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Abstract

Wind turbines are often placed together in wind farms for economic considerations. This
causes wake interactions between turbines, resulting in significant power losses. Models that
predict these wake losses are critical for estimating wind farm power output and developing
strategies to mitigate the wake effect, such as wind farm control. For these applications, en-
gineering wake models are favoured for their computational efficiency. Hence, the validation
and improvement of these models is an ongoing area of research. Currently, consensus on
the accuracy of engineering wake models is absent in the literature. Existing studies employ
varying validation strategies that impact the perceived model accuracy. Furthermore, pro-
posed model improvements often lack quantitative evaluation, limiting the generalisability
of the results. Additionally, the potential benefits of calibrating wake model parameters are
recognised, yet research on calibration methods and the impact thereof is limited.

This thesis addresses this scientific gap by proposing a holistic framework for the validation
and calibration of engineering wake models. The framework combines best practices from
literature. First, it accounts for wind direction uncertainty in historical wind farm data. Ad-
ditionally, it corrects model inputs by including heterogeneous inflow wind speeds. Finally, it
offers a methodology for parameter calibration to improve the model’s accuracy using histor-
ical wind farm data. The overarching framework employs both quantitative and qualitative
validation methods to mitigate the impact of experiment design and enable a thorough eval-
uation of model improvements. The effectiveness of this framework is demonstrated through
a case study with SCADA data from OWEZ wind farm and four engineering wake models
from the popular control-oriented wake modelling tool FLORIS.

Results show that wind direction uncertainty in SCADA data must be included when
validating wake models for specific wind directions or sectors. Additionally, incorporating
heterogeneous inflow wind speeds reduced the absolute turbine error by up to 20%. Fur-
thermore, it is demonstrated that calibrating model parameters significantly improves model
accuracy. The resulting error reductions reach up to 92% for individual turbines and 65%
at farm-level, i.e., for all turbines collectively. Furthermore, results revealed that while the
performance of the different models converges post-calibration, differences persist in various
scenarios with numerous wake interactions. In these cases, the CC and TurbOPark models
outperform the Jensen and GCH models.

Through this holistic framework and the demonstrated potential of model parameter cali-
bration, a path forward is paved for further model improvement in a systematic and quanti-
tative manner.
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Chapter 1

Introduction

Wind energy is becoming an increasingly important energy source, as there is a growing
concern regarding climate change [1]. To achieve global Net Zero emissions by 2050, the
International Energy Agency (IEA) has specified that 67% of the global energy supply must
originate from renewable sources, with wind energy predicted to account for the second largest
share [2]. Fortunately, the wind energy supply has grown significantly over the past ten years
and, from 2020 onward, is expected to increase its annual capacity four times by 2030 and as
much as 15 times by 2050 [2, 3].

To realise this anticipated growth, wind energy generation must have a competitive price [4].
Efforts have been made to lower the Levelised Cost Of Energy (LCOE) through design im-
provements and better turbine control strategies. This has led to increased overall turbine
efficiency and the ability to scale up turbine capacity to a rated power of 15 MW [5].

Grouping turbines in wind farms is another method to reduce the LCOE, due to reduced
installation and maintenance costs, land use and environmental impact [6]. However, this
leads to challenges caused by the wake interactions between turbines. As a turbine extracts
energy from the incoming wind, it alters the flow downstream of the turbine, called a wake.
The wake is characterised by a lower wind speed and increased turbulence, resulting in power
losses and increased loads on the downstream turbine. The average annual power production
losses attributed to the wake effects in wind farms range between 10-20% [7, 8, 9]. It should
be noted that the effect of wakes on structural loading is a broad area of research (see,
e.g., [10, 11, 12]) and falls outside the scope of this thesis.

Given that wind turbines are often placed in the wake of an upstream turbine, models
that predict power losses due to wakes are critical for estimating wind farm power output
and developing strategies to mitigate the wake effect, such as wind farm control and layout
optimisation [6, 13, 14, 15]. For these applications, engineering wake models are favoured
for their computational efficiency. However, this efficiency comes at the expense of relying
on heuristics, which often results in model discrepancies. The resulting uncertainty affects
both the predicted yield of wind farms and the effectiveness of wake mitigation strategies.
Consequently, validating and improving engineering wake models is essential to reduce this
uncertainty and is an ongoing area of research.

Master of Science Thesis J.A. Keim



2 Introduction

1-1 Validation of Engineering Wake Models

Engineering wake models have been extensively validated in against historical wind farm
data, referred to as Supervisory Control and Data Acquisition (SCADA) data. The process
typically involves comparing turbine power capture recorded in historical data to the models’
predicted turbine power capture, ensuring identical wind speed and wind direction conditions.

Earlier validation studies focused on gaining an understanding of wake behaviour and wake
modelling without providing conclusions regarding the strengths and weaknesses of different
models. For instance, Barthelmie et al. [16] compared five wake models to historical data of
the larger-scale Horns Rev 1 wind farm, analysing three arrays of 5-8 turbines with varying
turbine spacing. They experimented with wind direction bin widths varying from 2◦ to 30◦

and concluded that increased bin width and increased turbine spacing both lead to lower
observed wake losses. Note that the choice of binning width is a data processing decision,
while turbine spacing relates to the physical characteristics of the wake. While one can observe
that the models overestimate wake losses for smaller bin widths and were more accurate for
larger widths, the study did not conclude on model accuracy. Barthelmie et al. emphasised
the need for more research on wind farm wakes.

In a follow-up study, Barthelmie et al. [17] investigated the performance of four wake models
on two larger-scale offshore wind farms, Horns Rev 1 and Nysted, for seven different arrays of
turbines and wind directions. They used a 5◦ binning width and quantified model performance
by calculating the Root Mean Square Error (RMSE) of turbine power capture. The study
concluded better performance for higher wind speeds and for wind directions aligned with
the turbine arrays, compared to wind directions that lead to partial wake overlap. Still,
Barthelmie et al. highlight significant uncertainties in the accuracy of the current wake
models.

Beaucage et al. [18] examined six wake models for arrays of 10 turbines across 30◦ wind
sectors, finding that the engineering wake models underestimate wake losses after 3-4 tur-
bines. Despite figures using a 10◦ bin width contradicting that statement and indicating an
overestimation of wake losses, the overall conclusion was that engineering wake models tend to
underestimate wake losses deeper within the turbine array. Such discrepancies highlight the
challenges in concluding on model accuracy due to variations in data processing techniques.

Gaumond et al. [19, 20] are among the first to emphasise the effect of binning widths on the
validation of wake models, attributing the difference in model performance to wind direction
uncertainty in historical data. They point out that this uncertainty arises from factors such
as yaw misalignment of turbines relative to incoming wind, spatial variations within the
wind farm, and temporal variability in 10-minute averaged historical data. In a follow-up
study, Gaumond et al. [20] suggest using a weighted average of simulations of neighbouring
wind directions to mitigate this uncertainty, demonstrating a reduced dependence of model
accuracy on the chosen binning width.

The findings of these earlier studies are specific to certain flow cases, i.e., wind directions
aligned with the turbine arrays [16, 18]. Other research, like Barthelmie et al.’s subsequent
work [17], indicate decreased model performance in cases of wind direction slightly misaligned
with the turbine arrays. This highlights the dependency of conclusions on experiment design.

J.A. Keim Master of Science Thesis



1-1 Validation of Engineering Wake Models 3

The evolution of wake model validation includes focused investigations into model strengths
and weaknesses, sometimes leading to the development of new models. For example, Ny-
gaard’s series of studies [21, 22, 23, 24, 25] focused on validating and improving wake models
for offshore wind farms. Initially, Nygaard [21] assessed the Jensen [26] wake model using
data from five large offshore wind farms within a 30◦ wind direction binning width, finding
reasonable accuracy for farms with over 100 turbines. However, the validation was limited to
specific turbine arrays aligned with the incoming wind direction. In a subsequent study, Ny-
gaard [22] pointed out that the current validation studies are limited to qualitative validation
and specific turbines and lack quantitative metrics to evaluate model improvements. Conse-
quently, he introduced a framework for uncertainty quantification. However, this approach
focused on Annual Energy Production (AEP) calculations and does not provide insights into
the accuracy on individual turbine level, which is necessary for effective wind farm control.
To further improve the accuracy of wake models, Nygaard et al. [24] introduced a new en-
gineering wake model, called Turbulence Optimised Park (TurbOPark). The motivation for
developing this new model was recent findings that cluster wakes, i.e. the combined wake
behind a wind farm, persist longer than previously assumed [27, 28, 23, 29], which can im-
pact neighbouring farms. These farm-to-farm effects are becoming increasingly important as
offshore farms are positioned with an increasing density, e.g., along the European coastlines.
The model showed excellent agreement with the data of two upstream turbines and an array
of 7 turbines. However, varying binning widths in the study made it challenging to draw
conclusions. Furthermore, Nygaard et al. introduced a model for wind farm blockage, i.e.,
the reduction in inflow wind speed near the centre of the farm, showing slightly improved
results. Finally, Nygaard et al. [25] presented another framework for validation and uncer-
tainty quantification, validating both the Jensen model and TurbOPark model to 19 offshore
wind farms, with a binning width of 10◦. While this study offers quantitative insights, it
lacks qualitative analysis to support the model accuracy found. Additionally, it included a
heterogeneous background flow and a blockage model but did not quantify their impact on
model accuracy, leaving their significance undetermined.

Archer et al. [30] provided a qualitative and quantitative analysis of six engineering wake
models on three commercial wind farms: Lillgrund, Nørrekær and Anholt. Their analysis
focused on specific turbine arrays using 10◦ bin widths and single turbines for a 40◦ range of
wind directions with 2.5◦ bin widths. Overall, they found an underestimation of wake losses.
The best performance was seen for Anholt and the worst for Lillgrund. Accordingly, they
conclude that the models perform poorer on densely spaced wind farms. The authors find that
for wind directions that lead to non-aligned wakes, all six wake models perform worse on the
inner turbines. They argued that this is possibly related to the wake superpositioning method1

used. This study supports its qualitative findings with a quantitative analysis, delivering
substantive conclusions. Yet, it falls short in offering an overview of model performance for
the entire wind farm, an essential element for model comparison in yield estimations.

Hamilton et al. [15] validated several combinations of velocity deficit, wake-added turbu-
lence and wake superposition methods on the Lillgrund wind farm. Their analysis, both qual-
itative and quantitative, covered wind directions between 120◦ and 300◦ using a 5◦ binning
width. This approach allowed for insights across a range of wind directions, not just specific
aligned arrays. They observed that certain wake superpositioning methods and wake-added

1The wake models model a single wake, and their cumulative effect is determined by the wake superposi-
tioning method.
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4 Introduction

turbulence models perform well in scenarios with full wake overlap, whereas others excelled
in cases with partial wake overlap. This reveals discrepancies in current methods and models
and highlights the need for a validation framework that spans various wind directions.

Doekemeijer et al. [31] compared the Gaussian-Curl-Hybrid (GCH) model, a popular en-
gineering wake model in literature based on the Gaussian wake model by Bastankhah and
Porté-Agel [32], to data from three offshore wind farms, including Anholt, OWEZ, and West-
ermost Rough. Similar to Hamilton et al., Doekemeijer et al. showed performance over a
range of wind directions, mitigating the sensitivity to specific wind directions. Moreover,
Doekemeijer et al. highlighted the impact of wind direction binning width on validation.
They noted that while smaller binning widths are subject to larger uncertainties in the data,
they are necessary to evaluate the modelling of a single wake, a key aspect for wind farm
control. To address this, Doekemeijer et al. validated for a binning width of 3◦ as well as
30◦ degrees. Moreover, they applied a weighted average of simulations of neighbouring wind
directions to account for wind direction uncertainty in the historical data, similar to Gau-
mond et al. [20]. They observed good overall model agreement but, like Archer et al. [30],
identified an underestimation of wake losses within the farm, likely due to deep array effects.
The study also incorporated heterogeneous inflow wind speeds to account for cluster wakes,
wind farm blockage, and coastal effects. While heterogeneity was noted at upstream turbines,
it did not significantly improve results compared to a homogeneous inflow. Future research
was suggested to investigate these aspects. The study offers valuable insights but lacks quan-
tification of model accuracy and of the impact of wind direction variability or heterogeneous
wind speed inflow, limiting its ability to draw substantial conclusions.

Finally, to address the deep array effects mentioned by Doekemeijer et al. [31], Bay et
al. [33] carried out a subsequent study in which they validated the Cumulative-Curl (CC)
model introduced by Bastankhah et al. [34]. The model, which is based on the GCH model,
but incorporates a different near-wake model and novel wake superpositioning method. The
authors have tested their model using both a high-fidelity simulation and SCADA data from
Anholt, OWEZ, and Westermost Rough. They conclude that the CC model accurately pre-
dicts the energy ratio in situations with more wake interactions, such as deep in the array
and situations of non-alignment. However, the model improvement found is solely based on a
qualitative analysis and occasionally shows decreased performance. Therefore, a quantitative
analysis is necessary to support the suggested increase in model accuracy.

1-2 Calibration of Model Parameters

Typically, engineering wake models included literature-recommended parameter values during
validation [15, 17, 24, 31]. While several authors highlight the possible benefit of calibrating
model parameters [15, 31], research on the topic remains limited. Among the few, Schreiber
et al. [35] developed a method to improve engineering wake models by learning from SCADA
data. However, rather than simply calibrating existing wake model parameters, they intro-
duced new parameters to account for the unmodelled physics, such as a heterogeneous inflow.
This approach of simultaneously optimising both the model input and wake estimation com-
plicates the ability to draw generalised conclusions from the results. Campagnolo et al. [36]
addressed this complication by separating the additional parameters in vectors related to dif-
ferent model aspects, including wake model parameters and heterogeneous inflows. While the

J.A. Keim Master of Science Thesis



1-3 Validation and Calibration Tools 5

wake model parameters changed after calibration, the largest impact was found by introduc-
ing a heterogeneous inflow. Yet, due to the experimental setup involving only three turbines
in a wind tunnel, the applicability of these findings at a farm level is uncertain.

Calibrating model parameters is more common in the context of wind farm control (e.g., [37,
38, 39, 40]). Yet, as the results are only shown after parameter calibration, the effect on model
accuracy can not be concluded. An exception is the study by Van Beek et al. [41]. They
calibrated wake model parameters to SCADA data of the Lillgrund wind farm under regular
operation, i.e., no wake steering, in preparation for a wake steering simulation. While Van
Beek et al. achieved a significant reduction in error for all individual turbines, they developed
specific parameters for each wind speed and direction combination, making it challenging to
generalise conclusions on optimal parameter values.

1-3 Validation and Calibration Tools

Among these validation and calibration studies conducted, the control-oriented modelling tool
FLOw Redirection and Induction in Steady State (FLORIS) has gained popularity. Various
studies have employed FLORIS for model validation studies (e.g., [15, 31, 33, 42]), calibration
studies (e.g., [36, 41]), wind farm control simulations or experiments (e.g., [37, 38, 39, 43, 44,
45, 46]) and layout optimisation studies (e.g., [47, 48]).

1-4 Research Gap and Research Question

Reflecting on these findings, consensus on the accuracy of engineering wake models can-
not be concluded, primarily due to varying validation strategies and their impact on per-
ceived model accuracy. Current literature often limits model validation to specific flow
cases [16, 18, 19, 21, 24]. This approach is problematic as research has shown that model per-
formance is scenario-dependent. Different wind directions, leading to either full or partial wake
overlap, can significantly influence the accuracy of the models [15, 17, 30, 31, 33]. Additionally,
the effect of wind direction uncertainty in historical data is identified, and solutions have been
proposed [20, 31]. However, its implementation is not yet standard practice. Furthermore,
the role of inflow heterogeneity on model accuracy is another aspect that has gained attention.
However, the implications of this factor are either not explicitly demonstrated [24, 25], remain
inconclusive [31], or are examined only in the context of single turbines [36]. Consequently, it
remains unclear whether its incorporation is essential and, if so, how it should be effectively
implemented. Similarly, when introducing new models, the demonstration of their advantages
is often either only qualitative [24, 33] or, when quantified, [25] it is done at farm level, i.e.,
cumulative turbine performance, which limits the ability to evaluate their performance for a
single turbine—a critical aspect for effective wind farm control and layout optimisation. In
general, a trend in the literature is the emphasis on qualitative analysis over quantitative val-
idation. Such an approach poses significant challenges to systematically comparing different
models and studies. In cases where quantitative validation is conducted [15, 22, 25], they are
frequently limited to the farm level. Finally, while the potential benefits of model parameter
calibration are recognised in several studies [35, 36, 41], there is a gap in research on the
development of optimal calibration methodologies and their impact on model accuracy.

Master of Science Thesis J.A. Keim



6 Introduction

The gaps in the current literature mentioned above lead to the formulation of the following
research question:

How can the reliability of the current engineering wake models be holistically validated for
different model applications, and how can reliability be improved by including inflow hetero-
geneity or parameter calibration?

To answer this question, this thesis proposes a new validation and calibration framework to
improve the accuracy of engineering wake models. This framework addresses common model
discrepancies by combining the state-of-the-art methodology to improve both the model input
and the model parameters. First, it accounts for wind direction uncertainty in the SCADA
data to ensure a fair comparison with the data. Next, it corrects the model input by including
heterogeneous input wind speeds. Finally, it calibrates model parameters to improve the wake
estimation capabilities of the models. In addition to these steps, this framework introduces
new quantitative metrics to validate and improve accuracy both on turbine- and farm-level,
providing insight into the effectiveness of each step in the framework and the insights necessary
for both yield calculations and farm optimisation through layout optimisation and wind farm
flow control. To demonstrate the use of the validation and calibration framework, a case study
is conducted with four engineering wake models and historical data from Offshore Windpark
Egmond aan Zee (OWEZ) wind farm. The overarching goal of this thesis is to improve the
ongoing efforts to enhance the accuracy and reliability of engineering wake models.

1-5 Report Structure

The structure of the thesis is as follows: First, chapter 2 provides an introduction to engineer-
ing wake models and an overview of the models from FLORIS employed in this thesis. Second,
chapter 3 introduces the OWEZ wind farm to which the models are validated and calibrated,
the data pre-processing steps and an analysis of the data of nearby meteorological mast.
Third, the proposed validation and calibration framework that is used to improve the models
and assess their accuracy is presented in chapter 4. Fourth, a case study with historical data
from OWEZ wind farm is presented in chapter 5, providing a qualitative and quantitative
assessment of validation and calibration steps, as well as an analysis of the remaining model
discrepancies and differences between the models. Finally, chapter 6 summarises the main
conclusion from this thesis and provides recommendations for further research.

J.A. Keim Master of Science Thesis



Chapter 2

Engineering Wake Models

In this thesis, four engineering wake models are compared and calibrated to historical wind
farm data. The wake-modelling software used is FLOw Redirection and Induction in Steady
State (FLORIS), of which the popularity has steadily risen in recent years. FLORIS [49] is
an open-source control-oriented wind farm simulation tool developed by National Renewable
Energy Laboratory (NREL), TU Delft and CU Boulder, and maintained by NREL. FLORIS
contains several computationally inexpensive steady-state wake models, categorised into the
following submodels1: wake velocity deficit model describing the velocity deficit in a single
wake, wake-added turbulence model representing the turbulence in the wake and the wake
superposition method to account for the effect of the upstream turbine’s wake on the down-
stream turbine. This chapter first discusses the assumptions made in engineering wake models
and their effect on the applicability of the models in section 2-1. Next, section 2-2 outlines
an overview of the wake models analysed in this thesis. Finally, a systematic overview is
presented in section 2-3.

2-1 Applicability of Engineering Wake Models

Engineering wake models are considered steady-state models, meaning that the models assume
the flow does not change over time and has reached an equilibrium in the farm. Essentially,
it means that the models calculate the long-term mean wake behaviour for steady-state,
i.e., constant, model inputs. These assumptions are valid for calculations spanning a longer
time period, such as Annual Energy Production (AEP) calculations. When engineering wake
models are used to develop control and layout optimisation strategies, these assumptions
imply that the results are based on steady-state flow conditions. Whether the gained benefit
of wind farm control strategies using dynamic flow models is higher is an active topic of
research and is outside the scope of this thesis (see, e.g., [50]).

1Additionally, several wake deflection models are included. However, since this thesis only investigates
turbines in regular operation, i.e., no wake steering, the wake deflection models will not be discussed.
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8 Engineering Wake Models

2-2 Engineering Wake Models in FLORIS

This section introduces four models from FLORIS that are analysed in this thesis. Note that
these models are also partially available in other wake modelling software such as PyWake [51].

2-2-1 Jensen

The Jensen model [52] is one of the oldest and most widely adopted wake models [53]. The
velocity deficit in the wake is modelled in accordance with the conservation of mass and
assumes a uniform stream-wise velocity. These velocity models are also referred to as top-hat
models, due to the distinctive shape of the velocity profile. The velocity deficit in the wake
is expressed as a function of the distance behind the rotor using the following equations:

1 − Uw(x)
U∞

=
(

1 −
√

1 − CT (U∞)
)(

D

Dw(x)

)2
, (2-1a)

Dw(x)
D

= 1 + we

(
x

D

)
. (2-1b)

In these equations, Uw denotes the wind speed in the wake at a distance behind the rotor x,
U∞ the ambient wind speed, CT (U∞) the thrust coefficient of the turbine, which is a function
of the incoming wind speed U∞, D represents the rotor diameter, and Dw is the wake diameter,
a function of x. The wake expansion coefficient we is an empirically determined parameter
typically set to 0.03 - 0.05 for offshore applications [16]. This parameter leads to linear wake
expansion. The Jensen model is coupled with the Sum of Squares superpositioning method
by Katic et al. [26], commonly known as the Park model [26].

2-2-2 Gaussian-Curl-Hybrid

The Gaussian model is based on the observation that the long-term mean velocity deficit in
the far wake obtains not a top-hat but a Gaussian shape [54, 55, 56]. The model applies
the conservation of mass and momentum and assumes a self-similar Gaussian profile for
the velocity deficit. This self-similarity implies that the shape of the Gaussian distribution
remains constant as the wake scales. The Gaussian profile accounts for both axial and radial
velocity gradients. Consequently, the velocity deficit is a function of the distance behind the
rotor x and the radial position r:

1 − Uw(x)
U∞

= (1 − C(x)) exp
(

−1
2

(
r

σw(x)

)2
)

, C(x) =

√
1 − CT (U∞)

2

(
D

2σw(x)

)2
, (2-2a)

σw(x)
D

= ϵ + k

(
x

D

)
, k = kaICH(x) + kb. (2-2b)

In these equations, the Gaussian distribution of the wake width is defined by σw, which is
a function of x. The wake expansion is defined by the wake expansion coefficient k, which is
a function of the turbulence intensity at the rotor ICH(x) and two tuning parameters ka and
kb. The default values for ka and kb in FLORIS are 0.38 and 0.004, respectively. ICH(x) is
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2-2 Engineering Wake Models in FLORIS 9

determined by the Crespo-Hernandez turbulence model [57], which has an empirically derived
formula for the near and far wake. The introduction of ICH(x) in the wake expansion coefficient
results in a non-linear wake expansion.

The Gaussian-Curl-Hybrid (GCH) model combines the velocity deficit model by Bas-
tankhah and Porté-Agel [58] and Niayifar and Porté-Agel [59], the wake deflection model
by Martínez [60], and the secondary steering model from King et al. [61]. In scenarios with-
out wake steering, GCH falls back to the Gaussian model proposed by Bastankhah and
Porté-Agel, and Niayifar and Porté-Agel. In FLORIS GCH is coupled to the Sum of Squares
superpositioning method2.

2-2-3 Cumulative-Curl

In literature, the underestimation of wake losses deeper in the farm is often attributed to
the superpositioning method employed. Motivated this discrepancy in existing wake models,
the Cumulative-Curl (CC) model [33] builds on the GCH model but replaces the Sum of
Squares wake superposition method with derivations based on the Navier-Stokes equations
(NS equations) as described by Bastankhah et al. [34]. Additionally, it incorporates Blondel’s
super-Gaussian velocity deficit model [63] that evolves from a top-hat shape in the near
wake to a Gaussian shape in the far wake, which is more consistent with observations. The
improvement of the near-wake is more likely to be observed in densely spaced wind farms.
The wake velocity deficit is governed by the following equations:

1 − Uw(x)
U∞

= 1 − Cn exp
(

−1
2

rm

σ2
w(x)

)
, Cn =

(
1 −

n−1∑
i=1

λni
Ci

U∞

)
f(CT (U∞)), (2-3a)

σw(x)
D

= ϵ + k

(
x

D

)
, k = asICH(x) + bs. (2-3b)

Here, the CC model incorporates a superpositioning method in Equation 2-3a, where Cn

considers wakes of upstream turbines on turbine n by the term
∑n−1

i=1 λni
Ci
U∞

. Additionally,
the second part of the equations includes a dependence on the CT (U∞)3, similar to other
wake models. Additionally, the Super-Gaussian model is defined by the exponent m, which
varies as a function of x. This leads to a higher m near the rotor, creating a top-hat shape,
and a lower m downstream, yielding a Gaussian-shaped wake. Similar to the GCH model
in Equation 2-2b, the wake expansion in Equation 2-3b is defined by the wake expansion
coefficient k, similar to GCH, where tuning parameters ka and kb are now denoted as as and
bs. The default values for as and bs, based on LES data, are 0.179 and 0.012, respectively.

2-2-4 Turbulence Optimised Park

Similar to the CC model, the development of Turbulence Optimised Park (TurbOPark) is
motivated by the underestimation of wake losses deeper in the farm [24]. To address this,

2Here it deviates from the description proposed by Niayifar and Porté-Agel [59] using a Linear superposi-
tioning method by Lissaman [62].

3For the full set of equations, see [33].
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10 Engineering Wake Models

TurbOPark, initially an extension of the Park model, proposes a non-linear wake expansion
rate that leads to a fast wake expansion near the rotor and slower further downstream,
resulting in longer and smaller wakes. A subsequent version of TurbOPark replaces the
Jensen velocity deficit model with a Gaussian-shaped deficit. This updated model, detailed
in [25, 64], is implemented in FLORIS and has the following governing equations:

1 − Uw(x)
U∞

= 1 − C(x) exp
(

−1
2

(
r

σw(x)

)2
)

, C(x) =

√
1 − CT (U∞)

2

(
D

2σw(x)

)2
, (2-4a)

dσw(x)
dx

= AI(x), I(x) =
√

I2
∞ + I2

F(x). (2-4b)

In the given equations, the variables Uw, U∞, σw, D, and x maintain their previously
defined meanings. Note that Equation 2-4a is equal to Equation 2-2b from the GCH model.
Different to GCH, the wake expansion is governed by the tuning parameter A and turbulence
IF(x). The parameter A is set to a default value of 0.04, established through calibration with
data from 19 offshore wind farms [25]. The turbulence intensity IF(x) is determined using the
Frandsen turbulence model [65], which contains an empirical derivation for the turbulence
intensity in the near and far wake.

2-3 Overview of FLORIS Models

An overview of the used FLORIS models is presented in Table 2-1. Note that more wake
superposition models are available in FLORIS. However, the default superpositioning method
of Sum of Squares is used in the remainder of this thesis.

Wake Model Velocity Deficit Turbulence Intensity Wake Superposition
Jensen Jensen [52, 26] - Sum of Squares [26]
GCH Gaussian [32, 59] Crespo-Hernandez [57] Sum of Squares [26]
CC [33] Super-Gaussian [63] Crespo-Hernandez [57] -
TurbOPark [24] Gaussian [32, 59] Frandsen [65] Sum of Squares [26]

Table 2-1: Wake models implemented in FLORIS Version 3.3: Velocity deficit models, turbulence
intensity models, and wake superposition methods.
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Chapter 3

Data Overview and Pre-Processing

This chapter introduces the data set used to validate and calibrate the wake models in this
thesis. First, the available historical wind farm data is detailed in section 3-1. Next, the
data pre-processing steps are outlined in section 3-2. Finally, section 3-3 presents an analysis
of data from a nearby meteorological mast, offering insights into site-specific atmospheric
conditions and a comparison with SCADA measurements.

3-1 Wind Farm Data

The historical data available for this thesis is from the OWEZ wind farm. Figure 3-1a displays
its location approximately 10 kilometres off the west coast of the Netherlands and 10 kilome-
tres east of Prinses Amalia Wind Farm. The OWEZ wind farm consists of 36 turbines, with
a rated power of 3 MW each, resulting in a cumulative farm capacity of 108 MW. The farm
follows a gridded layout as shown in Figure 3-1b, with turbine spacing ranging from 7.2D to
11.1D along the gridded directions. The analysis uses SCADA data from December 2006 to
December 2010, available as 10-minute statistics. The SCADA data includes values for time,
blade pitch, grid power, wind speed1, yaw position and Wind Turbine Generator (WTG)
availability. Note that the turbines recorded no wind direction. Therefore, the wind direction
is assumed to be equal to the yaw angle of each turbine in the remainder of the analysis,
aligned with common practice in the literature (see, e.g., [25, 30, 31]).

3-2 Pre-processing of Wind Farm Data

Before validation, the data set is pre-processed to ensure that the data aligns with the scenar-
ios predicted by the wake models, where all turbines operate under regular conditions. This is

1Wind speed measurements in the SCADA data have already been translated from anemometer readings
at the nacelle to free stream wind speed in front of the turbine.
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Figure 3-1: Topography of the OWEZ wind farm. (a) Geographical location of the OWEZ wind
farm in green, with the operational Prinses Amalia wind farm marked in blue dots to the west of
the OWEZ wind farm and the non-yet operational Hollandse Kust Noord wind farm in orange.
The Dutch coastline lies to the east of the OWEZ wind farm. (b) Farm layout consisting of 36
turbines in black. The location of the meteorological mast is shown in red.

crucial because turbines in irregular operation can be mistaken for losses associated with tur-
bine interactions and aligns with common practice in the literature (see, e.g., [15, 25, 31]). The
pre-processing steps follow a methodology similar to that outlined by Doekemeijer et al. [31],
which can be consulted for a more in-depth explanation. Furthermore, the corresponding
codes are documented in the open-source FLASC library [66].

3-2-1 Filtering for Sensor Faults, Turbine Downtime and Irregular Operation

First, the data is filtered to exclude intervals affected by turbine downtime or faulty sensors.
Next, power curve outliers, indicating irregular turbine performance, are removed. In addition
to the methodology described by Doekemeijer et al., outliers from the pitch angle-wind speed
curve are removed to filter for further irregular performance.

3-2-2 Northing Calibration of Wind Direction Measurements

The second step in the data pre-processing involves calibrating wind direction measurements.
When using the turbine’s yaw angles, a challenge arises as commercial wind turbines rely
on relative nacelle misalignment with the wind for yawing, not measurements with respect
to the true north. For model validation, wind directions based on the same true north and
sign convention for the data and the model are necessary. To address this, the yaw angles
of each turbine were calibrated to true north. Note that, in the methodology used, northing
calibration is only feasible if the nacelle sensor calibration remains constant throughout the
data set. If this is violated, the wind direction of that turbine is categorised as faulty.

3-2-3 Filtering for Affected Turbines

The last step includes removing data points of turbines that interact with faulty turbines.
Specifically, if a turbine is inactive, it impacts the power production of downstream turbines,
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3-3 Meteorological Mast Data 13

which affects the validation work. Using the FLORIS models, the influence of the wakes of
each turbine on other turbines is computed for each wind direction. Subsequently, data from
the affected turbines is also excluded for the corresponding time interval.

3-3 Meteorological Mast Data

Next to the SCADA data, the data from a nearby meteorological mast (met mast) is avail-
able. This mast is located approximately 500 metres in front of Turbines 6 and 7, as depicted
in Figure 3-1b. The met mast measurements include wind direction, wind speed and wind
speed standard deviation, available as 10-minute statistics from July 2005 to December 2010.
The measurements are recorded at 70 meters above sea level, equal to the hub height of the
turbines. The part of the data collected prior to the wind farm’s construction is used to
derive the wind climate at the site. The wind rose and turbulence intensity are derived and
presented in Figure 3-2. Figure 3-2a reveals a predominant south-west wind direction, typical
for the North Sea, and lower wind speeds from the east, possibly influenced by coastal winds.
Figure 3-2b displays increased turbulence from the north of 7.8% and an average turbulence
intensity of 6.5% across the entire wind rose. Moreover, met mast data contains lower mea-
surement uncertainty than SCADA data. Therefore, the met mast data is compared with
the SCADA data. The analysis, detailed in Appendix A, revealed a high standard deviation
in the wind direction error and a lower standard deviation in the wind speed error, 13◦ and
0.9 m/s, respectively. This indicates that even with the northing calibration, uncertainties in
wind direction remain. How this is addressed is discussed in section 4-2.
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Figure 3-2: Atmospheric conditions based on the data of a nearby meteorological mast, showing
(a) Wind rose (b) Turbulence intensity
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Chapter 4

Model Validation and Calibration
Framework

This chapter presents a systematic methodology for validating and calibrating engineering
wake models against historical wind farm data. The goal is to validate and improve model
accuracy at both the farm and turbine levels. First, the comprehensive validation methodol-
ogy and designed validation metrics are introduced in section 4-1. Next, the effect of wind
direction uncertainty is addressed in SCADA data during validation in section 4-2. Section
4-3 outlines the methodology to correct inflow conditions by including heterogeneous inflow
wind speeds. Finally, as a final step in the framework work, a method for calibrating model
parameters to improve model accuracy is introduced in section 4-4.

4-1 Validation Metrics and Methods

This section introduces the overarching validation methodology. Subsection 4-1-1 explains the
use of the energy ratio metric to compare power output between models and historical data.
Subsection 4-1-2 describes the application of this metric in both qualitative and quantitative
validation strategies.

4-1-1 Energy Ratio as a Validation Metric

Wake models are typically compared with historical data using a relative power deficit, in-
dicating power capture compared to one or more reference turbines in unwaked conditions.
Additionally, several authors introduce a normalised error, standardising the error to power
capture or wake loss in the farm (see, e.g., [22], [41], [67]). The latter is primarily helpful
for cross-farm accuracy comparisons and, therefore, is not required for this thesis. In this
thesis, we apply the energy ratio metric, which quantifies the relative power capture of the
selected test turbine(s) — the turbine(s) of interest — relative to the average power capture of
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16 Model Validation and Calibration Framework

reference turbine(s), which are upstream turbine(s) unaffected by wakes. This methodology
aligns with Doekemeijer et al. [31] and is subsequently used by others (see, e.g., [33], [68]).

The energy ratio of test turbine(s) i for a wind direction bin j is calculated as follows:

Rij = R(Ti, θj) =
∑K

k=1 Pk(Ti, θj)∑K
k=1 Pk(Tref , θj)

. (4-1)

In this equation,

• Pk(Ti, θj) ∈ RT represents the kth power measurement of test turbine(s) i for wind
direction bin j. Here, T denotes the total number of measurements for turbine(s) i. If
multiple test turbines are selected, Pk(Ti, θj) is defined as the average power production
of all test turbines. However, in this thesis, unless specified otherwise, Ti is considered
a single turbine.

• Pk(Tref , θj) ∈ RR denotes the kth power measurement of the reference turbine(s) under
the same wind direction bin j. The total number of measurements for the reference
turbines(s) are denoted by R. The reference power Pk(Tref , θj) is defined as the average
power production of the five closest upstream turbines of Ti in a specific radius, in this
thesis, set to 5 km.

• K represents the count of measurements that both the test and reference turbines share,
defined by T ∩ R.

Additionally, it is important to highlight that the energy ratio, in its process of summing
all measurements, effectively sums over wind speed. Because most wake losses occur when
turbines operate below rated power, only time steps where the reference turbine’s wind speeds
are in the range of 4-15 m/s have been included. For the same reason, this is the most
significant range for wind farm control and layout optimisation. Beyond 15 m/s, turbines
operate at rated power, resulting in fewer wake losses and often correlates with improved
model accuracy. Furthermore, the wind direction binning width is set to 5◦. This is small
enough to show the profile of a single wake, which is estimated to be 10◦-15◦ [17], and large
enough to account for a part of the uncertainty in the SCADA data. Note that the energy ratio
represents an average for each wind direction bin. Consequently, more frequently occurring
wind directions do not carry additional weight. Finally, it is important to note that due to
the specified wind speed range and balanced wind direction weighting, this analysis does not
directly reflect the accuracy of the AEP, which is expected to be higher when higher wind
speeds are included.

4-1-2 Qualitative and Quantitative Methods for Comprehensive Validation

Chapter 1 highlighted that literature shows contradicting statements regarding model accu-
racy depending on experiment design. Moreover, assessing the effect of different validation
steps and model improvements is challenging due to the lack of quantification in existing stud-
ies. Consequently, this thesis aims to provide a comprehensive analysis, employing qualitative
and quantitative validation strategies.
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Firstly, the qualitative analysis follows the approach outlined by Doekemeijer et al. [31],
using two types of figures: The first examines energy ratio curves for specific turbines to
analyse individual turbine performance across the entire wind rose. The second evaluates the
energy ratios along an array of turbines for a specific wind direction to study wake propagation
within the wind farm. This approach enables comparison for both situations where full and
partial wake overlap, addressing common engineering wake model discrepancies mentioned in
the literature [30, 15].

Secondly, quantitative validation is included to effectively compare models and quantify
the effect of different validation steps and model adaptations. This thesis proposes three
quantitative metrics for farm and turbine accuracy:

• The Farm Error (Equation 4-2) is the most important metric for yield calculations,
assessing cumulative wake loss of all turbines. The metric quantifies the percentage
mismatch in total energy production between observed data and the model summed
across all turbines and wind directions:

Farm Error = 1
N

N∑
i=1

(
R

SCADA
i − R

model
i

)
, (4-2a)

where Ri =
M∑

j=1
R(Ti, θj). (4-2b)

Here, N represents the total number of turbines, Ti denotes turbine number i and Ri is
the energy ratio as defined in Equation 4-1 for turbine i, aggregated across all M wind
direction bins.

• The Mean Absolute Turbine Error (Equation 4-3) focuses on individual turbine
performance. This information is important for evaluating the suitability of models
for wind farm control and layout optimisation, where accurate modelling of individ-
ual turbines is essential. To assess individual turbine performance, the metric avoids
the cancellation of over- and underestimations among different turbines by taking the
absolute value.

Mean Absolute Turbine Error = 1
N

N∑
i=1

∣∣∣RSCADA
i − R

model
i

∣∣∣ . (4-3)

• The Mean Turbine RMSE (Equation 4-4) provides additional insights into the vari-
ation of errors within the wind rose, a perspective not covered by the Mean Absolute
Turbine Error. Additionally, this metric is affected by how well the wake width of indi-
vidual wakes is estimated, an important aspect for applications such as controller design
and layout optimisation.

Mean Turbine RMSE = 1
N

N∑
i=1

√√√√ 1
M

M∑
j=1

(
RSCADA

ij − Rmodel
ij

)2
. (4-4)
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The qualitative and quantitative validation methods outlined above, using the energy ratio
metric, form the core of the validation methodology. The following sections will expand on
the steps within the framework designed to ensure fair validation with historical data and
improve model accuracy.

4-2 Addressing Wind Direction Uncertainty in SCADA data

When validating against historical data, accounting for uncertainty in the SCADA data is
important. Theoretically, the spread of the wake in steady-state models should equal the long-
term mean wake for a specific mean wind direction, as outlined in section 2-1. Consequently,
it already accounts for temporal variability in the 10-minute averaged wind direction data.
However, additional variability may arise from measurement noise and yaw hysteresis, i.e.,
the turbine’s delayed response to changing wind directions. This additional variability in the
SCADA data leads to the wake loss being spread over a broader range of wind directions in the
data. This has no effect when validating for the Farm Error or Turbine Error, as the metrics
are summed over all wind directions. However, when investigating the accuracy for specific
wind directions, this impacts our validation where wake models tend to show shallower wakes
than observed in SCADA data.

To address this, Doekemeijer et al. [31] apply a Gaussian distribution with a standard de-
viation of 3◦ on the wind direction input of the wake models, denoted as σwd. The reasoning
behind selecting this value for σwd is neither clearly defined nor validated1. Therefore, this
thesis defines the σwd as representing the additional wake spread due to uncertainty in the
SCADA data. Moreover, this parameter is calibrated to historical data to derive an appropri-
ate value. To do so, this thesis adopts a solution inspired by the methodology of Doekemeijer
et al. [31]. Instead of applying a Gaussian distribution on the wind direction input of FLORIS
like Doekemeijer et al., we apply a Gaussian distribution to the turbine power outputs sim-
ulated by FLORIS, blending the wake loss across a range of wind directions. The benefit
of implementing the uncertainty as a post-processing step is that we can significantly reduce
computation time for calibrating the optimal distribution to match the SCADA data. Essen-
tially, this modification increases the width of the wake while preserving the total energy loss
in the wake. By accounting for uncertainty in the measurements, we ensure a fair comparison
between the data and the wake models.

Calibration Method
Since it is unclear to what extent each model already accounts for measurement uncertainty in
their wake width, the value for σwd will be calibrated for each model independently. The cost
function the parameter is calibrated to is the Turbine RMSE as in Equation 4-4, minimising
the variation of errors within the wind rose. Note that including a heterogeneous inflow and
modifying model parameters affect the cost function for σwd. Consequently, this value is
calibrated as the last step.

1According to B.M. Doekemeijer (personal communication, December 2023) "there is an ongoing debate
about whether σwd should be designed only to address the added uncertainty in SCADA measurements or
also to account for the variability in wind direction during 10-minute intervals". Such definition affects the
reasoning behind the value for σwd.
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4-3 Incorporating Heterogeneous Inflow Wind Speeds

The previous section addressed challenges encountered in validation using SCADA data. This
section focuses on wind inflow dynamics, which are often overlooked in the current validation
and calibration studies. Namely, most engineering wake models assume a homogeneous wind
speed inflow, whereas several studies have identified heterogeneous inflow wind speeds (see,
e.g., [23, 25]). Therefore, it is recommended that one models the heterogeneity in the wind
inflow when validating and calibrating engineering wake models. FLORIS offers an option to
modify inflow conditions by assigning each turbine a wind speed multiplier per wind direction.
This thesis uses SCADA data to generate generalised wind speed profiles. The advantage of
using SCADA data is that it contains all factors affecting wind inflow, including topography-
related background flows, neighbouring wind farms, and global blockage effects, eliminating
the need for additional models. A similar methodology could be applied using high-fidelity
simulations if no SCADA data is available.
Calibration Method
A generalised wind speed profile is derived from SCADA data, normalising the energy ratios
of each upstream turbine to the average of all upstream turbines, similar to Doekemeijer et
al. [31]. The normalised energy ratios of the upstream turbines are calculated for 10◦ wind
direction bins to minimise overfitting to the data. The wind speed multiplier is determined by
taking the cubic root of the normalised energy ratios, following the turbine power-proportional
relationship Pturbine ∝ U3

∞. Note that the multiplier is assumed to be constant over all wind
speeds, indicating a generalised pattern. Next, this profile is extended downstream along
the incoming wind direction, advancing the observed gradient over the farm. Based on this
gradient, a wind speed multiplier is derived for each turbine, denoted as Hws+(Ti, θ). Next,
we interpolate Hws+(Ti, θ) between each 10◦ average to obtain values for the single wind
directions. To implement the derived wind speed heterogeneity, these multiplier values, which
vary for each turbine based on the wind direction, are multiplied by the mean incoming wind
speed. Note that the derivation of inflow heterogeneity does not involve the use of wake
models and is, therefore, the same for all models and not affected by parameter calibration.

4-4 Wake Model Parameter Calibration

Following the implementation of wind speed heterogeneity in the previous section, we fo-
cus on improving model characteristics through parameter calibration. By addressing the
model inputs first, we ensure a fair comparison with the data and lay the foundation for the
calibration process.

Calibration of model parameters fundamentally alters wake characteristics. It influences
the total energy loss in the wake and, consequently, the total energy output of the farm.
Calibrating the model parameters to SCADA data serves several benefits. First, it analyses
the validity of the literature-recommended parameters for the present operational wind farms.
Currently, most parameters have been calibrated to high-fidelity simulations or wind tunnels.
An exception is the TurbOPark model, which has been calibrated to several offshore wind
farms. Second, a similar exercise is expected to be executed before wind farm control is
applied to a farm to adjust the models to the specific wind farm. Therefore, it is important
to design a robust methodology.
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Choice of Wake Model Parameters
The Jensen, GCH, CC, and TurbOPark models contain 1, 4, 6 and 1 tunable wake parameters,
respectively. Consequently, the calibration parameter choices for Jensen and TurbOPark
are straightforward: we for Jensen (Equation 2-1), representing wake expansion, and A for
TurbOPark (Equation 2-4), denoting the wake expansion calibration parameter. In the case
of the GCH models, Sobol sensitivity studies indicate that the primary sensitivity lies in ka

(Equation 2-2), governing the impact of TI on wake recovery [41, 68]. No sensitivity studies
have been conducted for the CC model; however, as the models partially overlap, the same
calibration parameter, as (Equation 2-3), weighing the influence of TI in wake recovery, has
been chosen for the CC model.

Model Parameter Physical representation Min Max Ref.
Jensen we Wake expansion 0.01 0.10 0.05
GCH ka Weight of TI in wake expansion 0.10 0.50 0.38
CC as Weight of TI in wake expansion 0.05 0.30 0.18
TurbOPark A Wake expansion calibration 0.01 0.15 0.04

Table 4-1: Calibration parameters along with their physical representations, optimisation bounds
and reference values, i.e., the current literature-recommended values.

Calibration Method
In FLORIS, the model parameters can easily be adjusted. To reduce optimisation time, the
models have been pre-calculated for a set of values for the parameters outlined in Table 4-1.
Given the limited information available in existing literature regarding the calibration of these
parameters, the optimisation bounds were derived through a visual analysis of energy ratio
curves across various upper and lower bounds. Such a method ensured that the optimal values
lay within the determined optimisation bounds. Furthermore, the literature lacks consensus
on the best calibration method and cost function, given limited research on calibration. Two
different cost functions are explored in this thesis. First, several authors use something similar
to the yield error, defined as follows:

Φopt,yield = arg min
Φ

(
R

SCADA
w,farm − R

model(Φ)
w,farm

)
, (4-5a)

where Rw,farm = Rw(Tfarm). (4-5b)

In these equations, Φopt represents the model parameter that minimises the cost function.
The bar in R indicates that the energy ratio is summed over all wind directions M as in
Equation 4-2b. In Rw, the w denotes a weighted energy ratio, where wind directions that
are more prevalent in the data set carry more weight. Rw(Tfarm) represents the weighted
energy ratio for all N turbines collectively, where Ti in Equation 4-1 consists of multiple
turbines. This method, rather than summing the energy ratios of individual turbines, gives
more weight to turbines with higher energy ratios. While this may benefit the accuracy of
yield estimations, it could compromise individual turbine performance, which is unfavourable
for wind farm control. Therefore, this thesis also explores a second cost function emphasising
individual turbine performance, the cumulative absolute turbine error:

Φopt,turb. = arg min
Φ

1
N

N∑
i=1

∣∣∣RSCADA
w,i − R

model(Φ)
w,i

∣∣∣ . (4-6)
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Similar to Equation 4-5a, the weighted energy ratio Rw,i is used. Our training and test
sets are not identical because in our validation framework outlined in section 4-1, we use
the unweighted energy ratio. An alternative approach involves dividing the data set into a
training and test set. However, due to the unequal distribution of uncertainties in the data set,
such as seasonal variations, turbine availability and measurement errors, further investigation
is necessary to ensure an appropriate data split and falls outside the scope of this thesis.
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Chapter 5

Results and Discussions

This chapter provides a case study of the model validation and calibration framework outlined
in chapter 4. In this case study, four engineering wake models in FLORIS are analysed. The
models are compared to historical data from the OWEZ wind farm, which has undergone
several pre-processing steps outlined in chapter 3. This chapter is organised as follows. First,
section 5-1 will outline the identified heterogeneity gradients and the calibrated values for
the model parameters Φwind direction standard deviation σwd. Next, we will investigate
how different steps in the framework affect the agreement of the models with SCADA in
section 5-2. Second, a more detailed analysis of the calibrated models will be provided in
section 5-3.

5-1 Calibration Outcomes: Inflow Heterogeneity, Model Parame-
ters, and Wind Direction Standard Deviation

This section presents the results of calibrating the heterogeneous inflow patterns, model pa-
rameters (Φ), and the wind direction standard deviation (σwd).

The heterogeneity maps for the OWEZ wind farm, developed using the methodology in sec-
tion 4-3, demonstrate gradients indicative of global blockage, coastal effects, and farm-to-farm
effects with the neighbouring Prinses Amalia Wind Farm. Further details and corresponding
figures can be found in Appendix B.

Following the implementation of a heterogeneous inflow, the parameters Φ and σwd were
calibrated as detailed in section 4-4 and section 4-2, respectively. Table 5-1 presents calibrated
values for Φ and σwd. Investigating the values for Φopt,yield. and Φopt,turb. similar trends can
be observed. The results indicate significant parameter changes in the TurbOPark model,
which is noteworthy because, within the industry, the model is favoured for its improved
wake loss estimations. Another interesting observation is that the parameters of GCH and
CC models converge, possibly because they both use similar velocity deficit methods. Lastly,
it is worth noting that minimal parameter changes are observed for the CC model. Moreover,

Master of Science Thesis J.A. Keim



24 Results and Discussions

Model Φref Φopt, yield. Φopt, turb. σwd
Jensen 0.05 0.042 0.038 4.5◦

GCH 0.38 0.237 0.195 4.4◦

CC 0.18 0.231 0.174 4.4◦

TurbOPark 0.04 0.095 0.077 3.7◦

Table 5-1: Calibrated parameters obtained during model optimisation. The table presents the ref-
erence parameter before calibration Φref , the calibrated model parameters Φopt,yield. and Φopt,turb.

corresponding to cost functions Equation 4-5a and Equation 4-6, respectively. For validation, the
Φopt,turb. is employed. Consequently, the wind direction standard deviation σwd is calibrated
using models containing Φopt,turb..

the table shows that model parameter calibration outcomes differ based on the chosen cost
function, emphasising the importance of aligning the cost function with the intended model
application. Therefore, this thesis focuses on the turbine error, aiming to enhance the models
for wind farm control experiments. Consequently, the values for σwd are calibrated to the
models containing Φopt,turb.. Separate calibrations are performed for the different models,
resulting in a σwd ranging between 3.7◦ and 4.5◦. They are exceeding the recommended 3◦ in
literature [20, 31], indicating the relevance of the (re)calibration of this value.

5-2 Analysing the Impact of Different Steps in the Validation and
Calibration Framework

This section investigates the impact of different steps in the validation and calibration frame-
work on model accuracy. The model performance is evaluated before and after the incorpo-
ration of:

• wind direction uncertainty,

• heterogeneous inflow wind speed,

• and calibrated model parameters.

In the remainder of this section, subsection 5-2-1 presents the energy ratio curves of two
turbines, one at the wind farm’s edge and one at the centre. Subsequently, subsection 5-
2-2 displays the energy ratios of turbine arrays for specific wind directions, including wind
direction aligned and slightly misaligned with the farm layout. In addition to the qualitative
analysis, subsection 5-2-3 offers a quantitative overview of the effect of the different steps in
the validation and calibration framework.

5-2-1 Single Turbine Analysis

In Figure 5-1, we examine the energy ratio curve of Turbine 28, located in the north-western
section of the wind farm, identifying several model discrepancies.

Firstly, in the benchmark evaluation in Figure 5-1a, wind direction variability is evident
by sharp wake loss dips in the wake models but shallow dips in the SCADA data. This is
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(b) Including wind direction uncertainty (σwd)
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(c) Including wind direction uncertainty (σwd) and heterogeneous inflow wind speeds (Hws+ )
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(d) Including wind direction uncertainty (σwd), heterogeneous inflow wind speeds (Hws+ ) and calibrated
model parameters (Φopt)

Figure 5-1: Left: Energy ratio curves of Turbine 28 in the OWEZ wind farm for wind directions
between 0◦ and 360◦. The subfigures display the model performance by including wind direction
uncertainty, heterogeneous inflow wind speeds and calibrated model parameters. Right: Layout
of the OWEZ wind farm indicating the location of Turbine 28.
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particularly evident in the wind direction range between 200◦ and 280◦. In this sector, Tur-
bine 28 experiences wakes from western Turbines 8, 9, 10, 11 and 20 (shown in Figure 3-1b).
For wind directions within this range, all models assume a free stream wind speed between
the wakes of these turbines. Conversely, the SCADA data does not distinctly detect wakes
from the individual turbines. This discrepancy can be attributed to the models assuming a
precise wind direction for the respective wind direction bin. At the same time, the SCADA
data is influenced by uncertainty, as discussed in section 4-2. To address this, we introduce
a wind direction distribution, σwd, in Figure 5-1b, leading to an improvement in wake width
estimation, particularly noticeable between 200-250◦. Secondly, energy ratio values exceeding
one indicate that the selected turbine captures more power than the average of the upstream
turbines, likely due to heterogeneous wind speed inflow. The heterogeneity in the SCADA
data becomes evident at wind directions of 35◦, 65◦, and 265◦. A combination of block-
age, coastal effects and the neighbouring Prinses Amalia Wind Farm may explain this effect.
Figure 5-1c displays the energy ratio curve incorporating heterogeneous inflow wind speeds,
revealing a noticeable improvement for the aforementioned wind directions. Finally, dissimi-
larity in wake depth between the models and the data persists around 100-190◦ and in deeper
wake losses at locations such as 49◦, 80◦, and 230◦. Here, TurbOPark tends to overestimate,
while GCH underestimates wake losses. The incorporation of calibrated model parameters
Φopt in Figure 5-1d addresses this issue, resulting in improved wake depth estimation. No-
tably, all models show similar behaviour for most wind directions, with noticeable differences
for wind directions neighbouring 139◦, characterised by partial wake overlap. Despite the im-
provements found through the additional validation and calibration steps, deviations from the
SCADA data persist. Specifically, a difference in wake width remains for 139◦, likely due to
non-zero-mean wind direction uncertainty in the SCADA data. The underestimation between
100◦ and 130◦ may be attributed to coastal winds. Further discussion on these deviations
from SCADA data is provided in section 5-3.

The energy ratio curves for Turbine 15, located in the southern centre of the wind farm and
surrounded by turbines on all sides, are shown in Figure 5-2. Initially, as seen in Figure 5-2a,
all models inaccurately estimate wake depth and width with literature-recommended model
settings. These issues are addressed by including wind direction variability and the calibration
of model parameters, illustrated by Figure 5-2b and Figure 5-2c, respectively. As Turbine
15 shows minimal effects from inflow heterogeneity, a separate figure is not presented. After
all three validation and calibration steps, performance aligns with Turbine 28, where all
models demonstrate similar performance for most wind directions. Similar to Figure 5-1d,
an overestimation of wake losses is noticeable for eastern wind directions, likely attributed to
coastal effects. The models also diverge in performance during instances of multiple-turbine
wake interactions (e.g., 5◦, 300-310◦, 340-350◦), resulting in partial wake overlap. A more in-
depth analysis of instances of deviation from the SCADA data will be provided in section 5-3.

5-2-2 Turbine Arrays Analysis

While the single turbine analysis provided insights into model performance across the wind
rose, it does not fully describe wake propagation throughout the farm. Therefore, this sec-
tion focuses on specific wind directions to visualise wake propagation within turbine arrays.
Two wind directions are examined: first, at 139◦, where the layout aligns with the incoming
wind, resulting in full wake overlap. Second, at 304◦, the wind direction is slightly misaligned
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(b) Including wind direction uncertainty (σwd)

0 50 100 150 200 250 300 350
Wind direction (deg)

0.4

0.6

0.8

1.0

En
er

gy
 ra

tio
 (-

) 
 in

clu
di

ng
 

wd
, H

ws
+
, 

op
t SCADA Jensen GCH CC TurbOPark

0°

90°

180°

270°

Layout

(c) Including wind direction uncertainty (σwd), heterogeneous inflow wind speeds (Hws+ ) and calibrated
model parameters (Φopt)

Figure 5-2: Left: Energy ratio curves of Turbine 15 in the OWEZ wind farm for wind directions
between 0◦ and 360◦. The subfigures display the model performance by including wind direction
uncertainty, heterogeneous inflow wind speeds and calibrated model parameters. As Turbine 15
exhibits minimal effects from inflow heterogeneity, a separate figure is not provided. Right: Layout
of the OWEZ wind farm indicating the location of Turbine 15.

with the turbine layout, leading to partial wake overlap. Displayed in Figure 5-3 and 5-4
respectively. The sub-figures in both figures visualise performance after the different steps in
the validation and calibration framework. Performance without wind direction uncertainty
included is omitted, as its implementation was demonstrated to be essential for a fair com-
parison for single wind directions in Figure 5-1 and 5-2.

First, in Figure 5-3, the energy ratios of all 36 turbines are shown for a wind direction
of 139◦, indicating the power capture of each turbine relative to Turbine 0. In the top
figure, Figure 5-3a, the SCADA data of other upstream turbines (Turbine 12, 21 and 29)
show an energy ratio below one, indicating a heterogeneous wind speed inflow for this wind
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Figure 5-3: Left: Energy ratios of all 36 turbines for a wind direction of 139◦, displaying full
wake overlap due to alignment of the wind direction with the turbine layout. Subfigures illustrate
model validation and calibration steps, including wind direction uncertainty, heterogeneous inflow
wind speeds and calibrated model parameters. Right: Flow field visualisation of the OWEZ wind
farm for a wind direction of 139◦ and wind speed of 8 m/s.

direction. The wind speed gradient observed in the SCADA data may be caused by lower
wind speeds coming from the coast located east of the wind farm, affecting the turbines
positioned further east. In the middle figure, Figure 5-3b, a heterogeneous wind speed gradient
across the wind farm is introduced. This enhances the performance of upstream turbines, yet
an overestimation of energy ratios persists. This is because the gradient, derived from the
SCADA data, is an average of 10-degree wind direction bins rather than the specific wind
direction depicted in the figure. Such generalisation is necessary to prevent overfitting. Note
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that the effect of heterogeneous inflow is extended beyond upstream turbines, influencing
the performance of other turbines in the array, notably in Turbines 29 to 35. The bottom
figure, Figure 5-3c, shows the performance after model parameter calibration. Similar to
subsection 5-2-1, a convergence of model performance can be found. However, differences
remain. Moreover, an overestimation of the energy ratio in the first turbine of the array has
a cascading effect, impacting the energy ratios in the entire array. Upon closer examination
of the magnitude of the wake losses, it is evident that there is an overall overestimation of
wake losses for this wind direction deeper in the array.
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Figure 5-4: Left: Energy ratios of all 36 turbines for a wind direction of 304◦, displaying
partial wake overlap due to a slight misalignment of the wind direction with the turbine layout.
Subfigures illustrate model validation and calibration steps, including wind direction uncertainty,
heterogeneous inflow wind speeds and calibrated model parameters. Given the minimal effects of
inflow heterogeneity at 304◦, a separate figure is omitted. Right: Flow field visualisation of the
OWEZ wind farm for a wind direction of 304◦ and wind speed of 8 m/s.

The energy ratios of the turbine arrays for a wind direction of 304◦ are shown in Figure 5-4,
with the sub-figures displaying the performance after the different steps. As minimal effects
from inflow heterogeneity were visible for 304◦, a separate subfigure is not presented. Similar
to the findings in subsection 5-2-1 and Figure 5-3, significant differences in wake depth are
evident between the models before calibration, with convergence occurring post-calibration.
It can be observed that the calibration has the most significant impact on the TurbOPark.
This was expected after analysing the calibrated model parameters in section 5-1. A more
in-depth analysis of the performance of the different models will be provided in section 5-3.
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The qualitative analysis has demonstrated that each step in the validation and calibration
framework improves the alignment between wind farm data and wake models. The imple-
mentation of wind direction uncertainty improved wake width estimation. The heterogeneous
inflow wind speeds matched the trends observed in the SCADA data, and models with cali-
brated wake expansion parameters showed excellent wake loss estimations across most wind
directions.

5-2-3 Quantitative Results

The previous subsections illustrated the qualitative performance of the designed validation
and calibration framework. This section concludes with a quantitative overview of the im-
provement in model performance resulting from the different steps. The results are divided
into three metrics:

• Farm Error (Equation 4-2),

• Mean Absolute Turbine Error (Equation 4-3),

• Mean Turbine RMSE (Equation 4-4).

For further details on the definition of these metrics, see section 4-1.

Figure 5-5 quantifies the impact of the different model validation and calibration steps on
various validation metrics for the different models, providing an overview of the effectiveness of
these measures. In the initial row of the bar chart, the effect of the different model validation
and calibration steps is evaluated for the Farm Error. The step that significantly impacts
the Farm Error is model parameter calibration. This improvement results in a Farm error
under 0.34% for all models. Comparing such values to the literature is challenging due to
dependence on validation metrics and experiment design. Nonetheless, an analysis of error
reduction reveals a significant decrease, ranging from 88-92%1. On the other hand, the CC
model shows a slight decrease in accuracy. This can be attributed to the different wind
direction distribution in the data of the training set. Furthermore, the inclusion of wind
direction uncertainty and the heterogeneous inflow wind speeds are expected to have minimal
impact on the Farm Error. In the context of including wind direction uncertainty, the total
energy loss in the wake remains constant. In the case of heterogeneous inflow, the wind speed
gradient applied maintains the same average incoming wind speed. Consequently, both should
yield no different results when all turbines and wind directions are summed in the farm error.
Nevertheless, a slight change in accuracy is observed. It is unclear why this happens, but it
is possibly related to the binning of the wind directions near the 0-360◦ transition.

Examining the middle row of the bar chart reveals improvements through heterogeneous
inflow and parameter calibration. As we are still summing over all wind directions, the inclu-
sion of wind direction uncertainty has minimal impact for reasons equal to those of the Farm
Error. Concerning the inclusion of a heterogeneous inflow, a reduction of 3-24% is observed.
In theory, including heterogeneous inflow wind speeds should affect all models similarly. Fur-
ther investigation reveals that, when implementing heterogeneity after calibration, all models
show an error reduction of around 20%, similar to CC. Parameter calibration leads to the

1Not including CC as its parameter undergoes minimal change.
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Figure 5-5: Bar chart specifying model performance following various validation and calibration
steps. Each row represents a different validation metric: the Farm Error (Equation 4-2), Mean
Absolute Turbine Error (Equation 4-3) and Mean Turbine RMSE (Equation 4-4), offering insights
into model performance at both farm- and turbine-levels. Each column displays the performance
for different models: Jensen, GCH, CC and TurbOPark.

most significant improvements, ranging from 30-65%1. This reduction aligns with expecta-
tions since the cost function for calibration is the Mean Absolute Turbine Error. Notably,
the Jensen model shows a less significant improvement in the Mean Absolute Turbine Error
compared to the Farm Error. This suggests that the low Farm Error results from relatively
more cancellation of over- and underestimations among turbines compared to other models,
indicating incorrect wake predictions.

Finally, looking at the bottom row of the bar chart, the Mean Turbine RMSE is affected
by all three steps. First, the improvement found by including wind direction uncertainty is
expected as this is the cost function for its optimisation. Second, it shows that including
a heterogeneous inflow lowers the error for most wind directions. Third, the reduction in
turbine RMSE by calibration is a promising outcome, indicating improved turbine accuracy
across most wind directions. This suggests that the improvement found by calibration extends
beyond the cost function, and a more fundamental enhancement in performance is achieved
by calibration. The model adaptations lower the Mean Turbine RMSE with 15-43%, 6-14%
and 10-37%1, respectively.

1Not including CC as its parameter undergoes minimal change.
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In conclusion, all three steps substantially impact model accuracy across all models. The
results show that parameter calibration has the potential to improve model accuracy, im-
pacting all validation metrics significantly. Furthermore, introducing heterogeneous inflow
wind speeds affects the Mean Absolute Turbine Error and Mean Turbine RMSE, impacting
validation only on turbine-level. The addition of uncertainty on the wind direction input only
improves the Mean Turbine RMSE. In line with the qualitative validations, it can be observed
that model performance converges after the calibration steps. The subsequent section will
further investigate the origin of the remaining errors and compare the optimised models.

5-3 Analysing the Accuracy of the Enhanced Wake Models

The previous section highlighted the significance of the steps in the proposed validation and
calibration framework. In applications such as wind farm control and layout optimisation,
where the precision and uncertainty of wake models are crucial for realistic outcomes, devia-
tions from SCADA data require closer examination. This section shows how the framework
can be used to investigate instances of model deviation from SCADA data and analyse dif-
ferences between models, aiming to highlight points of attention and pave the way for model
improvement.

5-3-1 Accuracy Along Different Wind Directions

To pinpoint instances where the models show the most significant divergence from the SCADA
data, the Farm Error2 for each wind direction is visualised in Figure 5-6. To highlight wind
directions aligned with the farm layout, vertical dashed lines are placed at 49◦, 139◦, 229◦,
and 319◦. Figure 5-6 shows two notable instances of deviation: a consistent overestimation
of wake losses between 50◦ and 120◦, and zig-zag trends around 139◦ and 319◦, which will be
discussed next.

0 50 100 150 200 250 300 350
Wind direction (deg)

10

5

0

5

10

Fa
rm

 E
rro

r [
%

] 
 in

clu
di

ng
 

wd
, 

op
t, 

H
ws

+

Jensen GCH CC TurbOPark

Figure 5-6: Farm Error2 (Equation 4-2) per wind direction indicating areas where models deviate
most from historical data. Vertical dashed lines mark wind directions aligned with the farm layout
(49◦, 139◦, 229◦, and 319◦). Results are after the inclusion of wind direction uncertainty (σwd),
heterogeneous inflow wind speeds (Hws+) and calibrated model parameters (Φopt).

2This is a modified version of the Farm Error from Equation 4-2, here calculated per wind direction instead
of summed across all directions.
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The overestimation of wake losses 50◦ and 120◦ encountered in Figure 5-6 indicates that
the observed overestimation for Turbine 28 in Figure 5-1c and Turbine 15 in Figure 5-2c
between 50◦ and 120◦ extends to numerous turbines in the wind farm. This overestimation
is likely attributed to coastal winds impacting the atmospheric conditions of the incoming
wind, resulting in faster wake recovery [69]. While wind speed gradients are considered
through heterogeneous inflow modelling, wind rose dependent TI and atmospheric stability
are not explicitly accounted for in the models. An investigation of the met mast data analysis
in section 3-3 reveals no significant increase in turbulence between 50◦ and 120◦, hinting
towards another cause for faster wake recovery. Such a cause could be lower atmospheric
stability resulting from coastal winds originating from the corresponding wind directions.
However, no data analysis has been conducted on this aspect.

Another notable trend for all optimised models is the zig-zag trend around 139◦ and 319◦.
To further examine the wake propagation around these wind directions, the energy ratios of
all 36 turbines are analysed for 319◦ and two bordering wind directions. Figure 5-7 displays
the energy ratios of all 36 turbines for wind directions 319◦, 304◦, and 329◦ in Figure 5-7a,
5-7b, and 5-7c, respectively. For all three wind directions Turbine 11, 20, 28 and 35 are
the upstream turbines for which the SCADA data consistently shows an energy ratio of one,
indicating no heterogeneity in the inflow.

First, the energy ratios for a wind direction of 319◦, shown in Figure 5-7a, are examined. For
this wind direction, the wind farm layout aligns with the incoming wind, and full wake overlap
occurs. Each array consists of a significant number of turbines, namely 8 to 12 turbines, with
a smaller turbine spacing of 7.2D. The figure demonstrates that, similar to Figure 5-6, the
models overestimate wake losses for 319◦. While the increased TI from the north (as depicted
in Figure 3-2b) contributes to this overestimation, the occurrence of a similar overestimation
at 139◦ (shown in Figure 5-6) suggests that TI is not the only factor. Moreover, as the
overestimation is present from the beginning of the arrays, wake superpositioning is unlikely
the cause, leaving the exact reason unclear.

An examination of the energy ratios for the bordering wind directions 304◦ and 329◦, in
Figure 5-7b and 5-7c respectively, show an overall underestimation of wake losses in wind
direction sectors next to the aligned arrays. These wind directions are characterised by
partial wake overlap and a larger turbine spacing. Previous validation studies show that
engineering wake models tend to overestimate losses in full wake overlap and underestimate
losses in partial wake overlap, a phenomenon associated with superposition methods and wake
recovery over longer distances. When the error arises farther down in the array, it is often
referred to as deep array effects. Comparing the performance of the models in Figure 5-7 and
Figure 5-4, it can be observed that most models tend to overestimate wake losses in full wake
overlap and underestimate wake losses when partial wake overlap occurs. This is consistent
with the findings of, among others, Archer et al. [30] and Hamilton et al. [15]. In the first
array in Figure 5-4, all models underestimate wake losses. In the other three arrays, the CC
and TurbOPark models show significantly better estimation of the deep array effects. Both
models have been proposed as a solution for these deep array effects. Despite the improved
performance of these models seen in Figure 5-7b compared to Jensen and GCH, the trend
of over- and underestimation persists for Figure 5-7a and 5-7c. Moreover, in Figure 5-7c,
it is evident that superpositioning methods may not be the only factor contributing to the
divergence, as errors arise at the beginning of the array. To further study this inconsistency,
we examine the energy ratio curves of Turbine 4 and 34 in Figure 5-8. For Turbine 34, the
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(a) 319◦: Wind direction aligns with farm layout, resulting in full wake overlap.
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(b) 304◦: Wind direction rotated counter-clockwise from 319◦, resulting in partial wake overlap.

111009080706050403020100201918171615141312282726252423222135343332313029
Turbine ID (-)

0.6

0.7

0.8

0.9

1.0

En
er

gy
 ra

tio
 (-

) 
 in

clu
di

ng
 

wd
, H

ws
+
, 

op
t

SCADA Jensen GCH CC TurbOPark

T11
T10

T09
T08

T07
T06

T05
T04

T03
T02

T01
T00

T20
T19

T18
T17

T16
T15

T14
T13

T12

T28
T27

T26
T25

T24
T23

T22
T21

T35
T34

T33
T32

T31
T30

T29

wd = 329 deg

(c) 329◦: Wind direction rotated clockwise from 319◦, resulting in partial wake overlap.

Figure 5-7: Left: Energy ratios of all 36 turbines for different wind directions after the imple-
mentation of wind direction uncertainty (σwd), heterogeneous inflow wind speeds (Hws+) and
calibrated model parameters (Φopt). Wind directions include 319◦ and two neighbouring wind
directions 304◦ and 329◦, providing insight into the zig-zag trend observed in Figure 5-6. Right:
Flow field visualisation of the OWEZ wind farm for the respective wind directions and wind speed
of 8 m/s.

deepest wake loss around 319◦ in SCADA data and models does not align in the same wind
direction, resulting in the underestimation of wake losses in Figure 5-7c. For Turbine 4, where
deepest wake loss does both align in 319◦, better performance is observed in Figure 5-7c. The
investigation of the energy ratio curves for other turbines reveals a similar offset around 319◦

in Turbines 9, 10, 16, 18, 19, 29, 30, 33, and 34, explaining a part of the underestimation of
wake losses observed in Figure 5-7c as well as the overestimation of wake losses in Figure 5-7a.
While several inner turbines also show this effect, it is predominantly observed in the outer
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turbines of the farm. Additionally, a comparable lack of alignment is found in the energy
ratios curves at the deepest wake loss at 139◦. This observed shift for both 139◦ and 319◦

likely contributes to the zig-zag trends mentioned earlier. The origin of this error is twofold.
Firstly, the accuracy and consistency of the SCADA data significantly influence the shape and
location of the wake. Note that by including wind direction uncertainty, we only address zero-
mean errors, such as measurement noise. Accounting for non-zero-mean errors would require
additional steps in the data pre-processing. Secondly, even if the SCADA would be accurate,
the models assume a homogeneous wind direction field, with the wind direction equal to the
average of all turbines. This assumption may not accurately represent the conditions for all
turbines in the farm, particularly those located on the outer edges. For these turbines, spatial
variability in the incoming wind direction likely leads to a slight shift compared to the average
of all turbines.
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(a) Turbine 4, revealing misalignment of deepest wake loss for 139◦.
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(b) Turbine 34, revealing misalignment of deepest wake loss for 139◦ and 319◦.

Figure 5-8: Left: Energy ratio curves of Turbine 4 and 34 for wind directions between 120◦ and
340◦. Vertical dashed lines mark wind directions aligned with the farm layout (139◦ and 319◦).
Right: Layout of the OWEZ wind farm indicating the location of Turbine 4 and 34.

From this subsection, it can be concluded that the proposed validation and calibration
framework can significantly increase accuracy across all wind directions. However, discrepan-
cies remain and are likely related to changing atmospheric conditions due to coastal effects
and non-zero-mean wind direction uncertainty, which affect all models similarly. Instances of
the observed difference in model performance for full and partial wake overlap are likely tied
to the fact that these are the wind direction sections where most wake interactions occur.
These wind directions also correspond to the regions where model performance diverges. This
will be further discussed in the following subsection.
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5-3-2 Differences Between Models

The observed variations in model performance are probably linked to the diverse definitions
of wake expansion, outlined in chapter 2. Additionally, the CC model employs a novel super-
positioning method, whereas the other models use the Sum of Squares method. Analysing
where and how model performance diverges provides insights into the efficacy of the different
modelling strategies. The comparison of wake models is separated into three scenarios where
models deviate most, which will be discussed next.

The first scenario encompasses single wake estimation. It can be observed in Figure 5-3c
and Figure 5-7a that TurbOPark consistently predicts lower wake losses at the second turbine
in the array than other models. This is accurate for wind directions with a higherTI of 7.8% in
Figure 5-7a but not for a TI of 5.3% in Figure 5-3c. Currently, the models do not account for
these directional differences and assume a fixed TI of 6.5%. Consequently, it remains unclear
which model most accurately estimates single wake loss. If a TI-rose would be implemented in
the model input, it can be investigated whether it is affected by how they integrate ambient
TI. Moreover, for other wind directions, these distinctions are not evident. Therefore, no
clear conclusion can be drawn on this topic.

In the second scenario, involving arrays aligned with the incoming wind direction, as in
Figure 5-3c and Figure 5-7a, Jensen performs significantly worse. This is possibly attributable
to the fact that Jensen is the only model not including ambient nor turbine-induced TI in its
wake expansion.

The third scenario includes situations of partial wake overlap. Both the TurbOPark and CC
models have been proposed as a solution for the so-called deep array effects and outperform
the Jensen and GCH models in Figure 5-7b. TurbOPark aims to solve the issue by realising a
slower wake recovery, and CC by introducing a new superpositioning method. Interestingly,
both models achieve similar performance in this scenario by a different method.
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Chapter 6

Conclusions and Recommendations

6-1 Conclusions

This master’s thesis has introduced a novel framework for the validation and calibration of
engineering wake models to answer the research question: How can the reliability of current
engineering wake models be holistically validated for different model applications, and how can
reliability be improved by including inflow heterogeneity or parameter calibration?

The proposed framework combines best practices from literature, accounting for wind direc-
tion uncertainty in historical wind farm data and correcting wake model inputs by including
heterogeneous inflow wind speeds. Together, these components form the basis for investigat-
ing the potential of model parameter calibration to improve the physical characteristics of the
wake models. A combination of quantitative and qualitative methods is designed for holistic
wake model validation, aiming to reduce the impact of experiment design on perceived model
accuracy and enabling comprehensive evaluation of proposed model improvements. The effi-
cacy of this framework was demonstrated through a case study with historical data from the
OWEZ wind farm and four engineering wake models from the popular wake modelling tool
FLORIS. This has led to the following conclusions.

Firstly, it can be concluded that the designed framework effectively facilitates
validation of engineering wake models for different model applications, allows for
assessing the effect of validation and calibration steps and can be used to identify,
quantify and explain observed variations in model performance. The qualitative and
quantitative methods in the framework consist of scenarios and metrics offering insights on
farm- and turbine-levels. This approach enables conclusions for varied model applications,
such as yield calculations and wake steering. Moreover, the case study has shown that the
validation framework holistically evaluated the impact of proposed model improvements, a
capability not seen before in the literature. The qualitative analysis illustrated model im-
provements through energy ratio curves, while the quantitative analysis substantiated these
with reduced errors. Additionally, applying this framework to the case study showed that
combining the single turbine analysis with an array analysis reveals critical insights. It re-
vealed how the underestimation of wake losses in array analysis might be explained by the
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misalignment of the deepest wake losses seen in single turbine analysis. Similarly, the sin-
gle turbine analysis indicated wind directions with the most significant variations in model
performance. Analysing turbine arrays for these wind directions revealed different wake loss
propagation patterns among different models. Notably, the CC and TurbOPark models dif-
ferentiate from the Jensen and GCH models by their improved ability to model deep array
effects. These findings confirm the necessity of including both single turbine and turbine
array analysis in a wake model validation. This combined approach proposed in the frame-
work reduces the sensitivity to experiment design in current literature and enables deriving
generalisable conclusions.

Secondly, it can be concluded that when validating engineering wake models for
a specific sector or single wind direction, the impact of wind direction uncertainty
in historical data must be considered. This thesis first demonstrated how wind direction
uncertainty in SCADA data widens wake profiles compared to those of wake models with a
similar total wake loss, affecting validation for specific wind directions. Secondly, it was
shown that we can effectively address this uncertainty without losing any information in the
SCADA data by including a distribution on the model output. Current validation studies
typically overlook this uncertainty, limiting their reliability, or they compensate by widening
wind direction bins, which hinders the validation of single wake profiles necessary for wind
farm control. It is important to note that this uncertainty does not impact the metric of
annual energy production, commonly used in the validation for yield applications, as they
aggregate output across all wind directions.

Thirdly, it can be concluded that heterogeneous inflow wind speeds are present
in historical data, and the inclusion thereof can improve model accuracy at
turbine-level. Firstly, this work has presented a computationally inexpensive method to
derive heterogeneous inflow wind speeds from SCADA data. The resulting wind speed gra-
dients revealed patterns indicative of global blockage and background flow likely influenced
by coastal effects and the nearby Prinses Amalia Farm. Subsequently, the implementation
of heterogeneity revealed a significant impact on turbine performance metrics. The absolute
turbine error was reduced up to 20%. This highlights the need to consider wind speed hetero-
geneity for effective model validation and parameter calibration. Given its effect on turbine
accuracy, it is advised to be included when developing wind farm control strategies.

Finally, it can be concluded that calibrating a single wake parameter can sig-
nificantly improve model accuracy on both farm- and turbine-level, resulting in
enhanced performance for most wind directions. Results have demonstrated the po-
tential of parameter calibration to improve the accuracy of engineering wake models, a notable
contribution to the field. The calibration of a wake recovery-related parameter to a cost func-
tion that minimises turbine error yielded improvements across all validation metrics and was
supported by a qualitative analysis. The resulting error reductions reach up to 92% for indi-
vidual turbines and 65% at farm-level. Given the analysis being limited to one parameter and
one wind farm, these findings serve as a starting point for further investigation of calibration
potential. Furthermore, after calibration, model performances converge with no significant
quantitative differences. Notably, the CC model requires minimal parameter change. In con-
trast, the TurbOPark model shows the most significant adjustments. Although favoured in
the industry for its accuracy in wake loss estimation, these results imply the model is too
conservative in its power capture estimates for the OWEZ wind farm. Whether this applies
to other wind farms remains uncertain.
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6-2 Recommendations

While the findings in this thesis mark significant progress in wake model validation and
calibration, they also highlight areas for future research. Recommendations are split into
three categories: improving the validation and calibration framework, extending framework
applicability to pre-construction scenarios, and implications for industry application.

6-2-1 Framework Development

In the context of framework development, the focus is to expand and improve its capabilities
while addressing current limitations.

Firstly, it is recommended to optimise the calibration strategy. This thesis took
the first steps in parameter calibration by demonstrating its potential. Future work should
focus on refining the calibration process. This includes exploring various cost functions and
incorporating uncertainty bounds. Another possibility is calibrating multiple wake model
parameters. Before doing so, their correlation must be analysed and potentially mitigated
(see, e.g., [35, 41, 68]).

Secondly, it is recommended to focus on improving the reliability of wind di-
rection measurements in historical wind farm data. The non-zero mean errors in wind
direction measurements encountered in this thesis currently affect our turbine array analysis.
Mitigating these errors will enable a more detailed analysis of differences in model perfor-
mance for wind directions that are aligned and non-aligned with turbine arrays. To improve
the reliability of wind direction measurements, it is suggested to use the average wind direc-
tion of three to five turbines neighbouring the analysed turbine instead of taking the average
of all turbines. However, this strategy relies on sufficient turbines containing valid wind di-
rection measurements, a condition not met in the OWEZ wind farm data set. Currently,
when jumps appear in a turbine’s nacelle heading sensor calibration, all its wind direction
measurements are classified as faulty, as this hinders the calibration of the measurements to
true north. By changing the methodology of the northing calibration and allowing for jumps,
the number of turbines whose wind direction measurements are not classified as faulty can be
increased. Note that such wind direction errors have minimal impact on the annual energy
production validation, which sums over all wind directions. As a result, this modification is
not necessary when using the framework for yield validation.

Thirdly, it is recommended to account for wind-direction-dependent atmo-
spheric conditions. Currently, the models assume a fixed turbulence intensity across all
wind directions and wind speeds. Comparisons with meteorological mast data reveal that
turbulence intensity impacts wake recovery and model accuracy. Additionally, discrepancies
due to coastal winds suggest a link to atmospheric stability. This indicates the importance
of analysing these factors and developing methods to incorporate them into the framework.

Finally, it is recommended to extend the framework for applicability to turbines
in yawed conditions. Future development should include adapting the framework such
that it can validate and calibrate wake models under yawed conditions to further assess their
suitability for wind farm control.
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6-2-2 Pre-Construction Applicability

This thesis demonstrated how parameter calibration and heterogeneous inflow wind speeds
impact model accuracy, emphasising their relevance to accurate modelling. As a result, these
findings also impact the accuracy of yield calculations and layout optimisation performed
during the design of the wind farm. The current framework uses historical data to derive
inflow heterogeneity and calibrate parameters. However, such data is unavailable in the
pre-construction phase. Therefore, to extend the use of the framework to scenarios lacking
historical data, the following recommendations are proposed:

Firstly, it is recommended to test the robustness of calibrated parameters across
different offshore wind farms with varying layouts and atmospheric conditions.
The case study showed that for the OWEZ wind farm, the CC model required minimal
calibration, and the TurbOPark model most. However, these findings do not implicitly apply
to all wind farms, as site-specific factors can impact calibration. For example, as highlighted
in this thesis, atmospheric stability possibly affects wake recovery and, thereby, the calibration
of related parameters. Another site-specific factor, turbine spacing, not covered in this thesis
but equally important, is likely to affect calibration as suggested by Van Beek et al. [41].
Consequently, validating the models across offshore wind farms with diverse layouts, sizes, and
atmospheric conditions is necessary to further implement the optimised parameters. A model
showing minimal sensitivity to site-specific factors during calibration can be an excellent
candidate for pre-construction use.

Secondly, it is recommended to develop methods for deriving heterogeneous
inflow wind speeds with high-fidelity models. To estimate heterogeneous inflow wind
speeds without the availability of SCADA data, we suggest comparing the observed hetero-
geneity in the historical data with high-fidelity models like Large Eddy Simulations (LES)
or mesoscale weather models. LES include both blockage effect and background flow, while
mesoscale models can only show background flow. If these models offer similar heterogeneity
patterns to the SCADA data, they can be effectively used for pre-construction analysis.

6-2-3 Industry Applications

The proposed framework provides essential insights for both individual turbine- and farm-
levels. Hence, it is highly relevant to typical industry applications, including both yield
calculations as well as wind farm control and layout optimisation. To further substantiate
the conclusions and recommendations made for these applications, we propose the following
recommendations:

Firstly, it is recommended to analyse the impact of optimised models on wind
farm control and layout optimisation strategies. This thesis has already demonstrated
the effect of the framework on yield calculations, primarily driven by parameter calibration.
However, further research is needed to evaluate its impact on wind farm control and layout
optimisation. Interesting experiments include evaluating whether more accurate models yield
greater or lesser power gains when including wind farm control or layout optimisation in
a simulation. Alternatively, it would be interesting to investigate which model parameters
affect the optimisation outcomes most. Another experiment could include analysing whether
more accurate models yield higher gains in wake steering field experiments. The experiments
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named above can be used to assess the impact of model improvements and help translate the
findings in this thesis into practical application.

Secondly, it is recommended to validate wake models to recently constructed
larger-scale wind farms. Most commercial wind farms are rapidly expanding in size,
with more and larger turbines. Also, as the number of offshore wind farms placed in close
proximity to each other increases, the interactions between neighbouring farms are becoming
increasingly important. Therefore, validating with more recently built wind farms is essential
for industry relevance. Additionally, the OWEZ case study indicated that both the CC and
TurbOPark models outperform the Jensen and GCH models in scenarios with partial wake
overlap. While the qualitative performance of CC and TurbOPark is promising, the observed
quantitative differences are minimal, potentially due to OWEZ’s limited number of turbines
and gridded layout. Consequently, further validation in larger-scale wind farms is necessary
to confirm the superior accuracy of the CC and TurbOPark models.

6-3 Final Words

In conclusion, this thesis addresses the scientific gaps in the literature by introducing a holistic
framework that accounts for previously overlooked factors such as wind direction uncertainty,
heterogeneous inflow wind speeds and the sensitivity to experiment design. By doing so, this
work sets a new standard in wake model validation. Furthermore, the framework proved
the potential of model parameter calibration, paving the way for further model improvement.
Ultimately, this thesis contributes to reducing model uncertainty, improving yield estimations,
and advancing wake mitigation strategies, collectively increasing the feasibility of wind farms.
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Appendix A

Meteorological Mast Analysis

For a comparative analysis of the meteorological mast data and the wind speed and wind
direction measurements from the turbines, a subset of the available meteorological mast data
recorded during farm operation is used. Only the measurements are included where the
meteorological mast is not waked by the OWEZ wind farm, particularly focusing on wind
directions between 160◦ and 300◦. To align with the pre-processed SCADA data, the me-
teorological mast data is filtered to match corresponding time steps. Next, we attempt to
identify a consistent time shift by calculating the optimal shift for each month. However, this
approach did not yield conclusive results. Consequently, the subsequent analysis proceeds
without implementing a time shift.

Figure A-1 presents a comparison of the meteorological mast data with SCADA data from
Turbine 3, which retained 74.1% of its data after pre-processing and is not flagged for faulty
wind direction measurements during northing calibration. Similar analyses for Turbines 6 and
7 showed comparable outcomes. The first subfigure, Figure A-1a, shows a comparison of wind
direction measurements. It reveals a relatively large standard deviation of 13.2◦ around the
mean error of -2.2◦. A reason for this large deviation could be the hysteresis of the turbine’s
yaw angle or misalignment with the incoming wind. The second subfigure, Figure A-1b,
depicts a comparison of wind speed measurements. The standard deviation is 0.9 m/s and
the mean error is 0.2 m/s. This falls within the uncertainty bounds established in the power
curve filtering, which is ± 0.75 m/s.
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(a) Wind Direction Measurement Comparison: This graph illustrates
the comparison between the meteorological mast and turbine wind di-
rection measurements. A mean error of -2.2◦ and a standard deviation
of 13.2◦ are observed, potentially indicating yaw misalignment or hys-
teresis effects.
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(b) Wind Speed Measurement Comparison: This graph depicts the
comparison between the meteorological mast and turbine wind speed
measurements. The data shows a mean error of 0.2 m/s with a stan-
dard deviation of 0.9 m/s, falling within the established uncertainty
bounds of ± 0.75 m/s.

Figure A-1: Comparative analysis of meteorological mast (met mast) and SCADA data of Turbine
3. Data is excluded where the met mast is waked by the wind farm, i.e. wind directions between
160◦ and 300◦ are included. This comparison is used to validate turbine sensor accuracy.
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Appendix B

Results Inflow Heterogeneity

The results for the various heterogeneous inflow wind speed gradients are displayed in Fig-
ure B-1, with each subfigure illustrating the gradient for a particular wind direction. The
figure in this section serves two purposes: visualising how such wind speed multiplier is de-
rived for every single turbine and highlighting gradients that are likely caused by common
sources of inflow heterogeneity.

First, each single subfigure provides a visualisation of how such a gradient is derived for
their specific wind direction. It shows the wind speed multiplier of the upstream turbines.
These are obtained by taking the cubic root of the normalised ratios, in accordance with
the turbine power-proportional relationship Pturbine ∝ U3

∞. Moreover, the small dots show
how the profile of the upstream turbines is extended downstream along the direction of the
incoming wind, advancing the observed gradient across the entire farm. Finally, it provides
an overview of the wind speed multipliers of the rest of the turbines.

Second, the subfigures for these wind directions are selected specifically because they show
patterns likely attributable to common known causes of inflow heterogeneity. However, it
is important to note that these patterns cannot be definitively confirmed. The wind speed
gradient in Figure B-1a illustrates a possibility of wind farm blockage, where reduced wind
speeds occur at the centre of the farm due to the induction zone of the entire wind farm.
Similarly, as shown in Figure B-1b, a speed-up effect is mostly observed on the west edge
of the farm. Furthermore, Figure B-1c to B-1f reveal the impact of wakes generated by the
Princes Amalia Wind Farm, located [X] kilometres to the west of OWEZ, see Figure 3-1a.
These wakes are noticeable for wind directions ranging from 240-270 degrees. Lastly, wind
coming from the coast located east of the OWEZ wind farm, see Figure 3-1a, can be recognised
by lower wind speeds. This phenomenon could cause lower wind speeds on the east side of the
farm for north-east wind direction as shown in Figure B-1g. A similar profile can be observed
for south-east wind directions in Figure B-1h.
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(a) Wind direction of 80◦
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(b) Wind direction of 190◦
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(f) Wind direction of 270◦

Figure B-1: Wind farm layout showing the derived heterogeneous wind speed gradient for a
specific wind direction. The gradient is derived from the cubic root of normalised energy ratios
of the red encircled upstream turbines, in accordance with Pturbine ∝ U3

∞. Small coloured
dots indicate the extension of this profile downstream along the direction of the incoming wind,
advancing the observed gradient across the entire farm. Black encircled dots represent other
turbines with their specific wind speed multipliers. Red indicates higher, and blue indicates lower
average incoming wind speeds. The subfigures show patterns likely caused by: (a)-(b) Global
blockage. (c)-(f) Farm-to-farm losses from the neighbouring Prinses Amalia Wind Farm.(g)-(h)
Lower coastal wind speeds. Note these subfigures continue on the next page.

J.A. Keim Master of Science Thesis



47

0 2000 4000 6000 8000
x-direction (m)

0

1000

2000

3000

4000

5000

6000

7000

y-
di

re
ct

io
n 

(m
)

Layout with wind speed gradient for wd = 30.0 deg

0.96

0.98

1.00

1.02

1.04

W
in

d 
sp

ee
d 

m
ul

tip
lie

r

(g) Wind direction of 30◦

0 2000 4000 6000 8000
x-direction (m)

0

1000

2000

3000

4000

5000

6000

7000

y-
di

re
ct

io
n 

(m
)

Layout with wind speed gradient for wd = 150.0 deg

0.96

0.98

1.00

1.02

1.04

W
in

d 
sp

ee
d 

m
ul

tip
lie

r
(h) Wind direction of 150◦

Figure B-1: Continued from Figure B-1 on previous page.
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Glossary

List of Acronyms

AEP Annual Energy Production
CC Cumulative-Curl
FLASC FLORIS-based Analysis for SCADA data
FLORIS FLOw Redirection and Induction in Steady State
GCH Gaussian-Curl-Hybrid
LCOE Levelised Cost Of Energy
LES Large Eddy Simulations
NREL National Renewable Energy Laboratory
NS equations Navier-Stokes equations
OWEZ Offshore Windpark Egmond aan Zee
RMSE Root Mean Square Error
SCADA Supervisory Control and Data Acquisition
Shell Shell Global Solutions International B.V.
TI Turbulence Intensity
TU Delft Delft University of Technology
TurbOPark Turbulence Optimised Park
WTG Wind Turbine Generator
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