
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

CPU-Based Ray Tracing
For Semiconductor
Structures
Yimin Zhou

CPU-Based Ray
Tracing For

Semiconductor
Structures

by

Yimin Zhou
Student Name Student Number

Yimin Zhou 5881870

Primary supervisor: Ricardo Marroquim
Daily supervisor: Yang Chen
Company supervisor: Wouter Bijlsma & Ton Van Den Heuvel
Faculty: EEMCS, TUDelft

Abstract

In this thesis, we investigate a CPU-based ray tracer tailored for semiconductor structures. This ray
tracer addresses the need for high-quality visualization in environments where GPU acceleration is
unavailable. Our primary objective is to achieve interactive visualization performancewith quality levels
on par with a basic triangle rasterizer employing a flat-shaded lighting model.

The research focuses on identifying optimal BVH configurations and developing efficient Oriented
Bounding Box (OBB) ray tracing methods. By leveraging OBB clustering and pre-cached ray directions,
we aim to mitigate the computational overhead associated with OBB tracing. The result is a prototype
that demonstrates the feasibility of CPU-based ray tracing for real-time applications.

This work contributes to the broader discourse on rendering techniques in GPU-limited scenarios,
offering valuable insights and laying the groundwork for future research and development.

i

Contents

Abstract i

1 Introduction 1
1.1 ASML Brion . 1

1.1.1 Flatrace . 1

2 Background & Related Work 3
2.1 Semiconductor Models . 3
2.2 Overview of Ray tracing . 3

2.2.1 GPU-Based Ray Tracing . 4
2.2.2 CPU-Based Ray Tracing . 4
2.2.3 Bounding Volume Hierarchies (BVH) . 4
2.2.4 Bounding Volumes . 5
2.2.5 Sphere Volume . 6
2.2.6 Axis-Aligned Bounding Boxes (AABB) . 6
2.2.7 Oriented Bounding Boxes (OBB) . 6

2.3 Optimization Techniques for Ray Tracing . 7
2.3.1 Single Instruction, Multiple Data (SIMD) . 7
2.3.2 Parallel Processing . 7
2.3.3 Algorithmic Optimizations . 7

2.4 Critique and Gap Identification . 8

3 Research Questions 9
3.1 Requirements . 9
3.2 Research Question: Optimal BVH Techniques . 9

3.2.1 Hypothesis . 9
3.3 Research Question: BVH Tracing Improvements . 9

3.3.1 Hypothesis . 9

4 Methodology 10
4.1 Acceleration Data Structure For Ray Tracing . 10

4.1.1 Bounding Volume Hierarchy . 10
4.1.2 BVH Construction . 11
4.1.3 OBB Generation using DiTO . 12
4.1.4 BVH Traversal . 13
4.1.5 OBB Traversal . 14

4.2 Clustering BVH Nodes with OBB . 14
4.2.1 Group Similar Nodes . 14
4.2.2 Generate Representative OBB . 14
4.2.3 Replace Individual OBBs in Clusters . 15
4.2.4 Transformed Ray Direction Caching . 15
4.2.5 Types of BVH . 15

4.3 SIMD And Parallel Processing . 16

5 Results 17
5.1 Semiconductor Models . 17
5.2 Bin Size of Binning . 18
5.3 AABB Volume vs. OBB Volume . 20
5.4 BVH Performance . 20

5.4.1 SAH Cost . 20
5.4.2 Balance Factor . 21

ii

Contents iii

5.4.3 Build Time . 21
5.4.4 Render Time . 21

5.5 Clustering BVH OBB Nodes . 23
5.6 Hybrid BVH . 23
5.7 SIMD Render Time . 24

6 Conclusion 26
6.1 Research Questions Answered . 27
6.2 Limitations . 27
6.3 Future Work . 28

References 29

1
Introduction

This thesis investigates an area of real-time graphics rendering often overshadowed by the advance-
ments in high-fidelity GPU-accelerated rendering: real-time CPU-based raytracing for triangle-based
models, which is, in the case of this thesis, intended for visualization of semiconductor structures. The
motivation for this research stems from a practical challenge faced by ASML: the reliance on legacy
systems where GPU acceleration is not an option for some of their customers.

The traditional method for rendering in such environments has relied on a legacy OpenGL-based
renderer with software rasterization. However, this approach proves inefficient when the GPU is absent
and requires transparency. This limitation challenges companies like ASML, whose customers require
efficient visualization tools. Currently, they are constrained to using remote servers without GPUs to
render semiconductor structures.

The primary objective of this research is to explore the feasibility of a CPU-based raytracing renderer
for semiconductor structures that canmatch and potentially surpass the capabilities of legacy OpenGL
renderers. The focus is on replicating existing visualization features and achieving interactive frame
rates on the CPU.

This thesis introduces new tracing optimization approaches by exploring the application of Oriented
Bounding Boxes (OBB) and Axis-Aligned Bounding Boxes (AABB) within Bounding Volume Hierarchies
(BVH). The structure is as follows: In chapter 2, we begin with an introduction to semiconductor struc-
tures, ray tracing, and its optimizations, focusing specifically on BVH and additional methods. chap-
ter 3 outlines the requirements set by ASML Brion and presents the research questions for this project.
chapter 4 details the main techniques behind our implementation, giving the core ideas behind the
researched methods. chapter 5 presents the results and analysis of our implementation. Finally, in
chapter 6, we answer the research questions and conclude the study.

1.1. ASML Brion
ASML Brion offers software solutions for low-fidelity modeling and visualization of semiconductor
structures. Flatrace, a research demo, is designed to investigate the potential of replacing a CPU-based
OpenGL rasterizer (see Figure 1.1) with a CPU-based raytracer. The primary objective of Flatrace is to
explore new optimization methods for ray-tracing semiconductor structures. Flatrace implements a
comprehensive framework for a functional ray tracer, which includes several critical components that
collectively enhance its performance and capabilities:

1.1.1. Flatrace
ASML Brion provides software solutions for low-fidelity modeling and visualizing semiconductor struc-
tures. Flatrace is a research demo developed to explore the possibilities of replacing a CPU-based
OpenGL rasterizer with a CPU-based raytracer. The primary objective of Flatrace is to explore new op-
timization methods for ray-tracing semiconductor structures. Flatrace implements a framework for a
functional ray tracer. This framework includes several critical components that collectively enhance its
performance and capabilities:

1

1.1. ASML Brion 2

Figure 1.1: The current OpenGL rasterizer in ASML Brion.

AABB BVH with Binning
Flatrace employs an Axis-Aligned Bounding Box (AABB) Bounding Volume Hierarchy (BVH) using sur-
face area heuristic (SAH) with binning [26] as acceleration structure for efficient ray tracing.

Parallel Processing and SIMD for AABB BVH
Flatrace leverages parallel processing and Single Instruction, Multiple Data (SIMD) instructions to ac-
celerate the construction and traversal of the AABB BVH. By distributing the workload across multiple
CPU cores and utilizing SIMD, Flatrace achieves substantial performance gains, enabling real-time ren-
dering of complex scenes.

Transparency and Simple Shading
The ray tracer in Flatrace supports basic transparency effects based on ordered additive blending and
shading effects. This feature allows for rendering semi-transparent materials and applying a simple
Lambertian shading model [19].

2
Background & Related Work

This chapter explores the fundamentals of ray tracing on CPUs and GPUs, providing an overview of
current ray tracing techniques. We will cover optimization techniques such as Axis-Aligned Bounding
Boxes (AABB), Oriented Bounding Boxes (OBB), Bounding VolumeHierarchies (BVH), and Single Instruc-
tion, Multiple Data (SIMD). Additionally, we will discuss the current research gaps in OBB and how this
research aims to address them.

2.1. Semiconductor Models
Flatrace is designed to render 3D semiconductor models rather than generic models. In 3D, semicon-
ductor structures typically show boxy shapes, reflecting these semiconductors’ layered and rectilinear
nature. Their geometric simplicity is often defined by rectangular prisms and planar surfaces, making
them distinct from more complex organic or freeform models.

Figure 2.1 illustrates this concept with a pattern that consists of uniformly spaced diagonal lines
across two rectangular semiconductor layers. These diagonal lines represent different pathwayswithin
a semiconductor structure, such as metal interconnects or other functional materials. These diagonal
lines’ consistent, striped appearance emphasizes the precise, methodical design required in semicon-
ductor models. Section 5.1 gives a more detailed analysis of the semiconductor models we used for
evaluation.

Figure 2.1: Layers of a semiconductor model.

2.2. Overview of Ray tracing
Ray tracing is a crucial component ofmany sophisticated image synthesis algorithms [15]. Partitioning
a scene using bounding volume hierarchies (BVH) based on objects or primitives has become the state-
of-the-art method for achieving fast ray tracing in recent years [17]. Various closed geometric shapes,
including axis-aligned bounding boxes (AABBs) and oriented bounding boxes (OBBs) [13], have been
used as bounding volumes in specialized applications.

3

2.2. Overview of Ray tracing 4

2.2.1. GPU-Based Ray Tracing
GPU-based ray tracing leverages the parallel processing power of Graphics Processing Units (GPUs)
to handle the computationally intensive task of ray tracing. With their thousands of smaller cores op-
timized for simultaneous processing, GPUs excel at handling large, repetitive tasks. This makes them
particularly effective for ray tracing, which requires concurrently tracing multiple rays through a scene.

One of the primary advantages of GPU-based ray tracing is its speed. Modern GPUs can process
vast numbers of rays in parallel, significantly reducing rendering times compared to CPUs [1]. Addi-
tionally, GPUs often include specialized hardware, such as NVIDIA’s RT cores [21], which optimizes the
BVH in GPU to minimize the number of ray-intersection tests, further boosting performance. This spe-
cialized hardware allows GPUs to handle heavy calculations efficiently, making them ideal for real-time
rendering tasks in graphics-intensive applications like gaming and simulations.

2.2.2. CPU-Based Ray Tracing
CPU-based ray tracing has been a fundamental area of research for many years. Even with the ad-
vances in GPU-based ray tracing, many applications still use CPU-based ray tracing due to its flexibility
in development. Most CPU-based ray tracers can only run offline because they usually try to render real-
istic, high-fidelity images. Since, in our project, we only render simplified, low-fidelity images, achieving
an interactive frame rate is possible.

Recent advancements in CPU-based ray tracing have focused on optimizing performance and effi-
ciency. Notable developments include the Embree framework for implementing advanced raytracing,
which provides highly optimized ray tracing kernels for CPUs [8]. Embree utilizes modern CPU features
such as Single Instruction and Multiple Data (SIMD) to accelerate ray intersection computations, offer-
ing significant performance improvements over traditional methods.

CPU-based ray tracing faces challenges, primarily due to the lower degree of parallelism than GPUs.
This can impact performance for large-scale rendering tasks. However, the flexibility and ease of pro-
gramming for complex scene management and dynamic data structures continue to make CPU-based
ray tracing a valuable area of research and development where GPUs are not available [25].

2.2.3. Bounding Volume Hierarchies (BVH)
While direct intersection tests between rays and primitives are straightforward, they become impracti-
cal for complex geometric models due to their slow performance. Therefore, acceleration structures
are essential for efficient ray intersection tests.

The Bounding Volume Hierarchy is a fundamental data structure used in ray tracing to accelerate
intersection tests between rays and scene geometry [2]. BVH organizes primitives in a hierarchical
tree structure, where each node represents a bounding volume that encapsulates its child nodes, and
leaf nodes contain the actual geometry. Figure 2.2 shows how BVH divides the space and stores the
primitives. This hierarchical arrangement allows for efficient culling of large portions of the scene that
do not intersect with a given ray, thereby reducing the number of intersection tests needed to render
the scene.

A

B

C

E

D

A

B C

D E

Figure 2.2: A BVH with AABB volumes (not the minimal volumes).

2.2. Overview of Ray tracing 5

Construction
The BVH construction phase of a Bounding Volume Hierarchy (BVH) plays a vital role in improving the
efficiency of ray tracing, primarily due to its significant influence on intersection tests. In the following,
we will briefly overview several influential BVH construction strategies.

Surface Area Heuristic (SAH) Construction [26]: The SAH is one of the most popular BVH-building
strategies (a BVH splitmethod). Itminimizes the expected traversal cost by carefully choosingwhere to
split the nodes. Although SAH can be computationally expensive during construction, it often leads to
highly efficient BVHs for ray tracing. Linear BVH (LBVH) [14] constructs the BVHmore straightforwardly
by sorting primitives based on their Morton codes (derived from their centroid positions). LBVH is
generally faster to build than SAH-based methods but may result in less optimal BVHs. Agglomerative
Clustering [9]: This approach builds the BVH by treating each primitive as a separate leaf node and then
merging the closest nodes until the hierarchy is complete. While this can create high-quality BVHs, it
is often more computationally expensive. Parallel BVH Construction [12]: With the rise of multi-core
processors and GPUs, parallel BVH construction algorithms have been developed to take advantage of
hardware parallelism. It aims to build BVHs faster by distributing the work across multiple threads or
processors.

Traversal
BVH traversal aims to quickly identify the potential intersections between rays and scene primitives by
traversing the BVH’s hierarchical structure.

The traversal process begins at the root node and progresses through the hierarchy by evaluating
whether a ray intersects the bounding volume of each node. If the ray intersects the node’s bounding
volume, the process continues recursively into the node’s children. This process repeats until leaf nodes
are reached, where the actual intersection tests with the scene primitives are performed [27].

An essential optimization in BVH traversal is using traversal algorithms designed to minimize the
number of nodes visited. Techniques such as early termination, where the traversal stops as soon as
the nearest intersection is found, can significantly reduce the computational load [10].

Parallel traversal methods have also been explored to take advantage of modern multi-core and
many-core architectures [1]. These methods distribute the workload across multiple processing units,
speeding up the traversal process. Another notable approach is using SIMD (Single Instruction, Multiple
Data) operations to perform parallel intersection tests for multiple rays, further enhancing traversal
efficiency [8].

2.2.4. Bounding Volumes
Bounding volumes in BVH simplify the representation of complex objects, enabling faster and more
efficient computations by providing an easily manageable boundary. They also make object intersec-
tion checks easier, reducing the computational overhead associated with directly interacting with intri-
cate models. Typical bounding volumes include spheres, axis-aligned bounding boxes (AABBs), and
oriented bounding boxes (OBBs). In the following sections, we briefly talk about the three bounding
volumes. Figure 2.3 depicts the difference of the bounding volumes within the same triangle.

Sphere AABB OBB

Figure 2.3: BVH volumes in 2D (Sphere vs. AABB vs. OBB).

2.2. Overview of Ray tracing 6

2.2.5. Sphere Volume
Sphere volume is among the simplest and most commonly used bounding volumes in collision or in-
tersection tests [7]. A center point and a radius define it and enclose an object within the smallest
possible spherical boundary. Spheres offer computational simplicity and rotational invariance but may
not tightly fit non-sphere shapes, leading to less efficient intersections.

2.2.6. Axis-Aligned Bounding Boxes (AABB)
Many BVH algorithms widely use the box-like AABB as a bounding volume [17]. It consistently aligns
with the coordinate axes and streamlines intersection tests. This alignment simplifies the mathemati-
cal operations needed, resulting in improved performance for spatial queries and rendering processes
in ray tracing. Nevertheless, AABB has certain limitations. A notable disadvantage is their limited flex-
ibility in orientation, resulting in suboptimal bounding volumes for non-axis-aligned objects. This can
lead to larger volumes that contain more empty space, which may result in an increased number of
false positives in intersection tests and a decrease in overall efficiency in spatial partitioning. Despite
the challenges, the balance between the simplicity and speed of AABB against their limitations is of-
ten considered advantageous, particularly in applications where rapid processing and efficiency are
crucial.

2.2.7. Oriented Bounding Boxes (OBB)
Adopting OBBs in a BVH leads to a more precise bounding volume fit and a decrease in traversal steps
[20]. Unlike AABBs, OBBs can rotate and take on any orientation in 3D space based on the geome-
try vertices. Due to its arbitrary orientation, an OBB has more attributes than an AABB. While OBBs
offer a tighter fit around objects or primitives, enhancing spatial efficiency and reducing unnecessary
traversals, this precision comes with complexities. The construction time for OBB tends to be longer
than for AABB due to the complexity of determining the optimal orientation that minimizes the volume.
Additionally, performing intersection tests with OBB is more computationally intensive. Despite these
drawbacks, the precision and flexibility of OBB in accommodating complex shapes make them a valu-
able tool in specific applications.

Techniques such as Principal Component Analysis (PCA) or Ditetrahedron OBB (DiTO) can generate
OBB for primitives.

Principal Component Analysis (PCA)
In general, Principal Component Analysis (PCA) is a statistical method that employs an orthogonal
transformation to turn a set of observations of potentially correlated variables into a set of linearly un-
correlated variables known as principal components. The number of principal components is smaller
or equal to that of the original variables. PCA is commonly used in data analysis and dimensionality
reduction while preserving the data’s most important features. PCA works by identifying the directions
(principal components) along which the variance of the data is maximized. This is achieved by comput-
ing the eigenvectors and eigenvalues of the covariance matrix of the data. The eigenvectors (principal
components) represent the directions of maximum variance, and the corresponding eigenvalues indi-
cate the magnitude of this variance [22].

OBB is represented as a matrix when using the PCA method, and rays can be transformed into a
unit space using this matrix. To generate OBBs, first compute the mean and covariance matrix of the
mesh’s vertex set P . Perform eigenvalue decomposition on this covariance matrix to obtain eigen-
vectors, which form the rotation matrix R defining the OBB’s orientation. Transform the vertices P
using R to align them with the principal components, and compute the minimum and maximum coor-
dinates (V ′

min and V ′
max) of the transformed vertices. The center V ′

center is the midpoint of these coordi-
nates. Compute the scale S as the difference between V ′

max and V ′
min, and calculate the translation T

using the mean P and V ′
center. Combine S, R, and T to form the transformation matrix MOBB = TRS ,

which can transform the ray into the AABB space defined as a unit cube centered at the origin, with
Pmin = [−0.5,−0.5,−0.5] and Pmax = [0.5, 0.5, 0.5] [20].

Ditetrahedron OBB algorithm (DiTO)
The second method, DiTO, generates tighter fitting OBBs than PCA [13]. The DiTO algorithm processes
a small, constant number of extremal vertices selected from inputmodels to construct a representative
shape called the ditetrahedron, fromwhich the orientation of the bounding box can be derived efficiently.

2.3. Optimization Techniques for Ray Tracing 7

Different instances of the algorithm, called DiTO-k, vary based on the number of selected vertices k.
The ditetrahedron comprises two irregular tetrahedra connected along a shared interior side, known
as the base triangle. This polyhedron has six faces, five vertices, and nine edges, with seven triangles,
including the base. It is distinct from the triangular dipyramid, which consists of two pyramids with
equal heights and a shared base. The ditetrahedron’s triangles are expected to be characteristic of the
orientation of a tight-fitting OBB for most input meshes.

Figure 2.4: first column: AABB, second column: OBB(PCA), third column: OBB(DiTO) [13].

To illustrate, consider a randomly rotated cube with eight vertices and twelve triangles and a ran-
domly rotated star shape with ten vertices and sixteen triangles as shown in Figure 2.4. For these
shapes, the DiTO algorithm finds the minimum volume OBBs. In contrast, the PCA algorithm computes
an excessively large OBB for the cube, with a volume two to four times larger than the minimum, de-
pending on the cube’s orientation. Similarly, PCA produces a loose-fitting OBB for the star shape.

2.3. Optimization Techniques for Ray Tracing
Ray tracing is a computationally intensive process that significantly benefits from various system-level
optimization techniques besides BVH. These optimizations are essential for achieving real-time perfor-
mance and handling complex scenes efficiently in CPU-based ray tracing. This section reviews critical
optimization techniques applied in ray tracing, focusing on those relevant to CPU-based processes,
including Single Instruction, Multiple Data (SIMD) and parallel processing.

2.3.1. Single Instruction, Multiple Data (SIMD)
SIMD is a powerful optimization technique used in CPU-based ray tracing to enhance performance
[6]. SIMD allows a single instruction to process multiple data points simultaneously, which is partic-
ularly useful in ray tracing, where the same operation is often applied to multiple rays or ray bundles.
Modern CPUs are equipped with SIMD extensions, such as SSE (Streaming SIMD Extensions) and AVX
(Advanced Vector Extensions), which enable parallel processing of data in small batches [11]. By lever-
aging SIMD, ray tracing algorithms can achieve significant speedups in tasks such as ray-triangle inter-
section tests and shading calculations [28].

2.3.2. Parallel Processing
Parallel processing is another critical optimization technique that takes advantage of themultiple cores
available inmodern CPUs. In ray tracing, parallel processing can be implemented at various levels, from
distributing rays across different cores to parallelizing the construction and traversal of acceleration
structures like BVH. Frameworks such as Intel’s Threading Building Blocks (TBB) [18] and OpenMP [5]
are commonly used to facilitate parallelism in CPU-based ray tracing. By parallelizing workloads, these
frameworks help to maximize CPU utilization and reduce rendering times.

2.3.3. Algorithmic Optimizations
Algorithmic optimizations play an important role in improving the efficiency of ray tracing. One of the
most significant algorithmic techniques is using acceleration structures, such as BVH, which help min-
imize the number of intersection tests required during ray traversal, which we briefly introduce in sub-
section 2.2.3. These structures partition the 3D space in a way that allows for quick elimination of

2.4. Critique and Gap Identification 8

large portions of the scene that do not intersect with a given ray. Additionally, techniques like adaptive
sampling, where the number of rays per pixel is adjusted based on the scene’s complexity, and impor-
tance sampling, which focuses rays on significant parts of the scene, enhance performance and image
quality.

In conclusion, optimization techniques for ray tracing, particularly in CPU-based processes, encom-
pass a wide range of strategies from SIMD and parallel processing to sophisticated algorithmic and
data structure optimizations. These techniques are critical for achieving high-performance ray tracing
capable of handling the demands of real-time applications and complex scene rendering.

2.4. Critique and Gap Identification
Recent advancements in ray tracing have predominantly concentrated on high-fidelity rendering pow-
ered byGPUs, leading to significant improvements in visual realismacross applications such as gaming
and simulation. However, this intense focus on GPU-based solutions has overshadowed research into
CPU-based ray tracing, particularly for low-fidelity scenarioswhere computational resources are limited.
This thesis aims to address this gap by developing ray tracing techniques to meet the needs of ASML’s
customers, optimizing performance in CPU-based raytracing.

3
Research Questions

3.1. Requirements
ASML provides the following requirements: 1) CPU ray tracing is required to render the whole geom-
etry. 2) Interactive framerate. 3)Lambertian lighting model, no shadows, orthogonal camera, simple
transparency. For ASML customers, the render time is more important than the BVH build time for ray
tracing. As those are general requirements, specific methods are decidable. So, we have the following
two main research questions.

3.2. Research Question: Optimal BVH Techniques
Which bounding volume or BVH split strategy is optimal for ray tracing within the context of our 3D
semiconductor models? In chapter 2, we introduced several advanced techniques for accelerating
ray tracing. This research seeks to identify the most effective method, or combination of methods,
specifically for the unique structural characteristics of our 3D semiconductor models.

3.2.1. Hypothesis
Given the layered and rectilinear structure of semiconductors, combined with diagonal patterns that
are not axis-aligned, it is hypothesized that an OBB will produce a tighter fit and utilize space more
efficiently than an AABB. This hypothesis will be tested and evaluated in chapter 5.

3.3. Research Question: BVH Tracing Improvements
How can BVH traversal techniques be optimized to improve ray tracing performance in 3D semicon-
ductor models? Given the orthogonal camera requirement and the different bounding volumes that
could be used, the traversal and intersection within the BVH could be improved.

3.3.1. Hypothesis
Using an orthogonal camera, where all rays share the same direction, it is hypothesized that opera-
tions related to the ray direction can be precomputed and cached to accelerate traversal. For instance,
caching the ray direction transformation for OBB traversal could reduce computational overhead and
improve performance. This hypothesis will be tested and evaluated in chapter 5.

9

4
Methodology

This chapter focuses on the key techniques implemented in Flatrace, including those discussed in sub-
section 1.1.1, and a newmethod—clustering, will be discussed in subsection 4.2.1. The chapter begins
by discussing the construction of BVHs and bounding volumes, then transitions to optimization strate-
gies, mainly clustering BVH nodes using OBB volumes. An overview of Flatrace is illustrated in Fig-
ure 4.1. The ray tracer is developed in C++, with more detailed explanations provided in the subsequent
sections.

BVH

AABB

OBB

Cluster
Nodes

BVH
Traversal

Cache
Ray

Transformation

Build Stage Render Stage

Figure 4.1: Flatrace has two main stages: Build Stage and Traversal Stage. All the OBB-specific operations are in red. In the
build stage, BVH is built with AABB or OBB, and then the nodes in BVH are clustered for optimization(only for OBB). In the

render stage, ray direction transformations are cached(only for OBB), and then the traversal phase will traverse the BVH and
perform intersection tests between ray and bounding volumes or ray and triangles.

4.1. Acceleration Data Structure For Ray Tracing
We need to perform many ray-triangle intersections to render the geometry with ray tracing. Directly
testing triangle intersections can be highly time-consuming. To speed up ray traversal and reduce
the number of intersection tests, we utilize a Bounding Volume Hierarchy (BVH), the current state-of-
the-art method for optimizing ray traversal [17]. A BVH uses bounding volumes, such as Axis-Aligned
Bounding Boxes (AABB), to enclose triangles. However, using Oriented Bounding Boxes (OBB), which
fit more tightly around triangles, can further enhance efficiency [13]. Therefore, we integrated OBB into
Flatrace, which initially only supported AABB. We aim to determine the optimal BVH configuration for
our semiconductor models by experimenting with different BVH construction methods, split strategies,
and bounding volumes.

4.1.1. Bounding Volume Hierarchy
BVH organizes objects in a hierarchical tree structure, where each node represents a bounding vol-
ume that encapsulates its child nodes, and leaf nodes contain the actual triangles. This hierarchical

10

4.1. Acceleration Data Structure For Ray Tracing 11

arrangement allows for efficient culling of large portions of the scene that do not intersect with a given
ray, thereby reducing the number of intersection tests needed to render the scene.

In Flatrace, the BVH construction involves several key steps:

• Node Splitting: The scene is recursively divided into smaller sub-bounding volumes using the
splitting methods.

• Bounding Volume Calculation: Appropriate bounding volumes will be calculated for each node
while a node is being split.

• clustering: Optionally, similar nodes are grouped for BVHs with OBB volumes(clustering will be
introduced in subsection 4.2.1).

4.1.2. BVH Construction
The construction process of a BVH directly influences the efficiency and effectiveness of ray traversal.
This process involves organizing scene geometries into bounding volumes. We can create a BVH that
minimizes overall computational costs by carefully selecting split strategies.

Node Splitting
How the scene’s space is partitioned is crucial for constructing an optimal Bounding Volume Hierar-
chy (BVH). In Flatrace, we have implemented two splitting methods, which are illustrated in Figure 4.2
and subsequently evaluated in Table 5.2 to determine which approach yields the most efficient BVH
structure.

Midpoint Binning

Figure 4.2: Split methods in 2D, we can see that binning creates fewer and tighter nodes(the green dash lines are here to
represent bins).

The first splitting method is the Midpoint Split [29], which divides the node space at the midpoint
along one of the BVH node’s axes. Specifically, the algorithm selects the axis with the largest spatial
extent and splits the geometries at the midpoint point or the median of the triangle position along that
axis. While the Midpoint Split ensures a balanced spatial partitioning, it may not always result in the
tightest possible bounding volumes if the triangles are not evenly located in the node, potentially leading
to increased traversal and intersection costs.

The second splitting method is the Binning Split [26], which leverages the SAH cost to determine
the optimal split position for a BVH node. Instead of computing the SAH cost for every possible split,
binning involves dividing the node space into a predefined number of bins along each axis and evalu-
ating the SAH cost for each possible split within these bins, reducing computation time. The split that
minimizes the overall SAH cost is then selected, resulting in a more balanced and efficient BVH. This
method typically produces tighter-fitting bounding volumes and reduces the number of intersection
tests during traversal, enhancing overall performance. However, the Binning Split is more computation-
ally intensive than the Midpoint Split.

4.1. Acceleration Data Structure For Ray Tracing 12

Bounding Volume Calculation
After splitting the node into two spaces, the next crucial step in constructing the BVH is calculating the
bounding volumes of the newly created child nodes based on the geometry in the child nodes. The
choice of bounding volume plays a significant role in determining the BVH’s efficiency, as it directly
influences the tightness of the fit around the geometry, which affects the speed of ray traversal.

In Flatrace, we have both AABB and OBB as options for bounding volume calculations, allowing us
to compare their performance within the context of our 3D semiconductor models. In Figure 2.3, the
difference between AABB and OBB are illustrated in 2D. We aim to balance computational cost and
traversal efficiency by experimenting with both bounding volumes. The evaluation of these bounding
volumes, in conjunction with different split methods, will be discussed in chapter 5, where we analyze
their impact on the overall performance of the BVH and determine the most effective approach for our
specific application.

AABB is the simplest and most commonly used bounding volume [17]. An AABB is defined by the
minimum and maximum points along each axis, creating a box aligned with the coordinate axes. The
primary advantage of AABBs is their computational simplicity; they are easy to compute and require
minimal processing during ray traversal since intersection tests are straightforward and fast. However,
the simplicity of AABBs can also be a limitation. Because AABBs are always aligned with the axes,
they may not always provide the tightest possible fit around the geometry, especially when dealing with
objects that are not axis-aligned. This can lead to larger bounding volumes andmore intersection tests
during traversal, reducing overall efficiency.

On the other hand, an OBB offers amore flexible and tighter fit by aligning the bounding box with the
object’s orientation rather than the coordinate axes [13]. A center point, a set of orientation axes, the
extents along these axes, and an inverse matrix define an OBB. The flexibility of OBBs allows them to
conform closely to the geometry, especially in caseswhere objects are rotated relative to the coordinate
system. This tighter fit typically reduces unnecessary intersection tests during traversal, improving effi-
ciency. However, the calculation of OBBs is more complex and computationally expensive than AABBs.
Additionally, OBB-ray intersection tests are more complicated, which could increase the traversal cost.
The OBB traversal will be discussed in subsection 4.1.5.

4.1.3. OBB Generation using DiTO
Unlike AABBs, OBBs are more challenging to generate. To construct the OBBs, we employ the dite-
trahedron OBB algorithm (DiTO) [13], since it produces a tighter bounding box than PCA as shown in
Figure 2.4. The DiTO algorithm was developed for point clouds, polygon meshes, or polygon soups
without requiring an initial convex hull generation process. The algorithm is founded on processing a
limited and unchanging quantity of distinctive vertices from the input model. The chosen points are
subsequently utilized to construct a representative geometric figure known as a double tetrahedron,
or ditetrahedron. Determining an optimal alignment for a tight-fitting bounding box can be efficiently
achieved by utilizing the edges of this particular shape. The DiTO algorithm can be summarized in four
steps which can be seen in Figure 4.3.

Figure 4.3: DiTO algorithm in 2D[24].

Extremal Vertices Calculation
The algorithm begins by selecting a small, constant number of extremal vertices from the input geome-
try. Extremal vertices are farthest along specific directions or axes(manually selected). The number of
vertices chosen, denoted by k in DiTO-k, affects both the running time and the quality of the resulting

4.1. Acceleration Data Structure For Ray Tracing 13

OBB. Based on the experiment by the DiTO authors [13], we choose k = 14 in our implementation, which
means seven pairs of extremal vertices will be selected, and seven candidate axes will be used.

Ditetrahedron Construction
The second step is to use these extremal vertices to construct a shape called the ditetrahedron. This
shape is not a regular geometric figure but a polyhedron formed by two irregular tetrahedra sharing a
base triangle. The ditetrahedron has six faces, five vertices, and nine edges. It includes seven triangles,
counting the interior base triangle, formed from 3 of the selected vertices. It uses the farthest vertices
as one edge of the triangle and the farthest vertex to that edge as the third triangle vertex. Using this
base triangle, the algorithm chooses the opposite farthest vertices to create two joint tetrahedra to
form a diterahedron.

OBB Candidate Selection
Next, the algorithm looks at all seven sides of the tetrahedron, checking each triangle-aligned local
reference frame as a possible axis for an OBB that fits well and has an axis-aligned box. The goal is to
determine the configuration with the smallest surface area.

OBB Refitting
The previous phase has established the alignment of a satisfactory OBB, which needs to be readjusted
to encompass all points in the geometry. This is necessary since the orientation of the OBB’s faces
is determined by the facets of the ditetrahedron, rather than the minimum and maximum projections
along the present local reference frame’s axes. The OBB extents are computed by repeatedly identifying
the smallest and largest projections of all points in P onto the local OBB axis.

4.1.4. BVH Traversal
The BVH traversal is an essential phase of our rendering process and is designed to efficiently identify
potential intersections between rays and geometries within the scene. This method utilizes a stack-
based approach to navigate through the BVH nodes.

Initialization
The traversal begins with the initialization of a stack to track the BVH nodes that need to be visited. The
root node of the BVH is the starting point and is initially pushed onto this stack. This setup ensures
that the traversal starts from the top of the hierarchy, allowing the algorithm to explore the entire tree
structure if needed.

Traversal Loop
The core of the traversal process is a loop that continues until the stack is empty. During each iteration,
the node at the top of the stack is popped for processing. This node is then analyzed to determine
whether it is a leaf or an internal node. If it is a leaf node, the algorithm checks for intersections between
the ray and the triangles within that node. This step is crucial for identifying actual intersections.

Internal Node Processing
When an internal node is encountered, the algorithm retrieves its left and right child nodes. It then
checks for intersections with these child nodes (intersections with the bounding volumes), determining
the distance to the intersection points. The nodes are sorted based on their intersection distances to
ensure that the closest nodes are processed first. The child nodes are pushed onto the stack for further
processing if a valid intersection is found. This approach ensures that all potential intersections are
explored efficiently.

Bounding Volume Intersection
Intersection with AABB is different from OBB. AABB offers better computational efficiency because its
simple structure makes intersection tests straightforward and fast. In contrast, OBB fits objects more
tightly with arbitrary orientations, which will be discussed in more detail in subsection 4.1.5.

4.2. Clustering BVH Nodes with OBB 14

4.1.5. OBB Traversal
To simplify intersecting OBBs, we transform rays from OBB space into unit AABB space and then per-
form intersection tests between the transformed ray and unit AABB. When constructing the OBB, we
determine the transformation matrix that converts a unit AABB (with dimensions from -0.5 to 0.5) into
OBB space. Each OBB then stores the inverse of thismatrix. Then, this inversematrix can transform the
ray into unit AABB space during the actual traversal, facilitating easy and quick intersection tests. For
every node traversal, both child nodes of the node are tested, as detailed in subsection 4.1.4. Conse-
quently, the ray origin and ray direction are transformed twice, once for each child node. Therefore, an
internal node intersection cost for OBB involves four matrix operations and two unit AABB intersection
tests.

4.2. Clustering BVH Nodes with OBB
Because the semiconductor models have many repeating patterns, we can simplify the traversal com-
putations by grouping similar BVH nodes (only leaf nodes for slower construction time) and creating
a representative OBB for a cluster to reduce the OBB ray transformation calculation. This optimization
process involves several key steps, which will be discussed in the following sections, also presented in
Figure 4.4.

1. Original individual OBBs 2. Create clusters 3. Create representative OBB in canonical space 4. Create clusters

Figure 4.4: Process of clustering. The blue bounding box is the original OBB, and red and yellow are two clusters and the
representative OBBs.

4.2.1. Group Similar Nodes
First, we utilize themidpoints and orientations of the OBBs as feature inputs for the clustering algorithm.
This allows us to create clusters of the leaf nodes without considering the spatial distance. We use K-
means clustering for the clustering algorithm.

K-means Clustering
K-means clustering is a method used to group data points into a specified number of clusters based on
their features [16]. In the context of BVH optimization, we use the midpoints and directions of all leaf
nodes’ OBBs as the data points. The K-means algorithm starts by initializing a set number of cluster
centroids. Each leaf node is assigned to the nearest centroid based on the Euclidean distance between
their midpoints and directions. Once all nodes are assigned to clusters, the centroids are recalculated
as the mean of all points within each cluster. This assignment and centroid recalculation process
iterates until the centroids stabilize, meaning they no longer change significantly with further iterations.
The final clusters group similar leaf nodes together, allowing for the creation of a representative OBB
for each cluster. We use K-means by MLpack [4] to enable fast CPU clustering in our implementation.

4.2.2. Generate Representative OBB
After forming clusters, we generate a representative OBB for each cluster. This representative OBB is
designed to encompass all triangles within the node by aligning them in a canonical space, where the
triangles are translated to a common reference point. This alignment allows the representative OBB to
fit arbitrary nodes in the cluster.

4.2. Clustering BVH Nodes with OBB 15

4.2.3. Replace Individual OBBs in Clusters
Next, we replace the OBB in each node within the clusters with its corresponding representative OBB.
During the traversal stage, these representative OBBs are used instead of the individual node’s OBBs.
By clustering the BVH nodes, we do not need to transform the rays for each OBB but only for the repre-
sentative OBBs. As a result, we can see in Figure 4.4 in step 4 that we replace the original OBBs with
the representative OBB, larger than the original OBBs. The following section will explain how and when
this larger representative OBB will help the tracing performance.

4.2.4. Transformed Ray Direction Caching
In our ray tracer, as explained in chapter 1, we use an orthogonal camera. An essential aspect of this
setup is that all rays have the same direction due to the camera’s orthogonality. As highlighted in
subsection 4.1.5, it is necessary to transform rays into the unit AABB space, including transforming
their origin positions and directions, which is computation-consuming.

Since all rays share the same direction, and we have generated representative OBBs as outlined in
subsection 4.2.3, we can optimize the traversal phase. As shown in Figure 4.5, without representative
OBBs, a matrix transformation of the ray direction is required for each node during traversal. However,
with representative OBBs, this transformation only needs to be performed once per representative OBB
before node traversal begins, with the result used during traversal. This reduces the number of matrix
operations in internal node intersection to two.

M * Ray Direction

M * Ray Direction

M * Ray Direction

M * Ray Direction

(a) Without clustering, we need to perform matrix calculation for
each individual node.

M * Ray Direction

M * Ray Direction

(b) With clustering, we only need to perform matrix calculation for
representative OBBs.

Figure 4.5: Comparing the number of matrix operations during the internal node traversal.

Given the nature of clustering and the caching of transformed ray directions, we anticipate a trade-
off depending on the number of clusters used. The representative OBBswill be less accurate with fewer
clusters, leading to fewer ray direction transformations but more intersection tests. Conversely, with
more clusters, the representative OBBs will be more precise, resulting in more ray direction transfor-
mations but fewer intersection tests. Therefore, finding the optimal balance between the number of
clusters is crucial to maximize efficiency and the results are shown in section 5.5.

4.2.5. Types of BVH
Depending on the bounding volume used for BVH node splitting and the splitting method, the BVH tree
can take on different shapes. Three types of BVH are implemented in Flatrace to explore the optimal
approach. Each can have various bounding volume or split method configurations.

The first type, AABB-based BVH, incorporates both AABB and OBB volumes within its structure.
Initially, the scene is split based on AABB volumes and with the binning split method [26]. OBB and
AABB volumes are constructed utilizing the same geometric information in the BVH nodes, ensuring
that the OBBs encapsulate geometry identical to that of the AABBs. Even though the AABB and OBB
volumes are constructed for the AABB BVH, only one is enabled for tracing. This BVH works mainly as
a baseline for Flatrace render results.

The second type isOBB-basedBVH,which exclusively incorporatesOBB volumeswithin its structure.
The scene split in this BVH is based solely on the OBB volumes. Midpoint/Median splitting and Binning
split methods are employed for this type. Given the distinct characteristics of OBBs in comparison to
AABBs, this method yields BVH shapes that differ from those generated by the AABB-based approach.
By concentrating solely on OBBs, this BVH aims to enhance the tightness and effectiveness of the
bounding volumes throughout the hierarchy.

4.3. SIMD And Parallel Processing 16

The third type is the hybrid BVH, which is fundamentally AABB-based BVH. The Hybrid BVH is im-
plemented assuming it can avoid the overhead introduced by OBB traversal when the OBB is aligned
with the world axis and an AABB with faster tracing is a better choice. Unlike the AABB-based BVH, it
uses both bounding volumes for tracing. During the splitting process, both volume types are compared
based on SAH cost in each node to determine which volume should be used for tracing the node, and
a flag will be set to inform the traversal phase which bounding volume to use. This approach aims to
leverage the advantages of AABB and OBB volumes, optimizing for the most efficient bounding volume
at each node.

4.3. SIMD And Parallel Processing
We employ SIMD and parallel processing with TBB (Threading Building Blocks) [18] to further optimize
the tracing process. SIMD enables the simultaneous processing of multiple rays using a single instruc-
tion, thereby significantly accelerating tracing operations. In our implementation, we leverage SSE [3] to
perform 4x4 ray tracing, which bundles 16 rays together to conduct intersection tests with the bounding
volume concurrently.

In addition to SIMD, TBB is employed to parallelize the workload across multiple CPU cores. TBB
provides a high-level abstraction for parallel programming, enabling efficient task scheduling and load
balancing. By dividing the tracing tasks of rays into smaller bundles and distributing them across avail-
able cores, TBB ensures that computational resources are utilized effectively, reducing the overall ren-
der time.

5
Results

In this chapter, we present and analyze the results of our experiments to evaluate the efficacy of the
various methods discussed in chapter 4. First, we examine the geometry patterns of the semiconduc-
tor models to identify eachmodel’s unique characteristics. The BVHs’ heatmap visualization highlights
the differing efficiencies of the bounding volumes. Next, we assess the impact of varying bin sizes on
the performance of AABB and OBB BVHs in the binning split method. Following this, we evaluate the
efficiency of AABB and OBB BVHs and the bounding volumes across various metrics. We then demon-
strate how implementing clustering methods enhances performance and examine the performance of
hybrid BVH. Subsequently, we show the improvement by SIMD. Finally, we evaluate render time cost
during different phases of tracing. All tests were conducted on an AMD Ryzen 9 7940HS CPU with a
render resolution of 1280x720 and 1 sample per pixel (ssp).

5.1. Semiconductor Models
The semiconductor models used for the evaluation are shown in Figure 5.1, and Table 5.1 lists the
triangle counts of each model. Stack A stands out with its large, flat, rectangular prism adorned with
uniformly spaced diagonal lines. Similarly, Stack C and Stack E emphasize simpler geometry and lower
triangle counts; Stack C features minor, evenly spaced diagonal lines, while Stack E has a compact,
cube-like form consisting of several horizontal layers.

In contrast, Stack B and Stack D introduce more complexity. Stack B features multiple layers and
distinct raised elements on the top layer. Meanwhile, Stack D presents a vertically oriented, boxy struc-
ture composed of multiple stacked layers; despite its compact appearance, Stack D features a dense
arrangement withmany overlapping axis-aligned geometry and a high triangle count. Stack F and Stack
G further illustrate the diversity in semiconductor architecture. Stack F displays an extended rectangu-
lar prism with a stepped profile. At the same time, Stack G showcases a long, continuous structure
with a repeating pattern of rectangular elements, resulting in the largest triangle count. In summary,
they all show boxy shapes with patterns across layers.

Model Triangle Count
Stack A 42252
Stack B 1548
Stack C 5616
Stack D 515824
Stack E 6604
Stack F 6912
Stack G 653544

Table 5.1: Semiconductor Models

17

5.2. Bin Size of Binning 18

(a) Stack A (b) Stack B (c) Stack C

(d) Stack D (e) Stack E (f) Stack F

(g) Stack G

Figure 5.1: All the testing stack models.

5.2. Bin Size of Binning
In subsection 4.1.2, we discussed the binning split method, where the node space is divided into a
predetermined number of bins along each axis. The process then evaluates the SAH cost for every
potential split within these bins. Therefore, it is vital to determine the number of bins when using this
method to construct BVHs.

Both Figure 5.2a and Figure 5.2b illustrate how different bin sizes (number of bins) impact the per-
formance of AABB BVH (tracing OBB) and OBB BVH, respectively. For both types of BVH, we observe
a consistent trend where build time and render time are significantly influenced by the chosen bin size.
Smaller bin sizes generally result in lower build times but lead to higher render times due to less opti-
mal splits. Conversely, larger bin sizes significantly increase build time while improving render perfor-
mance.

In the case of AABB BVH, a bin size of 100 was found to offer a balanced compromise across all
models. This number maintains relatively low build times while minimizing render times, making it
an ideal choice for consistency in performance evaluation across different models. Similarly, for OBB
BVH, a bin size 32 emerged as the most balanced choice. It provides a reasonable trade-off between
build and good render times, ensuring efficient performance across various scenarios while avoiding
extreme values in either metric.

Therefore, even though build time is not the most critical metric, balancing build time and render
time is essential. With this in mind, we selected 100 as the standard bin size for AABB BVH and 32
as the standard bin size for OBB BVH in all subsequent evaluations. These selections ensure fair and
comparable results across different models and conditions, balancing computational efficiency with
rendering quality.

5.2. Bin Size of Binning 19

0 20 40 60 80 100 120 140
Bin Size

10

20

30

40

50

Bu
ild

 T
im

e
Model a

Build Time

0 20 40 60 80 100 120 140
Bin Size

0.0

0.5

1.0

1.5

2.0

Bu
ild

 T
im

e

Model b
Build Time

0 20 40 60 80 100 120 140
Bin Size

1

2

3

4

5

6

Bu
ild

 T
im

e

Model c
Build Time

0 20 40 60 80 100 120 140
Bin Size

400

450

500

550

Bu
ild

 T
im

e

Model d
Build Time

0 20 40 60 80 100 120 140
Bin Size

1

2

3

4

5

6

7

Bu
ild

 T
im

e

Model e
Build Time

0 20 40 60 80 100 120 140
Bin Size

2

3

4

5

6

Bu
ild

 T
im

e

Model f
Build Time

0 20 40 60 80 100 120 140
Bin Size

400

500

600

700

800

Bu
ild

 T
im

e

Model g
Build Time

250

500

750

1000

1250

1500

1750

Re
nd

er
 T

im
e

Render Time

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Re
nd

er
 T

im
e

Render Time

0

10

20

30

40

50

60

Re
nd

er
 T

im
e

Render Time

0

2000

4000

6000

8000

10000

12000

Re
nd

er
 T

im
e

Render Time

0

20

40

60

80

Re
nd

er
 T

im
e

Render Time

10

20

30

40

50

Re
nd

er
 T

im
e

Render Time

0

5000

10000

15000

20000

Re
nd

er
 T

im
e

Render Time

(a) AABB binning bin size

0 20 40 60 80 100 120 140
Bin Size

500

1000

1500

2000

2500

3000

3500

Bu
ild

 T
im

e

Model a
Build Time

0 20 40 60 80 100 120 140
Bin Size

10

20

30

40

50

60

70

Bu
ild

 T
im

e

Model b
Build Time

0 20 40 60 80 100 120 140
Bin Size

50

100

150

200

250

300

Bu
ild

 T
im

e

Model c
Build Time

0 20 40 60 80 100 120 140
Bin Size

5000

10000

15000

20000

25000

30000

35000

Bu
ild

 T
im

e

Model d
Build Time

0 20 40 60 80 100 120 140
Bin Size

50

100

150

200

250

300

350

Bu
ild

 T
im

e

Model e
Build Time

0 20 40 60 80 100 120 140
Bin Size

100

200

300

400

Bu
ild

 T
im

e

Model f
Build Time

0 20 40 60 80 100 120 140
Bin Size

10000

20000

30000

40000

50000

60000

Bu
ild

 T
im

e

Model g
Build Time

72

74

76

78

80

82

84

Re
nd

er
 T

im
e

Render Time

8.75

9.00

9.25

9.50

9.75

10.00

10.25

Re
nd

er
 T

im
e

Render Time

10.5

11.0

11.5

12.0

12.5

Re
nd

er
 T

im
e

Render Time

90

95

100

105

110

115

120

Re
nd

er
 T

im
e

Render Time

9.5

10.0

10.5

11.0

Re
nd

er
 T

im
e

Render Time

13.00

13.25

13.50

13.75

14.00

14.25

14.50
Re

nd
er

 T
im

e

Render Time

170.0

172.5

175.0

177.5

180.0

182.5

185.0

187.5

Re
nd

er
 T

im
e

Render Time

(b) OBB binning bin size

Figure 5.2: Both AABB BVH and OBB BVH can utilize the binning split method.

5.3. AABB Volume vs. OBB Volume 20

5.3. AABB Volume vs. OBB Volume
In Figure 5.3, we visualize the number of bounding volume intersections during traversal. The heatmap
shows that the OBB BVH has more green areas than the AABB BVH, indicating fewer intersections
before hitting the geometry. Although OBBs are generally tighter, the bottom layer shows fewer inter-
sections for AABBs. This is likely because the bottom layer’s structure is more axis-aligned, and OBBs
in higher layers might occlude lower layers from certain angles. Figure 5.4 further illustrates that some
OBB volumes in the top layers can occlude the base layers due to their rotation, potentially causing
higher intersection counts for the bottom layers. This demonstrates that while OBBs typically reduce
the number of intersections during traversal, the specific structure and orientation of the layers can
influence the intersection count.

(a) AABB (b) OBB 1

256

Figure 5.3: Comparison of AABB/OBB BVH intersection numbers. From 1 to 256 (blue-green-yellow-red) as shown on the right
gradient map.

(a) AABB volumes (b) OBB volumes

Figure 5.4: The AABB visualization exhibits a high degree of alignment, whereas the OBB displays a more varied orientation.

5.4. BVH Performance
As detailed in subsection 4.2.5, Flatrace utilizes three types of BVH. In this section, wewill analyze AABB
and OBB BVHs, while the evaluation of hybrid BVH will be discussed later in section 5.6. Table 5.2
presents performance metrics across these BVH configurations, examining various combinations of
split methods and bounding volumes to identify the most effective BVH structures for our rendering
pipeline.

Keymetrics, including SAH cost, balance factor, build time, and render time, are employed to assess
the efficiency and performance of various BVH structures. Thesemetrics are instrumental in evaluating
the impact of different BVH construction methods on rendering performance.

5.4.1. SAH Cost
The SAH Cost metric measures the computational cost of using the SAH during BVH construction.
Lower SAH costs indicate more efficient tree structures, leading to faster traversal times and improved
rendering performance. The data in Table 5.2 demonstrates various SAH costs with different configura-
tions. TheOBBmethods significantly reduce SAH costs inmostmodels, especially in the relatively com-
plex Models A and G. OBB BVH with SAH outperforms AABB BVH multiple times. However, although
the results are close for smaller models like C and E, the AABB method provides better outcomes. In
the complex Model D (in which structures are mainly aligned with axes and have many overlaps), the
OBB BVH with SAH has a higher SAH Cost than the AABB BVH.

OBBs generally provide a tighter fit around objects compared to AABBs. This tighter fit reduces
the volume of empty space within each bounding box, leading to fewer unnecessary intersection tests

5.4. BVH Performance 21

during ray tracing. The improved efficiency is most noticeable in complex models, where non-axis-
aligned structure shapes benefit significantly from OBB’s adaptive orientation. Conversely, smaller or
less complex models, like C, E, and F, show less dramatic improvements or even better performance
with AABB. This is because, in simpler geometries wheremost shapes are already alignedwith the axes,
AABBs are highly effective. In these cases, the models are small, and the formed structures are mostly
aligned with the axes, making the axis-aligned bounding volume a better fit. When triangles within a
BVH node are long and thin, OBBs may rotate away from the axis-aligned orientation, leaving empty
spaces to accommodate the elongated triangles, causing high SAH costs. This means the SAH cost
of OBBs versus AABBs depends significantly on the specific geometry and triangle rotations within the
BVH nodes. Still, OBBs generally reduce the empty spaces of complex models.

5.4.2. Balance Factor
The balance factor, represented by the standard deviation, evaluates the distribution of nodeswithin the
BVH. A well-balanced BVH ensures that traversal paths are evenly distributed, preventing performance
bottlenecks and evenly spreading the computational load across the tree.

Table 5.2 also indicates a range of balance factors across different models and BVH configurations
in column STD. The OBB BVH with the Midpoint or Median scores performs the best in most models.
Model G, however, exhibits an exceptionally high balance factor with the AABB BVH, suggesting signifi-
cant disparities in node distribution. In contrast, other models display closer scores. As seen in Model
G, high balance factors can indicate an uneven distribution of nodes, where certain paths within the
BVH may be significantly deeper or shallower than others. This uneven distribution can lead to ineffi-
ciencies during traversal, as some paths may consistently require more computation time, resulting in
potential bottlenecks. Overlaps in Model G likely cause this disparity.

The OBB BVH with Midpoint and Median methods usually produce the best STD, primarily because
these two methods divide the space evenly. Stack models often contain many overlapping triangles,
which leads to difficulties in finding optimal split positions during construction for both methods. As a
result, Midpoint and Median methods may place many triangles in leaf nodes, causing low tree depth.
Despite achieving the best STD, the SAH costs remain high for bothmethods, highlighting the necessity
for multiple metrics.

5.4.3. Build Time
The choice between AABB and OBB trees and the split method (SAH, Midpoint, or Median) greatly
influences build times. According to Table 5.2, using the SAH Binning split method, AABB BVH builds
significantly faster than OBB BVH. This is because OBB BVH, particularly with the SAH split method,
typically requires more time due to the complexity of optimizing orientations (generating OBBs) and
calculating the best splits based on the SAH. In contrast, AABB trees with the SAH split method build
more quickly due to the simplicity of generating AABBs. Additionally, the Midpoint and Median split
methods consistently yield the fastest results because of their simplicity. The 0s in smaller models
mean it took less than 1 ms to build.

Moreover, the complexity of the model plays a crucial role. More complex models, such as Stack D
and G, require longer to process due to the increased number of primitives and the complexity of their
spatial distribution, which complicates BVH construction.

5.4.4. Render Time
Render time is a critical metric for evaluating the performance of BVH structures as it directly reflects
their efficiency. Lower render times indicate a more effective BVH capable of quickly computing ray
intersections with minimal computational overhead. Table 5.2 highlights significant variations in ren-
der times across different models and configurations. Notably, the BVH with OBB volumes achieves
the best render times in complex models (e.g., Model A and Model G), underscoring its effectiveness
in minimizing traversal steps and intersection tests. This efficiency arises from the tighter bounding
volumes of OBBs, which more accurately encapsulate the geometry and reduce unnecessary ray inter-
sections. However, the AABB BVH (with AABB volumes) performs better for Model D. Most geometry
in Model D is aligned with the world axis, making the OBB volumes similar in shape and surface area to
the AABB volumes. Consequently, the OBB volumes do not provide a significant advantage and even
introduce additional intersection overhead compared to the more straightforward AABB intersection.

5.4. BVH Performance 22

Conversely, for simpler models such as Model B and E, AABB volumes render faster than OBB vol-
umes. This indicates that for geometries with fewer primitives, the advantages of using OBBs may not
compensate for their additional computational overhead during construction. Due to its faster intersec-
tion tests, an AABB volume can offer comparable or even better performance in these scenarios.

BVH SAH Cost STD B-Time R-Time

AABB 5314.6 6.9 41 86.7
AABB
(OBB)

1426.7 6.9 65 94.3

OBB
(Mid)

6641.1 2.1 25 376.0

OBB
(Median)

11312.6 0.7 36 836.4

OBB
(Binning)

527.6 2.1 594 72.2

(a) Model a

BVH SAH Cost STD B-Time R-Time

AABB 12.4 2.1 0 1.9
AABB
(OBB)

12.2 2.1 0 4.3

OBB
(Mid)

25.6 1.5 0 10.7

OBB
(Median)

41.0 1.0 0 11.7

OBB
(Binning)

12.2 2.3 12 8.9

(b) Model b

BVH SAH Cost STD B-Time R-Time

AABB 43.6 1.8 1 3.1
AABB
(OBB)

50.8 1.8 3 6.6

OBB
(Mid)

99.3 1.3 1 18.0

OBB
(Median)

289.0 1.1 1 27.5

OBB
(Binning)

50.8 1.6 39 10.7

(c) Model c

BVH SAH Cost STD B-Time R-Time

AABB 7078.0 2.0 303 44.1
AABB
(OBB)

7927.4 2.0 478 99.6

OBB
(Mid)

58675.7 2.3 163 13459.3

OBB
(Median)

44497.6 2.0 248 7591.3

OBB
(Binning)

7849.8 1.7 4388 94.5

(d) Model d

BVH SAH Cost STD B-Time R-Time

AABB 47.1 2.2 2 2.4
AABB
(OBB)

55.0 2.2 3 5.3

OBB
(Mid)

785.6 0.8 0 69.7

OBB
(Median)

997.5 1.2 0 95.0

OBB
(Binning)

55.0 2.0 49 9.9

(e) Model e

BVH SAH Cost STD B-Time R-Time

AABB 168.2 1.8 2 6.9
AABB
(OBB)

135.6 1.8 3 8.7

OBB
(Mid)

1836.5 0.9 1 124.3

OBB
(Median)

2363.3 1.8 0 160.4

OBB
(Binning)

121.0 1.9 47 13.4

(f) Model f

BVH SAH Cost STD B-Time R-Time

AABB 26279.5 18.3 426 328.2
AABB
(OBB)

6780.0 18.3 785 213.8

OBB
(Mid)

510607.0 1.8 324 3610.8

OBB
(Median)

971066.0 1.5 339 26035.4

OBB
(Binning)

5969.6 1.7 7577 194.0

(g) Model g

Table 5.2: SAH Cost, STD, Build Time(ms) and Render Time(ms) by Model. BVH is the type of BVH used, AABB is AABB BVH
split with AABB volume using Binning split method; AABB(OBB) is same as AABB but traced with OBB volume; OBB(Mid) is OBB

BVH with Midpoint split method; OBB(Median) is OBB BVH with Median split method; OBB(Binning) is OBB BVH with SAH
Binning split method.

5.5. Clustering BVH OBB Nodes 23

5.5. Clustering BVH OBB Nodes
In this section, we explore the effects of clustering BVH nodes using k-means clustering, which helps
reduce the computational load by grouping similar leaf OBB nodes, as described in subsection 4.2.1.
Specifically, we evaluate the BVHs with OBB volumes: AABB BVH with OBB, and OBB BVH configured
with the binning split method. The analysis focuses on more complex models A, D, and G, as simpler
models have too few nodes to benefit from clustering.

Figure 5.5 displays the performance results for models A, D, and G with clustering across the AABB
BVH (tracing with OBB volume) and OBB BVH. Each of these BVHs is tested with different numbers of
clusters (K), and the maximum tested K value is adjusted based on the number of leaf nodes in each
model. For instance, in Figure 5.5a, model D contains around 1500 leaf nodes, so the graph concludes
at K=1500.

In the AABB BVH (with OBB volume) clustering results (Figure 5.5a), all models show a clear trend:
increasing the number of clusters (K) leads to longer build times but shorter render times. The optimal
point is generally achieved when K is very high; however, for model D, the optimal K is around 200.
Compared to the AABB BVH (with OBB volume) results in Table 5.2 without clustering, it is evident that
clustering reduces render time, indicating improved tracing efficiency for OBB volumes.

The OBB BVH clustering results (Figure 5.5b) reveal a trend similar to that observed with AABB BVH
clustering. Clustering effectively reduces render times across all models. The improvements are even
more pronounced than the clustered AABB BVH results. This indicates that using OBB BVH and OBB
volumes in conjunction with clustering not only enhances the efficiency of the BVH structure but also
provides better performance benefits.

0 1000 2000 3000 4000
K

0

25000

50000

75000

100000

125000

150000

175000

Bu
ild

 T
im

e

Model a
Build Time

0 250 500 750 1000 1250 1500
K

600

800

1000

1200

1400

Bu
ild

 T
im

e

Model d
Build Time

0 1000 2000 3000 4000
K

0

100000

200000

300000

400000

500000

600000

Bu
ild

 T
im

e

Model g
Build Time

85

90

95

100

105

Re
nd

er
 T

im
e

84.10

Render Time

90.0

92.5

95.0

97.5

100.0

102.5

105.0

107.5

110.0

Re
nd

er
 T

im
e

90.70

Render Time

190

200

210

220

230

240

250

260

Re
nd

er
 T

im
e

192.60

Render Time

(a) AABB (OBB Volume) clustering

0 1000 2000 3000 4000
K

0

20000

40000

60000

80000

100000

120000

140000

Bu
ild

 T
im

e

Model a
Build Time

0 250 500 750 1000 1250 1500
K

8100

8200

8300

8400

8500

8600

8700

8800

Bu
ild

 T
im

e

Model d
Build Time

0 1000 2000 3000 4000
K

0

100000

200000

300000

400000

Bu
ild

 T
im

e

Model g
Build Time

64

66

68

70

72

Re
nd

er
 T

im
e

63.70

Render Time

90

95

100

105

110

115

Re
nd

er
 T

im
e

89.90

Render Time

180

182

184

186

188

190

192

194

Re
nd

er
 T

im
e

178.90

Render Time

(b) OBB clustering

Figure 5.5: Comparison of different numbers of clusters.

When examining the rendered images, as shown in Figure 5.6, it is evident that the final output re-
mains consistent regardless of whether clustering is applied. This demonstrates that the visual quality
of the clusteringmethodmatches that of the non-clustering results while providing improved efficiency.

5.6. Hybrid BVH
TheHybrid BVHaims to leverage the advantages of bothOBBandAABBvolumes. As shown in Table 5.3,
the Hybrid BVH achieves lower or comparable Surface Area Heuristic (SAH) costs relative to AABB and
OBB binning in both Model B and Model D. Additionally, in Model A, the Hybrid BVH achieves a render
time close to the best clustering result (63.70 ms), as seen in Figure 5.5b. It performs similarly to
the AABB BVH (with AABB volumes) in Model D, as shown in Table 5.2. Moreover, the Hybrid BVH
achieves the best render time among all BVHs and the clustering method in Model G. This indicates

5.7. SIMD Render Time 24

(a) AABB BVH (AABB volume), clustering not applicable (b) OBB BVH, with clustering

Figure 5.6: Clustering produces the same render results.

that the Hybrid BVH can effectively select the optimal volume for intersection tests, thereby leveraging
the advantages of both OBB and AABB volumes and improving overall performance.

Since the Hybrid BVH uses both AABB and OBB, typically resulting in a limited number of OBB leaf
nodes, and clustering only utilizes leaf nodes, it has not been tested with the clustering method.

The render times for the smaller models B, C, E, and F are close to or higher than the render time
of the AABB BVH (with AABB volumes) for Model D, as shown in Table 5.2. This indicates that OBB
volumes introduce more overhead than benefits during tracing models with few nodes, even in Hybrid
BVH.

Model SAH Cost Hybrid BVH (ms)
A 1405.0 65.4
B 12.0 3.1
C 43.6 3.4
D 7077.3 45.4
E 52.3 4.8
F 132.5 8.1
G 6463.8 162.0

Table 5.3: SAH Cost and Render Times with Hybrid BVH

5.7. SIMD Render Time
Using various BVH methods, we evaluate the impact of SIMD optimizations on the render times of
three 3D models—A, D, and G. Specifically, we compare AABB BVH, OBB BVH, and OBB BVH with clus-
tering, where the clustering parameter K = 1000 was selected based on preliminary experiments that
indicated it offers a favorable balance between BVH build time and rendering performance. Table 5.4
presents the millisecond render times for each model and BVH method combination. This demon-
strates that SIMD optimizations significantly enhance performance across all BVHmethods, achieving
interactive frame rates suitable for real-time applications.

Model AABB BVH (ms) OBB BVH (ms) OBB BVH with clustering (K = 1000) (ms)
A 12.8 9.5 8.8
D 18.4 35.0 35.3
G 53.1 32.5 34.1

Table 5.4: Render Times with SIMD Optimizations

For models A and G, the OBB BVH methods outperform the AABB BVH. Specifically, the OBB BVH
with clustering (K = 1000) achieves the fastest render time formodel A at 8.8ms, a significant improve-
ment over the AABB BVH’s 12.8 ms. This performance gain is attributed to the OBB’s ability to more
tightly enclose non-axis-aligned geometries, reducing the number of unnecessary ray-box intersection
tests during rendering. The clustering further enhances performance by grouping geometrically similar
primitives, optimizing the traversal efficiency of the BVH. In contrast, model D performs better with the

5.7. SIMD Render Time 25

AABB BVH method, rendering at 18.4 ms compared to 35.0 ms and 35.3 ms for the OBB BVH meth-
ods. This is likely due to model D’s predominantly axis-aligned geometry, as discussed in Section 5.1.
In such cases, the AABB BVH provides a more efficient representation because its bounding volumes
align perfectly with the geometry, minimizing the volume of space within the bounding boxes.

The application of SIMD optimizations substantially impacts rendering performance. SIMD pro-
cesses multiple data elements simultaneously, reducing the computational overhead associated with
BVH traversal and intersection tests. This parallelism is particularly beneficial when rendering complex
models like model G, where the OBB BVH method reduces render time from 53.1 ms (AABB BVH) to
32.5 ms.

6
Conclusion

This thesis has investigated the performance of BVHs performance in CPU-based ray tracing of semi-
conductor models, focusing on various split methods and types of bounding volumes. The primary
objectives were identifying the optimal BVH configurations, comparing the performance differences
between AABB and OBBs, and implementing techniques specifically designed for semiconductor struc-
tures, such as clustering BVH nodes with OBBs. In the context of semiconductor models, clustering
was considered a promising technique due to the inherently detailed nature of these models, which of-
ten consist of patterns and uniform geometries causing many similar BVH nodes. By grouping similar
OBBs, the clustering method can reduce the number of matrix operations for OBBs, leading to more ef-
ficient OBB intersection tests and improved BVH performance. As illustrated in Figure 5.5b, for Model
A, the clusteringmethod produced the best results compared to other methods. This demonstrates the
potential of clustering BVH nodes with OBBs to enhance the efficiency of ray tracing in semiconductor
models significantly.

From the results presented in chapter 5, it is evident that different BVH configurations yield varying
performance across the semiconductor models tested. This variability underscores the importance of
selecting an appropriate BVH structure tailored to the specific characteristics of the geometry. The find-
ings highlight that no single BVH configuration universally excels in all scenarios. Instead, the efficiency
of a BVH depends on factors such as the complexity and alignment of the model’s primitives.

Specifically, OBB BVHs demonstrate superior performance in complex, non-axis-aligned geometries
due to their tighter fitting around rotated shapes, which reduces unnecessary intersection tests during
ray tracing. Conversely, AABB BVHs are more effective for simpler, axis-aligned structures where their
alignmentwith the coordinate axes results inmore efficient bounding volumes and faster computations
due to the more straightforward and faster intersection tests of OBBs. Additionally, the Hybrid BVH
approach effectively combines the advantages of AABBs and OBBs during the intersection, optimizing
performance across various models.

The key contributions and findings of this thesis are summarized as follows:

1. Effectiveness of OBB BVHs: OBB BVHs generally achieved lower SAH costs than AABB BVHs,
particularly in complex models. For instance, in Model A, the SAH cost was reduced from 5314.6
(AABB) to 527.6 (OBB), representing an improvement of approximately 90%. Similarly, in Model
G, the SAH cost dropped from 26279.5 (AABB) to 5969.6 (OBB), an improvement of about 77%.
OBB BVHs also demonstrated reductions in render time for complex models. In Model A, render
time decreased from 86.7 ms (AABB) to 72.2 ms (OBB), a 17% improvement. For Model G, the
render time was improved from 328.2 ms (AABB) to 194.0 ms (OBB), a 41% reduction.

2. Performance Enhancement through Clustering: The implementation of clustering methods en-
hanced the performance of OBB BVHs by reducing render times without compromising visual
quality. For example, in Model A, clustering reduced the render time from 72.2 ms (OBB BVH) to
63.7 ms (Clustering OBB BVH), a 12% improvement. As demonstrated in Figure 5.5, clustering
generally improves the rendering efficiency for OBBs by grouping similar BVH nodes and caching
transformed ray directions.

26

6.1. Research Questions Answered 27

3. Advantages of Hybrid BVH: The Hybrid BVH approach achieved optimal render times across vari-
ous models, combining the strengths of AABBs and OBBs. For instance, the Hybrid BVH reduced
the render time to 162.0ms inModel G, outperforming both AABBandOBBBVHs alone. Inmodels
with predominantly axis-aligned structures, such as Model D, the Hybrid BVH it produced results
similar to those of the AABB BVH, indicating its adaptability to different geometric characteristics.

4. Impact of SIMD Optimizations: The application of Single Instruction, Multiple Data (SIMD) tech-
niques significantly improved rendering speeds, achieving interactive frame rates even for com-
plexmodels. InModel A, SIMD reduced the render timewith theOBBBVHand clustering to 8.8ms,
down from 12.8 ms with the AABB BVH. Similarly, in Model G, SIMD decreased the render time
with the OBB BVH to 32.5 ms, compared to 53.1 ms with the AABB BVH, achieving interactive
frame rates.

6.1. Research Questions Answered
The research questions posed in chapter 3 have been addressed as follows:

Research Question 1: Optimal BVH Techniques
Which bounding volume or BVH split strategy is optimal for ray tracing within the context of our 3D semi-
conductor models?

The results in chapter 5 demonstrate that OBB BVHs using the binning split method outperform
AABB BVHs regarding both SAH cost and render time for complex, non-axis-aligned geometries. This
is attributed to the tighter fitting of OBBs around rotated shapes, reducing the number of intersection
tests required during rendering. Conversely, AABB BVHs are more effective for simpler, axis-aligned
semiconductor models, where their alignment with the coordinate axes results in more efficient bound-
ing volumes and faster computations. Therefore, the optimal BVH technique depends on the specific
characteristics of the rendered semiconductor structures.

Research Question 2: BVH Tracing Improvements
How can BVH traversal techniques be optimized to improve ray tracing performance in 3D semiconductor
models?

Implementing the new clustering method with cached ray directions enhanced the performance of
OBB BVHs. Clustering groups similar BVH nodes, allowing for the reuse of transformed ray directions
and reducing redundant calculations during OBB traversal. This optimization reduces render times
without compromising visual quality, making OBB BVHs more viable for real-time applications in com-
plex models. Additionally, leveraging the orthogonal nature of the camera and the uniformity of ray
directions further optimized traversal computations.

Overall, the findings suggest that a tailored approach in selecting and optimizing BVH types based
on the specific characteristics of the semiconductor models is crucial for achieving optimal rendering
performance in CPU-based ray tracing.

6.2. Limitations
While the research presents advancements in CPU-based ray tracing for semiconductormodels, certain
limitations were identified:

• Model Specificity: The effectiveness of the BVH configurations and optimization techniques de-
pends on the semiconductor models’ geometric characteristics. The conclusions drawnmay not
generalize to models with different structures or complexities.

• Construction Time: The OBB BVHs, especially with the binning split method, had longer construc-
tion times than AABB BVHs. This could offset the benefits gained during rendering in scenarios
where the scene changes frequently.

• Clustering Overhead: While clustering improved render times, it introduced additional computa-
tional overhead during the BVH construction phase. The optimal number of clusters varied across
models, requiring model-specific adjustments.

6.3. Future Work 28

6.3. Future Work
Building upon the findings and acknowledging the limitations of this research, several avenues for fu-
ture work are proposed:

• Adaptive Clustering Strategies: Implement adaptive clusteringmethods that automatically deter-
mine the optimal number of clusters based on the model’s characteristics, reducing the need for
manual tuning and ensuring consistent performance improvements across different models. Ad-
ditionally, consider extending clustering to all nodes, as current methods only cluster leaf nodes.

• Enhancing SIMD Implementation: Investigate and address the noise artifacts introduced by SIMD
optimizations in OBB BVHs. This could involve refining the intersection algorithms or exploring
precision issues in SIMD computations to ensure both performance gains and visual accuracy.

• Parallel BVH Construction: Explore parallelization of the BVH construction phase, leveraging
multi-core CPU architectures to mitigate the increased build times associated with OBB BVHs
and clustering.

• Adapting State-of-the-art BVHConstructionMethod: Incorporate advancedmethods like spatial
splits into traditional BVHs to reduce bounding volume overlap, particularly for long triangles that
span large areas. SBVH’s [23] ability to split triangles into multiple parts and reference them in
different child nodes helps minimize overlap and improve traversal efficiency in complex scenes.

References

[1] Timo Aila and Samuli Laine. “Understanding the efficiency of ray traversal on GPUs”. In: Proceed-
ings of the Conference on High Performance Graphics 2009. HPG ’09. New Orleans, Louisiana:
Association for Computing Machinery, 2009, pp. 145–149. ISBN: 9781605586038. DOI: 10.1145/
1572769.1572792. URL: https://doi.org/10.1145/1572769.1572792.

[2] James H. Clark. “Hierarchical geometric models for visible surface algorithms”. In: Commun.
ACM 19.10 (Oct. 1976), pp. 547–554. ISSN: 0001-0782. DOI: 10.1145/360349.360354. URL: https:
//doi.org/10.1145/360349.360354.

[3] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’sManual. Volume 2: Instruc-
tion Set Reference, A-Z. Intel Corporation. Santa Clara, CA, July 2021. URL: https://www.intel.
com/content/www/us/en/developer/articles/technical/intel-sdm.html.

[4] Ryan R. Curtin et al. “mlpack 4: a fast, header-only C++ machine learning library”. In: Journal of
Open Source Software 8.82 (2023), p. 5026. DOI: 10.21105/joss.05026. URL: https://doi.org/
10.21105/joss.05026.

[5] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-memory programming”.
In: IEEE Computational Science and Engineering 5.1 (1998), pp. 46–55. DOI: 10.1109/99.660313.

[6] Haitao Du et al. “Interactive ray tracing on reconfigurable SIMD MorphoSys”. In: Proceedings of
the 2003 Asia and South Pacific Design Automation Conference. 2003, pp. 471–476.

[7] Christer Ericson. Real-Time Collision Detection. USA: CRC Press, Inc., 2004. ISBN: 1558607323.
[8] Valentin Fuetterling et al. “Efficient Ray TracingKernels forModernCPUArchitectures”. In: Journal

of Computer Graphics Techniques (JCGT) 4 (Dec. 2015), pp. 90–111.
[9] Yan Gu et al. “Efficient BVH construction via approximate agglomerative clustering”. In: Proceed-

ings of the 5th High-Performance Graphics Conference. HPG ’13. Anaheim, California: Associa-
tion for Computing Machinery, 2013, pp. 81–88. ISBN: 9781450321358. DOI: 10.1145/2492045.
2492054. URL: https://doi.org/10.1145/2492045.2492054.

[10] Vlastimil Havran. “Heuristic Ray Shooting Algorithms”. PhD thesis. Nov. 2000.
[11] Hwancheol Jeong et al. Performance of SSE and AVX Instruction Sets. 2012. arXiv: 1211.0820

[hep-lat].
[12] Tero Karras. “Maximizing parallelism in the construction of BVHs, octrees, and k-d trees”. In: Pro-

ceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-Performance Graphics.
EGGH-HPG’12. Paris, France: Eurographics Association, 2012, pp. 33–37. ISBN: 9783905674415.

[13] ThomasLarsson and LinusKällberg. “Fast Computation of Tight-FittingOrientedBoundingBoxes”.
In: Feb. 2011, pp. 3–19. ISBN: 978-1-56881-437-7. DOI: 10.1201/b11333-3.

[14] Christian Lauterbach et al. “Fast BVH construction on gpus”. In: Computer Graphics Forum 28
(Apr. 2009), pp. 375–384. DOI: 10.1111/j.1467-8659.2009.01377.x.

[15] J.D.MacDonald and K.S. Booth. “Heuristics for ray tracing using space subdivision”. In: The Visual
Computer 6.3 (May 1990), pp. 153–166. ISSN: 1432-2315. DOI: 10.1007/BF01911006. URL: https:
//doi.org/10.1007/BF01911006.

[16] J. MacQueen. “Some Methods for Classification and Analysis of Multivariate Observations”. In:
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Statistics. Berkeley, Calif.: University of California Press, 1967, pp. 281–297. URL: https://
projecteuclid.org/euclid.bsmsp/1200512992.

[17] Daniel Meister et al. “A Survey on Bounding Volume Hierarchies for Ray Tracing”. In: Computer
Graphics Forum 40 (May 2021), pp. 683–712. DOI: 10.1111/cgf.142662.

29

https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/360349.360354
https://doi.org/10.1145/360349.360354
https://doi.org/10.1145/360349.360354
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.21105/joss.05026
https://doi.org/10.21105/joss.05026
https://doi.org/10.21105/joss.05026
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/2492045.2492054
https://doi.org/10.1145/2492045.2492054
https://doi.org/10.1145/2492045.2492054
https://arxiv.org/abs/1211.0820
https://arxiv.org/abs/1211.0820
https://doi.org/10.1201/b11333-3
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1007/BF01911006
https://doi.org/10.1007/BF01911006
https://doi.org/10.1007/BF01911006
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1111/cgf.142662

References 30

[18] Chuck Pheatt. “Intel® threading building blocks”. In: J. Comput. Sci. Coll. 23.4 (Apr. 2008), p. 298.
ISSN: 1937-4771.

[19] Steven M. Rubin and Turner Whitted. “A 3-dimensional representation for fast rendering of com-
plex scenes”. en. In: Proceedings of the 7th annual conference on Computer graphics and interac-
tive techniques - SIGGRAPH ’80. Seattle, Washington, United States: ACM Press, 1980, pp. 110–
116. ISBN: 978-0-89791-021-7. DOI: 10.1145/800250.807479. URL: http://portal.acm.org/
citation.cfm?doid=800250.807479.

[20] Rodolfo Sabino et al. “Fast and Robust Ray/OBB Intersection Using the Lorentz Transformation”.
In: Ray Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX. Ed. by
Adam Marrs, Peter Shirley, and Ingo Wald. Berkeley, CA: Apress, 2021, pp. 519–528. ISBN: 978-1-
4842-7185-8. DOI: 10.1007/978-1-4842-7185-8_32. URL: https://doi.org/10.1007/978-1-
4842-7185-8_32.

[21] V. V. Sanzharov, V. A. Frolov, and V. A. Galaktionov. “Survey of Nvidia RTX Technology”. In:Program.
Comput. Softw. 46.4 (July 2020), pp. 297–304. ISSN: 0361-7688. DOI: 10.1134/S03617688200300
68. URL: https://doi.org/10.1134/S0361768820030068.

[22] Jonathon Shlens. A Tutorial on Principal Component Analysis. 2014. arXiv: 1404.1100 [cs.LG].
[23] Martin Stich, Heiko Friedrich, and Andreas Dietrich. “Spatial splits in bounding volume hierar-

chies”. In: Proceedings of the Conference on High Performance Graphics 2009. HPG ’09. New Or-
leans, Louisiana: Association for Computing Machinery, 2009, pp. 7–13. ISBN: 9781605586038.
DOI: 10.1145/1572769.1572771. URL: https://doi.org/10.1145/1572769.1572771.

[24] N. Vitsas et al. “Parallel Transformation of Bounding Volume Hierarchies into Oriented Bounding
Box Trees”. en. In: Computer Graphics Forum 42.2 (May 2023), pp. 245–254. ISSN: 0167-7055,
1467-8659. DOI: 10.1111/cgf.14758.

[25] I Wald et al. “OSPRay - A CPU Ray Tracing Framework for Scientific Visualization”. In: IEEE Trans-
actions on Visualization and Computer Graphics 23.1 (2017), pp. 931–940. DOI: 10.1109/TVCG.
2016.2599041.

[26] Ingo Wald. “On fast Construction of SAH-based Bounding Volume Hierarchies”. In: 2007 IEEE
Symposium on Interactive Ray Tracing. 2007, pp. 33–40. DOI: 10.1109/RT.2007.4342588.

[27] Ingo Wald, Solomon Boulos, and Peter Shirley. “Ray tracing deformable scenes using dynamic
bounding volume hierarchies”. In: ACM Trans. Graph. 26.1 (Jan. 2007), 6–es. ISSN: 0730-0301.
DOI: 10.1145/1189762.1206075. URL: https://doi.org/10.1145/1189762.1206075.

[28] RunYan et al. “RT Engine: An EfficientHardwareArchitecture for Ray Tracing”. In:Applied Sciences
12.19 (2022). ISSN: 2076-3417. DOI: 10.3390/app12199599. URL: https://www.mdpi.com/2076-
3417/12/19/9599.

[29] Robin Ytterlid and Evan Shellshear. “BVH Split Strategies for Fast Distance Queries”. In: Journal
of Computer Graphics Techniques (JCGT) 4.1 (Jan. 2015), pp. 1–25. ISSN: 2331-7418. URL: http:
//jcgt.org/published/0004/01/01/.

https://doi.org/10.1145/800250.807479
http://portal.acm.org/citation.cfm?doid=800250.807479
http://portal.acm.org/citation.cfm?doid=800250.807479
https://doi.org/10.1007/978-1-4842-7185-8_32
https://doi.org/10.1007/978-1-4842-7185-8_32
https://doi.org/10.1007/978-1-4842-7185-8_32
https://doi.org/10.1134/S0361768820030068
https://doi.org/10.1134/S0361768820030068
https://doi.org/10.1134/S0361768820030068
https://arxiv.org/abs/1404.1100
https://doi.org/10.1145/1572769.1572771
https://doi.org/10.1145/1572769.1572771
https://doi.org/10.1111/cgf.14758
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/RT.2007.4342588
https://doi.org/10.1145/1189762.1206075
https://doi.org/10.1145/1189762.1206075
https://doi.org/10.3390/app12199599
https://www.mdpi.com/2076-3417/12/19/9599
https://www.mdpi.com/2076-3417/12/19/9599
http://jcgt.org/published/0004/01/01/
http://jcgt.org/published/0004/01/01/

	Abstract
	Introduction
	ASML Brion
	Flatrace

	Background & Related Work
	Semiconductor Models
	Overview of Ray tracing
	GPU-Based Ray Tracing
	 CPU-Based Ray Tracing
	Bounding Volume Hierarchies (BVH)
	Bounding Volumes
	Sphere Volume
	Axis-Aligned Bounding Boxes (AABB)
	Oriented Bounding Boxes (OBB)

	Optimization Techniques for Ray Tracing
	Single Instruction, Multiple Data (SIMD)
	Parallel Processing
	Algorithmic Optimizations

	Critique and Gap Identification

	Research Questions
	Requirements
	Research Question: Optimal BVH Techniques
	Hypothesis

	Research Question: BVH Tracing Improvements
	Hypothesis

	Methodology
	Acceleration Data Structure For Ray Tracing
	Bounding Volume Hierarchy
	BVH Construction
	OBB Generation using DiTO
	BVH Traversal
	OBB Traversal

	Clustering BVH Nodes with OBB
	Group Similar Nodes
	Generate Representative OBB
	Replace Individual OBBs in Clusters
	Transformed Ray Direction Caching
	Types of BVH

	SIMD And Parallel Processing

	Results
	Semiconductor Models
	Bin Size of Binning
	AABB Volume vs. OBB Volume
	BVH Performance
	SAH Cost
	Balance Factor
	Build Time
	Render Time

	Clustering BVH OBB Nodes
	Hybrid BVH
	SIMD Render Time

	Conclusion
	Research Questions Answered
	Limitations
	Future Work

	References

