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ABSTRACT: East Africa relies heavily on satellite-based rainfall estimates due to the lack of in situ data. However, satellite
rainfall products often perform poorly in this region. In this study, data from the Trans-African Hydrometeorological Observa-
tory (TAHMO) were used to build a regional rainfall product in East Africa based on the Soil Moisture to Rain (SM2Rain) al-
gorithm. Subsequently, this regional product was merged with a reanalysis product (ERAS) and two microwave (MW )/infrared
(IR)-based rainfall products (IMERG and CHIRPS) based on the Statistical Uncertainty Analysis-Based Precipitation Merging
(SUPER) framework. Within this framework, merging weights are derived from the error variances of the rainfall products de-
termined from quadruple collocation on a pixel-to-pixel basis. The merged and individual products are evaluated using data
from individual TAHMO stations. We tested SUPER with various interproduct dependency assumptions and found that, in
the best-performing configuration, IMERG contributed the most to the merged product, followed by CHIRPS, ERAS, and
SM2Rain. SM2Rain showed performance comparable to other rainfall products but is more useful for detecting the offset of
the rainy season in drier climates and less reliable under wet conditions. The findings indicated that the merged product outper-
forms the individual products in most performance metrics. Additionally, we demonstrated the importance of comparing satel-
lite and ground-measured precipitation time series, alongside evaluating performance metrics. The ultimate goal of this study is
to develop a workflow to enhance the accuracy of rainfall measurements in East Africa by leveraging information from TAHMO
data and different existing products, contributing to the improvement of satellite-based rainfall estimates in East Africa.

KEYWORDS: Africa; Rainfall; Gauges; Remote sensing; Satellite observations; Statistical techniques

1. Introduction The lack of precipitation data in these data-scarce regions can
be overcome by using satellite and reanalysis products for precip-
itation estimation. The advantage of using these products is that
they provide a continuous and spatially extensive coverage of
rainfall data. However, present satellite-derived and reanalysis
rainfall products perform poorly over Africa. One possible rea-
son is that these products are typically developed and tested in
regions with a high density of ground data. Validation studies of
commonly used rainfall products generally observe performance
differences between areas with dense and sparse ground data net-
works (Liu et al. 2024; Beck et al. 2017; Ageet et al. 2022). Higher
gauge density typically correlates with better satellite product per-
formance. This difference may be caused by regional variations in
the relationship between areal and point measurements of rainfall
(Skaugen 1997). Current satellite-derived and reanalysis rainfall
products primarily rely on data from regions with a higher density
of weather stations, as they combine satellite and ground data to
estimate rainfall. Some satellite-based rainfall products are specif-
ically developed for data-scarce areas, such as CHIRPS and Trop-

large areas. Besides, the sparse distribution of gauges negatively ;.. Applications of Meteorology Using Satellite (TAMSAT)
affects their reliability of identifying localized rainfall events, such (Funk et al. 2015b; Maidment et al. 2017). However, the number
as convective rains, which are common in East Africa. ;

Rainfall plays a crucial role in East Africa, particularly as a
determinant of both flood early warning systems and agricul-
tural productivity (Kilavi et al. 2018; MacLeod et al. 2021;
Palmer et al. 2023). East Africa’s predominantly rain-fed agri-
culture relies heavily on timely rainfall for crop development.
Additionally, due to the region’s vulnerability to flash floods,
there is a need for robust early warning systems to mitigate
risks to human lives and livelihoods. Therefore, there is a crit-
ical need for timely and accurate rainfall data in this region.
However, East Africa currently lacks a dense network of rain-
fall radars for making spatial and temporal high-resolution
rainfall maps. Consequently, rain gauges remain the most reli-
able method for measuring rainfall. The limitation of using
solely rain gauges for rainfall mapping is that in most regions, the
number of such rain gauges is small and unevenly distributed,
a situation particularly prevalent in East Africa (Kimani et al.
2017). This makes it difficult to create accurate spatial maps over

of rain gauges from Africa used in these products is limited and
even declining (Dinku 2019), reducing their reliability.
The Trans-African Hydrometeorological Observatory
) Denotes content that is immediately available upon publica- (TAHMO) aims to tackle the ground data gap by installing
tion as open access. and operating a dense network of weather stations in sub-
Saharan Africa (SSA). Currently, TAHMO has installed over
Corresponding author: Vincent Hoogelander, v.hoogelander@ 000 weather stations in SSA, with major concentrations in Ghana
tudelft.nl and Kenya.

DOI: 10.1175/JHM-D-24-0156.1
© 2025 American Meteorological Society. This published article is licensed under the @ !
terms of a Creative Commons Attribution 4.0 International (CC BY 4.0) License X

Brought to you by TU DELFT | Unauthenticated | Downloaded 08/29/25 09:31 AM UTC


https://orcid.org/0009-0006-3485-783X
mailto:v.hoogelander@tudelft.nl
mailto:v.hoogelander@tudelft.nl
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

1064

In this paper, data from TAHMO are used, together with
publicly available satellite data, to develop a workflow to pro-
duce accurate rainfall estimates in East Africa. The workflow
is mainly based on the Statistical Uncertainty Analysis-Based
Precipitation Merging (SUPER) framework, a framework de-
signed by Dong et al. (2022). Within this framework, four dif-
ferent satellite rainfall products are merged using error statistics
for each individual pixel, considering cross-product dependen-
cies. The reason why the SUPER framework is used is because
it does not require gauge data, which is an advantage in data-
sparse regions such as East Africa. The framework requires the
availability of three independent products. To meet this require-
ment, a reanalysis product (ERAS), soil moisture-estimated
product [Soil Moisture to Rain (SM2Rain)], and two satellite
thermal infrared/passive microwave rainfall products IMERG +
CHIRPS) are used. However, the SM2Rain product is not opera-
tionally implemented in the EUMETSAT Operational Hy-
drology and Water Management Satellite Application Facility
(H SAF) framework yet, and its data record is only available
from 2007 until 2022. Therefore, it was also necessary to develop
an operational version of SM2Rain for this region. This paper
presents the methods and results related to the development of
this regional version of SM2Rain and the merged rainfall prod-
uct. This will be done by validating the merged and individual
products against TAHMO station data. Additionally, the analysis
will include an examination of the effect of the number of stations
used in the SM2Rain development and the intermediate steps in
the merging algorithm, as well as a comparison between ground
and satellite data by analyzing individual pixel and point data.
The developed workflow presented in this paper was refined
through an iterative design process.

2. Methods and data

This section describes the study area, the available ground
data, the methodologies used for the regional SM2Rain im-
plementation, the merging algorithm, and the validation of
the different satellite rainfall products.

a. TAHMO stations and study area

The primary study area in this paper covers Kenya, Uganda,
and Rwanda. This region was selected due to the availability of
a relatively dense network of TAHMO stations. Additionally,
another reason for focusing on this region is that the study in-
cludes the results from a workshop held in Nairobi, Kenya,
where scientists from eight countries developed methods for im-
proving rainfall estimates in this region by merging satellite and
ground data. The results of this workshop formed the starting
point of the work presented in this paper. We use data from
2018 to 2022 due to broad data availability across stations in
these years. To expand the coverage of stations, we also in-
cluded a couple of stations located in Northern Tanzania. As
of writing, TAHMO provides hydrometeorological ground data
from a total of about 227 stations in these countries. Rainfall
from TAHMO stations is measured using a drip counter (van de
Giesen et al. 2014), and data are available at a 5-min resolution.
TAHMO has a quality assessment (QA) and quality control
(QCo) team that ensures data quality through cross calibration
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with nearby stations and satellite data. Additionally, we fil-
tered out certain stations and time periods with very dubious
data that the QA/QCo team did not remove. All data have been
aggregated to a daily resolution to match the temporal resolu-
tion of the Advanced Scatterometer (ASCAT) soil moisture
data. We use TAHMO data in both the SM2Rain implementa-
tion and the validation of all satellite rainfall products. For the
validation of SM2Rain, we separate the stations used for cali-
bration and validation by only calibrating for 2 years, allow-
ing us to validate using the remaining 3 years. Figure 1 highlights
the study area and the network of TAHMO stations across the
selected region. In addition to the uniqueness of the dataset,
Schunke et al. (2021) emphasized the applicability of TAHMO
observation data for hydrometeorological applications in the
African context, finding good agreement between TAHMO
data and synoptic stations in Burkina Faso. Similarly, Muita
et al. (2021) found strong correlations between meteorologi-
cal variables measured by TAHMO and a synoptic weather
station in Nairobi.

b. Regional SM2Rain implementation

SM2Rain converts soil moisture data to produce quantita-
tive rainfall estimations. In this paper, we will refer to the re-
gional SM2Rain implementation as SM2Rain as well. It should
be noted that while the algorithm remains the same, the data
used in this version differ from those of the original product de-
veloped by Brocca et al. (2019). While the existing SM2Rain
mainly relies on ERAS data as reference products to optimize
the essential parameters for the global data record, the version
of this study uses ground measurements from TAHMO for the
calibration process.

1) ASCAT DATASET

SM2Rain requires soil moisture data that are assimilated from
satellite observations. In this study, we use the EUMETSAT
H SAF Near-Real-Time Scatterometer Root Zone Soil Mois-
ture Product (RZSM-ASCAT-NRT-10 km/H26), available at a
daily resolution with a spatial scale of 10 km. This dataset con-
sists of soil moisture data at four different soil layers between 0
and 289 cm. In this study, we only use data from the top soil
layer (07 cm). The temporal extent of the H26 product spans
from 8 January 2021 to the present. To include more years of
data, the H141 and H142 products are also used. The H141
product is a reprocessed data record of the soil moisture in the
rootzone from 1992 to 2018, and the H142 product is an exten-
sion of this product from 2019 to 2021. These datasets have the
same characteristics as the H26 product. A more extensive de-
scription of the used datasets can be found in the product
user manuals provided by EUMETSAT (EUMETSAT H
SAF 2021b).

2) ALGORITHM

In this section, we provide a concise overview of the SM2Rain
algorithm. SM2Rain converts changes in the soil moisture con-
tent to rainfall, using basic soil water balance equations:

AS(1)

nz =22 = P = q(0) ~ R() ~ EO) M
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Study area and rainfall classification derived from TAHMO stations (2018-2022)

Latitude

30 32 34 36
Longitude

>1800 mm/year

@ TAHMO station (val)
® TAHMO Station (cal+val)

1500-1800 mm/year

1200-1500 mm/year

900-1200 mm/year

600-900 mm/year

300-600 mm/year

<300 mm/year
40 42

FIG. 1. Locations of selected TAHMO stations in this study, used for SM2Rain calibration and validation of the sat-
ellite rainfall products. The blue shading in the map represents the different regions derived from the rainfall classifi-
cation. SM2Rain is calibrated with “cal + val” stations, and the “val” stations are used for the individual SM2Rain
validation analysis. For the validation of SUPER, we used both cal + val and val stations.

where n is the effective porosity (—), Z is the soil layer depth
(mm), S is the relative soil moisture content (—), ¢ is the time
(days), P(¢) is the rainfall rate (mm day '), ¢(¢) is the percola-
tion and subsurface runoff (mm day '), R(¢) is the overland
runoff rate (mm day '), and E() is the actual evapotranspira-
tion (mm day '). In the SM2Rain algorithm, the overland
runoff is neglected (see Brocca et al. 2019), so that
PU)%nZé§g2+aSOf. )
Here, a (mm day ') and b (—) represent the parameters
that describe the nonlinear relationship between the rate of drain-
age and evaporation combined and the level of soil saturation.
Last, the parameters n and Z are expressed in a single parameter
Z"(mm), which represents the soil water capacity, so that

P(t) = Z" =22 + aS(0)®. (3)

«AS(1)
At

Prior to generating the precipitation time series with Eq. (3),
a modified exponential filter as proposed in Brocca et al. (2013)
is applied to the soil moisture data to reduce soil moisture noise.
This is done using the following equations:
G

— i—1
G~ G, "‘le’MWi ’ “)

where G; is the gain at time step i (—), At is the time differ-
ence (days), and W; is the time constant at day i (days). The
filtered soil moisture data are then calculated with

S+ G(S, = S._)). )

S; fittered = S

And the time constant is updated with
W,=TxS5", (6)

with Gy = 1. By implementing this filter, two additional pa-
rameters, T (days) and ¢ (—), are required in the calibration
process, next to the parameters a, b, and Z". Parameter T rep-
resents the minimum value of W; associated with saturated
soil conditions, whereas c is a parameter that causes W, to in-
crease as the soil moisture content decreases. In other words,
higher values of T and c result in stronger filtering effects.

The five SM2Rain parameters are calibrated by minimizing
the root-mean-square error (RMSE) between the SM2Rain
estimation and the ground data from TAHMO. The parame-
ters are optimized with a truncated Newton (TNC) algorithm
(Dembo and Steihaug 1983). Rather than calibrating at each
individual station, the parameters are calibrated within seven
regions categorized by rainfall classification. These classifica-
tions are derived from TAHMO stations having more than
90% of data in a year, for which the classes are derived from
the mean annual rainfall with TAHMO data from 2018 to 2022.
The classes are extrapolated using a nearest-neighbor ap-
proach. The result of this classification can be found in Fig. 1.
Note that this figure does not represent a long-term climatology
of the region due to the limited time frame of 5 years and the
variability in station availability across different years. As some
stations may be used in 1 year, but not in another, this may ac-
tually lead to the misrepresentation of the true climatology.

For the calibration process, only stations having more than
90% of valid data during the calibration period, spanning
from 2020 to 2021, are considered. These years were selected
as these are relatively a dry and wet year, respectively. In
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total, 110 stations are available for calibration, and their loca-
tions are indicated in Fig. 1. To analyze the effect of the num-
ber of stations used in SM2Rain calibration, an additional
validation analysis is performed by calibrating SM2Rain with
varying numbers of stations. Specifically, the calibrations are
conducted using 10, 25, 50, and 75 stations. This analysis is
performed to assess the extent to which using a larger number
of stations improves the performance of SM2Rain and to de-
termine whether it is beneficial to include as many stations as
possible for optimal accuracy. Among these stations, we en-
sure that at least one station is located in each of the seven
rainfall zones, as derived from the rainfall classification. These
simulations are validated with a standard set of stations for
2018 (80 stations), 2019 (105 stations), and 2022 (126 stations),
each with at least 80% data coverage per year. We emphasize
that data from the selected stations in these years are not in-
cluded in those used for calibration. To minimize the selection
uncertainty, this process is repeated 10 times for each number of
stations used, resulting in a total of 40 calibrations in total for
this test. The validation metrics can be found in section 2d. After
calibrating the parameters at the individual locations of the
selected TAHMO stations, the parameters are assigned to a
0.1° grid that matches the corresponding rain classes. The rain-
fall data are smoothed using a Gaussian filter, using a smoothing
parameter of o = 5, to preserve spatial coherence and continuity
in the rainfall maps. This parameter value is determined based
on the visual inspection of the rainfall maps. After assigning all
SM2Rain parameters to the grid, the rainfall time series are gen-
erated for each individual grid cell using Eq. (3).

c. Merging algorithm

Using the SUPER framework algorithm, the regional SM2Rain
product is merged with a reanalysis product (ERAS) and two
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In this system, o7 is the dataset variance of product i, o7 is the

dataset covariance between product i and j, B,-ZU@ is the signal
variance of product i, 0% is the error variance of product i, and

002, is the interproduct error covariance between i and j.
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satellite thermal infrared (IR)/microwave (MW) rainfall
products [IMERG (IR/MW) and CHIRPS (IR)]. This section
gives a brief overview of this algorithm. A more detailed de-
scription of SUPER can be found in the paper by Dong et al.
(2022).

1) SUPER

The SUPER framework is a merging tool to enhance rain-
fall estimations in regions with limited ground data (Dong
et al. 2022). Within the algorithm, rainfall estimates are made
using the weighted averaging of individual rainfall products.
The weighting factors are based on the error variances of
the products that are derived using quadruple collocation
(QC). Subsequently, a rain/no-rain correction is implemented
using the categorical triple collocation merging (CTC-M)
algorithm.

As a first preprocessing step, all rainfall products are re-
gridded to a 0.1° X 0.1° resolution, using the nearest-neighbor
method for products having a higher resolution. Then, a
monthly correction is applied to all individual products with
CHPclim, a monthly rainfall climatology dataset (Funk et al.
2015a). After preprocessing, the datasets are merged using
merging weight factors derived from QC. QC is a statistical
method used to refine the accuracy of remotely sensed rainfall
products by comparing at least three independent products
(x1, X2, and x3). Other than the commonly used TC (Stoffelen
1998), QC allows for a fourth rainfall product x4, which shares
dependency with another product x;. SUPER uses the QC
error estimator from Gruber et al. (2016). The error varian-
ces of the rainfall products are estimated by using the follow-
ing linear system:

ea &b |

=N eoleoNecBoBoloReoBoBolReol =
=l eolBeoNecBoBol-R-B ool ==
O O O O O OO oo~ o oo
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To get the error variances and interproduct covariance, the
system can be solved using the common least squares solution:

% = (ATA)'ATy, (7
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A more detailed derivation of the least squares solution,
showing how the elements of ¥ are mathematically related to X,
is provided in appendix A. The error covariances of each prod-
uct (indexed by i) are then rescaled to product @ and are subse-
quently used in the final error matrix:

2 2
2 _ 2[Ba%%
Teis = Tl 12 2 (8)
Biog
a2 oo 0 0
€a,s ea eb,s
2
Ueu Ueb X Tep K 0 0
E= 2
0 0 os O
2
0 0 0 o,

Here, the error matrix (E) includes the error variances of
the different products and interproduct error cross correla-
tions (ECCs). Using E, the weight factors of the rainfall prod-
ucts can be determined:

Yyl
i Y

A )

where i, j € [1,..., 4] indicates the rainfall product and e;; are
the elements of the error matrix. The merged precipitation es-
timates are calculated with

N
X, = LA, (10)

where x,, is the merged rainfall estimate and x{ is the scaled
rainfall estimate of product i. Last, the QC-based product-
truth correlation and ECC can be estimated with

2 2
R = Pao6 11
i T 2 2 2 (11)
B.og + og
g_0O
RE, = Sale (12)
0-euo-eb

For a “perfect” rainfall product, R} would be 1, and for
perfectly error-independent products, RY  would be 0.

To enhance the accuracy, the SUPER algorithm applies a
rain/no-rain filter via CTC-M (Dong et al. 2020). This filter re-
quires three independent rainfall products and assesses the clas-
sification skill of capturing rain/no-rain of each product through
CTC. Based on this assessment, the products are merged within
a probabilistic framework to maximize the likelihood of ac-
curate rain/no-rain estimates at every time step, which is then
applied as an additional filter to the merged product from
Eq. (10). This study follows the steps outlined in Dong et al.
(2020, 2022). Likewise, a rain/no-rain threshold of 0.5 mm day !
and a merging parameter of n = 1.5 are used, as suggested in
Dong et al. (2022).
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2) RAINFALL PRODUCTS

As explained in section 2c(1), SUPER requires at least
three independent rainfall products. The study of Chen et al.
(2021) has shown that reanalysis, soil moisture—estimated,
and thermal infrared/passive microwave rainfall products are
relatively independent, which is also confirmed by TC analysis
in the study of Dong et al. (2022). Consequently, these prod-
ucts are well suited for use within the SUPER algorithm
scheme. However, Chen et al. (2021) have tested this assump-
tion solely for Europe, and their analysis mostly focused on
testing the interdependency between SM2Rain and the H
SAF H23 daily precipitation product. Therefore, this assump-
tion is tested again by using various combinations in the QC
analysis. For each combination, both the QC-derived and tradi-
tionally derived product-truth correlations are compared.
“Traditionally derived” refers to deriving correlations using
ground data from TAHMO. Using a combination with wrongly
assumed error independence will result in biased ECC and
product-truth correlations. This test will provide insight in
the validity of the assumptions made. In addition, since the
H26 product relies on the land surface model HTESSEL,
which is also used in ERAS, this may introduce an extra error
dependency between SM2Rain and ERAS. To check this, an
additional QC analysis is conducted in appendix B, using
SM2Rain derived from ASCAT H119/H120 (EUMETSAT
H SAF 2021a), to assess the influence of different soil mois-
ture products on SUPER.

Next to SM2Rain, ERAS5, IMERG (late), and CHIRPS
are chosen as rainfall products for this study. ERAS is a rean-
alysis product providing global atmospheric data. IMERG is
a product from the Global Precipitation Measurement
(GPM) that uses MW and IR data to make rainfall estimates
on a half-hourly resolution. Additionally, CHIRPS is selected
as an additional satellite rainfall product. CHIRPS is based
on IR data and is bias-corrected using monthly data from
ground stations. In the study of Dong et al. (2022), IMERG
and CHIRPS are assumed to have interdependency as these
have both IR-based retrieval. All individual products are
bias corrected on a monthly scale using CHPclim, a monthly
climatology dataset, with corrections applied to each pixel
after regridding CHPclim. Table 1 summarizes the selected
rainfall products used in SUPER.

Figure 2 presents an overview of the total workflow developed
in this study. To summarize, the process is first started with the
regional implementation of SM2Rain. The most important input
datasets for this are the ASCAT soil moisture data and rainfall
data from TAHMO. After calibration per rainfall class using
TNC optimization, parameter grids are made using a nearest-
neighbor method. Subsequently, SM2Rain time series are pro-
duced over the grid. Following this step, SM2Rain, along with
CHIRPS, IMERG, and ERAS, is corrected using CHPclim and
is regridded to a 0.1 grid. Finally, the four rainfall datasets are
merged using the SUPER framework.

d. Validation of satellite rainfall estimates

The rainfall estimates from both the merged product and
the individual rainfall products are validated on a pixel-to-
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TABLE 1. Selected datasets for the merged product.

Spatial resolution Temporal resolution Latency Type Reference
SM2Rain 0.1° 1 day 12h MW Brocca et al. (2019)
ERAS5-Land 0.1° 1h 5 days® Reanalysis Muiloz Sabater et al. (2021)
IMERG late (V06B) 0.1° 30 min 10 h IR + MW Huffman et al. (2019)
CHIRPS (V2.0) 0.05° 1 day 3 weeks IR Funk et al. (2015b)
CHPclim (V1.0) 0.05° 1 month — Climatology Funk et al. (2015a)

“ERAS5-Land is available 5 days after the assimilation, but the final data may be different 2 or 3 months later in case serious errors are

detected.

station basis using the ground data from TAHMO as the
reference dataset. The evaluation is based on the RMSE,
Kling-Gupta efficiency (KGE), mean absolute bias, Spear-
man’s correlation p, probability of detection (POD), false
alarm ratio (FAR), and the Heidke skill score (HSS). The
RMSE is quantified based only on rain events: Data are con-
sidered only when both the station and satellite measure rain-
fall. The POD and FAR metrics measure the product’s ability
to capture true events and the false alarms, while the HSS is
an overall true/false detection metric. An overview of all eval-
uation metrics can be found in Table 2.

The validation is performed by first assessing the mean per-
formance across all stations over the entire period. For this,
only stations having >50% data coverage over the entire pe-
riod (2018-22) are included. Subsequently, annual performance
is analyzed for both daily and monthly resolutions. For this, only
stations having >80% data coverage in the specific year are in-
cluded. The detection abilities of different rainfall intensities are
assessed using the POD, FAR, and HSS.

Additionally, we validate the detection ability of the rainy
season offset. For this, we follow the flexible rainy season defi-
nition as proposed in the study of Seregina et al. (2019). Here,
the rainy season is defined as the period of at least five consec-
utive pentads exceeding a location-specific determined rain-
fall threshold. To determine this, a long climatology is needed
to reliably establish a robust threshold for the onset. A long-
term climatology is not available for TAHMO stations, and
since the period 2018-22 may be too short, we included the
years 2016 and 2017 and considered stations with more than
80% data availability between 2016 and 2022 to derive the

I 1 TAHMO
1 Regional implementation of SM2Rain 1 (2018+2019 + 2022)
[ |
| ASCAT Soil 1
Moisture
I Lo SM2Rain !
] SM2Rain SM2Rain tmeseries 1
1 Calibration parameters |Brocea etal. 1
. TAHMO 2019]
I (zozo+2021) 1
o iy ek e ) \E!;[I":Ilm
|
SM2Rain [r—
Chirps. ~ — s -
IMERG -, processing
ERAS —

most reliable approximation of the threshold possible with
TAHMO data. This resulted in a selection of eight stations in
total. These stations detected 38 rainy seasons altogether for
the period 2018-22. For the validation, we assess whether the
onset of the rainy season detected in different rainfall prod-
ucts aligns with the onset identified by TAHMO, using buffers
of 2, 5, and 15 days. Additionally, we analyze the results sepa-
rately for the four drier stations and four wetter stations by
categorizing them based on their rainfall class. A more de-
tailed overview of the rainy season analysis can be found in
appendix C.

3. Results

This section presents the results from SM2Rain and
SUPER and is organized as follows. First, the calibration re-
sults of the regional SM2Rain implementation are presented in
section 3a. Next, section 3b provides the QC analysis of the SU-
PER framework. Finally, the validation results for all individual
products are presented in section 3c.

a. SM2Rain

Figure 3 illustrates the spatial distribution of SM2Rain pa-
rameters across the region. As a result of the Gaussian filter,
the parameter fields show smoother transitions than the rain-
fall classification of Fig. 1. Parameter a has higher values within
wet regions, while b has higher values in dry areas. These pa-
rameters describe the drainage within the soil water balance. A
higher a indicates more drainage for a given soil moisture con-
tent, and a higher b value implies more sensitive responses to

Validation
i STatE:tEal_lJ;ceTtaTnl;a;aEfsE- .:
I based Precipitation mERging
SM2Rain 1 framework (SUPER) !
reriddded 1 [Dong et al. 2022) 1 TAHMO
I | (z018-2022
m ! Quadruple __ Merging | @ )
IMERG i collocation weights 1 Validation
— 1 i | " precipitat
rec ation
ERAS | & Merging R/NR ™ estimates
Tapidded I (Eq.7) correction |
I
]

FIG. 2. The complete workflow for making rainfall estimates.
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TABLE 2. Performance metrics used for product evaluations. The X; and Y; are the observed and predicted values, respectively, for
the ith day, N is the total number of data points, r is the linear correlation coefficient between X; and Y;, « is the ratio of the
standard deviation between X; and Y, B is the ratio of the mean of X; and Y}, A is the number of true positive predictions (correctly

predicted events), B is the number of false positive predictions

(incorrectly predicted events), C is the number of false negative

predictions (missed events), D is the number of true negative predictions (correctly predicted nonevents), and d; is the difference
between the ranks of the observed and predicted values for the ith data point.

Full name Definition Range Optimal value
RMSE Root-mean-square error 1N 0 to = 0
- 2
RMSE = N;(Xi -Y)
KGE Kling—Gupta efficiency KGE =1 — \/(r _ 1)2 +(a— 1)2 B 1)2 —© to 1 1
Bias Bias 1N — to 0 to = 0
Bias = — >,(Y, — X,)
Nz
p Spearman’s correlation N —1to1l 1
62 d?
p= 1-— i=1
N(N? -1)
POD Probability of detection POD = Oto1l 1
) A+C
FAR False alarm ratio FAR — B Otol 0
A+B
HSS Heidke skill score 2(AD — BC) - to 1 1

HSS

A+ O)(C+D)+(A+B)B+D)

changes in soil moisture. The parameters Z" and 7 have less spa-
tial coherence with respect to wet and dry areas; however, their
values are generally higher in wetter areas. Parameter c is gener-
ally lower in wet areas. Table 3 presents the parameter statistics
from the calibration result for the regional SM2Rain product.
Figure 4 illustrates the impact of varying the number of sta-
tions used for SM2Rain calibration, showing the spread of
performance metrics among stations when comparing differ-
ent SM2Rain calibration settings against TAHMO station
data from different years. It can be observed that there is no
large change in the performance of SM2Rain with increasing
numbers of stations. This indicates the robustness of SM2Rain’s

[p/wiw]

25
2.0,
Z
1.5
1.0

calibration using rainfall classes and suggests that a very dense net-
work of stations is not necessarily needed to improve its perfor-
mance. To support this, Fig. 5 shows that the parameter ranges of
all variables over the pixels do not significantly change when using
a different number of stations in the SM2Rain calibration.
When conducting a quick comparison between the SM2Rain
calibrated with TAHMO versus the “original” SM2Rain prod-
uct (V1.5) (Brocca et al. 2019) in the year 2019 with stations in-
dependent from the calibration years, we find the following
metrics: RMSE (10.85 vs 10.70 mm day ') and KGE (—0.20 vs
—0.41) for daily resolution, and RMSE (2.33 vs 2.94 mm day )
and KGE (—0.44 vs —1.39) for monthly resolution. These

FIG. 3. SM2Rain parameter fields, based on the calibration with TAHMO data from 2019 to 2020. Parameters a, b, and Z" are used to
make rainfall estimates based on the conversion of the soil moisture water balance [Eq. (2)]. Parameters ¢ and T are used in the modified

exponential filter that is applied to the soil moisture data [Eq. (6)].
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TABLE 3. Summary statistics of SM2Rain parameters in this study,
based on the average calibration results over the 5-yr period.

JOURNAL OF HYDROMETEOROLOGY

Parameter (unit) Median Min Max
a (mm day ') 4.70 2.74 10.09
b(—) 291 1.88 4.30
Z*(mm) 35.09 19.76 65.39
T (day) 1.40 0.56 3.00
c(—) 0.34 0.12 0.75

results indicate a small improvement in mean performance met-
rics, suggesting a benefit from incorporating local rain stations
when calibrating rainfall products. Additional validation results
of SM2Rain simulations with ASCAT H119/H120, calibrated
with TAHMO, can be found in appendix B.

b. SUPER

Using Egs. (11) and (12), the QC-based product-truth cor-
relations and ECCs are quantified to test the assumptions un-
derlying the SUPER merging. Figure 6 shows the QC-based
ECC of the different products on a pixel-to-pixel basis from
different QC combinations. Since the absolute value of ECC
cannot theoretically exceed 1, any data from different combi-
nations that exceed this limit are filtered out. From this figure,
it can be seen that combinations (Figs. 6¢c-f) exhibit absolute
ECCs larger than 1, which is physically impossible, indicating
that using these combinations likely result in biased estimates.
Therefore, these combinations are excluded from further
analysis. From the remaining combinations, both CHIRPS-

ROOT MEAN SQUARED ERROR (RMSE)

VOLUME 26

IMERG (Fig. 6a) and ERA5-SM2Rain (Fig. 6b) show posi-
tive ECCs, with higher ECCs observed in drier areas. Gener-
ally, ERA5-SM2Rain has higher ECCs than CHIRPS-
IMERG. Since combinations (Figs. 6a and b) are the only
ones with realistic ECC values, they are considered for further
analysis.

Figure 7 presents maps displaying the spatial distribution of
weight factors A; of each product for combinations (Figs. 7a
and b), together with boxplots of the A; distribution over all
grid cells. For combination (Fig. 7a), ERAS has clearly the
highest total contribution in most regions. The contributions
of both IMERG and CHIRPS are relatively low, as highlighted
in the boxplots of the A; distribution per grid cell. For combina-
tion (Fig. 7b), it is the other way around; IMERG has the high-
est contribution, followed by CHIRPS. However, the difference
between these two is smaller than the difference between
SM2Rain and ERAS in combination (Fig. 7a). Both ERAS
and SM2Rain have significantly lower contributions in com-
bination (Fig. 7b).

For both combinations, the QC-based product-truth correla-
tions are quantified using Eq. (11). The results are summarized
in Table 4. Based on this table, it is observed that the QC-based
Pearson correlations from combination (SM-ER) have a closer
match with the correlations found with TAHMO, compared to
combination (IM-CH). In the study by Chen et al. (2021), some
ECC was also found between SM2Rain and ERAS in Europe,
but this did not lead to large biases in the QC. The ECC be-
tween SM2Rain and ERAS may potentially be caused by the
use of HTESSEL land surface model in both ERAS5 and H26

KLING GUPTA'S EFFICIENCY (KGE)
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! M ’ l Bl 2019 021
. 2022
401 0.0
'_:‘,f 30 ' [} ' ‘ ' (] -0.2
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20 4 Bl 4 3 =
l tl |
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FIG. 4. Validation results of SM2Rain produced with varying numbers of random stations used in calibration. Each calibration setting
was repeated 10 times for a unique set of stations each year. The validation data include 80 stations in 2018, 105 stations in 2019, and

126 stations in 2022.
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FIG. 5. Spread of SM2Rain parameters from 10 calibrations, each using a varying number of randomly selected stations. Each boxplot rep-
resents data points from 10 repeated calibrations times the number of grid points (n = 304 084).

Additionally, we tested both combinations for the rain/no-rain
classification.

soil moisture data. It is important to note that there may be un-
certainties associated with these comparisons due to the rela-
tively limited number of data points. These uncertainties are

S . o c¢. Validation of rainfall products
related to potential biases among the stations, making it chal- f rainfall p

lenging to directly compare the quality QC-derived and tra-
ditionally derived product-truth correlations. We validated
SUPER using both combinations IM-CH(CH-IM) and (SM-ER).

This section presents the outcomes of the validation of
SUPER, SM2Rain, and the other individual rainfall products,
all of which are assessed by comparing pixel data against station

100
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FIG. 6. QC-based ECCs between products using different SUPER configurations. Pixels having [ECC| > 1 are excluded in the maps.
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FIG. 7. Maps of the lambda (merging) weights of the rainfall products in SUPER, together with boxplots showing the distribution of
merging weights across all pixels for each product. (top) IMERG-CHIRPS (IM-CH) error dependency assumption. (bottom) ERA5-

SM2Rain (SM-ER) error dependency assumption.

data. Table 5 shows the performance metrics of all products at
daily scale, considering all stations averaged over the considered
period (2018-22). Among the individual products, SM2Rain
performs best in terms of RMSE and bias, while IMERG has
the highest KGE and Spearman correlation. CHIRPS shows
the highest RMSE and also has the lowest correlation among the
products. ERAS exhibits both the highest absolute bias and the
lowest KGE.

We tested SUPER considering both combinations (IM-CH
and SM-ER) as error-dependent rainfall products with lambda
weights from Fig. 7. For both combinations, we also separately
tested the rain/no-rain classification (CTC-M). We found that

CTC-M using ERAS-IMERG-SM2Rain (HSS = 0.36) is a bet-
ter classifier than ERAS-IMERG-CHIRPS (HSS = 0.27), or
any other possible combination. Therefore, we used this CTC-M
configuration for both SUPER combinations.

SUPER combination SM-ER has comparable RMSE and
correlation to IM-CH, but outperforms IM-CH in terms of
KGE and bias. This combination generally outperforms the
other individual products as well. It has the highest KGE and
the lowest bias. Along with IMERG, it has the highest corre-
lation, and after SM2Rain, it has the lowest RMSE.

Looking at a monthly scale, we found that combination
SM-ER generally outperforms IM-CH, although the differences
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TABLE 4. Mean QC-based and traditionally based product-truth
Pearson’s correlations.

CHIRPS-IMERG ERAS5-SM2Rain TAHMO
SM2Rain 0.78 0.54 0.65
ERAS 0.78 0.55 0.65
IMERG 0.53 0.76 0.73
CHIRPS 0.49 0.71 0.67

between the configurations are small. SUPER outperforms all
individual products in terms of RMSE, KGE, and correlation,
but SM2Rain retains the lowest absolute bias. Notably, CHIRPS
demonstrates a significantly improved performance compared
to the daily resolution, and it has the lowest RMSE and high-
est KGE and correlation after SUPER. This good perfor-
mance is likely attributed to the monthly correction applied
in CHIRPS.

Figure 8 provides a deeper insight into the spread of perfor-
mance among stations and years by showing the boxplots of
different metrics at a daily resolution. Generally, our findings
align with those in Table 5 over the years. However, the figure
highlights a large variability in performance among stations.
Especially for the RMSE and KGE, we observe a skewed dis-
tribution with the median positioned toward the edges of the
box. This suggests that a majority of the stations consistently
match the satellite products, although a minor part exhibits
more variable or poorer performance. Specifically for KGE,
there are a large number of outliers among the stations. This
could also indicate that some stations might be biased com-
pared to the observed pixel average due to various reasons.
ERAS demonstrates a considerable drop in RMSE perfor-
mance in 2022 compared to previous years and other prod-
ucts. This decline is attributed to a substantial increase in bias
during this specific year, which is significantly higher than in
other years. All state-of-the-art rainfall products (ERAS,
CHIRPS, and IMERG) consistently overestimate true rain-
fall, as measured by TAHMO, as indicated by the positive
biases across all years for these products. The correlation re-
mains relatively constant over the years for all products.

For the monthly scale (Fig. 9), we again found relatively
consistent results compared to Table 6. SUPER shows a rela-
tively smaller spread in performance compared to other prod-
ucts. The correlations at the monthly scale are higher compared
to daily resolution, despite the presence of more outliers among
the stations for this metric. The high mean RMSE and bias of
ERAS in Tables 5 and 6 are caused by an outlier in these met-
rics for the year 2022.
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The detection abilities of the rainfall products to identify
specific rainfall intensities are illustrated in Fig. 10. IMERG
and both SUPER combinations perform best in detecting no
rain (<0.5 mm day '). For light rain (0.5-5 mm day '),
SM2Rain has the highest POD. CHIRPS performs poorly in
detecting light rain and generally has the highest number of
rain events when there is no rain measured by TAHMO stations.
IMERG is the best at detecting heavy rainfall (>20 mm day ).
For other intensities, SUPER (SM-ER) has the best detection
abilities, followed by IMERG.

Last, Fig. 11 visualizes the ability of different rainfall prod-
ucts to detect the onset of rainy seasons. A good performance
at a low number of buffer days indicates that the product ac-
curately captures the timing of the rainy season offset. It can
be clearly seen that detection percentages increase signifi-
cantly as the number of buffer days increases. When all eight
stations are considered, CHIRPS and SUPER (ER-SM) show
the highest detection percentages across all buffer days. How-
ever, for the drier stations, SM2Rain has the highest detection
percentage for the smallest buffer, followed by CHIRPS and
SUPER (IR-CH). The SUPER (SM-ER) combination and
CHIRPS exceed 100% detection for a 15-day buffer, suggest-
ing that these products recorded a drop below the threshold
during an ongoing rainy season, followed by a new consecutive
five pentads of threshold exceedance. While IMERG and
ERAS show relatively low detection percentages for dry sta-
tions, they perform better for wet stations, whereas SM2Rain
struggles to detect the rainy seasons of the wet stations.

d. Case studies

By comparing time series from satellite and station meas-
urements, we gain a better understanding of what is actually
happening on the ground rather than relying on validation
metrics only. In this section, we present different case studies
comparing time series data from satellite and station measure-
ments at daily and monthly resolutions across six different sta-
tions (three for daily and three for monthly). For this, only
SUPER, SM2Rain, and IMERG are considered. For SUPER,
we considered combination (SM-ER) assuming error cross
correlation between SM2Rain and ERAS. We have selected
stations based on data availability and their rainfall classifica-
tion, representing dry, medium, and wet areas, as shown in
Fig. 1. To provide a more detailed view, the daily time series fo-
cuses on data from 2020 only, and the monthly time series in-
cludes data from both 2020 and 2021. We arbitrarily selected the
stations for this analysis, although we ensured that they were

TABLE 5. Performance metrics of SUPER, SM2Rain, and other rainfall products on a daily resolution, averaged over all stations and
the entire 5-yr period. The p is the Spearman correlation.

RMSE (mm day ') KGE (—) Bias (mm day ™ }) p
SUPER (IM-CH) 11.44 0.15 —0.30 0.54
SUPER (SM-ER) 11.69 0.26 -0.21 0.55
SM2Rain 10.25 —0.05 -0.26 0.47
ERAS 11.91 -0.14 1.60 0.51
IMERG (late) 12.47 0.22 0.82 0.55
CHIRPS 18.33 0.08 0.73 0.38
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FIG. 8. Yearly performance metrics of SUPER, SM2Rain, and other rainfall products on a point-to-pixel basis on a
daily resolution, spread across all stations considered per year.
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TABLE 6. Performance metrics of SUPER, SM2Rain, and other rainfall products on a monthly resolution, averaged over all stations
and the entire 5-yr period. The p is the Spearman correlation.

RMSE (mm day ") KGE (—) Bias (mm day™ ') p
SUPER (IM-CH) 2.23 0.42 —-0.43 0.64
SUPER (SM-ER) 2.21 0.44 -0.34 0.65
SM2Rain 2.33 0.30 —-0.24 0.57
ERAS 3.38 —-0.05 1.62 0.59
IMERG (late) 2.55 031 0.81 0.62
CHIRPS 2.30 0.36 0.754 0.63

located in dry, medium, and wet areas and verified data avail-
ability for each station. Although the case study period and sta-
tions are used in the calibration of SM2Rain, the main purpose
is to compare rainfall products with TAHMO time series rather
than validate SM2Rain or SUPER. Since the number of stations
did not significantly impact SM2Rain’s performance, excluding
these stations from calibration would likely not have significantly
influenced the results in this section.

The daily time series from TA00023 (dry), TA00679 (me-
dium), TA00317 (wet), and the three satellite-based rainfall
products are presented in Fig. 12. Based on the RMSE and
KGE, we observe that SUPER performs best for the dry and
medium stations, while IMERG has the best performance for
the wet station. Additionally, SM2Rain outperforms IMERG
for the dry station, and its RMSE is lower for the medium
station and comparable to IMERG for the wet station. How-
ever, by examining the time series itself, it can be seen that
SM2Rain clearly fails to capture the intermittent nature of
rainfall during wet conditions, as it more behaves like a soil
moisture product itself. This also relates to the poor perfor-
mance of satellite-derived soil moisture in wet conditions. Un-
der wet conditions, there tend to be more vegetation and
saturated soil, leading to challenges in measuring changes in

soil moisture caused by rainfall (Barrett et al. 2009; Hahn et al.
2021). According to this, SM2Rain seems to be more reliable
in drier conditions.

For the monthly time series (Fig. 13), we selected TA00453
(dry), TA00569 (medium), and TA00274 (wet) as ground sta-
tions. Considering the performance metrics, we see that
SUPER outperforms both SM2Rain and IMERG for all cate-
gories. Based on the time series analysis, it is evident that
SM2Rain is more capable of capturing the monthly time se-
ries compared to the daily time series, even at the wet station.
In the dry season, we observe a small peak of rainfall in
November and December 2020 that the TAHMO station does
not detect. Upon examining the daily time series for this spe-
cific station during these months, the station recorded only very
small rainfall intensities for several days, whereas the satellite
products reported around 3 days with high-intensity events.
This discrepancy could be due to several reasons, such as the
TAHMO station not working properly during this period
or just missing these high-intensity events due to point—
pixel comparison.

Note that these results are just examples at six different sta-
tions. Different stations were selected for daily and monthly
data because we wanted to include more than just three
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FIG. 10. Detection capabilities of all rainfall products across various rainfall intensities, averaged over all stations considered.
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FIG. 11. Detection percentage of rainfall season onset across different datasets for all stations (8), dry stations (4), and wet stations (4)
for 2, 5, and 15 days of buffer. >100% detection indicates that during the rainy season, measured by TAHMO, a drop below the threshold
was recorded by the rainfall product, followed by five consecutive pentads with threshold exceedance.

stations in the analysis. Results may vary at different locations
because of a large number of factors, such as biased stations,
or certain landscapes influencing satellite measurements.
Nevertheless, these findings emphasize the importance of not
relying solely on performance metrics for validating satellite
rainfall products and, more crucially, for their implementation
in operational settings.

4. Discussion

The accuracy of SM2Rain is likely to be influenced by the
choice of soil moisture product as input. Therefore, it might
be worthwhile to test SM2Rain with other available satellite
soil moisture products. We did a small comparison between
the SM2Rain version of this study with SM2Rain V1.5 from

80 80

Brocca et al. (2019). However, the actual influence of imple-
menting TAHMO data can be better assessed when using the
same ASCAT product in both SM2Rain versions. Validation
results of SM2Rain simulations with a comparable ASCAT
product can be found in appendix B. These results suggested
no large differences between the use of both products. Other
examples of soil moisture products that can be used in SM2Rain
include soil moisture data derived from the Soil Moisture
Ocean Salinity (SMOS) mission, which uses SAR data, and the
Soil Moisture Active Passive (SMAP) mission. However, these
products have lower spatiotemporal resolutions compared to
ASCAT. Additionally, high-resolution soil moisture data over
agricultural crops derived from Sentinel-I might be interesting
to consider in the development of SM2Rain (Satalino et al.
2014).
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FIG. 13. Monthly time series of SUPER, SM2Rain, and IMERG vs three TAHMO stations.

Soil moisture data from 2021 onward used in SM2Rain are
derived from the H26 product, while data before 2021 are
generated from H141/142 products. The primary difference
between the data before and after 2021 lies in the type of data
assimilation used, and the historical H141/142 products uses
some offline Land Data Assimilation System (LDAS) data
for configuration, while H26 uses stand-alone surface analysis
for this (Fairbairn et al. 2019). The choice of using this in
H26, compared to previous operational versions, is mainly be-
cause of its computing speed (EUMETSAT H SAF 2021c).
The exact impact of the difference in data assimilation meth-
ods on SM2Rain performance is not clear, however.

Although the original SM2Rain dataset is globally avail-
able, its performance has hardly been tested in East Africa.
As of writing, the study by Boluwade (2020) is the only evalu-
ation of SM2Rain in East Africa that focuses on daily rainfall
validation. They performed a similar evaluation for CHIRPS
and SM2Rain in Uganda and Ghana using TAHMO data as
the reference dataset. Their validation in Uganda used 40
TAHMO stations for the year 2018. They found that
SM2Rain (RMSE = 7.78 mm day ') performs relatively bet-
ter than CHIRPS in Uganda (RMSE = 8.28 mm day '). We
observed an RMSE of 8.16 mm day ! for the same country
and year (57 stations), indicating a more substantial improve-
ment compared to the original product. Besides this, the most
significant strength of this regional SM2Rain implementation
lies in its potential for operational applications and robustness,
primarily attributed to the integration of local rain gauges.

As mentioned, the primary reason for using SM2Rain is to
effectively implement TAHMO stations in the development

of the regional rainfall product, thereby creating an error-
independent rainfall product for the merging algorithm. The
choice of using the H26 soil moisture product rather than the
products used in the original SM2Rain (V1.5) was because of
its potential for operational implementation. Although the
use of H26 in SM2Rain potentially introduces a bias in the
QC due to error dependency between H26 and ERAS from
the use of the HTESSEL land surface model in both datasets,
we assume that this does not lead to a large bias in the QC-
based merging process. This assumption is further supported
by the additional analysis conducted with H119/H120 in
appendix B. Moreover, as noted, previous studies have shown
that the SM2Rain (V1.5) product is relatively independent of
reanalysis and IR/MW-based rainfall products, whereas this
version of SM2Rain is calibrated with ERAS for the genera-
tion of a global dataset. Our current analysis also demon-
strates that assuming some other error cross-dependency, by
assuming ERA5-CHIRPS-IMERG independency, resulted
in realistic product-truth correlations. Therefore, we conclude
that the impact of some error cross-dependency is likely not
substantial in both SUPER configurations (CH-IM) and
(SM-ER). In contrast, we found that certain QC combinations
led to unrealistic error cross-dependencies, caused by a biased
QC analysis due to the incorrect assumption of interproduct
error independence in the selected combinations.

Based on the case studies and the rainy season analysis, our
findings indicate that SM2Rain is less reliable under wet
conditions but tends to be more useful for determining the
timing of the onset of the rainy season in drier climates.
Although the number of stations and the time period used
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in the analysis were relatively limited, the product demonstrated
a reasonable ability to capture the timing of the rainy season off-
set for the dry stations. Also, this product is good at capturing
small rainfall events. In East Africa and many other areas, the
beginning of the rainy season is a critical period that deter-
mines the success of agricultural activities (Ngetich et al.
2014).

In addition to the specific capabilities of SM2Rain, the
other considered rainfall products also tend to be more useful
in particular settings. For example, we found that IMERG is
the best performing product among the individual products,
specifically in capturing high rainfall events, while CHIRPS
performs best on a monthly scale and in the overall detection
of rainy season offsets. In the best performing SUPER config-
uration, IMERG also has the highest contribution, which cor-
relates with the strong performance of this product among the
individual products. With the SUPER merging, we chose a
static merging approach, as the merging weights remained
constant over the considered time period. However, as a next
step, it might be interesting to explore a more dynamic ap-
proach based on seasonality, climate, and other geophysical
properties of a pixel or region. As mentioned and confirmed
in the literature, every satellite rainfall product has strengths
and weaknesses in certain applications (Le Coz and van de
Giesen 2020). Therefore, it may be worthwhile to develop a
more dynamic merging approach that assigns higher merging
weights to products in specific settings or merges in different
smaller time periods. However, when using SUPER merging
in these variable periods, it is important to keep in mind that
TC analysis (and QC) requires a minimum number of sample
points to make reliable error variance estimates (Tsamalis
2022).

Several other studies investigated the performance of
satellite-based rainfall products over Africa, focusing on
IMERG, ERAS, and CHIRPS. For instance, Macharia et al.
(2022) did a performance validation of CHIRPS against gauge
data from TAHMO. They found that CHIRPS had the low-
est performance in terms of RMSE and bias compared to
the other investigated products (TAMSAT, GSMaP, and
GSMaP_gauge) in East Africa. However, when aggregating to
a monthly scale, CHIRPS performed best after GSMaP_gauge.
Dezfuli et al. (2017) validated IMERG (V04A) data against its
predecessor (TMPA), as well as CHIRPS and GPCC datasets,
using rainfall observations from one station in Kenya and two
stations in Ghana for 2015. They found that IMERG per-
formed best in capturing the distribution of daily rainfall inten-
sity, while CHIRPS showed the largest differences with gauge
observations for daily rainfall at the Kenyan station. The recent
study of Mekonnen et al. (2023) conducted a multiscale assess-
ment of eight rainfall products across the African continent
from 2001 to 2020, including CHIRPS, IMERG, and ERAS.
They found that CHIRPS has the lowest RMSE on a monthly
scale (RMSE = 57.54 mm month ™!, or 1.89 mm day '), followed
by IMERG (RMSE = 58.03 mm month™ ', or 1.91 mm day ')
and ERA5 (RMSE = 62.77 mm month™ %, or 2.06 mm day™!).
However, this study used a dataset other than TAHMO for
evaluation, and the number of stations used for evaluation was
relatively limited, despite spanning a longer time frame than

HOOGELANDER ET AL.

1079

possible with TAHMO data. Overall, the findings of these
studies generally align with this study.

In the results, we found a number of outliers among the sta-
tions for the performance metrics. For example, in Fig. §,
some stations show very low performance for specific years.
Despite applying additional quality checks and filtering out
certain data periods, some TAHMO data may still have issues
due to various factors. For SM2Rain, we observed a relatively
high number of stations with poor performance. This is largely
due to the product’s reduced reliability in wetter climates, as
highlighted by the case studies. When investigating other exist-
ing outliers, we found cases where rainfall products measured
several peaks while TAHMO indicated a relatively dry period.
In particular, the sharp drop in ERAS performance in 2022
was caused by numerous peaks recorded by ERAS, whereas
TAHMO indicated drought. Other products also detected
some peaks during this period, but to a lesser extent. While
ground data are often considered the reference for validation,
quality issues can arise in specific periods. Given the large num-
ber of stations analyzed, identifying and systematically filtering
out all quality issues remains challenging due to the uncertain-
ties in the underlying causes of discrepancies. Additionally,
differences in scale between point-based (TAHMO) and pixel-
based (satellite) measurements can contribute to missing events,
leading to lower performance metrics.

Similar to ERAS, SM2Rain, and IMERG, the SUPER rain-
fall product provides rainfall estimates at a spatial resolution
of 0.1°, approximately corresponding to 11 km in the region of
interest. However, convective clouds, the predominant mech-
anism generating rainfall in East Africa, are characterized by
extremely high spatial variability (Palmer et al. 2023). This
variability is further amplified by the complex topography of
the region (Indeje et al. 2000). As the validation of the results
is done on a pixel-to-point basis, this notable subpixel vari-
ability may significantly contribute to the imprecision of satel-
lite rainfall estimates. Some research on small-scale rainfall
variability using a dense network of rain gauges has been con-
ducted in Niger (Flitcroft et al. 1989; Taupin 1997; Lebel et al.
1992). However, more research is needed to understand the
small-scale rainfall variability at a subpixel level and how this
relates to the accuracy of modern satellite rainfall products in
sub-Saharan Africa.

Next to the high spatial variability of convective rains, this
rainfall type is also characterized by its high temporal variabil-
ity. Temporal mismatches, particularly concerning convective
rains, impact the performance of satellite rainfall products.
Measurements on a subdaily scale are necessary to capture
extreme events (Maggioni et al. 2022). The temporal resolu-
tion of rainfall estimates by SUPER is 1 day, constrained by
the temporal resolutions of the selected rainfall products:
1 day for both CHIRPS and SM2Rain, 1 h for ERAS, and
30 min for IMERG. Therefore, subdaily rainfall measurements
are to some extent incorporated into the merged product. The
study of Freitas et al. (2020) suggests that IMERG provides rela-
tively useful subdaily scale rainfall information in Brazil.
However, the evaluation reveals significant over- and under-
estimations of IMERG in terms of rainfall duration and inten-
sity properties. Additionally, the study by Hu and Yuan (2021)
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identified timing and intensity issues with ERAS precipitation in
the Tibetan Plateau. While aggregating these higher-resolution
datasets partially mitigates these problems, it is noteworthy that
these challenges persist even at higher temporal resolutions.
SM2Rain and CHIRPS are likely to have even more tempo-
ral mismatches and therefore miss extreme events. The study
of Xia et al. (2021), for example, assessed the performance of
these two products over the Pearl River basin in China and
found that these products perform poorly in capturing ex-
treme events. Nevertheless, it is important to note that errors
from temporal mismatches remain poorly investigated on the
African continent.

Using the selected operational rainfall products and the re-
gional implementation of SM2Rain, SUPER could be opera-
tionally implemented in the future. However, when considering
the same individual rainfall products used in this study, this prod-
uct would have a minimum latency of 3 weeks, aligning with the
latency of CHIRPS. This would mean that the current setup will
not be feasible for near-real-time applications. However, the
workflow is designed in a way that other products are easy to be
implemented. Some possible operational IR'MW products for
reducing the latency that match the current spatial resolution of
SUPER or having a higher resolution are TAMSAT (5-day
latency) or GSMaP_MVK (3-day latency) (Tarnavsky et al. 2014;
Kubota et al. 2017). This implies that, given the dependency on
ERAS, the minimum latency of SUPER would be 5 days when
replacing CHIRPS with either of these products. While SUPER
may not be suitable for very near-real-time (NRT) applications, it
remains valuable for agricultural management, for example.

5. Summary and conclusions

In this study, we used in situ rainfall data from TAHMO
stations to develop a regional rainfall product for East Africa
through the implementation of the SM2Rain algorithm. The
generated regional product was subsequently merged with
ERAS, IMERG (late), and CHIRPS using the Statistical Un-
certainty Analysis-Based Precipitation Merging framework
(SUPER). The development of the regional SM2Rain prod-
uct was essential for three primary reasons: 1) to meet the
prerequisite of SUPER, which requires three independent
products for the quadruple collocation; 2) to potentially op-
erationalize the workflow designed in this study, as the origi-
nal SM2Rain product is not operationally implemented yet;
and 3) to effectively integrate ground data into the merging
algorithm.

The impact of TAHMO station data on SM2Rain’s perfor-
mance was investigated by calibrating the model with varying
numbers of stations (10, 25, 50, and 75). It was found that cali-
brating with a higher number of stations did not lead to a
large increase in performance, although the spread in perfor-
mance among the stations was marginally reduced when using
more stations. A possible reason for the limited impact of in-
creasing the number of stations in calibration is the consis-
tency of parameters across the grid in the different rainfall
classes.

The merging algorithm of SUPER is based on the error var-
iances of rainfall products derived from quadruple collocation.
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We tested all possible SUPER configurations by assuming dif-
ferent interproduct error dependencies. It was found that both
CHIRPS-IMERG (CH-IM) and ERA5-SM2Rain (ER-SM)
have possible interproduct error dependencies, and therefore,
both configurations are considered in the merging algorithm.
Rainfall products with a lower error variance in a pixel receive
a higher weight in the final merging. In the SM-ER configu-
ration, IMERG has the highest contribution, followed by
CHIRPS, ERAS, and SM2Rain. In CH-IM, ERAS has the
highest contribution, followed by SM2Rain, IMERG, and
CHIRPS. Another aspect of the SUPER framework is the
rain/no-rain filter, which is based on a categorical triple
collocation.

The performance of the satellite rainfall products was vali-
dated with TAHMO data on a pixel-to-point basis, both con-
sidering daily and monthly resolutions. In general, SUPER
(SM-ER) outperformed both SUPER (CH-IM) and the indi-
vidual products in terms of the considered performance met-
rics. Comparing the individual products, SM2Rain performs
best in terms of RMSE and bias, while IMERG exhibits the
highest Kling—-Gupta efficiency and Spearman’s correlation
with daily rainfall data from TAHMO. When aggregating to a
monthly resolution, however, CHIRPS has the highest mean
performance among the individual products, followed by both
IMERG and SM2Rain, and ERAS. Furthermore, the detec-
tion of rainy season onset was validated, with CHIRPS and
SUPER (ER-SM) showing the highest overall detection.
SM2Rain is more useful for detecting the rainy season offset
timing in dry areas.

The ultimate goal of this study was to develop a workflow
to enhance the accuracy of satellite rainfall measurements in
East Africa for potential operational applications. The results
of this study showed an improvement in rainfall estimates
compared to existing state-of-the-art products, providing a po-
tential for improved satellite rainfall estimates in East Africa.
In addition, important insights were obtained regarding the
value of standard metrics. By comparing the time series from
satellite and TAHMO data, we demonstrated that it is crucial
not only to validate using performance metrics directly with
the stations but also to understand how the satellite products
relate to ground-level rainfall dynamics.
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ERAS data were accessed using the Climate Data Store
(CDS) API (https://cds.climate.copernicus.eu/how-to-api).
Python scripts and Jupyter notebooks used for generating
SM2Rain and SUPER rainfall estimates, along with the
analysis, are available in GitHub (Hoogelander 2024).
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APPENDIX B

Effect of Different ASCAT Datasets on SM2Rain
Performance and SUPER Analysis

To further assess the robustness of the SUPER framework
with the selected rainfall products, an additional evaluation

HOOGELANDER ET AL.

1081
APPENDIX A

Derivation Least Squares Solution

In SUPER, the error variances of the rainfall products
are estimated by using the following linear system:
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was conducted using the Metop ASCAT Surface Soil Mois-
ture Climate Data Record v7 (H119/H120) product provided
by H SAF. By using H120, the analysis minimizes potential
dependencies between soil moisture and precipitation data-
sets, ensuring a theoretically more independent error charac-
terization compared to using SM2Rain derived from H26 in
SUPER.
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Committed Area SM2Rain (H119/H120)

Latitude

30 32 34 36 38 40 42
Longitude

F1G. B1. Committed area of ASCAT H119/H120 products. Next
to masking out water bodies, low-confidence areas are also ex-
cluded, mainly located in areas close to water bodies, dense vegeta-
tion, and complex topography.

a. ASCAT datasets

The H119/H120 dataset provides a long-term soil mois-
ture time series derived from ASCAT observations with a
12.5-km sampling resolution. Unlike the H26 dataset, H119/
H120 is not influenced by the HTESSEL land surface model,
making it less error-dependent with ERAS and therefore
theoretically more suitable for QC-merging in SUPER.
The dataset extends from 2007 to the present, but its irreg-
ular latency limits its suitability for operational rainfall
products.

Unlike H26, which is organized as a time series on a regularly
spaced grid, H119/H120 data are structured in grid cells with vary-
ing observation locations. Due to the ASCAT swath path, these
locations are irregularly distributed in both space and time. To en-
sure a consistent spatial and temporal resolution, we applied lin-
ear interpolation to generate a regular grid with evenly spaced
observations. In some cases, gaps in the data required interpola-
tion over more than 1 day in larger areas, which may introduce
uncertainties and affect data quality. In addition to the water
body mask, we applied the committed area mask, an extra vari-
able in the H119/H120 dataset, to the soil moisture data. The
committed area defines a restricted geographical region with high
confidence in soil moisture retrieval. We also applied the same
masking approach to other products used in SUPER to ensure
consistent merging and validation. Figure B1 shows the regions
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considered for the generation of SM2Rain with H119/H120, and
further analysis.

After the preprocessing steps of H119/H120, we gener-
ated SM2Rain maps using the same steps as described in
section 3a and merged this with the other products using the
SUPER framework.

b. Product performances

We validated SM2Rain using both H119/H120 and H26
soil moisture products. SUPER was generated assuming
both IMERG-CHIRPS and SM2Rain-ERAS error cross
correlations, similar to the approach outlined in section 3b.
For a rough comparison, we only evaluate the validation
metrics over the entire period from 2018 to 2022, consider-
ing only stations with more than 80% of data available dur-
ing this time. However, we solely used the stations located
within the committed area of H119/H120. The validation re-
sults of all different SM2Rain and SUPER configurations
for both the daily and monthly resolutions can be found in
Tables B1 and B2.

We found that SM2Rain (H120) shows slightly lower per-
formance compared to SM2Rain (H26) at the daily scale, with
higher RMSE and lower KGE values. The bias in SM2Rain
(H120) is also higher than in H26 at this resolution, indicating
some differences in the accuracy of the rainfall estimation. De-
spite these differences, the Spearman correlation p for both
datasets is comparable, suggesting that the relationship be-
tween observed and predicted rainfall is similar for both H120
and H26 at the daily level.

At the monthly scale, the performance differences be-
tween SM2Rain (H120) and SM2Rain (H26) are negligible,
with both configurations showing similar results in terms of
RMSE, KGE, and bias. These findings indicate that, at coarser
temporal resolutions, the two datasets produce nearly identical
performance in rainfall estimation.

¢. SUPER analysis

For the SUPER analysis, we again derived the QC-based
product-truth Pearson correlations for both SUPER configura-
tions and compared these with the correlations with TAHMO
stations. The results of this analysis can be found in Table B3.
When comparing the configurations in Table B3 with Table 4,
we see that the QC-derived product-truth correlations using
the H120 configuration generally align more closely with the
correlations found with TAHMO. Between configurations
(IM-CH) and (SM-ER) with H120, (CH-IM) shows a relatively

TABLE B1. Performance metrics of SM2Rain and SUPER using H26 and H119/H120 in SM2Rain on a daily resolution, averaged
over all stations in the committed area and the entire 5-yr period. The p is the Spearman correlation.

RMSE (mm day 1) KGE (—) Bias (mm day ™ }) p
SM2Rain (H26) 10.25 —0.05 -0.26 0.47
SM2Rain (H120) 11.91 —0.14 1.60 0.51
SUPER (IM-CH) (H26) 11.19 0.16 —0.23 0.54
SUPER (IM-CH) (H120) 11.40 0.20 —0.40 0.55
SUPER (SM-ER) (H26) 11.58 0.26 ~0.16 0.55
SUPER (SM-ER) (H120) 12.07 0.27 -0.20 0.55
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TABLE B2. Performance metrics of SM2Rain and SUPER using H26 and H119/H120 in SM2Rain on a monthly resolution, averaged
over all stations in the committed area and the entire 5-yr period. The p is the Spearman correlation.

RMSE (mm day™ ') KGE (—) Bias (mm day™') p
SM2Rain (H26) 2.12 031 -0.23 0.59
SM2Rain (H120) 2.17 0.34 —0.04 0.56
SUPER (IM-CH) (H26) 2.03 0.42 ~0.19 0.65
SUPER (IM-CH) (H120) 2.03 0.42 -0.35 0.66
SUPER (SM-ER) (H26) 2.05 0.43 -0.11 0.66
SUPER (SM-ER) (H120) 2.05 0.43 -0.15 0.66

TABLE B3. Mean QC-based and traditionally based product-truth Pearson’s correlations derived from QC analysis, with ASCAT
products H119/H120 used in SM2Rain.

CHIRPS-IMERG (H120) ERAS5-SM2Rain (H120) TAHMO
SM2Rain (H120) 0.68 0.70 0.65
ERAS 0.70 0.77 0.65
IMERG 0.61 0.62 0.73
CHIRPS 0.55 0.61 0.67

CHIRPS-IMERG (a)

ERAS5-SM2Rain (b)

ERAS-IMERG (c) 1.00

0.75

0.50

0.25

0.00

Frrar cross-camrelatinon

-0.25

-0.50

=0.75

325

=1.00

F1G. B2. QC-based ECCs between products using different SUPER configurations, with ASCAT products H119/H120 used in SM2Rain.
Pixels having [ECC| > 1 are excluded from the maps.

closer match with the TAHMO correlations, although a signifi-
cant discrepancy remains with IMERG and CHIRPS. However,
this discrepancy is now also present in configuration (SM-ER).
Figure B2 shows the QC-based ECC of the different prod-
ucts on a pixel-to-pixel basis for all possible QC configura-
tions. Similar to Fig. 6, the spatial distribution of ECC values
varies across different product comparisons, with only configu-
rations (Figs. 6a and b) exhibiting realistic ECCs across the
entire area. However, combinations (Figs. 6¢c-f) now retain

relatively more realistic data, as fewer pixels are filtered out
due to physically impossible ECC values. The highest ECCs in
(CH-IM) and (SM-ER) are concentrated in southeast
Kenya, with (CH-IM) showing slightly larger values than
(SM-ER). While these results align more closely with the ex-
pected ECC relationship between IMERG and CHIRPS, the
overall difference between (CH-IM) and (SM-ER) remains small.
By directly comparing configuration (CH-IM) with SM2Rain
across both H26 (Fig. 6) and H119/H120 (Fig. B2), the differences
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F1G. B3. QC-based ECCs between products using different SUPER configurations, with ASCAT products H119/H120 used in SM2Rain.
Pixels having [ECC]| > 1 are excluded from the maps.

remain small. However, for configuration (SM-ER), the differ-
ences are more pronounced. Specifically, the ECC values in
Fig. 6 for configuration (SM-ER) are generally higher than those
in Fig. B2. This suggests that the results in Fig. 6 are influenced
by the choice of using H26 in SM2Rain, potentially introducing a
bias in the ECC estimates.

Last, the lambda weights derived from the QC analysis with
both (CH-IM) and (SM-ER) configurations are presented in
Fig. B3. In general, the distribution of lambda weights among the
products follows similar patterns as found in Fig. 7, although the
contributions per product are less pronounced. For example,
in configuration (CH-IM), ERAS and SM2Rain have the high-
est contribution, but their lambda weights are generally lower

than in Fig. 7, and the same trend is observed for configuration
(SM-ER). Additionally, in some areas, there is a low spatial
coherence in the lambda weights, particularly for SM2Rain,
which may be due to the interpolation of H119/H120.

APPENDIX C

Rainy Season Analysis

For the rainy season analysis, we used the flexible rainy
season definition as proposed in the study of Seregina et al.
(2019). Here, we outline the steps taken from this study to
apply this method to the data used in this study.
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FIG. C1. Locations of the eight selected stations used for the rainy season analysis. Three stations
fall under rain class 2, one station under rain class 3, and four stations under rain class 4.

Since a long-term climatology is not available for
TAHMO stations, and the period 2018-22 may be too
short, we included the years 2016 and 2017 and considered
stations with more than 80% data availability between 2016
and 2022 to derive the most reliable approximation of the
threshold possible with TAHMO data. This resulted in a to-
tal of eight stations, whose locations are indicated in the
map in Fig. C1. Among these, three stations fall under rain
class 2, one station under rain class 3, and four stations

Rainfall Climatology - TA00023

under rain class 4. For an additional wet/dry analysis, we
categorized stations with a rain class below 4 as “dry” and
those with rain class 4 as “wet.” Prior to computing the
long-term pentad average over the years, a Lanczos low-
pass filter is applied to the pentad rainfall average of every
station data, with a cutoff period of six pentads. From this
climatology, the threshold of the start of the rainy season is
determined using the standard normal homogeneity test
(SNHT) from Alexandersson (1986). The offset of the rainy

Rainfall Climatology - TA00073

5
=47 =
3 S 41
£ 37 T
E E 34
527 E
£ £ 27
& 1 &
14
01 0
xw’»’buﬁse'\%qqosw xstua‘ab«%qqe«,w
R R RN RIS SR X & VY NS RN MRS SR SR R N A e T
oA "v,(,\.\),b,;’\, oA WYy
Rainy Seasons (2022) - TA00023 Rainy Seasons (2022) - TA00073
—— TAHMO -
_. 307 — sm2rAIN -
> >
© o
3 3
£ § £ 20
E® £
g I
£ 10+ £ 10
o« ‘\ «
|
‘ C \
0_'&__& """ P e e e e e =) oI+

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2022

Jan Feb Mar Apr May jun qu Aug Sep Oct Nov Dec
022

F1G. C2. Rainy season analysis for TAHMO stations TA00023 and TA00073. The top two graphs show the clima-
tologies based on data from 2016 to 2022, with yellow boxes indicating the rainy season periods. The bottom two
graphs display the filtered pentad rainfall data for both SM2Rain and TAHMO, along with daily TAHMO rainfall.
Solid vertical lines represent the offset of the rainfall season, with black for TAHMO and red for SM2Rain, while the
vertical dashed line indicates the cessation of the rainy season. The horizontal dashed line indicates the rainy season

threshold.
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season is defined as the first pentad of five consecutive pen-
tads in which the filtered rainfall data exceed the threshold.
The cessation is identified as the first pentad in which rainfall
falls below the threshold. An example of the climatology, the
climatological rainy season, and 2 years of rainfall data with
identified rainy seasons of TAHMO stations TA00023 and
TAO00073 and SM2Rain is presented in Fig. C2.

For validation, we focus again on the period 2018-22.
During this time, the stations detected a total of 38 rainy
seasons. We assess whether the onset of the rainy season,
as identified in different rainfall products, aligns with the onset
determined by TAHMO, using buffers of 2, 5, and 15 days.
Additionally, we analyze the results separately for the four
drier stations and four wetter stations by categorizing them
based on their rainfall class.
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