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ABSTRACT – During the COVID-19 pandemic peo-
ple living close to the airport got accustomed to less
flights, and therefore less noise disturbance. Now
the amount of traffic is increasing again and so is
the noise disturbance.
For this research specifically the optimizing task of
distributing of arriving aircraft over the IAF is ad-
dressed, as often the shortest transition routes from
an IAF towards the runway go over densely pop-
ulated areas, but flying via another IAF results in
longer flying times and thus more CO2 emissions. A
tool that is able to quantitatively make a trade-off
between noise and emission is required to provide a
basis for the distribution of aircraft over the IAF.
In this research the feasibility and effects of using an
expanded version of the aircraft landing problem to
create the IAF Selection Optimization tool is stud-
ied, including the effects of different settings for the
tool. As a case study Amsterdam Airport Schiphol is
used, as it is a busy airport that lies close (11km) to
the city center of Amsterdam.
In this paper first the methodology of the IAF Selec-
tion Optimization tool is explained, and afterwards
the working of the tool is discussed by running var-
ious scenarios for three different days from 2019 at
AAS.
For all scenarios an optimal and feasible solution
was found by the tool, based on the input variables
selected for each scenario. It could therefore be
concluded that the IAF Selection Optimization tool
provides a means to optimally distribute aircraft
based over the IAF based on a quantitative trade-off.
KEYWORDS: Initial Approach Fix (IAF), Mixed In-
teger Programming (MIP), Aircraft Landing Prob-
lem, Air Traffic Control (ATC), Amsterdam Airport
Schiphol (AAS), Noise, Emission.

1. Introduction
Over the years the amount of flights has increased
generally each year, as people got accustomed to the
benefits of flight. Along with the increase of the
amount of flight hours come the negative aspects of
flight, such as environmental impact and noise dis-
turbance. With the challenges of global warming the
environment is always a great factor in aviation, and
with the recent decrease in flights due to the COVID-
19 pandemic people got accustomed again to less
flights and less noise, which in turn increased the
discussions about noise disturbance around airports.

Especially now the amount of flights are already back
to pre-COVID numbers, or are quickly going there [1].

The issue addressed in this research is the balance be-
tween noise disturbance for residents surrounding a
busy airport and the emissions aircraft emit into the
air by flying a certain route. Special focus hereby is
on the transition routes aircraft travel from the Initial
Approach Fix towards the runway and the selection
of the IAF. Often the shortest routes from the IAF to
the runway cross heavily populated areas at a limited
altitude, thus inflicting a great deal of noise distur-
bance on them. Flying around these areas increases
flight time and thus has a greater impact on the envi-
ronment and operational cost of airlines.

Much research has been performed on the runway
allocation problem, but this has not been combined
with an IAF selection optimization. To address the
previous stated problems the IAF selection optimiza-
tion will aim to provide a tool that is able to optimize
between noise and emission based on their respec-
tive importance. Since the respective importance is
different for each of the stakeholders this will be an
input for the tool. This results in the following re-
search goal:
The goal of this study is to research the feasibility and
effectiveness of an IAF selection tool that is able to opti-
mally distribute aircraft over the IAF based on a quan-
titative trade-off between noise disturbance and CO2
emissions.

As case study Amsterdam Airport Schiphol has been
chosen since it is a one of the busiest airports in the
world in terms of total passengers (#12 in 2019) and
lies close to densely populated areas, being only 11
kilometers away from the city center of Amsterdam.

First the case study at AAS will be described, followed
by the methodology. The methodology consists of
two parts; the method selection, and the IAF selec-
tion tool supported by the the route optimization
tool. A block diagram of the tool can be found in
figure 1.1. Afterwards the results of this study are dis-
cussed, and finally the conclusion and recommenda-
tions are presented.
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4 1. Introduction

Figure 1.1: Block Diagram of IAF Selection tool

Case Study Amsterdam Airport Schiphol
Amsterdam Airport Schiphol (AAS) is the biggest air-
port of The Netherlands and the 3rd largest airport of
Europe in terms of passengers with 71.7 million pas-
sengers in 2019 [2]. AAS has 6 runways, of which 5 are
mainly used for commercial aviation and 1, the Oost-
baan, mainly for general aviation [3]. Since general
aviation is not handled in the same way as commer-
cial traffic, both the Oostbaan as well as general avi-
ation are not taken into account in this research. An
overview of the runways is seen in figure 1.2.

Figure 1.2: Runway layout Amsterdam Airport Schiphol [4].

For this research several proposed changes to the
Dutch airspace and its effect on AAS are taken into
account [5][6]. Currently AAS has 3 Initial Approach
Fixes, namely ARTIP in the North-East, RIVER in the
South-West, and SUGOL in the North-West of AAS. A
fourth IAF is considered in the South-East of AAS, and

therefore taken into account in this research.

To get to the IAF aircraft first need to enter the Dutch
airspace. This is done by flying over one of the Entry
Co-Ordination Points (Entry COP) and to follow one
of the Standard Terminal Arrival Routes (STAR) to the
IAF. Each IAF has a designated set of Entry COP from
which the IAF can be reached [7]. Since the fourth
IAF does not exist yet STARs for this IAF needed to be
estimated.

To get from the IAF towards the runway aircraft have
to fly a transition route. Currently all runways have
a transition route from (almost) all IAFs. With the
restructuring of the Dutch airspace it is planned to
make a strict East-West separation [6]. This would
mean that, with a runway configuration of 18C and
18R for landing, aircraft entering the Dutch airspace
from the East would always land on runway 18C and
aircraft entering from the West on runway 18R. The
reason this is done is to accommodate for so called
tubes, fixed routes that aircraft must fly in to go from
the IAF to the runway. The benefit of these tubes is
a lower workload for the Air Traffic Controller by lim-
iting the amount of routes and conflict areas, and a
higher airspace capacity. It also provides the possi-
bility to use curved approaches which could decrease
the noise disturbance around the airport, as it would
be better possible to fly around some densely pop-
ulated areas and thus replace the noise heavy areas
to lower populated areas. [5][6]. These new transi-
tion routes do not exist yet and therefore have to be
designed. These routes do not reflect the new future
transition routes, they are merely an assumption on
how they could be.

For landing at AAS certain runways are designated as
primary preferred runways. Routes to and from these
runways pass over less densely populated areas, and
thus less people are subjected to noise disturbance.
The preference order can be found in table 1.1, where
L1 and T1 represent the primary preferred runways
for landing and takeoff respectively, and L2 and T2
the secondary. Along with the East-West separation
this leads to the problem that potentially more traffic
needs to land at a secondary runway, which causes
more noise disturbance. With the new to be designed
airspace it is intended to always have two runways
open for landing as opposed to the current one or two
runways.

Three days have been selected that used the preferred
runway combinations for a full day in 2019 for the
case study. These will be investigated into more de-
tail to see the potential effects of these measures. The
selected days are 16 September (Busy day, 762 land-
ings), 26 October (Average day, 677 landings), and 21
March (Quiet day, 504 landings).
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Table 1.1: Runway preference order [5].

Preference Landing Take-off
L1 L2 T1 T2

1 06 36R 36L 36C
2 18R 18C 24 18L
3 06 36R 09 36L
4 27 18R 24 18L
5a 36R 36C 36L 36C
5b 18R 18C 18L 18C
6a 36R 36C 36L 09
6b 18R 18C 18L 24

Traffic distribution is also an important factor for an
airport, as aircraft have varying separation distance
to other aircraft, and each aircraft has its own perfor-
mance parameters which influence noise and emis-
sions as well. Therefore 5 aircraft are selected to
each represent one of the RECAT-EU Wake Turbu-
lence Categories [8] based on their occurrence at AAS.
In table 1.2 an overview of the selected aircraft can be
found. Note that category F is neglected as this is gen-
eral aviation, which is not taken into account.

Table 1.2: Distribution of arriving aircraft at Amsterdam Schiphol
Airport over RECAT-EU Categories in 2019.

RECAT-EU
Category

Amount Most common type

Cat A 808 Airbus A380-800 (100%)
Cat B 39500 Airbus A330-300 (18.8%)
Cat C 5564 Boeing B767-300 (73.3%)
Cat D 134530 Boeing B737-800 (41.4%)
Cat E 71674 Embraer EMB190 (51.9%)
Cat F/General
Aviation

10599 Not Used

Total 265351

More detailed information on AAS can be found in
appendix A.

Scenarios
Multiple scenarios are designed to be able to validate
the tool. These scenarios are based on the current
and future situation of the operations around AAS,
and will be run for each of the selected days from
2019.
These scenarios are built from three binary variables
that are based on the differences between the new
and old airspace:

E astW estSepar ati on
If true strict East-West separation is mandatory, no
aircraft is allowed to fly from a Western IAF towards
an Eastern runway and vice versa. If this variable is
false aircraft may arrive from any available IAF on
any available runway.

F i xedRunw ay
If this variable is true, then in this scenario all aircraft
must land on the runway they were assigned on the
day from 2019 that is being simulated. This is so that

it is possible to compare with current practice. If this
variable is false all aircraft have free choice of avail-
able runways.

I AF 4
If this variable is true, then the new 4th IAF is avail-
able for arriving aircraft. If it is false the 4th IAF is
not available, and thus only the three original IAF are
available.

From the variables four combinations are selected
as these represent the current and future practices
the current and future practice of handling arriving
aircraft at AAS best:

Old scenario
This scenario is based on the current practice at AAS,
with no 4th IAF, fixed runway selection as it was in
2019, and no East-West separation. It is used to
be able to compare the influences of the potential
changes to the Dutch airspace with the current prac-
tice.

Base scenario
This scenario is the same as the old scenario, except
that it does include the 4th IAF. This is so that the ef-
fect of the 4th IAF can be clearly seen, and the base
scenario is used as a baseline for the effect of the
other measures.

New and Separation scenario (NAS)
This scenario is meant to resemble the new airspace,
with East-West separation, the 4th IAF being avail-
able, and aircraft not being held to their originally
assigned runways.

New without Separation scenario (NWS)
Similar to the NAS scenario, but withour East-West
separation to see the effect of this measure.
An overview of the scenarios is given in table 1.3.

Table 1.3: Variable Settings for Each Scenario

Old Base NAS NWS
E astW estSepar ati on False False True False
F i xedRunw ay True True False False
I AF 4 False True True True

Also for each scenario separately, a different setting
of the tool for the importance of noise disturbance
compared to CO2 emissions is available to research
the effects of these settings. This is done by setting
the variables NOI SE and E M I SSION to a value be-
tween 0-100% respectively. Together these variables
must add up to 100%. The notation for a base sce-
nario with equal importance of noise and emissions
would therefore become B ASEE50%,N 50%.

RECAT-EU
In order to come up with a tool that is able to ap-
proach a proper representation of the true situa-



tion around Amsterdam Airport Schiphol the separa-
tion minima are a key factor to prevent aircraft be-
ing scheduled too close to each other. For this the
RECAT-EU separation criteria are used [9]. RECAT-
EU is a new categorisation of aircraft, with the aim to
increase runway capacity for arriving and departing
flights by redefining the wake turbulence categories
and their separation minima [9]. Using these minima
results in a minimum amount of separation time be-
tween aircraft. The calculation of the minimal sepa-
ration and more detailed information on RECAT-EU
can be found in appendix B.

2. Methodology
2.1. Method Selection
Three methods are considered to be used in creating
the IAF selection tool. A short description of each
method and the workings will be given, more de-
tailed information on each method can be found in
appendix F.

Genetic Algorithms
Genetic Algorithms are based on the theory of evolu-
tion and mimic the workings of natural selection. The
principle is that first a population is created by creat-
ing a set of possible solutions to the problem at hand.
Each member of the set exists out of randomly gen-
erated values (genes) for each decision value in the
tool, called the chromosome of that member. A score
is then assigned to each member of the population
based on its performance. In this case how well it dis-
tributes aircraft over the IAF at AAS. Based on these
scores a the best scoring members of the population
are selected to create the second generation of pop-
ulation. The selected members then procreate and
produce children which inherit part of their parents
genes to create a new population. It is also possible
that mutations occur in the genes of the children to
allow for new possible better solutions to the prob-
lem. This process is then repeated until the algorithm
converges to a solution.
The benefit of GA is that it is able to solve difficult
problems that other algorithms fail to solve. This
is because GA is able to simultaneously test many
points from all over the solution space and work with
many types of data [10]. This does however result in
the drawback that the tool is likely to settle for a local
optimum instead of the global optimum.

Reinforcement Learning Algorithms/Q Learning
The principle of a reinforcement algorithm is an al-
gorithm that tries to maximize its reward. The char-

acteristics of trial and error and delayed reward are
the most important distinguishing features of rein-
forcement learning [11]. The reinforcement algo-
rithm that was selected is the Q-learning algorithm.
The Q stands for Quality, which in this case repre-
sents the usefulness of a certain action in gaining fu-
ture reward [12]. In figure 2.1 the formula on which
Q-learning is based is given. Q represents the Q-table
or matrix with variables [state, action], depicted by st

and at respectively in the formula. The learning rate
is the rate at which the tool accepts new knowledge,
and the discount factor determines how important
possible future gains are for the algorithm. By con-
tinuously running the algorithm ultimately an opti-
mal path can be found.

Reinforcement learning is useful for systems that are
easy to judge, but hard to specify. This is because
no full mathematical model is needed, it just needs
the results of actions taken. The problem with this
is that it therefore needs a lot of data which must be
obtained in the learning phase [13]. Another prob-
lem is that during the learning phase, it is not al-
ways clear what connections the tool makes within
the data, which may lead the algorithm to do some-
thing it was not intended to do.

Mixed Integer Programming

Mixed Integer Programming is a mathematical tech-
nique where functions are minimized or maximized
when subjected to various constraints. Therefore a
full understanding of the problem and the influence
on the outcome of each variable is required. The
principle is to find an optimal feasible solution to a
set of equations of which some of the variables are
strictly integer or binary, while others can be any
real number. The equation the tool is trying to op-
timize is the objective function. By changing the
value of the decision variables using the branch and
bound technique a global optimum can be found that
also adheres to all the constraints, if a feasible solu-
tion is available. The branch and bound technique
works by first removing all the integrality restrictions
to find a solution to the problem, if this solution is
not optimal then one or multiple decision variables
are branched. Branching means creating two or more
new MIP problems which exclude the infeasible so-
lution, but do not exclude any other feasible solution
[14]. In other words, extra constraints are added to
limit the search area of certain variables. Continu-
ously doing so finally results in the optimal solution
to the problem.

Figure 2.1: Q-learning formula [15].
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Since a full mathematical model is required for this
algorithm a full understanding of the problem is re-
quired, which is not always possible. MIP does guar-
antee a global optimum solution to the problem if
one is available.

Method Choice
Each method was scored on their performance in the
categories data availability, accuracy of solution, exe-
cution speed, and feasibility of solution. An overview
of the scores can be seen in table 2.1.

Table 2.1: Score Overview of Selected Algorithms.

GA MIP RL
Data Availability + + --
Accuracy of Solution - + 0
Execution Speed + - 0
Feasibility of Solution + ++ +

Reinforcement learning was discarded as an option
since the data required is not available, or would take
a long time and a great investment to obtain. The re-
search was continued with both mixed integer pro-
gramming, and genetic algorithms. The IAF selec-
tion tool presented was implemented using both al-
gorithms. After implementation of the tool it was
found that MIP produced such considerable better
solutions, while not having a considerably higher ex-
ecution time compared to GA, that GA was discarded.
The GA algorithm was instead used to check solu-
tions found in the MIP implementation of the tool,
and to find mistakes in the tool itself. All results pre-
sented in this research are therefore from the MIP im-
plementation of the tool.

2.2. IAF Selection Tool
To optimize for IAF selection while taking into ac-
count the noise produced over populated areas and
the emissions as well as keeping an eye on delay, a
mathematical model is created. The mathematical
model used in this research is largely based upon the
method proposed by Pinol and Beasley [16], which
was in turn based on earlier research of Beasley
[17][18][19].

2.2.1. Model
In order to be able to properly define the mathemat-
ical model it is important to state the variables used
and what they entail. These variables can be consid-
ered the input of the model. They are set and are used
to define the constraints and objective function later
on. The input variables are as follows:

• P The amount of aircraft taken into account for
this optimization

• Q The amount of initial approach fixes avail-
able

• R The amount of runways available for landing

• Ei The earliest landing time for aircraft i , with
i ∈ {1 · · ·P }

• Ti The target landing time for aircraft i , with
i ∈ {1 · · ·P }

• Li The latest landing time for aircraft i , with
i ∈ {1 · · ·P }

• Si j The separation time required between air-
craft i and aircraft j where i lands before j on
the same runway, with (i , j ) ∈ {1 · · ·P }2, i ̸= j

• si j The separation time required between air-
craft i and aircraft j where i lands before j on a
different runway, with (i , j ) ∈ {1 · · ·P }2, i ̸= j

Using the notation provided above, separation vari-
ables Si j and si j are not specifically bound to one
aircraft type, but are aircraft dependent. This leaves
room to account for special flight characteristics that
would require a different separation time. It could for
instance be used to simulate a mayday call from an
aircraft resulting in a temporarily closed airspace for
other aircraft. In this model however, the separation
times are pre-processed using the RECAT-EU sepa-
ration criteria as explained in appendix B. Currently,
si j assumes a fixed separation between aircraft us-
ing different runways disregarding the runways. This
works fine for the use-case of Amsterdam Airport
Schiphol as a maximum of 2 runways for landings
is used simultaneously, but if an airport uses more
runways for landings simultaneously it can be that it
is preferred to change this variable to also be runway
dependent.

2.2.2. Decision Variables
The decision variables are the variables that are al-
lowed to take on different values within set bound-
aries in order to find the optimal solution. For this
model they are defined as follows:

zi r q =


1 if aircraft i lands on runway r via
IAF q, i ∈ {1 · · ·P },r ∈ {1 · · ·R}, q ∈ {1 · · ·Q}

0 otherwise


γi j =


1 if aircraft i and j lands land on the

same runway,(i , j ) ∈ {1 · · ·P }2, i ̸= j
0 otherwise


δi j =


1 if aircraft i lands before aircraft j ,

(i , j ) ∈ {1 · · ·P }2, i ̸= j
0 otherwise


xi ≥ 0

The scheduled landing time for aircraft i ,
i ∈ {1 · · ·P }

2.2.3. Constraints
In order to obtain viable results, constraints need to
be added to the model. These constraints prevent the
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algorithm of finding optimal solutions that would not
be possible in the application they are meant for.

Time window constraints
Each aircraft must land between its earliest and latest
possible landing times. To guarantee this, the follow-
ing constraint needs to be added:

Ei ≤ xi ≤ Li , ∀i ∈ {1 · · ·P } (2.1)

This approach is used for the genetic algorithm, a
more algorithmically convenient constraint is used
for the mixed integer linear programming model. An
extra decision variable yi is defined which will be the
proportion of the time window that has elapsed be-
fore aircraft i has landed. This is defined as follows:

0 ≤ yi ≤ 1, ∀i ∈ {1 · · ·P } (2.2)

xi = Ei + yi (Li −Ei ) (2.3)

Separation time constraints
To prevent aircraft from being scheduled too close to
each other and therefore possibly creating danger-
ous situations it is important that sufficient separa-
tion between aircraft is guaranteed. In order to know
which aircraft need to have sufficient separation be-
tween them it is important to know the order of the
aircraft coming to land. This can be done by a strict
first come first serve principle, however this usually
does not really provide an optimal solution. There-
fore the order is part of the optimization. To ensure
this order the following constraint is used:

δi j +δ j i = 1, ∀(i , j ) ∈ {1 · · ·P }2, i ̸= j (2.4)

If aircraft i lands on the same runway as aircraft j ,
aircraft j land on the same runway as aircraft i .

γi j = γ j i , ∀(i , j ) ∈ {1 · · ·P }2, i ̸= j (2.5)

Then the separation constraint must ensure that if
aircraft i lands before aircraft j on the same runway,
then aircraft j needs to land at least Si j time after air-
craft i . If they land on different runways the separa-
tion time needs to be at least si j . M is a large number
that is used to ensure the constraint is met if aircraft
j lands before aircraft i (δ j i = 1).

x j ≥ xi +Si jγi j + si j (1−γi j )−Mδ j i , (2.6)

∀(i , j ) ∈ {1 · · ·P }2, i ̸= j , M ≫ 0

Runway constraints
To ensure each aircraft is only assigned to one run-
way and IAF combination, the summation of all avail-
able combinations of IAF and runway is taken and set
equal to 1 per aircraft. This ensures that each aircraft

can only follow one transition route, resulting in the
following constraint:

Q∑
q=1

R∑
r=1

zi r q = 1, ∀i ∈ {1 · · ·P } (2.7)

If aircraft i and j land on the same runway, γi j = γ j i =
1, then the assigned transition route for both aircraft
must end at the same runway as well. Since there are
multiple transition routes between the various IAFs
and the selected runway the sum is taken over all the
IAFs available for the given runway. Similarly, if air-
craft i and j are not assigned to the same runway
transition routes to the different runways must be se-
lected. This is guaranteed by the following constraint:

γi j ≥
Q∑

q=1
zi r q +

Q∑
q=1

z j r q −1, (2.8)

∀(i , j ) ∈ {1 · · ·P }2, i < j ,r ∈ {1 · · ·R}

Here it can be seen that if γi j = 1, thus the aircraft

land at the same runway,
∑Q

q=1 zi r q and
∑Q

q=1 z j r q

must be equal to 1 as well. Guaranteeing that both
aircraft i and j got assigned a transition route be-
tween one of the available IAFs and selected runway
r . If they are assigned different runways, γi j = 0, then∑Q

q=1 zi r q and
∑Q

q=1 z j r q may not both be 1, but one of
them can be one, or they can both be 0, to guarantee
that the aircraft are assigned different runways.

Scenario specific constraints
For some scenarios not all runway and IAF combi-
nations are available for all aircraft. Therefore con-
ditional constraints that limit the availability of these
combinations must be put in place. All scenarios are
explained in appendix G.
The first limitation is the availability of the 4th IAF.
The 4th IAF is available in the Base, NAS, and NWS
scenarios, but not for the Old scenario. Therefore the
following constraint is put in place:

If I AF 4 = Tr ue : (2.9)

zi r q = 0, ∀i ∈ {1 · · ·P },r ∈ {1 · · ·R}, q = I AF 4

The second limitation is that for the Old and Base
scenario, all aircraft are forced to take the shortest
path available to them to the runway that was as-
signed to aircraft i on the original landing date. This
is to mimic the current practice of handling aircraft
around AAS. Given that for each aircraft i there is a
shortest route to the originally assigned runway m ∈
{1 · · ·R} via IAF n ∈ {1 · · ·Q}, this leads to the following
constraint:

If F i xedRunw ay = Tr ue : (2.10)

zi r q = 0, ∀i ∈ {1 · · ·P },r = m, q = n

Finally, for the NAS scenario there is the East-West
separation of transition routes, meaning no aircraft
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can approach from a Western IAF towards an East-
ern runway and vice-versa. Resulting in the following
constraints:

E astRunw ay = [36R,18C ,27] (2.11)

W estRunw ay = [06,18R,36C ]

E ast I AF = [ART I P, I AF 4]

W est I AF = [SUGOL,RIV ER]

If r ∈ E astRunw ay and q ∈W est I AF : (2.12)

zi r q = 0, ∀i ∈ {1 · · ·P }

If r ∈W estRunw ay and q ∈ E ast I AF : (2.13)

zi r q = 0, ∀i ∈ {1 · · ·P }

2.2.4. Objective
The objective function is split in three different parts:
The delay, CO2 emission, and noise.

Delay
For airliners it is important that aircraft land close to
their scheduled arrival time. This is to prevent pas-
sengers from missing connections, or the aircraft be-
ing delayed for the return flight. Therefore it is impor-
tant to try to minimise the delay as much as possible,
however arriving too early also means a higher cost
for standing at the gate and probably more emitted
CO2 since the aircraft had to fly faster than expected.
Thus it is preferred to land exactly at the target time
Ti , or if this is not possible as close to it as possible.
In order to be able to model this, 4 new variables are
defined:

• αi = max(0,Ti − xi ) The time that aircraft i
lands before target time Ti , i ∈ {1 · · ·P }

• βi = max(0, xi − Ti ) The time that aircraft i
lands after target time Ti , i ∈ {1 · · ·P }

• gi The penalty given for every time step aircraft
i lands early, i ∈ {1 · · ·P }

• hi The penalty given for every time step aircraft
i lands late, i ∈ {1 · · ·P }

Now it is possible to set the objective function for de-
lay as follows:

minimize
P∑

i=1
(αi gi +βi hi ) (2.14)

Additional constraints need to be introduced in order
to link αi and βi to decision variable xi :

xi = Ti −αi +βi , ∀i ∈ {1 · · ·P } (2.15)

0 ≤αi ≤ Ti −Ei , ∀i ∈ {1 · · ·P } (2.16)

αi ≥ Ti −xi , ∀i ∈ {1 · · ·P } (2.17)

0 ≤βi ≤ Li −Ti , ∀i ∈ {1 · · ·P } (2.18)

βi ≥ xi −Ti , ∀i ∈ {1 · · ·P } (2.19)

Emissions

Since the goal of this research is to try and make
a quantitative trade-off between CO2 emissions and
noise disturbance, it is clear that one of the key fac-
tors that must be minimized is emissions. As de-
scribed in appendix C, the calculation of fuel usage
is done according to equation (C.1). For each sec-
ond aircraft i arrives early, αi , the fuel used is cor-
rected for the fuel use for flying at maximum op-
erating speed M MO. Since only the total early ar-
rival time is known, it first must be calculated what
time the aircraft has to fly at M MO to achieve the
amount of seconds arriving earlier compared to fly-
ing on cruise speed Mcr ui se, as well as the time it
would have flown on Mcr ui se given the same dis-
tance, d . This is done in equation (2.21) to equa-
tion (2.24).

αi = TMcr ui sei −TM MOi (2.20)

d =VT AScr ui se−Mcr ui se ·TMcr ui sei (2.21)

=VT AScr ui se−M MO ·TM MOi

Combining these equations then gives,

VT AScr ui se−Mcr ui se

(
αi +TM MOi

)=VT AScr ui se−M MO ·TM MOi

(2.22)
Resulting in:

TM MOi =αi ·
VT AScr ui se−Mcr ui se

VT AScr ui se−M MO −VT AScr ui se−Mcr ui se
(2.23)

And similarly:

TMcr ui sei =αi ·
VT AScr ui se−M MO

VT AScr ui se−M MO −VT AScr ui se−Mcr ui se
(2.24)

First, it is then necessary to subtract the fuel that
would have been used if the aircraft would have flown
at Mcr ui se for TMcr ui sei amount of time. This is
done by multiplying with a fuel flow, which is as-
sumed to be constant and is based on WAPPRO AC H ,
VT AScr ui se−Mcr ui se , and the cruise altitude. Then the
fuel used for this section of flight at MMO needs
to be added. Similarly, this is done by multiplying
the time it took to fly this section by the fuel flow,
which is again assumed to be constant and is based
on WAPPRO AC H , VT AScr ui se−M MO , and the cruise alti-
tude. For aircraft arriving late an estimation is made
on the extra fuel used for every second of delay, βi .
A constant fuel flow is assumed, which is based on
WLOI T ER , VT AScr ui se−Mcr ui se , and the cruise altitude.
This is all performed in equation (2.25). All weight



10 2. Methodology

and fuel estimation calculations are performed in ap-
pendix C.

Fi = (2.25)

R∑
r=1

Q∑
q=1

(
FU EL APPRO AC Hi r q +

t∑
FU ELC RU I SEti r q

)
· zi r q

−TMcr ui sei ·ṁ f uelear l y,Mcr ui se

+TM MOi ·ṁ f uelear l y,M MO

+βi ·ṁ f uell ate
, ∀i ∈ {1 · · ·P }

The Emission objective1 is then given by equa-
tion (2.26).

minimize
P∑

i=1
Fi (2.26)

Noise
In appendix D it is discussed how the amount of noise
produced by a certain set of aircraft flying a certain
route is calculated. This results in a OB JLDE N for
each location on the grid. The goal is to minimise
the noise disturbance for residents in the neighbor-
hood of the airport. Therefore it should be prevented
that highly populated areas are also areas with a lot
of aircraft noise. If a large amount of noise would be
created over scarcely populated areas, fewer people
have hinder of it, thus this is more preferable than
a large amount of noise over densely populated ar-
eas. Of course, the goal remains to minimise the total
amount of people who are severely hindered by air-
craft noise. This results in equation (2.28), with X and
Y being the size of the grid and POP (x, y) the popu-
lation grid.

OB JLDE N =
F∑

i=1
10

SELi +wi
10 (2.27)

minimize
X∑

x=1

Y∑
y=1

OB JLDE N (x, y) ·POP (x, y) (2.28)

Full objective
Now that the various parts have been discussed they
can be added together to form the full objective func-
tion. To prevent certain elements of the objective
function dominating the outcome of the model they
can all be normalized. To be able to do so an extra
constant has been added before each part of the ob-
jective function. Furthermore a constant Ψ is intro-
duced to be able to vary the importance of the noise
and emission part of the objective. The full objective

function then becomes:

minimize: (2.29)

CDEL AY

P∑
i=1

(αi gi +βi hi )+CE M I SSION ·Ψ
P∑

i=1
Fi

+CNOI SE · (2−Ψ)
X∑

x=1

Y∑
y=1

OB JLDE N (x, y) ·POP (x, y)

where Ψ can take any number between and includ-
ing 0 and 2. (Ψ= [0,2])

For clarity Ψ has been replaced by E M I SSION and
NOI SE . These variables have values ranging be-
tween 0% and 100%, based on the value of Ψ. If
Ψ = 0, then the noise and emission part of the ob-
jective function exist for 0% of the emission objec-
tive, and therefore the variable E M I SSION = 0%.
Similarly this shows that the noise and emission
part of the objective function exists for 100% out
of the noise objective, and thus NOI SE would take
the value of 100%. If Ψ = 1, the noise and emis-
sion part of the objective function exists out of equal
parts for the noise and emission objectives, and thus
E M I SSION = NOI SE = 50%. The calculation for all
values forΨ can be found below.

E M I SSION = Ψ
2
·100% (2.30)

NOI SE = 2−Ψ
2

·100% (2.31)

2.3. Route Optimization
To be able to perform the weight and fuel calcula-
tions it is required to know the flown path of the air-
craft. The originally flown paths of the aircraft are
not known. Also an optimal route to all the available
IAFs is required to be able to optimally distribute air-
craft over the IAF. Therefore the flown routes have to
be approximated. This is done by creating a moving
front route optimization algorithm based on the re-
search of Girardet [21]. The exact working of the mov-
ing front algorithm is explained in appendix E.
The algorithm was set to only optimize the route
within the optimization area, since otherwise the
computational time would become too large. After
consideration with members from the industry a dis-
tance of 1000km from AAS is assumed to be the max-
imum distance the Dutch air traffic control has influ-
ence on the route and speed of the aircraft. The op-
timization area is therefore set to be a square around
AAS with a minimal distance of 1000km towards the
borders. Within the borders of the optimization area
Special Use Airspaces are defined, these SUA are pro-
hibited areas for commercial aircraft and thus the al-
gorithm takes this into account and let the aircraft fly

1In the IAF selection model the fuel use is directly used, to get to the CO2 emitted this value needs to be multiplied by 3.16 [20]. This has
no effect of the working or the outcome of the model.



around these areas. Outside the optimization area it
is assumed that aircraft fly the shortest path towards
AAS at a constant airspeed.

2.4. Verification & Validation
The verification and validation of the IAF Optimiza-
tion Model is found in appendix H. Only one discrep-
ancy was found during this process, where one of the
runs failed to produce a solution. It could be proven
that the overlapping previous and following runs pro-
duce a viable solution, and therefore the failed run
was not found to be an issue to the working of the full
model.

3. Results
The results of the performance of each of the scenar-
ios for the noise and emission objective cost can be
found in figure 3.1, figure 3.2, and figure 3.3 for each
of the selected days respectively. For these figures it is
important to note that a decrease in noise and emis-
sion results in a more favorable solution, as the aim
is to minimize both. The delay objective cost is not
shown in these figures as for none of the scenarios
this was found to be more than an average deviation
of 2 minutes per aircraft, which is the time window
currently used by AAS for arriving aircraft. There-
fore it is assumed that this does not have significant
influence on the selection of the scenarios. For the
objective function however the delay objective cost
remains important as it assures the tool tries to keep
aircraft at their originally assigned landing times. In
figure 3.1, figure 3.2, and figure 3.3 the red line in-
dicates the Pareto optimal front. The Pareto front
shows all Pareto optimal scenarios, this means that
for these scenarios it is not possible to select another
scenario which is better for all stakeholders [22]. The
effects of the various scenarios combined with the
prioritization between noise and emission on the so-
lutions produced by the tool are discussed in detail in
appendix G for the Pareto optimal scenarios as well
as the B ASEE50%,N 50% and OLDE50%,N 50% scenarios.
In appendix G.6.1 the Pareto optimal optimizations
for a busy day can be found, in appendix G.6.2 for an
average day, and in appendix G.6.3 for a quiet day. In
this section the general performance of the tool will
be discussed.

Scenario Objective Costs for a Busy Day
For the busy day in figure 3.1 it can be seen that the
base scenario scores better than the old scenario on
both the noise objective cost and the emission objec-
tive cost. The NAS scenarios also all perform better
than the old scenario on both emission and noise.
Compared to the base scenario all NAS scenarios still
perform better on the noise objective cost, but only
3 out of the 5 scenarios also perform better on the
emission objective cost. For the NWS scenarios only
the scenario fully optimized for the emission objec-
tive cost has a lower emission objective cost than the
base scenario, but at the cost of a slightly higher noise
objective cost. All other NWS scenarios have a con-
siderably lower noise objective cost compared to the
base scenario, but also all have a higher emission ob-
jective cost.

Scenario Objective Costs for an Average Day
For the average day in figure 3.2 it can be seen that the
base scenario performs better than the old scenario
on both the noise objective cost and the emission ob-
jective cost as well. Compared to both the base and
old scenario all NAS and NWS scenarios provide a sig-
nificant decrease in the noise objective cost, but only
the scenarios fully optimized for the emission objec-
tive cost also provides a decrease in emission objec-
tive cost for both the NAS and NWS scenarios.

Scenario Objective Costs for a Quiet Day
For the quiet day in figure 3.3 it can be seen that the
base and old scenario score almost identical, with the
base performing slightly better on both the noise, and
emission objective cost. All NAS scenarios provide a
solution with a lower emission objective cost com-
pared to the base and old scenario, but at the cost
of a much higher noise objective cost. For the NWS
scenarios it is seen that the scenario fully optimized
on the emission objective cost indeed has the best
score for the emission objective cost, but at the cost
of a much higher noise objective cost compared to
the base and old scenario. The other NWS scenarios
provide a significant decrease in noise objective cost
while being almost equal on the emission objective
cost compared to the base and old scenario.

In general it can be seen for all scenarios, that when
the importance of noise goes up, the noise objective
cost goes down. Similarly this also holds for the emis-
sion objective cost.

11
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Figure 3.1: Pareto Optimal Solutions for 16 September 2019.

Figure 3.2: Pareto Optimal Solutions for 26 October 2019.

Figure 3.3: Pareto Optimal Solutions for 21 March 2019.
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In the next section the effects of the various scenarios
on the busy day will be presented. The other scenar-
ios are discussed in appendix G.

3.1. Busy Day, 16 September 2019
Noise
From the Noise Objective costs as seen in figure 3.1 it
is very clear that when the Noise Objective becomes
more important the costs go down, which is exactly
as expected. However, when looking at figure 3.4 this
does not hold for the amount of people experiencing
a certain threshold value. This is because the Noise
Objective does not optimise for only these groups,
but for all people affected by noise emitted around
AAS. This could therefore mean that for the tool it is
more beneficial to reduce noise for a large group that
was already below the 48+dB(A) threshold at the cost
of slightly more people inside the 48+dB(A) threshold
area. One of the reasons for this is to prevent the tool
of allowing large amounts of people just below these
threshold values.
An example of what this looks like can be seen
in figure 3.5. Here the B ASEE50%,N 50% scenario
is shown with the scenario with the lowest noise
cost (NW SE0%,N 100%) and how they compare to the
B ASEE50%,N 50% scenario. From the noise contour it
can be seen that especially over higher populated ar-
eas NW SE0%,N 100% performs considerably better as
it aims to stay away from these areas, which are in-
dicated by the grey areas in the comparison figure.
All noise contours for each scenario can be found in
appendix I.1.

In general it can be stated that all scenarios perform
better than the OLDE50%,N 50% Scenario. The addition
of the 4th IAF alone can result in a decrease of 4.3%
point as seen when comparing the OLDE50%,N 50%

Scenario with the B ASEE50%,N 50% Scenario. This
does however comes at the cost of an increased
amount of people that experience the average thresh-
old levels of 48+dB(A) and 58+dB(A).
Combining the extra IAF with NAS (N ASE50%,N 50%,
N ASE75%,N 25%, N ASE100%,N 0%) has the potential to
further decrease the Noise Objective cost with 7.17%
point, while also decreasing the amount of people
experiencing the threshold levels compared to the
OLDE50%,N 50% scenario, especially in the 58+dB(A)
region.
Looking at the NWS scenarios it is seen that an
even bigger potential decrease can be achieved of

16.38% point when compared to the B ASEE50%,N 50%

scenario, while scoring even better in the 48+dB(A)
threshold area than the NAS scenarios. The 58+dB(A)
NWS scenarios perform approximately equal to the
NAS scenarios. An important note to make here is
that it is unlikely that the NWS scenarios are feasible
for a busy day as explained in appendix G.4.

Emissions and Flighttime
The Emission Objective costs can also be found in
figure 3.1. Similar to the Noise Objective the costs
go down when the objective becomes more impor-
tant. From the indexed values it shows that the total
difference in emitted CO2 differs from 0.53% point
(NW SE100%,N 0%) below the B ASEE50%,N 50% scenario
to 1.66% point above it, as can also be seen in fig-
ure 3.6. What also stands out from this graph is that
the flighttime follows almost the same trend as the
emissions, which of course is not very strange since
if an aircraft flies longer it also uses more fuel, and
thus emits more CO2 since the Emission Objective is
directly related to the fuel use of an aircraft.
The reason that the difference in Emission Objective
cost between the various scenarios is limited com-
pared to the Noise objective is that where the full
noise cost is calculated within the section between
the IAF and the Runway, the emitted CO2 is calcu-
lated for the whole flight, thus resulting in smaller
deviations in the final number. But since the total
amount of CO2 emitted during a day is a high num-
ber this still has a considerable impact as a 1% point
difference could mean an increase or decrease of the
CO2 emitted of approximately 255,000 kg on a busy
day.

In general it can be stated that adding the 4th IAF
results in a CO2 reduction of 0.49% point, as seen
by looking at the B ASEE50%,N 50% and OLDE50%,N 50%

scenario. When looking at the NAS scenarios it is
seen that all have a lower or comparable amount of
emissions compared to the B ASEE50%,N 50% scenario.
The NWS scenarios clearly show more variation,
with espacially NW SE0%,N 100%, NW SE25%,N 75%, and
NW SE50%,N 50% having a higher emission cost com-
pared to both the B ASEE50%,N 50% and OLDE50%,N 50%

scenarios. The reason for this is simple since with
adding more options comes the availability of choos-
ing less noise costly routes, but at the cost of a longer
flighttime and emission cost.
For the flighttime similar trends are found.
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Figure 3.4: Percentage Difference Amount of People Experiencing Average Noise Threshold Compared to B ASEE50%,N 50% Scenario on
a Busy Day (16 September 2019).

(a) LDE N Average for B ASEE50%,N 50%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
B ASEE50%,N 50%.

(c) LDE N Average for NW SE0%,N 100%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE0%,N 100%.

Figure 3.5: Example LDE N Noise Contours for a Busy Day, 16 September 2019.



Figure 3.6: Percentage Difference Total Flighttime and Emissions Compared to B ASEE50%,N 50% Scenario on a Busy Day (16 September
2019).

4. Discussion
The goal of this research can be split into two ques-
tions. The first question would be:
Is it feasible to create an IAF selection tool that opti-
mally distributes the aircraft over the IAFs based on a
quantitative trade-off between noise disturbance and
CO2 emissions?

The outcome of this research is an improved version
of the solution to the aircraft landing problem as pro-
posed by Pinol and Beasley [16]. Their method only
provided the basic concept to a solution of the air-
craft landing problem, such as guaranteed separation
and runway assignment. This research proves that
it is possible to expand this method by taking into
account the flight path the aircraft needs to take to
arrive at the most optimal runway, the IAF and transi-
tion routes, noise disturbance from these routes, the
emissions from aircraft flying these routes, all while
adhering to the minimal safety margins required.
It can thus be concluded that the Mixed Integer Pro-
gramming tool as proposed in section 2.2 is able to
provide this parameterized tool capable of optimally
distributing aircraft over the IAFs based on a quan-
titative trade-off between noise and CO2 emissions.
The tool however does prove to be close to its current
computational capabilities as small changes to the
original tool were required to be able to obtain fea-
sible and optimal results. The main example for this
being the reduction of the time of each increment
run, limiting the time an aircraft can deviate from it’s
originally assigned landing time to 15 minutes plus

or minus. This was found to be of no problem for
this research, but increased complexity and therefore
computational requirements could prove this to be-
come a problem. Future research should therefore
look to further optimize the running of the tool to
minimize the required computational power.

The second question can then be formulated as:
Is the IAF selection tool effective to reduce noise distur-
bance around airports while keeping the increase in
environmental impact at a minimum?

To answer this question it is important to know that
quite a broad array of assumptions had to be made,
which might influence the outcome of the tool and
therefore the findings of this research. One very big
factor in this is the unknown planned fixed transition
routes for AAS, and the effect of the planned so called
curved approaches [6]. This lead to the assumption
to keep as close as possible to the current approaches
for AAS, but since AAS currently does not use fixed
approaches this is still only an approximation of the
current practice. This also lead to the problem that
there is no data on fixed approaches as they are not
used, meaning the results from the Old scenario, as
proposed in appendix G to be as close to the current
practice, could in fact still be off by quite a margin.
Another big uncertainty is the location, and there-
fore the routes to and from, the 4th IAF. Currently its
final position is not fixed and thus for this research
an assumption for this needed to be made. Other re-
strictions of the tool that could possibly influence the
feasibility or the outcome of the tool are discussed in
section 4.1. In general it is assumed that this tool and
the findings thereof are close to what these would be

15
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if the changes in the Dutch airspace were in place for
the investigated days.

As seen in appendix G, for each of the days investi-
gated there the Base scenario always performs better
than the Old scenario, which is assumed to be close
to current practice, for the used objective functions
in the tool. This implies that adding the extra IAF
results in a better solution. What stands out is the
significant difference in delay objective cost for all
the scenarios, but since for all scenarios and days
this stays well below the current planning window
of 2 minutes this is not expected to be a significant
problem. Also, there is a large variation is the noise
objective cost as seen in figure 3.1, figure 3.3, and
figure 3.2. This implies that the various scenarios
presented provide large gains or losses compared
to the Base scenario depending on the scenario se-
lected. For the emission cost it stands out that the
differences are relatively small, but this is mainly be-
cause the whole flight is taken into account and only
a part of the flight path is altered to provide the vari-
ous options. For the NWS scenarios it is however not
known if they are feasible on every day, as they inflict
more workload on the ATC, and it is unlikely that they
are able to be implemented for the busy and average
days. This is because in this research the curved ap-
proach is not taken into account, nor the departing
traffic. It is expected that implementing the NWS
scenario with these would lead to too many conflict
areas. For the Quiet day however it is expected that
this should be possible as there is plenty of capacity
on the runways, as is illustrated by the very low cost
for delay. For this day it is also important that NWS is
available, otherwise it is expected that with the new
Dutch airspace the results will be worse compared to
the current practice. Further investigation is required
to when NWS would be viable and when NAS would
be the only option. Interesting would then also be
to see if it is possible to combine the two on a single
day, resulting in using NWS in quiet hours and NAS
during the busy hours of a day and if this would be
desirable for all stakeholders.
In general, it can be concluded that the tool is able
to provide a solution that reduces the noise distur-
bance around airports while keeping the environ-
mental impact at a minimum, since for all days there
is a scenario available that performs better than the
Base and Old scenario for both the noise and emis-
sion objective costs. If all stakeholders were to accept
a small increase in CO2 even larger gains in reducing
the noise objective cost can be achieved. However,
the final choice on which scenario would fit which
day the best is one that cannot be made solely on
these scores, as the decision of the valuation of either
the noise and emission objective cost is a political

one. They in no way compare to each other and thus
makes it impossible to make a decision based on
these numbers. These are merely to give an indica-
tion of the various options at hand, and to possibly
assist in making the final decisions.

4.1. Restrictions and Assumptions
IAF Capacity
For this research the capacity availability for each IAF
was not taken into account. The reason for this is
that capacity for IAFs is capped at a certain amount of
flights per IAF per hour, which is quite hard to quan-
tify for individual aircraft. Therefore it was assumed
that with at most 2 runways open for landing at any
time and 3 or 4 available IAFs this would not lead to
significant problems. On a rare occasion however not
taking into account the IAF capacity might render a
solution infeasible. It is assumed that this would be
able to be avoided by allowing one or more aircraft
to divert from the fixed transition route to fit in be-
tween the other aircraft, as it is known that for the ac-
tual landing on the runway the capacity constraint is
met.

Noise Disturbance from Delay
The noise disturbance around the airport is only
taken into account for aircraft flying the transition
route between the IAF and the runway. However,
since aircraft that are assigned a delay are assumed to
take this delay either by holding at the IAF or by given
a vector close to the IAF, this will have an impact on
the perceived noise and thus disturbance directly be-
low and around the IAF. It is not expected that this
difference is very large, but since it is not investigated
the exact difference is unknown.

Maximum 15 Minutes Diversion from Original
Landing Time
Due to limitations in the computational power avail-
able the tool is currently not able to allow for aircraft
landing more than 15 minutes early or late. This is no
problem for this research or tool since it works with
actual landing data on the investigated days, but if
the tool were to be used to assign aircraft to a time
slot for the future it is not possible for the tool to cope
with aircraft that have significant delay, or that arrive
much earlier than expected.

Departing Traffic
Departing traffic is not taken into account, thus pos-
sible found solutions might not be viable due to con-
flicting departures. This means that the current tool
is not accurate enough to fully state that the solution
presented would also be fully feasible. As stated be-
fore it is assumed that for the Busy and Average day
the NWS scenario would create too much workload



for ATC to be used in combination with departing air-
craft. This would need to be implemented into the
tool to see if this would actually be feasible.

Wind and Weather
It was found that including wind for the current tool
would require way too much computational power.
Therefore the decision was made that for this re-
search the wind and weather would not be included
in the tool. For future research this would be an im-
portant aspect of further research as it could signif-
icantly improve the the accuracy of aircraft arriving
times.

5. Conclusion
For years the market for commercial air travel was
only increasing, especially before the COVID-19
global pandemic. Even though the pandemic put a
temporarily halt to the growth of air traffic, the mar-
kets are growing back to their size before the pan-
demic quickly [1]. This brings back all the problems
of an increasingly more busy airport for its surround-
ings, especially now a lot of people experienced how
it would be if there was less traffic and therefore less
disturbance around the airport. This ignites the dis-
cussion between an airport that wants to expand and
the surrounding residents that do not want an in-
crease in noise. To accommodate both less noise
costly approach and departure routes are investi-
gated, but often these routes result in higher emis-
sions due to longer flighttimes. However with the
growing knowledge of the effect of CO2 emissions on
the Earth this is also not desirable.
The goal of this research is therefore stated as follows:
The goal of this study is to research the feasibility and
effectiveness of an IAF selection tool that is able to
optimally distribute aircraft over the IAF based on a
quantitative trade-off between noise disturbance and
CO2 emissions.

This research shows that it is feasible to create an
IAF selection tool by presenting a mathematical for-
mulation for the IAF selection tool. In combination
with a mixed integer programming algorithm this
research shows that the IAF selection tool is able to
optimally distribute aircraft over the IAF based on a
quantitative trade-off between noise disturbance and
CO2 emissions.
It is also proven that this approach is effective, as de-
pending on the selected scenario and day possible
noise reductions up to 24% compared to the current
practice are found, whereas for emissions reductions
up to 1% are found. Also solutions that show a sig-
nificant decrease in both noise and emissions were
found by the IAF selection tool, therefore proving
that using such a tool could provide benefits for all

stakeholders.

6. Recommendations
Implementation of Departing Aircraft
To see if the results of the tool are actually viable the
departing traffic must also be implemented. Until
then it is impossible to fully guarantee that the out-
come and findings of the tool are actually viable and
feasible for real world application. In future research
this must therefore be taken into account.

Decrease Computational Weight of Tool
As stated in section 4.1 the reason that aircraft are
currently only available to divert 15 minutes from
their originally assigned landing time is because the
tool is close to its current computational limits. Im-
plementing departing traffic will only increase the
computational weight of the tool, and therefore it
is very important that during future research extra
resources are spent to minimize the computational
weight of the tool to guarantee the tool keeps working
properly. If this is not possible or the achieved de-
crease is not enough other optimization algorithms
must be considered again.

Machine Learning Tool
At the beginning of this research the use of a machine
learning tool during this research was deemed infea-
sible due to the lack of data. With the tool presented
in this research it would become possible to create
the required data. This could then be used to base
a machine learning algorithm tool upon. The benefit
of this is that the machine learning tool is expected
to be much faster than the mixed integer program-
ming method as it does not have to calculate every
variable for each flight, but instead makes an estima-
tion based on historic data. This allows for quick re-
runs of the tool to allow for last minute changes to the
plan, therefore making the tool viable to be used as a
real time planning aid for ATC.

Effect Fixed Transition Routes
This research uses fixed transitional routes as they are
planned on being used for AAS in the future redesign
of the Dutch airspace. Currently however AAS does
not use fixed transition routes, and therefore it would
be interesting to investigate what the sole effect of
implementing these transition routes would be. It
is at least expected to increase noise disturbance for
people living under the fixed transition routes, as
they will have more aircraft flying directly above their
heads. However, if these routes are able to be lead
in such a way that they hardly fly over anyone, then
a large group of people will potentially benefit from
the decreased noise disturbance as fewer aircraft fly
close to their homes.
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Implementation of Noise Disturbance on Other
Factors, Such as Nature Preserves
Currently the tool only takes into account the noise
disturbance for people living in the surroundings of
AAS. There are however more areas that are vulnera-
ble to noise disturbance, such as nature preserves. In
future research limitation could be set on the amount
of noise a certain area is allowed to perceive on aver-
age during a day.

.
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A
Case Study Amsterdam Airport Schiphol

Amsterdam Airport Schiphol (AAS) is the biggest airport of The Netherlands and the 3rd largest airport of
Europe in terms of passengers with 71.7 million passengers in 2019 [2].

A.1. Airport Layout

AAS has 6 runways, of which 5 are mainly used for commercial aviation and 1, the Oostbaan, mainly for
general aviation [3]. In table A.1 an overview of all the runways is given.

Table A.1: Runways Amsterdam Airport Schiphol.

Name Runway direction/code Length Width Surface
Polderbaan 18R/36L 3,800 m 60 m Asphalt
Kaagbaan1 06/24 3,439 m 45 m Asphalt

Buitenveldertbaan1 09/27 3,453 m 45 m Asphalt
Aalsmeerbaan1 18L/36R 3,400 m 45 m Asphalt

Zwanenburgbaan 18C/36C 3,300 m 45 m Asphalt
Oostbaan1, 2 04/22 2,020 m 45 m Asphalt

1 Prohibited (landing and take-off) for aircraft with a MTOM exceeding 600,000 kg
2 Prohibited for ICAO/EASA code letter F aircraft

The reason that AAS has so many runways (and also with various headings) is twofold. For one, you need a
certain amount of capacity to process a certain amount of flights, but also due to the relatively strong winds
and the changing heading of these winds. Especially when compared to other airports with all parallel run-
ways like Atlanta Heartsfield Jackson it is clear from figure A.1 that AAS does not only have more variation in
wind heading, but that the winds are also much more powerful. The layout of the runways can be seen in
figure A.2.
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(a) Windrose Hartsfield–Jackson Atlanta International Airport.

(b) Windrose Amsterdam Airport Schiphol.

Figure A.1: Wind speed, direction and duration for Atlanta and Amsterdam [23].
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Figure A.2: Runway layout Amsterdam Airport Schiphol [4].

A.2. Initial Approach Fix
Currently AAS has 3 IAFs, namely RIVER above the harbor of Rotterdam, SUGOL out of the coast of IJmuiden
and ARTIP close to Lelystad, as can also be seen in figure A.3. For this research also a fourth IAF will be
considered as this new IAF will be added with the new layout of the Dutch airspace [5]. No information on
the exact location of this IAF is currently known, but looking at the layout of the other IAFs it is likely that it
will be placed somewhere above a low populated area in the province of Noord-Brabant. To be able to come
up with a viable solution to the problem the future location of this fourth IAF has been estimated for this
study. It is important to note that this is in no way based on official resolutions regarding the redesign of the
Dutch airspace. An overview of the current IAFs and their coordinates is given in table A.2. In the new to
be designed airspace it is likely that the position of the current IAFs will shift somewhat. Therefore and for
practical reasons, the assumption was made that the 4 IAFs would make a perfect rectangle. This results in
the used locations of the IAFs in this research as can be seen in table A.3

Table A.2: Current Initial Approach Fixes for Amsterdam Airport Schiphol.

IAF Coordinates Restrictions

RIVER 51.91278, 4.13250
FL070 - FL100
MAX 250KIAS

SUGOL 52.52556, 3.96722
FL070 - FL100
MAX 250KIAS

ARTIP 52.51121, 5.56908
FL070 - FL100
MAX 250KIAS

Table A.3: Assumed New Initial Approach Fixes for Amsterdam Airport Schiphol, Not Based on True Data.

IAF Coordinates Restrictions

RIVER 51.910, 3.970
FL100
MAX 250KIAS

SUGOL 52.520, 3.970
FL100
MAX 250KIAS

ARTIP 52.520, 5.570
FL100
MAX 250KIAS

IAF4 51.910, 5.570
FL100
MAX 250KIAS
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A.3. Standard Arrival Route

To get to the IAF aircraft first need to enter the Dutch airspace. This is done by flying over one of the Entry
Co-Ordination Points (Entry COP) and to follow one of the Standard Terminal Arrival Routes (STAR) to the IAF.
Each IAF has a designated set of Entry COP from which the IAF can be reached [7]. An Entry COP thus only
serves one IAF. Since the fourth IAF does not exist yet the position of the Entry COPs needed to be estimated.
An overview of the Entry COPs, the IAF they serve and their coordinates can be found in table A.4. For Entry
COP Eelde/EEL it is important to note that it is not on the border of the airspace and actually has multiple
ways from the border to get to EEL [7]. These are taken into account in the model. An overview of the current
EntryCOPs, STARs and IAFs can be seen in figure A.3. Note that STAR PESER is not in table A.4 as this STAR
would be in the way for the 4th IAF and already has an infrequent availability due to the presence of interfering
traffic from Eindhoven Airport.

Table A.4: Entry COP Coordinates for Amsterdam Airport Schiphol.

IAF Entry COP Coordinates IAF Entry COP Coordinates

RIVER
DENUT 51.23612, 3.65760

ARTIP
Eelde/EEL 53.12500, 6.58333

HELEN 51.23531, 3.86971 NORKU 52.21556, 6.97639
PUTTY 51.36585, 4.33761 Rekken/RKN 52.09413, 6.72328

SUGOL

LAMSO 52.73290, 2.99436

4th IAF

All aircraft crossing the Dutch
MOLIX 52.80000, 3.06867 border between 51.29688, 5.21331,
REDFA 51.84806, 1.93556 and 52.14626, 6.8789 are allowed
TOPPA 53.40250, 3.56139 to use IAF4.

A.4. Transition Routes

Currently all runways have a transition route from (almost) all IAFs. With the restructuring of the Dutch
airspace it is planned to make a strict East-West separation [6]. This would mean that, with a runway config-
uration of 18C and 18R for landing, aircraft entering the Dutch airspace from the East would always land on
runway 18C and aircraft entering from the West on runway 18R. The reason this is done is to accommodate
for so called tubes that aircraft must fly in to go from the IAF to the runway. The benefit of these tubes is a
lower workload for the Air Traffic Controller by limiting the amount of routes and conflict areas, and a higher
airspace capacity. It also provides the possibility to use curved approaches which could decrease the noise
disturbance around the airport, as it would be better possible to fly around some densely populated areas
[5][6]. These new transition routes do not exist yet and therefore have to be designed. These routes do not
reflect the new future transition routes, they are merely an assumption on how they could be.

Besides the curved approach, the Continuous Descent Approach will also be an important factor in the new
system [6]. CDA is already a common approach for AAS, as it has the benefit of aircraft flying at a higher
altitude for a longer time and then start a continuous near idle glide towards the runway. Compared to the
classic stepped approach this helps in reducing the noise disturbance as well as the aircraft not only fly higher
on average, but also with a lower thrust setting at lower altitudes, thus also reducing noise and emissions. A
clear visualization of this can be found in figure A.4.

For landing at Schiphol certain runways are designated as primary preferred runways. This is because they
have little population in their final approach path and therefore create less noise disturbance compared to
other runways. This preference for landing and take-off can be seen in table A.5, where L1 and T1 represent
the primary preferred runways for landing and takeoff respectively, and L2 and T2 the secondary. In table A.5
it can be seen that for preference 1, 2, 3, 5b, and 6b the Western runways 06 and 18R are the most preferred
runways. This results along with the strict East-West separation into the problem that all traffic coming from
the East needs to land at a secondary preferred runway, potentially resulting in more noise disturbance [6].
Similarly this holds for preference 4, 5a, and 6a where the preferred runway is in the East of the airport, and
with the East-West separation cannot be reached from a Western IAF.
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Figure A.3: Initial Approach Fixes and Standard Terminal Arrival Routes Amsterdam Schiphol Airport [24].
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Figure A.4: Comparison between Continuous Descent and Stepped Approach [25].

Table A.5: Runway preference order [5].

Preference Landing Take-off
L1 L2 T1 T2

1 06 36R 36L 36C
2 18R 18C 24 18L
3 06 36R 09 36L
4 27 18R 24 18L
5a 36R 36C 36L 36C
5b 18R 18C 18L 18C
6a 36R 36C 36L 09
6b 18R 18C 18L 24

A.5. Traffic
Traffic distribution is also an important factor for an airport as aircraft have a certain minimal separation
based on their weight classification. This also determines airport capacity, which will be discussed in greater
detail in appendix B. Larger aircraft also create more noise and therefore it could be beneficial to send those to
a primary preferred runway. For the year 2019 all landings are categorized in the RECAT-EU Wake Turbulence
Categories [8]. In table A.6 an overview of this distribution can be seen. Note that category F is neglected as
this is all general aviation and this is not handled in the same way as commercial traffic (separate runway)
at AAS. Also a most common type with a corresponding percentage of the share it has within it’s RECAT-EU
category is given as an indication of the type of aircraft within a category. As simplification the most common
type of a category will represent all aircraft within a category. In the model category A will not be considered
as in the entirety of 2019 only 0.3% of all flights were of this type.

Scenarios
For the model it is important to have representative data to validate the potential findings. Therefore three
different scenario files are selected. Because of the international pandemic caused by COVID-19 years 2020
and 2021 are not representative due to the drop in flights during these years [26]. Therefore the final year be-
fore the pandemic reached Europe 2019 was used to obtain scenarios for the model. The most busy, average,
and least busy day in case of aircraft landing movements are selected from days that solely used the preferred
runway combinations from table A.5. The most busy day in case of aircraft landings was found to be the 16th
of September with 762 movements, the average day was found to be the 26th of October with 677 movements
and the least busy day was found to be the 21st of March with 504 movements. The distribution per hour over
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Table A.6: Distribution of arriving aircraft at Amsterdam Schiphol Airport over RECAT-EU Categories in 2019.

RECAT-EU
Category

Amount Most common type

Cat A 808 (0.3%) Airbus A380-800 (100%)
Cat B 39500 (15.0%) Airbus A330-300 (18.8%)
Cat C 5564 (2.1%) Boeing B767-300 (73.3%)
Cat D 134530 (51.2%) Boeing B737-800 (41.4%)
Cat E 71674 (27.3%) Embraer EMB190 (51.9%)
Cat F/General
Aviation

10599 (4.0%)

Total 265351

the days can be found in table A.7, table A.8 and table A.9 respectively.
With the new to be designed airspace it is intended to always have two runways open for landing (table A.5),
as opposed to the current one or two runways. Based on the actual runway use of the 3 scenarios a runway
availability is made with the runway preferences taken into account. An overview of this can be found in
table A.10

Table A.7: Amount of aircraft arriving at Amsterdam Airport Schiphol per hour on 16 September 2019.

Time Arrivals Time Arrivals Time Arrivals Time Arrivals
00:00-01:00 1 06:00-07:00 67 12:00-13:00 36 18:00-19:00 40
01:00-02:00 0 07:00-08:00 42 13:00-14:00 64 19:00-20:00 31
02:00-03:00 4 08:00-09:00 34 14:00-15:00 27 20:00-21:00 24
03:00-04:00 11 09:00-10:00 53 15:00-16:00 30 21:00-22:00 17
04:00-05:00 12 10:00-11:00 33 16:00-17:00 43 22:00-23:00 11
05:00-06:00 52 11:00-12:00 54 17:00-18:00 69 23:00-00:00 7

Total amount of arriving aircraft on 16 September 2019 was 762 (Excl landings on 04-22)

Table A.8: Amount of aircraft arriving at Amsterdam Airport Schiphol per hour on 26 October 2019.

Time Arrivals Time Arrivals Time Arrivals Time Arrivals
00:00-01:00 1 06:00-07:00 65 12:00-13:00 31 18:00-19:00 27
01:00-02:00 0 07:00-08:00 41 13:00-14:00 57 19:00-20:00 16
02:00-03:00 3 08:00-09:00 36 14:00-15:00 20 20:00-21:00 22
03:00-04:00 9 09:00-10:00 54 15:00-16:00 22 21:00-22:00 3
04:00-05:00 15 10:00-11:00 35 16:00-17:00 33 22:00-23:00 17
05:00-06:00 44 11:00-12:00 53 17:00-18:00 62 23:00-00:00 11

Total amount of arriving aircraft on 26 October 2019 was 677 (Excl landings on 04-22)

Table A.9: Amount of aircraft arriving at Amsterdam Airport Schiphol per hour on 21 March 2019.

Time Arrivals Time Arrivals Time Arrivals Time Arrivals
00:00-01:00 2 06:00-07:00 31 12:00-13:00 28 18:00-19:00 34
01:00-02:00 0 07:00-08:00 34 13:00-14:00 22 19:00-20:00 28
02:00-03:00 1 08:00-09:00 29 14:00-15:00 32 20:00-21:00 19
03:00-04:00 6 09:00-10:00 34 15:00-16:00 30 21:00-22:00 21
04:00-05:00 10 10:00-11:00 33 16:00-17:00 21 22:00-23:00 10
05:00-06:00 20 11:00-12:00 33 17:00-18:00 21 23:00-00:00 5

Total amount of arriving aircraft on 21 March 2019 was 504 (Excl landings on 04-22)
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Table A.10: Overview of runway use for all 3 scenarios.

21 March 16 September 26 October
Time Runway Time Runway Time Runway
00:00-23:59 27 + 18R 00:00-05:00 06 + 36R 00:00-21:50 18R + 18C

05:00-11:50 36R + 36C 21:50-23:59 27 + 18R
11:50-20:20 06 + 36R
20:20-23:59 27 + 18R
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A.6. Performance Specifications Selected Aircraft
In this section the performance parameters for the aircraft selected in appendix A.5 are given.

Airbus A380-800 Airbus A330-300 Boeing 767-300 Boeing 737-800 Embrear E190
ICAO designation A388 A333 A763 B738 E190
RECAT-EU A B C D E
M MO [-] 0.89 0.86 0.86 0.82 0.82
Mcr ui se [-] 0.85 0.81 0.8 0.79 0.78
Cruise altitude [ft] 43100 41000 43100 41000 41000
VT AScr ui se−M MO [kts] 510 493 493 470 470
VT AScr ui se−Mcr ui se [kts] 488 465 459 453 447
VT ASappr oach [kts] 131 147 140 140 140

Weight
OEW [kg] 271000 118189 87135 41480 27900
MT OW [kg] 540000 217000 156489 78220 50460
M Z FW [kg] 356000 169000 126099 61680 50460
Design Fuel [kg] 216275 70786 44559 21540 13000
Design Payload [kg] 52725 28025 27795 15200 9560
Wno f uel [kg] 323725 146214 111930 56680 37460

Aerodynamics
Cd0cr ui se [-] 1.8130E-02 1.9805E-02 2.4934E-02 1 2.5452E-02 2.4800E-02
Cd2cr ui se [-] 4.3198E-02 3.1875E-02 3.9630E-02 1 3.5815E-02 4.2903E-02
Cd0appr oach

[-] 3.2800E-02 5.5500E-02 5.1890E-02 1 4.9200E-02 4.6748E-02 2

Cd2appr oach
[-] 5.2800E-02 3.2500E-02 4.0100E-02 1 4.2400E-02 4.8738E-02 3

S [m2] 845.00 361.60 283.35 124.65 92.53

Fuel
C f 1 5.4336E-01 6.1503E-01 6.3947E-01 1 7.0057E-01 6.8190E-01
C f 2 8.6622E+02 9.1903E+02 1.1403E+03 1 1.0681E+03 8.2377E+02
C f 3 6.4145E+01 2.1033E+01 1.5664E+01 1 1.4190E+01 1.1196E+01
C f 4 7.4435E+04 1.1223E+05 -3.328E+05 1 6.5932E+04 8.9804E+04
C fcr ui se 9.3051E-01 9.3655E-01 9.5439E+01 1 9.2958E-01 9.7996E-01

Noise
Idle Thrust [lb] 10915 4572 4200 649 1080
Noise Level Idle
Thrust at 1000ft [dB]

87.9 4 86.9 4 86.7 4 82.7 4 82.0 4

1Due to probable wrong coefficients, as explained in appendix C, coefficients of a similar aircraft are used; the Airbus A310
2No data for approach on E190, taken factor 1.885 times Cd0cr ui se

, based on other AC
3No data for approach on E190, taken factor 1.136 times Cd2cr ui se

, based on other AC
4Obtained by interpolating various thrust settings





B
RECAT-EU Separation

In order to come up with a model that is able to approach a proper representation of the true situation around
Amsterdam Airport Schiphol the separation minima are a key factor to prevent aircraft being scheduled too
close to each other. For this the RECAT-EU separation criteria are used [9].

B.1. How RECAT-EU works
RECAT-EU is a new categorisation of aircraft, with the aim to increase runway capacity for arriving and de-
parting flights by redefining the wake turbulence categories and their separation minima [9]. RECAT-EU is
based on the ICAO categories for separation which uses the Maximum Take Off Mass to classify aircraft in 3
categories: Light, Medium and Heavy (4 if the A380-800 is considered as separate category). The Light cate-
gory is designated for aircraft below 7 tons MTOM, Medium for all aircraft between 136 tons and 7 tons, and
the Heavy for aircraft over 136 tons. Since especially the Medium and Heavy classification have a large span
of MTOM lots of aircraft have to keep a higher separation than would strictly be required to be safe. A reclas-
sification thus can contribute to a higher runway capacity. Taking the example of a B767-300 with a trailing
A340-600, a separation of 4 nautical miles is required since they are both in the ICAO categorisation Heavy.
With the RECAT-EU approach this would be reduced to 2.5NM since the B767-300 is much smaller and lighter
than the A340-600, therefore making it safe to trail closer. RECAT-EU has 6 categories named A to F which are
not only based on the Maximum Take Off Weight, but also on the wingspan of an aircraft, as this for a great
deal also influences the wake vortex an aircraft creates. In figure B.1 the categorisation process for assigning
aircraft can be found.

B.2. RECAT-EU Separation Minima
With the new categories come new separation minima as discussed in the previous section. There are two
different ways to approach separation. One is Distance-Based Separation (DBS) and the other is Time-Based
Separation (TBS). For approaching aircraft TBS is based on DBS by calculating the minimal time aircraft
should be apart from each other based on the speed of the two aircraft and the minimal distance between
the two during landing. A trailing aircraft that is slower than the leading aircraft can thus leave the IAF on a
shorter distance than prescribed (still 1000ft vertically separated) since the leading aircraft will gain ground
and at touchdown the perfect separation is achieved. This way, a higher capacity can be reached than when
the minimal distance is already enforced when departing from the IAF. Similarly, a faster trailing aircraft must
leave more space when departing from the IAF to not come too close to the leading aircraft. The minimum
distance between approaching aircraft can be found in table B.1. The bracketed values indicate the minimum
radar separation as is applicable per current ICAO doc 4444 provisions [9]. In order to go from DBS to TBS
equation (B.1) can be used.

µ1 =
n + si j

V j
− n

Vi
(B.1)

Another important factor in separation for approaching aircraft is the runway occupancy time. The runway
occupancy time is dependent on several factors. Many of these have to do with aircraft characteristics, how-
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Figure B.1: Categorisation process and criteria for assigning an existing aircraft type into RECAT-EU scheme [9].

ever a correction for the human factor is also included [27]. The runway occupancy times for arriving aircraft
are given in table B.2.

µ2 = AROTi (B.2)

In order to find the minimum TBS between two aircraft landing on the same runway, the maximum of the
two separation times has to be taken.

Ti j = max(µ1,µ2) (B.3)

Besides needing a separation when aircraft land on the same runway, it can also be that a certain separation is
required between aircraft when they land on different runways. In the example of AAS, this is for instance the
case for parallel runway pairs 36R & 36C and 18R & 18C since they are too close to each other to guarantee the
required 3NM horizontal or 1000ft vertical separation within the terminal area airspace. Since a continuous
descent approach is assumed, it is not possible for these pairs of parallel runways to achieve 1000ft vertical
separation, meaning that 3NM horizontal separation needs to be achieved. The amount of time between the
leading and trailing aircraft on the different runways then becomes:

Ti jpar al l el =
3N M −Minimal Distance Between Approach Paths

mi n
(
Vi ,V j

) (B.4)

There are also intersecting runways at Amsterdam Airport Schiphol, such as 06 & 36R and 27 & 18R. To keep
sufficient time between aircraft using these runways it is important that the previous aircraft cleared the
runway before the next one can land on the other intersecting runway. However, it can be that the beginning
of the runway still lies closer than 3NM to the beginning of the other runway, thus this needs to be taken into
account as well. Resulting in the following calculation:

Ti ji nter sect = max

(
3N M −Minimal Distance Between Approach Paths

mi n
(
Vi ,V j

) , AROTi

)
(B.5)

Finally, there is one more case that needs to be considered. If runway usage would switch from 36R+36C
to 18R+18C then the Zwanenburgbaan (36C/18C) would be used from two sides in a small amount of time.
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Thus, it is important to guarantee enough separation should this scenario occur. This separation is based
on the minimal requirements an aircraft needs to perform a go-around while another aircraft is approaching
head-on. Equation (B.6) gives the equation for this case. Where MV A is the Minimum Vectoring Altitude,
which is the minimum height aircraft need to have to clear nearby obstacles, ROD being the Rate of Descent,
and c the communication buffer. For AAS the MV A is set to 1700ft in CTR1 [28], the ROD is assumed to be
740 ft/min and the communication buffer 20 seconds [27].

Ti jopposi te =
MV A

ROD
+ c (B.6)

Only the separation between two arriving aircraft is considered in this section, since AAS in general does not
use mixed runway operations (arrival following departure, and departure following arrival) it is not taken
into account in this research, and since departing traffic is not considered neither is the separation between
departure following departure.

Table B.1: RECAT-EU WT distance-based separation minima on approach and departure [9].

RECAT-EU scheme
Leading \ Trailing

Super
Heavy

Upper
Heavy

Lower
Heavy

Upper
Medium

Lower
Medium

A B C D E
Super
Heavy

A 3 NM 4NM 5 NM 5 NM 6 NM

Upper
Heavy

B (2.5NM) 3 NM 4 NM 4 NM 5 NM

Lower
Heavy

C (2.5NM) (2.5NM) 3 NM 3 NM 4 NM

Upper
Medium

D (2.5NM) (2.5NM) (2.5NM) (2.5NM) (2.5NM)

Lower
Medium

E (2.5NM) (2.5NM) (2.5NM) (2.5NM) (2.5NM)

Table B.2: Arrival Runway Occupancy Time (AROT) for RECAT-EU categories [29].

RECAT-EU Category AROT (s)
Cat A / Super Heavy 47
Cat B / Upper Heavy 47
Cat C / Lower Heavy 45
Cat D / Upper Medium 45
Cat E / Lower Medium 45





C
Emission

To be able to estimate the amount of emissions emitted by an aircraft during a leg of flight it is necessary
to create a reasonably accurate model. It was decided to do so based on the total amount of fuel used, this
is because most emissions are proportional to the amount of fuel used. A kilogram of Jet A1 fuel produces
approximately 3.16kg of CO2 [20]. In this chapter, the workings of the CO2 emission approximation model
will be discussed in more detail.

C.1. Fuel Usage
In order to be able to model the emitted CO2 of an aircraft it is necessary to model its fuel use. The total
amount of fuel use is defined by equation (C.1).

F =
∫ t

0
ṁ f uelt d t (C.1)

During different phases of the flight different fuel flows are needed to get the right performance of an aircraft.
Also due to changes in weight due to fuel usage, the fuel flow required changes continuously. During take-off
a lot of power is needed to get to cruise level, during cruise an ideal engine setting can be used at which the
engines operate optimally, and during landing the engine setting can for large parts be idle resulting in a low
fuel flow.
Thus, to create a very accurate approach of the total amount of fuel used, one must calculate the fuel flow for
every moment in time during the flight. Since this would take a large amount of time, some approximations
are made.
The take-off phase is largely dependent on the airport the aircraft departs from and since this research does
not focus on this phase it is therefore neglected. Aircraft are therefore assumed to depart at cruise altitude
and speed from a location directly above the airport they departed from. For the cruise part of the flight
increments of 30 minutes are used for which a constant fuel flow is assumed. This fuel flow is then calculated
for the weight of the aircraft at the end that increment, and adjusted to closely represent the true fuel used.
For the final phase of flight, the approach, a constant altitude, speed and weight is assumed to calculate the
fuel flow.

C.1.1. Fuel Flow Calculation
The fuel flow for the various configurations and weights for the aircraft types selected in table A.6 is calculated
using Base of Aircraft Data (BADA) from Eurocontrol [30]. All values for the coefficients used can be found in
appendix A.6.
The fuel flow is then calculated as follows for cruise:

ṁ f uelt = fcr = η ·THR ·C f cr ui se (C.2)

And for approach the fuel flow is equal to:

ṁ f uelt = fap = max( fnom , fmi n) (C.3)
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With the thrust specific fuel consumption η:

η=C f 1 ·
(
1+ VT ASkt s

C f 2

)
(C.4)

VT ASkt s =
VT AS

0.51444444
(C.5)

The minimum fuel flow fmi n corresponding to idle thrust descent conditions, which is dependent on the
geopotential pressure altitude Hp :

fmi n =C f 3 ·
(
1− Hp

C f 4

)
(C.6)

And the nominal fuel flow fnom :

fnom = η ·THR (C.7)

For both it is assumed that the thrust required equals the amount of drag the aircraft experiences.

THR = D (C.8)

D =Cd · 1

2
·ρ ·V 2

T AS ·S (C.9)

Cd then follows from the drag polar for the appropriate configuration of the aircraft.

Cd =Cd0 +Cd2 ·C 2
l (C.10)

Cl =
2 ·m · g0

ρ ·V 2
T AS ·S

(C.11)

C.1.2. Assumptions per Flight Segment
An important factor in the fuel use calculation is the mass of the aircraft. If the mass decreases, so does the
required fuel flow to the engines to keep a constant speed. For each aircraft type a fixed no fuel weight is
defined and can be found in appendix A.6. This is the starting point from the calculation, in other words, the
calculation is made backwards to calculate the amount of fuel the aircraft would have left, and the fuel it used
along the way. All these assumptions are made to prevent needing to calculate the fuel flow for every time
step of each flight, as this would take too long to compute for the intended use of the model.

Loiter
To be able to divert to another airport or loiter around the airport in case of unforeseen circumstances, aircraft
take on extra fuel. The total amount of fuel required for such a loiter procedure is assumed to be equal to the
amount of fuel required to fly for 1 hour on the no fuel weight. This amount is then increased by 5% since this
was found to be the margin of error by not calculating the fuel flow for every second, but assuming a constant
fuel flow for the entire hour. This then results in a loiter mass for each aircraft type as seen in equation (C.12)

WLOI T ER =Wno f uel +FU ELLOI T ER (C.12)

Approach
For approach it is assumed that aircraft fly at a constant speed that is equal to the average of the speed they are
supposed to arrive with at the IAF of 250kts and the approach speed for each aircraft type. Also, it is assumed
that aircraft fly at a constant altitude of 7000ft, which was found to be the approximate average of all the
transitional routes. The average weight is assumed to be equal to WLOI T ER since the total time spent during
approach is limited. Along with the time each aircraft type is estimated to take for each transition route, this
then results in the amount of fuel used during the approach phase and the weight before this phase.

WAPPRO AC H =WLOI T ER +FU EL APPRO AC H (C.13)
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Cruise
The calculation of the fuel used during the cruise phase of the flight is cut into increments of each 30 min-
utes of flight. For each increment a fixed speed and altitude are used. This is done to significantly reduce
the required computational time. For the first increment the WAPPRO AC H is used as weight, for the second
increment the weight found in the first increment etc. Until the total flight time is covered. The weight at the
beginning of the cruise phase then becomes:

WC RU I SE =WAPPRO AC H +
t∑

FU ELC RU I SEt (C.14)

Departure
The departure phase is not taken into account for any flight. This is because each airport has it’s own pro-
cedures and it is infeasible to create an assumption for each airport. Therefore aircraft are assumed to start
their flight at cruise height and speed directly above their origination airport.

C.2. CO2 Emission
Following from the Fuel usage the total amount of CO2 emitted can be calculated. As stated before each
kilogram of Jet A1 fuel produces approximately 3.16kg of CO2 [20]. This results in the following formula for
CO2 emission.

CO2 =
(
m f uel (t1)−m f uel (t0)

) ·3.16 (C.15)





D
Noise

Amsterdam Airport Schiphol lies close to very densely populated areas, with the city center of Amsterdam
only 11 kilometers away from the airport. Transportation wise this is very convenient due to the fast and many
connections this location provides, but in terms of noise disturbance, the high amount of people nearby is
not ideal. Therefore it is important to try and minimise the noise disturbance for the surrounding areas. To
be able to do so a noise model needs to be created, which aims to capture the locations where the noise dis-
turbance is the highest and whether there are ways to avoid highly populated areas. The noise model used
in this research includes all arriving traffic for AAS below a level of 10,000ft. The model only takes popula-
tion density into account, other factors such as nature preserves are currently not considered, but could be
implemented in the future.

D.1. Population model
In order to know where the high density population areas are with respect to AAS and it’s transition routes
a population model must be used which clearly shows where these areas are. This is done according to the
method proposed by [27], which results in a population density grid map with a grid size of 1x1km. The map
encloses the area between the various IAFs of AAS and a section North of it, as some of the transition routes
are further North than the IAFs are. This then includes the full area where aircraft approaching AAS fly below
10,000ft to be able to fully map the noise levels from transition routes. A visual representation of this is given
in figure D.1, where AAS is shown in black and the population density is put on a three color green-yellow-red
scale going from little to no residents (green) to highly populated areas (red). The contour of The Netherlands
is clearly visible, as well as Dutch cities like Amsterdam, Haarlem and The Hague.

The data used to create this map is obtained from CIESIN’s High Resolution Settlement Layer (HRSL) [31].
The HRSL uses machine learning techniques to identify buildings from satellite images and combine this
with general population estimates based on pubicly available census data.

D.2. Aircraft sound emission data
To be able to create a model that is an accurate representation of true events, the aircraft selected to represent
their categories as seen in appendix A.5 each need to have their own noise profile. This profile is based on
the transition route and data of the Aircraft Noise Model from Eurocontrol Experimental Centre [32]. In this
database a large collection of information about aircraft performance can be found, as well as a detailed
description on standard approach procedures for a certain aircraft type and sound emissions at a certain
thrust setting and altitude. This leads to a reasonable approximation of the actual noise profile for that type
of aircraft. Since one aircraft represents an entire category of aircraft and the effects of wind and banking on
noise emissions are not taken into account, it is clear that a perfect representation will not be achieved, but
it is assumed that this method will result in a close representation of the real world events. Validating the
model against the original current approach procedure of Amsterdam Airport Schiphol will also result in a
good comparison for the findings in the outcome of the model.
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Figure D.1: Generated population grid around AAS.
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Table D.1: Day, Evening and Night penalties for Day-Evening-Night Average Level [33].

Day Evening Night
Time Period 07:00 - 19:00 19:00 - 22:00 22:00 - 07:00
Penalty (dB) 0

p
10 10

D.3. Noise Calculation
The human perception of sound is defined by the Sound Pressure Level (SPL). The SPL gives a relation be-
tween the pressure of a certain sound wave in comparison to a reference sound pressure pe0 . This reference
sound pressure in air is defined as 2 ·10−5Pa, also referred to as the threshold of hearing. In comparison a jet
engine at 50m distance may produce 200Pa of pressure, equivalent to a SPL of 140 dB. The logarithmic rela-
tion between two sound pressures is given in equation (D.1). The SPL is given in dB , which is a logarithmic
scale.

SPL = 10log

(
p2

e

p2
e0

)
(D.1)

Besides pressure there are also other factors that influence the perception of noise. These factors include
duration, frequency, regularity and time of day [33]. To account for frequency the frequency weighting filters
are used. The most common used filter is the A-weighted filter, which was found to be a good approximation
of perception for all sound levels [33]. To achieve this, a correction ∆L A is applied to the SPL, resulting in the
A-weighting corrected band level L A . This is negative for frequencies that are perceived as less annoying and
positive for frequencies that are perceived annoying.

L A(i ) = SPL(i )+∆L A(i ) (D.2)

The A-weighting sound level can than be found by adding the L A(i ) for all frequencies with respect to the
logarithmic scale as seen in equation (D.3). Here (i) represents the various frequencies.

L A = 10l og
∑

i
10

L A (i )
10 (D.3)

To account for the effect of duration of a certain noise event, equation (D.4) can be used to calculate the Sound
Exposure Level. The SEL integrates the sound level of an event over the time it occurred. This way it is also
possible to calculate the effect of multiple sound levels for certain periods of time. It is thus an indication of
the total amount of sound someone is exposed to within a certain time frame, with T0 defining the time step
size, which is usually set to 1 second. The SEL for a certain type of aircraft at a set height and configuration
can be obtained from the Aircraft Noise Model [32].

SEL = 10log

[
1

T0

∫ T

0
10

L A (t )
10 d t

]
(D.4)

Finally to adjust for the perception of sound during different parts of the day the Day-Evening-Night Aver-
age Level LDE N is used. The model allows for penalties for events that occur at different times during the
day. During the night sound is usually experienced as more annoying and therefore has the highest penalty,
whereas during the day sound is usually perceived less annoying and thus no extra penalty will be applied.
The penalties wi for each part of the day can be found in table D.1. In comparison an addition of 3 dB rep-
resents approximately a doubling in observed noise. The time span that is evaluated is given by Tr e f , usually
set to 1 day (24 ·3600s). The formula for LDE N , which is used to calculate the noise contours in appendix I,
can be found in equation (D.5).
For the IAF selection model used in this research, as described in section 2.2, equation (D.5) is changed
slightly since the effect of noise on the objective function was too marginal when using a logarithmic scale.
Therefore this was changed to equation (D.6).

LDE N = 10log

[
1

Tr e f

F∑
i=1

10
SELi +wi

10

]
(D.5)

OB JLDE N =
F∑

i=1
10

SELi +wi
10 (D.6)





E
Route optimization

Route optimization is a key factor for airlines. The shorter the to be flown routes, the shorter the flight-
time. Shorter flight-times decrease costs for airlines since more flights can be made with a smaller amount
of aircraft, but more important for this research, the shorter the to be flown route is, the less fuel needs to be
consumed by the aircraft to get to its destination. This results in lower CO2 emissions per flight.

In order to be able to make a quantitative trade-off between noise and CO2 emissions, and make decisions
to assign which aircraft to which IAF, it is important to know the most optimal route from the origin of the
aircraft to each of the IAFs. This is not just equal to the shortest route from origin to destination as Special
Use Airspace (SUA) and weather scenarios may alter the most optimal route from the origin to the various
IAFs.

In appendix E.1 the optimization area will be discussed and how aircraft are handled if they originate from
outside this area. Appendix E.2 discusses the way weather scenarios are incorporated into the model to
achieve a realistic model. In appendix E.3 the special use airspace are covered. Finally, the route optimization
algorithm used is discussed in appendix E.4.

E.1. Optimization Area

A specific area in which the route will be optimized is defined to limit the run time of each optimization and
to limit the required data. After consulting members from the industry, the minimum range that needs to be
taken into account was set to be 1000 kilometer around Amsterdam Schiphol Airport. The reason for this is
that it is then possible to divert aircraft to other routes that better fit the approach of one of the IAFs. Making
the area smaller would result in either infeasible solutions, or long detours, as first the standard route would
be followed. For convenience, the area was chosen to be a rectangular box with distances to the borders of
at least 1000km. This resulted in an area that runs from latitudes 43.3°North to 61.3°North and longitudes
10°West till 19.6°East.

A substantial number of aircraft come to Amsterdam Airport Schiphol from airports that are not within the
optimization area. To accommodate for these flights it is assumed that these flights directly fly the short-
est route from their origin to AAS up to the point where they enter the optimization area. From the point
they enter the optimization area, the aircraft are treated the same to aircraft that originated from within the
optimization area. From the edge of the optimization area weather, restricted area’s etc. are also taken into
account. An example of this for a route between New York and Amsterdam is given in figure E.1.
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Figure E.1: Example of route from New York to Amsterdam Schiphol Airport.

E.2. Weather Data
Outside of the optimization area, no weather data is taken into account. This is because it would slow the
model down too much and it would require too many data points. Within the optimization area the possi-
bility to generate a wind field to create more accurate and feasible solutions to the optimization problem is
provided.
Ultimately it was decided not to use this since including wind fields outside of the optimization area resulted
in a too high computational time, as this would result in aircraft being influenced by wind only a part of the
flight. It was assumed that it would be better to not use the wind data then have it partly, as both are close
to the truth, but not close enough to be a true approximation and incorporating the wind takes up a lot of
computational power and therefore time.
However, since the option is built into the model, this section describes the data and where it originated
from. The wind data is obtained from Copernicus1. ERA5 data in a netCDF format is used for the specific
cruise height, date and hour the aircraft was estimated to land on Amsterdam Airport Schiphol. The wind
field remains constant over the duration of the optimization since the data is only available on an hourly ba-
sis and the execution speed of the model would become too low if an active wind field would be used. Due
to similar reasons of execution speed it was also decided that each of the data points for which the u and v
component of wind are available would only be used on whole coordinate degrees, while the data is available
for a quarter of a degree. Between data points interpolation is used to create a full wind field for every position
of the aircraft inside the optimisation area.

No other types of weather are considered in the standard model. However, it is possible to simulate the
closure of a certain part of airspace due to, for instance a severe snowstorm, by creating a restricted airspace.
This would mean aircraft are not allowed to enter that section of airspace and the model will then find a route
around it. The working of this is explained in the next section.

E.3. Special Use Airspace/Restricted Airspace
Certain parts of airspace are not available for civil aviation. These Special Use Airspace (SUA) are areas des-
ignated for operations of such nature that they limit the availability of free routing for civil aviation. It can be
that only designated corridors can be used in these areas or that the airspace is completely closed for all civil
aviation. Often these areas are military airspace where air forces can train or execute missile launches, ren-
dering the area unsafe for regular traffic. Areas that prohibit civil aviation are added in the model to prevent
aircraft flying over them and keep a feasible solution. In a similar way, corridors can be made through which
aircraft have to fly if they want to cross a certain area. The model obtains these areas from a .txt file where the
SUA are given as polygons based on coordinates.

1https://cds.climate.copernicus.eu/cdsapp#!/home
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E.4. Route Optimization Algorithm
The route optimization algorithm used in this research is based upon the research done by Girardet on "Gen-
erating Aircraft Trajectories with respect to Weather Conditions" [21]. This research is based on the Free-
Flight concept as introduced by SESAR in Europe and NextGen in the United States. The Free-Flight concept
is based on the idea that aircraft may fly whenever and wherever they want to accommodate for direct rout-
ing, optimal altitudes, favourable winds, and avoiding hazards. This results in shorter flight times and less
environmental impact due to the ideal flight conditions [21]. In contrary of Girardet [21] other aircraft are not
taken into account in the route optimization. As the research focuses on the arrivals of Amsterdam Airport
Schiphol, the aircraft landing there are the only ones taken into account. To include collision avoidance in
the optimization would require information of the whereabouts of all aircraft within the European airspace
at that specific point in time, which is not within the scope of this research.
Since this model only optimizes the en-route part of the trajectory of the aircraft, the target of this algorithm
is to minimise the time it takes from a certain airport on an optimal cruise speed and height to all of the IAFs
of Amsterdam Airport Schiphol. This thus results in four different routes per aircraft, which can then be used
in the next part of the optimization as described in section 2.2. This way it is possible to decide which IAF
would be the most optimal to fly to for this specific aircraft. For the most part of the journey of the aircraft
it will be at a constant True Air Speed Vcr ui se and altitude, but for the final part towards the IAF the aircraft
descends to FL100 or 10.000ft and slows down to 250 kts TAS. This is taken into account by reducing the TAS
linearly from 120 NM before the IAF and by adjusting the fuel flow for this section of the flight. This results in
the equations of motion as seen in equation (E.1). Where θ is the heading angle, Wx (x, y) the East component
of the wind, and Wy (x, y) the North component of the wind.

ẋ(t ) =VT AS cos(θ(t ))+Wx (x, y)

ẏ(t ) =VT AS si n(θ(t ))+Wy (x, y)
(E.1)

The goal is to generate a trajectory by optimizing the heading such that a trajectory with the minimal travel
time between origin and destination is found. Assuming a (near) constant TAS and flight level this trajectory
is also fuel optimal [21]. The proof of how this can be written into a Hamilton-Jacobi equation can be found
in [21].
The Ordered Upwind algorithm was designed to approximate the solution of Hamilton-Jacobi equations.
Sethian and Vladirminsky introduced their ideas first in [34]. In further research it was proven that the al-
gorithm converges to the viscosity solution of the Hamilton-Jacobi equations, a weak solution of a partial
differential solution (PDE) [35]. The principle of Ordered Upwind is to avoid iterations by using information
on the characteristics of the PDE, exploiting the fact that the value function u is strictly increasing along the
characteristics. The strength of the Ordered Upwind method is the ability to compute information about
the characteristic as the solution is constructed. In contradiction to the Fast Marching Method for isotropic
problem, the characteristics and gradient of the value function are not in the same direction. In [34] Sethian
provides a method to solve this problem, where bounds obtained from the wavefront speed are used to define
the maximum angle between the characteristics and the gradient of the value function. In order to compute
the value function u an unstructured triangulated mesh is used.
There are three different classifications for the mesh points, as can also be seen in figure E.2:

• Accepted; The set of mesh points where u has been computed and frozen.

• Considered; The set of mesh points where an estimate v of u has been computed, but not frozen.

• Far; All other mesh points where an estimate v of u is not computed (yet).

Besides the classifications there are also two sets created:

• AcceptedFront; A subset of Accepted mesh points that are adjacent to Considered mesh points.

• AF ; A set of line segments [x j ,xk ] between adjacent AcceptedFront mesh points.

For each Considered mesh point x a new set NearFront is defined. It is a subset of AF segments, which are
close to the considered meshpoint x. The full mathematical model behind this algorithm can be found in [21].
At each point in the mesh an estimation on the fastest route is computed using the wavefront propagation as
function of the aircraft speed. A geometric representation of this is given in figure E.3.
In figure E.4 an example is given for a certain wind grid and how the optimal routes would then be after
optimizing for time.
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Figure E.2: All the mesh points are assigned to three different sets: Accepted, Considered and Far. Accepted Front is a subset of the
Accepted set. The AF set describes the front [21].

Figure E.3: The figure shows how to compute the speed of the wavefront F (x,n) in the normal direction n at the point x. Circle 1
represents the true airspeed profile for the aircraft at the point x and circle 2 represents the speed of the aircraft profile f(x,a) for all a at

the point x. The speed of the wavefront F(x,n) is equal to the maximum of the projection of the aircraft’s speed profile f(x,a) on the
direction normal n [21].

E.5. Validation & Verification
For the route optimization model used in this research, use was made of the moving front algorithm as pre-
sented by Girardet [21]. This means that the mathematical formulation of the model is already verified and
validated in that research. In this section therefore only the implementation of this model will be looked at.

E.5.1. Verification
Verification of the route optimization model means that it must be confirmed that the model behaves as
expected, and that there are no mistakes in the model itself. Unit testing was used to check if each section
and formula provided the correct and expected output. The complete working of the model is verified by
looking at the output of the model, which is indeed as intended. The model outputs a Python file containing
a dictionary that contains a list of variables for each aircraft and IAF combination on a single day. The aircraft
callsign and the IAF name are used as the keys of this dictionary. The list contains the following variables;
The total flighttime from the edge of the optimization area towards the indicated IAF in seconds, the total
distance from the edge of the optimization area towards the indicated IAF in meters, the total time from
the originating airport towards the edge of the optimization area in seconds, and the total distance from the
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Figure E.4: Trajectories: 1. Direct route/Optimal route without wind (green), 2. Optimal route with wind (red) [21].

originating airport towards the edge of the optimization area in meters. Below an example on how this looks
can be seen:
{(’CAI792’, ’RIVER’): [11919, 2696835, 7119.751288034683, 1578468.5795842935, 4799, 1118366]}

E.5.2. Validation
To validate the route optimization model it is necessary to check the outcome of the model, and if it is what
it is expected to be. Two things need to be checked. The first one being the check if the model matches the
time and distance between two coordinates as the crow flies, for a given speed. This is done by running a
simulation of an aircraft flying from A to B on a set speed for a set distance. To check if the model performs up
to standard both inside as outside the optimization area it is required that point A is outside the optimization
area, and point B inside of it.
The chosen flight is a flight from New York John F. Kennedy International Airport towards IAF SUGOL. The
total distance for this flight is 5,789km as the crow flies. The aircraft was given a constant speed of 459 knots.
The expected time for the 5,789km with this speed would then be 24516 seconds. The model provided a
calculated distance of 5800.853 km, and a calculated flighttime of 25408 seconds. For the distance flown this
results in a 0.2% difference, for the flown time this results in a 3.6% difference. Both are deemed acceptable
for the use of the route optimization model in this research.
The second thing that needs to be validated is that the model adheres to its constraints. When a Special Use
Airspace (SUA) is in place the model needs to find a way around these SUAs. This is because these SUAs are
restricted airspaces that are generally not available to commercial aviation. The easiest way to validate this
is by visual inspection of the model. In figure E.5 it can be seen that indeed the model adheres nicely to the
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areas where it is not allowed to go through (in black) and still optimizes the route within the areas that are
still available.

Figure E.5: Visual Validation of Route Optimization Model Adhering to Constraints.



F
Method Selection

In this chapter various methods to address this optimization problem are introduced. First, the workings and
idea behind each model will be described and the positive and negative features will be discussed. Afterwards,
a comparison between the models is made and it is decided which model would suit this problem the best.

F.1. Genetic Algorithms
A genetic algorithm is an algorithm that is based on Charles Darwin’s theory of evolution through natural
selection [36]. The process of natural selection starts with the selection of the fittest individuals from a pop-
ulation. These fittest individuals will then create offspring which inherit parts of the genes of their parents.
If the parents had a good fitness, their offspring potentially has a better fitness which in term increases their
chances of survival. This process will then be repeated until at a certain point in time the population reached
a climax of their fitness and no improvements can be made anymore.

F.1.1. Working Principle of Genetic Algorithms
As explained in [37] the genetic algorithm mimics the workings of natural selection. There are five stages in a
genetic algorithm, namely the initial population, fitness function, selection, crossover and mutation. These
will be discussed and elaborated upon below.

Initial Population
The initial population exists out of a set of random, yet feasible solutions to the problem. Each member of
the population exists out of a certain set of genes, together this set of genes makes the chromosome of this
member of the population. In figure F.1 an example is shown of how this could look like.

Fitness Function
The fitness function determines the fitness of each member of the population, the fitness score. Based on this
fitness score the likelihood of being selected for reproduction is determined. If the fitness score of a certain
member of the population is higher than another, its chances of reproduction are higher. For instance if the
fitness function would have equalled:

F i tness =Gene(1) ·10−Gene(2) ·3+Gene(3) ·2+Gene(4) ·4−Gene(5) ·9+Gene(6) ·3 (F.1)

Looking at figure F.1 a population of 4 can be seen. If their chromosomes are put into the fitness function
from equation (F.1), then A1 would have a fitness score of 0, A2 would equal 7, A3 = 6 and A4 = 2. Thus leading
to the conclusion that A2 has the highest fitness score and thus the highest chance to reproduce.

Selection
After the likelihood of reproduction is determined by the fitness function, the selection of the members of
the population that will reproduce will be done. The higher the likelihood, the higher the chance that that
particular member of the population will be chosen.
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Figure F.1: Example population, chromosome and genes [37].

Crossover
The crossover part is the most significant part in a genetic algorithm. For the pair of parents that are going to
reproduce, a crossover point is selected at random. This crossover point decides which genes of the parents
are exchanged between the pair and which not. Exchanging of the genes occurs until the crossover point
is reached. This process is shown in figure F.2. The resulting offspring following this process is shown in
figure F.3.

Figure F.2: Crossover point and exchanging genes between parents A1 and A2 [37].

Figure F.3: Offspring of A1 and A2 [37].

Mutation
Within some of the offspring a mutation might occur, meaning that at the offspring there is one or multiple
genes that are not inherited from their parents, but the inherited gene takes on a different value. There are
various ways a mutation could occur among which a gene shift, where for instance Gene(4) would take the
place of Gene(2) and therefore shifting Gene(2) and Gene(3) to the places of Gene(3) and Gene(4) respectively.
Another common mutation is inversion, where a certain set of genes in the chromosomes inverts it’s value.
An example of an inversion is given in figure F.4.
As stated in [38] mutations can be a very useful solution to escape local optima and find the global optimum.
The reason for this is that due to the mutation a more diverse gene pool exists in the population. This prevents
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less favorable genes that are present between the reproducing pair are not guaranteed to be in the offspring.
Therefore giving room for improvement by changing the value for this gene. In the example A2 and A3 were
the fittest in the initial population. They both share the same value for Gene(5), which gives them a penalty in
the fitness of 9. Without mutation their most fit offspring will never get rid of this penalty as the most optimal
offspring of A2 and A3 would be [1 0 1 1 1 1], while it is clear that the most fit possibility would be [1 0 1 1 0 1].
Mutations can open up the possibility of finding this optimum even if A2 and A3 would be the only parents.

Figure F.4: Mutation through inversion [37].

Repeating steps and terminating model
After having done these steps one generation has passed. The population will remain a fixed size, even af-
ter reproducing. Thus meaning that the least fit members die after finishing a generation. In order to get
an optimal model, multiple generations will have to pass. This is done by continuously redoing steps fit-
ness function, selection, crossover and mutation. The algorithm terminates if there is no longer a significant
difference between the generated offspring and the previous generations.

F.1.2. Positive and negative features
Genetic algorithms have the capability to solve difficult problems that other optimization algorithms fail to
solve. This is because GA can simultaneously test many points from all over the solution space with either
discrete or continuous parameters or a combination of them, as well as work with many types of data [10].
This can be achieved since the model basically brute forces the optimal solution in an effective way, by keep-
ing the strongest results around and mutating on them. This does however also result in the drawback that
it is quite difficult to find the most optimal solution to a problem, as the model is likely to settle for a local
optimum instead of continuing to search for the global optimum. Adjusting the coefficients can help in this,
but since it is not known what the most optimal solution must be, it is impossible to say whether the model
achieved a global or local optimum, except by running all possible variations of variables. This is usually not
a possibility.

F.2. Reinforcement Learning Algorithms/Q Learning
When interacting with our environment it is learned that certain behaviour results in certain outcomes and
that some behaviour negatively impacts the environment, while other behaviour improves our environment.
For instance studying for exams usually results in higher grades, which in turn stimulates to study more for
a higher reward. Reinforcement learning is based on this basic principle of learning how to cope with our
environment. The algorithm gets positive or negative feedback after performing a certain action and tries to
learn from its mistakes, so that next time it will do it right immediately.

F.2.1. Working Principle of Reinforcement Learning Algorithms
The basic working principle of a reinforcement algorithm is an algorithm that tries to maximize its reward.
The characteristics of trial and error and delayed reward are the most important distinguishing features of
reinforcement learning [11]. A block diagram of the working of reinforcement algorithms can be found in
figure F.5.
Q-learning is a type of reinforcement learning which might be useful here. The Q stands for Quality, which in
this case represents the usefulness of a certain action in gaining future reward [12]. In figure F.6 the formula on
which Q-learning is based is given. Q represents the Q-table or matrix with variables [state, action], depicted
by st and at respectively in the formula. The various parts of the model will be discussed below.
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Figure F.5: Reinforcement Model [15].

Figure F.6: Q-learning formula [15].

Q-Table
The Q-table contains the agent’s state and possible actions. Given a certain state an action has an reward. So,
as an example, if an agent would be in state 0 at time 0 and it’s goal is to get cookies. For action 1 he would
receive 10 cookies, for action 2 he would receive 4 lollies and action 3 would cost him 2 cookies the Q-table
could look as follows:
Q[00, a0] = [0 10 0 -2]
Values for states 1 to 3 are not given, also note that action 0 (remain in the same state) and action 2 do not
give cookies and therefore the reward for these actions is 0.

Learning rate
The learning rate is the rate at which the algorithm accepts the new knowledge it acquired. For deterministic
environments a learning rate of 1 is optimal, whereas if the problem is stochastic a lower value is required.
If the value is too high, the algorithm will forget its previous knowledge and therefore will not converge to a
most optimal path. In practice often a value of 0.1 is used [11].

Discount factor
The discount factor determines how important possible future gains are for the algorithm. If it is set to 0, the
system will become short sighted and will only go for the direct rewards, whereas if it is set to 1, it will keep
track of all steps in the past and what rewards it gave. Even though this would theoretically give the most
optimal outcome, setting the discount factor to 1 can result in infinite long histories of all environments, and
thus in an insolvable problem, since computation time will become infinite [39]. In some cases, however,
starting with a discount value below 1 could lead to instabilities in the algorithm. Therefore, starting with a
lower discount factor and building it up as time progresses can accelerate the learning of the algorithm [40].

Repeating steps and terminating model
By continuously running the model according to the formula given in figure F.6, the model will, if all variables
are set correctly and an optimum is possible, find an optimal path. This path is found if there is no or little
change in the new Q-tables generated. It is also possible to stop the model after a certain amount of iterations,
but this then does not guarantee the most optimal solution.

F.2.2. Positive and negative features
Reinforcement learning is useful for systems that are easy to judge, but hard to specify. This is because no
full mathematical model is needed, it just needs the results of actions taken. The problem with this is that
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it therefore needs a lot of data which must be obtained in the learning phase [13]. Another problem is that
during the learning phase, it is not always clear what connections the model makes within the data, which
may lead the algorithm to do something it was not intended to do. An example for instance could be that if
a robot needs to find the fastest way to cross a bridge of some kind, it concludes that the fastest way is to go
around it since in the trial and error phase there was ground around the bridge. But if the robot would not be
corrected on time, the next time it encounters a bridge that does have water around it, it will still try and go
around and thus fall into the water.

F.3. Mixed Integer Programming
Unlike the previous discussed algorithms, Mixed Integer Programming (MIP) is not based on a biological
principle. MIP instead is known as a mathematical technique where functions are minimized or maximized
when subjected to various constraints. Therefore, unlike the previous algorithms, a full understanding of
the problem and the influence of each variable on the outcome of the problem is required. It is possible to
use both linear as quadratic equations, however quadratic equations complicate the model significantly and
might make a model unsolvable, thus linear equations are preferred.

F.3.1. Working Principle of Mixed Integer Programming
The principle behind mixed integer programming is to find an optimal feasible solution to a set of equations
of which some of the variables can only strictly be integers, while other variables can be any real number.
Some of the variables can also strictly be binary. The equation the model is trying to find the optimal solution
for is the objective function. The other equations are the requirements that keep a possible solution feasible,
therefore they are called the constraints. In equation (F.2) a set of linear equations is given for a mixed integer
algorithm in its standard form. Below, the different parts of the algorithm are discussed, namely the objective
function, decision variables and the constraints. Finally the branch and bound search strategy is discussed
as well as the termination of the model.

minimize c1 · x + c2 · y

subject to Ax +B y ≥ d

x ≥ 0, x ∈Rn

y ≥ 0, y ∈Zn{0,1,2, ...}

(F.2)

Decision Variables
The decision variables in an MIP algorithm are the values that need to be determined in order to solve the
problem. In other words, the optimization is completed when the best possible values for these variables
given the objective function and the constraints are found [41]. Let us say that after obtaining a set of lollies
in the previous example we now would like to sell those lollies and have the highest profit margin, but we
would also get rid of as many lollies as possible since they are taking up too much space in the garage. The
earnings can be denoted by decision variable x as x can take any real value. One of the reasons it is not desired
that the decision variable of the earnings is an integer is that than it is only possible to earn round numbers,
so €1 or €2 instead of €1.25 per lolly. For the lollies however, it is nearly impossible to split one lolly into parts
and then most likely no one would like to buy it, thus it is only possible to sell whole lollies. The decision
variable y is ideal since it can only be integers. Therefore y is the amount of lollies sold.

Objective Function
The objective function is the function that decides what the algorithm tries to optimize. The objective func-
tion can still be presented as in equation (F.2), but it could also be written to maximize. If instead of minimiz-
ing the objective function, the function needs to be maximized it is equal to the minimization of the negative
of the function that needs to be maximized. Therefore the two options of the objective function are given as
follows in equation (F.3).

minimize c1 · x + c2 · y

maximize − c1 · x − c2 · y
(F.3)

From various parties you are offered a certain amount of earnings for a certain amount of lollies and the goal
is to find the ideal set of transactions that will optimize the objective of this problem. c1 and c2 are simple
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constants and indicate the contribution of the decision variables to the objective [41]. Since the objective is
to maximize the earnings while also getting rid of as many lollies as possible, it is clear that the constant c1

needs to be negative since the earnings are denoted by x and similar c2 also needs to be negative. Depending
on the priority to have high earnings and the priority to empty the garage, the magnitude of the values for c1

and c2 could be determined.

Constraints
Constraints are in place to guarantee that the model comes up with a valid solution. Thus they define the val-
ues the different decision variables may take [41]. The constraints are thus important for the model as some
solutions may find a better value for the objective function, but then become impossible. The constraints of
equation (F.2) are given in equation (F.4).

subject to Ax +B y ≥ d

x ≥ 0, x ∈Rn

y ≥ 0, y ∈Zn{0,1,2, ...}

(F.4)

The first constraint could for instance entail that the earnings of a certain transaction minus the cost of losing
some lollies must be greater or equal to a certain threshold, maybe because costs are inflicted when perform-
ing a transaction and you do not want to lose money on a transaction. In other words, it could be that you
could gain €0,50 by selling the lollies separate and €0,40 per lolly if you sell them by the dozen, but if the trans-
action cost d would be €0,60 you will not sell singular lollies for €0,50. The second and third constraint limit
the search area to only positive numbers for the decision variables x and y . Note that with these constraints
there is no limit on the amount of lollies sold and therefore one must have an infinite amount of lollies to get
a sensible outcome of this example model. Another constraint thus must be added to limit the amount of
lollies sold.

Branch and Bound and terminating model
All state of the art mixed integer programming solvers use the branch-and-bound algorithm [42][43]. There-
fore for this research the branch-and-bound algorithm will be discussed. The branch-and-bound algorithm
starts with the initial MIP problem, but it is not known how to solve this problem directly. The first step is
to remove all integrality restrictions, thus decision variables are no longer strictly integer or binary. This is
called the relaxation of the mixed integer programming problem. Now it is possible to find a solution to the
problem. If this solution satisfies the integrality restrictions, the solution obtained is optimal and the algo-
rithm can be stopped [14]. If the solution is not feasible then this also holds for the integer program. Else,
at least one of the integer variables must be fractional in the solution. To solve this, one or multiple of these
fractional variables are selected and ’branched’. Branching means creating two or more new MIP problems
which exclude the infeasible solution, but do not exclude any other feasible solution [14]. In other words,
extra constraints are added to limit the search area of certain variables. As an example, if y which must be an
integer, is found to have the best solution for value y = 4.7, then for instance two branches can be made. One
including the constraint y ≥ 5 and the other y ≤ 4. A visual representation of this process is given in figure F.7.

Figure F.7: Branch-and-Bound [44].
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If a branch satisfies all integrality restrictions of the original problem it is not necessary to branch further on
this branch, this branch can be fathomed and become a permanent leaf on the tree [44]. To be able to find
the best branch, and thus the optimal solution to the mixed integer programming problem, it is important to
know if the feasible solution just found is also the optimal one. The leaf with the best value for the objective
function is known as the incumbent [45]. If thus a new leaf has a better value for the objective function it
will become the new incumbent solution. Another option for a branch to be fathomed is if that branch only
results in infeasible solutions and thus no further branching is necessary since it will not give any feasible
solutions.

To be able to know when the optimal solution is found an upper and lower bound are defined. The upper
bound is the current incumbent solution, as no new branch with a worse score for the objective function
needs to be considered. The lower bound is defined by taking the minimum of the optimal objective func-
tions of all the nodes. If the gap between the upper and lower bound becomes zero, then the optimal solution
has been found and the algorithm can be stopped [44].

F.3.2. Positive and negative features
To be able to use mixed integer programming algorithms to solve optimization problems, it is important
that the full scope of the program is known. This is because to be able to use this, first a full mathematical
model of the problem needs to be constructed and the objective function needs to be defined. Therefore,
the impact of all variables on the model must be known to be able to come up with an algorithm that is
capable of finding a feasible optimum for the problem. If this is the case for the problem at hand, then mixed
integer programming can be a very good way to obtain that feasible optimum, as the model is not capable
of giving an unfeasible solution. For more incomprehensible problems where the effect of all variables is not
(completely) known, or the limitation of certain contributions is not fully understood this might likely not be
the right approach.

F.4. Method choice
To select the best method for the mathematical model discussed in section 2.2 it is important that the posi-
tive and negative features of genetic algorithms, reinforcement learning and mixed integer programming are
compared to each other.

There is a difference in the amount of data required for each algorithm. The reinforcement learning algo-
rithm is a data heavy algorithm compared to mixed integer programming and genetic algorithms. This is
because it is not based on a mathematical model, but solely on data analysis. This therefore requires a big
data set that contains enough data to train the model on. Since Amsterdam Schiphol Airport is a busy hub air-
port with a considerable noise disturbance problem, there is plenty of data available for this analysis, however
all of this data is from the current situation with 3 IAFs and the current distribution over the new IAFs and the
standard flying routes towards them. It is therefore unlikely that based on analysis of this data a considerable
research can be performed on the redistribution of aircraft over the IAFs and the environmental and noise
impacts that come with it. Especially since currently there is no fourth IAF, which will become a big factor in
the redesigned Dutch airspace [46], there is thus also no data for the routes to and from this IAF. Creating this
data is possible, but would either require redirecting flights from the current standard approaches to fly the
new to be designed path, lots of test flights with multiple aircraft types, or a thorough technical analysis on
the flight path and emitted noise. All these options require a great amount of resources and are therefore un-
likely to be performed in a way that the obtained data is of sufficient quality to base a reinforcement learning
algorithm on. For mixed integer programming and genetic algorithms it is much easier to obtain data that is
of sufficient quality as they require less data since they are not based on a data analysis.

Other important factors for the to be chosen algorithm are the accuracy, computational time, and feasibility
of the proposed solution by the various algorithms. The computational time of genetic algorithms is generally
found to be lower than reinforcement learning and mixed integer programming. Mixed integer programming
usually has the longest computational time of the three algorithms discussed [47][48][49]. However since the
to be designed model will function as an aid to route planning it is expected to run some time before the
actual decisions have to be made. Real time decisions will remain in the hands of air traffic controllers and
therefore the speed is not the most important factor. Genetic algorithms often have a larger variety on the
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solutions found than reinforcement learning [48][49]. Meaning that in less occasions the most optimal solu-
tion is found. In general it was found to be that mixed integer programming had the highest accuracy [47].
Finding the optimal solution can be very important since the margins in aviation are slim. Furthermore, ev-
ery percentage that can be won in either noise or emissions has a positive effect on the environment, whereas
optimal routes reduce the costs for airliners. For feasibility, the only algorithm that guarantees a feasible so-
lution is the mixed integer programming algorithm. This is because the constraints inflicted upon the system
limit it from finding a solution that is not feasible. In the other algorithms it is however possible to inflict large
penalties on infeasible solutions, practically achieving the same, it does however need some extra monitor-
ing since in case of ATM every mistake can be fatal. However, since the final call remains with the air traffic
controllers, this is deemed to be enough of a safety net. In table F.1 an overview of the performance of each
method can be found.

Table F.1: Score Overview of Selected Algorithms.

GA MIP RL
Data Availability + + --
Accuracy of Solution - + 0
Execution Speed + - 0
Feasibility of Solution + ++ +

In conclusion reinforcement learning is discarded as an option since the data required is not available, or
would take a long time and a great investment to obtain. The research was continued with both mixed integer
programming, and genetic algorithms. The model presented in section 2.2 was implemented using both
algorithms. After implementation of the model it was found that MIP produced such considerable better
solutions, while not having a considerably higher execution time compared to GA, that GA was discarded. The
GA algorithm was instead used to check solutions found in the MIP implementation of the model, and to find
mistakes in the model itself. All results presented in this research are therefore from the MIP implementation
of the model.
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In this chapter the results obtained in this research will be presented. First in appendix G.1, the Base sce-
nario, including all 4 new IAF will be explained, and taken as the basis of the discussion. In appendix G.2,
appendix G.3, and appendix G.4 the other scenarios are presented, along with the objective costs found for
these scenarios. Not all scenarios are discussed however, to decide which scenarios are interesting a Pareto
optimal front is used to select all Pareto optimal scenarios. This is done in appendix G.5. Finally the Pareto
optimal scenarios are discussed by day in appendix G.6.

G.1. Base Scenario
To be able to compare the various results with each other, a B ASEE50%,N 50% scenario is created. This
B ASEE50%,N 50% scenario is a hybrid scenario where all aircraft are adhered to their originally assigned run-
ways, but with the inclusion of the 4th IAF. The choice for which IAF is selected is based on the amount of time
it takes to fly from the origin of the aircraft via an IAF to the assigned runway. In other words, it is based on the
shortest route, which is roughly similar to current practice. The optimization is then run with the following
settings:

Table G.1: Settings for Base Scenario.

Constant Value Description
CNOI SE 1 Normalization constant for Noise Objective
CE M I SSION 1 Normalization constant for Emission Objective
CDEL AY 1 Normalization constant for Delay Objective

E M I SSION 50%
Importance Emission Objective
E M I SSION S +NOI SE = 100%

NOI SE 50%
Importance Noise Objective
E M I SSION S +NOI SE = 100%

E astW estSepar ati on F al se
If True: Strict East-West Separation meaning no aircraft can fly
from a Western IAF to the Eastern runway and vice versa.
If False: No East-West Separation is maintained.

F i xedRunw ay Tr ue
If True: Aircraft are fixed to the runway they originally landed
on on the specific date run.
If False: Aircraft have free choice of available runways.

I AF 4 Tr ue
If True: Aircraft are allowed to fly via the 4th IAF.
if False: The 4th IAF is not available

In table I.1 an overview of all Base scenarios is given.

Table G.2: Base Scenario descriptions.

Scenario Description
B ASEE50%,N 50% Base scenario, with E M I SSION = 50% and NOI SE = 50%
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Below the cost of these runs can be found:

Table G.3: Objective Costs for B ASEE50%,N 50% Scenario..

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Delay Objective Cost 5,377 5,899 2
Emission Objective Cost 8,088,974 7,607,592 5,984,908
Noise Objective Cost 106,720 67,754 44,994
Total Objective Cost 8,201,071 7,681,244 6,029,904

In order to be able to compare all the scenarios to the B ASEE50%,N 50% scenario, and to create an equal weight
between the objective costs, the costs found in table G.3 are normalized to 106. The delay cost however is not
normalized, this is done because normalizing the delay objective to the same value as the other objectives
limited the model too much in finding optimal solutions for noise and emission cost. Removing the delay ob-
jective was also considered, but this resulted in unwanted solutions as aircraft had no incentive anymore to
stay close to their originally assigned landing times. Therefore it was decided not to normalize the delay ob-
jective cost at all since this number was already much lower than the noise and emission objective costs. This
did not produce new problems as for all scenarios the average deviation per aircraft of the originally assigned
landing time remained below the currently used time window of 2 minutes. The normalized B ASEE50%,N 50%

scenario can be found in table G.4.

Table G.4: Normalized Objective Costs for Base Scenario.

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Delay Objective Cost 5,377 5,899 2
Emission Objective Cost 1,000,000 1,000,000 1,000,000
Noise Objective Cost 1,000,000 1,000,000 1,000,000
Total Objective Cost 2,005,377 2,005,899 2,000,002

To achieve this normalization, the objective costs are multiplied with normalization factors. These can be
found in table G.5.

Table G.5: Normalization Factors for Each Day and Objective.

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

CDEL AY 1 1 1
CE M I SSION 0.12362506744787292 0.13144763973825857 0.16708694822698303
CNOI SE 9.370314942239448 14.759355878390776 22.224992479711354

The normalization factors as seen in table G.5 are used in all other runs so that they can be easily compared
to the B ASEE50%,N 50% scenario.

G.2. Old Scenario
For the old scenario, an attempt is made to mimic the situation as is current practice if strict approach routes
would be followed. This means that the 4th IAF does not exist, so no aircraft will be able to use it to transition
towards a runway. The runway is selected based on the original runway the aircraft actually landed on as
well and the IAF is selected on the basis of shortest route given the runway, similar to the B ASEE50%,N 50%

scenario IAF/runway selection process with the difference that the 4th IAF is not to be selected. This gives
the following settings:
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Table G.6: Settings for Old Scenario.

Constant Value Description
CNOI SE See table G.5 Normalization constant for Noise Objective
CE M I SSION See table G.5 Normalization constant for Emission Objective
CDEL AY 1 Normalization constant for Delay Objective

E M I SSION [0%, 25%, 50%, 75%, 100%]
Importance Emission Objective
E M I SSION S +NOI SE = 100%

NOI SE [100%, 75%, 50%, 25%, 0%]
Importance Noise Objective
E M I SSION S +NOI SE = 100%

E astW estSepar ati on F al se
If True: Strict East-West Separation meaning no aircraft can fly
from a Western IAF to the Eastern runway and vice versa.
If False: No East-West Separation is maintained.

F i xedRunw ay Tr ue
If True: Aircraft are fixed to the runway they originally landed
on on the specific date run.
If False: Aircraft have free choice of available runways.

I AF 4 F al se
If True: Aircraft are allowed to fly via the 4th IAF.
if False: The 4th IAF is not available

In table G.7 an overview of all Old scenarios is given.

Table G.7: Old Scenario descriptions.

Scenario Description
OLDE0%,N 100% Old scenario, with E M I SSION = 0% and NOI SE = 100%
OLDE25%,N 75% Old scenario, with E M I SSION = 25% and NOI SE = 75%
OLDE50%,N 50% Old scenario, with E M I SSION = 50% and NOI SE = 50%
OLDE75%,N 25% Old scenario, with E M I SSION = 75% and NOI SE = 25%
OLDE100%,N 0% Old scenario, with E M I SSION = 100% and NOI SE = 0%

G.2.1. Objective Costs

Table G.8: Difference in Objective Costs Compared to B ASEE50%,N 50% for OLDE0%,N 100%.

Emission = 0%
Noise = 100%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.4956% +0.0314% +0.0069%
Noise Objective Cost +4.3011% +0.9921% +0.8173%
Total Objective Cost +2.4811% +0.5365% +0.4121%

Table G.9: Difference in Objective Costs Compared to B ASEE50%,N 50% for OLDE25%,N 75%.

Emission = 25%
Noise = 75%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.4952% +0.0309% +0.0069%
Noise Objective Cost +4.3011% +0.9921% +0.8173%
Total Objective Cost +2.4810% +0.5331% +0.4121%

Table G.10: Difference in Objective Costs Compared to B ASEE50%,N 50% for OLDE50%,N 50%.

Emission = 50%
Noise = 50%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.4953% +0.0309% +0.0069%
Noise Objective Cost +4.3011% +0.9921% +0.8173%
Total Objective Cost +2.4806% +0.5331% +0.4121%
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Table G.11: Difference in Objective Costs Compared to B ASEE50%,N 50% for OLDE75%,N 25%.

Emission = 75%
Noise = 25%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.4953% +0.0309% +0.0069%
Noise Objective Cost +4.3011% +0.9921% +0.8173%
Total Objective Cost +2.4806% +0.5331% +0.4121%

Table G.12: Difference in Objective Costs Compared to B ASEE50%,N 50% for OLDE100%,N 0%.

Emission = 100%
Noise = 0%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.4953% +0.0309% +0.0069%
Noise Objective Cost +4.3011% +0.9921% +0.8173%
Total Objective Cost +2.4806% +0.5331% +0.4121%

G.3. New and Separation Scenario, NAS Scenario
The new scenario is based on plans of redesigning the dutch airspace to incorporate a 2+2 runway use at AAS
[5][6]. In this concept the 2+2 means that always 2 runways are available for arriving aircraft and 2 runways
are available for departing aircraft. For this, it was stated that it would no longer be possible to allow aircraft
to land on a Western runway whilst flying via an Eastern IAF and vice versa. Therefore, the NAS scenario
takes into account this East-West separation. Of course for the new scenario also the 4th IAF is included as it
is specifically designed for this. This gives the following settings:

Table G.13: Settings for NAS Scenario.

Constant Value Description
CNOI SE See table G.5 Normalization constant for Noise Objective
CE M I SSION See table G.5 Normalization constant for Emission Objective
CDEL AY 1 Normalization constant for Delay Objective

E M I SSION [0%, 25%, 50%, 75%, 100%]
Importance Emission Objective
E M I SSION S +NOI SE = 100%

NOI SE [100%, 75%, 50%, 25%, 0%]
Importance Noise Objective
E M I SSION S +NOI SE = 100%

E astW estSepar ati on Tr ue

If True: Strict East-West Separation meaning no
aircraft can fly from a Western IAF to the Eastern
runway and vice versa.
If False: No East-West Separation is maintained.

F i xedRunw ay F al se
If True: Aircraft are fixed to the runway they
originally landed on on the specific date run.
If False: Aircraft have free choice of available runways.

I AF 4 Tr ue
If True: Aircraft are allowed to fly via the 4th IAF.
if False: The 4th IAF is not available

In table G.14 an overview of all NAS scenarios is given.

Table G.14: NAS Scenario descriptions.

Scenario Description
N ASE0%,N 100% NAS scenario, with E M I SSION = 0% and NOI SE = 100%
N ASE25%,N 75% NAS scenario, with E M I SSION = 25% and NOI SE = 75%
N ASE50%,N 50% NAS scenario, with E M I SSION = 50% and NOI SE = 50%
N ASE75%,N 25% NAS scenario, with E M I SSION = 75% and NOI SE = 25%
N ASE100%,N 0% NAS scenario, with E M I SSION = 100% and NOI SE = 0%
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G.3.1. Objective Costs

Table G.15: Difference in Objective Costs Compared to B ASEE50%,N 50% for N ASE0%,N 100%.

Emission = 0%
Noise = 100%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.4590 +0.2395 -0.3535%
Noise Objective Cost -7.4862% -12.3173% +16.1785%
Total Objective Cost -3.1433% -5.4733% +7.9124%

Table G.16: Difference in Objective Costs Compared to B ASEE50%,N 50% for N ASE25%,N 75%.

Emission = 25%
Noise = 75%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.2996% +0.2350% -0.3535%
Noise Objective Cost -7.4327% -12.3026% +16.1785%
Total Objective Cost -3.2226% -5.4518% +7.9124%

Table G.17: Difference in Objective Costs Compared to B ASEE50%,N 50% for N ASE50%,N 50%.

Emission = 50%
Noise = 50%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost -0.0080% +0.2345% -0.3535%
Noise Objective Cost -7.1670% -12.2862% +16.1785%
Total Objective Cost -3.3847% -5.4777% +7.9124%

Table G.18: Difference in Objective Costs Compared to B ASEE50%,N 50% for N ASE75%,N 25%.

Emission = 75%
Noise = 25%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost -0.2172% +0.0996% -0.4133%
Noise Objective Cost -6.6390% -11.7760% +16.3420%
Total Objective Cost -3.2420% -5.4777% +7.9642%

Table G.19: Difference in Objective Costs Compared to B ASEE50%,N 50% for N ASE100%,N 0%.

Emission = 100%
Noise = 0%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost -0.4979% -0.0495% -1.0988%
Noise Objective Cost -1.3295% -3.9589% +36.0132%
Total Objective Cost -0.8104% -1.7879% +17.4571%

G.4. New without Separation Scenario, NWS Scenario
This scenario is similar to the previous one, but incorporated into the research to see the effect of the East-
West separation. The only difference is therefore that the East-West separation is not enforced in this scenario.
These scenarios are investigated to see what the effect would be of the East-West separation. However, it is
unlikely that for all investigated days the NWS scenario would be possible, as the amount of conflict areas in
the airspace could increase significantly and therefore the workload for ATC.

The settings for the NWS scenarios are as follows:
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Table G.20: Settings for NWS Scenario.

Constant Value Description
CNOI SE See table G.5 Normalization constant for Noise Objective
CE M I SSION See table G.5 Normalization constant for Emission Objective
CDEL AY 1 Normalization constant for Delay Objective

E M I SSION [0%, 25%, 50%, 75%, 100%]
Importance Emission Objective
E M I SSION S +NOI SE = 100%

NOI SE [100%, 75%, 50%, 25%, 0%]
Importance Noise Objective
E M I SSION S +NOI SE = 100%

E astW estSepar ati on F al se

If True: Strict East-West Separation meaning no
aircraft can fly from a Western IAF to the Eastern
runway and vice versa.
If False: No East-West Separation is maintained.

F i xedRunw ay F al se
If True: Aircraft are fixed to the runway they
originally landed on on the specific date run.
If False: Aircraft have free choice of available runways.

I AF 4 Tr ue
If True: Aircraft are allowed to fly via the 4th IAF.
if False: The 4th IAF is not available

In table G.21 an overview of all NWS scenarios is given.

Table G.21: NWS Scenario descriptions.

Scenario Description
NW SE0%,N 100% NWS scenario, with E M I SSION = 0% and NOI SE = 100%
NW SE25%,N 75% NWS scenario, with E M I SSION = 25% and NOI SE = 75%
NW SE50%,N 50% NWS scenario, with E M I SSION = 50% and NOI SE = 50%
NW SE75%,N 25% NWS scenario, with E M I SSION = 75% and NOI SE = 25%
NW SE100%,N 0% NWS scenario, with E M I SSION = 100% and NOI SE = 0%

G.4.1. Objective Costs

Table G.22: Difference in Objective Costs Compared to B ASEE50%,N 50% for NW SE0%,N 100%.

Emission = 0%
Noise = 100%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +1.6545% +0.6306% +0.0218%
Noise Objective Cost -16.3881% -23.2785% -21.9387%
Total Objective Cost -1.6598% -7.3004% -10.9584%

Table G.23: Difference in Objective Costs Compared to B ASEE50%,N 50% for NW SE25%,N 75%.

Emission = 25%
Noise = 75%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +1.3630% +0.6253% +0.0218%
Noise Objective Cost -16.0572% -23.1783% -21.9387%
Total Objective Cost -4.3845% -7.2803% -10.9584%
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Table G.24: Difference in Objective Costs Compared to B ASEE50%,N 50% for NW SE50%,N 50%.

Emission = 50%
Noise = 50%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.9633% +0.4989% +0.0218%
Noise Objective Cost -15.5691% -22.9083% -21.9387%
Total Objective Cost -4.9151% -8.0388% -10.9584%

Table G.25: Difference in Objective Costs Compared to B ASEE50%,N 50% for NW SE75%,N 25%.

Emission = 75%
Noise = 25%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost +0.1267% +0.1259% -0.0218%
Noise Objective Cost -13.5561% -21.7815% -21.8609%
Total Objective Cost -5.9868% -10.1081% -10.9413%

Table G.26: Difference in Objective Costs Compared to B ASEE50%,N 50% for NW SE100%,N 0%.

Emission = 100%
Noise = 0%

Busy Day
16 September 2019

Average Day
26 October 2019

Quiet Day
21 March 2019

Emission Objective Cost -0.5287% -0.1253% -1.0988%
Noise Objective Cost +0.8541% -3.7334% +36.0132%
Total Objective Cost +0.1748% -1.8227% +17.4571%

G.5. Pareto Optimal Solutions
Since the objective function is not formed under the agreement of all stakeholders, it can be assumed that
they will not all agree on the solution with the lowest objective cost being the best. Therefore it is important
to investigate all possible outcomes that are optimal for one stakeholder, or when looking at combined costs
is optimal for multiple stakeholders. One way to do so is using Pareto optimality.

G.5.1. Principle of Pareto Optimality
The idea behind Pareto optimality originates from economic equilibrium and welfare policies during the 20th
century. The concept is that maximum economic satisfaction is reached when there are no measures to be
taken that only benefit a part of the society. No one can be worse off. If there is a measure that benefits some
without negatively influencing the others the current situation is not Pareto optimal [22].
A typical example where Pareto optimality is involved is the house purchase problem. In table G.27 three
houses A, B, and C are given with costs from 0 to 5 based on their performance in each of 3 categories. All
houses are equally expensive so the only decision factors are the categories presented. Looking at table G.27
immediately shows that house B can be eliminated as in no category it is better than house A or C, since it is
possible to buy house A or C withour giving in on any of the categories. Looking at the environment category
it shows that house A has the highest score of all houses. This means that house A is Pareto optimal, since
it is not possible to buy house B or C without giving in on the environment category. Similarly this holds for
house C in the appearance category. Making house A and C Pareto optimal and house B not.

Table G.27: Example Pareto Optimality [22].

A B C
Appearance 3 3 5
Comfort 4 4 4
Environment 5 4 3

G.5.2. Pareto Front
To see which solutions are worth investigating into more depth a Pareto front is created. A Pareto front is
defined as all combinations of Pareto optimal solutions. So in the case of the example presented in ap-
pendix G.5.1 houses A and C would form the Pareto front.
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A Pareto front is made for each day in the B ASEE50%,N 50% scenario. The front will consist out of the objective
cost for noise and emission. The delay objective is not taken into account for the Pareto front. Variations on
the importance of either objective in the objective function are made by changing the values of E M I SSION
and NOI SE . They are however, always linked to each other according to the following formula:

E M I SSION +NOI SE = 100% (G.1)

In figure G.1, figure G.2, and figure G.3 the noise and emission objective scores are plotted for all scenarios.
In these figures the Pareto front is drawn in red. The Pareto optimal scenarios, which lie at the Pareto front,
are selected to be discussed into detail, along with the B ASEE50%,N 50% and Old scenario. The remaining
scenarios are not discussed, since these do not present an interesting solution as better ones are available.
In appendix G.6.1 the Pareto optimal optimizations for a busy day can be found, in appendix G.6.2 for an
average day, and in appendix G.6.3 for a quiet day.

Figure G.1: Pareto Optimal Solutions for 16 September 2019.

For the busy day in figure G.1 it can be seen that the base scenario scores better than the old scenario on both
the noise objective cost and the emission objective cost. The NAS scenarios also all perform better than the
old scenario on both emission and noise. Compared to the base scenario all NAS scenarios still perform better
on the noise objective cost, but only 3 out of the 5 scenarios also perform better on the emission objective
cost. For the NWS scenarios only the scenario fully optimized for the emission objective cost has a lower
emission objective cost than the base scenario, but at the cost of a slightly higher noise objective cost. All
other NWS scenarios have a considerably lower noise objective cost compared to the base scenario, but also
all have a higher emission objective cost. The Pareto front is indicated by the red line. This thus means that
all scenarios on that line are Pareto optimal.
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Figure G.2: Pareto Optimal Solutions for 26 October 2019.

For the average day in figure G.2 it can be seen that the base scenario performs better than the old scenario
on both the noise objective cost and the emission objective cost as well. Compared to both the base and old
scenario all NAS and NWS scenarios provide a significant decrease in the noise objective cost, but only the
scenarios fully optimized for the emission objective cost also provides a decrease in emission objective cost
for both the NAS and NWS scenarios. The Pareto front is indicated by the red line. This thus means that all
scenarios on that line are Pareto optimal.

Figure G.3: Pareto Optimal Solutions for 21 March 2019.

For the quiet day in figure G.3 it can be seen that the base and old scenario score almost identical, with the
base performing slightly better on both the noise, and emission objective cost. All NAS scenarios provide a
solution with a lower emission objective cost compared to the base and old scenario, but at the cost of a much
higher noise objective cost. For the NWS scenarios it is seen that the scenario fully optimized on the emission
objective cost indeed has the best score for the emission objective cost, but at the cost of a much higher noise
objective cost compared to the base and old scenario. The other NWS scenarios provide a significant decrease
in noise objective cost while being almost equal on the emission objective cost compared to the base and old
scenario. The Pareto front is indicated by the red line. This thus means that all scenarios on that line are
Pareto optimal.
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G.6. Analysis Pareto Optimal Solutions by Day
The effects and behaviour of the different scenarios on different traffic densities will be analyzed in this sec-
tion. First the Busy Day will be analyzed in appendix G.6.1, then the Average Day in appendix G.6.2, and
finally the Quiet Day in appendix G.6.3.

G.6.1. Busy Day, 16 September 2019

Table G.28: Objective Costs for all Pareto Optimal Scenarios for 16 September 2019 compared to B ASEE50%,N 50% Scenario.

Busy Day, 16 September 2019
Scenario Base OLD NAS NAS NAS NWS NWS NWS NWS NWS
Emission 50% 50% 50% 75% 100% 0% 25% 50% 75% 100%
Noise 50% 50% 50% 25% 0% 100% 75% 50% 25% 0%
Emission Objective Cost 0% +0.49% -0.01% -0.22% -0.50% +1.66% +1.36% +0.96% 0.13% -0.53%
Noise Objective Cost 0% +4.30% -7.17% -6.64% -1.33% -16.38% -16.06% -15.57% -13.56% +0.85%
Total Objective Cost 0% +2.48% -3.38% -3.24% -0.81% -1.66% -4.38% -4.92% -5.99% +0.17%

Table G.29: Supporting Statistics for all Pareto Optimal Scenarios for 16 September 2019.

Busy Day, 16 September 2019
Scenario Base OLD NAS NAS NAS NWS NWS NWS NWS NWS
Emission 50% 50% 50% 75% 100% 0% 25% 50% 75% 100%
Noise 50% 50% 50% 25% 0% 100% 75% 50% 25% 0%
Total Time Early
Arrival [s]

4395 3260 4640 4488 4398 4376 4677 4423 3558 3608

Total Time Late
Arrival [s]

491 1950 2306 2218 1500 57470 29858 24223 8028 1010

Total People
Experiencing
48+ dB(A) [-]

4962293 4351525 4153110 4189549 4803352 3510069 3510423 3597817 3898181 4785488

Total People
Experiencing
58+ dB(A) [-]

137764 136923 99814 96247 94486 101712 102847 100902 98133 94889

Total Flighttime
[s]

7823589 7874727 7850140 7826431 7796685 8000756 7966541 7929438 7848940 7792256

Total CO2
Emitted [kg]

25561158 25687751 25559116 25505633 25433895 25984080 25909560 25807388 25593542 25426024

Delay
For the Delay Objective from table G.28 it is important to split the cost in Early Arrival and Late Arrival, as can
be seen in table G.29. No aircraft is allowed to deviate more than 15 minutes from their arrival time. Given a
total amount of flights for the Busy Day of 762, this shows that the average amount of early arrival time per
aircraft for all scenarios is between 4.3 and 6.1 seconds. This is relatively close to each other and a low number
when taking the current planning horizon of 2 minutes into account. Similarly, the average late arrival time
per aircraft for all scenarios is between 0.6 and 75.4 seconds. This is still well within the 2 minute window, but
for some scenarios, especially the ones prioritizing the Noise Objective, the number is considerably higher
than the average early arrival time.

Noise
From the Noise Objective costs as seen in table G.28 it is very clear that when the Noise Objective becomes
more important the costs go down, which is exactly as expected. However, when looking at table G.29 and
figure G.4 this does not hold for the amount of people experiencing a certain threshold value. This is because
the Noise Objective does not optimise for only these groups, but for all people affected by noise emitted
around AAS. This could therefore mean that for the model it is more beneficial to reduce noise for a large
group that was already below the 48+dB(A) threshold at the cost of slightly more people inside the 48+dB(A)
threshold area. One of the reasons for this is to prevent the model of allowing large amounts of people just
below these threshold values.



G.6. Analysis Pareto Optimal Solutions by Day 71

Figure G.4: Percentage Difference Amount of People Experiencing Average Noise Threshold Compared to B ASEE50%,N 50% Scenario on
a Busy Day (16 September 2019).

An example of what this looks like can be seen in figure G.5. Here the B ASEE50%,N 50% scenario is shown
with the scenario with the lowest noise cost (NW SE0%,N 100%) and how they compare to the B ASEE50%,N 50%

scenario. From the noise contour it can be seen that especially over higher populated areas NW SE0%,N 100%

performs considerably better as it aims to stay away from these areas, which are indicated by the grey areas
in the comparison figure. All noise contours for each scenario can be found in appendix I.1.

In general it can be stated that all scenarios perform better than the OLDE50%,N 50% Scenario. The addition of
the 4th IAF alone can result in a decrease of 4.3% point as seen when comparing the OLDE50%,N 50% Scenario
with the B ASEE50%,N 50% Scenario. This does however comes at the cost of an increased amount of people
that experience the average threshold levels of 48+dB(A) and 58+dB(A).
Combining the extra IAF with NAS (N ASE50%,N 50%, N ASE75%,N 25%, N ASE100%,N 0%) has the potential to fur-
ther decrease the Noise Objective cost with 7.17% point, while also decreasing the amount of people experi-
encing the threshold levels compared to the OLDE50%,N 50% scenario, especially in the 58+dB(A) region.
Looking at the NWS scenarios it is seen that an even bigger potential decrease can be achieved of 16.38%
point when compared to the B ASEE50%,N 50% scenario, while scoring even better in the 48+dB(A) threshold
area than the NAS scenarios. The 58+dB(A) NWS scenarios perform approximately equal to the NAS scenar-
ios. An important note to make here is that it is unlikely that the NWS scenarios are feasible for a busy day as
explained in appendix G.4.
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(a) LDE N Average for B ASEE50%,N 50%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
B ASEE50%,N 50%.

(c) LDE N Average for NW SE0%,N 100%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE0%,N 100%.

Figure G.5: Example LDE N Noise Contours for a Busy Day, 16 September 2019.
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Emissions and Flighttime
The Emission Objective costs can be found in table G.28. Similar to the Noise Objective the costs go down
when the objective becomes more important. From the indexed values it shows that the total difference in
emitted CO2 differs from 0.53% point (NW SE100%,N 0%) below the B ASEE50%,N 50% scenario to 1.66% point
above it, as can also be seen in figure G.6. What also stands out from this graph is that the flighttime follows
almost the same trend as the emissions, which of course is not very strange since if an aircraft flies longer it
also uses more fuel, and thus emits more CO2 since the Emission Objective is directly related to the fuel use
of an aircraft.
The reason that the difference in Emission Objective cost between the various scenarios is limited compared
to the Noise objective is that where the full noise cost is calculated within the section between the IAF and
the Runway, the emitted CO2 is calculated for the whole flight, thus resulting in smaller deviations in the final
number. But since the total amount of CO2 emitted during a day, as seen in table G.29, is a high number
this still has a considerable impact as a 1% point difference could mean an increase or decrease of the CO2

emitted of approximately 255,000 kg on a busy day.

Figure G.6: Percentage Difference Total Flighttime and Emissions Compared to B ASEE50%,N 50% Scenario on a Busy Day (16 September
2019).

In general it can be stated that adding the 4th IAF results in a CO2 reduction of 0.49% point, as seen by looking
at the B ASEE50%,N 50% and OLDE50%,N 50% scenario. When looking at the NAS scenarios it is seen that all have
a lower or comparable amount of emissions compared to the B ASEE50%,N 50% scenario. The NWS scenarios
clearly show more variation, with espacially NW SE0%,N 100%, NW SE25%,N 75%, and NW SE50%,N 50% having a
higher emission cost compared to both the B ASEE50%,N 50% and OLDE50%,N 50% scenarios. The reason for this
is simple since with adding more options comes the availability of choosing less noise costly routes, but at
the cost of a longer flighttime and emission cost.
For the flighttime similar trends are found.

Runway and IAF selection
In figure G.7 and figure G.8 the IAF/runway combinations used by the various scenarios can be seen com-
pared to the B ASEE50%,N 50% scenario. The Noise contours in appendix I.1 also give a good visual representa-
tion of the routes used for each scenario.
Adding the 4th IAF clearly has a large impact on the chosen routes as instead of 3 routes there are now 4
routes to a runway, resulting in shorter flight paths. A clear example for this is the usage of combinations
RIVER/36R, ARTIP/36R, and IAF4/36R. Since in the OLDE50%,N 50% scenario no aircraft was allowed to fly via
IAF4 they needed to go via RIVER or ARTIP, but with IAF4 available in the B ASEE50%,N 50% scenario a shorter
route became available for almost 150 aircraft. This is even more clearly illustrated in figure G.9 where in total
a little over 250 aircraft found a shorter way via the new 4th IAF. Since no change is seen in SUGOL between
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these scenarios it is clear that all these aircraft arrive from the South/South-East/East.
For the NAS scenarios it is clear that indeed it cannot use any IAF/runway combination violating the East-
West separation, such as for example the combinations SUGOL/36R and IAF4/36C as seen in figure G.7 and
figure G.8. One thing that stands out the most is the usage of IAF4/36R, which is clearly not only beneficial
for noise, but also provides a shorter route since N ASE100%,N 0% is only optimized for emission. Similarly, but
with a smaller amount this also holds for combinations SUGOL/06, SUGOL/36C, and SUGOL/18R. This im-
plies both for a considerable amount of traffic it is beneficial to fly via SUGOL emission wise, but it provides
beneficial routes noise wise as well as can be seen by the behaviour of the N ASE50%,N 50% and N ASE75%,N 25%

in figure G.9.
Looking at the same graphs it is clear the the East-West separation has a great influence on the IAF/runway
selection, as the NWS scenarios follow a completely different trend than the NAS scenarios. The one thing
that stands out the most is the combination of IAF4/06 which is used a lot by Noise Objective dominated
NW SE0%,100N % and NW SE25%,N 75%, but not with Emission Objective dominated NW SE75%,25N % and
NW SE100%,0N % scenarios. This implies that this approach is a very good approach to use when avoiding noise
disturbance, but this comes at a higher emission cost. Interesting is also that the in high demand IAF4/36R
for the NAS scenarios is not used that often for the Noise Objective dominated NWS scenarios NW SE0%,N 100%

and NW SE25%,N 75%. A lot of these flights instead use IAF4/36C or the earlier mentioned IAF4/06. This while
clearly for the Emission dominated NWS scenarios IAF4/36R is still preferred.
In general for all scenarios it can be concluded that indeed all Western runways (06, 18R, and 36C) are less
noise costly than the Eastern runways (36R and 27) as seen in figure G.9. Similarly this holds for IAF4 and
SUGOL having less noise costly approaches on average compared to RIVER and ARTIP.
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Figure G.7: Total Difference Usage IAF/Runway Combination Compared to B ASEE50%,N 50% Scenario on a Busy Day (16 September
2019) Part 1/2.
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Figure G.8: Total Difference Usage IAF/Runway Combination Compared to B ASEE50%,N 50% Scenario on a Busy Day (16 September
2019) Part 2/2.
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Figure G.9: Total Difference Usage Runway and IAF Compared to B ASEE50%,N 50% Scenario on a Busy Day (16 September 2019).
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G.6.2. Average Day, 26 October 2019

Table G.30: Objective Costs for all Pareto Optimal Scenarios for 26 October 2019 compared to B ASEE50%,N 50% Scenario.

Average Day, 26 October 2019
Scenario Base OLD NAS NAS NWS NWS NWS NWS NWS
Emission 50% 50% 75% 100% 0% 25% 50% 75% 100%
Noise 50% 50% 25% 0% 100% 75% 50% 25% 0%
Emission Objective Cost 0% +0.03% +0.10% -0.05% +0.63% +0.63% +0.50% +0.13% -0.13%
Noise Objective Cost 0% +0.99% -11.78% -3.96% -23.28% -23.18% -22.91% -21.78% -3.73%
Total Objective Cost 0% +0.53% -5.48% -1.79% -7.30% -7.28% -8.04% -10.11% -1.82%

Table G.31: Supporting Statistics for all Pareto Optimal Scenarios for 26 October 2019.

Average Day, 26 October 2019
Scenario Base OLD NAS NAS NWS NWS NWS NWS NWS
Emission 50% 50% 75% 100% 0% 25% 50% 75% 100%
Noise 50% 50% 25% 0% 100% 75% 50% 25% 0%
Total Time Early
Arrival [s]

4571 3657 4689 3735 3792 3707 4225 4251 3117

Total Time Late
Arrival [s]

664 1353 4048 3193 41074 40843 32258 7723 2404

Total People Experiencing
48+ dB(A) [-]

2522630 2512645 2331508 2479248 1963022 1963626 1966642 1978213 2478201

Total People Experiencing
58+ dB(A) [-]

134667 136158 112833 122862 109224 109224 109109 115274 131976

Total Flighttime [s] 7432481 7436963 7472027 7448556 7529484 7528878 7516222 7472255 7440488
Total CO2 Emitted [kg] 24039991 24047426 24063928 24028081 24191589 24190321 24159929 24070248 24009879

Delay
For the Delay Objective from table G.30 it is important to split the cost in Early Arrival and Late Arrival, as can
be seen in table G.31. No aircraft is allowed to deviate more than 15 minutes from their arrival time. Given a
total amount of flights for the Average Day of 677, this shows that the average amount of early arrival time per
aircraft for all scenarios is between 4.6 and 6.8 seconds. This is relatively close to each other and a low number
when taking the current planning horizon of 2 minutes into account. Similarly, the average late arrival time
per aircraft for all scenarios is between 1.0 and 60.7 seconds. This is still well within the 2 minute window, but
for some scenarios, especially the ones prioritizing the Noise Objective, the number is considerably higher
than the average early arrival time.

Noise
From the Noise Objective costs as seen in table G.30 it is very clear that when the Noise Objective becomes
more important the costs go down, which is exactly as expected. Looking at table G.31 and figure G.10 this
also holds for the amount of people experiencing a certain threshold value.
An example on how the Noise contours look for each scenario for the Average day, the Noise contours of
the B ASEE50%,N 50% scenario and the scenario with the lowest noise cost, NW SE0%,N 100%, are presented in
figure G.11. From the noise contour it can be seen that especially over higher populated areas NW SE0%,N 100%

performs considerably better as it aims to stay away from these areas, which are indicated by the grey areas
in the comparison figure. All noise contours for each scenario can be found in appendix I.2.
In general, it can be stated that all scenarios perform better than the OLDE50%,N 50% Scenario. The addition
of the 4th IAF alone can result in a decrease of 0.99% point as seen when comparing the OLDE50%,N 50% Sce-
nario with the B ASEE50%,N 50% Scenario. This does however come at the cost of a slightly increased amount
of people that experience the average threshold level of 58+dB(A). The amount of people experiencing the
threshold of 48+dB(A) decreases marginally.
Combining the extra IAF with NAS has the potential to further decrease the Noise Objective cost with 3.96%
point to 11.78% point, while also decreasing the amount of people experiencing the threshold levels com-
pared to the OLDE50%,N 50% scenario, especially in the 58+dB(A) region.
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Figure G.10: Percentage Difference Amount of People Experiencing Average Noise Threshold Compared to B ASEE50%,N 50% Scenario
on an Average Day (26 October 2019).

Looking at the NWS secenarios it is seen that an even bigger potential decrease can be achieved of 23.28%
point when compared to the B ASEE50%,N 50% scenario, while scoring even better in the 48+dB(A) and 58+dB(A)
threshold areas compared to the NAS scenarios. An important note to make here is that it is unlikely that the
NWS scenarios are feasible for an average day as explained in appendix G.4.
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(a) LDE N Average for B ASEE50%,N 50%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
B ASEE50%,N 50%.

(c) LDE N Average for NW SE0%,N 100%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE0%,N 100%.

Figure G.11: Example LDE N Noise Contours for an Average Day, 26 October 2019.
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Emissions and Flighttime
The Emission Objective costs can be found in figure G.2. Similar to the Noise Objective the costs go down
when the objective becomes more important. From the indexed values it shows that the total difference in
emitted CO2 differs from 0.13% point (NW SE100%,N 0%) below the B ASEE50%,N 50% scenario to 0.63% point
above it, as can also be seen in figure G.12. What also stands out from this graph is that the flighttime follows
almost the same trend as the emissions, which of course is not very strange since if an aircraft flies longer it
also uses more fuel, and thus emits more CO2, since the Emission Objective is directly related to the fuel use
of an aircraft.
The reason that the difference in Emission Objective cost between the various scenarios is limited compared
to the Noise objective, is that where the full noise cost is calculated within the section between the IAF and
the Runway, the emitted CO2 is calculated for the whole flight. Thus resulting in smaller deviations in the
final number. But, since the total amount of CO2 emitted during a day, as seen in table G.29, is a high number
this still has a considerable impact as a 1% point difference could mean an increase or decrease of the CO2

emitted of approximately 240,000 kg on an average day.

Figure G.12: Percentage Difference Total Flighttime and Emissions Compared to B ASEE50%,N 50% Scenario on an Average Day (26
October 2019).

In general it can be stated that adding the 4th IAF results in a CO2 reduction of 0.03% point, as seen by looking
at the B ASEE50%,N 50% and OLDE50%,N 50% scenarios. When looking at the NAS scenarios it is seen that all have
a comparable amount of emissions compared to the B ASEE50%,N 50% scenario. The NWS scenarios clearly
show more variation with especially scenarios NW SE0%,N 100%, NW SE25%,N 75%, and NW SE50%,N 50% having a
higher emission cost compared to both the B ASEE50%,N 50% and OLDE50%,N 50% scenarios. The reason for this
is simple since with adding more options comes the availability of choosing less noise costly routes, but at
the cost of a longer flighttime and emission cost.
For the flighttime similar trends are found.

Runway and IAF selection
In figure G.13 and figure G.14 the IAF/runway combinations used by the various scenarios can be seen com-
pared to the B ASEE50%,N 50% scenario. The noise contours in appendix I.2 also give a good visual representa-
tion of the routes used for each scenario.
Adding the 4th IAF has little impact on the chosen routes for this Average Day as can be seen when comparing
the OLDE50%,N 50% scenario with the B ASEE50%,N 50% scenario. Only marginal changes can be seen since the
OLDE50%,N 50% scenario is not able to fly via the 4th IAF, but clearly for this day there were not a lot of aircraft
that would have benefited from the extra IAF.
For the NAS scenarios the thing that stands out most is that aircraft who were scheduled originally to use
ARTIP/18R and are no longer able to do so due to the East-West separation and are now diverted to AR-
TIP/18C, which is clearly less optimal noise wise. Similarly, but also because it is less noise costly, aircraft are
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diverted from SUGOL/18C and RIVER/18R to SUGOL/18R. For the other combinations the difference with
the B ASEE50%,N 50% and OLDE50%,N 50% scenario are small.
For the NWS scenarios the combination ARTIP/18R stands out, as it is clearly favoured by the scenarios that
also take noise into account, but is not favored by NW SE100%,N 0% which only optimises for emission. Ex-
actly the reverse can be seen for the ARTIP/18C combination, thus it can be concluded that the approach to
18R from ARTIP creates less noise disturbance, while ARTIP/18C provides a shorter route. The decrease in
Emission Objective cost is marginal though since both runways are next to each other, which is thus also why
all scenarios that take noise into account prefer to avoid it. What also stands out is that SUGOL is massively
preferred by the scenarios that take noise into account. While these are avoiding RIVER, and SUGOL clearly
also provides shorter routes as N ASE100%,N 0% and NW SE100%,N 0% also have a preference for this IAF.
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Figure G.13: Total Difference Usage IAF/Runway Combination Compared to B ASEE50%,N 50% Scenario on an Average Day (26 October
2019).
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Figure G.14: Total Difference Usage Runway and IAF Compared to B ASEE50%,N 50% Scenario on an Average Day (26 October 2019).
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G.6.3. Quiet Day, 21 March 2019

Table G.32: Objective Costs for all Pareto Optimal Scenarios for 21 March 2019 compared to B ASEE50%,N 50% Scenario.

Quiet Day, 21 March 2019
Scenario Base OLD NAS NAS NAS NWS NWS NWS
Emission 50% 50% 100%/75%/50% 75% 100% 0% /25%/50% 75% 100%
Noise 50% 50% 0% /25%/50% 25% 0% 100%/75%/50% 25% 0%
Emission Objective Cost 0% +0.01% -0.36% -0.41% -1.10% +0.02% -0.03% +1.1%
Noise Objective Cost 0% +0.81% +16.18% +16.34% +36.01% -21.94% -21.86% +36.01%
Total Objective Cost 0% +0.41% +7.91% +7.96% +17.46% -10.96% -10.94% +17.46%

Table G.33: Supporting Statistics for all Pareto Optimal Scenarios for 21 March 2019.

Quiet Day, 21 March 2019
Scenario Base OLD NAS NAS NAS NWS NWS NWS
Emission 50% 50% 100%/75%/50% 75% 100% 0% /25%/50% 75% 100%
Noise 50% 50% 0% /25%/50% 25% 0% 100%/75%/50% 25% 0%
Total Time Early
Arrival [s]

0 0 0 0 0 0 0 0

Total Time Late
Arrival [s]

1 1 0 0 0 1 1 0

Total People Experiencing
48+ dB(A) [-]

2119864 2149169 2002261 2004180 2227301 1440142 1440625 2227301

Total People Experiencing
58+ dB(A) [-]

51806 51918 66747 65021 109884 34906 34906 109884

Total Flighttime [s] 5544589 5545126 5551118 5546658 5494970 5565312 5562323 5494970
Total CO2 Emitted [kg] 18912309 18913618 18845444 18834140 18704508 18916433 18908179 18704508

Delay
For the Delay Objective from table G.32 it is important to split the cost in Early Arrival and Late Arrival, as can
be seen in table G.33. No aircraft is allowed to deviate more than 15 minutes from their arrival time. But, as
seen in these tables is that there is only a total of 1 second delay. This means that for the whole day there has
only been 1 aircraft that needed to wait for 1 second for any scenario to use the most optimal routes available,
and that no aircraft needed to arrive early. Therefore implying that on a Quiet Day there is so much available
capacity that delay is no factor.

Noise
For the Noise Objective Cost as seen in table G.32, it is very clear that when the Noise Objective becomes
more important the costs go down, which is exactly as expected. However when looking at table G.33 and
figure G.15 this does not hold for the amount of people experiencing a certain threshold value. This is because
the Noise Objective does not optimise for only these groups, but for all people affected by noise emitted
around AAS. This could therefore mean that for the model it is beneficial to reduce noise for a large group that
was already below the 48+dB(A) threshold at the cost of slightly more people inside the 48+dB(A) threshold
area. One of the reasons for this is to prevent the model of allowing large amounts of people just below these
threshold values.
An example of what this looks like can be seen in figure G.16. Here the B ASEE50%,N 50% scenario is shown
with the scenario with the lowest noise cost, NW SE0%,N 100%, and how they compare to the B ASEE50%,N 50%

scenario. From the noise contour it can be seen that especially over higher populated areas NW SE0%,N 100%

performs considerably better as it aims to stay away from these areas, which are indicated by the grey areas
in the comparison figure. All noise contours for each scenario can be found in appendix I.3.
The addition of the 4th IAF results in a small reduction of Noise Objective cost of 0.81% point as seen when
comparing the OLDE50%,N 50% scenario with the B ASEE50%,N 50% scenario, while also decreasing the amount
of people experiencing a certain average noise threshold slightly.
In contrary to previous findings for the Average and Busy Days when the 4th IAF is combined with the NAS
scenario the Noise Objective cost actually increases with 16.18% point to 36.01% point instead of decreasing.
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Figure G.15: Percentage Difference Amount of People Experiencing Average Noise Threshold Compared to B ASEE50%,N 50% Scenario
on a Quiet Day (21 March 2019).

This implies that the strict East-West separation results in a worse situation noise wise than the current prac-
tice. For the amount of people experiencing a noise threshold of 48+dB(A) a slight decrease is seen for the
NAS scenarios that take noise into account, and a slight increase for the Emission Objective optimized the
N ASE100%,N 0% scenario, but for the 58+dB(A) threshold a large increase for all NAS scenarios is seen.
For the NWS scenarios a wide range of Noise Objective costs can be seen, with NW SE100%,N 0% being equal
to the also only optimized on emission N ASE100%,N 0% scenario. These scenarios both have an increase of
the Noise Objective cost compared to the B ASEE50%,N 50% scenario of 36.01% point, with also a small in-
crease in people experiencing the average threshold of 48+dB(A) and a large increase for the 58+dB(A) thresh-
old. The other NWS scenarios all show a significant decrease in Noise Objective cost when compared to the
B ASEE50%,N 50% scenario of 21.86% point to 21.94% point, combined with a significant decreased amount of
people experiencing 48+dB(A) or 58+dB(A) threshold levels.
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(a) LDE N Average for B ASEE50%,N 50% Scenario.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
B ASEE50%,N 50%.

(c) LDE N Average for NW SE0%,N 100%, NW SE25%,N 75% , and
NW SE50%,N 50%.

.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE0%,N 100%, NW SE25%,N 75% , and NW SE50%,N 50%.

Figure G.16: Example LDE N Noise Contours for a Quiet Day, 21 March 2019.
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Emissions and Flighttime
The Emission Objective costs can be found in figure G.3. Similar to the Noise Objective the costs go down
when the objective becomes more important. From the indexed values it shows that the total difference in
emitted CO2 differs from 1.10% point below the B ASEE50%,N 50% scenario to 0.02% point above it, as can also
be seen in figure G.17.
The reason that the difference in Emission Objective cost between the various scenarios is limited compared
to the Noise objective is that where the full noise cost is calculated within the section between the IAF and
the Runway, the emitted CO2 is calculated for the whole flight. This results in smaller deviations in the final
number. But since the total amount of CO2 emitted during a day, as seen in table G.29, is a high number
this still has a considerable impact as a 1% point difference could mean an increase or decrease of the CO2

emitted of approximately 189,000 kg on a quiet day.

Figure G.17: Percentage Difference Total Flighttime and Emissions on a Quiet Day (21 March 2019).

In general it can be stated that adding the 4th IAF results in a CO2 reduction of 0.01% point, as seen by
looking at the B ASEE50%,N 50% and OLDE50%,N 50% scenarios. When looking at the NAS scenarios it is seen
that all have a lower or comparable amount of emissions compared to the B ASEE50%,N 50% scenario. For the
NW SE0%,N 100%, NW SE25%,N 75%, and NW SE50%,N 50% the Emission cost is highest for all scenarios, but with
only an increase of 0.02% point compared to the B ASEE50%,N 50% scenario. N ASE100%,N 0% and NW SE100%,N 0%,
which are equal, both have the lowest Emission Objective cost with a decrease of 1.10% point compared to
the B ASEE50%,N 50% scenario. These are also the only scenarios that show a reduction in flighttime.

Runway and IAF selection
In figure G.18 and figure G.19 the IAF/runway combinations used by the various scenarios can be seen com-
pared to the B ASEE50%,N 50% scenario. The noise contours in appendix I.3 also give a good visual representa-
tion of the routes used for each scenario.
Adding the 4th IAF has little impact on the chosen routes for this Quiet Day as can be seen when comparing
the OLDE50%,N 50% scenario with the B ASEE50%,N 50% scenario. Only marginal changes can be seen since the
OLDE50%,N 50% scenario is not able to fly via the 4th IAF, but clearly for this day there were not a lot of aircraft
that would have benefited from the extra IAF.
For the NAS scenarios that take noise into account, it is clear that since they are not able to fly from an Eastern
IAF to a Western runway all traffic that goes via ARTIP/18R in the B ASEE50%,N 50% scenario now is redirected
via ARTIP/27 or SUGOL/18R, and that traffic coming via RIVER/18R in the B ASEE50%,N 50% scenario is also
redirected to ARTIP/27 or SUGOL/18R for these scenarios.
N ASE100%,N 0% and NW SE100%,N 0% both have the same solution, what stands out for these solutions is that
also NW SE100%,N 0% only uses Eastern IAFs with Eastern runways, and similar for Western, basically adhering
voluntarily to the East-West separation N ASE100%,N 0% is confined upon. This does makes sense since due to
the little amount of traffic there is plenty of capacity and runways and IAFs that are on the same side have
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a shorter approach and therefore use less fuel and thus less CO2 emissions. The reason why for these two
the usage of runway 18R decreases significantly is because in the B ASEE50%,N 50% and OLDE50%,N 50% sce-
narios runway 27 is not available for most flights, while from an emission perspective this would have been
beneficial. This is also the reason why all NWS scenarios except NW SE0%,N 100% differ very little from the
B ASEE50%,N 50% and OLDE50%,N 50% scenario, since runway 18R is the least Noise Objective costly runway of
the two. It must be noted that the approach via RIVER/18R is also not preferred from a noise perspective, and
therefore these scenarios instead use SUGOL/18R.
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Figure G.18: Total Difference Usage IAF/Runway Combination Compared to B ASEE50%,N 50% Scenario on a Quiet Day (21 March 2019).
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Figure G.19: Total Difference Usage Runway and IAF Compared to B ASEE50%,N 50% Scenario on a Quiet Day (21 March 2019).





H
Verification & Validation IAF Optimization

Model

H.1. Verification

To verify that the IAF selection model performs as expected, the model is subjected to unit testing. Each
formula used in the code of the model is checked by hand calculation, and for each constraint random sub-
constraints were selected and checked if the constraint performs as expected. Since the model is split to run
multiple increments for each day, each of the outcomes of these increments were checked if the outcome was
as expected. This brought to light that there is one specific increment in scenario NW SE100%,N 0% for the date
16 September 2019 between 13:35 and 14:20, which does not produce a solution. Closer investigation of the
problem did not provide a reason of the failure, however replicating the situation proved that the failure to
produce a solution was not an one time error, as the problem occurred also then, but still only for this specific
increment, date, and scenario. Other scenarios for that day, and other days for the same scenario did produce
a solution. Fortunately, the increments are chosen in a way that they have overlap with the previous and next
increments, and since the increment before and after do produce a solution it was decided to not put more
resources into finding the root of the problem. Instead it was decided that manually validating the outcome
of the previous and next increment would prove that the total solution for the entire day would still be valid
for all constraints. This is done in appendix H.2. In table H.3 an example of the final outcome of an increment
can be seen. For a full day this would be similar.

H.2. Validation

For the validation of the IAF selection model random aircraft combinations were selected and checked if they
comply to all the constraints. This process is very similar for all constraints, therefore it was decided to only
show the validation of the increment that did not produce a solution.

The designed model failed to produce a solution while running the following settings:
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Table H.1: Settings for increment that failed to produce a solution.

Constant Value Description
d ate 16Sep Date run is 16 September 2019

St ar t t i me 48900
Amount of seconds from start of the day (00:00)
for the beginning of this increment.

Stopti me 51600
Amount of seconds from start of the day (00:00)
for the end of this increment.

CNOI SE 9.370314942239448 Normalization constant for Noise Objective
CE M I SSION 0.12362506744787292 Normalization constant for Emission Objective
CDEL AY 1 Normalization constant for Delay Objective

E M I SSION 100%
Importance Emission Objective compared to Noise Objective
E M I SSION +NOI SE = 100%

NOI SE 0%
Importance Noise Objective compared to Emission Objective
E M I SSION +NOI SE = 100%

E astW estSepar ati on F al se
If True: Strict East-West Separation meaning no aircraft can fly
from a Western IAF to the Eastern runway and vice versa.
If False: No East-West Separation is maintained.

F i xedRunw ay F al se
If True: Aircraft are fixed to the runway they originally landed
on on the specific date run.
If False: Aircraft have free choice of available runways.

I AF 4 Tr ue
If True: Aircraft are allowed to fly via the 4th IAF.
if False: The 4th IAF is not available

This means that no solution was found for the case where no East-West separation is enforced, the choice of
available runways is free, the optimisation is purely on emission and delay, thus neglecting noise, the date
was the 16th of September 2019 between 13:35 and 14:20. From the previous run already an optimal solution
was found for the arriving aircraft before 14:05, leaving the gap of 15 minutes between 14:05 and 14:20. The
unassigned flights are the following:

Table H.2: Unassigned flights.

Callsign Flight ID ADEP DEST ICAO_ACT RECAT-EU Original Arrival Time
KLM67W 20553545 EGPE EHAM E75L E 14:05:38
KLM36U 20553521 EGCC EHAM E190 E 14:07:04
KLM1386 20553560 UKBB EHAM B738 D 14:08:41
KLM1846 20553555 LOWW EHAM B738 D 14:10:53
KLM1976 20553565 LHBP EHAM B737 D 14:15:25
CAI5B 20553574 LTAI EHAM B738 D 14:18:41

Running the next part of the optimization, the part between 14:05 and 14:50, did produce a solution for these
aircraft. Since there is no overlapping of the two optimizations since the run between 13:35 and 14:20 failed,
there is a chance that constraints are violated. To confirm this is not the case it was checked manually if the
separation constraints are met for all aircraft. Since the solution for the aircraft between 14:05 and 14:20 is
found in the run between 14:05 and 14:50 it is already guaranteed that all aircraft after 14:05 adhere to the
constraints between each other. Therefore only the aircraft before 14:05 need to be checked with those after
14:05. No aircraft is allowed to be more than 15 minutes early or late, thus the time frame that needs to be
checked is between 13:50 and 14:20. All aircraft in this window and their assigned time, runway and IAF are
shown in table H.3.
It is thus already known that all aircraft before 14:05 (50700 seconds) and all aircraft after 14:05 adhere to
the constraints and are an optimal combination. Therefore only these two sets need to be checked. This is
easily done by checking the latest aircraft landing on a runway before 50700 seconds with the earliest aircraft
landing on that runway after 50700 seconds. Since there are two runways this results in the following pairs.
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Table H.3: Assigned Flights Between 13:50 and 14:20 on 16 September 2019 for NW SE100%,N 0%.

Callsign Flight ID ADEP DEST ICAO_ACT RECAT-EU
Original
Arrival
Time [s]

Assigned
Arrival
Time [s]

Assigned
Runway

Assigned
IAF

KLM18M 20553513 ENGM EHAM E190 E 49807 49762 06 SUGOL
ICE4E 20553526 BIKF EHAM B752 C 49834 49827 06 SUGOL
KLM90Z 20553479 LPPT EHAM B738 D 49886 49921 06 RIVER
SIA7343 20553552 HKJK EHAM B744 B 49940 49874 36R IAF4
KLM52X 20553506 EDDT EHAM B737 D 49994 49972 36R IAF4
BEE6CP 20553568 EGHI EHAM DH8D E 50086 50086 06 SUGOL
KLM26K 20553529 LOWG EHAM E75L E 50086 50041 36R IAF4
KLM78T 20553514 LIPE EHAM E190 E 50168 50131 36R IAF4
AMC386 20553556 LMML EHAM A20N D 50175 50176 06 RIVER
KLM20M 20553478 ESSA EHAM B738 D 50240 50225 36R ARTIP
KLM1052 20553518 EGGD EHAM E190 E 50270 50270 06 SUGOL
KLM80A 20553512 LKPR EHAM B738 D 50335 50329 36R IAF4
KLM70H 20553546 EGSH EHAM E75L E 50374 50374 06 SUGOL
KLM1334 20553446 EKYT EHAM E190 E 50422 50419 36R ARTIP
EJU53JD 20553564 LIRN EHAM A319 D 50447 50464 06 RIVER
KLM1756 20553527 EDDW EHAM E75L E 50526 50514 36R ARTIP
EJU68WE 20553542 EGPF EHAM A319 D 50559 50559 06 SUGOL
KLM14X 20553544 EKCH EHAM B737 D 50616 50604 36R ARTIP
KLM50L 20553507 LSZH EHAM E190 E 50647 50649 06 RIVER
KLM67W 20553545 EGPE EHAM E75L E 50738 50738 06 SUGOL
KLM36U 20553521 EGCC EHAM E190 E 50824 50824 06 SUGOL
KLM1386 20553560 UKBB EHAM B738 D 50921 50921 36R IAF4
KLM1846 20553555 LOWW EHAM B738 D 51053 51053 36R IAF4
KLM1976 20553565 LHBP EHAM B737 D 51325 51325 36R IAF4
CAI5B 20553574 LTAI EHAM B738 D 51521 51521 36R IAF4
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Runway 36R
For runway 36R the aircraft that need to be checked are the KLM14X and KLM1386.

Table H.4: Assigned Flights KLM14X and KLM1386.

Callsign Flight ID ADEP DEST ICAO_ACT RECAT-EU
Original
Arrival
Time [s]

Assigned
Arrival
Time [s]

Assigned
Runway

Assigned
IAF

KLM14X 20553544 EKCH EHAM B737 D 50616 50604 36R ARTIP
KLM1386 20553560 UKBB EHAM B738 D 50921 50921 36R IAF4

Since they are both from the D RECAT-EU category they need a minimum of 2.5 nautical miles separation.
Since both aircraft have an estimated approach speed of 147 knots, equation (B.1) shows that the time re-
quired between the aircraft is 2.5/147 = 0.017 hours = 61.2 seconds. Also taking into account equation (B.2)
with the AROT of 45 seconds this thus results in:

Ti j = max(µ1,µ2) = max(61.2,45) = 61.2 seconds (H.1)

With the time between the two assigned arrival times of the aircraft being 50921−50604 = 317 seconds it can
be concluded that these two aircraft adhere to the constraints.

Runway 06
For runway 06 the aircraft that need to be checked are the KLM50L and the KLM67W.

Table H.5: Assigned Flights KLM50L and KLM67W.

Callsign Flight ID ADEP DEST ICAO_ACT RECAT-EU
Original
Arrival
Time [s]

Assigned
Arrival
Time [s]

Assigned
Runway

Assigned
IAF

KLM50L 20553507 LSZH EHAM E190 E 50647 50649 06 RIVER
KLM67W 20553545 EGPE EHAM E75L E 50738 50738 06 SUGOL

Since they are both from the E RECAT-EU category they need a minimum of 2.5 nautical miles separation.
Since both aircraft have an estimated approach speed of 131 knots, equation (B.1) shows that the time re-
quired between the aircraft is 2.5/131 = 0.019 hours = 68.7 seconds. Also taking into account equation (B.2)
with the AROT of 45 seconds this thus results in:

Ti j = max(µ1,µ2) = max(68.7,45) = 68.7 seconds (H.2)

With the time between the two assigned arrival times of the aircraft being 50738−50647 = 91 seconds it can
be concluded that these two aircraft adhere to the constraints.

Therefore it can be concluded that the solution found is both optimal and viable. As to the question why
in one case the model did not produce a solution no answer was found. Since a workaround is easily created,
it is the only time it occurs, and it can be easily proven that an optimal solution is found no further resources
are allocated to find the root of the problem.
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Noise Contours

Table I.1: Scenario descriptions. More detailed description can be found in appendix G.

Scenario Description
B ASEE50%,N 50% Base scenario, with E M I SSION = 50% and NOI SE = 50%
OLDE50%,N 50% Old scenario, with E M I SSION = 50% and NOI SE = 50%
N ASE0%,N 100% NAS scenario, with E M I SSION = 0% and NOI SE = 100%
N ASE25%,N 75% NAS scenario, with E M I SSION = 25% and NOI SE = 75%
N ASE50%,N 50% NAS scenario, with E M I SSION = 50% and NOI SE = 50%
N ASE75%,N 25% NAS scenario, with E M I SSION = 75% and NOI SE = 25%
N ASE100%,N 0% NAS scenario, with E M I SSION = 100% and NOI SE = 0%
NW SE0%,N 100% NWS scenario, with E M I SSION = 0% and NOI SE = 100%
NW SE25%,N 75% NWS scenario, with E M I SSION = 25% and NOI SE = 75%
NW SE50%,N 50% NWS scenario, with E M I SSION = 50% and NOI SE = 50%
NW SE75%,N 25% NWS scenario, with E M I SSION = 75% and NOI SE = 25%
NW SE100%,N 0% NWS scenario, with E M I SSION = 100% and NOI SE = 0%
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I.1. Busy day, 16 September 2019

(a) LDE N Average for B ASEE50%,N 50%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
B ASEE50%,N 50%.

(c) LDE N Average for OLDE50%,N 50%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
OLDE50%,N 50%.

(e) LDE N Average for N ASE50%,N 50%.
.
.

(f) Change in LDE N Average Compared to B ASEE50%,N 50% for
N ASE50%,N 50%.

Figure I.1: LDE N Noise Contours for a Busy Day, 16 September 2019, Part 1/4.
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(a) LDE N Average for N ASE75%,N 25%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
N ASE75%,N 25%.

(c) LDE N Average for N ASE100%,N 0%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
N ASE100%,N 0%.

(e) LDE N Average for NW SE0%,N 100%.
.
.

(f) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE0%,N 100%.

Figure I.2: LDE N Noise Contours for a Busy Day, 16 September 2019, Part 2/4.
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(a) LDE N Average for NW SE25%,N 75%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE25%,N 75%.

(c) LDE N Average for NW SE50%,N 50%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE50%,N 50%.

(e) LDE N Average for NW SE75%,N 25%.
.
.

(f) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE75%,N 25%.

Figure I.3: LDE N Noise Contours for a Busy Day, 16 September 2019, Part 3/4.
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(a) LDE N Average for NW SE100%,N 0%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE100%,N 0%.

Figure I.4: LDE N Noise Contours for a Busy Day, 16 September 2019, Part 4/4.

I.2. Average Day, 26 October 2019

(a) LDE N Average for B ASEE50%,N 50%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
B ASEE50%,N 50%.

(c) LDE N Average for OLDE50%,N 50%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
OLDE50%,N 50%.

Figure I.5: LDE N Noise Contours for an Average Day, 26 October 2019, Part 1/4.



102 I. Noise Contours

(a) LDE N Average for N ASE75%,N 25%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
N ASE75%,N 25%.

(c) LDE N Average for N ASE100%,N 0%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
N ASE100%,N 0%.

(e) LDE N Average for NW SE0%,N 100%.
.
.

(f) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE0%,N 100%.

Figure I.6: LDE N Noise Contours for an Average Day, 26 October 2019, Part 2/4.
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(a) LDE N Average for NW SE25%,N 75%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE25%,N 75%.

(c) LDE N Average for NW SE50%,N 50%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE50%,N 50%.

(e) LDE N Average for NW SE75%,N 25%.
.
.

(f) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE75%,N 25%.

Figure I.7: LDE N Noise Contours for an Average Day, 26 October 2019, Part 3/4.
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(a) LDE N Average for NW SE100%,N 0%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE100%,N 0%.

Figure I.8: LDE N Noise Contours for an Average Day, 26 October 2019, Part 4/4.

I.3. Quiet day, 21 March 2019

(a) LDE N Average for B ASEE50%,N 50%.
.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
B ASEE50%,N 50%.

(c) LDE N Average for OLDE50%,N 50%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
OLDE50%,N 50%.

Figure I.9: LDE N Noise Contours for a Quiet Day, 21 March 2019, Part 1/3.
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(a) LDE N Average for N ASE0%,N 1000%, N ASE25%,N 75%, and N ASE50%,N 50%.
.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
N ASE0%,N 1000%, N ASE25%,N 75%, and N ASE50%,N 50%.

(c) LDE N Average for N ASE75%,N 25%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
N ASE75%,N 25%.

(e) LDE N Average for N ASE100%,N 0%.
.
.

(f) Change in LDE N Average Compared to B ASEE50%,N 50% for
N ASE100%,N 0%.

Figure I.10: LDE N Noise Contours for a Quiet Day, 21 March 2019, Part 2/3.
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(a) LDE N Average for NW SE0%,N 1000%, NW SE25%,N 75%, and
NW SE50%,N 50%.

.

(b) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE0%,N 1000%, NW SE25%,N 75%, and NW SE50%,N 50%.

(c) LDE N Average for NW SE75%,N 25%.
.
.

(d) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE75%,N 25%.

(e) LDE N Average for NW SE100%,N 0%.
.
.

(f) Change in LDE N Average Compared to B ASEE50%,N 50% for
NW SE100%,N 0%.

Figure I.11: LDE N Noise Contours for a Quiet Day, 21 March 2019, Part 3/3.
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