-dependent friction law then
15 Run Algorithm 3 to find corrected [s]i and µi

f ;

16 Run Algorithm 4 to detect nucleation pressure.;
17 if nucleation detected then
18 nucleation = 1 ;

Algorithm 5 is similar to that for the semi-analytical solution (Algorithm 2).
However, it does not stop with the nucleation of the first fault. It continues to
simulate the system until reaching a desired depletion pressure.
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Algorithm 6 is used to update the stresses in the system as a result of dynamic
slip. It incorporates the effect of dynamic slip with the assistance of the sEFVM. The
algorithm is defined as follows:

Algorithm 6: Stress update following nucleation of a fault

Result: [s,µ f ]
1 Initialize nucleation pressure [pn]i ;

2 Assume µ f =µd
f at [pn]i Calculate rupture size [s∗]i according to Section 3.2.2 ;

3 Calculate the deformation of the matrix ∆Ux,y due to rupture using the sEFVM ;
4 Calculate incremental stresses due to rupture using the sEFVM; Update [σc ]

based on new incremental stresses ;

A visualization of the procedure of the hybrid method, is shown in the flow-chart
of Figure 3.8.
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Figure 3.8.: A flow-chart outlining the procedure of the hybrid
method for each fault.



4
RESULTS AND DISCUSSIONS

This chapter begins with results from the sEFVM. The examples provide a step-by-step
assessment of the method by comparing its solutions to well known test cases.

It is shown that for the cases with continuous shear stress profiles, the sEFVM can
accurately simulate stress and the slip profile. However, for cases with discontinuous
shear stress profiles, the sEFVM is limited in accuracy. Following this idea, the
results of the semi-analytical method are presented. The accuracy of this method
is benchmarked with analytical methods. The chapter includes a sensitivity study
over some of the most crucial parameters that influence induced seismicity in the
Groningen field.

In the last part of this chapter, the results of the hybrid method are presented.
The examples in this section demonstrate the capabilities of the hybrid method in
simulating post-nucleation rupture and fault-fault interactions in multi-fault setups
in a quasi-static fashion..

4.1. THE SEFVM TEST CASES
In this section numerical examples to demonstrate the consistency, monotonicity
and applicability of the sEFVM for non-faulted continuum media (i.e. the FVM),
and faulted domains are studied. For non-faulted media, the sEFVM reduces to the
FVM. For faulted domains, comparative studies are carried out to identify the key
strengths of the fully-implicit, fully-coupled and monotone sEFVM compared with
the sequentially-coupled, non-iterative and oscillatory EFVM.

4.1.1. CONSISTENCY AND ORDER OF ACCURACY VERIFICATION FOR PURE

MECHANICS IN NON-FAULTED/FRACTURED MEDIA

Analytical displacement fields (ux ,uy ) for a 2D homogeneous domain, taken from
the literature [66], are given as

Parts of this chapter have been published in the Journal of Computational Physics (2022) [99] and as
proceedings of the U.S. Rock Mechanics/Geomechanics Symposium [112].
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ux = 10−5 sin
(πx

L

)
sin

(πy

W

)
,

uy = 10−5 cos

(
π(L−x)

L

)
sin

(πy

W

)
,

(4.1)

where L and W are model length and width, both taken equal to 1 m here.
Moreover, λ and G are, respectively, 10 GPa and 2.5 GPa. Figure 4.1 shows a plot for
the displacement fields of Equation 4.1.

Figure 4.1.: A plot of the horizontal fields of Equation 4.1 over a 1×1 m2 domain.

Figure 4.2 illustrates the error of the solutions obtained by the FVM, i.e. ϵ, for
different mesh sizes ∆x. Note that ∆x = ∆y at all refinement levels. This test
confirms the consistency of the FVM implementation, in the absence of faults. The
order of accuracy is confirmed to be 2, consistent with the literature [66].



4.1. THE SEFVM TEST CASES

4

55

-5 -4 -3 -2 -1
ln( x)

-22

-20

-18

-16

-14

ln
(

)
u

x

u
y

2nd Order

Figure 4.2.: Second order accuracy of the FVM model.

4.1.2. BENCHMARK FOR POROMECHANICS SIMULATIONS FOR

NON-FAULTED MEDIA: TERZAGHI TEST CASE

In this test case, complementary to the previously-studied pure mechanics test case,
the sEFVM (which again reduces to the FVM in the absence of faults) is validated
for poromechanics deformation. A porous medium is compressed from the top and
constrained from movement in the normal direction on all other sides. Fluid is
allowed to drain from the top, while a no-flow sealing condition applies to all other
sides. Figure 4.3 shows an illustration of this test case, which is named after Terzaghi
[101].
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Figure 4.3.: Illustration of Terzaghi poromechanics test case.

An 1× 1 m2 porous medium is considered, for which E = 1e4 Pa, ν = 0.2,
km/µ f l = 1e −4 m2/Pa.sec, b = 1 and M = 1e100 are assigned. Moreover, F is 100 Pa
and the time-step size of ∆t = 0.001 sec is taken. The initial pressure in the system
is set to be 100 Pa. The computational grid consists of 100×100 cells.
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Figure 4.4 shows the pressure and displacement profiles only across the depth of
the domain, since there exists no change along the horizontal direction. Pressure
declines with time as fluid drains out from the top of the porous medium. The
vertical displacement is negative, indicating contraction of the compressed system.
The contraction increases with time. It is seen that the numerical and analytical
results closely replicate each other. More precisely, as an example, the errors of
the sEFVM (which again turns to the FVM in the absence of faults and fractures)
solution at simulation time 0.9 sec are ϵuy = 1e −3 for the vertical displacement and
ϵp = 1.6e −3 for pressure.
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Figure 4.4.: Pressure (left) and displacement (right) profiles for the Terzaghi test case
at times t1 to t6 with values 0, 0.15, 0.3, 0.45, 0.6, 0.75 and 0.9 sec,
respectively.

4.1.3. BENCHMARK FOR POROMECHANICS SIMULATIONS FOR

NON-FAULTED MEDIA: MANDEL TEST CASE

In this section the sEFVM, which will be reduced to the FVM due to the absence
of faults, is compared with the analytical solution to the Mandel test case. A
poroelastic sponge of length 2a and width 2b is assumed to be open to flow at both
its ends. This sponge is compressed from the top and from below with force F . The
analytical solutions for pressure and displacement distributions are given in [101].
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Due to its symmetric geometry, only a quarter of the domain needs to be modeled
as illustrated in Figure 4.5.

F
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b Outflow 

Figure 4.5.: Mandel problem illustration.

Model dimensions, computational grid resolution, and values of E , ν, km/µ, b and
M are all taken the same as in the Terzaghi test case. Moreover, F is 5 Pa and the
time-step size is ∆t = 0.1 sec. The initial pressure in the system is set to be 2.5 Pa.

Figure 4.6 shows the pressure profile along the horizontal center-line of the model
at different times. This image shows that the pressure drops as fluid outflows from
the right side. At smaller times, i.e. t1 = 5 sec, there is a small pressure buildup above
initial conditions near the center of the system. This occurs due to the contraction
of the drained edges [101]. Figure 4.6 also confirms that the solution of the FVM
numerical model is close to the analytical solution. More specifically, with the
chosen grid resolution and time step size, at t4 = 30 sec, the errors are ϵp = 6.1e −3
for pressure, ϵux = 3.6e −2 for displacement along the x axis, and ϵuy = 5e −3 for
displacement along the y axis.

4.1.4. MODELING OF PLANE STRAIN SUBSIDENCE IN A HETEROGENEOUS

DEPLETED GAS FIELD

The goal of this section is to compare the numerical FVM poroelastic model
with a purely-mechanical FVM model for modeling plane strain subsidence in a
heterogeneous setting. It is expected that the solution of the poroelastic model
asymptotically reaches the mechanical one at long times.

Surface subsidence is studied in a gas field in the Adriatic basin neighboring Italy.
The geometry of Figure 4.7 is conceptualized based on published data [113]. Two
methods were used for studying surface subsidence. In the first, the system is
modeled dynamically assuming flow inside the porous reservoir. This reservoir is
encapsulated by an elastic non-porous medium. In the second approach, the system
is entirely impermeable and elastic. For this setup, a force equivalent to the pressure
depletion of the dynamic model is applied to the outer boundaries of the assumed
reservoir at each time-step.
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Figure 4.6.: Pressure profiles for the Mandel test case at times t0 to t3 with values
0, 5, 15, 30 sec, respectively. The mesh resolution is 100×100 in this
example.
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Figure 4.7.: Illustration for modeling plane strain subsidence.

The reservoir is stationary (zero displacements) at all boundaries except for the
top free surface. The porous region has no-flow boundaries. The computational grid
consists of 50×150 cells, with a finer mesh vertically to capture the thin reservoir.
A single gas producer is considered for depletion. The mobility in the horizontal
direction is km,x /µ f l = 8e −10 m2/Pa.sec.
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The vertical to horizontal permeability is km,y /km,x = 0.1. Value of Poison ratio is
ν= 0.3 and b = 1. An empirical correlation is used [114] for the Young modulus (E)
in this field as given by .

E = (1−2ν)(1+ν)

(1−ν)cM
, (4.2)

where cM is the vertical compressibility in bar s−1 found as a function of depth (z,
in meters) according to [114] as

cM = 0.01241 | 0.1 z −0.12218 z1.0766 |−1.1342. (4.3)

Values of E and ν are used for determining Lame constants used in Equation
(3.10) according to available conversion formulae [101].

The Biot modulus (M , which appears in Equation (2.1)) is calculated as

1

M
= φ

K f l
+ b −φ

Ks
, (4.4)

where K f l and Ks are fluid and solid moduli taken as 0.02 and 50 and GPa,
respectively [115]. The porosity, φ, is calculated as a function of depth (z, in meters)
as [116]

φ=−0.005 log (z)+0.3. (4.5)

Figure 4.8 shows the evolution of surface subsidence for the studied problem. The
static and dynamic results are plotted at various simulation times. Simulation time
is reported as a multiples of dimensionless time tc , which is calculated according to
Equation (3.28). It can be seen that both methods converge to the same solution at
late times. This is an expected outcome. Errors are quantified according to Equation
(3.27). At simulation time t = 500tc , the errors are ϵuy = 1.26e −2 and ϵux = 1.53e −2
for displacement fields. The error for surface subsidence is 5.0e −3.

4.1.5. FAULTED RESERVOIR IN AN INFINITE DOMAIN

A finite reservoir is assumed in an infinite domain. A vertical fault with an initial
offset is present in the middle of the reservoir. The fault is fully permeable but does
not transmit fluid pressure above the top or below the bottom of the reservoir. The
setup is shown in Figure 4.9. Analytical solutions for production/injection-induced
displacements, stresses and strains for this system are given by Jansen et. al. (2019)
[80]. Here, the sEFVM predictions are compared with the analytical solutions for the
shear stress along the fault.

Elastic parameters are G = 6.5 GPa and ν= 0.15. The fault surfaces are frictionless.
Values of a and b in Figure 4.9 are 75 m and 150 m, respectively. In the
analytical solution, the reservoir stretches throughout the entire horizontal extent of
the system. To approximate such infinite boundaries, the external medium in the
numerical set up is assumed 10 times larger than the reservoir thickness (i.e. 2250
m × 2250 m). Roller boundary conditions are considered on all external boundaries.
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Figure 4.8.: Comparison of evolution of surface subsidence in a depleting gas field
as predicted using static and poroelastic FVM models from t1 to t4

corresponding to 50tc , 100tc , 150tc and 500tc .
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Figure 4.9.: Schematic of a faulted reservoir in an infinite domain.

The reservoir boundaries are impermeable. The reservoir is depleted via a single
production well placed centrally in the reservoir. This well produces at a constant
draw down pressure of ∆P = -25 MPa.

The computational grid consists of 200×200 cells. The numerical results were
obtained by considering different orders for the time-step (1 minute, 1 hour and 1
day).

The shear stress is plotted along the depth of the reservoir at the location of the
fault. Figure 4.10 shows the results of the dynamic FVM model at various time-steps
and the analytical solution based on equations in [80]. The stress profile shows 2
minima and 2 maxima. These extrema correspond to the 4 edges of the displaced
reservoir sections.
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The numerical solution approaches the analytical solution at full depletion, which
is seen after approximately 6 days, although the finite grid resolution results in
smoothed extrema instead of the peaks of infinite magnitude as observed in the
analytical solution.

-2 -1 0 1 2 3
tangential stress along vertical centerline [Pa] 107

-225

-150

-75

0

75

150

225

di
st

an
ce

 fr
om

 
re

se
rv

oi
r 

ce
nt

er
 [m

]

Analytical solution
Numerical solution at 15 minutes
Numerical solution at 1.5 hours
 Numerical solution at  6 days (fully depleted)

Poroelastic ReservoirPoroelastic Reservoir

Figure 4.10.: Shear stress profile across the vertical center-line in an infinite faulted
reservoir

4.1.6. ELASTIC FAULTED MODEL

The analytical solution for the slip profile in the faulted, unbounded and elastic
block of Figure 4.11 is found according to the literature as [117]

s (Lx ) = 2(1−ν2) τc

E

√
L2

f − (x −L f )2, (4.6)

where Lx is the location along the fault and L f is the fault length. θ is the friction
angle defined as

| τ | = − tanθ σn , (4.7)

and τc is defined as

τc =σsinα
(

cosα− sinα tanθ
)
, (4.8)

where α is the angle of the fault with the negative direction of the horizontal axis
[117].

A 100×100 m2 cube is considered. There is a 10 meter fault at the center of the
block with θ = 20 degrees.
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Figure 4.11.: Illustration for the infinite, elastic faulted system under compression

Force F compresses the horizontal sides of the block. Top and bottom sides are
constrained from normal displacement to simulate an infinite domain. Values of
E = 7e10 Pa, ν= 0.2 and α= 30 degrees are assigned to the model. The computational
grid consists of 100×100 cells. The slip profiles from the analytical solution and the
EFVM are shown in Figure 4.12 for three different values of F of 50, 100 and 200
MPa. These results show good agreement between EFVM and analytical solutions.
The slip increases with increased applied force.
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Figure 4.12.: Comparison of analytical solutions with numerical solutions of EFVM
for the slip profile in a infinite faulted domain under compression loads
of F1 to F3 equal to 50, 100 and 200 MPa.
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4.1.7. TEST CASE WITH OSCILLATORY BEHAVIOR AND THE USE OF THE

SEFVM
The EFVM can produce non-smooth profiles for the slip and stress fields. As an
example, a 1×1 m2 elastic domain is considered.

The top and the bottom surfaces are subject to a Dirichlet displacement vector
(ux ,uy ) of (0,0) and (0.05,0.005) meters, respectively. The East and West boundaries
are subject to free stress. A fault is defined with a length of 0.4 m, located centrally,
having an angle of α towards the horizontal axis. Lame parameters are both chosen
equal to 1 Pa. The friction coefficient is set to be 0.85. The setup is shown in
Figure 4.13.

UxUy

Figure 4.13.: Illustration for faulted test case with surface displacements.

The slip profile for the case of a horizontal fault (i.e., θ = 0) is shown in Figure 4.14.
For this case, the slip profile is smooth and in good agreement with results of the
Porepy simulator [118]. The order of accuracy for slip is determined by altering
the computational grid from 10×10 to 160×160. The error is calculated using
Equation (3.27) with respect to the most refined mesh (i.e., 160×160) and plotted in
Figure 4.14. This figure shows that the slip profile converges linearly to the solution.

However, the smoothness of the slip profile is not always guaranteed. The same
setup is modeled by rotating the fault to hold the angle of α= 18 degrees. The slip
profile is shown in Figure 4.15. For this example, the slip profile takes a saddle form,
and the fully-implicit EFVM results are non-smooth. The EFVM results, even though
being non-smooth, are fully converged for the state of slip-stick at each fault node. It
is observed in Figure 4.15 that the magnitude of oscillations decays as the mesh gets
finer, and that the slip function remains convergent in spite of oscillatory behaviour.

However, oscillations can pose a significant challenge as the stress fields become
also non-smooth. The stress fields are used to determine slip-stick conditions of the
fault. When the fault is critically stressed, the oscillations can potentially result in
the incorrect determination of slipping nodes.

For this reason, it is crucial to systematically resolve the oscillations within stress
fields. To resolve this challenge, and guarantee smoothness of the results, a
smoothing procedure is included in the EFVM and the method is referred to as the
sEFVM.
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Figure 4.14.: EFVM slip profile (top) and the order of accuracy of slip (bottom) for a
block with surface displacement and a horizontal fault.

.

A polynomial fit to the oscillating curve is used to capture the behavior without
oscillations. It is found that this fitted polynomial is in close agreement with the
expected results. For the studied example, this is shown in Figure 4.16 for stress and
slip. The fit is in good agreement with results of Porepy and the solution of the
EFVM on a finer mesh.

The smooth solution presented in Figure 4.16 for to the stress and slip profiles are

τ(Lx ) = c1L2
x + c2Lx + c3, (4.9a)

s(Lx ) = d1L4
x +d2L3

x +d3L2
x +d4Lx +d5, (4.9b)
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Figure 4.15.: Convergent oscillatory solution of EFVM for the slip profile for a fault
inclined at 18 degrees.

where Lx is the distance from the beginning of the fault in meters (i.e., the tip
with minimum x and y values). Values of c1 to c3 are found as −0.1508 Pa/m2,
0.06031 Pa/m and 0.02948 Pa, respectively. Values of d1 to d5 are found as −0.1821
m−3, 0.1457 m−2, −0.03589 m−1, 0.002701 and 6.003e −5 m, respectively. The norm
of residuals for stress and slip are 3.8e −3 Pa and 1.1e −4 m, respectively. The small
norm values indicate a good fit.

In later work on the sEFVM, a better smoothing procedure was adapted. The
smoothing spline fit was used to capture a smoothed stress and slip profile. A
smoothing spline is characterized as a series of piece-wise polynomials and serves
as a fitting function to the oscillatory stress and slip data. The spline finds the best
fit (S f ) to the data (xi versus yi ) by finding the minimum value to function Fmi n

defined as

Fmin = p
∑

i
(yi −S f (xi ))2 + (1−p)

∫ (
d 2S f

d x2

)2

d x. (4.10)

Here, p is a smoothing parameter with a value between 0 and 1. If p = 1, the fit is
a cubic spline interpolant and if p = 0, the fit is a least-squares straight line fit. The
built-in MATLAB function "fit" is used to implement this smoothing [119].

Note that the EFVM oscillations are due to the misaligned faults and the embedded
grid cells. This is because the stress profile over the fault is calculated based on
displacement values in each fault-containing grid cell.

For most problems, the EFVM results are found to be smooth. But when
oscillations do arise, the proposed smoothing procedure leading to the sEFVM
guarantees monotone solutions for all faults. This is crucial for practical cases; which
typically involve challenging fault geometries and orientations.
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Figure 4.16.: Post-processing of the stress (top) and slip profile (bottom) in the
sEFVM for the example of a fault inclined at 18 degrees.

.

Another important advancement of the proposed fully-coupled fully-implicit
sEFVM is that the state of slip-stick is found implicitly based on the updated state of
the stress. This is elaborated in Algorithm 1.

This figure shows severe errors in the fault slip predictions, if this important
feature is neglected, as in the literature [64, 65], where the stress from the previous
time step is used to indicate the slip-stick state of fault nodes.

Figure 4.17 illustrates this important aspect, by presenting the slip profile if no
iterations are employed to indicate the slip-stick state.
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Figure 4.17.: Demonstration of the role of the new iterative step in the sEFVM for
the example of a fault inclined at 18 degrees in the block with surface
displacement.

4.1.8. HEAVILY-FAULTED POROELASTIC MODEL

A conceptual model is considered with dimensions of 30×50 km2. Values of ν= 0.2,
b = 1 and φ= 0.2 are assigned to the model. The system is heavily-faulted with 29
impermeable faults, some of which are located very close to each other. This is
shown in Figure 4.18.

The model consists of a poroelastic saturated reservoir surrounded by an
impermeable elastic external medium. A production well is placed centrally in
the porous reservoir region. The initial reservoir pressure and production well
bottom-hole pressures are 150 MPa and 100 MPa, respectively. Mobility is 1e −6
m2/Pa.sec. The friction coefficient for all faults is set to be 0.6. The computational
grid consists of 128×128 cells, and the time step size is 1.5 hours.

A force per length of 1 kPa/m is applied at the top boundary. The bottom boundary
is stationary. Horizontal boundaries are constrained from normal displacement as
shown in the illustration in Figure 4.18.

Figure 4.19 shows the displacement fields for the test case after 15 hours. Both
horizontal and vertical displacement fields show that the highest magnitude of
deformation occurs inside and in the vicinity of the porous reservoir domain. The
effect of the heterogeneous E field is clearly seen in the vertical displacement profile,
resulting in heterogeneous displacement patterns.

Another representation for stress is the von Mises stress (σV M ). This parameter
aids with geomechanical interpretation by considering the overall stress state rather
than focusing solely on individual stresses. The von Mises stress combines the
principal stresses to calculate the equivalent von Mises stress [120].
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Figure 4.18.: Schematic (left) and heterogeneous map for the Young modulus (right)
of a heavily faulted poroelastic model.
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Figure 4.19.: Horizontal (left) and vertical displacement fields (right) following
depletion of the reservoir in a heavily faulted poroelastic model.
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The von Mises stress and the pressure map for the current example are shown in
Figure 4.20. According to the von Mises stress map, the maximum stress is observed
inside the poroelastic region.

The pressure map reflects the depletion inside the porous region. One fault which
intersects with the reservoir at the top right boundary has influenced depletion in
that region. It is worth mentioning that in this test case, no smoothing was required
as the EFVM results were non-oscillatory.
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Figure 4.20.: von Mises stress (left) and pressure map (right) in a heavily faulted
poroelastic model.
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4.1.9. TEST CASES WITH DISCONTINUOUS SHEAR STRESS PROFILES AND

THE SEFVM ACCURACY LIMITATION

In this section, the test case shown in Figure 2.4 is considered. The model is built
up from the simplest possible configuration: no fault and no offset. Then, the
configuration is extended to include a fault, and later to include a fault and an offset.

The results from the sEFVM are compared to analytical solutions that are presented
in Chapter 2. Results from another numerical method developed by Novikov et.
al. (2022) are also used in this comparison [121]. The latter uses a finite-volume
collocated scheme with an unstructured grid and a conformal mesh to the fault for
modeling the setup.

The base-case properties considered in this section are shown in Table 4.1. Based
on the values in Table 4.1, the vertical force affecting the top surface of the reservoir
(i.e. y = 2250 m) and bottom (i.e. y =−2250 m) is calculated according to Equation
2.8 as

fv,top =σ0
y y (2250) =−29.50×106 Pa, (4.11a)

fv,bot =−σ0
y y (−2250) = 135.7×106 Pa. (4.11b)

A negative fv,top implies that this load acts in the negative y direction (i.e.
downward) and vice versa.

This load is used for finding the horizontal load, fh , at the top and bottom of the
domain according to Equation 2.9 as

fh,top(2250) = 20.37×106 Pa, (4.12a)

fh,bot(−2250) = 93.73×106 Pa, (4.12b)
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Table 4.1.: Base-case setup data for the simulation of depletion-induced fault
reactivation in reservoirs with an offset.

Symbol Property Value SI units

h1 See Figure 2.4 112.5 or 75 m
h2 " 112.5 or 150 m
D0 Depth at reservoir center (y = 0) 3500 m
g Acceleration of gravity 9.81 m/s2

G Shear modulus 6500 MPa
H Height of simulation domain 4500 m
K 0 Initial horizontal to vertical stress ratio 0.5 −
p Incremental reservoir pressure −25 MPa

p0
0 Initial reservoir pressure at reservoir center 35 MPa

W Width of simulation domain 4500 m
α Biot coefficient 0.9 −
β Effective stress coefficient for fault friction 0.9 −
θ Dip angle 90 or 70 degree
κ Cohesion 0 MPa
µ friction coefficient 0.52 −
ν Poisson’s coefficient 0.15 −
ρf l Fluid density 1020 kg/m3

ρs Solid density 2650 kg/m3

φ Porosity 0.15 −

The initial stresses corresponding to the above loads are calculated analytically
based on Equation 2.14 as

σ0
xx (y) =−57.05×106 +16.30×103 × y Pa, (4.13a)

σ0
y y (y) =−82.60×106 +23.60×103 × y Pa, (4.13b)

σ0
x y (y) = 0Pa. (4.13c)

The initial pressure field is calculated analytically using Equation 2.10 as

p0(y) = 35.00×106 −10.06×103 · y Pa. (4.14)

The map of the initial pressure, and post-depletion pressure calculated using the
sEFVM is shown in Figure 4.21. In the depleted pressure map, the darker region in
the center of the model outlines the reservoir.

The application of the loads fv,top , fv,bot and ± fh to the boundaries results in
initial vertical and horizontal displacement fields u0

y (x, y) and u0
x (x, y).
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Figure 4.21.: Pressure map at initial conditions (left) and after 25 MPa depletion
(right) in a model with an offset. Calculations are performed on a
computational domain consisting of 300×300 cells.

These displacements are calculated using 2.16. Accordingly, the vertical
displacement at the top of the domain is

u0
y (+2250) =−13.66 m. (4.15)

The initial horizontal displacements at the top left and bottom left of the
simulation domain are

u0
x (−2250,+2250) = 0.87 m, (4.16a)

u0
x (−2250,−2250) = 3.98 m. (4.16b)

Identical displacements, but in opposite direction exist at the right boundary. The
true displacement field will show small deviations from these approximate values
because of contraction effects due to non-isotropic compression of the simulation
domain as a result of the nonuniform initial distributed loads.

These displacements are comparable to that obtained from the sEFVM as shown
in Table 4.2. When using the sEFVM, the vertical displacement (i.e. 13.66 m) is
obtained by summing the magnitude of the vertical displacement profiles at the top
(i.e. y =−2250 m) and at the bottom (i.e. y = 2250 m) of the domain as

u0
y = |u0

y,top |+ |u0
y,bot | (4.17)

Figure 4.22 shows the initial displacement fields calculated using sEFVM.
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Table 4.2.: Comparison of the results of the sEFVM and the analytical solution for
the estimation of initial displacements.

Method Cells in x-y u0
y [m] u0

x,top [m] u0
x,bot [m]

Analytical - -13.66 0.87 3.98
sEFVM 81 x 81 -13.51 0.91 3.99
sEFVM 121 x 121 -13.58 0.90 3.99
sEFVM 201 x 201 -13.63 0.89 3.99
sEFVM 300 x 300 -13.66 0.87 3.98
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Figure 4.22.: Displacement field in the horizontal direction (top) and vertical direction
(bottom) calculated using the sEFVM over a domain consisting of
300×300 cells.
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Assuming there can be a fault in the system, the stresses are calculated along an
angle of 70 degrees with the horizontal direction. The normal and shear stresses
along this direction are analytically calculated according to Equation 2.15.

Figure 4.23 shows the values calculated using the sEFVM, the collocated FVM (also
known as DARTS [122]) and the analytical approach.

Both numerical codes produce a fully satisfactory results. The results from DARTS
for the shear stresses display small irregularities resulting from the use of an
unstructured grid [112].
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Figure 4.23.: Initial normal stresses (left) and initial shear stresses (right) along a line
through the center of the reservoir at an angle of 70 degree with the
horizontal.

The reservoir compaction following a depletion of 25 MPa is calculated using
Equation 2.19 as

∆h =−0.32 m. (4.18)

The compaction can be calculated numerically as well, by comparing the vertical
displacement before depletion to that after depletion.

The compaction is simulated using the sEFVM on a computational domain
consisting of 135 × 135 cell. The results of this simulation show that the
initial vertical displacement is u0

y = 13.59 m. After 25 MPa depletion, the vertical

displacement is u∆p
y = 13.91 m. The difference between the two is 0.32 m, equivalent

to the analytical derivation in Equation 4.18.
The incremental horizontal strain ϵxx remains equal to zero, because of the infinite

horizontal extent of the reservoir. This is also true for the numerical results.
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For example, using the sEFVM with 135 × 135 cells, the change in horizontal strain
is close to the machine accuracy range (i.e., 10−15).

The incremental horizontal effective stress is found using 2.23 as σ′
xx =−3.97 MPa.

From this, the incremental total horizontal stress is calculated from Equation 2.24 as
σxx = 18.53 MPa.

For the simple case of a reservoir without faults no incremental shear stresses σx y

develop, and because there were no initial shear stresses σ0
x y it follows that also the

combined shear stresses vanish. However, for the line at an angle of 70 degrees that
was considered earlier in Figure 4.23, the incremental horizontal stresses σxx have
an effect on both the incremental normal and shear stresses and therefore also on
the combined normal and shear stresses (i.e. Σn and T from Equation 2.26).

Figure 4.24 shows the total stresses along the inclined line for the two simulation
codes and the analytical solution. Both codes produce a fully satisfactory match.
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Figure 4.24.: Combined normal stresses (left) and combined shear stresses (right)
along a line through the center of the reservoir at an angle of 70 degree
with horizontal.

The same reservoir is considered but with a vertical frictionless fault (i.e. θ = 90
degrees and µ f = 0) at the centre. This fault introduces a throw as in the schematic
of Figure 2.4. For this setup, the pre-slip coulomb stress and slip is calculated using
Equation 3.38 and 3.2.2, respectively. The constant C in Equation 3.30 based on the
parameters of Table 4.1 for a depletion of 25 MPa is equal to −2.95 MPa. The value
of A from Equation 3.40 is 1217.1 MPa.
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Figure 4.25 (right) displays this slip distribution over the height of the reservoir,
and Figure 4.25 (left) displays the pre-slip Coulomb stress profile over the vertical
frictionless fault.
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Figure 4.25.: Pre-slip Coulomb stresses ΣC in a frictionless vertical fault with offset
(left) and the resulting slip δ (right).

The correspondence between the DARTS results and the semi-analytical results
is excellent. The sEFVM results are slightly in error. This is because the sEFVM
calculates the slip by enriching the displacement field with one additional degree
of freedom per matrix grid node. This is as opposed to other embedded methods
such as the XFEM, where in 2D each node that is enriched with the jump function
is given 2 degrees of freedom. For fault tip enrichment, there are 4 extra degrees
of freedom. This means the sEFVM is much faster in terms of CPU time, but the
predictions are expected to be less accurate [63, 68].

Another setup is considered where the fault is at 70 degrees with the horizontal
and has a constant friction coefficient. Figure 4.26 (left) displays the pre-slip shear
stresses T and the slip threshold (Equation 2.32) for an incremental pressure p =−25
MPa, and Figure 4.26 (right) shows the corresponding pre-slip Coulomb stresses.

The sEFVM results in Figure 4.26 show a deviation. For the cases of depleted
reservoirs with offset such as the case studied in the aforementioned figure, the
sEFVM accuracy is off by about 20%. In such cases, the infinite peaks in the stress
profile are a problem for the smoothed embedded method. Efforts were made to
understand the cause of this error and address it. These efforts are discussed next.
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Figure 4.26.: Pre-slip shear stresses T and slip threshold Σsl in an inclined fault
with offset and constant friction (left) and the corresponding pre-slip
Coulomb stresses ΣC (right). Simulation domain width W = 4500 m.

EFFORTS TO IMPROVE THE ACCURACY OF THE SEFVM IN SIMULATION OF FAULTED

RESERVOIRS WITH OFFSET

Following the issues with the accuracy of the sEFVM for test cases similar to that of
Figure 4.26, efforts were made to minimize errors. Several approaches were taken:

• Grid refinement was initially tried. One obstacle to refining the grid was
longer run-times. To address this limitation, the code was optimized. This
was done by replacing "for" and "while" loops used for finding the coefficients
of matrices in Equation 3.26 with vectorized equivalents. This reduced the
run-times considerably, allowing for further refinement of the grid. For
example, for a 500×500 grid, the size of the matrix of coefficients (from
Equation 3.26) was 750,000×750,000. The initial run-time for the sEFVM to
solve this system was 8 hours. Following vectorization, this time was reduced
to 4 minutes.

• The peaks in the Coulomb stress profile shown in Figure 4.25 occur exactly at
the offset points at 75 and 150 meters below and above the center line of the
reservoir. The Cartesian mesh of the sEFVM is defined so that the boundaries
of the pressure control volume coincide with these depths. If the number of
cells in the vertical direction is divisible by the offset location depths (i.e. 75
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and 150 meters in this example), the depths corresponding to the stress peaks
will be captured exactly. Otherwise, there is an error in capturing the geometry
of the analytical problem. Given that the peaks exist precisely at offset depths,
this can introduce a visible miss-match between the results of the analytical
solution and the sEFVM.

• Further on the subject of capturing the geometry, is the importance of the
location of the fault with respect to the matrix grid. In the embedded scheme
of the sEFVM, the fault cannot pass through a displacement node exactly. This
is because the appended basis functions (plotted in Figure 3.2) require the
existence of two sides within each grid block, to define the discontinuity. This
is the foundation of the sEFVM and a limitation to it. In the sEFVM algorithm,
for instances where such intersection occurs, the fault is moved infinitesimally
to one side of the displacement node. Assuming the case of a vertical fault,
this indicates the fault cannot be exactly located centrally in the reservoir. This
is shown in Figure 4.27. This miss-match exists inherently in the case of the
vertical fault where the Coulomb stress profile was earlier shown in Figure 4.25.

Pm

Ux,y

s, Pf

Figure 4.27.: Moving the fault slightly to one side from the center line to avoid
intersection with the sEFVM matrix displacement nodes.

• Further grid refinement was addressed by introducing local grid refinement.
Initially, a simple one-step grid refinement was implemented. This
implementation is shown in Figure 4.27. Here, the grid size was reduced from
an initial size ∆1

x,y to size ∆2
x,y in one step. The results showed that the sudden

refinement created kinks in the stress profiles in between the larger and smaller
grids. Another method was chosen whereby refinement was implemented in
a step-wise manner. The size of the grids would lessen with size in an order
defined by a geometric series as shown by Equation 4.19.

∆n
x,y =

∆i
x,y (1−xn)

1−x
, (4.19)

where ∆i
x,y is the size of the unrefined grid in x or y direction, n is the number

cells intended for refinement and x is the common ratio between consecutive
entries.
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The value of x was determined based on the range of cells intended for
refinement and the depths that were of interest.
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Figure 4.28.: New control-volumes for the locally refined scheme in the sEFVM
showing the location of the pressure nodes (red) and displacement
nodes (blue) and fault (black).

• The local refinement allowed for multiple depths to be captured in refined
format. The results for this are shown in Figure 4.29. This figure demonstrates
that an illustrative displacement field is smoothly captured with a single patch
of refinement on cells in the central region of the reservoir.

Figure 4.29.: A displacement profile obtained after grid refinement for the initialized
system with details outlined in Table 4.1. This setup was studied earlier
with results shown in Figure 4.22.
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Despite implementing the aforementioned changes, the sEFVM’s lack of accuracy,
as shown in Figure 4.26 and Figure 4.25, persisted. It was acknowledged that
the method has inherent limitations in achieving the required precision. Despite
the sEFVM showing promising results even in comparison to known analytical
solutions and simulators, this method was ultimately deemed insufficiently capable
for studying depletion-induced fault reactivation in reservoirs with offset. For such
cases, the stress profiles are not continuous and infinite peaks exists.

Following this acknowledgement, efforts were redirected towards seeking an
alternative approach for simulating faulted reservoirs with offset. This lead to the
development of the semi-analytical method with results discussed next.

4.2. SEMI-ANALYTICAL METHOD FOR FAULTED RESERVOIRS

WITH DISCONTINUOUS SHEAR STRESS PROFILES
In this section, the results of the semi-analytical approach are presented. The first
attempt was to ensure that the analytical stresses are calculated correctly over the
sEFVM mesh.

The results for this were compared with code presented by [80] and [81]. For the
case of a 70 degree fault with values of Table 4.1 and an offset of 75 meters and 25
MPa depletion, the effective normal stress and shear stress are compared for the
purely analytical method and the semi-analytical method. The results are shown in
Figure 4.30. The results show close agreement between the methods. Upon a closer
look at the tails of the stress profile in Figure 4.30 it is observed that there is slight
deviation between the methods. The semi-analytical method prediction are not
exactly the same as the purely analytical approach. This is because for the purely
analytical case, the assumption is an infinite reservoir. But for the test case modelled
here, the system size is finite and equal to 4500×4500 m2. When the results are
repeated for horizontally-elongated domains (for example system size of 4500 m2),
the difference minimizes. This is because the horizontally elongated domain better
resembles the assumption of an infinite reservoir.

In the next step, the slip is calculated analytically. The slip depends on the
depletion. Figure 4.31 shows the slip patch growth for a 45 degree fault undergoing
depletion. This angle is not relevant for the faults in the Groningen field but it is
chosen so that various stages of the fault slip can be shown in one plot. The slip of
the fault, as shown in this figure consists of the following stages:

• No slip range (σc < 0): In the analytical solution, there is an infinite peak to
the Coulomb stress profile. This indicates that there is a point which slips,
even initially, when the semi-analytical simulator predicts no slip at all. Due to
the numerical errors inherent to the semi-analytical simulation, these infinite
peaks are masked and the slip begins to be identified at a finite value of
depletion. That is when the peaks of the estimated Coulomb stress become
positive. Therefore in the semi-analytical solution, as long as the Coulomb
stress profile is negative, there is no slip. This is shown in Figure 4.31 up to
the depletion pressure of 11 MPa.
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Figure 4.30.: Comparison of the effective normal stress (top) and shear stress
(bottom) for the analytical and semi-analytical methods.

• First point of slip: It can be seen in Figure 4.31 that the slip patch begins
to grow from the upper offset point. This occurs at 13.4 MPa of depletion.
The reason why the top patch forms before the bottom patch and there is
an element of asymmetry, is gravitational effects. Gravity results in a slightly
higher Coulomb stress in the upper section. It is shown that unto a depletion
of 14.8 MPa, the top patch continues to grow while the bottom patch does not
slip.

• Independent growth of two slip patches: With further depletion, the bottom
section will catch up. The Coulomb stress profile will be positive for both
patches and there will be two slip patches. This is seen first in Figure 4.31
at a depletion pressure of 16.4 MPa. With increasing depletion, the two slip
patches continue to grow. Until a depletion pressure of 24.4 MPa, there are
two separate patches.
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• Merging of the slip patches: It is seen that between the depletion pressure of
24.4 MPa and 27 MPa, the two slip patches have merged to form one large
slip patch. This occurs quickly across one small pressure step. When the two
slip patches merge, it is important for the semi-analytical method to recognize
the merger and switch its calculation of slip to consider one large merged slip
patch, as opposed to two smaller patches which have an overlap somewhere
in between. As can be seen in Figure 4.31, the slip patch merger occurs before
the entire Coulomb stress profile is on the positive side.

• Growth of a single large slip patch: Further depletion will result in the
advancement of a single slip patch. If enough time passes, the slip profile
form will also change. The slip profile is expected to eventually resemble the
slip profile of the frictionless vertical fault shown in Figure 4.25.

The above mentioned points regarding the development and advancement of the
slip profile pertain to the case of a fault with constant friction coefficient. If the
friction coefficient depends on slip or time, there will be differences which will be
outlined later in this chapter.

Figure 4.32 is a another form of representing the slip patch growth. Here, the slip
patch is plotted versus the depletion pressure. Similar to Figure 4.31, the slip patch
does not exist before 11 MPa. It is seen that the top patch grows first (at y = 75 m,
the depth of the offset seen in Figure 2.4). This is followed by the bottom patch (at
y =−75 m, corresponding to the bottom offset point). The two patches merge at a
depletion pressure of p = 22.9 MPa. Following that there is only one single patch
growing.

Another plot is shown in Figure 4.33. This is the slip patch profile for the original
test case with the 70 degree fault. Here, a comparison is given between the results
predicted with the current semi-analytical method and the method presented by
[80]. This image shows that the two methods have results that are close. The slight
difference between the methods is found to be mostly due to the assumption of
an infinite reservoir in the analytical solution as opposed to a finite 4500×4500 m2

model in the semi-analytical definition.

4.2.1. LINEAR SLIP WEAKENING FRICTION AND FAULT NUCLEATION

In this section the friction coefficient follows the linear slip weakening relationship
defined in Equation 2.6.1. Three coefficients appear in this law: 1. the static friction
coefficient (µ fs ), 2. the dynamic friction coefficient (µ fd

) and 3. the critical distance
slip distance (δ) over which the friction drops.

It is noted that the critical distance is important because it is the combination of
this parameter and µ fd

which determine the slope of the slip weakening curve. This
slope governs the Uenishi and Rice (2003) stability criterion described in Equation
2.33.

Smaller values for the dynamic coefficient result in a stronger slip-weakening
regime and vice versa. When this law is used instead of a static friction coefficient,
fault nucleation is observed.
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Figure 4.31.: The growth of the slip patch for a 45 degree fault with increasing
depletion (top) and the corresponding pre-slip Coulomb stress profile
(bottom).

Determination of fault nucleation is of high interest because it can be correlated
with the occurrence of a seismic event. To define fault nucleation, it is useful
to discern between the different phases a fault will go through when undergoing
increasing Coulomb stresses [123]:
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Figure 4.32.: Slip patch for a 45 degree fault undergoing depletion. Other properties
for this simulation as are shown in Table 4.1.
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Figure 4.33.: Comparison of slip patch found using the analytical method presented
by [80] and the semi-analytical method, for a 70 degree fault undergoing
depletion. Other properties were defined in Table 4.1.

• The fault is initially stationary. Some models for friction assume an initial
velocity for slip along the fault. This is the case for the rate and state friction
model as shown by Equation 2.29. The initial slip velocity of a fault is not
expected to be large in the geological scale. For the example of the Groningen
field, where historically no seismic events are recorded prior to depletion,
faults can be assumed inactive and stationary at first.
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• Increasing Coulomb stresses on a fault may become large enough to induce
slip of the fault. Initially, the fault will begin to slip steadily. This can be
modelled assuming a quasi-static system.

• With further increase in the Coulomb stresses, it is possible that the fault
nucleates. Fault nucleation is a pre-seismic stage just before an earthquake.

• If the Coulomb stresses surpass the nucleation point, then the fault will
experience dynamic slip where slip will have an acceleration. This results in
an earthquake.

The semi-analytical approach described here can model dynamics of poroelastic
systems prior to dynamic slip. By assuming quasi-static conditions, the fault slip is
modelled up to the point of nucleation. Fault nucleation can be determined via
simulation and also with analytical equations according to the procedures outlined
in Section 3.2.2 and Section 2.7.3.

When using the semi-analytical method, the quasi-static calculations will fail to
converge when reaching nucleation. Analytically, nucleation can be found using
the Uenishi and Rice formulation (2003) as described by Equation 2.33 [96]. The
Uenishi and Rice formulation is preferred among researchers [12, 80] for determining
nucleation. This is because using a numerical solver for finding nucleation point is
time-consuming and is subject to errors stemming from the accuracy of the solver.
The following points are relevant matters on the accuracy of the numerical solvers
for finding nucleation point:

• In numerical simulation, it is very important to use sufficiently small
pressure-steps to capture the correct nucleation pressure. With large pressure
steps, the actual nucleation point can easily be over-stepped. For the example
of the 70 degree fault shown in Figure 4.33, the pressure steps were in the
order of 0.01−0.001 MPa. To assist with simulation time, Jansen et. al. (2019)
devised an automated pressure-stepping algorithm where pressure stepping is
governed by the change in the size of a slip patch. Their algorithm would
initially consider larger pressure steps. The steps would gradually minimize
near the nucleation point. Close to nucleation, the algorithm would move
above and below the nucleation point in a trial-and-error manner, to capture
the nucleation more accurately [95].

• The number of fault and mesh grids also affect the results. The analytical
solution can solve for hundreds of points along a fault and consider 4 blocks
to model the setup of Figure 2.4. This is shown in the meshing for the method
in Figure 3.3. This figure also shows the mesh of the semi-analytical method,
which is the sEFVM mesh. The sEFVM considers one element for the fault per
matrix mesh grid. This in itself reduces the number of points along the fault,
in comparison to the analytical approach. For the example of Figure 4.30, the
analytical solution considers 500 points along the fault while the sEFVM mesh
allows for 100 points when a 360×360 matrix grid is used. The fewer number
of grid nodes for the fault indicates a weaker estimation.
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• Furthermore, as mentioned earlier, an assumption of the analytical solution is
a reservoir which extends infinitely in the horizontal direction. However, the
horizontal extent that can be modelled in the semi-analytical method is finite.
This introduces deviations between the analytical and the semi-analytical
methods. In reality, the Groningen field has areal dimensions which are large
enough to be modelled as an infinite reservoir.

Given the above reasons, Jansen and Meulenbroek (2022), proposed a method for
obtaining the nucleation point during numerical simulations with the assistance
of the Uenishi and Rice method [95]. This is outlined in the Algorithm of the
semi-analytical solution shown in Algorithm 2. In this algorithm, in every pressure
step, the simulated slip patch is reported. The patch size is also calculated using the
Uenishi and Rice formulation described in Equation 2.33 [96]. The two values are
compared in each step. Nucleation is defined as the point where the larger slip patch
size (i.e. the top patch), reaches a size equal or greater than the predicted Uenishi
and Rice estimation for the nucleation slip patch size. This is shown in Figure 4.34.

Figure 4.34 shows four plots: 1. the simulated slip patch size for the top patch,
2. the simulated slip patch size for the bottom patch, 3. the analytically derived
nucleation slip patch size using the Uenishi and Rice formulation for the top patch
and 4. the analytically derived nucleation slip patch size using the Uenishi and
Rice formulation for the bottom patch. The latter two plots include error bars to
demonstrate a ±10% range for the calculated values.

This figure shows that all four plots demonstrate an increase in size of the slip
patch with increasing depletion. In both cases (simulation and analytical Uenishi
and Rice method), the growth of the lower patch is delayed in comparison to the
upper patch. These findings are expected as demonstrated in the previous section.

The nucleation slip patch calculated using the Uenishi and Rice (2003) formulation
is determined based on the effective normal stress profile for the segments of the
fault which undergo slip [96]. This is outlined in Equation 2.33. The values are
anticipated to remain constant because they indicate the value of the slip patch
at nucleation point, as opposed to the plots for the semi-analytical method. The
semi-analytical plots merely show the size of the slip patch at each depletion
pressure.

Figure 4.34 shows that indeed, the calculated nucleation slip patch size using the
Uenishi and Rice formulation is almost constant with increasing depletion. There
are some negligible changes observed in the plots. This is due to the change in the
effective normal stress profile used at each depletion step.

At around a depletion pressure of 25.1 MPa, the semi-analytical values for the slip
patch size in the upper patch crosses the analytical Uenishi and Rice value. This
point is identified as nucleation point. If the semi-analytical simulation continues, it
will fail to converge at a later depletion pressure. This is shown in Figure 4.34 as
the last plotted point at around 25.7 MPa. This pressure is the nucleation point
determined by simulation. This value depends on the mesh and the pressure step
size and carries a numerical error. For this reason and others explained earlier, the
Uenishi and Rice criteria is used for determining nucleation.
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Figure 4.34.: Comparison of the slip patch growth using simulation with the
semi-analytical approach and as determined using Equation 2.33. The
setup is that described in Table 4.1.

According to the above procedure, the nucleation pressure is determined for the
semi-analytical approach. Figure 4.35 shows the evolution of the slip patch profile
with depletion for three different setups. They are all based on the 70 degree fault
setup described in Table 4.1 but with different friction coefficients: 1. a constant
friction coefficient of µs

f = 0.52, 2 and 3. a linear slip weakening friction with a static

friction coefficient of µs
f = 0.52, a critical distance of δ= 0.02 m and dynamic friction

coefficients of µd
f = 0.4 and µd

f = 0.2, respectively.

Figure 4.35 shows that in the case of a static friction coefficient, the two slip
patches grow and merge. However, for the cases with linear slip weakening friction,
the slip patch profiles grow until nucleation is reached. The results of Figure 4.35
were obtained previously by Jansen and Meulenbroek (2022) [95]. The comparison
of the found values for nucleation pressure in this study and the previous analytical
study by Jansen and Meulenbroek (2022) is shown in Table 4.3. There are some
differences between these values. The reason is the assumption of an infinite
reservoir in the analytical method and also the differences in accuracy due to the
coarser meshing in the semi-analytical method and the pressure stepping used.

4.2.2. STRATIGRAPHY-INFLUENCED FRICTIONAL RESPONSE ALONG THE

FAULT

The faults in the Groningen field are not confined to the reservoir layer. They extend
into the salt and also much further down into the underburden [124]. Lab tests on
different layers of rock from the Groningen field have demonstrated that they have
different frictional properties and behaviors when subjected to stress [105]. In this
section, the effect of assuming relevant friction coefficients for the layers is analyzed.
In the first try, constant friction coefficients for layers of the Groningen field are
used. This is presented in Table B.1. The setup of Figure 2.4 is considered.
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Figure 4.35.: Comparison of the slip patch growth for two different slip-weakening
conditions in comparison to a constant friction setup. Other properties
are as in Table 4.1.

Table 4.3.: Fault nucleation pressure in MPa, for various friction coefficients using the
analytical method of Jansen and Meulenbroek [95] and the semi-analytical
method. The grid for the semi-analytical method has 561×561 cells.

Case analytical method semi-analytical method

µs
f = 0.52,µd

f = 0.52 17.5 18.8

µs
f = 0.52,µd

f = 0.40 21.5 22.2

µs
f = 0.52,µd

f = 0.20 27.5 28.0

The system is initialized and depleted as explained in previous sections. Properties
were the same as described in Table 4.1. The following assumptions were made:

• The friction coefficient is assumed to be constant, no linear slip weakening
law is used.

• The static friction coefficient for the segments of the fault which are above the
reservoir domain have the friction coefficient of the salt. A value of 0.64 is
chosen based on the ranges for this parameter in Table B.1.

• The static friction coefficient for the reservoir segments of the fault, including
the offset regions, is chosen as 0.52. This value falls in the ranges proposed by
Hunfeld for the Groningen field [105].

• The friction coefficient for elements along the fault deeper than the reservoir
and the offset are chosen based on the range for the Carboniferous layers of
the Groningen field as 0.5 based on the ranges for this parameter in Table B.1.
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The simulation results show that considering stratigraphy-influenced friction
coefficients has no effect on the estimated slip profile and the nucleation pressure.
This means the slip profile (and consequent nucleation pressure) remains the same
if the friction coefficient for the reservoir (i.e. 0.6 in the current example) is used for
the entire fault. This result can be found in Figure 4.35.

This finding is expected and can be explained via the analytical expressions used
for the calculation of stress. The friction coefficient is used in the determination
of the Coulomb stress profile. The analytically-determined Coulomb stress profile
calculates incremental stresses as a result of depletion. Since only the reservoir
segment is undergoing depletion, only the friction coefficient of this section
influences the incremental stresses. The depletion-induced stress changes is not
affected by the value of the friction coefficient considered for regions above the
offset points where the reservoir ends.

Given this, another assumption is made, the top offset region (the region between
h1 and h2 in Figure 2.4) is considered to be more strongly slip weakening than the
other segments of the fault. This assumption is relevant to the Groningen field where
studies have indicated a potentially stronger slip weakening friction behavior in the
overlying salt layers [105]. The values used for this setup are shown in Table 4.4.

Table 4.4.: Friction properties considered for different frictional behaviors along a
fault

Region µs
f [ - ] µd

f [ - ] δc [m]

Top offset: Salt - Reservoir contact 0.6 0.3 0.02
Reservoir - Reservoir contact 0.52 0.4 0.02

Bottom offset: Carboniferous - Reservoir contact 0.52 0.4 0.02

The results are shown in Figure 4.36 for a 45 degree fault. This figure shows two
series of plots. The red plots are for the case of similar frictional behavior all along
the fault. For this case, the values for the reservoir-reservoir contact from Table
4.4 is assumed. The blue curve is a frictional behavior based on values defined in
Table 4.4, where the salt-reservoir contact has a stronger slip weakening behavior.
This shows the initial patches before nucleation and the merged patch following
nucleation. When the the friction coefficient for the salt-reservoir offset contact is
more strongly slip-weakening, the rupture profile is more than twice as large. This
indicates that it is important to consider stratigraphy-dependent frictional behavior
of faults in simulating fault re-activation.

4.2.3. SLIP RATE-DEPENDENT FRICTION COEFFICIENT

The friction coefficient can change with the rate of slip as outlined in Equation 2.29.
This is modelled using the semi-analytical method with the following assumptions:

• The rate of depletion is selected based on the actual rate of depletion in the
Groningen field. This is shown in Figure B.1. Given a 30 MPa depletion in
about 60 years, a depletion rate of 0.5 MPa per year is calculated.
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Figure 4.36.: Comparison of the slip patch profile (top) and corresponding friction
coefficient (bottom) for a stratigraphy-dependent friction law (blue) and
a stratigraphy-independent friction law (red). Other parameters are as
shown in Table 4.1.

• The constants of the rate-dependent friction law (Equation 2.29) are extracted
based on the ranges suggested for the Groningen field [105]. These values are
reported in Table B.2.

Various test cases are studied by choosing values for the friction parameters within
the ranges reported for the Groningen field. These ranges are available in Table
B.2. The results show that the slip patch growth is observed to grow in a step-wise
manner when considering slip rate-dependent friction.

One example is shown in Figure 4.37. The parameters of Equation 2.29 for this
test case are µs

f = 0.52, V0 = 1µ m/s, A = 0.01 and B = 0.0025. Other properties are as

in Table 4.1. This figure shows that the slip patch grows with oscillations. This is
due to the oscillations observed in the friction coefficient as shown in Figure 4.38

The results for slip rate-dependent friction are not interpreted to hold substantial
justifications for further investigation. Besides the oscillatory results, one of the
concerns in this analyses is the large magnitude of the initial slip velocity. The
values for V0 reported based on lab experiments for the Groningen field are in the
range of 0.1 to 10 micro meters per second [105]. This is equivalent to 3 to 300
meters per year. This does not seem to be a reasonable range for an initial fault slip
velocity in the field scale.



4

90 4. RESULTS AND DISCUSSIONS

12 14 16 18 20 22 24

Depletion until nucleation [MPa]

-150

-100

-50

0

50

100

150

S
lip

 p
at

ch
 [m

]

Figure 4.37.: The slip patch profile for the case with a slip rate-dependent friction
coefficient showing step-wise growth of the slip patch.
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Figure 4.38.: The friction coefficients corresponding to the slip patch profiles of
Figure 4.37. The friction coefficient depends on the rate of slip in this
example.

4.2.4. MAGNITUDE OF THE SEISMIC MOMENT

The magnitude of the seismic moment (Ms ) can be calculated using Equation 3.43.
Ms depends on the sizes of the slip patches at nucleation pressure. For the case of
the 70 degree fault of Table 4.1, a seismic moment of 84 GNm/m is calculated using
the semi-analytical method. This is considering linear slip weakening friction with
coefficients of the aforementioned table.
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4.3. SENSITIVITY ANALYSES OF CRITICAL PARAMETERS

INFLUENCING INDUCED SEISMICITY
The semi-analytical solution, implemented on the sEFVM mesh, is computationally
more efficient than the sEFVM. Due to this higher efficiency, it is much faster and
allows for a more refined mesh. While the sEFVM is itself computationally efficient
given it’s embedded treatment of faults, it involves solving for fully coupled fully
implicit equations for all grid cells. This is demonstrated by the system of equations
shown in Equation 3.26. The semi-analytical solver relies on the analytical solution
and solves only for the grid cells which undergo pressure change, as opposed to all
grid cells in the system.

In this section the computational efficiency of the semi-analytical method is
leveraged to perform sensitivity analyses of some of the more influential parameters
involved in induced seismicity in the Groningen field. Previous research on the topic
has lead to the identification of some of these parameters [76, 77, 95, 102]. Where
possible, the results have been quantitatively compared with previous findings.

The following parameters are investigated for their effect on the nucleation
pressure and the magnitude of the seismic moment:

• Fault angle

• Fault throw (i.e. the offset)

• Friction coefficient

• Reservoir thickness

In the following sections, each sensitivity parameter is studied by running tens to
hundreds of simulations. Given the extensive number of simulations, computational
resources from the DelftBlue supercomputer were used to perform the calculations
[125].

The domain size used in these simulations is the setup of Figure 2.4. However, this
reservoir is elongated horizontally 5 times to obtain results that are more relevant to
an infinite system. The mesh for the semi-analytical approach is 1000×2500. For
other properties, values are taken from Table 4.1.

It should be noted that another parameter of interest in the study of fault
reactivation is the effect of heterogeneity in geomechanical properties across
layers. However, the semi-analytical method developed here relies on analytical
expressions that were derived assuming homogeneity [95]. For this reason, all
considered simulations assume homogeneity across layers and the values used for
the geomechanical constants are as reported in Table 4.1.

4.3.1. FAULT ANGLE

Fault angles relevant to the Groningen field are in the range of 60 to 90 degrees with
respect to horizontal [76, 77]. The sensitivity analysis here includes a range of 30 to
90 degrees. Other properties besides the fault angle are as in Table 4.1.
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The results in Figure 4.39 show among the studied range of 30 to 90 degrees,
only faults with angles in a range of 50 to 80 degrees nucleate when depletion is
considered up to a maximum depletion of 35 MPa. For fault angles between 30 to
50 degrees and between 80 to 90 degrees, fault nucleation does not occur. That is
why there are no data points for these angles in Figure 4.39. Furthermore, faults in
the range of 55 to 70 degrees tend to nucleate earlier. Faults at an angle less than 55
degrees and higher than 70 degrees will require higher depletion pressures to reach
nucleation.

A property present in both plots of Figure 4.39 is a degree of perturbations
(non-smoothness) in the plots. These oscillatory perturbations arise from the varying
accuracy of the numerical method for each case. The accuracy of the semi-analytical
method depends on the mesh size. As the fault angle is changed for each data point,
the reservoir is captured slightly differently in when modelled using the Cartesian
mesh of the sEFVM. The depths pertaining to the offset points (at 75 m and 150
m) would not be exactly captured. These depths can be over or undershot by the
Cartesian mesh. Furthermore, the accuracy of the captured nucleation pressure
depends on the pressure stepping. These introduce the small kinks observed in the
plots.

In a 2015 report by Van den Bogert on induced seismicity in the Groningen field
[76], the effect of fault angle on the initiation of slip is studied. As previously noted,
with infinite peaks in the Coulomb stress profile, there are always points that slip.
In this sense, the onset of fault slip is not deemed to hold much value in the
study of induced seismicity. However, the results reported by Van den Bogert (2015)
are compared with the findings of this report for the effect of fault angle of fault
nucleation. While onset of fault slip and fault nucleation are quite different, they are
compared for the purpose of an evaluation.

The 2015 report report by Van den Bogert [76] considered fault angles between
60 to 90 degrees. Their simulations showed that the onset of fault slip occurs at a
higher depletion pressure for vertical faults in comparison to faults with an angle of
65 degrees and less (with the horizontal). It is also reported that for cases without
a throw, the faults with angles above 69 degrees do not slip at all in the depletion
range up to 30 MPa [76]. Both findings are in agreement with the results of the
semi-analytical method for fault nucleation. Figure 4.39 shows that the magnitude
of the seismic moment is higher for faults with a lower angle. This indicates that if a
fault with a shallower angle nucleates, a larger seismic event is expected.

In conclusion, faults with shallower dip angles are observed to nucleate at a lower
reservoir depletion pressure and exhibit a greater seismic moment.

4.3.2. FAULT THROW

In this section, the fault throw is studied. The fault throw is kept constant at 75
m in all the results demonstrated so far in this report. In this section, ranges are
considered considered for this property. The fault throw range is considered between
0 m (i.e. no offset, where the sides of the reservoir across the fault align as shown in
Figure 2.3) and 225 m (i.e. the offset is equal to the entire thickness of the reservoir).
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Figure 4.39.: Nucleation pressure (top) and the magnitude of the seismic moment
(bottom) for various fault angles.

In order to demonstrate the effect of angles, the results are repeated for three
different fault angles of 50, 70 (base case of Table 4.1) and 90 degrees. The results for
the estimated nucleation pressure and magnitude of the seismic moment are shown
in Figure 4.40. This figure shows that with increasing fault throw, the depletion
needed to reach nucleation declines. This means it is easier for a fault to nucleate
when the offset is larger. The effect is similar for all fault angles. This image also
shows that the 90 degree fault may also nucleate in the considered depletion range
if the offset is high enough (over 170 m). In Figure 4.39 it is seen that for a 75 m
throw, the 70 degree fault has nucleation at the lowest depletion, followed by the 50
degree fault and lastly the 90 degree fault (which does not nucleate at all).
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The same is observed for the plots in Figure 4.40 where the 70 degree faults
nucleates at lower pressures followed by the 50 degree fault and lastly the 90 degree
fault. This conclusion is valid over all considered fault throws.

The magnitude of the seismic moment for the corresponding angles and fault
throws are plotted in Figure 4.40. This image reiterates the finding of Figure 4.39:
that shallower fault angles create larger seismic events. Furthermore, it is observed
that with increasing fault throw, Ms declines. This means that while faults with
higher offsets will nucleate at lower depletion pressures, they are not expected to
create larger seismic events. In other words, larger seismic events are expected
where offset is smaller.

The above findings are in agreement with reports by Buijze (2020). Buijze reports
that a larger offset promotes nucleation, but results in smaller slip patches [102].

In 2015, Van den Bogert studied the effect of fault throw on the onset of fault
slip [76]. This study suggested the depletion required for reaching the onset of fault
slip is lower for faults with a fault throw equal to reservoir thickness and vice versa
for faults without a throw. The report states that faults with an offset equal to the
reservoir thickness will be triggered to slip with the least depletion. Comparing these
statements to the results of Figure 4.40 shows that they are in agreement if onset of
fault slip is compared to the onset of fault nucleation. The argument that the two
(onset of slip and fault nucleation) are different and that onset of fault slip holds
little value in the study of induced seismicity is valid in this comparison.

A followup report to 2015 report was published in 2018 by van den Bogert [77].
This study reports on the onset of rupture, as well as the onset of slip as a function
of reservoir offset. The parameters used in the report by Van den Bogert (2018) are
different from those used in the current sensitivity analysis. Therefore the results
could not be numerically compared. However, the results from the 2018 report
qualitatively confirm the findings that faults in reservoirs with higher offsets will
nucleate earlier. Both reports demonstrate an "s-shape" for the change in nucleation
pressure for different fault offsets, as observed in Figure 4.40.

In a more recent study by Jansen and Meulenbroek (2022) on the effect of fault
throw, it is shown that the nucleation pressure increases with an S-shape for
increasing fault throw. However, there is a maximum in the seismic moment at
a fault throw equivalent to 80% of the reservoir thickness in the studied example
[95]. While the input parameters for both studies rely on the values from Table 4.2,
the maximum value is not evident in the results obtained from the semi-analytical
model, as illustrated in Figure 4.40. This difference is due to the effect of
coupling between the slip patches. Jansen and Meulenbroek (2022) consider the
coupling between slip patches [95] but this effect is neglected in the semi-analytical
method developed in this study. The difference between the results highlights that
the coupling between slip patches becomes increasingly important for larger fault
throws. It is reported that the Uenishi and Rice (2003) expression for the nucleation
length (i.e. Equation 2.33) is only valid for single slip patches in a single fault [96].
Hence, the accuracy of the semi-analytical method is expected to diminish as slip
patches approach each other and further investigation is required to determine the
applicability of the Uenishi and Rice criterion for multiple faults.
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Figure 4.40.: Nucleation pressure (top) and the magnitude of the seismic moment
(bottom) for various fault throws, at three different fault angles.

4.3.3. FRICTIONAL PROPERTIES

In the cases described in this chapter so far, the friction coefficient followed a linear
slip weakening relationship with µs

f = 0.52, µd
f = 0.4 and δ= 0.02 m. In this section, a

sensitivity study is done on friction parameters. The sensitivity analysis is divided
into three parts:

• A sensitivity analysis on the static friction coefficient, µs
f , with constant

dynamic friction coefficient and a constant critical slip distance.

• A sensitivity analysis on the dynamic friction coefficient, µd
f , with constant

static friction coefficient and a constant critical slip distance.
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• A sensitivity analysis on the dynamic friction coefficient while assuming a
constant slope for the linear slip weakening equation and a constant static
friction coefficient.

Where not mentioned, other parameters, besides the friction coefficient are as in
Table 4.1.

SENSITIVITY ANALYSIS ON THE STATIC FRICTION COEFFICIENT

The static friction coefficient is an important parameter in the Coulomb stress
affecting the fault. In this section, a sensitivity analysis is done to evaluate the
implications of the value of this variable.

For this purpose, simulations are run by considering a range for µs
f while keeping

other parameters constant. This range is from 0.52, the initial value for µs
f from

Table 4.1, up to a value of 0.7. This range is chosen based on literature. The value
taken by Jansen and Meulenbroek (2022) for the friction coefficient is 0.52 [95]. This
value is 0.55 in the report by Van den Bogert (2018) [77]. In the study by Hunfeld
(2020) the value of 0.6 is reported for the static friction coefficient in the reservoir
sand. The highest value of 0.66 was reported for the basal Zechstein [105]. Given
these values, the 0.52 - 0.7 range was considered in this sensitivity analysis.

A linear slip weakening relationship is used for the simulations. The dynamic
friction coefficient is constant and equal to 0.4. The critical distance is 0.02 m for
all cases. A schematic for the considered friction regime is shown in Figure 4.41. In
reality, simulations are performed with a stepping size of 0.001 chosen between 0.52
to 0.7 for the static friction coefficient.
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Figure 4.41.: The change of the static friction coefficient by maintaining dynamic
friction coefficient and critical distance.

Figure 4.42 shows the results. Initially, three fault angles of 50, 70 and 90 degrees
are considered as in previous sections.
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For the case of the 90 degree fault, there is no nucleation for any static friction
coefficient within the considered range of 0.52 to 0.7. This is in agreement with the
results of Figure 4.39 where it is shown the 90 degree fault does not nucleate for the
0.52 static friction coefficient for the maximum depletion.

The results for the nucleation pressure in Figure 4.42 show that for higher
static friction coefficients, a higher depletion is required for a fault to nucleate.
Comparison between the 50 degree and 70 degree fault shows that the 70 degree
fault will nucleate while the static friction coefficient changes in a wider range, while
for the 50 degree fault there is a smaller range of static friction coefficients which
allow for fault nucleation. The slope of the change is higher for the 50 degree fault
than the 70 degree fault. This indicates that slight changes in the static friction
coefficient will affect nucleation pressure more for the shallower angle 50 degree
fault, than it would for the 70 degree fault.

The results for the magnitude of the seismic moment of Figure 4.42 show that
when faults with a higher static friction coefficient nucleate, the magnitude of the
seismic moment will be higher. By putting the results from both the nucleation
pressure and magnitude of the seismic moment it can be argued that when the
static friction coefficient is higher, it takes longer for a fault to nucleate. However,
when the fault does nucleates, it can potentially cause a stronger seismic event.

Given that there is no nucleation for the 90 degree fault, the results for the
constant friction coefficient is repeated at more fault angles to analyze the changes
with respect to fault angles. Figure 4.43 shows the results. The following conclusions
can be made based on this figure.

• As previously seen in Figure 4.42, the magnitude of the seismic moment and
nucleation pressure increase with increasing static friction coefficient for all
fault angles.

• The slope of this change is not the same for different fault angles. The
results of this section reiterate that different fault angles result in a different
initial pressure of nucleation. The faults with angles 60 to 65 will nucleate at
lower depletion pressures. The effect of the static friction coefficient on the
nucleation pressure is greater on the 60 degree fault.

• For a static friction coefficient of 0.6, the 70 degree fault nucleates before the
60 degree fault. This indicates that if the results of Figure 4.39 on nucleation
pressure versus fault angle were repeated at a higher static friction coefficient,
the curve will change.

• Although the considered range for the static friction coefficient is the same for
all fault angles (i.e. from 0.52 to 0.7), the plots do not extend throughout to
the higher end of the range for all plots. The reason is that nucleation does
not occur for the higher static friction coefficients in these plots. For example,
the plot for the 50 degree fault ends at a µs

f less than 0.55, indicating that the

fault nucleation does not occur for any static friction coefficient larger than
this value.
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Figure 4.42.: Nucleation pressure (top) and the magnitude of the seismic moment
(bottom) for various static friction coefficients.

In 2018, Van den Bogert studied the effect of the slope of the linear slip weakening
law on nucleation. He finds where the slope is larger, a smaller amount of depletion
is required for the fault to nucleate [77].

In Section 2.7.3 the analytical formulations used by Uenishi and Rice (2003) for the
critical slip patch size were reviewed [96]. Their formulations are used in this study
to determine the critical slip patch size. They suggest Equation 2.35 for determining
the critical slip patch size. This equation determines the critical patch size, based on
the slope of the linear slip weakening friction law.
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Figure 4.43.: Nucleation pressure (top) and the magnitude of the seismic moment
(bottom) for various static friction coefficients at different fault angles.

The slope of the linear slip weakening law can be calculated according to Equation
2.6.1) and is defined as

dµ f

d s
=−

µd
f −µs

f

δ
. (4.20)

According to Equation 4.20, when the slope of the linear friction weakening law
is smaller, the critical length is smaller. Therefore, a fault will nucleate earlier at a
smaller depletion pressure.

In the results of Figure 4.41, by altering the static friction coefficient and
maintaining the dynamic friction coefficient, the slope of the friction coefficient plot
is also changing.
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The plots with the smaller static friction coefficients have a softer slope. It is
observed that the nucleation pressure is smaller for faults with a softer slope. This
agrees with the findings of Van den Bogert (2018) [77].

SENSITIVITY ANALYSIS ON THE DYNAMIC FRICTION COEFFICIENT

The dynamic friction coefficient affects the Coulomb stress profiles in the fault
once slip occurs. This parameter has been studied for the evaluation of rupture
propagation and reported to affect fault nucleation [102].

In this section, this coefficient is studied by assuming linear slip weakening
relationship for friction with varying values for the dynamic friction coefficient.

The range considered for the dynamic friction coefficient is 0.3 to 0.5 with a
stepping size of 0.001. The static friction coefficient is maintained at 0.52. The
critical distance is also kept constant at 0.02 m. A schematic of the considered
frictional curves for this section are shown in Figure 4.44.
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Figure 4.44.: The change of the dynamic friction coefficient by maintaining static
friction coefficient and critical distance.

Figure 4.45 shows the results. The 90 degree fault does not slip even with the
lowest dynamic friction coefficient of 0.3. That is why the results for this angle are
not seen in the plot. Analyses of Figure 4.44 suggests the following points

• Fault nucleation can occur at lower depletion pressures when the dynamic
friction coefficient is smaller. This is in accordance with what is expected,
because a stronger slip-weakening tendency is anticipated to result in earlier
nucleation.

• The nucleation pressure curve has a slight change in its slope at about
µd

f = 0.4 for the current configurations. This indicates that the sensitivity of the

nucleation pressure to the dynamic friction coefficient can be related to the
value of the dynamic friction coefficient.
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Figure 4.44 suggests that the dynamic friction coefficient has a higher impact
on nucleation, when it holds a higher value. In other words, When the
dynamic friction coefficient is in the 0.45 to 0.4 range, the fault nucleation
pressure drops faster as compared to when it is in the 0.4 to 0.35 range.

• The nucleation pressure for various angles agrees with the trend in Figure 4.39.
In both Figure 4.39 and Figure 4.45, faults with angles in the 60 to 65 range
will nucleate at lower pressures in comparison to faults positioned at shallower
angles (55 and 50 degrees) and steeper angles (70 and 75 degrees).

• The magnitude of the seismic moment is smaller for larger dynamic friction
coefficients, for all fault angles considered. This is expected because a
larger dynamic friction coefficient indicates a weaker slip-weakening frictional
behavior. This consequently results in smaller slip patches.

• Nucleation of a fault positioned at a shallower angle results in a larger seismic
event. This agrees with the previous results in the sensitivity analysis on fault
angles, as shown in Figure 4.39.

• The magnitude of the seismic moment is more sensitive to the dynamic
friction coefficient for lower ranges of the dynamic friction coefficient. In other
words, the seismic moment increases more rapidly with a drop in the dynamic
friction coefficient in the 0.35 - 0.4 range, in comparison to the 0.4 - 0.45
range.

• Although all the simulations were run for a friction coefficient in a range of
0.3 to 0.5, the results do not extend all the way to the lower range of the
friction coefficient (i.e. µd

f = 0.3). The results for shallower fault angles (50,

55, 60 and 65 degrees) stop before reaching this limit. The reason for this
is that the solution cannot be found for these configurations. The point,
after which a solution does not exist, can be predicted beforehand for a
known configuration. When the dynamic friction coefficient is smaller than a
threshold, the analytical solution to the problem cannot be found. This is the
case for the run-away rupture. Buijze (2020) reports on the sudden drop in the
stresses resulting from a strong slip weakening regime as a contributing factor
to run-away ruptures [102]. This is elaborated in Section 2.7.

Figure 4.45 is in agreement with an earlier report by Buijze (2020) [102]. She
reports that a higher depletion is required to reach nucleation, when the dynamic
friction coefficient has a larger value. This tendency is observed for all fault angles
considered in the sensitivity analysis here.

Buijze (2020) also reported that the length of the rupture is larger for smaller
values of the dynamic friction coefficient and largest rupture size correlates with
the lowest dynamic friction coefficient [102]. The results for the magnitude of the
seismic moment of this study suggest that larger events can be expected for smaller
friction coefficients.
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Figure 4.45.: Nucleation pressure (top) and the magnitude of the seismic moment
(bottom) for various dynamic friction coefficients at different fault
angles. The friction law used here is shown in Figure 4.44

CRITICAL LINEAR SLIP WEAKENING DISTANCE

The critical distance in the linear slip weakening equation also influences the
frictional behavior of fault and therefore the stresses. In this section a sensitivity
analysis is performed on this parameter while maintaining the static and friction
coefficient and the slope of the linear slip weakening friction as those reported in
Table 4.1.
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According to Equation 4.20, the slope of the linear slip weakening equation for
the default values of table 4.1 is −0.06 mm−1. In order to perform a sensitivity
analysis on friction by maintaining this slope, values for δ and µd

f are changed

simultaneously. The schematic for the friction regimes of this section are shown in
Figure 4.46. In the simulations, the dynamic friction coefficient is changed between
0.3 to 0.5. Correspondingly, to keep the slope of frictional weakening at 0.06 mm−1,
the critical distance (δ) is altered from 0.036 to 0.003. A stepping size of 0.001 is
used. Similar ranges were considered in an earlier study on the Groningen field by
Van den Bogert (2018) [77] In that study, the static friction coefficient is assumed to
be 0.55 and the critical slip distance is altered between 0.005 m to 0.03 m while
maintaining the slope of the slip-weakening law.
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Figure 4.46.: The change of the friction coefficient by maintaining the slope for the
slip-weakening law.

The results are repeated for different angles. The vertical (90 degree) fault does not
nucleate in the considered range. Other results are shown in Figure 4.47.

The results from Figure 4.47 show the following:

• The results for the nucleation pressure show that for the smaller ranges of
the dynamic friction coefficient, the nucleation pressure remains unchanged.
This indicates that when the slope of the linear slip weakening law remains
unchanged, the drop in the dynamic friction coefficient does not initially
influence the nucleation pressure.

• For larger dynamic friction coefficients, the nucleation pressure increases with
a reduction in the slip-weakening behavior of the fault. This is also observed
earlier, in the study on the dynamic friction coefficient shown in Figure 4.45.

• The study of the nucleation pressure for various fault angles follows the trend
that was earlier found for the effect of fault angle on nucleation in Figure 4.39.
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Figure 4.47.: Nucleation pressure (top) and the magnitude of the seismic moment
(bottom) for various dynamic friction coefficients at different fault
angles.

Accordingly, at the same dynamic friction coefficient, the 60 degree fault will
nucleate at the smallest depletion pressure, this is followed by the 65 degree,
55 degree, 70 degree, 50 degree and lastly the 75 degree fault.

• The magnitude of the seismic moment decreases with increasing dynamic
friction coefficient. For the ranges of friction coefficient where the nucleation
pressure is constant, there is a drop in the magnitude of the seismic moment.
This indicates that the slip patch size at nucleation differs for various cases.
With a weaker slip-weakening regime, which corresponds to a higher dynamic
friction coefficient, the slip patch is smaller and this results in a smaller
seismic moment.
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• The magnitude of the seismic moment drops to very small values for larger
friction coefficients. A comparison with the nucleation pressure shows that for
these higher dynamic friction coefficients, the depletion pressure required for
nucleation is larger. This indicates that the slip patch has a smaller size and
suggests a smaller magnitude of the seismic moment.

In the 2018 report by Van den Bogert [77], similar setups to those shown in
Figure 4.46 have been studied. Van den Bogert found a reduction in the magnitude of
the seismic moment for faults with a higher dynamic friction coefficient. He reported
that the slope of this decrease is different based on the rupture mechanism, but
the decrease is observed for all friction coefficients. With respect to the nucleation
pressure, Van den Bogert (2018) [77] considered three dynamic friction coefficients
between 0.25 to 0.5 while altering the critical slip distance to maintain the slope of
the linear weakening friction law at 0.01 mm−1. He showed that the onset of fault
nucleation happens at 21.05 MPa of depletion for all cases with a dynamic friction
coefficient of 0.47 or smaller. For the cases with dynamic friction coefficients of 0.48
and larger, the depletion required to reach fault nucleation increases significantly
with the dynamic friction coefficient. For the larger dynamic friction coefficient of
0.5, the seismic rupture occurs at a pressure depletion of 27.4 MPa. The results of
Figure 4.47 are in agreement with the findings of van den Bogert (2018) [77].

4.3.4. RESERVOIR THICKNESS

Reservoir thickness is one of the parameters which researchers have addressed in the
study of induced seismicity in the Groningen field [77]. In this section a sensitivity
study is done on the thickness of the reservoir.

In the first attempt, the reservoir thickness is analyzed while maintaining the value
of the offset. For this purpose, the values of h1 and h2 of Figure 2.4 are changed by
the same magnitude as shown in Table 4.5. All cases have an offset of 75 meters.
The thickness is changed by 10 m, equivalent to 4.4% of the total reservoir thickness.

Table 4.5.: Considered cases for the study of the effect of reservoir thickness while
maintaining the magnitude of the offset

Case Change in thickness [m] h1 [m] h2 [m]

Base case 0 150 75
Thinner reservoir -10 145 70
Thicker reservoir +10 155 80

The results are shown in Figure 4.48. The results of this figure shows that with
change in reservoir thickness, the nucleation pressure change is almost visually
indiscernible. If the tail of the plot for higher fault angles (close to 80 degrees) is
considered for comparison, it can be observed that the thicker reservoirs require
a higher depletion to reach nucleation. However, the difference is in the order of
fractions of an MPa.
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In the 2015 report by Van den Bogert (2018), the reservoir thickness is changed
while maintaining the normalized offset. In this study the reservoir thickness is
changed between 170, 200 and 230 meters, equivalent to 15% change in the thickness
from the base case. The normalized offset is defined as the actual offset distance
divided by the total reservoir thickness. This definition is different from those
considered in the current sensitivity analyses (with details provided in Table 4.5.

Van den Bogert (2018) concluded reservoir thickness in the case of a constant
offset does not affect the onset of fault slip. However, for the onset of nucleation,
they found that further depletion is required for the thinner reservoir to reach
nucleation as compared to the thicker reservoir. The figures reported by Van den
Bogert shows the magnitude of this effect to be less than a fraction of an MPa [77].

Figure 4.48 demonstrates the effect of reservoir thickness on the magnitude of the
seismic moment. This figure shows that higher magnitudes of the seismic moment
are expected for faults in the thicker sections of a depleting reservoir. It is also
noticeable that the effect is greater for faults with shallower angles. Overall, the
highest magnitude of a seismic event can be expected for faults with shallower
angles and located in the region with largest thickness. The effect of thickness on
the magnitude of the seismic moment can be explained with attention to the size
of the slip patch. In the case of the thicker reservoir, the slip patches grow further
to reach the point of nucleation. Larger slip patches contribute to a higher seismic
moment once they reach nucleation according to Equation 3.43.

The analysis for the magnitude of the seismic moment is also reported by van
den Bogert (2018) [77]. Van den Bogert (2018) defined the relationship between the
magnitude of the seismic moment and reservoir thickness based on the rupture
mechanisms. He defines the following rupture mechanisms:

• Mechanism 1: The two slip patches merge without instability in the slip
patches.

• Mechanism 2: The two slip patches do not merge. The shallower slip patch
becomes unstable. This happens if the two slip patches have a relatively larger
distance and the instability of the upper slip patch does not result in the
merging with the deeper patch.

• Mechanism 3: The two slip patches merge while the shallower slip patch is
unstable. This is more likely if the patches have less distance in between them.

Van den Bogert (2018) report that the magnitude of the seismic moment increases
with thickness, except for when mechanism 2 is effective. He further elaborates that
the seismic moment does not depend on reservoir thickness for small normalized
offsets. The study by Van den Bogert (2018) is done based on dynamic simulation
of rupture while the semi-analytical method used here is based on quasi-static
formulations. Moreover, here the coupling between patches, which becomes
important a large fault throws (i.e. fault throw larger than 80% of the reservoir
thickness) [95], has not been taken into account. Therefore it is not possible to
compare the mechanisms reported by Van den Bogert (2018) to those effective here
and a conclusion cannot be made regarding the comparison of the results.
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Figure 4.48.: Nucleation pressure and magnitude of the seismic moment for reservoirs
with various thicknesses and the same fault throws.

The sensitivity study is taken a step further to study the effect of reservoir thickness
while maintaining the normalized offset. The change considered in thickness in the
report by Van den Bogert (2018) is about 15%. The same change is considered for
the setups in this study. The considered values for the reservoir are shown in Table
4.6. With these values, the normalized offset remains at 33.3% with thickness altered
by 15%.

Figure 4.49 shows the results for the setups of Table 4.6. A fault angle of 70
degrees is considered. The results are plotted against the normalized offset, instead
of the fault angle (as in Figure 4.48). These figures show that the magnitude of the
seismic moment and the nucleation pressure do not have meaningful differences for
the various thicknesses. Both parameters remain unchanged.
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Table 4.6.: Considered cases for the study of the effect of reservoir thickness while
maintaining the normalized offset

Case Change in thickness [%] h1 [m] h2 [m]

Base case 0 150 75
Thinner reservoir -15 127.5 63.75
Thicker reservoir +15 172.5 86.25
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Figure 4.49.: Nucleation pressure (top) and the magnitude of the seismic moment
(bottom) versus normalize throw for the test cases of Table 4.6. Fault
angle is 70 degrees.
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4.3.5. UNSTABLE INITIAL IN-SITU STRESSES

It is observed in many of the results of the sensitivity analysis that simulations do
not continue over the entire range of the sensitivity parameter. This is seen for
example, in Figure 4.45. In this figure, the nucleation pressures are not estimated for
the lower range of the friction coefficient (i.e. 0.3) considered for all sensitivity study
test cases. The plot for the 50 degree fault ends before reaching a dynamic friction
coefficient of 0.37.

The possible reasons for this are explained earlier in Section 2.7. One reason is
the existence of high initial in-situ stresses. When the initial in-situ stresses are high
enough to result in a positive Coulomb stress, the system is unstable.

In this section, this is studied through simulations using the semi-analytical
approach. The setup of Figure 2.4 is assumed. The initial stresses in the system
are calculated for various fault angles and friction coefficients. The lowest friction
coefficient, for which the system is initially stable is determined. All properties,
besides the fault angle and the friction coefficient are taken as in Table 4.1. The
governing friction law consists of only a static friction coefficient, i.e. no slip
weakening is considered.

An angle range between 30 to 90 degrees with increments of 1 degree is considered.
The friction coefficient is altered between 0.1 to 0.7. The slip threshold is calculated
according to Equation 2.32 and compared with shear stresses calculated using
Equation 2.15.

For each fault angle, the smallest friction coefficient before which slip occurs is
taken as the limit for stability of in-situ stresses. The results are shown in Figure 4.50.
This figure demonstrates that in the 30 to 90 degree range, faults with shallower
angles and larger ones can maintain stability even with smaller friction coefficients.
For the 50 to 60 degrees, instability occurs even at higher friction coefficients close
to 0.35. The near vertical (i.e. θ ∼ 90 degrees), the fault does not slip even for the
smallest friction coefficient considered.

The results of Figure 4.50 can be used to justify the lack of results for the lower
range of the friction coefficient in Figure 4.45 where the total friction coefficient
drops to values close to, but not exactly approaching 0.3, for the considered fault
angles.

4.4. HYBRID METHOD FOR QUASI-STATIC SIMULATION OF

RUPTURE IN MULTI-FAULT POROELASTIC SYSTEMS
The semi-analytical method is used in the previous chapter to find the onset of fault
nucleation and to determine a magnitude for the seismic moment of the resulting
earthquake. However, no results could be extracted from the semi-analytical model
for post-nucleation. The semi-analytical method has the limitation that it can only
be used for simulation of fault slip and stresses up to the nucleation point. If there
are many faults involved, the simulation would only progress until the first fault
nucleates.

Furthermore, fault to fault interactions are not honored in the semi-analytical
approach. When a fault nucleates, it can create a large rupture.
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Figure 4.50.: The minimum friction coefficient to ensure stability for various fault
angles for the setup of Figure 2.4. Other data is as shown in Table 4.1.

This large rupture can affect the stress field. In the semi-analytical method, the
neighboring faults do not observe this effect.

Given that fault to fault interaction is not observed in the semi-analytical solution,
the sensitivity analysis of the previous section is performed by considering a single
fault in the reservoir. The presence of others faults would not have affected the
results for the studied fault.

The hybrid method is developed to address the above-mentioned issues. This
method makes assumptions regarding the post-nucleation frictional behavior of an
activated fault and simulates the system after the seismic event. Furthermore, the
fault to fault interactions would be honored as the hybrid method adjusts the stress
fields numerically following the nucleation of a fault assuming quasi-static behavior.

In this section, the results of the hybrid approach are presented. The results are
shown for the case of considering two faults and later extended to a more realistic
test case relevant for the Groningen field.

When there is one fault in the system, the results of the method are the same
as the semi-analytical approach prior to fault nucleation. The reason is that the
hybrid method uses the numerical stress calculations only after a fault nucleates.
Furthermore, once a fault nucleates, it will alter the stress field of the system. The
effect of the rupture of a fault influences other faults in the system.

It is also important to mention that there are dynamic effects during rupturing
(stress waves traveling through the rock) which would require a full dynamic
simulation to capture them correctly [102]. The hybrid method proposed here is a
simplified approach based on a quasi-static post-slip rupture configuration governed
by the dynamic friction coefficient.
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4.4.1. POST-NUCLEATION BEHAVIOR OF A SINGLE FAULT

In this section, a single fault is modelled. The purpose of this is to demonstrate the
post-nucleation rupture profiles.

The post-nucleated rupture profiles are calculated by assuming a dynamic friction
coefficient for the fault at the post-nucleation depletion pressure. For this reason,
the rupture profiles are expected to be large.

As mentioned earlier, the post-seismic rupture-induced stress effects are not
incorporated for the fault itself. This is the case here, the influence of the rupture
on the stress in the matrix cells neighbouring the fault, is not assumed to affect
the propagation of the rupture. The growth of the rupture is instigated by stresses
resulting from depletion and initial in-situ conditions that were outlined in Section
2.5.2.

A 70 degree fault in a reservoir with an offset as shown in Figure 2.4 is considered.
A linear slip weakening friction law is assumed for the fault. The values used for
this setup are as shown in Table 4.1. The system is initialized as described in
Section 2.5.2, and depleted as explained in Section 2.5.3. A 300×300 mesh is used
for the matrix. There are 69 elements along the fault. The mesh is coarser than the
semi-analytical method. The reason is that the numerical calculation of stresses over
the entire mesh makes the hybrid method slower than the semi-analytical method.
In order to keep run-times in an optimum range this coarser mesh is chosen in this
section.

Figure 4.51 shows the slip patch before nucleation for depletion pressures up to
24.1 MPa, and the rupture profile following nucleation and on-wards. The fault
nucleates at a depletion pressure of 25.5 MPa. This figure shows that following
nucleation, a single large patch forms. With increasing depletion past nucleation,
the size of the slip patch grows steadily. In previous results where a slip weakening
friction law was used, for example Figure 4.35, the post-nucleation rupture could not
be simulated. The simulations would stop at the point of nucleation.

Figure 4.51 also shows the Coulomb stress profiles corresponding to the same
depletion pressures of the plotted slip profiles. In the hybrid method, the
post-nucleation stresses are calculated numerically using the sEFVM. It is seen in
this figure that due to the embedded nature of the sEFVM, the stress profiles have
a small kink close to y=150ms. Such oscillations do exists in this figure and other
results using the sEFVM, but they are minor in magnitude and do not create large
deviations in the stress profiles considered in this study. If a finer mesh is selected,
these deviations will diminish and the curves will be smoother. Stronger smoothing
of the profiles is possible.

4.4.2. RUPTURE-INDUCED STRESS PERTURBATIONS IN MULTI-FAULT

SYSTEMS

In this section the one fault setup is extended to multiple faults. When another fault
is present in the system, the nucleation and consequent rupture of one fault will
affect the other fault via the rupture-induced perturbations in the stress field. This
effect is investigated in two-fault systems to study the magnitude of this effect.
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Figure 4.51.: The aseismic slip patch and the post-seismic rupture development
under quasi-static assumptions for a 70 degree fault (top) and the
corresponding Coulomb stress profile (bottom)

.

In the hybrid method developed here, the Uenishi and Rice (2003) criterion of
Equation 2.33 is used to determine the nucleation pressure in the faults. However,
this criterion was developed for a single slip patch in a single fault [96] and is
not necessarily valid for multi-fault system. This indicates that although the effect
of rupture of a fault on other faults is simulated, the criterion for obtaining the
nucleation pressure is not expected to be accurate. The validity of this criterion for
such cases requires further research. In the first example, two faults are considered

with different angles. A 70 degree fault similar to the previous sections (with details
outlined in Table 4.1) and a 75 degree fault. The reservoir geometry and other
properties besides the fault angle are similar.
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Figure 4.52 shows a schematic of the setup. Despite the change in the reservoir
geometry, reservoir thickness, offsets and other properties are kept similar to values
in Table 4.1.

h1

h2

h1

h2
h1

h2

Figure 4.52.: Setup for faulted system with an offset

The exact locations of the faults are as shown in Table 4.7.

Table 4.7.: Location of 70 degree and 75 degree fault with x and y in the range
between 0 m to 4500 m.

Fault x1 to x2 [m] y1 to y2 [m]

70◦ fault 1739.7 - 1860.3 2475 - 2025
75◦ fault 2618.1 - 2781.9 2025 - 2475

From the results of the sensitivity analyses on fault angles (shown in Figure 4.39),
the 70 degree fault will nucleate at a lower depletion pressure than the 75 degree
fault. The nucleation pressure of the 75 degree fault can therefore be influenced by
the post-nucleation rupture of the 70 degree fault. In this section, this influence is
studied to see how the rupture of the 70 degree fault can postpone or advance the
nucleation of the 75 degree fault.

Simulations for the considered geometry results show that the 70 degree fault
nucleates at 24.1 MPa. The 75 degree fault nucleates at 31.2 MPa. This indicates that
with increasing depletion, the 70 degree fault will enter seismic rupture phase. To
study the effect of this rupture on the 75 degree fault, two cases are simulated:

• Case 1: The seismic rupture of the 70 degree fault will perturb the stress
field via changes in the stresses in the surrounding matrix. This effect is
incorporated when calculating the stresses affecting the 75 degree fault.
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• Case 2: The seismic rupture of the 70 degree fault does not influence the local
stress field. In this case the faults are invisible to each other.

The results for both cases show that the calculated nucleation pressure does not
change. To observe if there are other minor influences, the slip patch profile for the
75 degree fault is analyzed for case 1 and 2. This is shown in Figure 4.53. This figure
shows that the slip profile of the 75 degree fault is affected but the magnitude of the
effect is very small. At the nucleation pressure of the 75 degree fault, the maximum
slip for Case 1 is 70.42 mm and for Case 2 it is 69.98 mm. This effect is too small to
influence the calculated nucleation pressure.

The plots of Figure 4.53 are not as smooth as previous results. This is because,
based on the extension considered for the fault (described in Table 4.7) and the
mesh over the entire domain (300×300), there are 39 and 41 fault nodes on the
75 and 70 degree faults, respectively. Also only a small section of the fault slips,
therefore only a few nodes are involved. These result in coarser images.
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Figure 4.53.: Slip profiles for the 75 degree fault after nucleation of the 70 degree
fault for faults with the locations defined in Table 4.7.

To analyze the magnitude of the effect better, the location of the faults are
changed. It is expected that the distance between the faults influences the results.
For the setup of Table 4.7, the distance between the faults at the center line (i.e. y =
2250 m) is 900 m. This is reduced to 500 m. The fault new locations are given in
Table 4.8

The results for the nucleation pressure show that for both cases, the nucleation
pressure for the 70 degree fault is 27.9 MPa. This is different from the previous
situation where the faults were farther apart. The reason behind the change is
assumed to be the change in the geometry of the depleting reservoir. The offset in
the reservoir at the location of the 75 degree fault is now closer to the 70 degree
fault.
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Table 4.8.: Locations for the 70 degree and 75 degree faults with 500 m of distance
at center line.

Fault x1 to x2 [m] y1 to y2 [m]

70◦ fault 1939.7 - 2060.3 2475 - 2025
75◦ fault 2418.1 - 2581.9 2025 - 2475

This affects the 70 degree fault. The nucleation pressure for the 75 degree fault
changes for cases 1 and 2 but not largely. The 75 degree fault nucleates at 31.11 MPa
for case 1 and at 31.14 MPa for case 2. Figure 4.54 shows that prior to the rupture
of the 70 degree fault (i.e. at depletion pressure of 27.9 MPa) the slip patches are
identical for cases 1 and 2. After seismic rupture of the 70 degree fault, there is a
minor influence on the 75 degree fault.

Another observation in Figure 4.54 is that the lower slip patch is larger than the
top patch. This is different from the simulations considered so far. Furthermore, the
value of the slip is larger than in the case of the fault that were 900 m apart. These
effects are due to the geometry of the reservoir shown in Figure 4.52. It is seen in
this figure that the deeper offset points are closer in distance than the shallower
offset points. This results in a larger effect of the deeper slip patches one each other
when the rupture induced stress perturbations are taken into account. This results
in the deeper slip patches demonstrating larger sizes.
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Figure 4.54.: Slip profiles for the 75 degree fault after nucleation of the 70 degree
fault for faults with the locations defined in Table 4.8.

The results are repeated with 250 m of distance between the fault at center line
(i.e. y = 2250 m). The coordinate for the faults are shown in Table 4.9.
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The results show that the nucleation pressure for the 70 degree fault is 27.9 MPa
and for the 75 degree fault it is 32.3 MPa for case 1 and 32.6 MPa for case 2. The
slip patch profiles for the 75 degree fault are shown in Figure 4.55.

Table 4.9.: Locations for the 70 degree and 75 degree faults with 250 m of distance
at center line

Fault x1 to x2 [m] y1 to y2 [m]

70◦ fault 2109.8 - 2190.2 2475 - 2025
75◦ fault 2295.4 - 2404.6 2025 - 2475
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Figure 4.55.: Slip profiles for the 75 degree fault after nucleation of the 70 degree
fault for faults with the locations defined in Table 4.9.

4.4.3. SIMULATION OF A REALISTIC TEST CASE RELEVANT TO THE

GRONINGEN FIELD

A test case relevant to the Groningen field is used in this section to showcase the
applicability of the hybrid model for the simulation of relevant field test cases.

This test case was extracted from a geomechanical model created for the Groningen
field. Details of this model are given in Appendix C. The 2D map is taken as shown
in Figure C.8.

MATLAB is used to read and re-scale Figure C.8 image based on the selected
mesh-size [119]. The mesh size in this example is 361×361.

The analytical method that is the basis of the hybrid scheme is not capable of
considering the effect of heterogeneity in the geomechanical constants. For this
reason, geomechanical constants are considered as shown in Table 4.1.
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This simplifies the model created for this study. The initial intention of creating
detailed geomechanical models of the Groningen field is for numerical simulations
using the sEFVM. Given the accuracy limits of the sEFVM, this method could not be
used to its full potential. However, we use it’s relevant geometry to demonstrate a
more realistic application of the hybrid method.

The geometry of the system is adjusted. This adjustment is to ensure that fault
locations are placed at the offset locations. Furthermore, there can be minor changes
in thickness along the reservoir layer which can affect the calculations. Given that
a change in reservoir thickness across a fault is geologically highly unlikely, this is
also adjusted. This is in agreement with what is expected in geological formations
of depositional origins. It such settings, it is expected that the thickness does not
change across a fault [126].

The model is simulated assuming initialization and boundary conditions similar to
what was described in Section 2.5.2 and Section 2.5.3.

All faults are assumed to follow a linear slip-weakening regime. The static friction
coefficient is 0.6 and the dynamic friction coefficient is 0.4. The critical slip distance
is 0.02 m.

The pressure distribution was defined such that the center-line of the reservoir has
a pressure of 35 MPa. This is shown in Figure 4.56. This image also focuses on a
series of 10 faults for which an analysis will be made here.

Figure 4.56.: Initial pressure distribution of the reservoir and location of the faults.
The reservoir is the only poroelastic region inside the elastic domain.

Depletion is simulated down to full depletion where the center line pressure
declines by 35 MPa. This results in reactivation of some of the faults. The results
indicate that faults number 1, 3, 4 and 6 nucleate.
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Figure 4.57 shows the rupture-induced perturbations in the von Mises stress field.

Figure 4.57.: Perturbations in the local stress field as a result of fault rupture. Faults
are shown in faded color to allow for better demonstration of their
locations and the changes to the stress map.

Using the hybrid method with the effect of rupture perturbations, faults 1, 3, 4
and 6 nucleate at depletion of 32.4 MPa, 26.6 MPa, 25.8 MPa and 30.8 MPa. In the
case without the effect of perturbations, fault 4 nucleates first at 25.5 MPa, followed
by fault 3 at 26.0 MPa, fault 6 at 30.2 MPa. This demonstrates the slight effect from
rupture of a fault on nucleation of neighboring faults given the limitations of the
quasi-static approach and the use of the Uenishi and Rice (2003) stability criterion
[96].

Figures 4.58 through 4.62 show the slip profiles for faults 1 to 10 from the setup
shown in Figure 4.56. These figures show situations where the fault does not slip
at all, the fault does slip but it does not reach nucleation, and the fault reaches
nucleation and the rupture continues to propagate.

Figure 4.63 shows the change in the displacement field following fault rupture. This
plot is created by calculating the difference between the post-depleted deformation
state and the final deformation field after 35MPa depletion.

Figure 4.63 shows that there are minor change in matrix displacements. This is
in the order of nanometers. This displacement occurs near faults which nucleate.
These were faults 1, 3, 4 and 6.
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Figure 4.58.: Slip patches corresponding to faults 1 (top) and 2 (bottom) from the
setup of Figure 4.56. Fault 1 nucleates at a depletion pressure of 32.4
MPa. Fault 2 does not nucleate. For this fault, the slip patch begins to
grow at the shallower offset point.
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Figure 4.59.: Slip patches corresponding to faults 3 (top) and 4 (bottom) from the
setup of Figure 4.56. Fault 3 nucleates at a depletion pressure of 26.6
MPa. The two slip patches show there are two peaks. In between the
peaks there is nonzero slip values with very small magnitudes. Fault 4
nucleates at a depletion pressure of 25.8 MPa and a single larger slip
profile grows after this pressure.
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Figure 4.60.: Slip patches corresponding to faults 5 (top) and 6 (bottom) from the
setup of Figure 4.56. There is a small slip patch forming in the deeper
offset location of fault 5 which does not reach nucleation. The slip
patch for fault 6 begins to form in the shallower offset point. This fault
nucleates at a depletion pressure of 30.8 MPa. Following nucleation a
single large rupture profile forms and grows.
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Figure 4.61.: Slip patches corresponding to faults 7 (top) and 8 (bottom) from the
setup of Figure 4.56. Both faults slip but neither nucleates.
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Figure 4.62.: Slip patches corresponding to faults 9 (top) and 10 (bottom) from the
setup of Figure 4.56. Fault 9 does slip but does not reach nucleation.
Fault 10 is stationary throughout the depletion with zero slip.
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Figure 4.63.: Perturbations in the horizontal displacement field (top) and vertical
displacement field (bottom) due to fault rupture for the setup of
Figure 4.56. This figure shows change in the matrix displacement field
in the order of a nanometers due to fault nucleation and subsequent
rupture.



5
CONCLUSIONS AND

RECOMMENDATIONS

5.1. CONCLUDING REMARKS
Induced seismicity refers to earthquakes that are triggered or induced by human
activities, for example fluid injection or extraction related to oil and gas activities.
The importance of understanding induced seismicity lies in its potential impact on
safety, infrastructure, and the environment.

The Groningen gas field is the largest gas field in Europe that has been producing
for a remarkable period spanning over 6 decades. With increased depletion in the
Groningen field, the number and intensity of earthquakes in the region increased.
Studies showed that these seismic events are correlated with gas production.
Eventually, the seismic events lead to production cuts and plans for full field
shut-down as per 1 October 2024.

The current research, inspired by the challenges of induced seismicity in the
Groningen gas field, attempts to develop computational methods for large-scale
simulation of fault reactivation in heterogeneous, heavily-faulted poroelastic media.

In the expansive domain of geomechanics, numerous computational methods exist
to simulate such complex geological settings. However, our attention in this research
is particularly directed towards finding appropriate simulation techniques suited
for simulation of fault reactivation in faulted poroelastic media. This deliberate
focus guided our method selection, ensuring that the computational approach
chosen aligns well with the unique characteristics and challenges presented by the
heterogeneous, heavily-faulted poroelastic reservoir under investigation.

In the first attempt, a finite-volume based embedded numerical method is chosen.
This selection is based on the following lines of reason:

• The finite volume method is used for discretising the equations for flow and
mechanics. The choice of finite volume is to calculate the mass and stresses to
be locally conservative.
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• The domain of interest is a heavily faulted media. This gave weight to the
idea of using a computational method which relies on embedded meshing for
the faults. In the embedded method used here, a staggered grid is considered
for pressure and displacement. The mesh for the matrix does not conform to
the faults. The faults are gridded independently with one additional degree of
freedom per fault element inside each matrix grid block.

• The scale of the simulation is field-scale. This motivates the use of a method
that is computationally efficient. Bi-linear basis functions are chosen for the
finite volume approach. These bi-linear functions are relatively easily integrated
and differentiated analytically over the control volumes. This eliminates the
need for numerical differentiation and integration in the implementation of
the method.

The sEFVM is developed based on the framework suggested by Deb and Jenny
(2017) for the XFVM [65]. The name "enhanced" is used in this study instead of
"extended", i.e. sEFVM instead of XFVM. This does not suggest that the sEFVM is
an entirely new method and only aims to differentiate between the finite volume
method and the extended finite element method, i.e. XFEM [63]. Some variations in
implementation between the XFVM and sEFVM exist and these are outlined in this
chapter.

In EFVM, fault displacement (i.e. the slip) is included in the finite-volume
basis functions with the use of a modified form of the Heaviside function. The
EFVM method is tested for order of accuracy and compared with known cases
with analytical solutions (Terzaghi and Mandel [101]) and an available simulator for
fractured and deformable porous media (Porepy) [118], and another finite-volume
based numerical simulator (collocated FVM [112, 121]). It is observed that the slip
and stress profiles have oscillations for certain test cases. These oscillations would
be problematic for situations where faults are closer to the threshold for slip. To
assist with this, a post-processing smoothing step is added. Furthermore, it is
observed that slip should be found in a sequentially implicit order. This would
mean to estimate which nodes slip according to the stresses on the fault, find the
slip and check to ensure the estimate is correct. The final development is called
the Smoothed Enhanced Finite Volume Method or sEFVM. sEFVM is a fully coupled
fully implicit solver which shows high promise for modeling deformation, pressure
and slip in heterogeneous faulted poroelastic media. This method is quite fast and
relatively efficient to implement [99].

However, sEFVM has limited accuracy in the simulation of slip profiles in problems
with a discontinuous stress profiles. These are common for the cases of faulted,
depleted reservoirs with offsets. One of such test cases is modelled. In the setup,
a fault cuts across a depleting reservoir with an offset. Analytical solutions for
calculating the stresses and the slip along the fault undergoing depletion exist [80,
95]. These analytical solution show that the shear stress profile is discontinuous
with infinite peaks corresponding to the reservoir offset points. The infinite peaks
are not captured closely by sEFVM and this poses a challenge when estimating the
slip profile [112].
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Given the precision of the analytical method in capturing the discontinuities, a
semi-analytical method is developed next. The available analytical expressions are
extended to be solved over the sEFVM computational domain. This allows for
accurate estimation of stress and slip over the faults. The semi-analytical approach
relies on simplification of the heterogeneities, but it could capture the growth of the
slip patch profiles with depletion in the field. The results are used to find the onset
of nucleation for seismic slip and seismic moments for the considered configurations
relevant to the Groningen gas field.

The semi-analytical method is much faster than sEFVM because in sEFVM, large
systems of equation are being solved in a fully coupled fully implicit manner. This is
a computationally expensive step. Another reason is that the semi-analytical solver
does not solve for unknowns in the entire mesh, it finds depletion-induced stresses
affecting the fault and the consequent slip profile based on the cells undergoing
depletion and cells along the fault. Note that this makes it somewhat like a boundary
element method (BEM).

Given the superior computational efficiency and precision of the semi-analytical
method, it is used to perform a sensitivity analyses on the most influential parameters
in the study of induced seismicity in the Groningen field. These parameters are
identified from literature as the fault angle, fault throw, frictional properties and
reservoir thickness. The goal of this evaluation is to demonstrate the applicability
of the semi-analytical method to a wide range of systems. Another intention is to
provide further insight into the simulated behaviors under various configurations of
the system. The findings of the sensitivity analyses are analyzed and where possible,
compared with other reports. Previous studies by van den Bogert [76, 77], Buijze
[102] and Buijze et. al. [72, 78, 106] collectively provided invaluable insights into
the identification of critical sensitivity parameters and their anticipated impact on
induced seismicity. The findings of these studies were compared with the results
obtained from the sensitivity analysis performed using the semi-analytical method.
A brief summary of the results of the sensitivity analyses is as follows:

• The effect of fault angle on induced seismicity is studied for a wide range
of fault dip angles between 30 to 90 degrees. This analysis shows that the
shallowest and steepest fault angles which are reactivated, nucleate latest and
at higher depletion pressures. The mid-range fault angles between 55 to 75
degrees more readily nucleate at lower depletion pressures. This study shows
that the magnitude of the seismic moment is higher for shallower fault angles.

• The study of fault throw shows a decrease in the magnitude of the seismic
moment with increasing offset. However, faults with higher offsets nucleate at
lower depletion pressures.

• The frictional behavior of the faults is also studied. The static friction
coefficient is altered while maintaining the dynamic friction coefficient and
critical slip distance values. The results show the magnitude of the seismic
moment increases with increasing friction coefficient for all fault angles.
Faults with higher static friction coefficients nucleate later, at higher depletion
pressures.
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• Stronger slip-weakening friction laws are studied by considering a range for the
dynamic friction coefficient while maintaining the static friction coefficient and
the critical slip distance. It is shown that nucleation occurs at smaller depletion
pressure when dynamic friction coefficient is smaller. The corresponding
magnitude of the seismic moment is larger for smaller dynamic friction
coefficients.

• In another set of simulations, the slope of the linear slip weakening relationship
is maintained while changing the dynamic friction coefficient and the critical
slip distance. These simulations show a decrease in the magnitude of the
seismic moment with increase in the dynamic friction coefficient. The change
in the nucleation pressure is unaffected by the friction coefficient at first but
later shows an increase with increasing dynamic friction coefficient.

• Reservoir thickness does not affect the nucleation pressure. Reservoir thickness
has a weak effect on the magnitude of the seismic moment. Thicker reservoirs
have slightly higher magnitude of the seismic moment.

• The sensitivity analyses unfold cases where a run-away rupture can occur.
This is studied by simulating a range for the static friction coefficient and
fault angles while observing the initial in-situ stresses. This analysis provides a
minimum range for the friction coefficient, after-which instability occurs.

An important element of the semi-analytical and hybrid approaches is the use
of the Uenishi and Rice (2003) stability criterion [96] for the nucleation length,
and the associated nucleation pressure, of a fault. This criterion is only valid for
one fault with a single slip patch. It was observed in the results of the sensitivity
analysis, that for the case of faults with offsets larger than a threshold (80% for the
base case parameters), the results of the semi-analytical method become unreliable.
Furthermore, the use of this criterion was considered for multi-fault setups. This
is also expected to include errors as validity of the Uenishi and Rice (2003) for
multi-fault systems is uncertain.

The semi-analytical method could is used to simulate fault slip before fault
nucleation. In a multi-fault setup, means the simulation only continues until the
first instance of nucleation is observed. This inhibits the use of the semi-analytical
method for more practical test cases. This motivates the extension of the
semi-analytical model to the hybrid method.

The hybrid method is an extension of the semi-analytical method and sEFVM.
The hybrid method assumes the nucleated fault has a friction coefficient equivalent
to the dynamic friction coefficient. Following nucleation, the nucleated fault slips
according to this lower friction coefficient. This can result in large slip patches
for the nucleated fault. This large slip patch can potentially alter the stress field
far enough to affect other faults. In the hybrid method, these post-seismic stress
perturbations are incorporated numerically using sEFVM. These perturbations and
their effect on the fault slip and nucleation are analyzed.

It should be noted that also the hybrid model uses the Uenishi and Rice (2003) for
the determination of the nucleation length [96].
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However, this criteria is only valid for a single slip patch in a single fault. Further
research is required to overcome this limitation.

A realistic model for the Groningen gas field is developed based on the seismic
velocity model of the Groningen field. A 2D snippet from this model is used to
evaluate the applicability of the hybrid method. This example demonstrates its
applicability to multi-fault systems.

5.2. SUGGESTIONS FOR THE FUTURE
The following suggestions are made for the continuation of this work:

• An assumption of the semi-analytical and hybrid methods developed in this
study is the lack of interaction between the slip patches of a single fault. In
reality, the slip patches do influence each other [98]. Numerical simulators
already incorporate this effect given the coupling of the stresses in the system.
Ignoring the effect of fault patches on each other will result in less accurate
predictions when the patches have grown closer. A further development to this
work could be the incorporation of slip patch interactions in the underlying
analytical expressions embedded in the semi-analytical and hybrid methods.
This would then also require a modification of the Uenishi and Rice (2003)
stability criterion [96] to make it suitable for multiple patches and multiple
faults.

• Another assumption of the semi-analytical and hybrid method was homo-
geneous geomechanical properties (e.g. Lame constants) throughout the
entire system. This is because the underlying analytical expressions were
developed based on this simplifying assumption [95]. In future work, analytical
expressions which can address the effect of heterogeneity in geomechanical
properties can be used to replace the current analytical formulations to allow
for more flexibility in introducing layer-dependent heterogeneity in the system.

• The results of the hybrid method showed that the rupture of a fault can
influence the nucleation pressure of a neighbouring fault. However, this effect
was not thoroughly studied. The magnitude of this effect can be different for
various fault angles, distances, orientations etc. The results also demonstrate
that the geometry of the reservoir itself (which follows the trend of the faults
in terms of the offsets they can have) is an important parameter. A study can
be performed to better understand when the effect of a rupture of a fault can
be concerning to nearby faults and how large this influence is in the study of
induced seismicity.





A
CONVERSION EQUATIONS FOR

GEOMECHANICAL CONSTANTS

Geomechanical properties of rock are one of the most important properties that repeat-
edly appear in equations all throughout this study. These properties are defined with
constants. Many geomechanical properties are related to each other. The conversions
relevant in this study are shown here. These conversions were reported by [101, 127].

G = ϱsV 2
s (A.1a)

λ= ϱsV 2
p −2G (A.1b)

K =λ+ 2G

3
(A.1c)

E = 9Kλ

3K +G
(A.1d)

ν= λ

2(λ+G)
(A.1e)

Kv = 2G
1−ν

1−2ν
(A.1f)

where ϱs is the seismic density, Vs is the seismic s-wave velocity, Vp is the seismic p-
wave velocity, G is the shear modulus (also known as the second Lame parameter), λ is
the first Lame parameter, K is the bulk modulus, E is Young’s modulus, ν is the Poisson
ratio and Kv is the uni-axial vertical stiffness factor.
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B
THE GRONINGEN FIELD DATA

This section presents essential data from the Groningen field relevant to the study. It
explores the basic geology of the field, detailing the different layers that comprise the
overburden, underburden, and the reservoir. The section also includes an overview of
the field’s pressure history and its future projections. A concise summary regarding the
characteristics of faults in the Groningen field is provided. The discussion further ad-
dresses the behavior of these faults in terms of friction across the various geological lay-
ers.

B.0.1. GENERAL GEOLOGY

The gas producing formation in the Groningen field is the Rotliegend Slochteren sand-
stone. This formation has a thickness between 150 m to 200 m. The reservoir is overlain
by the Basal Zechstein anhydrite-carbonate caprock, which has a thickness of about 50
m. Between the caprock and the Rotliegend reservoir, there is an impermeable overlying
layer of claystone called the Ten Boer. The thickness of this layer is between 0 m to 50
m. Above the caprock lies a huge Zechstein salt layer with a thickness between 600 m
to 1000 m. Below the reservoir is the source rock which is made of Upper carboniferous
shale, silt-stone and coal layers.

The reservoir lies at depths in the range of 2 km to 4 km [7]. The reservoir quality
of Rotliegend sediments from the Groningen field has been measured on thousands of
core plugs. Porosity typically ranges from 10% to 24% and permeability from 1 mD to
1000 mD, but lower and higher values have also been measured. Early mapping of the
field in the 1960s is based on a 2D grid of seismic, and is clearly influenced by the data
quality achievable then. In the Groningen field, it is not straightforward to obtain good
data quality below the salt of the Zechstein Formation. Since the late 1980s the field has
been fully covered by 3D data with several cycles of reprocessing that have improved the
quality of the data considerably. The the Groningen field is affected by many normal
(extensional) faults. The main fault trend affecting the field is NNW–SSE. Other fault
trends run E–W and N–S. The highest density of faults is in the southern sector of the
field [9].
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B.0.2. RESERVOIR PRESSURE

Large parts of the Groningen reservoir are in good pressure communication. This indi-
cates that most faults are not barriers to gas flow. However, at one point it was observed
that the pressure measurements in the southwest of the field were lagging which show
signs of compartmentalization in that region of the field. Initial reservoir pressures in the
field is around of 34.6 MPa at a reference depth of 2875 m. This pressure was hydrostatic
and virtually constant across the field [7].

The Groningen field is produced primarily under gas expansion drive but extensive
aquifers interconnect with the field, potentially offering modest pressure support. Ad-
ditionally, minor pressure support arises due to volume reduction resulting from com-
paction. In the initial decade of production, the majority of gas extraction originated
from clusters situated in the south of the field resulting in the most significant pressure
reduction in that region. During the 1970s, production from the northern sectors mit-
igated these imbalances. Since 2014, production limits are imposed on select northern
clusters, consequently exacerbating the pressure imbalance [7].

A history and forecast for the pressure of the Groningen gas field is shown in Figure B.1
[128]. This image shows a minimum and maximum range predicted for the pressure be-
ginning from 1960 when production started to 2080. This prediction is calculated based
on reservoir simulation models that are calibrated with the regularly measured pressures
in the production wells and the amount of gas, condensate and water produced over
time. There are two curves in this figure: the minimum corresponds to the south of the
field and the maximum pressures to the north of the field. According to this image, pres-
sure in the Groningen field will eventually stabilize following the closure of the field to
production.

0 20 40 60 80 100 120
-30

-20

-10

0

Figure B.1.: Reproduced plot of the Groningen gas field pressure history and forecast
based on data from [128]. Time is counted in years from the beginning of
production in 1960 to year 2080.

B.0.3. FAULTS IN THE GRONINGEN FIELD

Figure B.2 illustrates an areal map of the Groningen field, highlighting the complex net-
work of faults within the region.
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Figure 2.8  Sealing factor multipliers of fault group that were used as matching parameters in the history match, black 

faults are fully sealing. Other colours are only indicating different fault groups and no sealing factor value 

The history match quality from resulting runs was assessed using 3 criteria (see 3 axes scatter plot on Figure 2.9): 

 Pressure mismatch (simulated and measured SPTG at well locations) 

 PNL mismatch (simulated and measured water rise at selected well locations) 

 Subsidence mismatch (simulated and measured subsidence across the field) 

Figure B.2.: Areal view of the Groningen field demonstrating the intricate map of faults
across the field [129].

Properties of these faults, such as transmissibility and slip resistance, can exhibit varia-
tions both across the field and along a fault itself. For example, friction coefficient differs
per geological layer in the Groningen field. The static friction coefficients measured in
the lab for different geological layer in the Groningen field are shown in Table B.1. The
values of Table B.1 were measured assuming an effective normal stress of 40 MPa, pore
fluid pressure of 15 MPa, reservoir temperature of 100 Celsius and sliding velocities in
the range of 0.1−10µ m/s

One of the friction models introduced in this study is the slip rate-dependent friction
model described in Section 2.6.2. Th slip rate-dependent friction model (Equation 2.29
has two empirical constants (i.e. A and B) that are found with lab testing. Values for
these constants are reported in literature for the Groningen field [105]. Table B.2 shows
the parameters for the slip rate-dependent friction model for various geological layers in
the Groningen field.
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Table B.1.: Friction coefficients of the Groningen field formations as reported by [105].

f or mati on mi ni mum mean maxi mum
Basal Zechstein 0.63 - 0.66

Ten Boer claystone 0.35 0.37 0.38
Slochteren sandstone 0.59 0.6 0.62

Carboniferous 0.49 0.5

Table B.2.: Ranges for the coefficients of Equation 2.29 for various formations in the
Groningen field. The ranges for V0 is 0.1-10 µm/s in these measurements.
These values were deported by [105].

formation A[-] B [-] δ [mm]

Basal Zechstein 0.0021 – 0.0131 -0.0018 – 0.0047 0.0001 – 2.0848
Ten Boer claystone 0.0003 – 0.0037 – 0.0034 – 0.0010 0.0001 – 0.0338

Slochteren sandstone 0.0055 – 0.0311 0.0031 – 0.0282 0.0022 – 0.1749
Carboniferous 0.0021 – 0.0131 -0.0018 – 0.0047 0.0001 – 2.0848

The lab study by [105] on the slip rate-dependent friction model for the Groningen
field faults showed that most formations in the Groningen field have velocity-strengthening
behavior besides the Basal Zechstein. The Slochteren sandstone, Ten Boer clay-stone
and Carboniferous shale formations show velocity strengthening behavior.

The behavior of the Basal Zechstein is different from other formations. Where salinity
is low, this layer demonstrates both velocity weakening and strengthening behavior. For
highly saline tests it shows velocity strengthening behavior. Another factor in friction
of the Basal Zechstein is the range of the slip velocity which affects the friction behav-
ior. Overall, the Basal Zechstein caprock has highest frictional strength and weakening.
This means that the layers at the reservoir top (Basal Zechstein) which are made up of
anhydrite-carbonate are most likely to have accelerating slip. This translates to most risk
for induced seismicity.

The conclusions of [105] indicate that the faults which cut through Basal Zechstein
(near the top of the reservoir) have the highest potential for slip. This is because 50:50
composition of these two materials in the gouge has velocity weakening behavior. How-
ever, they also report that earthquakes are reported to be centered all across the reser-
voir, not necessarily to the top.
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A REALISTIC GEOMECHANICAL

MODEL FOR THE GRONINGEN FIELD

An interesting application of the computation methods developed in this study is simula-
tion of fault reactivation in more realistic models of the Groningen field. This requires a
realistic geomechanical model for the field.

A field-scale geomechanical model for the Groningen field was not publicly available. In
this section a brief overview is provided on how a representative geomechanical model was
developed for the Groningen field.

NAM has publicly shared a geological model for the Groningen field. This model in-
cludes three dimensional horizon data for the reservoir and surrounding formations, a
fault map, well data and seismic data [130]. This model can be accessed using Petrel®

software [131]. This software was used to analyze the model. Figure C.1 shows a 2D im-
age from the Rotliegend reservoir horizon (between 3000 to 4000 sub-sea meters) in the
Groningen field.

Figure C.1 shows a vertical side-view of the model from the west side of the field. This
figure shows the depths of the horizons included in the model.

As seen in Figure C.2, the model covers the reservoir layers and some of the overbur-
den and underburden. Thus the shallower surface layers, and the deeper depths of the
underburden are not included in this shared reservoir model. However, an encourag-
ing aspect of the model is that it contains a map of faults in the Groningen field. This is
shown in Figure C.3.

The geological model is found limited with respect to the requirements for the geome-
chanical intended in this study due to the following reasons

• The data in the geological model does not include geomechanical properties for
the layers. For example, the values for the Lame parameters are required for the
estimation of deformation but are missing.

• The formation horizons included in the model are limited to the reservoir forma-
tion and some of the neighbouring layers. Therefore, shallower and deeper depths
are entirely missing in the model.
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Figure C.1.: Top view image from the Rotliegend horizon in the Groningen reservoir. This
image is extracted from the field’s shared model [130].

Figure C.3.: Fault map for the Groningen reservoir model: a horizontal cross section
(top) and in 3D (bottom). This image is extracted from the fault model
shared in [130].
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Figure C.2.: A vertical side-view image from the horizons in the Groningen reservoir
model. This image is extracted from the field’s shared model [130].

Recognizing the limits of the existing geological model, a representative geomechani-
cal model is created for the Groningen field. For this purpose, a seismic velocity model
for the Groningen field is used [132]. This velocity model contains the following infor-
mation:

• Horizon depths for formations in the Groningen field. This data comes in the for-
mat of sub-sea depths versus location (identified with geographical coordinates).

• The horizon data covers depths from surface elevation, down to a sub-sea depth
of 4500 m.

• This data separates the upper north sea and the lower north sea. This is followed
by a chalk formation. The data for Rijnland, Jurassic and Triassic formations is
summarized into one. It is mentioned that this is because the sonic logs for these
formations showed little variability. This is followed by a Zechstein Halite layer, a
Zechstein Anhydrite layer, followed by another Zechstein Halite and Zechstein An-
hydrite layers. The Rotliegend reservoir is next. The last formation after Rotliegend
is the Carboniferous.

• The p-wave, s-wave and density model is provided for each formation.
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The models can assign a constant value to a layer, or a function. These functions
can depend on depth and/or other geomechanical parameters [132].

The geomechanical model used in this study was created according to the following
procedure.

Algorithm 7: Algorithm for generating a realistic geomechanical model for the
Groningen field

Result: [λ,G ,ν,E ] and fault placement
1 The horizon depth data for the 11 horizons were imported into Petrel® software

[131]. This data contain x-y coordinates and depths ;
2 The data points were interpolated to create surfaces for the horizons. ;
3 The system was gridded with a 3D mesh with respect to the defined horizons and

the lateral extents of the data ;
4 The p-wave, s-wave and density was allocated to each formation based on the

Groningen velocity model described in [132]. For some formations, a constant
value is assigned to the entire formation for the p-wave, s-wave and density. For
others, functions are considered. These functions can depend on depth, have
multipliers, they can be a function of another seismic property or require
addition of location-dependent constants. ;

5 Other geomechanical properties such as the first and second Lame parameters,
the Poisson ratio, Young’s modulus, etc. were obtained based on the p-wave,
s-wave and density models by conversions listed in Appendix A;

6 Faults are extracted from the original geological petrel model of the Groningen
field [130] and loaded over the geomechanical model created here;

Figure C.4 shows the loaded data points for only one horizon: the Rotliegend horizon.
The top and bottom surfaces show surface elevation and a depth of 4500 m sub-sea.
Given the density of the data, it may resemble a surface at some points. However, this
data is point based and requires interpolation for estimation of a surface.

The interpolated surface for Rotliegend horizon is shown in Figure C.5. This process
is repeated for all the other horizons. The algorithm used here to make surfaces is based
on the closest neighbour method. In this method, the value for a cell is assigned based
on the value of the data point closest to it.

The surfaces created for all horizons are used to create a 3D mesh. The mesh is shown
in Figure C.6. This mesh has 127× 117× 100 grid cells in the x-y-z directions totalling
148.6 million cells.

Next, the models for seismic velocities and density are assigned to each layer. Each
layer is defined between two horizons and the cell values are determined based on the
models reported in [132]. The results for one property, the density, is shown in Figure C.7.
Similar curves are obtained for the s-wave and p-wave velocities. They are then used to
find other geomechanical properties based on conversion formulae.

Following the creation of a geomechanical model, the fault map from the original geo-
logical model is loaded. Figure C.8 shows a 2D cross section of the first Lame parameter
(i.e. λ) with the faults.
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Figure C.4.: Plot of point data for the Rotliegend horizon based on horizon data from
[132].

The cross section is created by running a 180 azimuth angle intersection plane passing
through Slochteren-4 well. Other 2D maps could easily be extracted by changing this
origin and angle. In this figure, the Rotliegend reservoir can be seen with a darker shade
of blue in the −3000 m to −3500 m depth range. The reservoir is overlaid by a thinner
layer of salt shown in red.

One of the issues in the developed model is the miss-match between the fault model
and the geometry of the layers. The extension of the faults above and below the reservoir
layer also seem unrealistic. Large extension of a majority of the faults above the Basal
Zechstein layer is not expected but observed in Figure C.8. The importance of improved
study of fault maps in the Groningen field has been outlined in earlier research. In 2017,
Kortekaas and Jaarsma used an ant-tracking method for improved fault definition in the
Groningen field based on seismic data [124].

In the current study, the fault location was adjusted manually to better honor the ge-
ometry of the layers. The fault top was confined to the salt layer above the reservoir. The
fault was allowed to run deeper into the underlying carboniferous layer. These adjust-
ments are implemented on the 2D map of Figure C.8. The results are shown in Figure C.9.
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Figure C.5.: An interpolated surface for the Rotliegend horizon based on the data points
of Figure C.4.

This figure is obtained by digitizing Figure C.8, making the correct adjustments with re-
spect to faults and scaling it down to the desired mesh resolution for the simulation of
fault slip.
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Figure C.6.: The 3D mesh created for the Groningen field model based on horizon sur-
faces similar to Figure C.4
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Figure C.7.: The 3D mesh created for the Groningen field model based on horizon sur-
faces
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Figure C.8.: A cross-section showing a 2D map of the first Lame parameter for various
layers and the location of the faults along the layers.
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Figure C.9.: 2D cross section for the First Lame parameter after fault adjustments.



REFERENCES

[1] R. Van Eijs, F. Mulders, M. Nepveu, C. Kenter, and B. Scheffers. “Correlation be-
tween hydrocarbon reservoir properties and induced seismicity in the Nether-
lands”. In: Engineering Geology 84.3-4 (2006), pp. 99–111.

[2] J. J. Bommer, H. Crowley, and R. Pinho. “A risk-mitigation approach to the man-
agement of induced seismicity”. In: Journal of Seismology 19 (2015), pp. 623–646.

[3] K. Stroebe, B. Kanis, J. Richardson, F. Oldersma, J. Broer, F. Greven, and T. Postmes.
“Chronic disaster impact: the long-term psychological and physical health con-
sequences of housing damage due to induced earthquakes”. In: BMJ open 11.5
(2021), e040710.

[4] S. Mugnano, F. Carnelli, and S. Zizzari. “The recovery strategy of second home-
owners and tourists after a disaster: insights from the 2016 central Italy earth-
quakes”. In: Earthquake risk perception, communication and mitigation strate-
gies across Europe, Il Sileno Edizioni, Geographies of the Anthropocene book series,
Rende 2.2 (2019), pp. 267–284.

[5] R. T. Porter, A. Striolo, H. Mahgerefteh, and J. Faure Walker. “Addressing the risks
of induced seismicity in subsurface energy operations”. In: Wiley Interdisciplinary
Reviews: Energy and Environment 8.2 (2019), e324.

[6] J. De Waal, A. Muntendam-Bos, and J. Roest. “From checking deterministic pre-
dictions to probabilities, scenarios and control loops for regulatory supervision”.
In: Netherlands Journal of Geosciences 96.5 (2017), s17–s25.

[7] NAM. NAM, ambient aware and participating in society. URL: https://www.
nam.nl/english-information.html. (accessed: 30.10.2020).

[8] B. Vogelaar, S. Osinga, D. Kraaijpoel, M. Pluymaekers, J. Breunese, and W. van
Driel. “Publieke Seismische Dreigings-en Risicoanalyse Groningen gasveld 2021”.
In: (2021).

[9] J. De Jager and C. Visser. “Geology of the Groningen field–an overview”. In: Nether-
lands Journal of Geosciences 96.5 (2017), s3–s15.

[10] F. Holz, H. Brauers, P. M. Richter, and T. Roobeek. “Shaking Dutch grounds won’t
shatter the European gas market”. In: Energy Economics 64 (2017), pp. 520–529.

[11] M. Mulder and P. Perey. “Gas production and earthquakes in Groningen; reflec-
tion on economic and social consequences”. In: Centre for Energy Economics Re-
search (CEER), Policy Papers 3 (2018).

[12] K. van Thienen-Visser and J. Breunese. “Induced seismicity of the Groningen
gas field: History and recent developments”. In: The Leading Edge 34.6 (2015),
pp. 664–671.

147

https://www.nam.nl/english-information.html
https://www.nam.nl/english-information.html


C

148 REFERENCES

[13] A. Muntendam-Bos and N. Grobbe. “Data-driven spatiotemporal assessment of
the event-size distribution of the Groningen extraction-induced seismicity cata-
logue”. In: Scientific Reports 12.1 (2022), p. 10119.

[14] C. Vlek. “Reflections and Some Questions about Assessing the Maximum Pos-
sible Earthquake in the Long-Exploited Groningen Gas Field”. In: Seismological
Research Letters 94.5 (2023), pp. 2469–2478.

[15] M. D. Zoback. Reservoir geomechanics. Cambridge University Press, 2010.

[16] P. J. Phillips and M. F. Wheeler. “A coupling of mixed and continuous Galerkin fi-
nite element methods for poroelasticity I: the continuous in time case”. In: Com-
putational Geosciences 11.2 (2007), p. 131.

[17] Z. P. Bažant, M. Salviato, V. T. Chau, H. Viswanathan, and A. Zubelewicz. “Why
fracking works”. In: Journal of Applied Mechanics 81.10 (2014).

[18] R. A. Morton, J. C. Bernier, and J. A. Barras. “Evidence of regional subsidence and
associated interior wetland loss induced by hydrocarbon production, Gulf Coast
region, USA”. In: Environmental Geology 50.2 (2006), p. 261.

[19] M. Grant. Geothermal reservoir engineering. Elsevier, 2013.

[20] K. S. Lackner. “A guide to CO2 sequestration”. In: Science 300.5626 (2003), pp. 1677–
1678.

[21] S. Bauer, C. Beyer, F. Dethlefsen, P. Dietrich, R. Duttmann, M. Ebert, V. Feeser, U.
Görke, R. Köber, O. Kolditz, et al. “Impacts of the use of the geological subsurface
for energy storage: an investigation concept”. In: Environmental earth sciences
70.8 (2013), pp. 3935–3943.

[22] F. Zhang, P. Zhao, M. Niu, and J. Maddy. “The survey of key technologies in hydro-
gen energy storage”. In: International Journal of Hydrogen Energy 41.33 (2016),
pp. 14535–14552.

[23] N. R. Council et al. Induced seismicity potential in energy technologies. National
Academies Press, 2013.

[24] K. Park. “Stabilization of partitioned solution procedure for pore fluid-soil inter-
action analysis”. In: International Journal for Numerical Methods in Engineering
19.11 (1983), pp. 1669–1673.

[25] O. Zienkiewicz, D. Paul, and A. Chan. “Unconditionally stable staggered solution
procedure for soil-pore fluid interaction problems”. In: International Journal for
Numerical Methods in Engineering 26.5 (1988), pp. 1039–1055.

[26] J. Kim, H. A. Tchelepi, and R. Juanes. “Stability and convergence of sequential
methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits”.
In: Computer Methods in Applied Mechanics and Engineering 200.13-16 (2011),
pp. 1591–1606.

[27] R. W. Lewis, R. W. Lewis, and B. Schrefler. The finite element method in the static
and dynamic deformation and consolidation of porous media. John Wiley & Sons,
1998.



REFERENCES

C

149

[28] O. Zienkiewicz and I. Cormeau. “Visco-plasticity—plasticity and creep in elastic
solids—a unified numerical solution approach”. In: International Journal for Nu-
merical Methods in Engineering 8.4 (1974), pp. 821–845.

[29] K. R. Kumar and H. Hajibeygi. “Multiscale simulation of inelastic creep defor-
mation for geological rocks”. In: Journal of Computational Physics 440 (2021),
p. 110439.

[30] S. Salimzadeh, A. Paluszny, H. M. Nick, and R. W. Zimmerman. “A three-dimensional
coupled thermo-hydro-mechanical model for deformable fractured geothermal
systems”. In: Geothermics 71 (2018), pp. 212–224.

[31] J. W. Both, K. Kumar, J. M. Nordbotten, and F. A. Radu. “The gradient flow struc-
tures of thermo-poro-visco-elastic processes in porous media”. In: arXiv preprint
arXiv:1907.03134 (2019).

[32] J. Byerlee. “Friction of rocks”. In: Rock friction and earthquake prediction. Springer,
1978, pp. 615–626.

[33] Y. Ida. “Cohesive force across the tip of a longitudinal-shear crack and Griffith’s
specific surface energy”. In: Journal of Geophysical Research 77.20 (1972), pp. 3796–
3805.

[34] C. H. Scholz. “Earthquakes and friction laws”. In: Nature 391.6662 (1998), pp. 37–
42.

[35] J. H. Dieterich. “Modeling of rock friction: 1. Experimental results and consti-
tutive equations”. In: Journal of Geophysical Research: Solid Earth 84.B5 (1979),
pp. 2161–2168.

[36] A. Ruina. “Slip instability and state variable friction laws”. In: Journal of Geophys-
ical Research: Solid Earth 88.B12 (1983), pp. 10359–10370.

[37] R. P. Pijnenburg and C. J. Spiers. “Microphysics of Inelastic Deformation in Reser-
voir Sandstones from the Seismogenic Center of the Groningen Gas Field”. In:
Rock Mechanics and Rock Engineering 53.12 (2020), pp. 5301–5328.

[38] A. Niemeijer and C. Spiers. “Velocity dependence of strength and healing be-
haviour in simulated phyllosilicate-bearing fault gouge”. In: Tectonophysics 427.1-
4 (2006), pp. 231–253.

[39] A. Niemeijer and C. Spiers. “A microphysical model for strong velocity weakening
in phyllosilicate-bearing fault gouges”. In: Journal of Geophysical Research: Solid
Earth 112.B10 (2007).

[40] J. Chen and C. J. Spiers. “Rate and state frictional and healing behavior of carbon-
ate fault gouge explained using microphysical model”. In: Journal of Geophysical
Research: Solid Earth 121.12 (2016), pp. 8642–8665.

[41] Z. Reches. “Dynamic Frictional Slip Along Rock Faults”. In: Journal of Tribology
142.12 (2020).

[42] M. Van den Ende, J. Chen, J.-P. Ampuero, and A. Niemeijer. “A comparison be-
tween rate-and-state friction and microphysical models, based on numerical sim-
ulations of fault slip”. In: Tectonophysics 733 (2018), pp. 273–295.



C

150 REFERENCES

[43] B. Baliga, T. Pham, and S. Patankar. “Solution of some two-dimensional incom-
pressible fluid flow and heat transfer problems, using a control volume finite-
element method”. In: Numerical Heat Transfer 6.3 (1983), pp. 263–282.

[44] F. Gaspar, F. Lisbona, and P. Vabishchevich. “Staggered grid discretizations for the
quasi-static Biot’s consolidation problem”. In: Applied numerical mathematics
56.6 (2006), pp. 888–898.

[45] F. Gaspar, F. Lisbona, and P. Vabishchevich. “A finite difference analysis of Biot’s
consolidation model”. In: Applied numerical mathematics 44.4 (2003), pp. 487–
506.

[46] M. Vinokur. “An analysis of finite-difference and finite-volume formulations of
conservation laws”. In: Journal of computational physics 81.1 (1989), pp. 1–52.

[47] J. Peiró and S. Sherwin. “Finite difference, finite element and finite volume meth-
ods for partial differential equations”. In: Handbook of materials modeling. Springer,
2005, pp. 2415–2446.

[48] E. Stein. “History of the finite element method–mathematics meets mechanics–
part I: Engineering developments”. In: The History of Theoretical, Material and
Computational Mechanics-Mathematics Meets Mechanics and Engineering. Springer,
2014, pp. 399–442.

[49] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Ele-
ment Analysis. Dover Publications, 2000.

[50] W. S. Venturini. Boundary element method in geomechanics. Vol. 4. Springer Sci-
ence & Business Media, 2012.

[51] T. B. Thompson and B. J. Meade. “Boundary element methods for earthquake
modeling with realistic 3D geometries”. In: (2019).

[52] Y. Liu, S. Mukherjee, N. Nishimura, M. Schanz, W. Ye, A. Sutradhar, E. Pan, N. A.
Dumont, A. Frangi, and A. Saez. “Recent advances and emerging applications
of the boundary element method”. In: Applied Mechanics Reviews 64.3 (2011),
p. 030802.

[53] M. Rashid. “The arbitrary local mesh replacement method: an alternative to remesh-
ing for crack propagation analysis”. In: Computer Methods in Applied Mechanics
and Engineering 154.1-2 (1998), pp. 133–150.

[54] S. Bosma, H. Hajibeygi, M. Tene, and H. A. Tchelepi. “Multiscale finite volume
method for discrete fracture modeling on unstructured grids (MS-DFM)”. In: Jour-
nal of Computational Physics 351 (2017), pp. 145–164.

[55] L. Li and D. Voskov. “A novel hybrid model for multiphase flow in complex multi-
scale fractured systems”. In: Journal of Petroleum Science and Engineering 203
(2021), p. 108657.

[56] T. T. Garipov, M. Karimi-Fard, and H. A. Tchelepi. “Discrete fracture model for
coupled flow and geomechanics”. In: Computat. Geosci. 20.1 (2016), pp. 149–160.
DOI: 10.1007/s10596-015-9554-z.

https://doi.org/10.1007/s10596-015-9554-z


REFERENCES

C

151

[57] L. Li, S. H. Lee, et al. “Efficient field-scale simulation of black oil in a naturally
fractured reservoir through discrete fracture networks and homogenized media”.
In: SPE Reservoir Evaluation & Engineering 11.04 (2008), pp. 750–758.

[58] R. Löhner, J. R. Cebral, F. E. Camelli, S. Appanaboyina, J. D. Baum, E. L. Mestreau,
and O. A. Soto. “Adaptive embedded and immersed unstructured grid techniques”.
In: Computer Methods in Applied Mechanics and Engineering 197.25-28 (2008),
pp. 2173–2197.

[59] H. Hajibeygi, D. Karvounis, and P. Jenny. “A hierarchical fracture model for the
iterative multiscale finite volume method”. In: Journal of Computational Physics
230.24 (2011), pp. 8729–8743.

[60] M. HosseiniMehr, M. Cusini, C. Vuik, and H. Hajibeygi. “Algebraic dynamic mul-
tilevel method for embedded discrete fracture model (F-ADM)”. In: Journal of
Computational Physics 373 (2018), pp. 324–345.

[61] T. Belytschko, N. Moës, S. Usui, and C. Parimi. “Arbitrary discontinuities in finite
elements”. In: International Journal for Numerical Methods in Engineering 50.4
(2001), pp. 993–1013.

[62] A. Fumagalli and A. Scotti. “An efficient XFEM approximation of Darcy flows in
arbitrarily fractured porous media”. In: Oil & Gas Science and Technology–Revue
d’IFP Energies nouvelles 69.4 (2014), pp. 555–564.

[63] F. Xu, H. Hajibeygi, and L. J. Sluys. “Multiscale extended finite element method
for deformable fractured porous media”. In: Journal of Computational Physics
436 (2021), p. 110287.

[64] R. Deb and P. Jenny. “Finite volume–based modeling of flow-induced shear fail-
ure along fracture manifolds”. In: International Journal for Numerical and Ana-
lytical Methods in Geomechanics 41.18 (2017), pp. 1922–1942.

[65] R. Deb and P. Jenny. “Modeling of shear failure in fractured reservoirs with a
porous matrix”. In: Computational Geosciences 21.5-6 (2017), pp. 1119–1134.

[66] I. Sokolova, M. G. Bastisya, and H. Hajibeygi. “Multiscale finite volume method
for finite-volume-based simulation of poroelasticity”. In: Journal of Computa-
tional Physics 379 (2019), pp. 309–324.

[67] B. Flemisch, I. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Stefansson,
and A. Tatomir. “Benchmarks for single-phase flow in fractured porous media”.
In: Advances in Water Resources 111 (2018), pp. 239–258.

[68] T. Li, D. Han, F. Yang, B. Yu, D. Sun, and J. Wei. “A comparative study on simulating
flow-induced fracture deformation in subsurface media by means of extended
FEM and FVM”. In: Oil & Gas Science and Technology–Revue d’IFP Energies nou-
velles 75 (2020), p. 41.

[69] P. Segall, J.-R. Grasso, and A. Mossop. “Poroelastic stressing and induced seis-
micity near the Lacq gas field, southwestern France”. In: Journal of Geophysical
Research: Solid Earth 99.B8 (1994), pp. 15423–15438.



C

152 REFERENCES

[70] T. T. Garipov, P. Tomin, R. Rin, D. V. Voskov, and H. A. Tchelepi. “Unified thermo-
compositional-mechanical framework for reservoir simulation”. In: Computa-
tional Geosciences 22.4 (2018), pp. 1039–1057.
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