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Abstract 

The half-space assumption has been employed in many solution methods for non-

conforming contact problems in elasticity such as the Hertz theory and the Kalker's 

variational theory. It is generally believed that to guarantee acceptable accuracy in these 

half-space-based methods, the characteristic size (twice length of one semi-axis) of the 

contact patch should be much smaller than the significant dimensions (i.e. the height, width, 

length and the principal radii of curvature) of each body in contact. In engineering practice, 

the 3x rule is often employed, which requires that the significant dimensions be at least 

three times as large as the characteristic size. However, this requirement has not been 

justified. In this paper, the applicability of half-space-based methods is investigated by 

comparing the solutions obtained using the Hertz theory and the Kalker's theory with those 

of the Finite Element (FE) method which is not limited to the half-space assumption. 

Different combinations of significant dimensions in terms of height, width and length are 

studied. Various contact patch eccentricities and contact body shapes are considered. It is 

found that the half-space-based methods yield high-accuracy calculation for non-conforming 

contact problems. Even when the significant dimensions are as small as 1.1x the 

characteristic size, the differences between the solutions of the half-space-based methods 

and the FE method are within 9%. The findings of this paper indicate that the typically 

assumed 3x restriction can be greatly relaxed. Since a clear estimation of the deviation of the 

results of half-space-based methods from those of the FE method is provided, the 

applicability of half-space-based methods in mechanical engineering can be much better 

understood. 

Keywords: non-conforming elastic contact, half-space assumption, FE method, characteristic 

size, significant dimensions. 

1. Introduction

Contact problems exist in many mechanical systems such as wheel-rail interfaces, bearings, 

gears, mechanical linkages, and metal forming processes [1, 2]. These problems are related 

to the analysis of the friction, wear or fatigue failure of the components in contact and 

require accurate calculations of their stresses and deformations. The study of contact 

problems was initiated by Hertz [3], who solved the normal problem in which no friction was 

considered. A classical 2D solution for the frictional rolling contact problem was provided by 
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Carter [4]. In the 1950s, Johnson [5] presented solutions for the frictional rolling of spheres. 

Concerning wheel-rail rolling contact, the most popular method is the Kalker's variational 

theory based on virtual work which is implemented using the Boundary Element Method [6]. 

This theory enables the treatment of arbitrary creepage and spin. All these theories are 

based on the half-space assumption. It is considered that this assumption requires that the 

characteristic size of the contact patch be much smaller than the significant dimensions of 

the bodies in contact. In the case of an elliptical contact, the characteristic size can be twice 

the length of one semi-axis. The significant dimensions of the contact bodies can be their 

width, length or height and/or the principal radii of curvature in the vicinity of the contact 

patch. 

In reality, bodies in contact always have finite dimensions. In many cases, the significant 

dimensions of the body in contact are close to the characteristic size of the contact patch. 

Considering switch and crossing panels of railways as an example, the width and the radius 

of curvature at the crossing nose may be close to the characteristic size of the contact patch 

[7], as shown in Fig. 1(a). Other examples include asperity contacts (see Fig. 1(b)) [8, 9], 

bearing contact [10], spherical indentation contact [11] and gears [12]. In these contacts, 

one or more dimensions may be close to the characteristic size. Half-space-based methods 

have been widely used to solve these contact problems because such methods are efficient 

and easy to use. However, the applicability of these methods is questionable when the 

significant dimensions of the contact bodies are close to the characteristic size of the contact 

patch. In engineering practice the 3x rule is usually employed [13], which requires that the 

significant dimensions be at least three times as large as the characteristic size of the contact 

patch. However, to the authors’ knowledge, the literature lacks sufficient justification of 

such a requirement or any analysis of its accuracy. This paper proposes quantitative criteria 

for assessing the applicability of the classical half-space-based methods to non-conforming 

elastic normal contacts by considering the influence of the significant dimensions in the 

vicinity of the contact patch. 

Fig. 1. (a) Wheel-rail contact in the case of a crossing panel [7]; (b) Single asperity contact [8]. 

In recent years, there have been many studies of various contact mechanical problems in 

which the real boundary conditions were considered. The Finite Element (FE) method is 
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commonly used in such studies. One advantage of the FE method is that the half-space 

assumption is not required. Its computational accuracy was verified several decades ago for 

static elastic contact problems by Chan and Tuba [14], and recently for frictional rolling 

contact problems by Zhao and Li [15]. Yan and Fischer [16] compared the contact pressure 

solution obtained using the FE method with that of the Hertz theory for the case of a 

standard rail, a crane rail and a switch. They found that the two solutions agreed well as long 

as the materials were assumed to be linear elastic in nature. Wiest et al. [7] investigated the 

contact pressure distribution between a wheel and a rail crossing nose using the FE method. 

They found that the solutions of the FE method and two half-space-based methods were in 

good agreement even though the radius of curvature at the crossing nose near the contact 

point was close to the size of the contact patch. In these works, the significant dimension 

was assumed to be the principal radius of curvature of the contact body, whereas other 

significant dimensions, such as height, width and length, were not addressed. 

In this paper, the FE method is employed to investigate the accuracy and applicability of 

half-space-based methods. The static normal contact between non-conforming geometrical 

bodies is studied by comparing the solutions obtained using half-space-based methods with 

those of the FE method. A number of combinations of different significant dimensions of the 

contact bodies in terms of height, width and length with various eccentricities of the contact 

patch (the ratios of the semi-axes of the contact patch) and different shapes of the contact 

body are considered. The corresponding deviations of the half-space-based methods from 

the FE method are analyzed, and the critical significant dimensions are determined. 

2. Assessment strategy on solution methods for contact problems

In the present work, an FE contact model is built using the software package ANSYS. The 

Hertz theory and the Kalker's variational theory are chosen for comparison, as they are 

representative half-space-based methods. The deviations of the results of the half-space-

based methods from those of the FE method are analyzed for each significant dimension. 

Notably, the results computed using the half-space-based methods are independent of the 

dimensions. 

2.1. FE contact model 

2.1.1 FE model description 

In the FE model, two bodies with cylindrical geometries in static normal contact are 

considered. Schematic diagrams of the model are shown in Fig. 2. A Cartesian coordinate 

system 𝑂𝑥𝑦𝑧 is created as shown in the figure, of which the origin O is located at the point 

of initial contact. The upper body is represented by a cylinder. The radius 𝑟𝐴 is 460 mm, and 

the width 𝑤𝐴 is 135 mm. The lower body is modeled as a partial cylinder whose cross section 

is perpendicular to the 𝑥 axis. The radius of curvature 𝑟 is 300 mm. Furthermore, cylindrical 

bodies in contact with other principal radii of curvature and contact bodies with arbitrary 

geometries are also considered to study the effects of the contact patch eccentricity and of 

the contact bodies shapes. The height ℎ, the width 𝑤 and the length 𝑙 are selected in 
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accordance with the designs to be discussed in Section 2.2. The lower body is connected to a 

base whose bottom is fixed. 

 

Fig. 2. Schematic diagrams of the FE model: (a) Front view; (b) Side view. 

The contact bodies are meshed using 8-node solid elements. A non-uniform mesh is used 

in the potential contact zone to achieve high solution accuracy at a reasonable 

computational expense, as shown in Fig. 3. A fine mesh of 0.31 mm is assigned to both the 

lower body and the upper body in the potential contact zone. A relatively coarse mesh is 

used for the remaining portions of the bodies. 

In the model, elastic material properties are assumed. The Young’s modulus is 210 GPa, 

and the Poisson’s ratio is 0.3. A total static vertical load of 86 kN is applied to the upper body. 

 

Fig. 3. Mesh of the FE model for static normal contact. 

Various contact algorithms are available in ANSYS for studying the static contacts. In this 

work, the penalty method is used [17] to enforce the contact constraints. In studies of 

normal contact behavior, frictional contact is not considered, and therefore, no tangential 

load is applied. The model used in this work is static; thus, it is different from explicit 

dynamic models such as those in [15]. A static model is used in this work because the intent 
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is to study the influence of the half-space assumption in half-space-based methods, and 

dynamic effects are not considered. 

2.1.2 Design of the significant dimensions of the lower body 

To quantitatively study the accuracy of half-space-based methods and the critical 

dimensions that most influence their accuracy, solutions for contacts between upper and 

lower bodies with various significant dimensions are analyzed. The significant dimensions of 

the lower body are designed based on the size of the contact patch as calculated using the 

Hertz theory. That is, in the design, the Hertz theory is first applied to compute the reference 

contact patch, which is elliptical in shape. The parameters 𝑎0 and 𝑏0 denote the reference 

major and minor semi-axes of the elliptical contact patch in the 𝑥  and 𝑦  directions, 

respectively. The Hertz solution is used as the reference because it can be easily calculated. 

The significant dimensions of the lower body in the FE model are defined as the height, 

width and length in the vicinity of the contact patch. Specifically, they are expressed as ratios 

of each actual dimension over the corresponding dimension of the reference contact patch 

size (2𝑏0 or 2𝑎0). Therefore, the height, width and length are represented by the normalized 

variables ℎ/2𝑏0, 𝑤/2𝑏0 and 𝑙/2𝑎0, respectively. The purpose of this normalization is to 

make this study more general. The normalized width of the lower body is selected to start 

with 1.1, which is very close to the extreme case of 1.0. Then, the width is varied from 1.1 to 

2.0 and 8.0. The width of 8.0 is considered to represent the half-space scenario, as this value 

indicates a width that is much larger than the characteristic size of the contact patch. The 

length 𝑙/2𝑎0 is set equal to the width 𝑤/2𝑏0. For each width, three heights (ℎ/2𝑏0), namely 

0.4, 1.0 and 4.0, are considered. These combinations of significant dimensions in terms of 

height, width and length are investigated for the static normal contact problem. 

2.2. The Kalker's variational theory 

The theoretical basis and computer implementations of the Kalker’s variational theory are 

described in [6]. A brief introduction to the theory is provided here. The theory follows the 

variational principle, which states that the stress field within a solid is true when the 

complementary potential energy is at its minimum value. It is implemented on the basis of 

the Boundary Element Method. The following assumptions are made. The contact patch is 

flat and it is small compared with the significant dimensions and the radii of curvatures of 

the two contact bodies. In addition, the inertial effect is ignored. 

In the Cartesian coordinate system 𝑂𝑥𝑦𝑧, the contact problem can be expressed in the 

form of the minimization of complementary energy 𝐶𝑢,𝑝 in surface mechanical form. It is in 

terms of the surface tractions, including the normal pressure 𝑝𝑧 and the tangential traction 

𝑝𝜏 The expression is [6, 18] 
 

𝑚𝑖𝑛 𝐶𝑢,𝑝 = ∫ (ℎ +
1

2
𝑢𝑧) 𝑝𝑧

𝐴𝐶

𝑑𝑆 + ∫ (𝑊𝜏 +
1

2
𝑢𝜏 − 𝑢𝜏

′ ) 𝑝𝜏
𝐴𝐶

𝑑𝑆 (1) 

where 𝑝𝑧 ≥ 0, |𝑝𝜏| ≤ 𝑓𝑝𝑧  in 𝐴𝑐 , 𝑓  is the friction coefficient,  𝐴𝑐  is the potential contact 

surface area, 𝑑𝑆 is the elementary area on 𝐴𝑐. ℎ is the undeformed distance between the 

two contact bodies, 𝑢𝑧 is the displacement in the normal direction, 𝑊𝜏 is the rigid body shift, 

Please cite as: Deng X., Qian Z., Li Z*. and Dollevoet R. (2017). Applicability of half-space-based methods to non-conforming 
elastic normal contact problems.  International Journal of Mechanical Sciences, 126 (2017) 229–234.



6 
 

𝑢𝜏  denotes the displacement in the tangential direction,  𝑢𝜏
′  denotes the tangential 

displacement at the previous time step. 

The contact bodies  𝛼 = 1, 2 are presumed to satisfy the half-space assumption and the 

material is linear elastic. The relation between the displacement 𝑢𝑖  in the direction 𝑖 at the 

location 𝑥𝛼 (the response point) and the surface traction 𝑝𝑗 in the direction 𝑗 at the location 

𝑦𝛼 (the impulse point) can be established according to Boussinesq [19] and Cerruti [20], 

which reads [6] 

 𝑢𝑖(𝑥𝛼) = ∬ 𝐴𝑖𝑗(𝑦𝛼 − 𝑥𝛼)𝑝𝑗(𝑦𝛼)
𝐴𝐶

𝑑𝑆      𝛼 = 1, 2; 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 (2) 

where 𝐴𝑖𝑗(𝑦𝛼 − 𝑥𝛼)  is the influence function of body 𝛼 , and it can be determined 

analytically. 

Applying the Boundary Element Method, Equation (1) can be discretized into 
 

𝑚𝑖𝑛 𝐶𝑝𝐽𝑗
∗ =

1

2
𝑝𝐼𝑖𝐴𝐼𝑖𝐽𝑗𝑝𝐽𝑗 + {ℎ𝐽𝑝𝐽𝑧 + (𝑊𝐽𝜏 − 𝑢𝐽𝜏

′ )𝑝𝐽𝜏} (3) 

𝑠𝑢𝑏 𝑝𝐽𝑧 ≥ 0, |𝑝𝐽𝜏| ≤ 𝑓𝑝𝐽𝑧 

where the subscript 𝐼, 𝐽 denotes the uniformly discretized element, the 𝑝𝐽𝑗 in 𝐶𝑝𝐽𝑗

∗  means 

that the primal variables for the minimization are the independent variables 𝑝𝐽𝑗. 

In this work, the normal contact problem without tangential traction is considered, thus 

the term with respect to the tangential traction in Equation (3) vanishes. The influence 

function is determined by 

 Azz(𝑅) = {(1 − 𝑣)/(𝜋𝐺)}𝑅−1 (4) 

where 𝑣 is Poisson ratio, 𝐺 is the combined shear modulus of the two contact bodies which 

reads 1/𝐺 = 1/2(1/𝐺1 + 1/𝐺2), 𝐺1  and 𝐺2  are the shear modulus of the two contact 

bodies respectively. 𝑅 is the distance between the response point and the impulse point. 

A contact patch takes place where the surfaces of the two contact bodies coincide. The 

contact pressure can be computed according to the contact condition for the normal contact 

problems, 

 𝑝𝐼𝑧 = 0, the element is outside of the contact patch (5) 

 𝐴𝐼𝑧𝐽𝑧𝑝𝐽𝑧 + ℎ𝐼 = 0, the element is in contact (6) 

When the normal force 𝐹𝑧 is prescribed, then the following relationship must be satisfied, 

 
𝐹𝑧 = 𝑄 ∑ 𝑝

𝐼𝑧

𝐼

 (7) 

where 𝑄 is the area of an element. 

2.3. Assessment strategy 

As previously mentioned, the Hertz theory and the Kalker's theory are considered as 

representative half-space-based methods. The FE method is used to evaluate their 

applicability. The results of evaluation can be extended to other half-space-based methods. 

In the Kalker's theory, the potential contact region is divided into a number of square 

elements of equal size. To ensure a fair comparison with the FE method, the element size in 

the Kalker's theory is set equal to that in the zone of interest in the FE model, which is 0.31 

mm. 
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To make this study more general and to facilitate the comparison between the Hertz 

theory, the Kalker's theory and the FE method, the FE solution is normalized with respect to 

the solutions of the Hertz theory and the Kalker's theory. The normalization is performed 

using critical values such as the maximum contact pressures (𝑝0 and 𝑝𝑘0) and the semi-axes 

of the contact patch (𝑎0 and 𝑎𝑘 in the 𝑥 direction, 𝑏0 and 𝑏𝑘 in the 𝑦 direction) that are 

obtained from the Hertz theory and the Kalker's theory, respectively. The FE solution is 

treated as the reference. The deviations of the solutions of the half-space-based methods 

from the results of the FE method are therefore investigated. 

In addition, contact patch eccentricity (𝑏0/𝑎0) is one important parameter that is related 

to the accuracy of half-space-based methods. This eccentricity depends on the ratio of the 

relative principal curvatures of the contact bodies. Therefore 𝑏0/𝑎0 is varied by choosing 

various combinations of the principal radii of the curvature of the contact bodies. Using the 

real sizes of a wheel and a rail generates a contact patch with an eccentricity of 0.75. The 

value of 𝑏0/𝑎0 lies in the range 0 to 1.00. Three other values in this range (0.20, 0.50 and 

1.00) are also investigated to study the effects of the contact patch eccentricity. 

3.  Simulation results 

In this study, frictional effects are not included. Therefore, only normal contact behaviors are 

evaluated, including the contact pressure distribution as well as the shape and the size of the 

contact patch. The influence of the significant dimension is investigated by varying a single 

dimension (e.g. height) while keeping the other dimensions (e.g. width and length) constant. 

3.1. Normal solution when 𝒃𝟎/𝒂𝟎 = 0.75 

The cylindrical contact with a contact patch eccentricity of 0.75 is investigated in detail, and 

the results are presented in Table 1. In total, nine different combinations of significant 

dimensions of the contact body in terms of height, width and length are modeled. The 

contact patch for each combination is elliptical in shape, as shown in Fig. 4. The parameters 

𝑎 and 𝑏 denote the semi-axes of the contact patch in the 𝑥 and 𝑦 directions, respectively. 

Each normalized normal solution obtained using the FE method includes the normalized 

size of the contact patch and the maximum normalized contact pressure. A normalized value 

of 1.0 implies that the corresponding half-space-based solution matches the FE solution. It is 

observed that the values are not 1.0, which means that some differences do exist between 

the FE method and the two half-space-based methods. Possible causes include the finite 

dimension effect accounted for in the FE method, and numerical discretization. 

Regarding the computed contact patch sizes, the maximum difference between the two 

half-space-based solutions and the FE solution is 3%, which is observed for the minor semi-

axis 𝑏/𝑏𝑘 when comparing the FE method with the Kalker's theory. Moreover, Table 1 shows 

that the size of the contact patch is not affected by various combinations of significant 

dimensions. This finding suggests that the differences between the FE method and the half-

space-based methods are due to the numerical discretization only. The corresponding error 

is up to 3% when the contact patch size is considered. The Hertz theory is an analytical 

approach, thus no numerical discretization process is involved. The Kalker's theory and the 

FE method involve numerical discretization, but the processes are different. For instance, 
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nodes are located at the centers of the elements in the Kalker's theory, whereas the nodes 

are located at the corners of the elements in the FE method. 

Regarding the maximum normalized contact pressures (𝑝𝑚𝑎𝑥/𝑝𝑘0 and 𝑝𝑚𝑎𝑥/𝑝0), their 

values are not equal to 1.0. This suggests that the FE method and the half-space-based 

methods predict different pressures. Among the nine combinations of significant dimensions, 

the case with a height of ℎ/2𝑏0 = 0.4 and a width of 𝑤/2𝑏0 = 8.0 is the closest one to the 

half-space assumption. The corresponding pressure is 1.010, which indicates a difference of 

1% in pressure between the FE method and the half-space-based methods. This difference is 

caused by numerical discretization. When the height is increasing to 4.0 and the width is 

decreasing to 1.1, the pressure increases by 3% from 1.010 to 1.040. This increase is caused 

by the finite dimension effect accounted for in the FE model. In other words, the half-space 

assumption introduces an error up to 3% in the maximum pressure compared with the FE 

method. 

Table 1. FE solutions for static normal contact for each combination of significant dimensions. 

Dimensions of lower body Size of contact patch 
Maximum pressure 

Height Width Major semi-axis Minor semi-axis Area 

ℎ/2𝑏0 𝑤/2𝑏0 𝑎/𝑎0 𝑎/𝑎𝑘 𝑏/𝑏0 𝑏/𝑏𝑘 𝐴/𝐴0 𝐴/𝐴𝑘 𝑝𝑚𝑎𝑥/𝑝0 𝑝𝑚𝑎𝑥/𝑝𝑘0 

0.4 1.1 1.001 1.002 0.995 0.970 0.996 0.972 1.024 1.024 

2.0 1.001 1.002 0.995 0.970 0.996 0.972 1.010 1.010 

8.0 1.001 1.002 0.995 0.970 0.996 0.972 1.010 1.010 

1.0 1.1 1.001 1.002 0.995 0.970 0.996 0.972 1.040 1.040 

2.0 1.001 1.002 0.995 0.970 0.996 0.972 1.010 1.010 

8.0 1.001 1.002 0.995 0.970 0.996 0.972 1.010 1.010 

4.0 1.1 1.001 1.002 0.995 0.970 0.996 0.972 1.040 1.040 

2.0 1.001 1.002 0.995 0.970 0.996 0.972 1.010 1.010 

8.0 1.001 1.002 0.995 0.970 0.996 0.972 1.010 1.010 

 

Fig. 4. Elliptical contact patch predicted by the FE method. 

Fig. 5 shows the normalized contact pressure distributions along the longitudinal axis, as 

computed by the Hertz theory, the Kalker's theory and the FE method, for the most critical 

height of 4.0 and the width varying at 1.1, 2.0, and 8.0. All curves are Hertzian-type 

symmetric parabolas. This plot suggests that the half-space-based methods agree well with 

the FE method regarding the pattern of the pressure distribution. 
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Fig. 5. Normalized contact pressure distributions along the longitudinal direction when 

ℎ/2𝑏0 = 4.0. 

3.2. Influence of the contact patch eccentricity 𝒃𝟎/𝒂𝟎 

The findings presented in the previous section are obtained based on a constant ratio of the 

principal radii of the cylindrical contact bodies, with the corresponding contact patch 

eccentricity of 𝑏0/𝑎0 = 0.75. In this section, the ratio of the principal radii of cylindrical 

bodies is varied, with the resulting contact patch eccentricities of 𝑏0/𝑎0 =  0.20, 0.50, 0.75, 

and 1.00. The most critical combination of significant dimensions is examined, that is, a 

height of ℎ/2𝑏0 = 4.0 and a width of 𝑤/2𝑏0 = 1.1. The calculated contact patch sizes and 

maximum pressures are given in Table 2. The largest deviation is observed when the contact 

patch eccentricity 𝑏0/𝑎0 is 0.20, and the major semi-axes 𝑎/𝑎0 is in question. The difference 

is up to 9%. It consists of contributions from both the numerical discretization and the finite 

dimension effect. This finding suggests that the deviation of the half-space-based methods 

from the FE method is dependent on the contact geometry, i.e. the ratio of the principal 

radii of the contact bodies. However, the possible deviation is limited to 9% in all cases. 

Table 2. FE solutions for static normal contact for various contact patch eccentricities when 

the contact body geometry is cylindrical. 

Eccentricity 
of contact 

patch 

Dimensions of lower 
body 

Sizes of contact patch 
Maximum 

pressure 
Height Width 

Major 
semi-axis 

Minor 
semi-axis 

Area 

𝑏0/𝑎0 ℎ/2𝑏0 𝑤/2𝑏0 𝑎/𝑎0 𝑏/𝑏0 𝐴/𝐴0 𝑝𝑚𝑎𝑥/𝑝0 

0.20 4.0 1.1 1.090 0.940 1.034 0.980 

0.50 4.0 1.1 1.040 0.997 1.037 1.015 

0.75 4.0 1.1 1.001 0.995 0.996 1.040 

1.00 4.0 1.1 0.983 0.963 0.946 1.063 

3.3. Influence of the contact body shape 

Two cylindrical contact bodies with arbitrary principal radii were considered in the previous 

section. In this section, the investigation is extended to the contact between two non-

cylindrical bodies with arbitrary principal radii. The resulting contact patches carry varying 
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eccentricities of 𝑏0/𝑎0 =  0.20, 0.50, 0.75 and 1.00. The most critical combination of 

significant dimensions, i.e. a height ℎ/2𝑏0 = 4.0 and a width 𝑤/2𝑏0 = 1.1, is studied. 

The calculated contact patch sizes and maximum pressures are given in Table 3. 

Comparing Table 3 with Table 2, it is found that all corresponding results are very close to 

each other, although some slight differences exist. It is concluded that the deviation of the 

half-space-based methods from the FE method is no greater than 9% even when the contact 

bodies are not cylindrical. 

Table 3. FE solutions for various contact patch eccentricities when the contact geometry is 

arbitrary. 

Eccentricity 
of contact 

patch 

Dimensions of lower 
body 

Sizes of contact patch 
Maximum 

pressure 
Height Width 

Major 
semi-axis 

Minor 
semi-axis 

Area 

𝑏0/𝑎0 ℎ/2𝑏0 𝑤/2𝑏0 𝑎/𝑎0 𝑏/𝑏0 𝐴/𝐴0 𝑝𝑚𝑎𝑥/𝑝0 

0.20 4.0 1.1 1.090 0.907 1.000 0.980 

0.50 4.0 1.1 1.040 0.997 1.037 1.020 

0.75 4.0 1.1 1.009 1.014 1.024 1.023 

1.00 4.0 1.1 1.000 0.968 0.968 1.070 

4.  Discussions 

In this study, the contact patch sizes and the normal pressures predicted by the FE method 

are regarded as accurate and are used to assess the performance of half-space-based 

methods. However, the FE solutions may also carry some errors due to numerical 

discretization and therefore may deviate from reality. These numerical errors can either 

exaggerate or cancel out the differences between the half-space-based solutions and the FE 

solutions. It is important to keep this in mind when comparing the half-space-based methods 

with the FE method. 

An idealized contact problem involves contact bodies with infinite dimension. The contact 

stresses in the contact bodies form a certain distribution at and near the contact location but 

vanish at infinity. However, in reality, all contact bodies have finite dimensions; therefore, 

the contact stress distribution deviates from the idealized situation because of boundaries at 

finite distances. When these boundaries move toward the contact location, i.e. as the 

significant dimensions decrease, their influence on the stresses is increasing. In half-space-

based methods such as the Hertz theory and the Kalker's variational theory, the contact 

stresses are computed without taking into account the influences of these finite-distance 

boundaries. Therefore, their predictions may increasingly deviate from reality as the 

significant dimensions approaches the size of the contact patch. Despite this drawback, such 

methods have gained popularity for solving non-conforming contact problems with finite 

dimensions, as long as the significant dimensions of the contact bodies are at least 3x times 

larger than the characteristic size of the contact patch. This study indicates that this limit can 

be reduced to 1.1x times larger under the condition that a deviation of up to 9% introduced 

by the half-space assumption can be accepted (see Fig. 6). This conclusion is valid for most 

ratios of the relative principal radii of arbitrarily shaped contact bodies. 
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Fig. 6. Significant dimensions of the contact bodies and characteristic size of the contact 

patch (top view). 

The simulations presented in this study consider Hertzian non-conforming contacts between 

two arbitrary geometric bodies. The findings discussed above should also apply for the 

following types of contacts. 

1) In the numerical simulations, specific chosen values were assigned to the dimensions 

of the contact bodies, the load and the material properties. When those values are 

scaled, the findings should remain valid as long as the contact problems in question 

remain linear elastic in nature and the deformation is small. This self-similarity rule is 

explained in [21, 22]. 

2) Although the simulations presented in this study consider Hertzian contact, the 

findings should also apply to some non-Hertzian elastic contacts, excluding 

conforming contacts. A typical non-Hertzian contact is the two-point contact 

between a wheel and a rail at the rail crossing nose [23, 24], as shown in Fig. 7(a). 

This type of contact problems results in two contact patches. For stress calculations 

using half-space-based methods, this problem may be decomposed into two 

individual contact problems at each point, as illustrated in Fig. 7(b). The part of the 

contact body in the vicinity of each contact point is considered as a local contact 

body. If each individual contact is of the Hertzian type and the significant dimension 

of each local contact body in the vicinity of the resulting contact patch satisfies the 

1.1x condition, then the findings of this study can be extended to the original two-

point non-Hertzian contact. A more general type of non-Hertzian contact is a multi-

point contact such as that shown in Fig. 7(c). Provided that the 1.1x condition is 

satisfied for each individual contact problem, the decomposition technique can again 

be applied. Therefore the findings can be extended to a multi-point contact as well. 
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Fig. 7. Schematic diagrams of: (a) A wheel-rail contact at the rail crossing nose with two 

contact patches, a typical non-Hertzian contact problem; (b) Each contact patch satisfies the 

1.1x condition and thus the non-Hertzian problem of (a) may be decomposed into two 

Hertzian problems; (c) A general multi-point contact and the decomposition. 

3) Although this study was implemented using static normal contact examples, the 

findings can also be applied to the case of a steady state rolling contact without 

traction. This is because the normal solution for static contact problems is equivalent 

to that for a steady state pure rolling contact problem. This equivalence can be seen 

from the identical normal solutions obtained for these two types of contact problems 

using the Kalker's theory. In practice, lubrication is widely applied to rolling 

components, such as bearings, to reduce the traction transmitted at the contact 

interface. Therefore these findings are also valid for most lubricated rolling contact 

problems. However, for a case in which the traction is too high to be ignored, the 

applicability of half-space-based methods for obtaining the tangential solution 

requires further investigation. 

5.  Conclusions 

In this paper, the FE method is used to assess the applicability of half-space-based methods 

to normal contact problems. Different combinations of significant dimensions of the contact 

bodies in terms of height, width, and length are studied. Various contact patch eccentricities 

are considered. Both cylindrical and non-cylindrical contact geometries are examined. The 

scenarios considered effectively cover the entire range of interest from the nearly smallest 

possible significant dimension (1.1x the characteristic size of the contact patch) to infinite 
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dimension. Based on the observations from the numerical experiments and the analysis and 

the discussions, the following conclusions can be drawn. 

Half-space-based methods can deliver reasonable accurate solutions for most non-

conforming elastic contact problems, as long as the significant dimensions of the contact 

bodies are 1.1x larger than the characteristic size of the contact patch. The corresponding 

error is within 9%. 

This new finding broadens the applicability of half-space-based methods, and lends 

greater confidence to studies of contact problems in mechanical engineering where half-

space-based methods are applied. In engineering practice, this study can be a guide to assist 

engineers in choosing appropriate methods when solving contact problems. Should the 1.1x 

conditions be satisfied and an error tolerance of 9% be acceptable, the half-space-based 

methods are preferred, as they are relatively easier to apply and more computationally 

efficient. Otherwise, the FE method should be considered [24]. 
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