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Abstract
Search-and-rescue (SaR) in unknown environments is a crucial task with life-threatening risks. SaR requires precise,
optimal, and fast decisions to be made. Robots are promising candidates expected to execute various SaR tasks
autonomously. While humans use heuristics to effectively deal with uncertainties of SaR, optimisation of multiple objectives
(e.g., the mission time, the area covered, the number of victims detected), in the presence of physical and control constraints,
is a mathematical challenge that requires machine computations. Thus including both human-inspired and mathematical
capabilities in decision making of SaR robots is highly desired. However, developing control approaches that exhibit both
capabilities has been significantly ignored in literature. Moreover, coordinating the decisions of the robots in large-scale
SaR missions with affordable computation costs is an open challenge. Finally, in real-life, due to defects (e.g., in the sensors
of the robots) or environmental factors (e.g., smoke) data perceived by SaR robots may be prone to uncertainties. We
introduce a hierarchical multi-agent control architecture that simultaneously provides the following advantages: exploiting
non-homogeneous and imperfect perception capabilities of SaR robots; improving the global performance as it is provided
by centralised controllers; computational efficiency and robustness to failure of the central controller as offered by
decentralised control methods. The integrated structure of the proposed control framework allows to combine human-
inspired and mathematical decision making methods, via respectively fuzzy logic and model predictive control, in a
coordinated and computationally efficient way. Our results for various computer-based simulations show that while the area
coverage with the proposed control approach is comparable to existing heuristic methods that are particularly developed
for coverage-oriented SaR, our approach has a significantly better performance regarding locating the trapped victims.
Furthermore, with comparable computation times, the proposed control approach successfully avoids conflicts that may
appear in non-cooperative control methods. In summary, the proposed multi-agent control system is capable of combining
coverage-oriented and target-oriented SaR in a balanced and coordinated way.

Keywords Multi-robot search-and-rescue · Model predictive control · Fuzzy logic control · Imperfect sensors

1 Introduction

Search-and-rescue (SaR) robots are expected to take over
life-threatening tasks, especially within initial stages of
searching an unknown environment, in order to reduce the
risks for the SaR crew. This will allow human resources to
be available for other tasks, e.g., logistics and assisting the
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detected victims [1, 2]. Moreover, SaR robots should reduce
the crucial time of finding the trapped victims. Robots can
move through areas that are inaccessible to humans, gather
information (e.g., about the location of victims, explosive
materials, debris) and make maps of the environment. This
way SaR robots contribute to improving the situational
awareness of SaR crews, which is essential for mitigating
the mission risks and for saving the lives of the trapped
victims [3–6].

SaR is categorised into target-oriented and coverage-
oriented, based on its objectives. In target-oriented SaR, the
distribution of the targets within the environment is initially
known (see, e.g., [7–11]). When the SaR environment
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is unknown, coverage-oriented approaches are used [12].
Ant colony algorithms are bio-inspired area coverage
methods that are computationally efficient and easy to
implement [13, 14]. Machine learning and neural network
methods are also used for area coverage, where robots
progressively learn effective area coverage behaviours [15,
16]. The main drawback of such methods is their need for
being trained before they can be implemented. To address
this issue, autonomous learning-based methods, including
generalised model-free reinforcement learning, have been
developed (see, e.g., [17, 18]). Via such algorithms,
the system keeps on learning online an optimal policy.
Although promising, autonomous learning methods face
computational challenges in real-life SaR implementations.
This is due to the large size and varying dynamics of SaR
environments, which make the learning procedure more
complicated. Moreover, in SaR missions there may be high
risks associated with implementing a solely learning-based
algorithm, especially before the system achieves an optimal
(or close to optimal) performance. More specifically, during
the stages that the algorithm is learning an optimal policy,
there are serious risks regarding losing the trapped victims
or delaying their detection, which may result in severe
health issues or even fatalities.

Most coverage-oriented approaches do not systemati-
cally incorporate victim or target detection in their search
behaviour. Arnold et al. in [19] present a cooperative,
multi-agent SaR system with the objective of both victim
detection and exploration. The SaR agents, however, are
steered according to fixed behaviour sets. This limits the
adaptability and thus efficiency of these robots in highly
dynamic SaR environments. The majority of the existing
SaR control methods are either coverage-oriented or target-
oriented. Moreover, model predictive control (MPC), which
is an optimisation-based control method that systematically
incorporates state and input constraints, and that provides
robustness to uncertainties has been ignored for the crucial
task of area coverage in SaR [9]. Instead, MPC has mainly
been used for reference tracking in target-oriented SaR in
(partially) known environments (see, e.g., [7, 20, 21]).

In order to speed up mapping the SaR area and to reduce
the risk of mission failure, a fleet of SaR robots may be
deployed (see, e.g., [9, 22, 23]). In centralised multi-agent
SaR control, robots are controlled via a centralised system
that determines the mission plans for all these robots (see,
e.g., [8–11]). In decentralised multi-agent SaR control, local
(or on-board) controllers are used for the robots (see [13, 15,
19, 24, 25]. Best et al. [26] present a cooperative distributed
information gathering approach for SaR robots where based
on learning and heuristics robots visit stationary, pre-known
goal regions. While a task assignment problem is solved in
a communication-wise efficient way, there are no (dynamic)
uncertainties involved in the environment of the robots. Otte

et al. [27] address a cooperative task-assignment problem
using a decentralised auction approach. In particular, the
effect of lossy communication among the agents on the
performance of the multi-agent system is investigated, with
the aim of providing insight into the selection of an auction
algorithm that, despite lossy communication, satisfies the
desired performance criteria of a multi-agent system. A
multi-agent search-planning approach is introduced in [28]
for wilderness SaR with a team of aerial and ground robots.
In their approach, the initial trajectory planning for the aerial
robots is performed offline. After an aerial robot detects a
(possibly moving) target, the robot tracks it until a ground
robot intercepts this target.

While decentralised control approaches are more robust
to failure and are computationally more efficient than cen-
tralised approaches, providing reliable and stable commu-
nication among the robots and missing a global vision of
the entire system are challenges of decentralised control
approaches [24]. Hierarchical architectures can combine the
strengths of centralised and decentralised control methods
(see, e.g., [29]). Particularly, for multi-robot SaR systems
hierarchical control architectures can provide coordination
in the behaviour of local controllers. However, a limited
amount of research on hierarchical control for SaR robots is
available. Examples include [30–32], which are all limited
to target-oriented SaR.

Currently, SaR robots need (intensive) supervision and
control from human operators. On the one hand, for safety,
efficiency, and avoiding additional challenges regarding
online human-robot interaction there is interest in making
these robots autonomous [1, 3, 25, 33, 34]. On the other
hand, humans use their heuristics effectively in order
to deal with uncertainties of SaR missions. Therefore,
providing SaR robots with human knowledge will improve
their performance. Human knowledge, which is provided
as information-based control for SaR robots in [35], was
shown to improve the performance of SaR robots in
finding the targets. Thus having both capabilities of human-
inspired decision making and mathematical control is highly
desired for SaR robots. However, control approaches that
exhibit both capabilities have been ignored significantly
in literature.

In this paper, we introduce a hierarchical control archi-
tecture for multi-agent control of SaR robots with non-
homogeneous, imperfect sensors that combines mathemati-
cal and human-inspired control methods in a computation-
ally efficient way.

The main contributions of this paper include:

1. Introducing a novel hierarchical control framework for
multi-objective control and coordination of multi-robot
systems and for exploiting their non-homogeneous
sensor imperfections in unknown environments: The
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resulting control system benefits both from robustness
to failure and computational efficiency of decentralised
control methods and from globally effective perfor-
mance of centralised control methods.

2. Integrating human-inspired and mathematical decision
making by formulating local fuzzy logic controllers,
which mimic decision making of human experts,
and a supervisory model predictive control (MPC)
system, which provides mathematical precision in the
decisions of the system, systematically handles state
and input constraints, improves the global performance
of the multi-robot system based on its optimal and
predictive decision making, and resolves conflicts of
local heuristic controllers.

3. Implementing the proposed control framework for com-
bined coverage and target-oriented SaR via multi-robot
systems with imperfect sensors for optimising the mis-
sion time, area coverage, and number of detected vic-
tims, and running extensive experiments via computer-
based SaR simulations in order to evaluate various
performance criteria (e.g., computational efficiency,
percentage of the area covered, overall certainty level of
the map developed for the SaR environment, number of
victims detected) of the proposed SaR control methods
compared to the state-of-the-art methods.

Additionally, since the local controllers steer the robots, the
multi-robot control system will not fail due to a failure of
the centralised controller. In that case, as our simulation
results indicate, the remaining decentralised control system
can still steer the SaR system safely, although with a
degraded performance. Finally, our novel control approach
and formulation for multi-agent SaR control systems
enable MPC to provide all its strong points (including
(sub)optimality, systematic incorporation of both state and
input constraints, and robustness to SaR uncertainties) for,
not only target-oriented, but also coverage-oriented SaR in
unknown areas.

The rest of the paper is structured as it follows. In
Section 2 the problem formulation is detailed. Section 3
discusses the proposed hierarchical mission planning
control approach for SaR robots. Section 4 describes the
case study and experimental setup and presents, analyses,
and discusses the results. Section 5 concludes the paper and
provides suggestions for future research.

2 Problem Formulation

In this section, we explain and formulate the details of
the mission planning problem of SaR robots with non-
homogeneous imperfect sensors. In particular, we discuss
the modelling of the SaR environment and victims and

the uncertainties involved, as well as the mathematical
formulation of the perception capabilities of SaR robots.

2.1 SaR Environment

The SaR environment E is modelled by a bounded,
discretised, 2-dimensional cellular area of Lx × Ly cells
(see Fig. 1). Each cell in the SaR environment corresponds
to the coordinates (x, y) of its centre and may be vacant
or occupied by a static obstacle (i.e., wall, pillar, rubble),
or by a victim and/or a SaR robot. A cell can embed a
single victim at a time. Moreover, obstacles make a cell
inaccessible for SaR robots and for victims. The following
uncertainties exist for SaR robots:

• External uncertainty regarding the SaR environment,
i.e., the total number of victims and obstacles and their
positions are unknown

• External, random uncertainty about the pattern of
movement of the victims

• Internal (i.e., structural) and external (i.e., proximal)
uncertainties regarding the perceived data

An Lx × Ly matrix W(κ), called the occupancy map, is
used to record cells that are occupied by static obstacles
after being detected by a SaR robot. Furthermore, whenever
a victim is detected by the sensor of SaR robot i, the
robot stores the location, perceived health state, and time
of detection of the victim in a local matrix (specific to the
robot) called the victim map Vi (κ) of SaR robot ai . This map
is used by the controller of the robot to make the current
control decision. However, for the sake of efficiency for the
on-board computations and the memory storage, the robots -
via their local victim maps - only keep track of those victims
who have been selected as a target by the controller and
have been visited by the robot (i.e., the robot has been in the
same cell as the victim), as well as of those victims who are
currently within the perception field of the robot. Thus SaR
robots do not record any memory of those victims who have
previously been detected by the robot, but have not been
selected as a target for the robot.

Fig. 1 Schematic view of a SaR environment
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The scan certainty c(x, y, κ) of cell (x, y) for time
step κ is a value within [0, 1] that specifies the certainty
level regarding the information available about cell (x, y).
Moreover, each cell (x, y) corresponds to a proximal
uncertainty at time step κ that is a function of the Euclidean
distance of the cell from all SaR robots that scan the cell.
The scan certainty of a cell depends on whether or not
the cell has been scanned by any SaR robots and if so,
how accurate the perceived data is, i.e., the scan certainty
depends on the proximal uncertainty. This relationship is
explained in detail in Section 2.2. Initially the scan certainty
of all cells within the SaR environment is zero. The scan
certainty for all cells is included in an Lx ×Ly matrix C(κ),
called the scan certainty map, which will be updated in time.

2.2 SaR Robots

We consider a multi-robot SaR system composed of N

agents ai (i = 1, . . . , N) that, per simulation time step,
may move to one of the 8 neighbouring cells (see Fig. 2(a)).
These robots are equipped with optical cameras and sensors
that localise the victims and that assess their health state
(e.g., acoustic and heat sensors [1, 36] or sensors that detect
WiFi-enabled devices [37]). The perception field Ei(κ) of
SaR robot i for time step κ includes all cells of the SaR
environment that fall within a circle of radius rp,i , centred
at the position of the robot at time step κ , where Ei(κ) ⊆ E

(see Fig. 2(b)).
The data perceived by SaR robots may in general be

imperfect, i.e., scanning a cell does not necessarily yield full
certainty about the information within the cell. Two sources
of uncertainty regarding the perceived data are considered:
(1) Structural imperfection, which corresponds to a fixed
perceptual uncertainty reduction rate ηi ∈ (0, 1] per SaR
robot ai . More specifically, every time SaR robot ai scans a
cell, the uncertainty regarding the information of the cell is
reduced by rate ηi . Thus when ηi = 1, there is no structural
imperfection. Moreover, we do not consider sensors that are

Fig. 2 (a) Movement possibilities of a SaR robot. (b) Perception field
of a SaR robot

completely out of function (i.e., ηi = 0) due to structural
imperfection. (2) Proximal uncertainty, which implies that
while all cells within the perception field Ei of SaR robot
ai are scanned, the degree of increase in the scan certainty
of these cells decreases according to their distance from
the sensor.

The structural imperfection of sensors and the proximal
uncertainty of the cells together will result in an uncertainty
dynamic ratio σ̄ (x, y, κ) corresponding to every cell (x, y)

per time step κ . We have:

z(x, y, κ + 1) = σ̄ (x, y, κ)z(x, y, κ) (1)

with z(x, y, κ) the scan uncertainty (i.e., 1 − c(x, y, κ))
assigned to cell (x, y) at time step κ . Moreover, we have:

σ̄ (x, y, κ) =
N∏

i=1

σi(x, y, κ) (2)

σi(x, y, κ) = 1 − (1 − ηi)e
−ri (x,y,κ) · (3)

1 − sign
(
ri(x, y, κ) − rp,i

)

2
where ri(x, y, κ) is the Euclidean distance of SaR robot
ai to cell (x, y) at time step κ , sign(·) represents the sign
function, and σi(x, y, κ) is the share of the uncertainty
dynamic ratio of cell (x, y) at time step κ that is provided
by the sensor of SaR robot ai . The updated scan certainty
for cell (x, y) is given by:

c(x, y, κ + 1) = 1 − z(x, y, κ + 1) (4)

Based on Eq. 3, the effect of the proximity on the
uncertainty dynamic ratio of the cells is modelled by an
exponential function. More specifically, when ri(x, y, κ) =
0, i.e., for the cell where SaR robot ai is currently located at,
the uncertainty dynamic ratio corresponding to SaR robot
ai is ηi (i.e., the maximum possible improvement in the
scan certainty of the cell that can be provided by the sensor
of SaR robot ai). This uncertainty dynamic ratio varies
exponentially until for ri(x, y, κ) ≥ rp,i , it becomes unity
(i.e., the scan certainty of the cell at the current time step
does not improve as a result of a contribution of the sensor
of SaR robot ai).

SaR robots may differ from each other in two properties
regarding their sensors: (1) The sensors of SaR robots may
have different perception radii rp,i for i = 1, . . . , N . (2)
The accuracy of these sensors, and thus their perceptual
uncertainty reduction rate ηi may be different.

2.3 VictimModelling

The number, location, and health state of the victims
are initially unknown for the SaR robots. The victims
follow a random pattern of movement, i.e., victim v

with position (xv
v (κ), yv

v (κ)) at time step κ may remain
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in its current cell with probability ps or may move to
one of its (unblocked) neighbouring cells with a total
probability 1 − ps, which results in an equal probability
of pm

v (κ) = (1 − ps)/nfree
v (xv

v (κ), yv
v (κ), κ) to move

to each of the (unblocked) neighbouring cells, where
nfree

v (xv
v (κ), yv

v (κ), κ) corresponding to victim v is the
number of free neighbouring cells for cell (xv

v (κ), yv
v (κ)) at

time step κ . Note that for the sake of simplicity we consider
the probability ps to be constant in time and space, and for
all victims. In case a more detailed model is desired, this
probability may vary in time, and per cell and victim.

Moreover, each victim holds a certain health state, hv(κ),
which varies within [0, 100] and implies how healthy or
injured the victim is at time step κ . Whenever a victim
is detected by a SaR robot, their initial health state is
registered. Over time, the health state of each victim may
decrease with the rate �hv(κ) given by:

�hv(κ) =
{ −α hcrit ≤ hv(κ) ≤ 100

βhv(κ) − γ 0 ≤ hv(κ) ≤ hcrit (5)

with α, β, γ > 0, hcrit the critical health state, and
γ ≥ βhcrit. Based on Eq. 5, a victim has a uniformly
deteriorating health state whenever their health state is not
less than hcrit (i.e., health state is stable), while the rate of
deterioration of the health state becomes linear as soon as
the health state is below hcrit. The updated health state is
given by:

hv(κ + 1) = max {hv(κ) + �hv(κ), 0} (6)

A SaR robot detects a victim whenever they are both in
the same cell. Without considering the technical details
regarding data analysis, sensor fusion, or soft sensing in
this paper, we assume that the robot detects the victim (see,
e.g., [38, 39]) and assesses the health state of the victim,
e.g., using a combination of WiFi, optical, thermal, or
acoustic sensors and using image processing algorithms or
via direct feedback received from the victims when possible
(see, e.g., [40]).

3 Hierarchical Control System

Next we explain the proposed hierarchical control system
that steers the search behaviour of SaR robots. The control
architecture includes two levels (see Fig. 3): The lower
level of control is composed of decentralised controllers
that steer the local search behaviour of each SaR robot,
while the higher control level includes a centralised
supervisory controller that coordinates the behaviour of the
decentralised controllers, such that search conflicts among
SaR robots are resolved. SaR robots only communicate
with the supervisory control level, without sharing any
information among themselves. The proposed control

Fig. 3 Architecture of the proposed hierarchical, cooperative mission
planning controller

architecture thus combines the strengths of centralised and
decentralised control approaches.

3.1 Local Fuzzy Logic Controllers

At the local level, a SaR robot first processes the data that is
captured via its sensors and then constructs a local priority
map for its perception field. This map includes quantities
corresponding to the importance of visiting the cells for the
SaR robot. Next the local controller of the robot determines
a path that yields the highest local gain according to a
quantity called the path grade. Since the main objective of
the SaR mission is to optimise the area coverage and the
time efficiency of detecting the victims, the following two
main criteria are considered in grading a path:

1. Time reduction: Each SaR robot should reach its
targets in the least possible time, in order to contribute
to minimising the overall mission time.

2. Exploration increase: Each SaR robot should scan
as many (unexplored) cells as possible along its
path, in order to contribute to maximising the overall
area coverage.

These two criteria may possess a conflict, since for the
first criterion the search behaviour should be target-oriented
(in other words the robot should find the shortest possible
path that leads it to the target as quickly as possible), while
for the second criterion the search behaviour is coverage-
oriented (in other words the robot should visit more cells
before reaching its target). Therefore, the local controllers
are developed such that a balanced trade-off between these
criteria is provided.
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3.1.1 Search Priority Assignment

The local controllers of SaR robots should first assign
priorities to their potential paths, specifying the urgency
for scanning every cell within the environment. For every
cell in the perception field Ei of SaR robot ai , a priority
score is determined using a rule-based fuzzy logic control
(FLC) method. The main motivation for using FLC is
its computational efficiency, which is essential for local
controllers due to the limited computational power available
on board for SaR robots, and the capability of FLC in
mimicking human’s logic in decision making, which allows
to incorporate human expert knowledge within the local
controllers. Thus local controllers effectively mimic the
reasoning of human experts without their direct supervision.

Fuzzy rules with the following formulation are used by
local controllers of SaR robots:

Rm : If ev(x, y, κ) is Am,1 and hv(κ) is Am,2 (7)

and c(x, y, κ) is Am,3 then ρ(x, y, κ) is Bm

with ev(x, y, κ) the probability of existing a victim in cell
(x, y) ∈ Ei at time step κ , m = 1, . . . , M with M the
number of rules, and Am,1, Am,2, Am,3, and Bm fuzzy sets
that adopt a linguistic term.

The fuzzy inference system corresponding to the rules
given by Eq. 7 receives 3 inputs per cell (x, y) (i.e., the
probability of existence of a victim in the cell, the health
state of the potential victim, and the most recent scan
certainty value of the cell) and assigns a search priority
ρ(x, y, κ) to cell (x, y) for time step κ . Note that every
SaR robot ai has access to its local knowledge stored in the
local scan certainty map Ci (κ) and local victim map Vi (κ).
The probability ev(x, y, κ) of existence of a victim in cell
(x, y) estimated by SaR robot ai depends on the robot’s
sensor, and adopts either a very small value when the sensor
receives no signal that implies a victim exists in the cell
(for a sensor with ηi = 1 this value may be 0, while for
a sensor with ηi ∈ (0, 1) a small positive value may be
considered), or a percentage determined according to the
structural imperfection and proximal uncertainty explained
in Section 2.2. Based on Eq. 7, those cells within the
perception field of the robot, where it is more likely to
find a victim with a worse health state and that have not
been (extensively) scanned yet will receive a higher priority.
Inaccessible cells within the occupancy map W(κ) receive
a null priority.

3.1.2 Path Planning

After prioritising the cells, each local controller determines
potential paths for the corresponding SaR robot. In order
to optimise the time, shortest paths are favourable, while
for optimising the area coverage, paths that visit more

cells with higher priorities are preferred. Thus the local
controller applies an A* search approach [41] based on
Yen’s algorithm [42] to determine a certain number of
shortest paths that end at every cell within the perception
field of the robot. Afterwards these paths are graded based
on their travel time and degree of exploration to specify how
favourable they are for the SaR mission at the current time
step. The travel time is computed based on the path length
and the robot’s speed. We suppose that a SaR robot moves
one cell per time step, thus the travel time corresponds to
the path length only. The degree of exploration of every
potential path Pi(κ) ⊆ Ei for SaR robot ai at time step κ is
computed via:

ε (Pi(κ)) =
κ+�(Pi(κ))−1∑

k=κ

λkρ
(
xa
i (k), ya

i (k), k
)

(8)

where the path is defined by:

Pi(κ) =
{ (

xa
i (κ), ya

i (κ)
)
, . . . , (9)

(
xa
i (κ + �(Pi(κ)) − 1) , ya

i (κ + �(Pi(κ)) − 1)
) }

with �(Pi(κ)) the path length, λ ∈ [0, 1] the discount
factor, and ρ(xa

i (k), ya
i (k), k) the priority value of cell

(xa
i (k), ya

i (k)), which the robot should visit at time step k =
κ, . . . , κ + �(Pi(κ)) − 1 when it follows path Pi(κ). Note
that since the priority values for the cells corresponding to
time steps k > κ are based on the predictions/estimates, a
discount factor is considered in order to reduce the potential
influence of errors in these predictions/estimates. Finally,
the grade of path Pi(κ) is computed by (with c1, c2 > 0
constant values):

g (Pi(κ)) = −c1� (Pi(κ)) + c2ε (Pi(κ)) (10)

Remark 1 Since the paths that will be generated by the local
controllers of the SaR robots are rectilinear, for practical
implementations and to make it easier for real robots to
execute these paths, we propose smoothening the paths
before implementation (see, e.g., [43] for equations that can
be used to smoothen such paths).

3.2 Supervisory MPC Controller

At the supervisory level, a centralised MPC-based controller
is used that receives the local information corresponding
to each SaR robot and that merges this information to
build up global maps of the current perception fields of the
robots. Note that while robots erase the non-target victims
from their local victim maps (see Section 2.1 for details),
the global victim map keeps track of all locally perceived
information. This is practically possible because the global
maps are recorded on a remote computer station that is not
restricted by computational and memory limits.
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The supervisory controller is called whenever a search
conflict is identified, i.e., whenever the cardinality of the
intersection of the perception fields of two SaR robots
exceeds a certain threshold: card

(
Ei ∩ Ej

)
> τint. A model

of the environment including the most updated cognitive
maps is used as the prediction model of the supervisory
controller, which determines globally optimal (within the
controller’s prediction time window) paths for the SaR
robots. This optimality is defined as a trade-off among
various objectives including the mission time, the area
coverage, and the chances of visiting more trapped victims
with a more crucial health state. Despite providing globally
optimal solutions, the MPC controller is computationally
demanding due to the size of the centralised optimisation
problem and the non-linearities involved in the problem.
Therefore, we provide the supervisory controller with the
paths that are determined by the local controllers as a warm
start for the MPC optimisation problem, in order to help the
optimiser to converge faster to an optimal solution. Taking
into account the objectives of the SaR mission, the objective
function to be maximised by the supervisory controller at
time step κ is given by:

J (P(κ)) =

w1

N∑

i=1

g (Pi(κ)) + w2

∑

(x,y)∈E

c
(
x, y, Np(κ)

)
(11)

with P(κ) (the optimisation variable) the set of paths for
all the N SaR robots and w1 and w2 constant weights.
The objective function given by Eq. 11 is a weighted
sum of two terms: (i) the overall grade of all paths
(estimated by Eq. 10) and (ii) the total predicted scan
certainty of the SaR environment at the end of the current
prediction horizon Np(κ), which is given by Np(κ) =
maxi=1,...,N �(Pi(κ)). Thus the second term steers the fleet
of the SaR robots to spread out over the environment. In
other words, the supervisory controller provides a balanced
trade-off between locally preferred paths per robot and
globally optimal paths from the point of the area coverage.
The supervisory controller does this using a global scan
certainty map C(κ) of the environment and a global victim
map V(κ), which are built by merging the local maps of all
SaR robots.

The supervisory control optimisation problem for time
step κ is given by (where the prediction window is
{κ, . . . , Np(κ) − 1}):

max
P(κ)

J (P(κ))

such that:

P(κ) = {P1(κ), . . . PN(κ)} (12a)

For all the paths, Eq. (9) holds, with (12b)

(
xa
i (κ), ya

i (κ)
) ∈ E \ W(κ)

(
xv
v (κ), yv

v (κ)
)

/∈ Pi(k) ∩ Pj (k), where (12c)

i, j = 1, . . . N, i �= j, v = 1, . . . , Nv(κ)
(
xa
i (k), ya

i (k)
) = (

x∗
i (κ), y∗

i (κ)
)

i = 1, . . . N (12d)

Constraints (12a) and (12b) define the optimisation variable,
and state that the paths should be feasible. Constraint (12c)
restricts multiple SaR robots to visit the same victim,
where Nv(κ) is the number of victims detected until
simulation time step κ . This constraint improves the victim
search efficiency and the area coverage. To reduce the
conservativeness of the problem and to avoid infeasibility,
constraint (12c) may be defined as a chance (instead of
a hard) constraint. Finally, constraint (12d) allows the
starting point of the paths to be the most recent measured
coordinates (x∗

i (κ), y∗
i (κ)) of the corresponding SaR robot.

Remark 2 Since the objective function of the supervi-
sory MPC-based controller is defined in Eq. 11 as a
weighted sum of the multiple control objectives, these
objective terms will be normalised when implementing the
optimisation problem.

4 Case Study

Next we discuss the results of computer-based simulations
that are systematically designed to evaluate the performance
of the proposed hierarchical control approach in comparison
with state-of-the-art approaches for SaR. The simulations
are implemented via MATLAB R2019b on a PC with Intel
Core i7 Processor with 2.20 GHz frequency. Whenever
an optimisation problem should be solved to determine
the paths of the SaR robots, the path planning problem is
solved using pattern search as optimisation method, since
this algorithm showed to be faster than other alternative
approaches. In order to make sure that the resulting paths
meet the requirements of a discrete cellular environment for
the numerical simulations (i.e., the way points defining the
path have to be located at the centre of a cell) the continuous
coordinates for the way points determined by pattern search
are projected to the centre of the cells using the round
function. For the parameters of the algorithms, we did a
manual tuning with respect to the default settings.

4.1 Simulation Setup

We consider the following four search approaches that
are common for SaR, and compare their performance, in
terms of victim detection, area coverage, and computational
efficiency, with the proposed hierarchical control approach,
which we call cooperative controller due to the supervisory
MPC level.
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Selfish Controller A control system composed of the local
controllers described in Section 3.1, where the main
difference with the cooperative controller is the lack of
a supervisory controller. These controllers make decisions
that fit their own circumstances only.

PureMPC Controller An optimisation-based search approach
with the MPC structure of the supervisory controller
described in Section 3.2, where the main difference with
the cooperative controller is the lack of warm starting
with trajectories that are proposed by the local controllers.
Instead, as it is common in the implementation of MPC,
the pure MPC controller receives the shifted solution of
the previous time step as a warm start (see [44] for more
details). Note that, in order to account for the non-convexity
of the problem, we ran the simulations for the pure MPC
controller with multiple starting points within the given time
budget. However, the results for the pure MPC controller
with warm start were the best. Thus in this paper only those
results for the pure MPC controller that correspond to the
warm start have been presented.

ACS Controller A heuristic ant-colony-based search approach
based on [13], where the global scan certainty map C(κ) is
used for pheromone map for the ant colony system.

Exhaustive Controller A random search strategy for SaR
robots. Note that, in practice, such random search strategies
are commonly used as a reference base for other search
methods.

Remark 3 Ideally a centralised MPC controller can provide
the desired performance for a system by providing a

Table 1 Modelling and control parameters

Parameter Value

Lx 40

Ly 25

Number of victims 25

ps 0.6

α 0.25

β 1/60

γ 1

hcrit 30

λ 0.6

c1 2.0

c2 5.0

τint 30

w1 1.0

w2 0.05

globally optimal solution. This requires to provide enough
computational resources and time for the centralised MPC
controller. However, a main challenge that needs to be
addressed for SaR problems is to provide a balanced
trade-off between performance and computation time, such
that the control system meets the real-time requirements
of a SaR robotic team. Therefore, we are interested in
assessing how well different control approaches can steer
the behaviour and performance of the SaR system when they
are constrained by the computation time. Thus for both the
pure MPC controller and the supervisory MPC controller we
have considered a limited time budget, which may in some
cases imply a degradation of the performance to meet the
given computation time.

A set of 20 simulation scenarios, each lasting 300
simulation time steps, with a seeded random placement
of victims and obstacles in an environment of a fixed

Table 2 Rule base of the fuzzy inference system (with the inputs given
by ev, i.e., the probability of existence of a victim, hv , i.e., the health
state of the potential victim, and c, i.e., the scan certainty of the cell to
be visited, and the output is ρ, i.e., the search priority of the cell)

Rm ev hv c ρ

1 Low Stable Known Very Low

2 Low Medium Known Very Low

3 Low Stable Partial Very Low

4 Low Medium Partial Low

5 Low Critical Known Low

6 Medium Medium Partial Low

7 Medium Critical Known Low

8 Low Stable Unknown Low

9 Medium Stable Known Medium

10 Medium Medium Known Medium

11 Medium Stable Partial Medium

12 High Stable Partial Medium

13 High Medium Known Medium

14 High Critical Known Medium

15 Low Critical Partial Medium

16 Low Medium Unknown Medium

17 High Stable Known High

18 Medium Stable Unknown High

19 Medium Medium Unknown High

20 High Stable Unknown High

21 Low Critical Unknown High

22 Medium Critical Partial Very High

23 High Medium Partial Very High

24 Medium Critical Unknown Very High

25 High Medium Unknown Very High

26 High Critical Partial Very High

27 High Critical Unknown Very High
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Fig. 4 Trapezoidal fuzzy
membership functions defined
for the inputs and outputs of the
Mamdani rule bases

size is considered. The parameters required for these
simulations to estimate the movement of the victims
and to compute (5) and (8) are given in Table 1. The
coefficients/weights in Eqs. 10 and 11 are also given in
Table 1, where the corresponding values are tuned manually
via extensive experiments. The terms that describe the
sets Am,1, Am,2, Am,3, and Bm in Eq. 7 should for real-
life scenarios be deduced from real expert knowledge. For
the numerical simulations designed in our case studies,
we have defined the corresponding rule base based on
intuition. More specifically, the sets Am,1, Am,2, and Am,3

are verbally described by, respectively, “Low, Medium,
High”, “Critical, Medium, Stable”, and “Unknown, Partially
Known, Known”. This selection allows us to build up a
Mamdani rule base composed of 27 rules. For the output
set Bm we select one of the following terms, “Very Low,
Low, Medium, High, Very High”, based on intuition and
suited for the given realisations of the input fuzzy sets.

The resulting Mamdani rule base is represented in Table 2.
The corresponding membership functions used in Eq. 7 are
shown in Fig. 4, where trapezoidal functions have been
selected, since they have proven to result in good quality
control systems in various real-life applications [45].

For the case study, we consider 2 SaR robots with
different sensory perception radii and perceptual uncertainty
reduction rates. The robots start at fixed coordinates
without any initial information about the SaR environment.
Thus all maps are initialised to zero/null. The parameters
used for the SaR robots are shown in Table 3. These
parameters have been selected such that the influence
of non-homogeneity and imperfection of the sensors can
properly be incorporated into the numerical simulations.

In order to evaluate various search approaches in
terms of the area coverage, victim search efficiency,
and computational efficiency, the following performance
metrics have been considered. The area coverage is assessed

Table 3 Parameters of the SaR
robots rp,i ηi (xa

i,0, y
a
i,0) rp,i ηi (xa

i,0, y
a
i,0)

General case Case 3

i = 1 6 0.1 (1,16) i = 1 7 0.1 (9,10)

i = 2 4 0.3 (13,25) i = 2 3 0.3 (5,8)

Case 1 Case 4

i = 1 6 0.1 (10,8) i = 1 4 0.1 (8,7)

i = 2 4 0.3 (10,6) i = 2 4 0.3 (8,9)

Case 2 Case 5

i = 1 6 0.1 (6,10) i = 1 7 0.1 (9,17)

i = 2 4 0.3 (6,8) i = 2 3 0.3 (5,15)
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Fig. 5 Total scan certainty corresponding to different controllers as a
percentage of the maximum scan certainty that can be obtained for the
SaR environment

via two performance metrics: (1) Total scan certainty of the
environment as a function of the simulation time step, i.e.:

S(κ) =
∑

(x,y)∈E

c(x, y, κ) (13)

(2) Rise time for the total scan certainty (of a particular
percentage). These performance metrics quantify the
absolute area coverage, as well as the speed, thus efficiency,
of each search approach. The victim search efficiency
is evaluated via three metrics: (1) Number of (live and
deceased) victims detected per simulation time step. (2)
Simulation time step for which each victim is detected.
(3) Health state of each victim at the time of detection.
Finally, the average time for making control decisions per
simulation time step is used to report the computational
effort of each control approach.

4.2 Results & Discussions

Figure 5, Table 4, Fig. 6, and Table 5 represent the results
of the simulations including, respectively, the total scan
certainty, the number of simulation time steps required per
control approach in order to reach a total scan certainty

Table 4 Number of the simulation time steps needed to reach certain
degrees of scan certainty

Degree of scan certainty 50% 70% 80% 85% 90%

Cooperative controller 97 157 208 291 −
Selfish controller 104 167 238 − −
ACS controller 97 159 218 249 292

Pure MPC controller 112 229 − − −
Exhaustive controller − − − − −

of 50%, 70%, 80%, 85%, and 90%, the victim detection
efficiency, and the average decision making time. Moreover,
Fig. 7 shows the number of the simulation time steps when
search conflicts have been registered for the cooperative
and selfish controllers. For the cooperative controller, the
number of the conflicts registered is the number of the times
that the supervisory MPC controller has been activated.

Figure 5 shows that the selfish and cooperative con-
trollers achieve a comparable total scan certainty of above
80% by the end of the simulations (to be more accurate, with
a slightly higher percentage (around 85%) for the coopera-
tive controller). However, Table 4 shows that the cooperative
controller is significantly faster in reaching particular lev-
els of scan certainty in later stages of the simulation (e.g.,
the cooperative controller needs 14.4% less time to reach an
80% total scan certainty). The ACS controller (see Fig. 5)
reaches an overall scan certainty that is 6.71% larger than
that of the cooperative controller, with a comparable rise
time in earlier stages of the simulation. This is because the
objective function of the ACS controller solely considers
the scan certainty map per time step to determine the most
favourable next step for each SaR robot. Thus the ACS con-
troller has a single objective (thus no objective conflicts)
as opposed to the selfish and cooperative controllers. Based
on Fig. 5 and Table 4, the pure MPC controller performs
much better than the exhaustive controller, but worse than
the cooperative, selfish, and ACS controllers. This is mainly
because the pure MPC controller is prone to falling within
a sequence of local optima since it relies on the solution of
the previous time steps as warm start. This not only high-
lights the importance of using more systematic (i.e., in line
with the global objectives of the SaR mission) warm starts
for the MPC controller, but also stresses that the exploratory
nature of the selfish and cooperative controllers plays an
important role in avoiding such issues. Finally, the exhaus-
tive controller shows the worst performance regarding the
area coverage, due to its lack of systematic search objective.

Figure 6(a) and (b) show that the cooperative and
selfish controllers achieve a similar result regarding the
number of the victims found (i.e., 25), and using these
controllers correspond to the least number of victims
deceased. However, considering all the simulation runs,
the cooperative controller has lower variances, i.e., 0.134
and 0.345, for respectively the number of victims found
and deceased than those (i.e., 3.10 and 2.22) of the selfish
controller. This indicates a more consistently satisfactory
performance for victim search using the cooperative
controller. Both the selfish and cooperative controllers
outperform the pure MPC, ACS, and exhaustive controllers
in terms of the victim detection, with the ACS and the
exhaustive controller showing the worst performance (see
Fig. 6(a) and (b)). This is because systematic victim
detection is not an objective for these controllers. More
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Fig. 6 Victim detection
efficiency for each control
approach evaluated by (a)
number of the victims found, (b)
number of the victims deceased,
(c) time of detection, and (d)
health state of the victims when
detected

specifically, with the ACS and exhaustive controllers SaR
robots may detect the victims randomly. The fact that the
ACS controller detects more victims than the exhaustive
controller is an indirect influence of its higher area coverage
(see Fig. 5). While the pure MPC controller outperforms
both the ACS and the exhaustive controller, compared to
the cooperative and the selfish controller less victims are
detected and more victims are deceased. This is due to the
lower area coverage by the pure MPC controller, which has
a negative impact on the victim detection efficiency. Based
on Fig. 6(c) and (d) the cooperative and selfish controllers
perform equally well considering the detection time and the
health state of the victims. While the MPC controller detects
less victims than the cooperative and selfish controllers, the

Table 5 Average computation time for decision making per simulation
time step for different controllers

Cooperative Selfish ACS Pure MPC Exhaustive

controller controller controller controller controller

4.5 [s] 3.2 [s] 0 [s] 8.6 [s] 0 [s]

detection time and the health state of the victims found are at
comparable levels (more precisely, they are slightly worse)
as those of the cooperative and selfish controllers.

Fig. 7 Number of simulation time steps when conflict is detected for
cooperative and selfish controllers
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Fig. 8 Case 1: Conflict in the victim detection

Finally, the computation time per decision (see Table 5)
for the cooperative controller (i.e., 4.5 s) is almost half
of the computation time when only MPC is used (i.e.,
pure MPC controller) to steer the system. Moreover,
compared to the average decision making time of the selfish
controller (i.e., 3.5 s), and considering the significantly
better performance of the cooperative controller, this

Fig. 9 Case 2: Conflict in the victim detection and area coverage

Fig. 10 Case 3: Exploitation of the perception fields

controller is the best choice among all the given controllers.
Based on Fig. 7, compared to the selfish controller,
search conflicts happen less when the cooperative controller
is used. Thus each time the supervisory controller is
triggered, by improving the global performance of the
SaR system, it reduces the number of the future search
conflicts.

Fig. 11 Case 4: Exploitation of the sensor accuracies
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Fig. 12 Case 5: Combined
scenario

Based on the results and discussions given above, the
cooperative controller significantly outperforms the other
methods. The next best controller is the selfish controller,
that is the decentralised control system that remains when
the supervisory MPC controller is excluded. These results
further confirm the robustness of the proposed control
architecture to failure of the supervisory MPC controller,
i.e., while the performance degrades after the supervisory
MPC controller is excluded from the control architecture,
the performance of the SaR robotic team is still better than
the other control methods used in the case study.

4.3 Structured Simulation Scenarios

In order to further assess the performance of the cooperative
controller in a more structured way and to assess the
problem solving behaviour of the controller when several
types of conflicts among the local controllers exist, five
cases of conflicts in smaller scales than the previous

simulation scenarios are considered (see Figs. 8, 9, 10, 11
and 12).

Case 1. Conflict in the Victim Detection Consider 2 SaR
robots and 2 victims in a partially known environment of
size 15 × 15 with c(x, y, 0) = 0.2 for all (x, y) ∈ E

(see Fig. 8). The health states of the victims are 10 and 50.
Figures 13 and 18 show, respectively, the paths taken by the
robots for 9 time steps using the cooperative and the selfish
control methods, and the change in the total scan certainty
in time.

Based on Fig. 13 with the selfish controller, both robots
prioritise victim v1 over victim v2, since these robots are
steered by local controllers that follow (7)–(10), which
prioritise visiting a cell that includes a victim with the
worst health state and that is closer to the SaR robot
(where the importance of each factor depends on the values
for parameters c1 and c2). Since the cell that embeds
victim v1 meets both conditions, victim v1 is the target of

Fig. 13 Case 1 - Path taken by
the SaR robots using the selfish
controller (left) and the
cooperative controller (right)
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Fig. 14 Case 2 - Path taken by
the SaR robots using the selfish
controller (left) and the
cooperative controller (right)

both SaR robots and is detected by them at time step 3.
Afterwards, the robots continue exploring the environment
without moving to victim v2, who remains outside of their
perception fields.

With the cooperative controller, however, SaR robot
a2 detects victim v1 at time step 3 and SaR robot a1

detects victim v2 at time step 5 (see Figs. 8 and 13). This
shows that the supervisory MPC controller has successfully
coordinated the actions of the SaR robots in favour of
detecting more victims within a given time span. More
specifically, the second term in the objective function of
the MPC controller (see Eq. 11) prevents the two SaR
robots to cover the same sub-area of the environment. Since
the local loss (considered by the first term in Eq. 11) for
redirecting SaR robot a1 towards victim v2 is less than
that of redirecting the other robot, the supervisory MPC
controller changes the path that has been proposed by the
local controller of SaR robot a1 in order to achieve a
higher global gain considering the scan certainty of the
environment. The overall scan certainty for the cooperative

controller is 17.2% larger than that of the selfish controller
(see Fig. 18).

Case 2. Conflict in the Victim Detection and Area Coverage
Consider 2 SaR robots and 1 victim in an environment of
size 15×15 that is known except for sub-area E′ ⊂ E that is
completely unknown, i.e., c(x, y, 0) = 0 for all (x, y) ∈ E′
and c(x, y, 0) = 1 for all (x, y) ∈ E \ E′ (see Fig. 9).
Figures 14 and 19 show, respectively, the paths taken by the
SaR robots for 9 time steps using the cooperative and selfish
controllers and the change in the total scan certainty in time.

Figure 14 shows that for the selfish controller, both robots
move towards victim v1 and visit the victim at time step 4.
Afterwards, both robots follow identical paths to approach
the unknown sub-area. These individual behaviours are
steered by the local controllers that, according to Eqs. 7-
10, enforce each robot to prioritise cells that may embed a
victim, are closer to the robot, and gain a higher percentage
for the overall scan certainty of the environment. Since the
cell that embeds the victim, in addition is closer to the robots

Fig. 15 Case 3 - Path taken by
the SaR robots using the selfish
controller (left) and the
cooperative controller (right)
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than the cells within sub-area E′, this cell for the local
controllers has a higher priority. After visiting the victim,
based on Eq. 7, visiting the closest cell within sub-area E′
becomes the priority of the local controllers.

With the cooperative controller SaR robot a1 that is
farther from the victim is redirected via the supervisory
MPC controller to move directly towards sub-area E′, while
SaR robot a2 moves towards victim v1 and visits the victim
at time step 4. With both the selfish and the cooperative
controller, victim v1 is detected equally fast, while based
on Fig. 19, with the cooperative controller the overall scan
certainty is almost 4 times larger than the value for the
selfish controller. This is an influence of including the
second term of Eq. 11 in the objective function of the
supervisory MPC controller.

Case 3. Exploitation of the Perception Fields Consider 2
SaR robots and 2 victims in a partially known environment
of size 15 × 15 with c(x, y, 0) = 0.5 for all (x, y) ∈ E and
a set of obstacles shown in black in Fig. 10. SaR robot a1

has a sufficiently large perception field such that it detects
both victims, whereas SaR robot a2 detects victim v1 only.
The health states of victims v1 and v2 are, respectively, 20
and 15. Note that it is assumed that although the cells that
include obstacles (shown in black) block the movement of
the SaR robot, but they do not obstruct the view of the robot.
Figures 15 and 20 show, respectively, the paths taken by the
robots for 10 time steps using the cooperative and selfish
controllers and the change in the total scan certainty in time.

With the selfish controller, both SaR robots visit victim
v1, which occurs at time steps 2 and 5 for robots a1 and
a2, respectively (see Fig. 15). Although the health state of
victim v1 is less critical compared to that of victim v2,
victim v1 is prioritised over victim v2 by the local controller
of SaR robot a2, because this victim can be reached faster
and thus the corresponding path receives a larger grade

using Eq. 10. Afterwards, the SaR robots continue exploring
the environment without detecting victim v2 due to their
limited perception fields.

With the cooperative controller, SaR robots a1 and a2

find victims v2 and v1 at time steps 10 and 5, respectively.
Although SaR robot a1 is able to reach victim v1 in a shorter
time, the global decision of the supervisory controller allows
victim v1 to be detected later in order to make sure that
victim v2 is detected in time (this is taken care of via
the first term in Eq. 11, which considers the global gain
of the path grades, instead of the individual/local ones).
Thus this simulation highlights the ability of the cooperative
controller to determine locally sub-optimal tasks for the
SaR robots, in order to maximise the global mission
performance. Figure 20 shows that by spreading out the
SaR robots over the environment, the cooperative controller
achieves an overall scan certainty that is 18.7% larger than
that of the selfish controller.

Case 4: Exploitation of the Sensor Accuracies Consider 2
SaR robots in an environment of size 15 × 15, where the
robots should scan a partially known environment with two
sub-areas E′

1, E
′
2 ⊂ E (see Fig. 11). The scan certainty

at the initial time step for sub-areas E′
1 and E′

2 is 0 and
0.3, respectively, and for all cells of E outside these two
sub-areas is 0.9. Figures 16 and 21 show, respectively, the
paths taken by the robots for 10 time steps using both the
cooperative and the selfish controller, and the change in the
total scan certainty in time.

Based on Fig. 16, with the selfish controller both SaR
robots move to sub-area E′

1 to yield the highest gain in the
scan certainty. With the cooperative controller, however, the
robots move to sub-areas E′

1 and E′
2. Since SaR robot a1 is

closer to sub-area E′
1 and has a higher sensor accuracy, it

is sent to sub-area E′
1 by the cooperative controller to yield

a larger overall scan certainty. Based on Fig. 21 the overall

Fig. 16 Case 4 - Path taken by
the SaR robots using the selfish
controller (left) and the
cooperative controller (right)
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Fig. 17 Case 5 - Path taken by
the SaR robots using the selfish
controller (top) and the
cooperative controller (bottom)

scan certainty of the cooperative controller is 29.8% larger
than that of the selfish controller.

Case 5. Combined Scenario Consider 2 SaR robots, 6
victims, and a set of obstacles in an environment of
size 30 × 15, where the robots should scan a partially
known environment with 7 sub-areas E′

1, . . . , E
′
7 ⊂ E

(see Fig. 12). The scan certainties at the initial time step
for sub-area E′

1 is 0.7, for sub-area E′
2 is 0.4, for sub-

areas E′
3, E

′
4, E

′
5, E

′
6 is 0.2, for sub-area E′

7 is 0.1, and
for all cells of E outside these seven sub-areas is 0.5.
The paths determined for both SaR robots via the selfish
and cooperative controllers for 35 time steps are shown in
Fig. 17. Additionally, Table 6 shows the health state of the

Table 6 Victim detection results for the combined scenario (case 5)

Selfish controller Cooperative controller

Victim Health state Number of visits Detection time step Victim Health state Number of visits Detection time step

v1 6.94 0 − v1 6.94 0 −
v2 24.9 2 10 v2 17.2 1 22

V3 17.97 2 3 V3 14.34 2 8

V4 0 0 − V4 6.03 1 11

V5 6.94 0 − V5 21.87 1 15

V6 6.94 0 − V6 11.15 1 30
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Fig. 18 Case 1 - Evolution of the scan certainty in time

victims at the end of the simulation, the number of times a
victim has been visited, and the time step when each victim
was first detected. The change in the total scan certainty in
time is also illustrated in Fig. 22.

Figure 17 shows that with the selfish controller, both SaR
robots visit victim v3, and then move towards the southwest
quadrant of the SaR environment, where they individually
visit victim v2. While 2 victims are visited doubly by the
robots, 4 victims remain undetected and 1 victim deceases.
With the cooperative controller, SaR robots a1 and a2 visit
victims v4 and v3, respectively. Next they explore different
sub-areas of the environment and detect additional victims
v2, v5, and v6. At the end only 1 victim remains undetected
and no victim is deceased (Figs. 18, 19, 20 and 21).

The SaR system detects more victims with the cooper-
ative controller, and no victim is visited twice, implying

Fig. 19 Case 2 - Evolution of the scan certainty in time

Fig. 20 Case 3 - Evolution of the scan certainty in time

the victim search efficiency. Moreover, the overall scan cer-
tainty for the cooperative controller (see Fig. 22) is 27.6%
larger than that for the selfish controller.

5Conclusions and Topics for Future Research

Autonomous multi-robot systems are expected to map
unknown search-and-rescue (SaR) environments in a fast
and effective way. We have introduced a novel approach
for coordinated mission planning of multi-robot systems
for multi-objective (combined coverage and target-oriented)
SaR. The proposed control approach effectively incorpo-
rates non-homogeneous imperfect perception capabilities
of the sensors of different robots in order to improve

Fig. 21 Case 4 - Evolution of the scan certainty in time
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Fig. 22 Case 5 - Evolution of the scan certainty in time

their performance with respect to the victim detection and
area coverage.

The key contributions of the paper are two-fold: in
multi-agent control systems and in search-and-rescue (SaR)
robotics. From the point-of-view of multi-agent control
systems, we propose a novel control architecture and for-
mulation that exploit the imperfect perception capabilities
of agents, coordinate their decisions, and provide a balanced
trade-off among various (conflicting) control objectives in
a computationally efficient way. As it is also supported by
our simulation results, the developed control system bene-
fits from both the computational efficiency of decentralised
control methods and the global vision of centralised control
approaches. Additionally, the supervisory level improves
the global control performance based on a predictive and
optimal computation scheme, while local controllers inde-
pendently steer the agents. Therefore, although the per-
formance will expectedly degrade without the supervisory
control level, the functioning of the multi-agent control sys-
tem is robust to the failure of this centralised controller.
Furthermore, the integrated formulation proposed in this
research allows to incorporate both expert knowledge (via
the fuzzy logic control systems) and the optimality and pre-
dictive capabilities of model predictive control (MPC) into
the decision making of autonomous robots. These contribu-
tions are significant for SaR applications, because existing
control methods are mainly focused on either coverage or
target-oriented SaR. Moreover, MPC, which is a precise
control method that systematically handles state and input
constraints and that can provide robustness to SaR uncer-
tainties, has been ignored in literature for the crucial task
of area coverage in SaR. Our novel approach and formula-
tion for multi-agent control systems enable MPC to provide
all its strong points for, not only target-oriented, but also
coverage-oriented SaR.

We have compared the performance of the resulting
hierarchical control system with those of a decentralised
selfish control system that excludes the MPC controller, a
pure MPC controller, an ant-colony-based controller, and an
exhaustive random search controller. In 20 simulated sce-
narios with randomly positioned obstacles and victims, the
proposed hierarchical control approach showed the best per-
formance in terms of the victim detection efficiency and
the area coverage. Moreover, 5 structured scenarios were
designed to simulate conflicting scenarios and to illustrate
the importance of the proposed mathematical formulations
in application. The results proved that in case of conflicts,
with a comparable computation time, the proposed hierar-
chical controller significantly outperforms the decentralised
controller. Moreover, the hierarchical controller success-
fully exploits the non-homogeneous perception capabilities
of the robots, which improves the overall performance.

In the future, more detailed models that consider
the behaviour, physical capabilities, and intentions of
victims for their movement patterns can be considered.
Furthermore, a systematic discussion and evaluation of
the robustness of the proposed control approaches with
respect to various sources of uncertainties, especially
uncertainties in the movement of the victims, is a topic
of interest for future research. Moreover, in addition to
non-homogeneous perception capabilities, differences in
the speed, degrees of freedom, computational capacity,
tasks, and maneuverability of search-and-rescue robots
can be considered. Additionally, combining autonomous
learning methods within the proposed architecture is
an interesting topic for future research. While using a
learning-based approach alone may correspond to some
risks for search-and-rescue applications, including such
algorithms in a combined framework, similar to the
one proposed in this paper, can result in a promising
performance with adaptability capabilities. Finally, in real-
life implementations the large size of SaR environments
increases the computational burden of the supervisory MPC
controller. To address this issue and also to mitigate the
risk of the performance degradation due to the failure of
the supervisory control level, a similar control architecture
with more levels of control may be proposed. Thus, between
the supervisory control level and the steering local control
level, extra levels of control with several distributed MPC
controllers may be considered, where each MPC controller
supervises a combination of the local sub-areas.
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38. Dousai, N.M.K., Lončarić, S.: Detecting humans in search and
rescue operations based on ensemble learning. IEEE Access 10,
26481–26492 (2022)

39. Llasag, R., Marcillo, D., Grilo, C., Silva, C.: Human detection
for search and rescue applications with UAVs and mixed reality
interfaces. In: 2019 14th Iberian Conference on Information
Systems and Technologies (CISTI), pp. 1–6 (2019)

40. Pinheiro, G.P.M., Miranda, R.K., Praciano, B.J.G., Santos,
G.A., Mendonça, F.L.L., Javidi, E., da Costa, J.P.J., de Sousa,
R.T.J.: Multi-sensor wearable health device framework for

real-time monitoring of elderly patients using a mobile application
and high-resolution parameter estimation. Frontiers in Human
Neuroscience (2022)

41. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst.
Sci. Cybern. 4(2), 100–107 (1968)

42. Yen, J.Y.: Finding the k shortest loopless paths in a network.
Manag. Sci. 17(11), 712–716 (1971)

43. Jamshidnejad, A., Papamichail, I., Papageorgiou, M., De Schutter,
B.: Sustainable model-predictive control in urban traffic networks:
Efficient solution based on general smoothening methods. IEEE
Trans. Control Syst. Technol. 26(3), 813–827 (2018)
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